
Confidence of the Trembling Hand:
Bayesian Learning with Data Poor Stocks

Jorge Holzer and Qian Qu

La Paz, Mexico

March 23, 2017

1 / 36



Motivation
Data-Poor Stocks

Increasing interest in the development of tools to manage data-poor
stocks.

Managers must often make decisions irrespective of data availability
or completeness of scientific understanding.

MSA requires annual catch limits (ACLs) to prevent overfishing for
most federally managed species, including data-poor stocks.

Similar requirements exist in Australia and New Zealand.

Catch-based approaches are typically used when there are insufficient
data for estimating overfishing limits (OFL) with more sophisticated
methods (i.e. stock assessment models).
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Motivation
Data-Poor Stocks

These approaches set the OFL as the average (or median) catch over
a reference period, and calculate the ACL according to downward
adjustment based on uncertainty about stock status.

These methods are currently used in a number of fisheries: Greenland
halibut, Snowy grouper, Atlantic mackerel, Red crab, Golden king
crab, Flathead sole, etc (Newman et al. 2015).

We compare these methods (“steady”hand) with an alternative
strategy: perturbations in the form of small, temporary and
intermittent increases to ACLs (“trembling”hand).
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Preliminaries
Data-Poor Fishery

The Resource:

Stock grows according to a logistic model up to a random disturbance

Gt = r0St−1

(
1− St−1

Ω

)
+ ηt

where r0 denotes the intrinsic growth rate, Ω the carrying capacity
and ηt ∼ iid N(0, σ2η).

The evolution of the stock is governed by St = St−1 + Gt − ht .

At each date a noisy signal yt = St + εt is generated, where
εt ∼ iid N(0, σ2ε ).
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Preliminaries
Data-Poor Fishery

The Regulator:

Knows all parameters but r0. Regulator’s beliefs at t − 1 given by the
distribution function Qt−1.

Manages the resource with a fishery-wide ACL (H̄t).

H̄ chosen so that the maximum sustainable yield is only exceeded
with probability α

Pr [MSYt−1 ≤ H̄t ] = α ⇔ H̄t = Q−1t−1(α)
1

4
Ω

Manager updates beliefs every T periods (i.e. using signal series of
length T ).
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Preliminaries
Data-Poor Fishery

The Industry:

Industry profits are given by πt = ptht − c(St , ht), where
cS < 0, ch > 0.

Industry sets ht = min[H̄,H0], where H̄ is the annual catch limit set
by the regulator and H0 the zero-profit aggregate catch level.
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Intuition: Two Types
Additional Channel of Information
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Intuition: Two Types
Type A Difference
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Intuition: Two Types
Type B Difference
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Intuition: Two Types
Additional Channel of Information

Two convergence patterns to the high steady state after perturbation:
rL approaches from one side while rH fluctuates with diminishing
amplitude.

The intrinsic growth rate parameter governs both the location of the
high steady state and its surrounding dynamics.

Steady hand: relies solely on the difference in high steady state
location to distinguish rH and rL (Type A difference).

Trembling hand: unseals the difference in dynamics (Type B
difference).
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Intuition: Two Types
Case I

15 / 36



Intuition: Two Types
Case I

Convergence from one side of the steady state: rH generates faster
convergence path than rL

Trembling always has a bigger gap than steady.

The superiority of trembling diminishes over time.

In the actual work, cumulative confidence difference for all T days is
computed by weighting the difference of each day by a measure of
accuracy and summing over the horizon.

Cumulative confidence difference increases over time at a decreasing
rate.

Type A difference always adds to type B difference.
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Intuition: Two Types
Case II
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Intuition: Two Types
Case II

Converge from two sides: rH at a slower rate than rL.

Under the trembling hand, bigger and smaller gaps alternate.

Confidence gain and loss alternate.

Cumulative confidence difference does not grow monotonically.

Cumulative confidence is (almost) always positive: (1) alternation
begins with information gain; (2) sizes of gain/loss diminish over time.

Type A and type B difference add to each other at one period, work
against each other at the next.

When type A and type B difference are antagonistic, type A difference
dominates.
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Intuition: Two Types
Case III
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Intuition: Two Types
Case III

Convergence from two sides: rH at a lower rate than rL.

Confidence gain every period. The size of gain diminishes over time.
Cumulative information difference monotonically increases.

Type A and type B differences oscillate from being synergistic to
being antagonistic (i.e. there is internal friction caused by the
oscillating pattern of convergence).

When two types of differences work against each other, type B
difference overwhelms type A.
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General Case
A Continuum of Types

Setting

Candidate parameter values on a continuum

Consider the two management strategies:

(i) ht = H̄, ∀t
(ii) ht = H̄ + ∆t where at least one ∆t 6= 0 for 1 ≤ t ≤ T − 1

Approach

Linearize around the high steady state to obtain the state space
representation

Apply the Kalman filter to construct the likelihood

Analytically derive the difference in fisher information for the two
cases

Explore the range of information gain
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State-Space Representation

Linearize around the high steady state and solve for the steady state
representation:

yt =A (r) + S̃t + εt

S̃t =B (r) S̃t−1 −∆t + ηt

where

A (r) = S∗high
(
r , Ω, H̄

)
=

r +

√
r2 − 4

r

Ω
H̄

2r/Ω

B (r) =r − 2rA (r)

Ω
+ 1
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Kalman Filter
A Recursive Algorithm

Let Yt = {ys}ts=1 denote signals up to date t, at = E [S̃t |Yt−1] the
one-step predicative mean of stock deviation from the steady state,
and pt = var [S̃t |Yt−1] the predicative variance.

Applying the Kalman algorithm, at and pt evolve as follows:

at =B (r) at−1 + B (r)Kt−1et−1 −∆t

pt =B2 (r) pt−1 − B2 (r)Kt−1pt−1 + σ2η

et =yt − A (r)− at

Ft =var (et) = pt + σ2ε

Kt =
pt
Ft
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Likelihood and Fisher Information

The log-likelihood takes the form:

ln L (YT | r , {∆t}) = −T
2

ln 2π − 1

2

T∑
lnFt −

1

2

T∑
e2t F

−1
t

We use Fisher information IT (r) = −E
[
∂2

∂r2
ln L (YT | r , {∆t})

]
to measure the confidence the regulator can have in its estimate (i.e.
information the linearized system accumulates about r up to date T ).

∆IT (r) between the two management strategies is equivalent to the

difference in
∑T F−1t E

[
A′ (r) +

∂

∂r
at

]2
, a measure of distance

between true and neighboring false predictions.
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Fisher Information Difference
Exogenous Variation

The measure of prediction distance can be written as the difference in
exogenous and deterministic variation:

∆IT (r) =
T∑
t=1

F−1
t

[(
t∑

m=2

Cm,t (−∆m) + Dta
TR
1

)
B ′ (r) + A′ (r) (1−Mt)

]2

−
T∑
t=1

F−1
t

[
Dta

ST
1 B ′ (r) + A′ (r) (1−Mt)

]2
where

Cm,t =

(
∂B t−m

∂B

)
+

t−1∑
s=m

(
−B t−sKs

)
Cm,s , Cm,m = 0, t ≥ m + 1

Dt =

(
∂B t−1

∂B

)
+

t−1∑
s=1

(
−B t−sKs

)
Ds , D1 = 0, t ≥ 2

Mt = (B − BKt−1)Mt−1 + BKt−1, M1 = 0, t ≥ 2
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Posterior Beliefs

To obtain the posterior, use the fact that by Bayes’ rule the posterior
is proportional to the likelihood multiplied by the prior:

ln L (r |YT ) = ln L (YT |r , {∆t}) + ln

(
d

dr
Q0(r)

)
(1)

Maximization of (1) results in the maximum likelihood estimate r̂T ,
and the corresponding inverse of the information matrix evaluated at

the MLE estimate, σ̂2T = −
(
∂2

∂r2
ln L (r̂T )

)−1
.

Thus, the manager’s beliefs on the intrinsic growth parameter at time
T are given by RT ∼ N(r̂T , σ̂

2
T ).
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Main Result
Sufficient Conditions

Case I: confidence gain every period∑t
m=1 Cm,t (−∆m)B ′ (r) and A′ (r) (1−Mt) are of the same sign

Falls into case I if B ′(r) > 0⇔ H̄ >
r 2 − 1

r 2

(
1

4
rΩ

)

Case II: confidence gain and loss alternate∑t
m=1 Cm,t (−∆m)B ′ (r) and A′ (r) (1−Mt) are of different signs and

|
∑t

m=1 Cm,t (−∆m)B ′ (r)| < 2|A′ (r) (1−Mt)|

Case III: confidence gain every period∑t
m=1 Cm,t (−∆m)B ′ (r) and A′ (r) (1−Mt) are of different signs and

|
∑t

m=1 Cm,t (−∆m)B ′ (r)| > 2|A′ (r) (1−Mt)|
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A Numerical Example (∆ = ση)
Fisher Information Gain
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Stock NPV Expectation
Different perturbation sizes and safety valves

Safety valve: if
yt
yt−1

< φ, remaining perturbations are canceled.
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Stock NPV Expectation
Different perturbation sizes and safety valves

Inverted U-shape wrt size of perturbation. As the size of perturbation
increases, expected stock NPV first increases then decreases.

Safety valve too loose (φ ≤ 0.7), under large perturbation trembling
is inferior to steady.

Safety valve too tight (φ ≥ 0.9), ensures that trembling always does
better than steady at the cost of reduced profitability when
perturbation is small.

When the safety valve is set just right (φ = 0.8), trembling with the
valve � max{trembling without the valve, steady hand} for all sizes
of perturbation.
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Stock NPV Distribution
Different perturbation sizes and safety valves
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Stock NPV Distribution
Different perturbation sizes and safety valves

Left and middle panel: tight valves unnecessarily reduces profitability.
Perturbation without the valve first order stochastically dominates all
others.

Right: safety valve necessary to ensure that trembling does no worse
than steady. Need φ ≥ 0.9 for trembling to first order stochastically
dominate steady.
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Trembling-Updating Equivalence
Assessment Cost Equivalent to 10% Annual Revenues under Steady Hand
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Trembling-Updating Equivalence
Assessment Cost=$0
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Cost Equivalence

Upper Panel: expected payoff wrt various sizes of perturbation and
updating frequencies.

Lower Panel: (1) perturbation size that yields the max payoff; (2)
smallest perturbation that dominates all updating frequencies; (3)
updating frequency that yields the maximum payoff; (4) updating
frequency that yields the minimum payoff.

In most cases relatively small perturbation dominates all updating
frequencies.

Only when updating is costless and valve is extremely stringent, the
optimal payoff of perturbation is inferior to that of updating.
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Final remarks

Small, temporary and intermittent increases to ACLs between stock
assessments (combined with a safety valve) can increase the
permanent value of the stock.

These perturbations translate into a more accurate estimation model
in the next assessment, which leads to ACLs closer to the true MSY
thereafter.

On the other hand, increases in ACLs imply a higher management risk
in the form of overfishing.

The net effect will depend on the interaction between type A and
type B differences.
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