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ABSTRACT

The investigation of the consequences of trying to blend tropical Pacific observations from the Tropical
Atmosphere-Ocean (TAO) array into the dynamical framework of an intermediate coupled ocean—atmosphere
model is continued. In a previous study it was found that the model dynamics, the prior estimates of uncertainty
in the observations, and the estimates of the errors in the dynamica equations of the model could not be
reconciled with data from the 1994-95 period. The error estimates and the data forced the rejection of the model
physics as being unacceptably in error. In this work, data from two periods (1995-96 and 1997-98) were used
when the tropical Pacific was in states very different from the previous study. The consequences of increasing
the prior error estimates were explored in an effort to find out if it is possible at least to use the intermediate
model physics to assist in mapping the observations into fields in a statistically consistent way.

It was found that such aresult is possible for the new data periods, with larger prior error assumptions. However,
examination of the behavior of the mapped fields indicates that they have no dynamical utility. The model dynamical
residuals, that is, the size of the quantity that is left after evaluating all of the terms in each intermediate model
equation, dominate the terms themselves. Evidently the intermediate model is not able to add insight into the
processes that caused the tropical Pacific to behave as it was observed to, during these time intervals.

The inverse techniques described here together with the relatively dense TAO dataset have made it possible
for the unambiguous rejection of the nonlinear intermediate model dynamical system. This is the first time that
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data have been able to provide such a clear-cut appraisal of simplified dynamics.

1. Introduction

We consider the generalized inversion of Tropical At-
mosphere—Ocean (TAO) data and a coupled model of the
tropical Pacific. Generalized inversion is the calculation
of circulation fields that are weighted least squares best
fits simultaneously to TAO data and to the equations of
motion of our modified Cane-Zebiak model (Zebiak and
Cane 1987). In a previous paper (Bennett et al. 1998,
hereinafter B98), we described the model in detail and
reported calculations of the simultaneous best fit to the
30-day averaged sea surface temperature (SST), 20°C iso-
therm depth (Z220), surface winds u? = (u?, v?), the cou-
pled dynamic, and the initiad conditions during the
‘“*smoothing”” interval April 1994—March 1995, (year 1).
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The western-central equatoria Pacific was warmer than
normal and the eastern Pacific nearly normal during the
interval. The TAO data revea an equatoriadd warm pool
that reached a maximum SST anomaly of +2.5°C by No-
vember 1994 and disappeared by March 1995. The best-
fit circulation fields conformed closely to the TAO data,
but left significantly large residuals in the equations of
motion, exceeding prior estimates of the residuals based
on scale analyses of neglected but numerically resolvable
processes. The y? test dtatistic for the prior covariances
exceeded its expected value by 16 standard deviations.
This suggests the need to revise the priors, but is only one
test. Hence we made two more tests of the identical model
and priors, using data for other climatological extremes.
The second test involved TAO data for April 1995-March
1996 (year 2), which included a mild La Nifa event; the
third test involved TAO data for December 1996-May
1998 (year 3), which included one of the major El Nifio
events of modern times with situations different in char-
acter to those of 1994-95. These two new inversions are
reported here briefly. We anticipate ourselves by stating
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that the same hypothesized covariances are rejected at
about the same level of significance as before. Having
established that the model, over a wide range of oceanic
conditions, cannot be reconciled with the data and our a
priori error assumptions, we then explore the effects of
weakening these error assumptions. One of the appealing
features of the type of inverse study described here is the
possibility of such explorations. Of course, it is only sen-
sible to weaken the error assumptions up to the point that
respects the most reasonable conservatism concerning the
data and the dynamics. Relaxing the error assumptions
beyond that point may well yield an inverse solution that
meets the constraints, but is not dynamically useful or is
not a reasonably accurate *“ mapping’” of the observations.

The outline of this paper is asfollows. A few details
of the model and inverse formulation are given in sec-
tion 2. Complete details are available in B98. The min-
imization algorithm is not described as it is highly in-
tricate and fully documented elsewhere (Bennett 1992;
Bennett et al. 1996, 1997). The hypothesized dynamical,
initial, and data error parameters are restated here for
convenience with brief explanations.

Selected results for the inversions for years 2 and 3
are presented in section 3. The significance tests are
described in section 4, along with a discussion of the
effects of varying the prior covariances. Inverses with
revised covariances have not been performed; only the
impact on test statisticsis estimated. Instead, dynamical
term balances for the original inverses are examined in
section 5. Our conclusions are presented in section 6.

2. Some details

The ocean model domain is a rectangle on the equa-
torial B plane with Cartesian coordinates (X, y), in the
intervals x,, = 123.75°E = x = x, = 84.52°W and y,
= 29°S =y =y, = 29°N. The atmospheric domain is
a circumferential zone on the same plane: 0° = x =
360° and y, = y = y,. The state variables are the time-
dependent fields of oceanic upper or mixed layer ve-
locity u® = [u®, v®], thickness O™, sea surface tem-
perature T, lower or seasonal thermocline layer velocity
u®@ = [u®, v?@], thickness 0@, atmospheric surface
wind u@ = (u?, v?), and surface geopotential ¢a. All
state variables are anomalies with respect to the cli-
matology of Rasmussen and Carpenter (1982). The com-
plete state vector field U = U(x, t) has 10 components:
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The model dynamics are those of Zebiak and Cane
(1987), except that all six local accelerationsareretained
in all six horizontal momentum equations. Thus, al 10
variables are prognostic, and so rigid (no normal flow)
boundary conditions may be imposed at x,,, X, Y., and
y,- Horizontal eddy viscosity is included in the oceanic
dynamics. No slip holds at x,,, X.; there is free dlip at
Y., ¥o- The narrow meridional Munk layers at x,, and x,
are resolved numerically. Divergence dissipation (Tal-
agrand 1972) is also included in the oceanic dynamics.
All details may be found in B98.
The data are expressed formally as

d=2[U] + e 2.2)

where d isthe M-dimensional vector of all datacollected
throughout the smoothing or assimilation period and e
is the measurement error. The operator £ is a vector of
linear measurement functionals 2, 1 = m = M, each
of which acts on the entire 10-dimensional vector field
U = U(x, t) to produce a single real number. We used
monthly mean TAO datafor SST (or our model variable
T), surface winds (u2), and the depth of the 20°C iso-
therm [our 0® + 6@]. These data are available via the
Internet from the National Oceanic and Atmospheric
Association (NOAA) Pacific Marine Environmental
Laboratory (PMEL). See Soreide et al. (1996). There
are about 2400 scalar data values in our 12-month-long
years 1 and 2, and about 4000 values in our 18-month-
long year 3. The weighted least squares criterion of best
fit to the model and data is the penalty functional 7 =
g [U, d] defined in section 4 of B98. Briefly, we min-
imize the weighted squares of theinitial error, dynamical
error, and observational error summed over space and
time as appropriate. The data error covariance is as-
sumed to be diagonal with different error variances for
the three data types: SST (0.09 K?), Z20 (9 m?), and
ua, v2 (0.25 m? s72).

The variance scales and decorrelation scales for the
dynamical errors were specified with great difficulty,
given our intermediate model. Its vertical resolution is
minimal in the extreme and it is an anomaly model that
is partialy linearized about an estimate of the clima-
tological annua cycle. The parameterizations of unre-
solved processes are extremely simple. We arbitrarily
restricted our considerations of dynamical errors to the
unique feature of intermediate models: neglected but
numerically resolvable processes such as anomalous
momentum advection, volume flux associated anoma-
lous currents and thicknesses, and eddy fluxes of heat
owing to tropical instability waves. Our estimates of
these residual candidates were based on the amplitudes,
spatial scales, and temporal scales of the El Nifio anom-
alies themselves (see Table 1). The amplitudes deduced
for theresidualsin the 10 prognostic equations are given
in Table 2. The notation in the tableis that, for example,
r O isthe amplitude of the residual for the oceanic upper-
layer momentum balance. Each Cartesian component
has the same amplitude. For example, the variance scale
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TABLE la. Standard deviations of anomalous circulation fields.
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TABLE 2. Standard deviations of residuals.

Atmosphere Uu,~5mstv,~2ms?i¢~80m2szor
p*¢p ~ 1 mb

Ocean upper layer u®, v® ~05ms? 0O, ~15m, T ~ 2°

Ocean lower layer u®@, v@ ~ 0.5 m s 6@ ~ 50 m

for the residual in the zonal momentum balance in the
oceanic upper layer is (0.3 X 10-¢ m s72)2. We assume
that the amplitudes and scales of theinitial residualsare
those of the anomalies themselves, that is, we assume
that the error in our initial estimate U, for the anomalous
circulation U is of the order of 100%. The functional
forms of theinitial and dynamical error covariances are
givenin B98, Egs. (5.1)—(5.3). The forms are stationary
in time and zonally homogeneous, but are meridionally
inhomogeneous. The forms are maximally simple
(Gaussians, Markovians, etc.), and expedite the com-
putation of convolutions.

The total number of computational degress of free-
dom in the inversions is approximately 4 X 107. This
is the number of unknown residuals on the three-di-
mensional space-time grid. We compute the nonlinear
inverse as the limit of a sequence of linear inverses. For
each of these there is a null space. The dimension of
its complement (i.e., the number of observable degrees
of freedom) equals M, the number of data, which is
about 3 X 10° (years 1 and 2) or 4 X 103 (year 3). The
advantage of the representer algorithm used here is that
it restricts the search for each linear inverse to the M-di-
mensional ‘‘data subspace”’ in which the inverse lies
(see, e.g., Bennett 1992, section 5.5).

3. Threeinversions
a. Year 1: April 1994-March 1995

Thisinversion was described in full in B98. The prin-
cipa SST anomaly was a warm pool just east of the
dataline, reaching a maximum amplitude of about +2.5
K in November 1994 and fading entirely by March
1995. The inverse estimates of SST, Z20, and u? fit the
observationsto within one standard error throughout the
year, but the fits to the dynamics significantly exceed
standard errors. Time series of anomalies, and contour
plots of anomalies and dynamical residuals may be seen
in B98. Significance tests will be reported again here
in section 4.

1) Atmosphere r2 ~ (10°ms2 04 X 10°ms?2),r3 ~ 45

X 103m?2s3

2) Ocean upper r® ~03 X 10°ms?2rP ~75X10°ms?
layer rr ~25x 107K st

3) Ocean lower r® ~ 05X 10°ms?rP~8X10°mst?
layer

b. Year 2: April 1995-March 1996

The period was characterized by a mild La Nifia ep-
isode with cooler than normal temperaturesin December
1995 on the equator reaching from South America to
160°W. The coolest anomalous temperature was about
—1.25 K. Our data for year 2 consist of 700 values of
anomal ous monthly mean SST, 688 val ues of anomal ous
monthly mean Z20, and a total of 1256 scalar values of
the anomalous surface wind components u?, v2. Thus,
M = 700 + 688 + 1256 = 2644 data values. Every
parameter in the model and prior covariancesisthe same
as the values for year 1 that were reported in detail in
B98 and are listed in part in Tables 1 and 2 here. The
assumed SST error of 0.3 K does not refl ect instrumental
error, whichiscloser to 0.1 K. Rather, itisthe difference
between the upper-layer average temperature T and the
temperature recorded by a single shallow thermometer.

The state estimate U = U(X, t) is found as a solution
of the nonlinear Euler—Lagrange equations for extrema
of the penalty functional 7 = J[U, d]. These equations
are solved iteratively. For year 1, the sequence of in-
versions had converged effectively after seveniterations
and the effective limit for U was in satisfactory agree-
ment with the data. For year 2, the sequence of inver-
sions had developed small (10%) oscillations after 12
iterates. Each was in fairly satisfactory agreement with
the data, so the 12th iterate was taken as an approximate
best fit to the dynamics and data. The time series of U
at 95°W shown in Fig. 1 include SST, Z20, u?, and v@
at three TAO moorings: 5°S, 0°, 5°N. Also shown are
the monthly mean (30-day averaged) TAO data, and
prior estimates of standard errors in the data. Each da-
tum within a panel has the same error bar, but note that
the scale varies from panel to panel. The situation on
the equator is exceptional; in July and August 1995, the
inverse estimates of SST and Z20 fail to fit the TAO
data to within or close to within standard errors. The
situation extends to 125°W (not shown) and appears to
be associated with an extremely narrow equatorial

TABLE 1b. Length and timescales of anomalous circulation fields

Zona Meridional Time

(m) (m) C)

Atmosphere (u?, ¢?) 10¢ 2.5 X 10° 107
Ocean upper layer [u®, 6] 108 2.5 X 10° 107
(M 3 x 10¢ 106 107

Ocean lower layer [u®@, 6@] (Roughly: 10° m ~ 1° 10° s = 1 day) 3 X 108 5X10° 107
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Fic. 1. Time series of U, the inverse estimate of the anomalous state at three TAO moorings
(5°S, 0°, 5°N) along 95°W. The centered symbols are the 30-day average TAO data. All data of
the same type are assigned the same standard error so only one bar is shown per panel, but note
that the amplitude scale and bar length vary from panel to panel. Results here are for year 2 (Apr
1995-Mar 1996). (a) SST, =0.3 K, (b) 220, £3 m, (c) u8, 0.5 m s, and (d) v3, =0.5 m s™.

anomaly extending from the eastern boundary to 140°W
(see Fig. 2). The anomaly appears to originate in an
eastern boundary feature that in turn is responsible for
the oscillation in the sequence of linear inversions.
The residual r; for the heat equation is shown in Fig.
3afor day 150 (mid-September 1995). Extremely large-
amplitude negative residuals (—3 standard errors) exist
on the equator at 95°W. This was the peak; the duration
of the residuals was about 100 days, which is the time-
scale imposed in the prior error variance for the dy-
namics. Their meridional extent of 1000 km was also
imposed through their prior covariance. The role of the
residual is to correct the wildly swinging inverse SST

toward the TAO data. Clearly the model has a mode of
error that is of much narrower extent than assumed, and
so the inverse is unable to correct for this mode when
such errors are present.

Theresidualsr ® for the oceanic momentum equations
in layers 1 and 2 are not significantly large, save for
the meridional momentum equation in layer 2 (see Fig.
3b). The equatorial residual exceeds three standard er-
rors at day 150 from the east boundary to 140°W. The
residual in effect ““drives’ the meridionally antisym-
metric part of the lower-layer thickness. See Fig. 1b,
especially 5°N and 5°S where Z20 is actually identified
with 6@ + 9@, Note the opposing tendencies in Sep-
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FiG. 2. Inverse estimates of anomalous SST and winds, year 2 day 180 (mid-Nov, 1995). The contour interval for
SST is 1 K; the wind speed scale is shown lower left.

tember. The inverse estimates of the residuals are linear
combinations of the model error covariances [Bennett
1992, Eq. (5.4.19)]. The last mentioned are symmetric
here, by hypothesis, and evidently the combination that
would yield the appropriate antisymmetric residual or
“driving” r@ for the lower-layer thickness equation
must incur a greater penalty than the symmetric residual
r@ for the lower-layer meridional momentum equation.
The residual r{ is shown in Fig. 3c for day 150; it is
locally significantly large (two standard errors); it is
indeed meridionally symmetric but not about the equa-
tor. As reported in B98, the inverse uses complicated
multivariate residualsin order to track the thicknessdata
with minimal penalty. The residuals in the atmospheric
dynamics are not significantly large. This is a conse-
quence of the weakness of the TAO wind anomalies.

c. Year 3. December 1996-May 1998

The period was characterized by a much-studied ma-
jor El Nifio event (e.g., McPhaden 1999a,b). Equatorial
temperature anomalies reached +5 K near South Amer-
ica in November 1997, while Z20 anomalies reached
—70 m in the western Pacific and +100 m near South
America. Our data for year 3 consist of 1088 values of
anomalous monthly mean SST, 1058 values of anom-
alous monthly mean Z20, and a total of 1862 scalar
values of the anomalous surface wind components u?,
v2. Thus M = 4008 data values. Every parameter in the
model and in the prior covariances is the same as those
for years 1 and 2. The sequence of inversions converged
after 8 iterations to a well-defined limit. The time series
at 95°W shown in Fig. 4 include SST, 220, u2, and v@
at the TAO moorings, along with 30-day-averaged TAO
data and standard errors in the data. The inverse tracks
the large observed anomalies with remarkable skill. In-
verse estimates of anomalous SST and winds for mid-
December 1997 are shown in Fig. 5a; inverse estimates
of anomalous Z20 for the same month are shown in Fig.

5b. The great amplitude of the major El Nifio event is
again evident. It also differsin character from the milder
event of year 1; that earlier event involved a +2-K
warming near the dateline rather than a +5-K warming
off South America.

The residual r- for the temperature equation, day 360
(mid-December 1997), is contoured in Fig. 6a. The am-
plitude exceeds two standard errors from 100° to 140°W
on either side of the equator. The SST anomaly was at
its peak at that time, so the need for a heat source is
not apparent. The residual r®@ for the lower-layer me-
ridional momentum equation is shown in Fig. 6b. A
minimum value of almost minus five standard errorsis
attained on day 360 (mid-December 1997), on the equa-
tor at 95°W. Again this is evidence of the multivariate
nature of the analysis system; v® is not observed at all,
but meridionally asymmetrical layer thicknesses 0@ are
present in the TAO data. The residual r@ for lower-
layer thickness on day 180 (mid-May 1997) is shown
in Fig. 6¢c. The maximum exceeds two plus standard
errors on the equator at 155°W, the minimum is as low
as minus two standard errors on the equator at 95°W.
The thickness is nonetheless increasing at 95°W in May
1997 (see Fig. 4b), but evidently too fast in the unforced
or residual-free model dynamics and so a negative re-
sidual obtains.

Atmospheric momentum residuals ra barely exceed
standard errors save at day 360 (mid-December 1997),
near 120°W (not shown). This is surprising as the at-
mospheric model is very crude, yet the wind data are
fit well (see Figs. 4c,d).

4. Significance tests

The penalty functional 7 is quadratic in the initial,
dynamical, and observational residuals. It is not qua-
dratic in the state U, because the dynamical operator is
nonlinear. There is anomalous advection of heat anom-
aly in the ocean and the wind stress law is quadratic in
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Fic. 3. Residuals for (a) heat equation on year 2 day 150 (mid-Sep 1995), contour interval 20 W m~2; (b) oceanic
lower-layer meridional momentum equation on day 150, contour interval 10-7 m s-2; (c) oceanic lower-layer thickness
equation on day 150, contour interval 2 X 10-m s7t.
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Fic. 4. Asin Fig. 1, for year 3 (Dec 1996-May 1998).

the wind anomalies. However we minimize 7 with re-
spect to U via a sequence of linear minimization prob-
lems. In each problem the nonlinear dynamical operator
is replaced by alinearization about the minimizer of the
previous problem (Bennett 1992, section 7.5). Then 7
becomes the test statistic for #,, our set of hypothetical
prior error covariances [see also B98, (4.12)—(4.13)].
More precisely, if #, is true then the minimum val ue 7
= J[U, d] is x3, the chi-squared random variable with
M degrees of freedom where M is the total number of
data. The first moments of 7 are therefore

Ext = M,
varxi = E(xia)? — (Ex@)? = 2M. (4.1)
The mean value M is about 2600 for years 1 and 2 and

about 4000 for year 3. The standard deviation o- = \/2M
is thus about 70 for years 1 and 2 and 90 for year 3.
Let h denote the difference between the dataand mea-
sured values of the forward solution U (i.e., measured
values of the model solution with initial value U)):

h=d - [U]. (4.2)

It may be shown (Bennett 1992, section 5.5) that the
reduced value of the penalty functional 7 is

j =40, d] = hTP-th, (4.3)

where P = R + C_, R being the M X M symmetric
positive-definite representer matrix (Bennett 1992, sec-
tion 5.5) and C_,_ the prior error covariance matrix for
the data. The matrix R is equivalent to the covariance
of measured values of random solutions of the forward
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Fic. 5. (d) Anomalous SST and winds for year 3 day 360 (mid-Dec 1997), contour interval 0.5 K; (b) anomalous Z20
(mid-Dec 1997), contour interval 10 m.

linearized model, in response to random forcing and
random initial conditions having the same first and sec-
ond moments as we hypothesize for our dynamical and
initial errors. It may also be shown that

Eh=0, Ehh" =P (4.4)

(Bennett 1992, section 5.6). Defining a scaled prior data
misfit by h’ = P~22h, itisevident from (4.4) that Eh'h'T
= |, where | isthe M X M unit matrix so 4 = h'Th =
x4 Strictly speaking, each component of h’ should be
Gaussian, but we note that each component is a linear
combination of those of h and we invoke the central
limit theorem.

Other values of the penalty functional are available.
The prior value is

e = U, d] = hTC_2h.

Hence using (4.4) the expected value is

(4.5)

E7e = ETr(C.P?hhTCY2) = Tr(C.X2PCLY7),  (4.6)

where Tr is the matrix trace. It may be shown (Bennett
1992, section 5.6) that

£[U] = £[U.] + RP-h, 4.7)
so the misfit of the inverse to the data is
d — £[U] = C_Ph. (4.8)
Hence the reduced data penalty is
Jgaa = (d — £[U)TCA — £[U])
= hTP-1C_P-th (4.9)
with expected value
EJg = E Tr(C¥2P-thhTP-1Cv2)
= Tr(C¥2p-1C¥2), (4.10)
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TABLE 3a. Expected and actual values.
Year 1 Year 2 Year 3
M = 2624, V2M = 72 M = 2644, V2M = 73 M = 4008, V2M = 89

Expected Actual Expected Actual Expected Actual
e 160 000 35 708 156 000 32 028 246 132 132 140
]:mod 1015 1614 1022 1650 1458 3680
Jssr (689) 419 (700) 717 (1088) 995
Ja (624) 453 (628) 383 (931) 1546
I (624) 396 (628) 380 (931) 940
]:ZZO (687) 820 (680) 678 (1058) 1129
[/ 1609 2088 1622 2160 2550 4614
7 2624 3702 2644 3810 4008 8322

Subtracting (4.3) and (4.9) yields the reduced model
penalty

s = hTP-RP-*h (4.11)
with expected value
Efoa = Tr(RV2P-1RY2), (4.12)

Note that 7., includes penalties for both the dynamical
residual and the initial residual. These penalties can be
separated using the Euler—Lagrange equations, but the
computations are awkward and were not attempted here.
Formulas for the variances of 9;, 7., and 7., may be
derived as follows. To begin, rotate and scale the first-
guess data misfit:

h' = P-¥2h, Eh’ =0,
Then the first-guess penalty is
J- = h'Qh’, (4.19)

where Q = PY2C_1P¥2 js symmetric positive-definite
and may be diagonalized:

Q=UAU", UU =UU=], (4.15)

and A = diag(A,, ..., Ay) is diagonal. A further ro-
tation yields

EnNh™=1  (4.13)

M
Je = TAl = 2 A3, (4.16)
m=1

where
j = UTth’, Ej =0, EjjT = 1.
As before, the mean prior penalty is

(4.17)

M
Ef = > A, = Tr(Q) = Tr(PY2C_P¥2). (4.18)
m=1

TaBLE 3b. Standard deviations.

Year 1 Year 2 Year 3
I 136 000 131 000 146 057
o 38 38 72
Tita 60 59 45
7 72 73 89

Consider the components of j. Each of thej,,isaweight-
ed sum of components of h’, and the weights for j,,, j.
are orthonormal if n # m [see (4.15)]. It follows that
the j,, are asymptotically normal N(O, 1) random vari-
ables [see (4.17)] and that j,,, j,, are uncorrelated and so
independent if n #* m. It follows after a little algebra
that

M
E72 — (E%)? =2 2, A2, (4.19)
m=1
that is,
varg. = 2 Tr(C_tP2C_2). (4.20)

The central limit theorem also implies that 7., like x2,
is asymptotically normal as M — .
It may similarly be shown that as M - <o,

var 7, = 2 Tr(C_P—2C_), (4.21)
var g, = 2 Tr[(l — P-v2C_P-v2)?],  (4.22)

and both 9., and 7, are asymptotically normal.

Values for the various 7 are listed in Table 3a. Par-
enthetical values are numbers of data of a given type;
they are not expected values. Only E7 = M, the total
number of data (last row). The standard deviationsgiven
in Table 3b are the square roots of variances computed
asin (4.20)—(4.22).

The first row of Table 3a indicates that the forward
model is much better than expected. Nevertheless the
actual values of 7. are much larger than is desirable.
We would like each data misfit to be a standard error
of measurement or less, that is, we would like 7- to be
equal to M or less. Such would be the case if the dy-
namics and initial conditions were perfect. The last row
indicates that the inverse estimate 7 is much worse than
expected. Recall that the standard deviation of 7is o =
\/2M, which is given at the top of the table. The actual
values of 7 exceed the expected values by, respectively,
150, 160, and 490 in years 1, 2, and 3. The excess is
roughly apportioned 45% to 7., and 55% to 7, in
each year.

Given that the three tests cover widely divergent cli-
matological extremes, we are forced to reject our null
hypothesis 74, for the first two moments of the errors
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in the model and in the data. Some revisions of 7, will
now be contemplated.

The penalty functional 7 isinversely proportional to
the prior error covariances for the dynamics, initial con-
dition, and data [see B98, (4.6)—(4.11)]. Hence, increas-
ing all prior covariances by the same factor ¢ would
lead to exactly the same best-fit U for the original non-
linear inverse problem defined by 7, since an extremum
of 7is also an extremum of 7. It would of course
be more interesting to consider nonuniform rescalings
of the priors, but we are focused here on the general
issue of “‘tuning”” #, in light of 7 being the test statistic,
and the uniform rescaling #, — ¥, enables a discus-
sion at no computational cost. It follows that if we were
to increase all the prior covariances in #, by, respec-
tively 40%, 44%, and 108% in years 1, 2, and 3, then
the actual value of 7 would equal its expected value M
in each year. These increases correspond to, respective-
ly, 20%, 22%, and 44% increases in standard errors.
Now the amplitude scales upon which #, is based are
certainly not well enough known for such moderate in-
creases to be contested. The data errors are probably
just about that well known. The weaker null hypothesis
“yH,” would not have been rejected by any of thethree
TAO datasets considered here. Since 4, isasplausible
as #,, should we conclude that our intermediate model
is in fact, validated by the three datasets? Reviewing
the sequence of the exercise more carefully, we must
conclude that year 1 would have rejected 4, in favor
of 4, (where ¢y = 1.40), year 2 would not haverejected
Y, (Where ¢y = 1.40). Year 3 would haverejected 4,
(where » = 1.40 or 1.44) in favor of the last hypothesis
yH, (where y = 2.08) that remains untested on an
independent dataset.

5. Term balances

The model may be tested more discriminatingly by
examining a posteriori term balances. It will be seen
that it suffices to consider the balances arising from the
inversions as actually carried out with the original null
hypothesis #,, rather than inversions with the even
weaker hypotheses y#,. We shall now present term
balances for the heat equation:

aT _
o TUO VT T) +ue VT

L ‘ | L ;
1 2 3
— T aT
+ - — + M— + = )
(M — M) P Maz asT =71, (5.1
L Lll | L |5 | L é |
and for the lower-layer thickness equation:
0@
p + HOV -u@ + €@ = r@, (5.2

1 2 3
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The symbols T, 6, and u denote anomalies of temper-
ature, layer thickness, and velocity, respectively. Ov-
erbars indicate annual cycles. Superscripts indicate the
layer. The mixing function 2/ is the Heaviside function
of vertical velocity, where the latter is defined by its
value HOV - u® at the base of the mixed layer (see B98
for further details).

Shown in Fig. 7 are partial term balances for the heat
equation for year 1 day 180. Figure 7a shows, in units
of watts per meter squared, the local rate of change plus
the horizontal advection by anomalous currents (1 +
2). The zonal advection is comparable to the local rate
of change; the meridional advection issmaller by factors
of 4 and more. The individual contributions 1 and 2 to
7a have much smaller meridional scales than does their
sum 1 + 2. Figure 7b, which isthe sum 1 + 2 + 3,
shows the impact of horizontal advection by the annual
cycle. Thevertical mixing terms4, 5 are significant only
between 115° and 110°W, 0° to 8°S. Term 4 is positive,
5 is negative and of comparable amplitude wherever
both are significant. Term 6 is negligible. Figure 7c is
theresidual r; = (1 + 2+ 3+ 4+ 5+ 6).

Shown in Fig. 8 are partial term balances for the
lower-layer thickness equation for year 1, day 180. Fig-
ure 8a shows, in units of 10~ m s~1, the local rate of
change (1). The maximum is 1.6 X 10-°> m s* on the
equator at 145°W. Figure 8b is the total divergence (2).
The meridional and zonal components (not shown) are
in magnitude twice as large as the total. Figure 8c is
the residual r® = (1 + 2 + 3). It is evident, from the
major imbalances in these two equations alone that the
inverse estimate is not even approximately consistent
with the model in year 1. The situation is the same in
year 2 (not shown).

Time series of term balances for T and 6@ in year 3
are shown in Fig. 9. The location for Fig. 9ais (3.5°S,
135.85°W), where the residual r; has alocal maximum
in space on day 360 (mid-December 1997). The time
series are actualy time sequences of values on days,
spaced 30 days apart, and joined by straight line seg-
ments for clarity. Not every term in (5.1) is shown; just
local acceleration T,, advection by anomalous zonal ve-
locity u®(T + T),, advection by climatological zonal
velocity T®T,, anomalous vertical mixing MT,, and the
residual r;. The last mentioned is the dominant term,
that is, thereis no closurein the upper-layer heat budget.
The location for Fig. 9b is (0.5°S, 156.38°W), where
the residual r@ has a local maximum in space on day
180 (mid-June 1997). Values are again daily, spaced 30
days apart. All terms in (5.2) are shown; the individual
components H@u@® and H®@v@ are twice as large in
magnitude as is their sum H@V - u®. Even so, the re-
sidual r is about as large in magnitude as either the
total divergence or the local rate of change 6. There
is no closure in the lower-layer mass budget. We must
concede that these outcomes could have been antici-
pated from simple estimates based on the anomaly scales
in Table 1 and residual scalesin Table 2. The fact that
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the forward model was unexpectedly good for all 3 yr
(see Table 3) would suggest that the residual scaleswere
excessively pessimistic. Actual inversionswererequired
in order to learn that the residual scales were in fact
optimistic. This seeming paradox is resolved by an anal-
ysis of the conditioning of the inversions, or more spe-
cifically the conditioning of P, the stabilization of the
representer matrix (see the appendix). The paradox is
entirely feasible. It arises whenever the prior or forward
model misfit h has unexpectedly large projections on
the eigenvectors of P having smaller eigenvalues, and
unexpectedly small projections on those having larger
eigenvalues.

6. Conclusions

We have now carried out inverse calculations using
TAO data that span amost the full range of tropical
Pacific variability (only extreme La Nifia conditions
have not been represented in the observations), and us-
ing an intermediate coupled ocean—atmosphere model
very much like the Cane-Zebiak model. Our model in-
cluded equations of motion, and also our hypothesis 74,
about the errors in those equations. Three anomalous
events were involved: an El Nifio with a warm pool on
the date line (year 1), a La Nifa (year 2), and an El
Nifio with some of the warmest equatorial watersin the
historical record (year 3). Our weighted least squares
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best fit to the model and the data did fit the data to
within standard errors, but did not fit the model; the
null hypothesis was strongly rejected by a significance
test. Had the hypothesis been weakened after year 1
(moderately greater errors), it would not have been re-
jected after year 2 but would have been strongly rejected
after year 3. In any event, the term imbalances in all
three years, based on the original hypothesis #,, showed
that the least squares estimates of the circulation have
no dynamical credibility. We conclude that the dynamics
of El Nifio are more complicated than our intermediate
model or any simpler model.

The generalized inversion algorithm generates con-
ditioning information that may be interpreted (Bennett
1992, section 6) as the efficiency of the TAO array for
observing the hypothetical circulation. However, the ac-
tual TAO data led us to reject the hypothesis. Hence
the array assessment was unsoundly based and so was
not included here. We wish to emphasize that such a
risk is inherent in a priori array assessment. Our as-
sessment appears to be a posteriori, because the con-
ditioning information derives from dynamics linearized
about U, which is the actual inverse or optimal estimate
of the circulation. However, one could proceed a priori
by linearizing about a composite El Nifio, for example.
The insensitivity of the conditioning information to the
state of linearization (not shown here) supports such a
design strategy.

Intermediate coupled models of the tropical Pacific
having been rejected by the TAO data, we are now
constructing the generalized inverse of a reduced-grav-
ity primitive equation ocean model based closely after
Gent and Cane (1989). All numerically resolvable ad-
vective processes are included in the model, and vertical
resolution of the seasonal thermocline is adequate. The
turbulence parameterizations remain a source of uncer-
tainty. Estimating the lowest moments of the errorsin
these parameterizations is the pressing scientific prob-
lem. We shall challenge the model with the five years
of TAO data since the completion of the array in 1994.

Correction. Bennett et al. (1998; Part I) p. 1781, col-
umn 2, lines 15-16, should read: **... of strength
cgH®]1paKT(p,C,)*, where C, is the heat capacity
of sea water, is an order of magnitude smaller. . ..”
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APPENDIX
Prior and Posterior Penalties

The following remarkable situation obtained in year
1, year 2, and year 3; the prior penalty was far less than
expected (7 < EJ;), but the posterior penalty exceeded
its expected value (E7 < 7) (see Table 3). This is re-
markabl e, because the actual prior penalty indicatesthat
the null hypothesis #, is excessively pessimistic, and
the actual posterior penalty indicates that # is opti-
mistic. The purpose of this appendix is to reveal how
this situation can arise.

Consider first the prior penalty 7. It consists entirely
of data penalty, because the prior or forward model U
exactly satisfies the dynamics and the initial conditions
U = U,. It isimmediately clear from (4.6) of B98 that

9. = hTC_2h, (A.2)

whereh = d — £[U{] is the prior data misfit, d being
the data, and £ the M-component vector of linear mea-
surement functionals. Again, C_, is the data error co-
variance matrix. It may be shown (Bennett 1992, section
5.6) that

Eh=0, Ehh"=P=R+C (A.2)

where E denotes expectation and R is the symmetric
positive definite *‘representer matrix.”” Let the diago-
nalization of R be

€€

R = ZAZT, (A.3)

where Z is orthonormal and A = diag(A,, ..., Ay) IS
diagonal. We may always assume that the eigenvalues
are in decreasing order: A, = A, = --- = A, > 0. Let
us now assume for simplicity that the data errors are
uncorrelated and have the same variance u?. Then R,
C.., and P can simultaneously be diagonalized:

P=2Z(A+ u2)Z.
Define the rotated prior data misfit h’ as

(A.4)

h' = ZTh. (A.5)
Note that
Eh' = 0, Eh'h'™ = A + p2l. (A.6)
Then the prior penalty may be written as
Je = u2h'Th’ (A7)

and its expected value is
Ef: = u 2 Tr(A + u?2l).
We are interested in the situation

(A.8)

M M
> 2 X (A, + pd). (A.9)
m=1 m=1
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Consider next the posterior penalty 7. It consists of
dynamical penalty, initial penalty, and data penalty. A
little algebra (Bennett 1992, section 5.5) shows that

7= hTP-th, (A.10)
In terms of the rotated prior data misfits, this becomes
7="hTAh, (A.11)
with expected value
E7 = Tr(AY2Eh'h'TA-12) = Tr(l) = M, (A.12)
so we are aso interested in the situation
M
M < mgl h2(A, + 2. (A.13)
Suppose that the array is M _-fold redundant:
O0<Au=Ay:1="""=Aymn
KWL Ay, == A (A.14)

That is, suppose that the expected variances A, + w?
of the projections h/, of the prior data misfit h onto the
M, lessstable (M — M _ more stable) of the M orthogonal
modes of observability or ‘“‘array modes’ (Bennett
1992, section 6) are the same (far greater than) the data
noise level. Assume also that the M — M, stabler pro-
jections are actually far smaller than expected:

h2< A, + p? l=m=M- M,.
Then (A.9) and (A.13) may be approximated as

(A.15)

M M—M,,
Muz< >  hz< > A, (A.l6)
m=1

m=M—Mg+1

That is, the actual variance of the |less stable projections
is unexpectedly large, but not as large as the expected
variance of the more stable projections. Thisis feasible
whenever the array is redundant. The probability of
(A.16) could in principle be calculated assuming mul-
tivariate normality, but we have not attempted to do so.
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