
AN ABSTRACT OF THE THESIS OF

Shaun S. Wuiff for the degree of Doctor of Philosophy in Statistics, presented on June 2. 1999.

Title: Explicit Linear Maximum Likelihood Estimation in Mixed Models

Abstract approved:

David S. Birkes

Mixed models have been widely used to model data from experiments which have fixed and random

factors. Often there is interest in the estimation of fixed effects and variance components. The likelihood

procedure is a general technique that has been applied to such problems. This procedure can be

computationally difficult, as iterative algorithms are needed to solve for estimators that satisfy the

likelihood equations. Previous research has been done to identify conditions under which there exists an

explicit linear estimator for the full fixed effect vector or for the full variance component vector.

This thesis will examine explicit linear estimation in mixed models. The previous results will be

extended to explicit linear estimation of a linear combination of the fixed effects or of a linear

combination of the variance components. Specific results for the existence of an explicit linear estimator

for a subvector of the full fixed effect vector or a subvector of the full variance component vector will also

be presented.

The results of the thesis will be demonstrated using various models encountered in the experimental

design setting. Applications will also be presented which include interpreting iterative procedures to solve

for the estimators, saving computer time in profile likelihood calculations for fixed effects, and uniformly

minimum variance unbiased estimation.

Redacted for Privacy



©Copyright by Shaun S. Wuiff

June 2, 1999

All Rights Reserved



Explicit Linear Maximum Likelihood Estimation in Mixed Models

by

Shaun S. Wulif

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented June 2, 1999
Commencement June 2000



Doctor of Philosophy thesis of Shaun S. Wulff presented on June 2. 1999

APPROVED:

Maj or Professor, representing Statistics

Chair of Department of1tatistics

Dean of

I understand that my thesis will become part of the permanent collection of Oregon State University
libraries. My signature below authorizes release of my thesis to any reader upon request.

Wuiff, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy



Acknowledgments

First, I thank my Lord and Saviour Jesus Christ whose compassion and strength I relied on daily. My

faith in Christ brought me through difficult and challenging times. I give all glory, praise, and honor to

Him. As the Holy Bible says, "Be careful for nothing; but in every thing by prayer and supplication with

thanksgiving let your requests be made known unto God. And the peace of God, which passeth all

understanding, shall keep your hearts and minds through Christ Jesus" (Philippians 4:6-7, KJV).

Thank you Heidi, my lovely and devoted wife, for supporting me throughout the entire process. I

appreciate your willingness to move to western Oregon and the multitude of other sacrifices you made.

You are directly responsible for this degree due to your assistance, compassion, understanding, and

endurance. I love you and I am indebted to you.

Thanks to my mother, Carolyn, who encouraged me at a young age to treat my education as a job in

which to work hard and give my best. Her encouragement and financial support made the pursuit of an

advanced degree possible.

Thanks to Dr. David Birkes who patiently and tirelessly worked with me. I appreciate his willingness

to answer questions and provide the details necessary to develop my understanding. His efforts made this

research work academically rewarding and it was an honor to work with him.

Thanks to the department at Oregon State for its financial support. I enjoyed learning and working

with the faculty and staff. In particular, thanks to my boss, Dr. Clifford Pereira, who worked hard to help

me grow in the area of statistics. In addition, thanks to Dr. Scott Urquhart who also helped me apply

statistical knowledge to consulting problems. Their efforts to clear my thinking and improve my statistical

abilities are greatly appreciated.

I would also like to thank faculty members at Montana State University. Thank you Dr. William F.

Quimby for encouraging me to pursue a statistics degree. Thank you Dr. John Borkowski for working with me

in research and supporting me throughout my academic career. I also give thanks to Dr. Robert J. Boik for his

advice, support, and efforts to bring me to Oregon State University.

I want to thank all current and former students, in which there are too many to mention, who have helped

me with my studies and encouraged me throughout my schooling. I needed your help and the friendships made

my college experience enjoyable.



Table of Contents

1. Introduction

1.1. Motivation

1.2. Previous Results

1.2.1. Likelihood Estimation 2
1.2.2. Explicit Linear Likelihood Estimation 2
1.2.3. Best Linear Unbiased Estimation 3

1.3. Summary of Results 4

2. Linear Transformations 6

2.1. Basic Terminology 6

2.2. Dual Spaces 8

2.3. Subspaces 9

2.4. Inverses 11

2.5. Projection Operators and Generalized Inverses 12

2.6. Trace Operator 17

2.7. Non-Negative Definite Linear Transformations 19

2.8. Quadratic Subspaces 21

2.9. Vec Operator and Horizontal Direct Product 21

3. Linear Models 23

3.1. Y-Model 23

3.1.1. Definitions and Assumptions 23
3.1.2. Open Set Condition 24
3.1.3. Balance 25
3.1.4. Likelihood Estimation 28

3.2. Linearized Quadratic Estimation Models 31

3.2.1. Definitions 31
3.2.2. Covariance Properties 34
3.2.3. Relation to Likelihood Estimation 35

3.3. The Underlying Model 38

3.3.1. Definitions 38
3.3.2. Mean Estimability 41
3.3.3. Least Squares Estimation 42
3.3.4. Uniformly Best Linear Unbiased Estimation 44
3.3.5. Zyskind's Condition 48



Table of Contents (Continued

4. UBLUE for the Expectation 51

4.1. FUBLUE for the Underlying Mode! 51

4.2. FUBLUE for Fixed Effects 53

4.2.1. FUBLUE Results 53
4.2.2. FELMLQE Results 53

4.3. FUBLUE for Variance Components 55

4.3.1. FUBLUE Results 55
4.3.2. FELMLQE Results 58
4.3.3. FELREMLQE Results 59

4.4. Example: Balanced Random 1-Way Model 61

5. UBLUE for Mean Estimable Functions 63

5.1. UBLUE for the Underlying Model 63

5.2. UBLUE for Fixed Effects 67

5.2.1. UBLUE Results 67
5.2.2. ELMLQE Results 68

5.3. UBLUE for Variance Components 68

5.3.1. UBLUE Results 69
5.3.2. ELMLQE Results 70
5.3.3. ELREMLQE Results 71

5.4. ML Example: 2-Way Mixed Model with No Interaction 72

5.5. REML Example: 3-Way Mixed Model under Pseudo Balance 74

6. UBLUE for the Full Rank Case 75

6.1 UBLUE for the Full Rank Underlying Model 75

6.2. The Generalized Zyskinds Conditions 79

6.3. UBLUE for Estimable Fixed Effects 80

6.3.1. UBLUE Results 80
6.3.2. ELMLQE Results 81



Table of Contents (Continued)
Pg

6.4. UBLUE for Estimable Variance Components 82

6.4.1. UBLUE Results 82
6.4.2. ELMLQE Results 85
6.4.3. ELREMLQE Results 86

6.5. Checking the Conditions 88

6.6. ML Examples: Balanced Models with Random Highest Possible Order Effect 91

6.7. REML Examples: Random Pseudo Balanced Models 92

6.8. REML Examples: Random Models 93

6.9. Searching for Examples Involving 3-Way Models 102

7. UMVUE in the Full and General Case 105

7.1. UMVUE in the Full Case 105

7.2. UMVUE in the General Case 108

7.2.1. The Covariance Inequality 108
7.2.2. UMVUE Results 110

8. Data Applications 115

8.1. An Iterative Procedure for Obtaining MLQE5 and REMLQEs 115

8.l.1.TheProcedure 115
8.1.2. Battery Life Example I 118
8.1.3. Battery Life Example II 120
8.1.4. Battery Life Example III 122
8.1.5. Checking the Conditions Using the Iterative Procedure 124

8.2. Profile Likelihood Calculations and Computing Time 126

8.2.1. Adjusting the Iterative Procedure 126
8.2.2. Computing Profile Likelihood Confidence Intervals 127
8.2.3. Battery Life Example I 129

9. Conclusion 130

9.1.Sunimary 130

9.2. Further Research 131



Table of Contents (Continued)

Bibliography 133

Appendices 135

Appendix A - SAS Code Used for the Battery Life Examples 136

Appendix B Details For Checking the Conditions Using the Iterative Procedure 137

Appendix C Summary of Models and Theorems 141

Appendix D - Abbreviations and Symbols 143



List of Tables

Table

5.1. 3-Way Models with ELREMLQE for Sum of Variance Components and Residual 74

6.1. Particular Incidence Matrices for 3-Way Models with 2 Levels 103

6.2. Particular 3-Way Models with ELMLQE and ELREMLQE for Variance Components 104

8.1. Data for Battery Life Example 118

8.2. SAS Output for Battery Life Example I 119

8.3. SAS Output for Battery Life Example II 121

8.4. SAS Output for Battery Life Example III 123

8.5. CPU Time for Profile Likelihood for Mean in Battery Life Example I 129



To my wife, Heidi, and my mother, Carolyn,

who have combined to provide love and support from

1st grade to the 24th.



Explicit Linear Maximum Likelihood Estimation in Mixed Models

1. Introduction

1.1. Motivation

Mixed linear models have been widely used to model data from experiments which have fixed and

random factors. There is often interest in estimating the fixed effects and variance components in these

models. Likelihood procedures have been used to solve this estimation problem. However, likelihood

procedures can be computationally difficult, as iterative algorithms are needed to solve for the estimators

that satisfy the likelihood equations. The estimators from the iterative procedure can also be hard to

interpret and their performance can be difficult to assess.

Previous research has found conditions under which likelihood estimators of the vector of the fixed

effects and the vector of the variance components are explicit and linear. These results characterize the

full case where the complete parameter vector is under consideration. However, there are many cases

under which such explicit linear estimators do not exist. The purpose of this study is to generalize these

results by obtaining conditions under which the likelihood estimator of a linear combination of fixed

effects or variance components is explicit and linear when explicit and linear estimators do not exist in the

full case. Knowledge of the existence of explicit linear likelihood estimators for linear combinations of

interest involving the fixed effects and variance components can be helpful for calculation, interpretation,

and assessing performance.

1.2. Previous Results

The estimation of fixed effects and variance components has been a important statistical problem.

Fixed effects can be estimated using least squares techniques. Ordinary least squares solutions are often

inadequate in models with random effects since they do not account for the covariance. Generalized least

squares can be used to account for the covariance when it is known. However, it is usually the case that

the covariance depends on some unknown parameters. Estimated generalized least squares estimators can

be used to estimate the fixed effects where the generalized least squares estimator is calculated using the

estimated covariance matrix. However, the issue then is how to estimate the variance components

(Searle et al.,1992). "For balanced data, it has been common practice to estimate these parameters by

equating the means squares in the ANOVA table to their expectations" (Harville,1977). This method of

estimation was generalized to the unbalanced case using techniques by Henderson (1953). Likelihood

techniques have become a more popular alternative and these methods are reviewed in the next section.



1.2.1. Likelihood Estimation

The likelihood procedure is a general technique that can be applied to estimating variance

components in balanced and unbalanced mixed models. This technique requires an assumption of a

probability distribution for the data. It is typically assumed that the data are from a multivariate normal

distribution (Searle et al.,1992). Thus, the multivariate normal distribution will be assumed in this thesis.

Harville (1977) gives some of the advantages of using likelihood procedures in this setting:

A maximum likelihood approach to the estimation of variance components has

some attractive features. The maximum likelihood estimators are functions of

every sufficient statistic and are consistent and asymptotically normal and

efficient. Certain deficiencies of various other methods are not shared by

maximum likelihood. In particular, the maximum likelihood approach is

'always' well-defined, even for the many useful generalizations of the ordinary

ANOVA models, and, with maximum likelihood, nonnegativity constraints on

the variance components or other constraints on the parameter space cause no

conceptual difficulties.

On the other hand, complicated computational issues can arise when calculating likelihood

estimators, since the solutions require solving nonlinear equations (Harville,1977). Iterative algorithms

are necessary for finding such solutions and have been implemented with the use of modern computing

software. Such computational algorithms and other issues related to likelihood estimation can be found in

Harville (1977), Callanan and Harville (1991), and Searle et al. (1992).

1.2.2. Explicit Linear Likelihood Estimation

Due to the difficult computations necessary to solve the likelihood equations, there is an advantage to

knowing when these estimators can be solved linearly and explicitly. In these cases, an iterative procedure

is not necessary and the resulting estimates are easier to interpret and assess. This issue has been

investigated by Rogers and Young (1977), Szatrowski (1980), and ElBassiouni (1983). All of these results

pertain to the full case which involves the entire vector of fixed effects or the entire vector of variance

components.

Rogers and Young (1977) identify conditions involving explicit linear maximum likelihood equation

estimators for the entire vector of variance components. They examine when the inverse of the covariance



matrix has linear structure. This allows the maximum likelihood equations to be solved linearly and

explicitly.

Szatrowski (1980) finds conditions for the existence of explicit linear maximum likelihood equation

estimators for the full case involving fixed effects and variance components. This approach involves

obtaining models that have estimated generalized least squares estimators that correspond to solutions of

the maximum likelihood equations. Under certain sufficient conditions, Szatrowski shows the estimated

generalized least squares estimators for these models equal the least squares estimator. The least squares

estimator satisfies the definition of an explicit linear maximum likelihood estimator.

ElBassiouni (1983) applies the results of Szatrowski (1980) to the restricted maximum likelihood

procedure. Conditions are obtained under which the variance component vector has an explicit linear

restricted maximum likelihood equation estimator.

The method of Szatrowski is of particular interest since it will be used in this study to extend the

previous results.

1.2.3. Best Linear Unbiased Estimation

Best linear unbiased estimation is a concept which will be useful for obtaining conditions for the

existence of explicit linear likelihood estimators. This type of estimation is defined by Puntanen and Styan

(1989) and Seely(1996).

The relationship between best linear unbiased estimation and explicit maximum likelihood estimation

can be explained for the fixed effects in a mixed effects linear model. Let this linear model be called the

Y-Model. The best linear unbiased estimator for a given covariance matrix is the generalized least squares

estimator (Searle et al.,1992). When the covariance matrix depends on an unknown variance component

parameter that varies in some set, the generalized least squares estimator will not necessarily be the best

over all possible parameter values. Under Zyskinds condition for the Y-Model (Zyskind,1967), for each

value of the parameter, the associated generalized least squares estimators are equivalent and equal to the

least squares estimator. In this case, the least squares estimator is the best linear unbiased estimator over

all possible parameter values. Suppose the unknown variance component parameter is estimated using a

solution to the maximum likelihood equations where the resulting estimate lies in the parameter set. Then

Zyskind's condition can be used to show that the estimated generalized least squares estimator using the

maximum likelihood equation estimator is equal to the least squares estimator. The least squares estimator

is explicit, linear, and equivalent to the maximum likelihood equation estimator.

In order to apply similar results to variance components, it is necessary to obtain models to conduct

quadratic estimation. Such models are formulated by Seely (1969,1971) and will be called linearized

quadratic estimation models. A linearized quadratic estimation model can be defined for the maximum

likelihood procedure and for the restricted maximum likelihood procedure. The response in such models



involves quadratic forms of the original response. Generalizations of best linear unbiased estimation have

been examined for these models by Seely and Zyskind (1969). In addition, Seely (1969) shows that

Zyskinds condition in the linearized quadratic estimation model is equivalent to a quadratic subspace

condition. Further discussion of least squares, generalized least squares, and best linear unbiased

estimation is given by Puntanen and Styan (1989), Rao (1968), Seely (1996), and Birkes (1996).

1.3. Summary of Results

The approach of Szatrowski (1980) for the full case, which involves the entire vector of fixed effects

or the entire vector of variance components, requires the use of the Y-Model and two linearized quadratic

estimation models. These three models can be combined into a single underlying model in which

Zyskind's condition can be investigated. The results derived for this underlying model will then be applied

to the specific models of interest.

The results for the full case can be generalized to linear combinations involving the parameters. In

this case, a full explicit linear estimator may not exist, but there may exist an explicit linear estimator for a

linear combination of interest. This generalization is done using the underlying model by equating the

linear combination involving the least squares estimator with the linear combination involving the

generalized least squares estimator to obtain a generalized Zyskinds condition. This condition is applied

to the particular models of interest to give results for the general case involving linear combinations of the

fixed effects or linear combinations of the variance components in the maximum likelihood and restricted

maximum likelihood procedures.

Another perspective relates to examining a subvector of the parameter vector. This perspective is

useful for understanding and for checking the existence of an explicit linear estimator in specific

examples. This is done using the underlying model by equating the subvector involving the least squares

estimator with the subvector involving the generalized least squares estimator to obtain a generalized

Zyskind's condition. The condition is again applied to the particular models of interest to obtain the

associated results for estimating a subvector of the fixed effects vector or a subvector of the variance

components vector in the maximum likelihood and restricted maximum likelihood procedures.

The existence of explicit linear estimators will be demonstrated for the full and general cases in

mixed linear classification models. Specific examples will be examined as well as classes of examples that

meet certain design and model conditions. A search of 3-way models under various designs is also

presented.

The conditions for the existence of explicit linear estimators in the full and general cases will be

applied to uniformly minimum variance unbiased estimation. The full case will be presented with respect

to results from Seely( 1971,1977) that prove the existence of a complete sufficient statistic for a family of

normal distributions under the conditions. The general case will be presented to show that, under the



conditions, the explicit linear estimator has uniformly minimum variance for all unbiased estimators in

certain cases in the maximum likelihood and restricted maximum likelihood procedures. In addition, it is

shown that an exact form can be obtained for the covariance of an explicit linear estimator.

The conditions for the existence of explicit linear estimators in the full and general cases will also be

applied to data. An iterative procedure is defined and demonstrated through a data example using PROC

MIXED in SAS. It is also demonstrated how an iterative procedure can be used to check the conditions.

Data examples also demonstrate that computing time can be saved when accounting for explicit linear

estimators. This savings is explained for the iterative procedure and for profile likelihood confidence

intervals. A data example will be given to illustrate the savings in computing time.

This thesis will present notation and definitions pertaining to linear transformations in chapter 2.

Chapter 3 will be used to define the models of interest, as well as results for these models. Chapter 4 gives

the previous results of Szatrowski (1980) and ElBassiouni (1983), along with clarifications. Extensions

involving the general cases will be given in chapters 5 and 6. Applications of the results pertaining to

uniformly minimum variance unbiased estimation will be given in chapter 7, while chapter 8 discusses the

application of the results to data. Chapter 9 provides a conclusion to the thesis. Appendices C and D have

been included to help the reader. Appendix C gives a summary of the models and related theorems while

Appendix D gives section numbers for common symbols and abbreviations.



2. Linear Transformations

The results of this study require knowledge of linear transformations. This chapter could be a review

for a reader with a background in linear algebra. However, particular notation, definitions, and properties

will be presented that provide an essential framework for later chapters. This chapter starts by presenting

basic terminology and then gives particular results that will be useful.

2.1. Basic Terminology

The following definitions provide a foundation to build on. This study will focus on finite

dimensional inner product spaces defined over the reals (R.). An inner product space is a vector space

with an inner product. The following definitions can be found in Halmos (1958) and Seely (1996).

Definitions: Vector Snace V is a vector space provided that V a, /3 E R., a, b, C E V

i) a+b=b+a ii) a+(b+c)=(a+b)+c
iii) 2 unique 0 a + 0 = a iv) 2 unique a a + ( a) = 0

v) a(/3a) = (a/3)a vi) 2 unique 1 la = a

vii) a(a + b) = aa + ab viii) (a + /3)a = aa + /3a.

Subspace A non-empty subset U of V is a subspace provided that V a, 3 e 7Z, a, b E U, aa + /3b E U.

Linear Transformation If W and V are vector spaces, then the function A : V'W is a linear

transformation from V into W provided that A(aa + /3b) = aA(a) + f.3A(b) V a, /3 E 7, a, b E V.

Linear Functional - 1 is a linear functional on V provided that 1: V.R. is a linear transformation.

Dual Space - The dual space of a vector space V is the vector space V* = {l : I a linear functional on V}.

Adjoint The adjoint of the linear transformation A is given by A* : V*_.W* defined by

1(A(v)) = A*(l(v)) V v E V. 1 E W.

Seif-Adjoint - A linear transformation B : V'V B* = B.

Inner Product For a, j3 E 7?. and a, b, c e W, denote the inner product of a and b by <a, b> where

i) <a,b> = <b,a> ii)<aa+/3b,c> =a<a,c>+fi<b,c>
iii) <a,a> 0 iv) <a,a> =0a=0.
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Range Space - For the linear transformation A : V'W, it is the subspace of 'V denoted by (A) = A(V).

Rank The dimension of the range space where dim(B(A)) =

Null Space - For the linear transformation A : VW, it is the subspace of V given by

j(A) = {z E V
I
A(z) = 0}.

Nullity - The dimension of the null space where dim(H(A)) =

Orthogonal Complement - For a subspace U of Win an inner product space, it is the subspace of W given

by U-'-={aEW,bEMI<a,b> =0}.

Non-Negative Definite (NND) The linear transformation B is NND or B 0 if B is self-adjoint and

<B(v),v> 0 VvEV.

Positive Definite (PD' The linear transformation B is PD or B > 0 if B is self-adjoint and

<B(v),v> >0 VvEV.

Consider the inner product space (W, < , > ). A norm and a metric can be defined by

IIwH = <w,w> and d(wi,w2) = lw1 w211, respectively. For notational simplicity, a linear

transformation A operating on an element v of a vector space will be denoted by Av instead of A(v) as

above. This should not be confused with matrix multiplication and should be clear from the context.

Any linear transformation can be expressed as a matrix. Consider a linear transformation A : UW

where {u1, ..., u,} and {w1, ..., w} are bases for U and W respectively. Then for j = 1, ..., p
Ai = The matrix is a rectangular array of the np numbers given by = {mjj}

which has column c3 = [m13, ..., m3]' and row = [mi, ..., mj,] (Marcus and Minc,1965). The matrix

Mis a linear transformation from 1V into 7Z. The following definitions are given to summarize the

notation which will be used for matrices.

Definitions: Matrix Let M 7W be denoted by = {m3} M'nxp pxn.

Vector - Let : 1Zl..R, be denoted by x1 =

rd, i=jDiagonal Matrix - The matrix = diag(di) = diag({d2}i) = 0
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Indexing and sizes will be suppressed when these values can easily be determined from the context

or when they are not important. Notationally, A could represent a linear transformation or a matrix, but its

representation should be clear from the context. In addition, let S = set of symmetric n x n matrices and

Mnxm = set of n x m matrices. Specific inner product spaces that will be considered include

<nxi,nxi > =)and(S, <Anxn,Bnxn > = tr(AB)).

2.2. Dual Spaces

The following propositions give some properties of the dual space. These propositions indicate that

dual space W*is isomorphic to W when W has an inner product. Thus, the dual space will be of little

concern, since the main interest is in the real inner product space (W, < , > ).

(Halmos, 1958)

Proposition: A* : W*_*V* is a linear transformation.

proof i) Let l,o E 3'V and consider lvo(v) = iwo(A(v)) E V*. Then V V E V

ivo(v) = lo(A(v)) = A° io(v) by definition of adjoint

ivo A'(lwo) since above holds V v E V.

Thus, Vw° E 34) A*(l,o)
=ivo forsomev° V A* : WVt.

ii) Let w* = c1w + £2W2 where E W*. Then V v E V

wt(A(v)) = (1w + 2w)(A(v)) iw(A(v)) + a2w(A(v))
W iA*(w(v)) + 2A*(w(v)) (iA*(w) + 2A*(w))(v)

= A*(wo) = iA*(w)+c2A*(w) astheaboveholdsV v e V

where (1) follows from definition of adjoint and (2) follows from linearity properties. .

(Halmos, 1958)

Proposition: dim W* = dim 34).

proof Suppose dim W = n and {wi, ..., w,} is a basis for W.

i) Define 1: W-41 by 1(w) = >cjf3j where w = =° i(w) = =o 1(w) = al(w) (*).

V w, V E W iw + 72V E W, 50 IW + 2V = + (2a2w) = (11j + 22)w
j=1 j=1 j=1

n n
=o i("yiw + 'y2v) = i( ('ylalj + 'y2c2j)wj) '=' > (yici + y2c2)l(w)

j=1 j=1
n n n n

= -yi ci3l(w) + 'y2c2l(w)'=' 'yi l(cjw) + y2l( c2w) = -yil(w) + 721(v)
j=1 j=1 j=1 j=1

=° 1 E W.
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ii) Suppose l i = 1, ...,n E W wherel(w3) = 53.ThenVw E W, 1 E W
n n n n n

l(w) = 11(cw) = = = a = l(w)'=' >jfi = >/31(w)
j=1 j=1 j=1 i=1 i=1

= l=/3l sincetheaboveholdsVw E W=± sp{li,...,l} = Wt astheaboveholdsV I E W.

Vj=1,...,n

ii36= 0 Vj= 1,...,n = 13= OVj= 1,...,n =. {l1,...,l}arelinearlyindependent.

{li,...,ln}iSabaSiSfOr3V* = dimW = n==dimW. .

Proposition: Suppose (W, < , > ) is a real inner product space. Then Wt = W.

proof ThenVwEW,definelE3V*by l(w)= <w,v> VvEW.
Consider the linear operator : W_+W* defined by f(w) = 1. Note

(w)=0= <w,v> =0 VvEW = <w,w> =0 =w =0=is1-1(isomorphism)
= W is isomorphic to )'V since an isomorphism c1 and dim W* = dim W by above proposition.

2.3. Subspaces

A number of relationships will be presented concerning subspaces. Many of these results will be used

in later sections. Consider a finite dimensional inner product space given by (W, < , >

(Halmos, 1958) (Seely,1996)

Proposition: Let Tand U be subspaces of W. Then

i) TcUanddim'T=dimU T=U
ii) U+U-'-=W
iii) (T + U)- TL n U-'-

iv)dim(T + U) = dim'T + dimU dim(T flU)
v) U11=U.

proof i) Note T = U T C Uand a E U a T T C Uand dim'T = dimU.

ii) LetS = {u1, ...,n}be an orthonormal basis forUandV wE Wdefine <w > u EU.

By the properties of the inner product and the orthonormal basis S,

<wx,x> = <x,x> =(<w,n>)(<w,u> <x,u>)
<u,u>)=0 as<u,u>=1.

Thus,wxEU'w=x+(wx)EU+U='U+U'=W astheaboveholdswEW.
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iii)wE(T+U)' <w,v> =0 VvET+U <w,x+y> =0 VxET,yEU
<w,x> =Oand <w,y> =0 VzET,yEUwET'flU'.

iv) Let Syu = {u1, ...,uk} be a basis forT flU. Choose v1, ...,Vm

S = {u1, ...,Uk,V1, ...,Vm} is abasis forT and choose w1, ...,w

Su = {n1, ...,Uk,W1, ...,w}is a basis forU.
For purposes of contradiction (*), suppose the elements of S- U Su are linearly dependent

m n

linear combinations = /3w3 E T flU
i=1 j=1

m n k

= = i31w3 = for some linear combination of elements in S-mu
i=1 j=1 1=1

= S2-, Su cannot be bases by definition since their elements are not independent (*).

Thus, Sy U S is a basis for T + U as it is an independent spanning set for T + U. Also,

(l)dim(T+ U)=k+m+n (2)dimT+dimUdim(TflU)=k+m+k+nk=k+m+n
=' the result holds as (1) and (2) are equal.

v)Bydefinition,U-'-' ={aEW, bEU' <a,b> =0}DU (*).
(1) Note dimW = dim(U + U') = dimU + dim(U') dim(U fi U')by ii) and iv)

= dimU + dim(U-) dim(W') = dimU + dim(U') by iii).

(2) Also, dimW = dim(U' + Ui-') = dimU- + dim(U-') dim(U' flU-'--'-) by ii) and iv)

= dim U' + dim(U") dim(W') = dim U' + dim(U-'-') by iii).

Thus, U" = U by (*), (1) , (2). .

By definition, range and null spaces are subspaces. The next proposition gives results for range

spaces, null spaces, and ranks.

(Seely, 1996)

Proposition: Consider conformable linear transformations A and B. Then

i) 11(A,B) =11(A)+R(B)

ii) (A, B) = (A) + r(B) dim(R(A) fl 11(B))

iii) 11(A)' = N(A*) N(A)-'- =

iv) R(AB) C R(A) N(B) C N(AB)

v) r(AB) = r(B) dim(R(B) fi N(A))

vi) R(B*B) = R(B*) N(B*B) = N(B).

vii) 11(A) C 11(B) (A, B) =

proof i) Let T, U1, 112 be subspaces and A : U1. T and B : U2. T. Then

R(A,B) = {[ABI[niu2] ui EU1, n2 e U2} = {Aui + Bu2u1 EU1, u2 E U2}

= {AuiI z E U1} + {Bn2 u2 E U2} = 11(A) + 11(B).



11

ii) Follows from iv) in proposition above.

iii) Let A be defined as in the proof of i). Then

(1)R(A)-={AuiIuiEUi}'={wETI<Aui,w> =OVuiEUi}
={wEY <Ui,A*w> =0 Vu1EU1}
= {w E T A*w = 0 } = N(At) as above holds V UI E U1.

(2) By(1)andv)inaboveprop, N(A) =B(A*)I =.N(A)' =(A*)ll =(A*)
iv) Let T, U, U2 be subspaces and A : U1T and B : U2.U1. Then

(1)R(AB) = {ABwIw EU2}= {A(Bw)IBw EU1} c {Avv E U1} =
(2) Let t E N(B) = Bt =0 = ABt =0 = t N(AB) = N(B) C N(AB).
v) Let T be a linear transformation T : (B) .W defined by Tv = Av V v E R(B). Then

r(B) = r(T) + n(T) = r(AB) + dim(R(B) fl N(A)) and the result follows.

vi) (1) (B*B) C (B*) by iv) and by v). Also,

Z(B*B) = (B) dim(B(B) fl _N(B)) = (B) dim((B) fl (B)--) = (B) by iii).
(2) By (1), R(B*B) = E(B*) R(B*B)± = (B*)J _N(B*B) = N(B) by iii).
vii) r(A, B) = (B) r(A) + (B) dim(R(A) fl (B)) = (B)
r(A) = dim(R(A) fl R(B)) R(A) = R(A) fl R(B) as R(A) fl R(B) C R(A) R(A) C R(B).

Proposition: Let T = {T1, ..., Tj and U, Wbe conformable linear transformations. Then

(TU) C R(W) V T E T (TU) C (W) V T E spT.

proof i) R(TU) c R(W) V T spY R(TU) c R(W) V T E Y since T C spY.

ii)R(TU)C(W)VTET=H(TU)C(W) i=1,...,t
T[B(U)]cR(W) i=1,...,t

=. a2Tj[R(U)} c E(W) V a E R. since (W) is a subspace

= T[(U)] C R(W) V a1 e R., T = >ajTj E spY
i=I

= (TU) c R(W) V T E spY.

2.4. Inverses

Under certain properties, a linear transformation A has an inverse (A1) or is invertible. These

conditions and a useful proposition are presented below.

Definition: Invertible - A linear transformation A : V*W is invertible providing

(1) Av1 = Av2 = V1 = 1)2 (1-1) and (2) R(A) = W (onto).
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(Halmos,1958) (Marcus and Minc,1965)

Proposition: The linear transformation A : V'V is invertible if and only if Av = 0 = v = 0.

proof: i) Suppose A is invertible. Then Av = 0 = A0 = v = 0.

ii) Suppose Av = 0 = v = 0. Then Av, = Av2 = A(v, v2) = 0 r v1 V2 = 0 z V1 = V2.

In addition, suppose {b,, ..., b} is a basis for V. Then

1jj=0 b)=O i= 1,...,n

=' {Ab,, ..., Ab} is also basis for V = R(A) = V. .

There will be interest in calculating the inverse for partitioned matrices containing linear

transformations. This special setting will be described in a later chapter, but the result is given here. The

inverse formulas can be verified by left and right multiplying the transformation and its inverse to obtain

the identity transformation.

(Christensen, 1996)

Inverse Formulas: Assuming all linear transformations are conformable, then

i) [A + BCD]1 = A' A'B [C' + DA'B]'DA'
I A 1 1A' + GEIG* - G*Eh1

ii) [B* DJ
L

- EG* E' ]
E = D - B*A1B C = A'B.

2.5. Projection Operators and Generalized Inverses

Projection operators play a fundamental role in later results. These operators have special properties,

as indicated by their definitions. Another special transformation is the generalized inverse or g-inverse.

These inverses are useful for characterizing projections and have special properties (Seely,1996).

Definitions: Projection Operator (P0) P is a P0 on R(P) along (P) P2 = P.

Orthogonal Projection Operatior (OPO) PA is an OPO on (A) (PA) = R(A), PA = P = P.

G-Inverse (A) - A is defined by the relation AAA = A.

Moore-Penrose Inverse (A+) - A+ is defined by the properties

1) AAA = A 2) AAA = A 3) (AA+)* = AA 4) (A+A)* = AA.
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Note that PA is used to represent an OPO on (A) while the range and null space need to be

specified for a P0. The next proposition establishes an alternative definition of projection operators. The

second proposition uses the alternative definition to show that projections are unique linear operators. For

subspaces U and V, the direct sum ( ) is defined by U V = U + V Un V = {O} (Seely,1996).

(Halmos, 1958)

Proposition: Let P: V'V. Then P2 = P V = 11(P) _N(P) and v E V can uniquely be expressed

asv=u+w wherePw=OandPv=u.

proof: i) Suppose P2 = P. (1) Let v E V. Then v Pt' + (v Pv) E 11(P) + _N(P).

(2) Suppose w E 11(P) fl _N(P). Then w = Pv for some v E Vand Pw 0. Thus,

0=Pw=PPv=Pv=w=j(P)fljN(P)={0}. :.by(1)and(2),V= R(P)N(P).
(3) By i), v = u + w E 11(P) + N(P) where u E 11(P) and w E N(P).
Let u E (P), w2 e N(P) i = 1, 2 and assume v = u1 + w1 = u2 + w2 = u u2 = w2

= U = u, w1 = w2 since u1 U2 E 11(P), WI w2 E N(P), and R(P) nN(P) = {0}.
= V E V can uniquely be expressed as v = u + w.

(4) Consider the unique expression in (3) given by v = u + w. Let u Pz for some z and note Pw = 0.

Then Pv = Pu + Pw = PPz = Pz u by (3).

ii) To show P2 = P. By hypothesis, v e V can uniquely be expressed as v = u + w where u E 11(P),

wE!i(P),andPv=u.Thus,P2v= PPv= Pu=u= Pv= P2= P astheaboveholdsVvE V. .

Proposition: i) P is a linear transformation.

ii) If P = P1, P = P2, 11(P1) = 11(P2), and (P1) = _N(P2), then Pi = P2.

proof i) Let v V i = 1, 2. By the above proposition, v = u + W where u 11(P), w e N(P),
and Pv1 = u2 i = 1,2. Then c1v1 + c2v2 = ciui + c2u2 + alWl + U2W2 where

£1U1 + O2U2 E 11(P) and iWI + 2W2 E JN(P). By the above proposition,

P(a1vi + cl2V2) = c11u1 + c12u2 = aiPv1 + c2Pv2.

ii)By the above proposition, V v E V, V U + 'w where u E 11(P1) = 11(P2) and w E (P1) =

=&,Piv=u=P2v=±,P1=P2 asaboveholdsVvEV.

A g-inverse for A may not be unique while the Moore-Penrose inverse for A is unique. The choice of

a g-inverse in later applications will depend upon the context. Usually, a g-inverse will be used unless the

specific properties of a Moore-Penrose inverse are needed. The following propositions demonstrate

properties of A and At The next six results are given in Seely (1996).
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Proposition: For any linear transformation A, there exists A.

proof LetPbeaP0onR(A)= G AG= P AGA= PA= A= G= A-.

Proposition: A g-inverse A satisfies

i) (At) = (A-)t ii) IfAis invertible, then A = A-'
iii) AA is a P0 on (A) iv) AA is a P0 along jL(A).

proof i) By definition of A, AAA = A At (A-)t At = At (A)t = (At).
ii) By definition of A, AA-A = A A-'AA-AA-' = A-'AA-' = A- = A-'
iii) (AA)(AA-) = AA by definition of A- and

R(A) = R(AA-A) c (AA-) c R(A) = R(A) = R(AA-).
iv) (AA)(AA) = AA by definition of A and
N(A) c N(AA) c N(AAA) = N(A) = N(A) = R(AA)..

Proposition: PA = AGAt where C = (AtA) is any g-inverse of A.

proof Let P = A(AtA)At and note AtA(AtA) is a PU on B(AtA) =
= A*A(A*A)A* = AtP = At. Then

i) pt = (A(AtA)tAt )* = P since Ct = C
ii) p2 = (A(AtA)At )(A(AtAyAt) = A(AtA)At = p
iii) N(A*) c (A(AtA)At) = N(P) c (AtP) =
r (At) = N(P) = (A) (Pt) = R(P) by i).
PA = P = PA = ACAt where C = (AtA) is any g-inverse of A. .

Proposition: If A* = A, then (A+)* = A.

proof Let C = (A)t. Using the definition of A it can be shown that C = (At) since

1) AtCAt = (AAA)t = At 2) CAtC = (A+AA+)* = A+* = C
3) (AtC)t = CtA = AA = (AA)t = AC 4) (CA*)* = ACt = AA = (AA)t = CAt.
Hence, C = (A+)* = (A*)+ = A+ as At = A. .

(Seely, 1996) (Schott, 1997)

Proposition: For a linear transformation A, there exists a unique A+.
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proof i) Let B = (A*A)_A* and C = (AA*)_A where B and C exist since the g-inverses exist. 

Define G = C*AB = A*(AA*)A(A*A)A*. 

i) To show A+exists and A+ = C. Using the above expressions for PA gives 

1)AGA = AC*AB = AA*(AA*)A(A*A)A*A = AA*(AA*)PAA 

= AA*(AA*)A = A since AA*(AA*) isaP0onR(AAt) = R(A). 

2) GAG = C*ABAC*AB = (A*(AA*)A(A*A)A*)A(A*(AA*)A(A*A)A) 

= A*(AA*)PAAPA.(A*A)A* = A*(AA*)A(A*A)A* = CtAB = G. 

3)AG = ACtAB = AA*(AA*)A(A*A)A* = APA.(A*A)A* = A(A*A)A* = PA 

= (AG) = P = PA = A 

4) GA = C*ABA = A*(AA*)A(A*A)A*A = A(AA*)PAA = A*(AA*)A = PA' 

= (GA) = P. = PA. = GA. 
A = G = for an arbitrary matrix A there exists A by definition. 

ii) To show A+ is unique. Suppose 2 Moore-Penrose inverses G1and G2. By definition, 

1) AG1 = (AG1)* = GA* = G(AG2A)* = (AG1)*(AG2)* = AG1AG2 = AG2 

2) G1A = (G1A)* = A*G = (AG2A)*G = (G2A)*(G1A)* = G2AG1A = G2A. 

= G1AG1 = G1AG2 = G2AG2 = C2. 

Corollary: For a linear transformation A, AA+ PA and A+A PA'. 

The proof of the corollary follows from the proof of the above theorem. The next results will be useful 

in characterizing projection operators. The theorem was given its name in order to identify it easily. 

(Seely, 1996) 

General Projection Theorem: Suppose D and A are conformable linear transformations 

i(A*DA) = r(A*) and C is a g-inverse of A*DA. Then 

i) DAGA* is the P0 on (DA) along N(A*) ii)AGA*D is the P0 on (A) along H(A*D). 

proof i) Note (1) (DAGA*)(DAGA*) = DAGA* since A*DAG is a P0 on R(A*DA) = R(A*) 

(2) N(A*) C N(DAGA*) C N(A*DAGA*) = N(A*) since A* = A*DAGA* 

(3) R(DA) = R(DAGA*DA) C R(DAGA') C R(DA) since A = AGA*DA. 

ii) Note (1)(AGA*D)(AGA*D) = AGAtD since A*DAG is a P0 on R(A*DA) = R(A*) 

(2) (A*D) C N(AGA*D) C N(A*DAGA*D) = N(A*D) since A* = A*DAGA* 

(3) R(A) = R(AGA*DA) C R(AGA*D) C R(A) since A = AGA*DA. 

Proposition: 1fF 
: WWis an OPO, then T: T'W P = TT* and T*T = I. 
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proof Let T = R(P) and define Tt = t V t e T: T'W. Then V w E W, t E T

<T*w,t>y= <w,Tt>w= <w,t>= <w,Pt>w= <Pw,t>r=T*w=Pw.
Now,TT* :W-4'V andVwEW, TT*i=TPw=Pw=1,P=TT*.
Note T*T:T,TwhereVtET, T*Tt=T*t=Pt=t=T*T=I. .

The next propositions are useful for describing combinations of projection operators.

(Halmos, 1958) (Christensen, 1996)

Proposition: If P1 and P2 are OPOs, then the following are equivalent for P = P1 + P2

i) P2 = P ii) P1P2 = P2P1 = 0 iii) P is the OPO on R(P1) + R(P2).

proof (1)i)P+P+P1P2+P2Pi=Pi+P2PiP2+P2P1 0(*)
= PiP2 + P1P2P1 = 0 and P1P2P1 + P2P1 = 0 by left and right multiplying by P1

= P1P2 = P2P1 (o) = ii) from (*) and (a).

(2) Note ii) = PiP2 + P2P1 = 0 = i) from (*) in (1).

(3) Note iii) = i) by definition of OPO.

(4) i) = P is an OPO since P2 = P and P' = P. In addition, R(P) C R(P1) + R(P2).
To show equality in the range spaces, let v E R(P1) + R(P2) = v = P1u1 + P2u2 for some l, u2.

Then Pv = P(Piui + P2u2) = (P1 + P2)(Piui + P2u2) = Piui + P1P2u2 + P2P1u1 + P2u2

= P1u1 + P2u2 = v as i) = ii) by (1). Thus, v E R(P) = R(P1) + R(P2) c R(P) = iii).

(Halmos, 1958)

Proposition: If P1and P2 are OPOs, then the following are equivalent for P = P1P2

i) P' = P ii) R(P) C R(P2) iii) P is the OPO on R(P1) fl R(P2).

(2) Suppose ii). Then V u Pu P2Pu E R(P2) + R(P) C R(P2) by ii) and

0= P2(Pu P2Pu) = Pu P2Pn E R(P2) flN(P2) = {0} = P2P = P (*).
Using (*), P = P2P = PPP = (P1P2)'P = P'P = P' z i).

(3) Note iii) = F' = P = i).

(4) i) and hypothesis = P' = P and P2 = P = Pis an OPO. By (I),

P = P1P2 = P2P1 = (P) C R(Pi) fl (P2). In order to show equality of the range spaces,

suppose w e (P1) nR(P2) = w = P1u1 = P2u2 for some u1,u2 and

Pw = P1P2P1u1 = P1P2u1 = P2P1u1 = P2w = P2P2u2 = P2u2 = w = w E R(P)
= R(P1) flR(P2) c R(P) iii).
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2.6. Trace Operator

A few linear algebra results are needed involving eigenvalues, the spectral theorem, and the trace

operator. Let A be a linear transformation on an n-dimensional vector space Wand consider the following

definitions and propositions (Halmos,1958).

Definitions: Eigenvalue - A scalar A Ax = Ax for some non-zero x.

Multiplicity If C,, = collection of all x Ax = Ax, then the multiplicity of A is dim C.

The trace operator is given by tr(A) = =

where m, is the multiplicity for the eigenvalue A2 and inj + ... + m,. = fl.

(Halmos, 1958)

Spectral Theorem: For every self-adjoint linear transformation A on a finite-dimensional inner product

space, A, ..., Ar E 7 and OPOs E1, ..., Er

i) A1, ..., Ar are distinct ii) E2 0 E1E3 = 0 i j = 1, ..., r

iii) >E = I iv) A =

The value A2 in the spectral theorem is an eigenvalue of A, because for u E R(E2) (u 0)

Au = (A2E)u = A2u. The multiplicity associated with A2 is given by z(E). Also,

A8 = (AE2)3 = AE due to the properties of the E2's. The next proposition gives a corresponding

spectral theorem for matrices.

(Christensen, 1996)

Proposition: For a symmetric matrix M><, a symmetric matrix R R'MR = D = diag({A2}).

proof: Let i, ..., iz, be an orthonormal set of eigenvectors of M corresponding to the eigenvalues

A1, ..., A. Then R = ........ ] and noting j {
gives

R'MR = R'[Mvi ........ = R'[A11 ..... = = diag({A2}) = D.

Since the trace operator plays a crucial role in the development of later results, it will be developed in

this section. The next proposition gives an expression for the trace of a matrix. Then the properties of the

trace are explored using both formulations. The matrix formulation will be most useful in later chapters.
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The following results illustrate linear concepts concerning the relation between a linear transformation and

its associated matrix representation.

Proposition: If the linear transformation A has matrix representation = {mij}, then tr(A) =

proof i) Define the function r(M) =

To show ifM and R are two matrix representations of A, then r(M) = r(R).

Vi= 1,...,n (1).

Since A is a mapping on W, define Ae = miei (2) and Af= (3).

(4) ( bmi)ei = = = AL = r.7f3
1=1 j=1 j=1 1=1 j=1 3=1

=
j=1 1=1 1=1 j=1

Hence, >( >bmj)ei = ( rbi)ei ( >(bmj = 0
1=1 j=1 1=1 j=1 1=1 j=1

i (bm3, r1b31) = 0 as el are linearly independent

= BM = RB . R = BMB' where = {b} is 1-1 and onto by (1).

Let D = B' = {d1}. Thus,

T(R) = = > bm31d,2 = > >m3j( d1b) = = = T(M).
j= i=1 j=1 1=1 j=1 1=1 i=1 j=1 1=1 i=1

ii) For the matrix M, a non-singular matrix B R = BMB is triangular (Halmos,1958,p 107).

To show r2 i = 1, ..., n are the eigenvalues of A where r is the th diagonal element of R.

a) Define Rto be a diagonal matrix with entries i = 1, ..., m. Note RI = Rd (4)
and R6Z = Ti (5) where = {ôij} where j = 1 if i = j and 0 otherwise. By definition of eigenvalue,

lR' Till = 0 = I(R - TiI)dI = 0 IR rl = 0 = r2 is an eigenvalue of R.

b) M = A B'BMBB = A BMB'B = AB

R(Bx) = A(Bx).Thus, A is an eigenvalue ofM A is an eigenvalue ofR (Halmos,1958).

c) Let sp{e,,
...,

e} = W. Then A is aneigenvalue of A with eigenvector x= viei

Ax = Ax vAe = Ave >vme3 = >Aviei = Ave
i=1 i=1 i=1 j=1 i=1 j=1 i=1 j=1

> ((vmj) Av)e = 0 vimij = Av j = 1, ..., n by linear independence
j=1 i=1 i=1

M = Ày forv = [vi, ...,v,]' A is an eigenvalue ofM (Marcus and Minc,1965).

Thus, = r(M) 'r(R) = >ITi?tr(A). .
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Proposition: Consider linear transformations A and B on an n-dimensional vector space )'V. Then

i) tr(aA + /3B) = ctr(A) + Iitr(B) for c, /9
ii) tr(AB) = tr(BA)

iii) If A2 = A, then tr(A) =

proof The above proposition can be used to obtain the above equalities. Suppose = {injj}

and = {r} are matrix representations of A and B respectively.

i) The matrix representation of aA + f3B is given by {am, + /3r} by definition of matrix addition and

scalar multiplication (Marcus and Minc,1965). Then

cltr(A) + /3tr(B) = + = (am + /3r) = tr(aA + 3B).

ii) The matrix representation of AB is given by { m5r3} by definition of matrix multiplication

(Marcus and Minc,1965). Then tr(AB) = = = tr(BA).
i=1 3=1 j=1 i=1

iii) (1) Let sp{e1, ..., e} = W, Ae = and M = {mj}. Consider the mapping J : W'W

given by (u) = {c}n = c where u = >cjej. In addition, suppose v =and cl,/9 7Z. Then

a) (au + /3v) = ((ac + /3d)e) = {c + /3d}1 = + /3 = (u) + /3(v)

i=1,...,nn=v

c)R() = 1(W) = (sp{e1, ..., e7}) = sp{(ei), ..., 4(e,)} = sp{, ...,} =
by i) with 6 = {6} where 5j = 1 if i = j and 0 otherwise.

d) I(Au) = 1( cAe) = ( >c where Ae =
i=1 i=1 j=1 j=1

= i = >c,rn, = Mc = M(u).
i=1 j=1 i=1 j=1 i=1

Hence, r(A) = dim R(A) dim R(A)- dim R(M) dimR(M) = r(M).
(2) Consider the matrix representation of A given by M. Then a non-singular matrix B R = BMB

is triangular (Halmos,1958). Note L(M) = i(R) = number of non-zero diagonal entries.

(3) Suppose Ax = Ax. Then Ax = Ax = A2x = A(Ax) = AAx = A2x = A2 = A A = 0 or 1

= r = 0 or 1 i = 1, ..., n as diagonal elements of R (ri) equal eigenvalues of A from ii) in above proof.

r(A)(!)r(M)(r(R) tr(A).

2.7. Non-Negative Definite Linear Transformations

A few results will be presented in this section concerning non-negative definite (NND) and positive

definite (PD) linear transformations which are defined in section 2.1. These linear transformations will be

defined on the n-dimensional vector space 1/V with inner product < , >
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(Christensen, 1996)

Proposition: i) The eigenvalues for a NND linear transformation are greater than or equal to zero.

ii) A self-adjoint linear transformation A is NND A = BB* for some B.

proof i) Let A be an NND transformation defined on W. By the spectral theorem,

Ai, ..., Ar E 1 and OPOs E1, ..., Er A = >AE. Then <Av, v> 0 V v by definition of NND

<Au,u> 0 foru ER(E) u 0 = < (AE)u,u> Obythespectraitheorem

=A<u,u> 0 = AIO as<u,u> >Osinceu0.
ii) (1) Suppose A is NND. By spectral theorem, A1, ..., A E 7 and OPOs E1, ..., Er A =

rA=>A1Ej=A=AALrBB*.
i=1

(2) Suppose A = BB*. Then A is self-adjoint and <Av, v> = <BBv, v> = <B*v, B*v> 0

= A is NND by definition.

Proposition: Consider conformable linear transformations D and V.

i) If V is NND, then R(DtVD) R(D*V). ii) If V is PD, then R(D*VD) = R(D*)

proof i) (1) Note (D) C N(VD) C (D*VD).

(2) Because V is NND = B V BB* by above proposition. Suppose

Thus, by (1) and (2), (D*VD) = N(VD) = B(DtVD) = (D*V).

(3) From (*) in (2) and since V is PD, Dt = 0 = t e N(D). Thus, by (1) and (2)

N(D*VD) = (D) = R(D*VD) &D*). .

Proposition: If V, W are NND linear transformations, then

i)tr(W)=0W=0 ii)tr(VW)=0VW=0.

proof By the spectral theorem, A1, ..., Ar e R. and OPOs E1, ..., Er
r r 1

W= =(>A,E)2=B2.Then(l)W=0=1.tr(W)=tr(0)=0
i=1 i=1

(2) 0 = tr(W) = tr(AE) = >Atr(Ej) = tr(E) V i by i) of above proposition as since W 0

= (E) = 0 Vi by iii) of proposition in section 2.6 since E = EVi = W 0.

ii) (1) VW = 0 = tr(VW) = tr(0) = 0.

(2) 0 = tr(VW) = tr(VB2) = tr(BVB) = BVB 0 by i) (2) as BVB is NND

= VB = 0 by above proposition = VW = 0. .
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2.8. Quadratic Subspaces

Quadratic spaces, developed by Seely (1969), will be useful in later results. This section pertains to

symmetric n x nmatrices (Sn). Definitions are given below where C is a subspace of S.

Definitions: quadratic Subspace (QS) C is a QS provided A2 E C V A E C

Commutative Quadratic Subspace (CQS) C is a CQS provided C is a QS and V A, B E C AB = BA.

The next proposition can be used to check whether or not a subspace is a QS or a CQS.

(Seely, 1969)

Proposition:i) CisaQS'AB+BAEC VA,BEC.
ii) CisaCQSABEC VA,BEC.
iii) IfCisaQS,thenABAEC VA,BEC.
iv) SupposeDEC AD=DA=A.IfABAEC VA,BEC,thenCisaQS.

proof i)(1) C is a QS (A + B)2 = A2 + (AB + BA) + B2 C AB + BA C as A2, B2 E C

(2) AB + BA E C = 2A2 e C letting A = B = A2 E C.

ii) (1) C is a CQS = AB + BA 2AB E C by i)

(2) AB E C = AB = (AB)' = AB = BA since A, B E C. Hence, AB + BA E C = C is a CQS.

iii) C is a QS = AD + DA E C with D = AB + BA by (1)
= A2B + ABA + ABA + BA2 e C = ABA E C as A2 E C so A2B + BA2 E C by (1).

iv)Note[A,B EC ABAEC]=ADAEC=A2ECisaQS bydefinitionofD. .

The definitions and proposition given in this section are sufficient to develop quadratic subspaces in

later results.

2.9. Vec Operator and Horizontal Direct Product

Special matrix operators will also be of interest in later applications. These include the vec operator

and the horizontal direct product. The vec operator allows matrices to be represented as vectors while the

horizontal direct product combines matrices in a particular manner. The operators are defined below along

with some of their properties:



22

vec operator For A = {a1} e M, define vec(A) by

vec (A) = [afl, ..., a,, a12, ... afl , ... , a, .. aflfllfl2Xl.

horizontal direct product(®) -Let Anxr = [i,...,a]and B3 .Then
(n,r,$)[A® B]nxrs = {ab}(PV)(lll) where a th element

The definition of the horizontal direct product does not specify a particular order for combining the

column vectors of A and B. However, a consistent ordering should be used. The following propositions

provide some elementary results involving vec and the horizontal direct product.

Proposition: i) For c, E 1?., A, B e Mnxm, vec(cA + B) = avec(A) + /3vec(B).

ii) For A, B E Mnxm, tr(A'B) = vec(A)'vec(B).

proof i) Result follows as scalar multiplication and addition operates same for matrices and vectors.

ii) Let A = {g}1and B = {b}1. Then
m in

vec(A)'vec(B) = = (A'B) = tr(A'B). .
i=1 i=1

Proposition: i) B(A 0 B) = R(B 0 A).
ii) R((A ® B) ® C) R(A o (B o C)).

iii) (A + B) ®C= A® C+ B® C.

proof i) Follows from definition where columns of A ® B andB 0 A are identical, but interchanged.

ii) From definition where columns of (A 0 B) 0 C and A ® (B ® C) are identical, but interchanged.

iii) Then (A + B) 0 C = {(a23 + b1)c1} = {ac} + {b3c} = A® C + B® C

which does not depend on the ordering associated with 0.

This chapter provided notation, terminology, and results pertaining to linear transformations. These

concepts will be used repeatedly in the later chapters. Linear transformation concepts will be particularly

important for the models presented in the next chapter.
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3. Linear Models

Models are tools which can be used to represent responses from random processes. For a random

response in a linear space, a linear model assumes the expectation and variance exist. It is convenient to

parameterize the model by expressing the expectation and variance in terms of unknown parameters that

can be estimated from the random response.

(Seely, 1996)

Linear Model: When the set of possible expectations of a random response is a linear subspace.

(Searle et al.,1992)

Linearly Mean-Parameterized Model : When the expectation of the random response is parameterized so

that the expectation is a linear function of the parameter.

The latter model is usually called a linear model as well, but a distinction is made in this study. While

these definitions are not exactly the same, the distinction is not critically important. Linearly mean-

parameterized models will be presented which are not linear models, but they are essentially equivalent to

linear models for purposes of this study, as will be demonstrated in section 3.3.

In order to use the approach of Szatrowski (1980), specific models need to be defined. These models

include the Y-Model, linearized quadratic estimation models (LQEMs), and the Underlying Model

(U-Model). The models, as well as their associated properties, are discussed in the following sections so

they can be easily referenced for later chapters.

3.1. The Y-Model and Assumptions

3.1.1. Definitions and Assumptions

This study is particularly concerned with the linear model given in this section. The Y-Model is

defined below for a random vector Y

Y-Model: E[Y] E = {X
I

1,P} = R(X) Cov(Y) E V = {V I E

The variance component vector lies in a parameter set in which V is PD for all e . This

model does not assume any constraints on the fixed effect vector and the matrix X may not have full

column rank. The following assumptions will be required for some of the results, and will always be stated

either in the result or at the start of the section.



24

Assumptions: Normality [NI Y N(X, V)

k+ 1

Linear Structure [LI Cov(Y) = V = E c k+1 Vk+1 = I.
i=1

Open Set [01 E contains a non-empty open set in 7,k+1

f k

Classification [CI E[Y] = jji + >JX3J and Cov(Y) = oZ1Z + cr1I
j=1 i=1

where X1 ..... X1, Z1 ..... Zk are classification matrices which are defined in section 3.1.3.

Classification models are assumed to be proper as defined in section 3.1.3.

The Y-Model is a mixed effects model, as it contains both random and fixed effect parameters. The

Y-Model under [LI has been referred to as a variance component model by Harville (1977) and Seely

(1996), as having a patterned covariance matrix by Rogers (1977), and as having a covariance matrix with

linear structure by Anderson (1969). A random effects linear model is a Y-Model under [LI with X = 1

and a fixed effects linear model is a Y-Model under [LI with k = 0.

The Y-Model under [CI has been referred to as a mixed classification model by Birkes (1996) and an
I k

ANOVA model by Harville (1977). This model is often expressed as = jji + >X3J + >JZd2 +
j=1 i=1

where d1, ..., dk, are uncorrelated random vectors with mean Q, Cov() = cI, and Cov() = o2I.

Sometimes o is used to denote a1.

The next sections develop linear model results that are needed for the Y-Model. These sections

discuss the open set condition, balance, and likelihood estimation.

3.1.2. Open Set Condition

The section examines properties associated with the open set condition [01 which accompanies the

linearity assumption [LI. This condition is also presented in a more general setting in sections 3.3.1 and

3.3.2. The following propositions illustrate some basic properties.

Proposition: Suppose contains a non-empty open set of dimension k + 1. If
k+1

V = {V = >/Vj
I

e }, then spV = sp{Vi, ..., Vk+1}.
i=1

k+1

proof Define the linear operator V : flk+1. S by V = Since contains a non-empty open
i=1

set of dimension k + 1 and Vis linear, spV = spV() = V(sp ) = V(R.'') = sp{Vi, ..., Vk+1}.
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k+ 1
Proposition: If E = { I

V = V2 is PD}, then * is a non-empty open set in 7k+1
i= 1

proof i) The linear operator V : R!- Sn defined in the preceding proof is continuous. Define

Dn = {M E Sni Mis PD} and : Sn'R! by 6(M) = [61(M), ...,6(M)]' where

63(M) j principal determinant of M. Note 63, j = 1, ..., n, is continuous since the determinant is a

sum of products of the entries of the matrix (Halmos,1958). Hence, 6 is continuous (Rudin,1976,4.1O).

Note M E V 6(M) > 0 j = 1, ..., n (Harville,1997,sec. 15.6)

(M) E (0, oo1, which is an open subset of flfl Hence,

Vn 6_1((0, oo)n) is an open subset of Sn since is continuous (Rudin,1976,4.8)

so = V-1(D) is an open set in 1.k+las V is continuous (Rudin,1976,4.8). .

Another common form of which contains an open set in ,k+1 is given by

= { = [a?, ... a a?+1 1' Ia? 0, ... , a 0, a1 > O}. The open set condition will be important to

consider in later results.

3.1.3. Balance

Under the classification assumption [C], the number of observations in a class can be examined. Later

results will consider patterns in the number of observations in a class or some sort of balance. This section

establishes notation and definitions for balance in the Y-Model under [C]. The following notation and

definitions are from VanLeeuwen et al. (1997) for p factors labelled 1, ..., p:

Definitions:

The design for an p-way classification model is given by an p-dimensional incidence matrix

N = {n1 xt,, , where n1 is the number of experimental units at level if of factor f

with ij = 1, ...,t1 and! = 1, ...,p.

factor subsets - A subset Q = {fi, ..., f} with g < p represents an effect corresponding to the interaction

of the main effects of factors Ii, ...' f or a nested effect such as when the effect of factor f is nested

within factors fi, ..., f-i

containment - An effect associated with factor subset is contained in an effect associated with factor

subset 7-1 if Q C 7-1.
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marginal incidence matrix (N()) For the factor subset g = {fi, ..., f} C {1, .., p}, is a

g-dimensional matrix obtained from N by summing over the indices for the other p g factors. Let

= (fi, ..., 19) denote the vector form of .

classification matrix - The classification matrix C for the effect associated with factor subset has a row

for each observation in the data set and a column for each 1 combination of levels of factors in . In the

row corresponding to a particular observation, all entries are 0 except for a 1 in the single column

corresponding to the levels of the factors fi, ..., f that were applied to that observation. Columns with all

zero entries are deleted. The sum of the j' column of C corresponds to number of observations at level j.

completely balanced design - When n1 .. = rn V ii, ... , i.

pseudo balance-When n21 = m or 0 V i1, ... ,i.

balanced incidence matrix (Bal(g)) - the design is balanced with respect to a particular subset

of factors if all of the entries in are equal.

conditionally balanced (Bal(Rg)) N is balanced with respect to a particular subset of factors fl given

g if V combination of levels of g the number of observations is the same for all combinations

of levels of the factors in 7- that are not in c.

balanced classification matrix - The classification matrix C is balanced if and only if each column of C

has the same number of observations.

maximal rank - A classification matrix C has maximal rank provided that it has the same rank as when

has all non-zero entries.

included effect When the effect associated with some combination of factors is in the model.

proper classification model Whenever fl and are random effect subsets then either n g is a

random effect subset or it is contained in a fixed effect subset.

In almost all classification models that occur in practice, if the intersection of two included

interaction effects is in the model and, if an included lower order effect is random, then all included higher

order effects containing it must be random. Such models are proper. All mixed classification models that

will be considered will be proper.
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Complete balance is equivalent to a balanced incidence matrix with respect to the set of all factors.

The notation Bal(G) or Bal(THIIG) will be used to denote Bal(g) or Bal(hg) for all factor subsets and

7-L in a collection of factor subsets defined by G and IHI.

The following proposition characterizes properties of a classification matrix. These properties follow

directly from the definition of a classification matrix.

(Birkes, 1996) (Seely, 1996)

Proposition: Let be a classification matrix and n3 = # of l's in the j columnj = 1, ..., s. Then

i) H'H = diag(ni, ... ,r) ii) H'l = (ni, ... ,n5)' iii) H = iv) (H) = s.

These properties of a classification matrix are helpful for examining balance. The following

propositions demonstrate the relation between the classification matrix and balance.

(VanLeeuwen et al.,1997)

Proposition: If the incidence matrix is balanced with respect to g, then the associated classification matrix

C is balanced.

proof BaI(0) all combinations of levels of the factors in have the same number of observations

= all columns of C have the same number of observations = C is balanced. .

(VanLeeuwen et al.,1997)

Proposition: Suppose H, C are associated classification matrices for fl, , respectively.

i) Bal(7) = H'H = qI where H is n x t and q = # of observations in each column ofH.

ii) Bal(1-) = PH = HH'.

iii) Bal(7-1 U ) PHPG = PK, where K is a classification matrix of an included effect with

li(K) = li(H) flli(G).

proof i) Let qj = # of observations in column of H i = 1, ..., t. Note

Bal(fl) = qj = q V i = l,...,t by definition
= H'H = diag(q1, ... , qt) = diag(q, ... , q) from classification matrix results

= H'H = qdiag(l, ... , 1) = qlt.
ii) SinceH is a classification matrix it has full column rank. Then PH = H(H'H)1H' = HH' by i).

iii) The proof of this result is given by VanLeeuwen et al. (1997).
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This subsection concludes by showing that complete balance gives Zyskind's condition for the

Y-Model under [CI. Zyskinds condition will be discussed further in section 3.3.5.

(Birkes, 1996)

Proposition: If the Y-Model under [C] is completely balanced, then (VX) C (X) V i, j.

proof Note R(i'X) = R(ZZ'X3) = R(PzPx) = R(Z) fl R(X) from above propositon

= R(V2X3) c (X) c (X).

3.1.4. Likelihood Estimation

Likelihood estimation provides a way to estimate E 7?Y and E in the Y-Model under [LI, [0],

and [N]. This estimation method identifies the parameter estimate that maximizes the likelihood function.

The maximum likelihood estimate is the parameter point under which the observed sample is most likely

to occur (Casella and Berger,1990). Thus, this type of estimation requires a distribution. Under normality,

N(X, Vi). The density ofY and the likelihood function are given below assuming V is PD:

=

= lnf(YI,) = ln2ir ln

In order to find the parameter points under which the samples are most likely to occur, the likelihood

function can be maximized by differentiating with respect to and setting these derivatives equal to

zero, and verifying these estimators generate a global maximum. A local maximum would exist when the

matrix of second derivatives is negative definite. However, it can be difficult to determine the existence of

a global maximum. Due to this difficulty, this study will focus on those estimators that are roots of the

equations involving the first derivative. For differentiation, it is necessary to take the derivative of a

matrix A which depends on a scalar t. The derivative of A(t) = {ai3(t)} is defined to be

A(t) = {aij(t)}. The following matrix derivatives will be used where the first two require that A is

invertible (Searle et al.,1992) (Harville,1997):

A1(t) = A1(A(t))A' lnIA(t)I = tr(A1A(t)) tr(A(t)) = tr(A(t)).

The derivatives will now be taken assuming [LI and [0]. The maximum likelihood equations,

maximum likelihood equation estimators, and the information matrix are (Searle et al.,1992,ch6):
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(1) Maximum Likelihood (ML) Equations

0= air = X,V1y X'V1X = X'V'(Y X)
0=

(2) Maximum Likelihood Equation Estimators (MLOE) - the solutions (MLQ ?MLQ) = (, ) given by

(X'V'X) = X'V'Y {tr(V'VV'Vj)}(k+l)X(k+l) = {Y'FViP Y}(k+1)xl

where F = V1X(X'V1X)-X'V1

(3) Information Matrix (i(,))

o21(Ø)U_aa,_
X' X)

= tr(V'VVL:1VJ) (Y X)

[

E[u {E[v2]}'] IX' V'X 0
1i() = {E[v]} {E[w]}

L
0 {tr(1V1)}]

The ML equations in (1) and the information matrix in (3) can be obtained using the derivative rules.

The matrix F defined in (2) will often be of use and is further discussed below. The MLQEs solve the

equations in (2) where the equation for the variance components has been re-expressed using the

following proposition.

Proposition: {tr(V'Vj )}(k+1)xl =

k+1

proofi {tr(V'Vc)} {tr(V1VjV1V)} = {tr(V'VjV' >jVj)}
k+ 1

= { = {tr(V-1VV-W)} .

The MLQEs will be maximum likelihood estimators when MLQ R,, MLQ E, and (MLQ' MLQ)

maximizes the likelihood equation. This thesis will focus on the MLQE, which does not have to be in the

parameter space and does not have to be a maximum.



Restricted maximum likelihood estimation is another likelihood method for estimating E 7k+1

Define the matrix Qnxq for q = n r(X) which has columns that form an orthonormal basis for (X)'.
Then Q'Q = I and QQ' = I Px = Nx. The following proposition gives properties ofF, which will

be useful for this estimation method.

Ft-Lemma: i) FY = Xe).

ii) R(VNx) = R(VQ) = N(X'VL:1)

iii) F = V1X(X'V'X)-X'V1 = Q(Q'VQ)-1Q' Nx(NVNx)Nx.

proof i) FY = V1Y V1X(X'V'X)-X'V'y = X) where is given in (2).

u)(l)R(VQ) = V[R(Q)J = VJR(QQ')J = V[R(Nx)] = R(VNx).

(2) Note t E R(VQ) Vt E R(Q) = R(QQ') = N(X') t E N(X'V1).

iii) By the general projection theorem in section 2.5 and ii),

(1) VQ(Q' VQ)1Q' is a P0 on R(VQ) = H(X'V') along (Q') = R(X)
(2) VNx(NxVNx)Nx is a P0 on = jN(X'V1) along N(Nx) = R(X)
(3) I X(X' 1''X )X' V is a P0 on N(X'V1) along R(X)
=. (1) = (2) = (3). Left multiplying by V1gives the result.

Under normality, Y N(X, V) and so Q'Y Nq(O, Q'VQ). The density of = Q'Y and the
likelihood function are given below assuming V is PD:

f(z) = (27r)Q'VQIexp(1z'(Q'VQ)1z)

lR() = lnf(ZI) = aln 2ir ln Q' VQ z'(Q'VQ)-1z.

The derivatives will be taken assuming [LI and [0]. The restricted maximum likelihood equations,

restricted maximum likelihood equation estimators, and the information matrix can now be given

(Searle et al.,1992,ch 6):

(4) Restricted Maximum Likelihood (REML) Equations

o - - 1tr((Q'VQ)'Q'VQ) + Y'Q(Q'VQ)1Q'V1Q(Q'VQ)1Q'Y.
2

(5) Restricted Maximum Likelihood Equation Estimators (REMLOE) - the solution REMLQ = given by

{tr(FViVj)}(k+l)(k+l) = {Y'VjFj Y}(k+1)1.
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(6) Information Matrix (iR(!J))

ô21R() 1- tr((Q'VQ)-1Q'V;Q (Q'VQ)'Q'VjQ)

y'Q(Q'vQ)'Q'vjQ(Q'vQ)-'Q'y1Q(Q'vQ)-'Q'Y.

iR(th) = {E[u3J} {tr((Q'VQ)'Q'1Q(Q'VQ)'Q'VjQ))}

The REML equations in (4) and the information matrix in (6) can be obtained using the derivative

rules and the F-lenima. The REML equations are identical to the MINVAR and the iterated MINQUE

equations (Searle et al., 1 992,section 11.3). The REMLQE for the variance components solves the

equation in (5), which has been re-expressed using the following proposition.

Proposition: {tr((Q'VQ)'Q'VQ)}(k+l)l = {tr(FVj)}(k+l)l = {tr(FVF"j)}(k+l)(k+l)

proof: By the general projection theorem in section 2.5, FV is a P0, so

(FV)2 = FV = FVF = F (*).Then

{tr((Q'VQ)-1Q'VQ )} = {tr(FV)} since F = Q(Q'VQ)-1Q' by the F-lemina
= {tr(FVFV2)} {tr(FFV)} by (*) and symmetry of trace operator

k+1 k+1= {tr(FVjF >V)} = = {tr(FVjFj)}. .
j=1 i=1

The REMLQE will be a restricted maximum likelihood estimator when REMLQ E and REMLQ

maximizes the restricted likelihood equation. This thesis will focus on the REMLQE, which may not be in

the parameter space and does not have to be a maximum.

Maximum likelihood and restricted maximum likelihood estimation for the Y-Model under [LI, [0],

and [N] are of main interest for this study. Linearized quadratic estimation models will be defined in the

next section to represent the likelihood equations in a convenient form.

3.2. Linearized Quadratic Estimation Models

3.2.1. Definitions

Linearized quadratic estimation models (LQEMs) will provide a modelling framework in which to

conduct quadratic estimation. These models have been called dispersion-mean models by Searle et al.

(1992) and were introduced by Seely (1971). They are useful for estimating variance components in the
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Y-Model under [LI, [0], and [N]. Some preliminary results are needed before presenting the models in

this section. The next lemma gives the expectation and covariance of particular quadratic forms.

(Schott, 1997)

Lemma: Let Y Nn(M, V) and A, B be symmetric n x n matrices. Then

i) E[Y'AY] = tr(AV) + M'AM ii) Cov(Y'AY, y'BY) = 4M'AVBM + 2tr(AVBV)

A special linear transformation will also be used. Consider 'D : Sn' Sn given by 'I'D(A) = DAD.
The next propositon gives some properties of this mapping.

Proposition: i) 'D is linear ii) iJ = 1D iii) = WD-1 where D is invertible.

proof i)ForA,B ESnandaB ER.,

WD(cA + ,8B) = D(üA + /3B)D = cDAD + 13DBD = WD(A) + /3WD(B).
ii) <WD(A),B> = tr(WD(A)B) = tr(DADB) = tr(ADBD)

= tr(AWD(B)) = <A, WD(B) > = 'I.' is self-adjoint.

iii)VA E Sn D1WD(A) = D1(DAD)D1 = A 'T'DlWD = I as true V A E Sn.

Thus, '' = WD-1 by definition of inverse. .

Linearized quadratic estimation models are defined using a quadratic form Y = Z' E S, where

Nn(Q, R) and R = >?,bjRj is a matrix having linear structure with E . In addition, define the

linear transformation X : 7?JSn by Xt = uR2 and the mapping V : Sn'Sn by V =

The next lemma indicates how these models are constructed.

(Seely,1971)

Lemma: E[YJ = {XtI } and Cov(Y) = {V

proof i) E[Y] = Cov(Z) + E[Z]E[ZI' = = R X.

ii) Consider symmetric matrices A and B. Then using the trace inner product gives:

Cov( < A,Yt > < B,Yt > ) = Cov(tr(AYt),tr(BYt))
= Cov('A, Z'B) = 2tr(ARBR±) from above lemma
= <A,2RBR.> = <A,Cov(Yt)B> = Cov(Yt)B = 2WR(B) = Cov(Y) = = 1'.

iii) From i) and ii), E[YtI E = {X
I

E E} and Cov(Yt) E Vt = {Vt E E}.
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This lemma provides the definition for the linearized quadratic estimation model for . This general

model is summarized below.

LQEM for Z: E[Yt] E Ut = {X
I }

Cov(Yt) E Vt = {V E }.

This model is not a linear model as defined by Seely unlessUt = sp Ut. It is a linearly mean-

parameterized model. The linearized part of the LQEM refers to Seely's notion of linearizing the

expectation with respect to the parameter using a quadratic transformation of the original response vector.

Suppose contains a non-empty open set of dimension r. By the linearity of X,
spUt = spXt() = Xt(sp ) = Xt(RT) = R(Xt). Then the LQEM is a linear model when

Ut = R(Xt). In addition, there is a functional relationship between the mean and the variance in the

LQEM. It will be shown in section 3.3 that this is not a problem in this study. Also, the parametric vector

is estimable if and only if the R2's are linearly independent.

Specific LQEMs are of interest which can be used to generate equations that correspond to the

likelihood equations. These models are based on the Y-Model assuming [L], [0], and [N]. Four such

models are stated below:

LQEM for (Y X/3).: Let Z = Y X and Y = ZZ'. In addition, define
k+ 1

X: fl,k+1.,8 by X = >uV1 and V : SS by V = 2'I'. Then

Cov(Yj°)EV°={VE}.

ALQEM for (Y X: Let Z = Y X and Y = ZZ' where X = X(X'VX)X'V'Y.
Instead of using the true distribution of Y2, artificially assume the same model as above,

E[°]EU°={X°IEE}, Cov(Y2)eV°={VIEE}.

LQEM for N,ç : Let = NY and Y° = '. In addition, define
k+ 1

X° : 7k+l,S by X° = >uNxVNx and : S'S by V = 2WNXVNX. Then

E[Y°] U° = {X°Ie }, Cov(Y°) e V° = {V[ e

LQEM for Q7: Let , = QLY and Y> = ZZ' for Qnxq QQ' = N, Q'Q = I, (Q) = q.

k+ 1

DefineXt' :
Rk+l+Sq by X = uQ'VQ and : SqSq by V = 2WQIVQ. Then

E[Y]EU>={XIE}, Cov(Y)eV ={T'flikeE}.
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The LQEM for (Y X) can be used theoretically whether or not is unknown. However, it cannot

be directly applied when is unknown. The ALQEM for (Y X) can be applied when is unknown,

given an estimate . This model is artificial (A), since it assumes the expectation and covariance of'

corresponds to the LQEM for (' X) rather than the true expectation and covariance of

( X) X)'. This is important to remember when examining the unbiasedness of estimators

with respect to this model.

A special case of the ALQEM for ( X) that will be of interest is when X/ = NxY. In this

case, the model will be identified as the ALQEM for NxY. This model is still artificial, which

differentiates it from the LQEM for NxY.

The LQEM for Nx_Y and the LQEM for QLY are essentially the same for estimation purposes. The

differences between these models are explored in the next section. The models of primary interest are the

LQEM for Z, the ALQEM for (Y X), the ALQEM for NxY, and the LQEM for NxY. The LQEM

for Z is useful, as it incorporates the other LQEMs. The ALQEM for (Y X) will be used for the

maximum likelihood method where is unknown and the LQEM for NxY will be used for the restricted

maximum likelihood method. These models are further examined in the following sections.

3.2.2. Covariance Properties

This study requires that the covariance be positive definite. The next proposition illustrates that the

covariance matrices for the LQEMs do satisfy this property. For a linear space 'V, let £PD(W, W) denote

the set of positive definite transformations from W*W and consider the following two propositions.

Proposition: Let V be a PD matrix and K = {NxANx A E S}. Then
i) WV E £PD(Sn,Sn) ii) WQ'VQ E £PD(Sq,Sq) iii) WNXVNX E £PD(JC,)C).

proof Since V is PD matrix B V = BB'. Also, by definition of adjoint and inner product,

= <GG'AGG',A> = <G'AG,G'AG> 0 "GG' is NND(l).
Also, 'IJGG'(A) = 0 = GG'AGG' = 0 A = 0 providing GG' is invertible (2).

i) Set C = B = Wv is NNDby (1). Also, CG' = Vis invertible = Wv is invertible.

ii) Set C = Q'B = WQ'VQ is NND. Also, CC' = Q'VQ is invertible since Q has full rank

WQ'VQ is invertible.

iii) Set C = NxB WNXVNX is NND. Also, for NxANx E K

'PNXVNX(NXANX) 0 NXVNXANXVNX =0 (NxVNxANxVNx)ANxVNx =0
z NXVNXANX = 0 since R(NxVNx) = R(N) when V is PD

NxANxVNxANx = 0 NxANx = 0 since R(NxVNx) = R(Nx) when V is PD.

Thus, WNXVNX is invertible V NxANx E
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Proposition: For the PD matrix V, WvNX(D) = V D e ftC.

proof i) Since V is PD matrix B V = BB'. Note N(Nx) C N(NxVNx). Also, suppose

t E N(NxVNx) NjçVNjçt =0 NxBB'Nxt =0 B'Nxt =0 VNxt =0
Nt = V10 =0 z E N(Nx) N(NxVNx) C N(Nx). Hence,

= N(Nx) R(NxVNx) = R(Nx).
ii) Note V D E IC = D = NxANx for some A E S. Then

(NçVNj) '(NxVNx) (D) = (NxVNx) (NxVNx) (NxANx) (NxVNx) (NxVNx)

= P(NXVNX)(NXANX)P(NXVNX) = PN(NxANx)PN = NxANx = D

as R(NxVNx) = R(Nx) when V is PD. Thus, WVNx (D) = W(NXVNX)+ (D) V D E K. .

Since the LQEM5 have a covariance which can be treated as positive definite, it will be assumed that

the LQEM for has a positive definite covariance. The above proposition also illustrates the issue

between using the LQEM for NxY and the LQEM for Q'Y. Since the matrix Nx does not have full rank,

the linear transformation !NXVNX needs to be restricted to ftC in order to be invertible as

WNXVNX(PX) = 0 where Px E Sn This should not be a problem, since matrices of the form NxVNx are

of primary interest. In addition, the identity matrix is not a possible covariance matrix for this model. This

also is not a problem for discussing least square estimators and uniformly best linear unbiased estimators.

The results in this study could be applied to the LQEM for Q'. The decision of which to use is a matter

of preference. Even though Q has full rank and the identity matrix is a possible covariance matrix, the

LQEM for Nx_Y seems easier to work with in applications.

3.2.3. Relation to Likelihood Estimation

This section will demonstrate the usefulness of the LQEM5. These models were defined in order to

easily represent the likelihood equations. A preliminary result is needed to represent particular linear

transformations for the LQEMs.

Lemma 1: Consider the mappings Xt and V defined for the LQEM for in section 3.2.1. Then

i) X : 5..,fl,r where {Xt*B}1 = tr(RB) for i = 1, ...,r and B E S,
ii) Xt*V yt =
iii) Xt*VXt = {tr(R'RjR'Rj}rxr

iv) Xt*Xt = {tr(RiRj}rxr.



proof i) Let c = {Xt*B} be the jth element of Xt*B. Hence,
<Xth,B> = <, XB> = tr((Xt)B) = FXt*B =

= c = {XB} = tr(R1B) i 1, ...,r.

ii) iii) For A E S the results follow from i) where Xt*VlA = Xt*RAR = {tr(RR1AR1)}.

iv) Follows from iii) where I.

Corollary: If R i = 1,..., rare linearly independent, then Xt*Xt and Xt*V_lXt are invertible.

proof Define Ra = ajR.

i)Let M = {tr(R2R3)}. Then Ma = 0 = >tr(R2R)a = 0 V i tr(RjRa) = 0 V j

a1tr(RR) = 0 = tr(RR) = 0 = RR = 0 as Ra NND since sum of NND matrices is NND

Ra = 0 = = 0 since Ri's are linearly independent.

ii) Let M = {tr(R'RR'R)}. Then Ma = 0
= tr(R1RaR1Ra) = 0
= R;'RRR. =0
R1Ra Ra = 0 a = 0

using same techniques as in i)

as RaR1Ra and R1 NND

since Ri's are linearly independent. .

The ALQEM for (Y X) defined in section 3.2.1 can be used to obtain the maximum likelihood

equations for estimating when is unknown. This is demonstrated in the next theorem.

ML Theorem: The ML equations for = are given by XtV_lX = X°V°Y°.

proof XO*VX0 = X°V'(y X)( X)' where = MLQ

.. {tr 1VV1) = {tr(VjV1(Y X)(y X)'V')} by lemma 1
{tr(V'Vj)} = {(Y - X)/V1V1(Y X)}

4z {tr(V1VjV1Vj)} = {Y'FjVPY} by proposition after ML equations and F-lenima.

Proposition: XO*XT = XY? {tr(Vl73)}(k+1)(k+1) = {Y'NxViNxY}(k+l)xl

when Y X = NxY.

proof X°X = X*NXYYNX {tr(VV)} = {tr(VjNx'Nx)} by lemma I

{tr(VV)} = {y'NxVNxY} by proposition after ML equations.
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The equations in the above proposition will be of interest since they do not depend on the covariance.

Thus, these equations are linear and explicit so that they can be solved without the use of an iterative

procedure and they do not depend on any other unknown parameters. A goal in this study will be to

characterize when the ML equations are equivalent to the equations given in the above proposition.

For the case where is known, the ML equations would be obtained using the LQEM for ( X).
The equations would be given by XO*VO1X = XV'YJ.

The LQEM for NxY defined in section 3.2.1 can be used to obtain the restricted maximum

likelihood equations for estimating . This is demonstrated in the next theorem. Additional propositions

will be given which are related to this theorem.

REML Theorem: The REML equations for REMLQ = are given by X0*V0_lX0 = X°V°1Y°

proof Xo*V1Xo = X0*VNxyyFNx

{tr(NxViNx(NxV Nx)NxYX'Nx(Nx Nx))} by lemma 1

{tr((NxV Nx)NxV2Nx)} = {Y'Nx(NxV Nx)Nx VjNx(Nx V Nx)NxY}
{tr(FVj)} = {Y'FVjFY} by the Ft-lemma

.. {tr(FVjFVj) } = {'F V1F )} by the proposition after REML equations.

Proposition: X°X° = X0Y0 {tr(VNxVjNx)}(k+1)(k+1) = {_Y'NxViNx_Y}(k+l)xl.

proof XO*XO = Xo*Nx!Nx
{tr(NxV2NxNxVNx)} = {tr(NxVNxYX'Nx)} by lemma I

{tr(ViNxVjNx)} = {Y'NxViNxY} by proposition after REML equations.

The equations in the above proposition will be of interest since they do not depend on the covariance.

Thus, these equations are linear and explicit, so they can be solved without the use of an iterative

procedure and do not depend on any other unknown parameters. These equations are identical to the

MINQUEO or MIVQUEO equations which can be obtained from the REML equations by plugging in

= {I'} where iO

{ + 1
(Searle et al., 1 992,sectjon 11.3). A goal in this study will be to

characterize when the REML equations given in the REML theorem are equivalent to the equations given

in the above proposition.

The REML equations could also have been obtained using the LQEM for Q'Y given in section 3.2.1.

The equations under this model would have the form XV3X XV1Y
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3.3. The Underlying Model

3.3.1. Definitions

This section will establish an underlying model which incorporates those models presented in the

previous sections. This will provide a convenient tool, since the results can be presented with respect to

this model and applied to the other models as special cases. Thus, the results of this section can be applied

to any of the previous sections in this chapter. A set of useful inner product spaces and linear

transformations are listed below:

Spaces

(W, < , > w) = n-dimensional real inner product space = observation space

(P, < , > p) = p-dimensional real inner product space = mean parameter space

(7-i, < , > ) = h-dimensional real inner product space = estimation space

= linear subspace of W expectation space

Linear Transformations

U:PW U*:W,P R(U)=E
H:7i'P
H:1&-'W H*:W?I.

Suppose w E W is a random response. The expectation, E[w}, and the covariance, Cov(w), are

uniquely defined by:

E[w]satisfiesE[<a,w>w]=<a,E[w]>w VaEW
Cov(w) satisfies Cov( <a,w> w, <b,w> w) = <a,Cov(w)b > w V a,b e W.

It will be necessary to assume Cov(w) E £PD(W,W) or the set of positive definite linear

transformations from W'W. With these definitions, models can be used to represent E[w] and Cov(w).

Two general models of interest are given below. Such models have been considered by Seely (1996).

U-Model: (E[w],Cov(w)) E T C W x £p(W,W).

The underlying model (U-Model) allows the expectation and covariance of w to be related. This is the

most general representation of the expectation and covariance that is needed. Also, define the sets:
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U={uEW(u,v)ETforsomev} spU=(
V = {v E .CPD(3'V, W) (u, v) e T for some u}.

Parameterizations will be used to provide a setting in which estimation can be defined with respect to

the U-Model. Parameterization for the whole model, expectation, and the variance are given below.

Whole Model r: T*W x £pD'V,W) wherer(T) = T
Expectation TU : Tu' W where ru(Tu) = U and spTu = P
Variance : TV-+PD(W, 1%') where rv(Tv) = V.

Despite the relationship between the mean and the variance, only the parameterization of the

expectation is of concern. It is assumed that Tu C 1, spTu = P, and the mapping 'ru can be extended to

a linear transformation U : P'W. For 9 E Tu, ru(0) = UO e U and spU = sp{U9j9 e Tu} = spU(Tu)
= U(spTu) = U(P) = R(U). The parameterization for the expectation is often expressed as

E9[w] = U9, 9 E Tu. Such parameterizations can always be defined using

T = T, r(u, v) = (n, v) Tu = U, ru(u) = u, Uu = Tv = V, TV(V) = v.

Certain assumptions may be required for the U-Model. These assumptions are listed below, and will

always be stated either in the result or at the start of the section. The reason behind the assumptions is

demonstrated in the next section. A lemma is presented to demonstrate these assumptions do fit into the

above framework as spTu = P under both [0] and [SI, and that [0] is a stronger assumption than [5].

Assumptions: Open Set [01 Tu contains a non-empty open set in P.

Spanning Condition [SI sp(Tu Tu) = P.

0-S Lemma: i) Under [0], spTu = P. ii) Under [SI, spTu = P. iii) [01 [SI.

proof i) Let C C Tube a non-empty open set in 1', Oo E C, and n (spC)-'- = C'. Because C is open,

>O90+öuC VI6I<e.SinceeC', <u,9o+öu>p=OVIÔI<i
' <u,Oo>p+6<u,u>pzzrO VI6<e <U,U>pOUzO.

Thus, C' = {O} = spC = P = spTu = P as Cc Tu or spC C spTu.
ii) Note sp(Tu Tu) = {a(1 m 1,i1,i2 E Tu, a E

in mc{ay b-y)Im 1,-y,-yETu,ai,bjER.}csp(Tu).
i=1 j=1
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Thus, sp(Tu Tu) = P sp(Tu) = P.
iii) Using O], let C C Tube a non-empty open set in P and let o E Tu. Then

C 70 C Tu {yo } is a non-empty open set in P. Hence, sp(Tu {'yo }) = P by i)

=sp(TuTu)=P [SjsinceTu{-yo}CTuTu orsp(Tu{'yo})csp(TuTi4.

The U-Model is more general than a linear model. It is a linear model if and only if U = sp U = S.

Under the parameterization "u, the U-Model is a linearly mean-parameterized model since the expectation

and the parameter are linearly related. For purposes of this thesis, the U-Model is equivalent to a linear

model, namely the M-Model defined below. This model separates the mean and covariance. Seely (1996)

refers to this model as the artificial model.

M-Model : E[w] E S Cov(w) E V.

Note that the M-Model is a special case of the U-Model when T = S x V. A parameterization could

be defined for the M-Model, but it is not necessary for this study.

In the U-Model setting, the goal will be to estimate H9 using estimators of the form H*w. The next

proposition gives the mean and variance of such an estimator.

Proposition: Suppose r E T. Then i) E,-[H*w] = HtE[w] ii) Covy(H*w) = H*Cov-(w)H.

proof i) E{H*w] E 7-1. Then V h E 7-1 using the definition of expectation and adjoint

<h, Er[H*W1 > 'i = Er] < h, H*w> N] = E[ < Hh, > w]

= <Hh,E[w]>w= <h,H*E[w]>n.

ii) Note H*w 7-1, so Cov(Htw) : 7-1'7-1. Then V h1, h2 E 7-1 using definition of covariance and adjoint

< hi,Covr(H*w)h2 > = Cov-( < hi,H*w > , <h2,H*w > N)

= Cov( <Hh1,w> w, <Hh2,w> w) = <Hhi,Covr(w)Hh2 > w
= <hi,H*Covr(w)Hh2>.

The purpose behind the U-Model is to have a linearly mean-parameterized model which is general

enough to incorporate the particular models of interest. The results can then be derived for the general

model and applied to the others as special cases. The U-Model fulfills this purpose as demonstrated

through the following relations:

Y-Model: T=RYxE, Tu=R, Tr-E PRY UOrX/,
LQEMforZ: TTzzTzzE p7r U9=x.
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The mean parameter set RY always contains a non-empty open set for the Y-Model and will

contain a non-empty open set in lZk+1 under assumption [0] for the Y-Model which holds for the LQEM

for (Y X) and for the LQEM for NxY in order for these models to generate the ML and REML

equations, respectively.

3.3.2. Mean Estimability

Estimation is naturally only concerned with parameters that can be estimated. Thus, concepts related

to estimability should be examined for the underlying model. Mean estimability will be examined for

estimating 11*9 in the U-Model. Consider the following definition:

Definition: Mean Estimable The linear transformation 119 is mean estimable provided
TT,1 TTI) rr*zI TT*LI -I L LI V'UUj = 11 1 - 11 U V (11,172 E

The mean part of the definition indicates that the definition only applies to the behavior of the mean

and not to the behavior of the variance. Some results concerning mean estimability are given below. The

last two results demonstrate the necessity of assumption [SI in the U-Model.

Theorem: U0 is mean estimable.

proof Follows directly from the definition.

(Seely, 1996)

Mean Estimabilily Theorem: Under [5], the following are equivalent:

i) flO is mean estimable

ii) (11) c (U*)

iii) H : Ee[Htw] = 11*0 V 0 E

proof i)4*[U0l=UO2=,11*0l=11*O2 V0l,O2ETU][UöOzH*6O VETuTu]
[U6 = 0 flô = 0 V 6 e sp(Tu T) = P ] using [SI

(U) c N(fl*) (H) c (U*) ii).

Also, ii)z U*H = EforsomeH : flW H*U = 11*

H*U0=H*0 V 0EPEe[H*w]=11*0 V0EPiii). .

(Seely, 1996)

Full Rank Theorem: Under [5], 0 is mean estimable r(U) = p.
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proof Using the Mean Estimability theorem shows 0 = 10 is mean estimable

R(I) C R(U*) = P r(U*) = dimP = p (U) =

Estimation results can be given with respect to UG since this linear transformation is mean estimable.

The three cases in the Mean Estimability theorem are equivalent under ES]. The 0-S lemma indicates that

this condition is also satisfied under [01.

Some later results will require mean estimability of 9. If 9 is not mean estimable, it is possible to

obtain a parameterization which is full rank or one in which the parameter vector under the new

parameterization is estimable. This is demonstrated in the next proposition.

Proposition: Suppose [5] and Eg[w] = U0, 9 Tu, where 9 is not mean estimable. The expectation can

be reparameterized as E[w] = T where A { E 1'TQ E U}, T is a linear

transformation, and is mean estimable.

proof I) Suppose (U) = sp{u1, ..., u} where r(U) = m and define T: W,W by T() =

Note R(U) = R(T) and N(T) = {O}.

ii) T(sp(Au Au)) = sp(T(Au) T(Au)) = sp(U U) = sp(U(Tu) U(Tu))
= U(sp(Tu Tu) = U(P) = (U) = R(T) = T(1ZY') by i)

= sp(Au Au) 'jm ([SIA4) as _N(T) = {Q} by i) and spAu jm by the 0-S lemma.

iii) Then E[w] = T is a parameterization of the expectation of w, because T is a linear transformation

withT(Au)=UandspAu=R.m byii).Now, (T)=m-2(T)=mO=dim1Zm
is mean estimable by the Full Rank theorem under [S]A11.

Methods of estimation can now be presented for parameters of interest that are mean estimable. The

estimation methods include least squares and uniformly best linear unbiased estimation.

3.3.3. Least Squares Estimation

Least squares estimation will be presented in terms of the U-Model. This method of estimation may

be more interpretable under the M-Model. However, in section 3.3.4, it will be shown that the estimators

are equivalent under both models.

Consider the U-Model where U0 E U and V E V. The least squares and generalized least squares

estimators are defined for 0 which may or may not be mean estimable. When 0 is not mean estimable, the

least squares solution is not unique.
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Definitions: Least Squares Estimator (LSE) j(w) 9i is an LSE for 9 provided it minimizes

<wU9,wU9>w V 9E1'.

Generalized Least Squares Estimator (GLSE) - Let V be the true V E V. Then 9v (w) = 9v is a GLSE for

9 provided it minimizes <w U9, V'(w U9) > ' V 9 E P.

The LSE does not depend upon the covariance, white the GLSE does depend upon the covariance.

For the GLSE, the given variance V is fixed at the true V e V, whereas the 9 in U9 varies over all 9 E P.

This can be understood to mean that one covariance is selected from the set V and it is desired to estimate

9 based on this V. The LSE theorem and the GLSE theorem provide representations for these quantities.

LSE Theorem: The following are equivalent: i) 0 is an LSE ii) U*UO = U*w iii) UO = Pew.

proof (1)<wU9,wU9>w= <wPuw+PuwUO,wPuw+PuwUG>w
= <(I Pu)w,(I P)w> w + <(I Pu)w,PuwU9> w
+ <Puw U9, (I P)w> w + <Puw U9, Puw UO> by linearity of inner product

<(IPu)w,(IPu)w>w + <PuwU9,PuwU9>w as (IPu)wlPuwU9
which is minimized when U9 Puw. Hence, i) iii).

(2)NoteUOi=Puw= U*UOi=U*w and U*U9i=U*w =,U*(UI_Puw)=O=U9I=Puw
as U01 Puw E R(U) fl N(U*) = {O}. Hence, ii) iii). .

GLSE Theorem: The following are equivalent for a given V E V

i)O is a GLSE ii) U*V_lUO = U*V_lw iii) U9 = U(U* V_1U)_U* V' w.

proof (1) By the spectral theorem, real numbers A1, ..., A and OPOs E1, ..., E
V' = = V exists where V = so

<wU9,V1(wU9)>= <VwVUG,VwVU8>
which is minimized when (V_U)*(VU) = (V_U)*Vw by proof of LSE theorem

or equivalently when U*V_1UO = U* V1w. Hence, i) ii).

(2) ii) = U*VlUO = U*Vlw = U(U*V1U)U*V1U = U(U*VlU)U*Vlw
= MUO = Mw where Mis the P0 on 11(U) along N(U*V) by general projection theorem in 2.5.

= UO = Mw = U(U*VlU)U*Vlw = iii).

(3) iii) = UO = U(U*VlU)U*Vlw = UV'U = U*VlU(U*VlU)U*Vlw

= UVU = KU V1w where K is a P0 on 11(U* V1U) = 11(Ut) using proposition in 2.3, 2.5

UV'UO = U*Vlw = ii).
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The LSE and GLSE are unbiased estimators of UG. In order to be a valid estimator, the GLSE

requires the covariance to be known. If the covariance is unknown, then it has to be estimated. In this

case, the GLSE would actually be an estimated GLSE or EGLSE where V = IT(w) E PD(W, W)

V ' E W. Using the above corollary, the EGLSE for UO would be the value of 9, which solves

U(w) = U(U'U)U*V'w. Because = V(w), the EGLSE is not necessarily linear or unbiased.

3.3.4. Uniformly Best Linear Unbiased Estimation

Uniformly best linear unbiased estimation provides a method to assess the performance of estimators.

Consider estimators of the form Htw and let £NND(?-I,l-I) be the set of NND linear transformations from

7'7- and denote Cov(H*w) E £NND'V, W) by Cov(H*w) > 0. In addition, let

r = (E{w],Cov(w)) E T, 'a = E[w] EU, and v = Cov(w) E V.

Definition: Uniformly Best Linear Unbiased Estimator (UBLUE) - H*w is UBLIJE for its expectation

Cov-(Kw) Cov(H'w) V r E T V K*: E[K*w] = E[HtwJ V r E T.

The next result indicates that the existence of a UBLUE in the U-Model is equivalent to the existence

of a UBLUE in the M-Model. This is done by showing that UBLTJEs are equivalent under both models.

(Seely, 1996)

U-M UBLUE Theorem: H*W is UBLUE in the U-Model if and only if it is UBLUE in the M-Model.

proof i) Cu = {K*w E[K*wJ = E[H*wI V 'T E 'T} = {K*wI K*E[w} = H*ET[W1 V T E T}

= {K*4 Ktu = H*u V U E U}
= {K*wj K*u = H*u V 'a E } since the condition is linear it is the same under U and £
= {K*wI K*Eu[w] = H*Eu[W] V U E } = {K*wI E[Ktw] = E{H*w] V u E } = CM.

ii) By i) Cu = CM C, so V = {Ktw E C Covr(K*w) Cov(Hw) V 'r E T}
= {K*w E C K*Covy(w)K H*Covr(w)H V Y E T}
= {K*w E C K*VK H*VH V V E V}
= {K*w E C K*Covv(w)K H*Covv(w)H V V E V}
= {K*w E CJ COVV(K*W) Covv(Htw) V V E V} = VM.

Cu = CM and Vu = VM, then H*W is UBLUE in the U-Model H*W is UBLUE in M-Model. .

Additional definitions with respect to the U-Model are given below. These definitions will be used to

develop properties of UBLUEs.
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Definitions: IBLUE: A UBLUE with respect to V = {I}.

VBLUE: A UBLIJE with respect to V = {V} where V is given.

Full UBLTJE (FUBLUE): A UBLUE for E[w].

The definition of a FUBLUE is for convenience, since it will be desirable to differentiate UBLUE

properties in full and non-full cases. The next theorems will be used to identify UBLUEs and their

uniqueness.

(Seely and Zyskind,1969)

Zyskind's Theorem: Assume E[w] e W and Cov(w) = V 0. Then Htw is VBLUE B(VH) C S.

proof i) Suppose E(VH) C S.

(1) Consider K*w E{K*w] = E[Hw] V r E T K*u = H*u Vu E S

(K*_H*)u=O VuES Ftu=0 VuES whereF=KHR(F)cS-'-.
(2) Note F*VH = 0 by (1) since R(F) C S-'-and (VH) C S.

(3) Then Cov(K*w) = Cov((H + F)*w) = H*VH + H*VF + F*VH + FtVF
= H*VH + F*VF by (2) = Cov(K*w) = H*VH + F*VF H*VH = Cov(H*).

ii) Suppose Htw is VBLUE.

(4) Let 5 = {tIVt E S} and show B + S' = )'V.

Suppose u E B- fl S and note N(V) C B = B' C (V)' =
Then u E B' C R(V) = u = Vw for some w. Also, u = Vw E S = w E B.

Thus, u'w = 0 = w'Vw = 0 = Vw = 0 as V is NND = u = 0. Hence,

B-'-nS={o}=B+S-- =W
(5) From (4), can write W = B ± 5' = C 5' where C C B. Define P to be a P0 on C along 5'

is a P0 on S along C-'-.

(6) Set K = PH, N = I P, and F = NH. Note H = K + F. Then
a) E[K*w] = E[H*P*w] = HP*E[w] = H*E[w] = E[H*w] since P is a P0 on S by (5)

b) B(K) C (P) C B by (5) = R(VK) C S = Ktw is a VBLUE by i).

c) R(F) C R(N) = jL(P) = 5' by (5).

Thus, by (6) and the hypothesis, K*w and Htw are VBLUE for E{H*w]. By definition of VBLUE,
Cov(H*w) = Cov(K*w) HtVH = K*VK (K + F)tV(K + F) = K*VK by (6)

KVK + F*VK + K*VF + FtVF = K*VK F*VF = 0 since FtVK = 0 by(6)
VF = 0 by proposition in 2.3 V(H K) = 0 by definition of F in (6)

VH=VK=(VH)=R(VK)cS by(6).
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Uniqueness Theorem: Assume V is PD and Htw is VBLIJE. Then K*w is VBLUE for

E[Htw] K = H.

proof i) If K = H, then the conclusion follows directly.

ii) Suppose Ktw is VBLUE for E[Htw]. By (1) in the above proof, F = K H where R(F) C

In addition, R(VK) c E by Zyskind's theorem. Hence,
Cov(Ktw) = Cov(H*w) KtVK = H*VH (Ft + H*)V(F + H) = HtVH

FVF + HtVH = H*VH by (1) F*VF = 0 . F = 0 using proposition in 2.3 where V is PD

=K=H bydefinitionofF. .

The above results can be applied to UBLUEs by noting that a UBLUE is a VBLUE V V E V or

equivalently V V E spV by the linearity of the condition in Zyskind's theorem. Because this study is

concerned with UBLUEs in the U-Model under a mean parameterization, the UBLUE definition is

restated for the mean parameterized case.

Lemma: Htw is UBLUE in the U-Model for fl*9 if and only if

i) Eo{Htw] = 11*0 V 0 E P
ii) Covv(Htw) <Covv(K*w) V V E V and V Kt : W'l-L Eo[KtwI = f10 V 0 E P.

The first condition in the lemma defines unbiasedness for estimating 11*0. The second condition

indicates that the UBLUE is the best linear estimator for all possible covariances among all unbiased

estimators. Zyskind's theorem can be applied to least squares and generalized least squares estimators to

show these estimators are IBLUE and VBLUE, respectively.

Corollary: i) U01 is IBLUE for U0. ii) U6 is VBLUE for U0.

proof i) (1) Note E0[UOj] = E9[Puw] = PU0 = U9 by LSE theorem.

(2) R(Pu) R(U).

U0j is IBLUE for U0 by Zyskind's theorem.

ii) (1) Note Eg[UO] = Eo{Mw] = MUO = U0 by the GLSE theorem.

(2) (VMt) = (U(U*V_lU)_U*) C R(U) by the GLSE theorem.

is VBLUE for U0 by Zyskind's theorem. .
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The LSE and GLSE are special cases of UBLUEs, so they have a correspondence to the LSE and

GLSE in the M-Model. By the U-M UBLUE theorem and the uniqueness theorem, U01 is the unique

IBLUE in the U-Model and the M-Model, and UOv is the unique VBLUE in the U-Model and the

M-Model. Thus, least squares estimation in the U-Model is equivalent to least squares estimation in the

M-Model, and generalized least squares estimation in the U-Model is equivalent to generalized least

squares estimation in the M-Model.

The next theorem shows that linear combinations of UBLUEs are UBLUE for their expectation. An

example of the importance of this result is given in the corollary concerning FUBLUEs.

(Seely, 1996)

Linear Closure Property: If H*w and K*w are UBLUE, then [ ]w and L*H*w are UBLUE.

proof Using Zyskinds theorem gives the following V V E V,

i)R(V[H K]) = R(VH) + R(VK) C E + E = E as H*w, K*w are UBLUE =
[

]w is UBLUE.

ii) R(VHL) c R(VH) c e as Htw is UBLUE = LtHw is UBLUE. .

Corollary: If U0 has a FUBLUE, 1T0 is estimable, and [SI holds, then [J*9 has a UBLIJE.

proof Since 11*0 is estimable (H) c R(U*) by the Mean Estimability theorem under [SI

=* H = UM for some linear transformation M

. fl* = MU. Suppose H*w is the FUBLUE for U0 and consider M*H*w. Note
E[M*H*wJ = M*U0 = 11*0 and M*H*w is UBLUE by the linear closure property. .

The above corollary indicates that the UBLUE for 11*0 can be derived from the FUBLUE. However,

this may not always be the case, as a UBLUE may exist for 11*0, but not for U0. For this study, it is

convenient to distinguish between these two settings. If a FUBLUE exists, then this will be referred to as

the full case and it is reasonable to think of the UBLUE for 11*0 as a FUBLUE as it is derivable from the

FUBLUE. If a FUBLUE does not exist, but a UBLUE exists for Ht0, then this will be referred to as the

general case. The full case is presented in chapter 4 while the general case is presented in chapters 5 and

6. The UBLUE conditions will provide some of the basic tools that will be examined in this study. These

methods have been defined for the U-Model, and can be applied to the other models in this chapter.
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3.3.5. Zyskind's Condition

Zyskind's condition leads to many nice properties. Some of these properties will be shown in this

section. This condition has briefly been mentioned for the previous models, but it will be further

developed in this section for the U-Model. The U-Model assumes that V is PD V V E V. This condition

is defined as:

Definition: Zyskind's Condition (ZC) - The condition 11(VU) C 11(U) V V E V.

Zyskind's condition is linear and can be extended from V to spV. Also, LSE = GLSE V V E V under

ZC. This is demonstrated in the next theorem. The theorem also provides a condition under which

V1-GLSE = V0-GLSE.

ZCRelation Theorem: i) For invertible V, 11(VU) C 11(U) ' U(U* V_1U)_U*V1 = U(UtU)-Ut.
ii) For invertible V where N(U) = {O}, 11(VU) C 11(U) (U*V_IU)_IU*V_l (U*U)_1U*.

iii) If V0, V1 are invertible, then 11(V11U) C 11(V0-'U) 11(V1V1U) C 11(U)
U(U* V1 U)U*V1 = U(U*VUyU*V.

proof I) By general projection theorem, A = U(U*V_1U)_U*V_l is a P0 on11(U) along N(U*V_l)

By uniqueness of POs, A = N(U*V1) = N(U*) R(V'U) = R(U)

4z R(VU) = R(U) R(VU) C R(U) since (VU) = r(U) as Vis invertible.
ii) Note that {O} = N(U) = (U*U) = (UU) exists.

(l)Suppose (U*V_1U)_1U*V_l = (U*U)_1U*.

Then 11(VU) C 11(U) follows inimediatedly from (1) by left multiplying by Uand using i).

(2) Suppose 11(VU) C 11(U). Then A = Pu from i) ' U(U*V_1U)_1U*V_l = U(U*U)_IU*

= (U*U)U*U(U*VU)U*V = (U*U)U*U(U*U)lU*.
iii) Let A1 = U(U*ViU)U*Vi and A0 = U(U*V U)U*V11*ThenAi = A0

N(UV) = N(U*Vl) by the general projection theorem in section 2.5
11(V'U) = 11(V1U) 11(U) = 11(V1VU)
11(VVU) C 11(U) since have equality of ranks.

The next theorem uses the results of the preceding section to show LSE = UBLUE if and only if ZC.

The theorem also provides conditions which are equivalent to V0-GLSE = UBLUE. This theorem is the

main result of this section.
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Theorem: i) U01 is UBLUE for UG R(VU) C R(U) V V e V

ii) U9v0 is UBLUE for UO R(V1U) C R(V-1U) R(VV0-1U) C R(U) V V E V.

proof i) (1) Note E9[UO1] = Eo[PuwJ = PuUO = UC by LSE theorem.

(2) U01 is UBLUE for U U91 is VBLUE for UO V V E V

R(VPu) = R(VU) C (U) V V E V byZyskind's theorem.
ii)(l)NoteEg[Ueo] = U(U*V0_IU)_U*V0_lUO= U8 asAA isaPOonR(A).
(2) By Zyskind's theorem, U00 is UBLUE for UO

(VVU(U*VU)U*) C R(U) V V E V
(VU(U*VU)U*) c (V1U) V V E V

R(V0-'U)cR(V-'U) V VeV asMo=VU(U*VlU)U*isaPOonB(VU)

R(VV'U)cE(U)VVEV.

The following proposition demonstrates a useful commutativity property involving projection

operators and Zyskind's condition.

Proposition: B(VU) C (U) PVP = VPu = PuV and NuVNu = VNu = NV.

proof R(VU) C &U) R(VPu) C R(U) PuVPu = VPu and PuVPu = PuV by symmetry.
Also, NVN = (I Pu)V(I Pu) (I Pu)(V VPu) = (I Pu)(V PV) = NV
and NuVNu = VNu by symmetry.

Even though the U-Model assumes the covariance is PD, it is informative to consider the case where

V is singular in order to establish the limitations of applying Zyskind's condition. Consider the case where

the true V is singular. Puntanen and Styan (1989) define the GLSE by U(U*V+U)+U*V+w. Even if V is

singular, the result [LSE = VBLUE r' ZC] still holds. However, the following propositions indicate ZC

is not sufficient to show GLSE = LSE and GLSE = VBLUE in this case.

Proposition: If V is singular, then U(U*V+U)+U*V+ = U(U*U)+U* R(VU) =

proof (1) Note V is seif-adjoint V is self-adjoint by section 2.5. Since V is NND, V = BB* for some

B from section 2.7 = V = VVV = V+BB*V+ = CC = V is NND by section 2.7.
(2) P = U(U*V+U)+U*V+ is a PU as P2 = U(U*V+U)+U*V+U(U*V+U)+U*V+ =

Using (1), NND properties in section 2.7, and Moore-Penrose inverse properties in section 2.5

(UUV) = R(UU*V+UU*) = R(UU*V+U) = (U(U*V+U)+)

D R(P) D B(U(UV+U)+U*V+U) = R(UU*V+U) = (UU*V+UU*) = (UU*V+)
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Thus, R(P) = R(UU*V+). Also,

R(VU) (P) D (V+U(U*V+U)+U*V+) = = (V+UU*V+) = R(VU).
= R(VU) = N(P) = _N(U*V+).

(3) From (2), P = P R(UU*V+) = R(U) and R(VU) = R(U). However, R(VU) = R(U)
(U) = (VU) = (V+UU*) t(UU*V+) = R(UUtV) = R(U).

Proposition: i) If V is singular, then the GLSE = VBLUE R(U) C
ii) If V is singular and the GLSE = LSE, then the GLSE is VBLUE.

proof: i) By Zyskind's theorem, the GLSE = VBLUE R(VV+U(U*V+U)+U*) C R(U)

R(VPt) c R(U) where Pis the P0 on (UU*V+) along JN(U*V+) by above corollary

R(VVU) cB(U) asR(P*) =R(VU)
PiiR(U) C R(U) as VV = Pv
R(U) c B(V).

ii) By the above proposition, GLSE = LSE R(VU) = R(U) R(U) C R(V) = R(V)
= GLSE=VBLUEbyi). .

This section defined Zyskind's condition and demonstrated some of the results that can be derived

from it. This condition will be referred to in the next chapters and is presented for the U-Model so that it

can be applied directly to the other models of interest.
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4. UBLUE for the Expectation

This chapter examines the existence of full uniformly best linear unbiased estimators (FUBLUEs)

which are UBLUEs for the expectation of the model. These estimators are defined in section 3.3.4

FUBLUEs will first be identified in the underlying model and these results will be applied to the other

models for estimating fixed effects and variance components. This chapter will also discuss explicit linear

likelihood estimators under the maximum likelihood and restricted maximum likelihood procedures which

have been presented by Rogers and Young (1977), Szatrowski (1980), and ElBassiouni (1983). The

chapter concludes with an example.

4.1. FUBLUE for the Underlying Model

This section examines conditions under which a FUBLUE exists in the U-Model for the mean

estimable quantity UG. The least squares estimator, the generalized least squares estimator, and the

estimated generalized least squares estimator for UO will be of interest in this section. These were given in

the previous chapter using the LSE theorem, but they are listed here for reference:

LSE: UGi = U(U*U)_U*w

GLSE: UOv = U(U*V_1U)_U*V_lw forthetrueV E £pD(W,3'V)

EGLSE: U9 = U(U*U)_U*V1w with = E £pn(W,W) V w E W.

The LSE has a simple linear form which does not depend on the covariance, the GLSE depends on

the unknown true V, and the EGLSE is not linear and requires an estimate for the unknown covariance.

The objective is to determine when the LSE is equal to the EGLSE. The UBLUE results of the previous

chapter can be used to address this objective.

U-FUBLUE Theorem: The following are equivalent:

i) U01 is UBLUE for UO in the U-Model

ii) R(VU) c (U) V V E V (ZC)

iii) U(U*VU)U*V = U(U*U)U* V V E V.

proof By Zyskind's theorem i) ii) and by the ZC Relation theorem ii) iii).

Proposition 1: If V E spV and V is PD, then the conditions in the U-FUBLUE theorem imply

Uv = Uj.
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proof E(VU) c (U) V V E V R(VU) C (U) V V E spV by section 2.3

= U(U*V_1U)_U*V_l = U(U*U)_U* V V E spV by the ZC relation theorem where V is PD

=U-Ov=U-°I.

Proposition 2: If I E spV, then UG has a UBLUE U8i is UBLUE for U6I.

proof i) U81 is UBLUE for UG UO has a UBLUE.

ii) Suppose UO has a UBLIJE given by Uv0where Vo E V

= R(V'U) c R(V1U) V V E V by theorem in section 3.3.5 = R(VV1U) C (U) V V E V

= R(VV0U) c (U) V V E spV by proposition in section 2.3 = (V0-'U) C (U) as I spV

zz U9v0 = U91 by ZC Relation theorem = U9j is UBLUE for U9 by Uniqueness theorem. .

The U-FUBLUE theorem indicates when the estimator U9j is best among unbiased linear estimators

for UO. In this case, the best estimator has the same variance as the GLSE, since these estimators are

equal. It is not necessary for I E spV in order for U'91 to be best. However, if I E spV and U01 is not

UBLUE, then there does not exist a UBLUE for UG.

Consider the set of transformations .Cu(W,W) = {V E PD(W, W)J(VU) C (U)}. This set can

be used to re-express the conditions in the U-FUBLUE theorem and apply them to the EGLSE. This is

demonstrated by the following corollaries which follow directly from the U-FUBLUE theorem.

Corollary: ZC V C £u(W,W).

Corollary: If V C Lu (W, W), then GLSE = LSE = FUBLUE.

Corollary: If V C Lu(3'V,W), then spVflLpD(W,W) C Lu(W,W).

Corollary: If UO has a FUBLUE and V E Lu(W, W), then EGLSE = GLSE = LSE = FUBLUE.

A sufficient condition for the existence of aFUBLUE is Zyskinds condition (ZC). The FUBLUE is

the LSE, which does not depend on the covariance matrix V. The results of this section will be applied to

the other models of interest for purposes of estimating fixed effects and variance components.
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4.2. FUBLUE for Fixed Effects

FUBLIJEs for fixed effects can be obtained using the Y-Model and applying the results from the

U-Model. The FUBLUE results can be used to determine the existence of an explicit linear maximum

likelihood estimator for the full fixed effect vector X.

4.2.1. FUBLUE Results

This section examines conditions under which a FUBLUE exists in the Y-Model. The least squares

estimator, the generalized least squares estimator, and the estimated generalized least squares estimator

for X will be of interest in this section. They are listed here for reference:

LSE: X = X(X'X)X'Y
GLSE: X = X(X'V1X)X'V'Y
EGLSE: X = X(X'V1X)X'V'Y

for a given where V is PD

where = l/(y)15 PD V I E Wz.

The UBLUE result for the U-Model can be used to indicate when the LSE is a good estimator for

estimating X. This is stated in the next theorem, which follows directly from the U-FUBLUE theorem.

Y-FUBLUE Theorem: The following are equivalent:

i) X is UBLUE for X1 in the Y-Model

ii) (VX) c (X) V

iii) X(X,V'XyX,V1 = X(X'X)X' V E

Proposition: Assume [LI and [01. Then V E V is PD, the conditions in the Y-FUBLUE

theorem imply that X = X.

proof Under [LI and [0], spV {VJ E sp = {Vj E fl.k+1}. Use proposition 1 in section 4.1. .

The Y-FUBLUE theorem does not make any assumptions about open sets, linear covariance

structure, normality, or classification matrices. Only the appropriate form of ZC given in ii) is necessary to

apply this theorem to the special cases of the Y-Model under [LI, [0], and [CI.

4.2.2. FELMLQE Results

For doing maximum likelihood estimation in the Y-Model, the assumptions of [LI, [0], and [NI are

used. Following the approach of Szatrowski (1980), the full explicit linear maximum likelihood equation
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estimator (FELMLQE) for X/ satisfies XMLQ = AY for a constant fixed matrix A, which is not random

and does not depend on any parameters. In this case, the estimator XMLQ is linear and the explicit part

indicates that A is constant. The following lemma shows that the MLQE = EGLSE in this setting.

Lemma: XMLQ = X

proof: Note from the likelihood equations and the definition of the EGLSE both are a solution to

X = X(X'V1X)X'1Y where = Z/MLQ.

The next theorem presents a sufficient condition for the existence of an FELMLQE for X. This

condition is ZC for the Y-Model.

(Szatrowski,1980)

Y-FELMLQE Theorem: Consider the Y-Model under [U, [01, and [N]. If MLQ exists
MLQ

is PD and

R(VX) c R(X) V E E, then Xj is an FELMLQE for X.

proof Since I'iS PD by hypothesis, X = X1 by proposition in section 4.2.1.

By the above lemma, XMLQ = X. Thus, XMLQ = = AY where A = X(X'X)X'

= X is an FELMLQE for X by definition. .

The proof of the theorem shows the MLQE is equivalent to the LSE under the assumptions. Because

the LSE is linear and explicit, there exists a FELMLQE for X. The condition for the existence of an

FELMLQE is sufficient, but not necessary. This is due to the fact that the relation X = AY for some

A and does not necessarily imply R(V X) C (X) V E . The result in the following

proposition does hold.

Proposition: If X/ = A V for some constant A and j E sp V = I, then
(VX)c(X)

proof X = X(X'V1X)X'V'Y = A V E sp V is PD by Proposition 1 in section 4.1

X(X'V1X)X'V1y = X(X'X)X'Y = A for Lo E sp . Thus, V E ,

X(X'V1X )X'V1 = X(X'X)X' = (V X) C (X) V E by the ZC Relation theorem. .

For completely balanced mixed classification models, ZC is satisfied so there exists an FELMLQE

for X. However, a more general result involving balance can be stated.
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(VanLeeuwen et al.,1997)

Corollary: For the Y-Mode! under [C] and [N], let IHI be the set of factors corresponding to all random

effects and G be the set of factors corresponding to all fixed effects. If the design is Bal(IHIIG), then an

FELMLQE for X.

proof VanLeeuwen etal. (1997) show this balance condition implies ZC. This gives the desired result

from the Y-FELMQE theorem. .

4.3. FUBLUE for Variance Components

FUBLUEs for the variance components can be obtained using linearized quadratic estimation models

and applying the results from the U-Mode!. The FUBLUE results can be used to determine the existence

of a linear estimator for the full variance component vector. The results will be applied to maximum

likelihood estimators and restricted maximum likelihood estimators. The FUBLUE results will be

presented first for the LQEM for and applied to the ALQEM for (1 X) and the LQEM for NxY.

4.3.1. FUBLUE Results

The U-FUBLUE theorem indicates ZC is a sufficient condition for the least squares estimator to be

FUBLUE. The first task will be to characterize ZC for the LQEMs. Two results will be presented to show

that ZC for the LQEM for is equivalent to a QS condition.

Lemma 1: Let B, R1, ..., R E S, R = for 7r and contain a non-empty open set in 1??.

Then sp{RBRJ E E} = sp{RBRI E R.r} = sp{RBR3 + RBR1 i j r}.

proof (1) Define T() = and D(C) = for C = {c} E Sr. Thenii
RBR = =ii
(2) To show spT() = Sr. Suppose F E (spT(E))'. Then tr(F') = = 0 V E (*).

Let e R and G be a non-empty open set contained in . Choose o e C. Since C is open 2 f > 0

o + E C V 161 <c. By (*), 0 = (o + 6L)'F(o + &t&) = + 26F + 62'F. Because
the quadratic polynomial in 6 is OV 161 < , its coefficients must be 0. Hence, u'Fu = 0 V e
= F = 0. Thus, (spT(E))' = {0} = spT() = S.

(3) Since Dis linear, D(T(R?)) C D(Sr)D(SpT(E)) = spD(T()). Thus,
spD(T(7?.T)) = spD(T()) as T() C T(1Z'). This establishes the first equality.
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(4) Note V 7 RBR = bRBR + + RBR)
i=1 1<i<j<r

sp{RBR e C sp{R1BR3 + R3BRjI1 <i <j < r}.
(5) Let (1,m) = {k} wherek { Note'") r Then Vi,j 1 <i <i <

RBR3 + R3BR = (RIBRZ + RJBR3 + R2BR3 + R3BR) RBR, + R3BR3
= BR() R(I) BR(,) R(J) BRu,)

= sp{RjBR + RBRjI1 i j r} C sp{RBRjJ E 7}
Hence, the last equality follows from (4) and (5).

Lemma 2: Let R1, ..., Rj,. E S and for e jzr define R = Consider a set of symmetric matrices

A = {RJ E } where contains a non-empty open set in 7?r Assume M E spA
MA = A V A E A. Then the following are equivalent:

i) ABA E spA V A, B E A ii) ABA E spA V A E A, B E spA
iii) ABA E spA V A, B E spA iv) spA is a QS.

proof (1) Note iii) iv) by QS results in section 2.7 and since 3 M E spA MA = A V A E A.
(2) Also, iii) = ii) = i) as A C spA.
(3) Suppose i) holds and fix A E A. Define a : S'S by a(B) = ABA. By i), a(A) C spA. Since a is
a linear transformation, a(spA) = sp a(A) C spA. Thus, ABA e spA V A E A, B E spA = ii).

(4) Assume ii) and fix B E spA. LetR e spA = {R E R?}as by 0-S lemma in 3.3.1.

By lemma 1 and using ii), sp{RBR E RT} = sp{RBRJ E } C spA = iii).

The matrix M is necessary in order to have a matrix in the set which acts like the identity. The next

theorem uses the above result to represent ZC for the LQEM for , which is given by R(VXt) C
V E . Recall, R(X) = sp Ut.

QS Theorem: If contains a non-empty open set in 'RY and 3 M E sp Ut MR = R V R E U, then
R(VXt) C (Xt) V spUt is a QS.

proof R(VX) CE(Xt) V e EV(S) spU = sp{Ri,...,R} VS E spUt, V E

2R(S)EspUt VSespUt,REUtiRSRE spUt VSEspUt,REUt
sp U is a QS from lemma 2 as contains a non-empty open set in flY and 3 M E sp Ut.
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The QS theorem and the U-FUBLUE theorem can be used to obtain a corresponding FUBLUE

theorem for the LQEM for . The associated least squares, generalized least squares, and estimated

generalized least squares estimator for Xt will be of interest. These are listed for reference:

LSE: Xk1 = Xt(Xt*Xt)Xt*Yt
GLSE: Xt = Xt(Xt*VlXt)_XtVYt foragivenwhereV isPD
EGLSE: X = Xt(Xt*V_lXtYXt*VYt where = V is PD V Y E RY.

The UBLUE result for the U-Model can be used to indicate when the LSE is the same as the EGLSE

when estimating This is stated in the next theorem. The proof of the theorem follows directly from

the proof of the U-FUBLUE theorem and the QS theorem.

LQZ-FUBLUE Theorem: The following are equivalent for the LQEM for Z when contains a non-empty

opensetinR?andMEspUt MR=R VREUt:
i) X is UBLUE for Xt

ii) R(VXt)c(Xt)
iii) Xt(Xt*V Xt)_Xt*Vl = Xt(Xt*Xt)_Xt* V E

iv) split = sp{Ri, ..., Rr} is a QS.

Proposition: For any R is PD, the conditions in the LQZ-FUBLUE theorem imply
Xt = Xtil2i.

proof Condition ii) in the LQZ-FUBLUE theorem R(VXt) C (X) V E

= VXtuER(Xt) V EnE r
2RBRER(Xt)
{RBR } C R(X) Vn E W sp{RBR e E} c R(Xt) V E

= cR(Xt)V flE7,rbyIea1 = RBR ER(X) V E RT,E R,

condition iii) in the LQZ-FUBLUE theorem V R is PD
.

This theorem was stated for the LQEM for , so it can be applied to both the ALQEM for ( X)
and the LQEM for NxY. The following sections use these models to examine the maximum likelihood

and restricted maximum likelihood procedures.
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4.3.2. FELMLQE Results

Maximum likelihood estimation was defined for the Y-Model under [LI, [0], and [N]. This

estimation procedure for the variance components generally requires an iterative procedure. Following a

similar approach to Szatrowski (1980), the full explicit linear maximum likelihood estimator (FELMLQE)

for X satisfies XOMLQ = AY2° where A is a linear transformation which is not random and does not

depend on any parameters and Y does not depend on any estimators or unknown parameters.

The associated least squares, generalized least squares, and the estimated generalized least squares

estimators for the ALQEM for (Y X) will be of importance in this section. They are listed below:

LSE: X°1 = Xo(Xo*X)X*Y2o

GLSE: = for a given where is PD

EGLSE: X° = V-°V2 isPDVEW.where

For clarity, the EGLSE will often be labelled as EGLS Recall, the ALQEM for (Y X) was
defined so that the equations for the EGLSE correspond to the ML equations.

Lemma: XMLQ = X°EG.

pro oj Note from the ML theorem and the definition of the EGLSE for the ALQEM for (1 X) both

are given by XJ2 =

For the ALQEM for (Y X), the response 1' = (1 X) ( X)' will in general depend on

as X1 = X(X'V1X)X'V1y. In this setting, it will not be possible to obtain a FELMLQE for XJ2

by definition. The additional assumption ZC for the Y-Model will be applied so that the ALQEM for

(Y X) can be used to obtain conditions for the existence of a FELMLQE for X°. As shown in

section 4.2.2, this condition is sufficient for Y X = NxY V E 7k+1 such that V is PD.

(Szatrowski, 1980)

ALQNY-FELMLQE Theorem: Consider the Y-Model under [LI, [0], [N], and ZC. If MLQ exists

isPDandspV = sp{ Vi,...,Vt,I} isaQS,thenX°1 isaFELMLQEforX.

proof Since is PD by hypothesis and XOMLQ = XEG by the above lemma,

XOMLQ = X°1 = AY2° by the proposition in section 4.3.1 where A = Xo*(X*Xo)_Xo* and

Y° does not depend on or by ZC X°1 is an FFLMLQE for X° by definition. .



59

Note Xj1 may not be an unbiased estimator for XiJ2, but it does satisfy the requirement of a

FELMLQE. The explicit expression for X°k1 is given in section 3.2.3. An example of a case in which

there exists an FELMLQE is given in the following theorem.

Theorem: A completely balanced nested mixed classification linear model has FELMLQE5 for X/, X°.

proof Note ZC holds for the Y-Model in balanced classification models. In addition, balance gives

spV = sp{Pi, ... , P. }. Hence, for i j = 1, ..., k (assuming ordered by nesting)

P1P3 + P3P1 = 2P1 E sp V using nesting = spV is a QS

ELMLQEs for X and X° by the Y-ELMLQE and ALQNY-FELMLQE theorems. .

4.3.3. FELREMLQE Results

Restricted maximum likelihood estimation was defined for the Y-Model under [LI, [01, and [N]. This

estimation procedure for the variance components generally requires an iterative procedure. Following a

similar approach to Szatrowski (1980), the FELREMLQE for X°satisfies X°REMLQ = AY°, whereA

is a linear transformation that is not random and does not depend on any parameters and Y° does not

depend on any estimators or unknown parameters.

The associated least squares, generalized least squares, and estimated generalized least squares

estimators for X° in the LQEM for NxY will be of importance in this section. They are listed below:

LSE: X1 = X0(X0*X0)X0*Y0

GLSE: X° = X0(X0*V_lX0)_X0*V_lY0 for a given where is PD

EGLSE: X°th = X0(X0* X0)_X0*VlY0 where V = is PD V Y E W.

For clarity, the EGLSE will often be labelled as EGLS Recall, the LQEM for NxY was defined so

that the equations for the EGLSE correspond to the REML equations.

Lemma: X°REMLQ = XOEG.

proof Note from REML theorem and the definition of the EGLSE for LQEM for NxY both are given by

X° = X0*(X0*V_lX0)_X0*VY0. .

The main theorem can now be stated concerning the existence of a FELREMLQE for X°.



(ElBassiouni, 1983).

LQNY-FELREMLQE Theorem: Consider the Y-Model under [U, [0], and [N]. If REMLQ

exists is PD and SPVNX = sp{NxV1Nx, ..., N VkNX, Nx} is a QS, then

X°1 is a FELREMLQE for X°.

proof Since is PD by hypothesis and X°REMLQ = X°EG by the above lemma,

X°REMLQ X°j = AY° by the proposition in section 4.3.1 where A = Xo*(Xo*Xo)XO* and

Y° does not depend on or X°1 is an FELREMLQE for X° by definition.

The explicit expression for XOI is given in section 3.2.3. The following corollaries establish cases

in which there exists a FELREMLQE for X°.

Corollary: If the sufficient conditions hold for the existence of an FELMLQE for X/ and X°, then

there is a FELREMLQE for X°th.

proof Hence, ZC holds for the Y-Model and QS holds for spV. Using ZC, V V,W E V

NxWNxVNx + NxVNxWNx = Nx(WV + VW)Nx = NxUNx E SPVNX
where U E spV since spV is a QS = spVN is a QS using QS results in section 2.8. .

Corollary: In a completely balanced mixed model, 3 an FELREMLQE for X°.

proof Recall ZC holds in balanced mixed models. For any two matrices F and G,

QFG = NXPFNXNXPGNX + NXPGNXNXPFNX = 2NXPHNX using ZC and balance results

from section 3.1.3. Since H is a matrix in the model, then it corresponds to a fixed or random effect.

If H corresponds to a fixed effect, then QFG = 0 E SPVNX and

if H corresponds to a random effect, then QFG E SPVNx

SpVNx is a QS = 3 an FELREMLQE for X° by the LQNY-FELREMLQE theorem. .

Corollary: If there are 2 variance components including a with associated matrix BB' and

r(NxBB') = 1, then 5PVNx is a QS.

proof Note R(NxBB'Nx) C R(NBB') C R(NB) = R(NxBB'Nx) r(Nx'J1x)
NxBB'Nx = chh' E VN for some . Hence, (NxBB'Nx)2 = c2hh'hh' = dhh' E SPVNX

= SPVNX is a QS as all other combinations are in 5PVNX.



(VanLeeuwen et al., 1997)

Corollary: For the Y-Model under [C] and [N], let IFII be the set of factors corresponding to all random

effects and G be the set of factors corresponding to all fixed effects. If Bal(7-Ii U 7-12) V 7-ui, 7-12 E JEt and

Bal(THlG), then an FELREMLQE for X°.

proof VanLeeuwen et al. (1997) show these balance conditions produce a QS for SPVNx. The

desired result follows from the LQNY-FELREMLQE theorem. .

The general result of the last corollary may be clarified with an example. Consider the mixed model

Yijkl = t + c + b + Ck + where c is fixed and b, ck are random. The balance conditions in the

above corollary would be equivalent to:

i) Bal(7-1j U 7-12) Bal({2} U {3}) = Bal({2,3})

ii) Bal(IHIIG) 4' Bal({2}I{1}) and Bal({3}{1})

If each factor had two levels, then these conditions would be satisfied under the incidence matrix:

5 41 r4 s1
{ni} [2 3] {n2} [3 2]

r7 71
i) {n.3k} [7 7] = Bal({2,3})

r9 91ii){n.} = {rt.k} [s 5] = Bal({2}I{1}),Bal({3}{1}).

4.4. Example: Balanced Random 1-Way Model

The balanced random 1-way model will be used to illustrate the ease of computation of ML and

REML estimators when these estimators are linear and explicit. Consider the Y-model given by

i=1,...,b j=1,...,r or Ybrx1=1/L+Bbrxb+

The usual case would require a maximization of the following density with respect to , o,
whereER,and={[o ]'IoO,o >O}:

f(Iit,a,o)= (2ir)1IcrBB' +aII exp[(ju)'(oBB' +oI)1(Yij)].

However, explicit forms for the estimators can be found, since the sufficient conditions are satisfied under

complete balance for this model. These estimators are derived below:
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i) MLQE for i.

Note R(1'X) R((crBB' + I)) = R((roPB + crI)1) = 1?(rogi+ o1) R(i)

= FELMLQE exists for i by Y-FELMLQE theorem and is given by

= (X'V1X)-1X'Vy = (1f1)11Y = 1'Y = Y.

ii)MLQEfor=[o a]'.
Note spV = sp{I, BB'} = sp{I, B} forms a QS

2 FELMLQE for by the ALQNY-FELMLQE theorem given by

{tr(VVj)}2X2MLQ = {y'NVNy }2x1

r2tr(PB) rtr(PB) 1

TY'NXPBNXY
MLQ rtr(PB) tr(I) Y'NxY

1
rb rb rY'(PB P1)Y

r2brb(rb)2 rb r2b Y'(I P1)Y
1 r2bY'(PB P1)Y rbY'(I PB + PB P)Y

(rb)2(r-1) r2bY'(PB P1) + r2bY'(I P1)Y
1

rb(r 1)Y'(PB P1)Y rbY'(I PB)Y1 1MSA -MSE
(rb)2(r-1) r2bY'(I PB)Y j MSE

iii) REMLQE for = {o, o]'.
Let Nx = I P1 and note SPVNX = sp{Nx, NxBB'Nx} = sp{I F1, PB P1} is a QS

2 FELREMLQE for by the LQNY-FELREMLQE theorem given by

{tr(VjNXVjNX)}2)<2 REMLQ = { Y'NxVNxY }2x1

r2tr(PBNXPBNX) rtr(PBNXINX) 1 rY'NXPBNXY
REMLQ rtr(INXPBNX) tr(INxINx) Y'NxY

r2tr(PB P1) rtr(PB P1)
1

-1 rY'(PB P1)Y
rtr(PB i) tr(I P1) j _Y'(I P1)Y

1
bri r(b-1) rY'(PBPi)Y

r2(b-1)(br-1)(r(b-1))2 r(b 1) r2(b i) Y'(I P1)Y
1

(br i)rY'(PB PjJY r(b 1)Y'(I PB + PB P1)Y
br2(b-1)(r---1) r2(b 1) Y'(PB P1)Y + r2(b 1) y'(I P1)Y

1
br(r 1)Y'(PB Pi)Yr(b i)Y'(I PB)Y

br2(b-1)(r---1) r2(b 1) Y'(I PB)Y
7M MSE)] = ANOVA (Searleet al.,1992,p59).

The estimates under both the ML and REML procedures are explicit and linear. Note that the

FELMLQE for i has an interpretative expression. The FELMLQE and FELRELMQE for cr are identical

while the FELMLQE and the FELRELMQE for a are not the same.
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5. UBLUE for Mean Estimable Functions

The results of this chapter extend the work of Szatrowski (1980) and ElBassiouni (1983). This

chapter examines explicit linear representations involving mean estimable linear combinations of the

parameter vector. The assumption of a full rank model is not necessary in this chapter and will be

discussed further in chapter 6. The results will first be presented for the underlying model and then

applied to the particular models of interest for examining linear combinations of the fixed effects and

linear combinations of the variance components.

5.1. UBLUE for the Underlying Model

This section examines conditions under which a UBLUE exists for a linear transformation of the

mean parameters in the U-Model. Consider the linear transformation defined in section 3.3.1 given by
11* : P-+7-1, also denoted 11*0 Assumptions for this section are that 11*0 is mean estimable in the U-Model

under [SI. Assumption [5] is needed to apply the Mean Estimability theorem in section 3.3.2 which

indicates that H* 0 is mean estimable if and only if R(11) C R(U*). Two useful lemmas are given below.

Lemma 1: If R(H) C R(U*) and V is PD, then H = U*VU(U*VU)11.

proof Let P = U*V_lU(U*VU) Pis a P0 on (U*V_lU) from section 2.5

and (U* V_l U) = (U*) from section 2.7. Thus,

U*VU(U*VU)11 = Pill = II as R(H) C (U*) by hypothesis. .

Lemma 2: The following are equivalent under [5]:

i) H*av, = 11*(U*V0_1U)_U*V0_lw is UBLUE for 11*0 in the U-Model

ii) R(VV U(U*VU)11) c R(U) V V E V.

iii) H*(U*V1U)U*V1 = H*(U*VU)U*V V V E V.

proof (1) Note E[11*OV0] = 11*(U*V0_lU)_U*VU0 = 11*0 by lemma 1.

(2) i) 11Ov0 is UBLUE for fl*9 R(VVU(U*V_lU)_H) C R(U) V V E V
ii) by Zyskind's theorem and (1).

(3) Then ii) (VV_lU(U*VU)_H) C R(U) V V E V
(VU(U*VU)11) c (V'U) V V E V

V0_1U(U*V0_1U)_11 = V_lU(U*V_lU)_U*V0_lU(U*T4_lU)_H V V E V by projection theorem
U(U*VU)11 = VU(U* V1U) 11 V V E V by lemma I

H*(U*VU)U*V = 11*(U*VU)U*V V V e V iii).
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For purposes of discussing the least squares estimator, interest is in Vo = I. The least squares 
estimator, the generalized least squares estimator, and the estimated generalized least squares estimator 

for 11*6 will be of particular interest. Since H*0 is mean estimable and 11 = U*M for some M, the least 

squares estimators for 11*0 are linear combinations of those derived in section 3.3.3. They are given by: 

LSE: IIi = fl*(U*U)_U*w 

GLSE: 1T'Ov = 11*(U* VU)_U* V1w for a given V E .CPD(W, W) 

EGLSE: 11* = ll*(U*U)U*jw with' = (w) E £PD(W,W) V wE W 

The LSE has a simple linear form which does not depend on the covariance, the GLSE depends on 

the unknown true V, and the EGLSE is not linear and requires an estimate of the unknown variance. The 

objective is to determine when the LSE is equal to the EGLSE. The above lemma can be used to generate 

the main UBLUE results of this section. These results are now presented. 

U- UBLUE Theorem: The following are equivalent under [SI: 

i) H*Oj is UBLUE for 11*0 for the U-Model 

ii) (VU(U*U)H) c (U) V V E V 

iii) 11*(U*VU)U*V = fl*(U*U)U* V V E V. 

proof Apply the above lemma where j/ = I. 

Proposition 1: If V E spV and V is PD, then the conditions in the above theorem imply llj = 

proof (VU(U*U)_11) c E(U) V V V (VU(U*U)11) C (U) V V E spV by section 2.3 

fl*(J* V_iu)_u* V1 = fl*(U*U)_U* V V E spV V is PD by the U-UBLUE theorem. . 

Proposition 2: If I E spV, then 11*0 has a UBLUE 1T0 is UBLUE for 11*0. 

proof i) fl*Oj is UBLUE for 11*0 = 11*0 has a UBLUE. 

ii) Suppose 11*0 has a UBLUE given by 11*Ovowhere Vo E V 

= (VV0lU(U*V0iU)11) C (U) V V E V by lemma 

= R(VVo_iU(U*V_lU)_[1) C (U) V V E spV from section 2.3. 

= 
R(Vo_1U(U*Vo_1U)_11) C R(U) = R(P) since I E sp V 

= V0lU(U*V0iU)11 = U(U*U)+U*VU(U*V0iU)H = U(U*U)11 by lemma 1 

H*(U*VU)U*V0i = 11*(U*U)U* fl*O = 116 

llO is UBLUE for 11*0 by the Uniqueness theorem in section 3.3.4. . 
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Condition ii) of the U-UBLUE theorem is a general form of Zyskind's condition (ZC) and will be

called the Generalized Zyskinds condition (GZC). This condition is equivalent to ZC when A = U.

Condition i) of the U-UBLUE theorem indicates the UBLUE has an expression which does not depend on

V. The conditions of the U-UBLUE theorem can be re-expressed in a convenient form. Define the set

.Crj(W, W) = {V E £PD(W, W)l(VU(U*U)_11) C fl(U)}. The first three corollaries restate the

previous results while the last one applies the results to the EGLSE.

Corollary: GZC 4z V C £n(VV, W).

Corollary: If V C £n(W, W), then GLSE = LSE = UBLUE.

Corollary: If V C £11(W, W), then spV fl £PD(W, W) C £rj(W, W).

Corollary: If 11*9 has a UBLUE and V E £1i(W, W), then EGLSE = GLSE = LSE = UBLIJE.

It is important to know that the GZC does not depend upon the parameterization of the expectation.

This property will be examined by defining a reparameterization for the mean of the U-Model. Consider

the mean parameterization defined in section 3.3.1 and the reparameterization T : Q'W where T is a

linear transformation, T(Au) = U, and spAu = Q. Thus, R(T) = T(Q) = T(spAu) = spT(Au)
= spU = R(U). The following definition is useful for relating two linear transformations 11*OandI*a

into the same space where H* : P-4- and r* : Q.h.

Definition: Mean Correspondence - 11*0 and f*a have mean correspondence (11*9 ± F*a) provided that

V0ETu,cEAu, [UO=Th=H*9=r*aJ.

The next lemma is useful for defining r in order to have mean correspondence. This lemma and the

reparameterization defined above will be used to generate the theorem.

Lemma: Consider the U-Model under [SI where fl*9 is estimable and 11 = UtM for some M. Then
flo F*a F = TtM.

proof: i) By the Mean Estimability theorem assuming [S], 11*0 is estimable '@'R(11) C R(U*)

11 = U*M for some M.

ii) Suppose 11*0 ± F*c. Then T(Au) = U = U(Tu) ' Vc E Au 0 E Tu U0 = Th
- Vc E Au 0 E Tu M*U0 = M*Th Va E Au 0 E Tu 311*0 = M*Ta byassumption



Va E Au f*c = M*Ta since [1*9 = r*a
r*VQEspAu=Q r*a=M*Th=I*=M*T=r=T*M.

iii) Suppose r = T*M. Then V 0 E Tu, a Au [U0 = Ta M*U0 = M*Ta fl*9 = f*a]
[1*9 = Fta by definition. .

Theorem: If fl*9 = [*a under the two parameterizations described above, where 11*0 is estimable in the

U-Model under [5], then the GZC for [1*0 is equivalent to the GZC for F*a.

proof Note R(U) = R(T). By the Mean Estimability theorem assuming [SI, 11 = U*M for some M.

Then R(VU(U*U)11) = R(VU(U*U)U*M) = R(VPM)

= (VPTM) = (VT(T*T)_T*M) = (VT(T*T)_F) by the above lemma.

Hence, R(VU(U*U)[I) C (U) (VT(T*T)I) c j(T)..

The next theorem shows the relationship between ZC and GZC. The results assuming GZC are more

general than the results assuming ZC as ZC implies GZC.

Theorem: i) If(H) = (U), then GZC = ZC ii) ZC = GZC.

proof i) By mean estimability (fl) C R(U*) R(fl) = (U*) as have equality of ranks.

Thus, GZC = R(VU(U*U)11) C (U) V V E V
=jVU(U*U)U*)c(U) VVEVas(H)=R(U*)

R(VP)CR(U)VVEVR(VU)CR(U) VVEV.
ii) By mean estimability (H) C (U*) 11= U*M. Then ZC = R(VU) C (U) V V E V
= U(U*VU)_U*V_l = U(U*U)U* V V e V by the ZC Relation theorem
= M*U(U*VU)U*V = M*U(U*U)U* VV E V

11*(U*VU)U*V = [J*(U*U)-U* VV E V
(VU(U*U)[I) C (U) V V E V GZC by the U-UBLUE theorem.

A sufficient condition for the existence of a UBLUE is the Generalized Zyskinds condition. Under

this condition, the UBLUE is the LSE, which does not depend on the covariance matrix V. The results of

this section will be applied to the other models of interest for purposes of estimating fixed effects and

variance components.
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5.2. UBLUE for Fixed Effects

UBLIJEs for fixed effects can be obtained using the Y-Model and applying the results from the

U-Model. Consider the estimable linear combination of the fixed effect vector A'. Recall E R, and
1Z contains a non-empty open set, so the Mean Estimability theorem can be applied. First, results will be

presented for UBLUEs which will then be applied to maximum likelihood estimation.

5.2.1. UBLUE Results

This section examines conditions under which a UBLUE exists in the Y-Model for A'. The least

squares estimator, the generalized least squares estimator, and the estimated generalized least squares

estimator for A' will be of interest in this section. They are listed here for reference:

LSE A'1 = A'(X'X)X'Y
GLSE A' = A'(X'V'X)X'V'Y
EGLSE: A' = A'(X''X)X'V'Y

for a given where V is PD

where - V(y)is PD V I E 1Z.

The U-UBLUE theorem for the U-Model can be directly applied in this setting to indicate when the

LSE is equal to the GLSE for estimating A'. This is stated in the next theorem and restated in the

following proposition under assumptions [LI and [01.

Y-UBLUE Theorem: The following are equivalent:

i) A'1 is UBLUE for A' in the Y-Model

ii) (VX(X'XyA) c E(X) V

iii) A'(X'V1X)X'V1 = N(X'X)X' V e

Proposition: Assume [LI and [OJ. Then V V is PD, the conditions in the Y-FUBLUE

theorem imply that A' =

proof: Under [U, [0], spV = {VI E sp } = {VI lZk+1}. Apply proposition 1 in section 5.1.

The Y-UBLUE theorem does not make any assumptions about normality, linear covariance structure,

or classification matrices. Only the form of GZC given in ii) is necessary to apply this theorem to the

special cases of the Y-Model under [Li, [0], and [C].
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5.2.2. ELMLQE Results

For doing maximum likelihood estimation in the Y-Model, the assumptions [LI, [0], and [N] were

used. Extending the definition of Szatrowski (1980), the explicit linear maximum likelihood equation

estimator (ELMLQE) for A' satisfies A'MLQ = AY for a constant matrix A which is not random and

does not depend on any parameters. In this case, the estimator A'MLQ is linear and the explicit part

indicates that A is constant. The following lemma shows that the MLQE = EGLSE in this setting.

Lemma: A'MLQ -_ A'

proof Since A' is estimable R(A) C R(X') A = X'M for some M. Recall, it has been shown

XMLQ = X = M'XMLQ = M'X = A' = A'. .
MLQ

The next theorem presents a sufficient condition for the existence of an ELMLQE for A'. This

condition is GZC for the Y-Model.

Y-ELMLQE Theorem: Consider the Y-Model under [LI, [01, and [NI. If 1MLQ exists
MLQ

is PD and

(VX(X'X)A) C .(X) V E, then A'1 is an ELMLQE for A'.

proof Since is PD by hypothesis, A' = A'1 by the proposition in section 5.2.1.

By the above lemma, A'MLQ = A'. Thus, A'MLQ = A'1 = AY where A = A'(X'X)X'

= A'j is an ELMLQE for A' by definition. .

The proof of the theorem shows the MLQE is equivalent to the LSE under the assumptions. Because

the LSE is linear and explicit, there exists an ELMLQE for A'. An application of the Y-ELMLQE

theorem is given in section 5.4.

5.3. UBLUE for Variance Components

UBLUEs for the variance components can be obtained using linearized quadratic estimation models

and applying the results from the U-Model. Consider a vector of mean estimable linear combinations of

the variance components F' where F : 7S7r and e . In order to apply the results of the Mean

Estimability theorem, it is sufficient to assume contains a non-empty open set in R1. This assumption

does hold for the ALQEM for (1 X) and the LQEM for NxY. The UBLUE results will be presented



first for the LQEM for , and applied to the ALQEM for ( X) for maximum likelihood estimation

and to the LQEM for Nx_Y for restricted maximum likelihood estimation.

5.3.1. UBLUE Results

The UBLUE results will be given for the LQEM for under the open set assumption for . The

associated least squares, generalized least squares, and estimated generalized least squares estimator for

r' will be of interest. These are listed here for reference:

LSE: F'j = FI(Xt*X)_Xt*Yt
GLSE: = r/(xt*v,xtyxt*lYt for a given where is PD

EGLSE: IJ = F/(Xt*1/Xt)Xt*VYt where = V) is PD V Y E RYE.

The UBLUE result for the U-Model can be used to indicate when the LSE is the same as the EGLSE

when estimating F'. This is stated in the next theorem. The proof of the theorem follows directly from

the proof of the U-UBLUE theorem and is restated in the following proposition.

LQZ- UBLUE Theorem: The following are equivalent when contains a non-empty open set in Rr:

i) F'1 is UBLUE for F' in the LQEM for Z
ii)(vçxt(xt*x)_r) c B(Xt)V E

iii) F(Xt* ,Xt)_Xt*Vl = r(xt*xt)_xt* V E a

Proposition: For any R is PD, the conditions in the LQZ-UBLUE theorem imply

= F'.

proof Condition ii) in the LQZ-UBLUE theorem R(VXt(Xt*Xt)_F) C E(X) V E

= vxt(xt*xt)_r1, e B(Xt) V E

= 2RBR ER(Xt) V e W whereBy = Xt(Xt*Xt)ruES
{RBRj E E} c R(Xt) V& E 1?! = sp{RBR E } C V u E R,S

= sp{RBRjj e 7} C (Xt) V E R by lemma 1 in section 4.3.1

ER(Xt) VEW,E7Zs vxt(xt*xtyrE(xt) vthER?,Ew
R(VXt(Xt*Xt)_F) C (Xt) V E -jar

= condition iii) in the LQZ-UBLUE theorem V E 1Z R is PD
= = r' V E R is PD. .
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This theorem was stated for the LQEM for Z, so it applies to both the ALQEM for NxY and the

LQEM for NxY. The following sections use these models to examine the maximum likelihood and

restricted maximum likelihood procedures.

5.3.2. ELMLQE Results

For doing maximum likelihood estimation in the Y-Model, the assumptions [LI, [01, and [N] were

used. Extending the definition of Szatrowski (1980), the explicit linear maximum likelihood estimator

(ELMLQE) for r' satisfies = AY2, where A is a linear transformation that is not random and

does not depend on any parameters and Y does not depend on any estimators or unknown parameters.

The associated least squares, generalized least squares, and the estimated generalized least squares

estimators for the ALQEM for (Y X) will be of importance in this section. They are listed below:

LSE: F'j = rF(xo*xo)_xo*y20

GLSE: = r/(X*lX)_Xo*V_lY2o for a given where is PD

EGLSE: F' = where V = V) is PD V Y E R!Z.

For clarity, the EGLSE will often be labelled as EGLS. The ALQEM for ( X) was defined so
that the equations for the EGLSE correspond to the ML equations for . The following lemma establishes

the equivalence between the EGLSE and the MLQE for F'.

Lemma: = F'EG.

proof Since r' is estimable =. R(IT) c R(X*) = F =XM for some M. From section 4.3.2,

x - c7 ?,f* - Ft
MLQ EGLS MLQ - IVI EGLS MLQ EGLS

Under the ALQEM for (Y X), the response Y2° = X) (Y X)' will generally depend
on as X = X(X'V1X)X'VLY. This is likely to present a difficulty in satisfying the definition of

an ELMLQE for F'. In order to deal with this difficulty, it will be assumed that ZC holds for the

Y-Model where R(VX) c R(X) V e . As shown in section 4.2.2, this condition is sufficient for

Y X = NxY V e 1k+1 such that V is PD. Under ZC for the Y-Model, the ALQEM for

(Y X) can be used to obtain conditions for the existence of an ELMLQE for F'. However, it is

possible that a weaker condition could suffice for some examples as only the linear combination F' is of

interest. Still, the following theorem assumes ZC.
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ALQNY-ELMLQE Theorem: Consider the Y-Model under [LI, [0], [N], and ZC. MLQ exists

MLQ
is PD and (VXo(Xo*Xo)_F) c R(X) V E , then r'1 is an ELMLQE for F'.

proof: Since is PD by hypothesis and F'MLQ = FEG by the above lemma,

MLQ = F'j = AY° by the proposition in section 5.3.1 where A = rF(x*xo)_x* and
= Nx..Y'Nx does not depend or by ZC = r'1 is an ELMLQE for F' by definition. .

Note r'1 may not be an unbiased estimator for F', but it does satisfy the requirement of an

ELMLQE. The explicit expression r'1 is a linear combination of the equations given in section 3.2.3.

5.3.3. ELREMLQE Results

For doing restricted maximum likelihood estimation in the Y-Model, the assumptions [L], [01, and

[N] were used. Extending the definition of Szatrowski (1980), an explicit linear restricted maximum

likelihood estimator (ELREMLQE) for F' satisfies = AY°, where A is a linear

transformation that is not random and does not depend on any parameters and Y° does not depend on any

estimators or unknown parameters.

The associated least squares, generalized least squares, and estimated generalized least squares

estimators for F'3J2 in the LQEM for NxY will be of importance in this section. They are listed below:

LSE: F'j =
GLSE: = F(X0*V_lX0)_X0*V_lY0 for a given where is PD

EGLSE: F' = FF(X0*VX0)_X0*VY0 where = is PD V Y E 'R,.

For clarity, the EGLSE will often be labelled as IEGLs The LQEM for NxY was defined so that the

equations for the EGLSE correspond to the REML equations for . The following lemma establishes the

equivalence between the EGLSE and the REMLQE for I".

Lemma: =

proof Since F' is estimable R(r) c R(Xo*) F = Xo*M for some M. From section 4.3.3,

xo-;'
,f* yo7 -

JIREMLQ EGLS MLQ EGLS MLQ EGLS

The main theorem can now be stated concerning the existence of an ELREMLQE for F'.
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LQNY-ELREMLQE Theorem: Consider the Y-Model under [LI, [0], and [NI. If REMLQ exists

is PD and 11(VoXo(Xo*Xo)_F) C R(X°) V E , then F'i is an ELREMLQE for F'.

proof Since is PD by hypothesis and FREMLQ = EGLS by the above lemma,

REMLQ = = AY° by the proposition in section 5.3.1 where A = F(Xo*Xo)_Xo* and

Y° = N._Y'N does not depend or = F'Ji is an ELREMLQE for F' by definition. .

The ELREMLQE for IL is given by F'j, which is linear and UBLUE for F'. An application of

this result is discussed in section 5.5.

5.4. ML Example: 2-Way Mixed Model with No Interaction

This example will be used to demonstrate the results for an ELMLQE for the fixed effects in a 2-way

mixed model with no interaction. Consider the following notation:

i==1,...,t j=1,...,r k=1,...,n3

Cov(Y)=V=BB'+aI, E={=[a o]'Io O, o >O},
N = A'B = {flij}txr, n.j =

i=1

Assuming 11(A) fl 11(B) = 11(L) which is equivalent to (A, B) = t + r 1, the problem is to
a1 at

determine the conditions under which an ELMLQE exists for A' =
at_i

Lemma: (N) = 1 = R(VX(X'X)1A) ci R(X) V E

proof i) Note 11(X) = ([j. A J) = 11(A). Since the GZC is invariant under a reparameterization by

proposition in section 5.1, it is helpful to consider the reparameterization given by

Lu + Aci Ar => ,u + a r = a at = ([t + aj) Cu + at) =
aicit TiTi

= A' = [_ It-i = = [It-i = ll'Iatlai TtiTi
where = 0, (H) = t 1, (j') = t 1.Thus,11(11) = R(1)-'- =
ii) Let E 11(11) = (k) by i). Note

(N) = 1 = A'B = nt = gh3 = n. = g1h. = -g =



73 

+91 

Thus, [(A'A)1]'w = =(1t)'w=O. 
:9t 

iii) For 
, 

VA(A'A)1w = (BB' + oI )A(A'A)-1 

= aB'(A'A)1 + crA(A'A) by ii) A'B = 
= E R(A) since '(A'A)-' = 0 by ii). 

Hence, R(VA(A'A)1H) C R(A) as the above is true V w E R(H) and V E 

=. (VX(X'X)1A) c R(X) V as the condition is invariant under a reparameterization. . 

Lemma: R(VX(X'X)1A) C (X) V = (N) = 1. 

proof R(VX(X'X)-1A) c R(X) V 

= R(VA(A'A)-1ll) C (A) V under the reparameterization defined in above lemma i) 

= ((cBB' + I )A(A'A)-1r1) C (A) V = [o o}' E 

= R(BB'A(A'A)-'ll) c E(A) 

' 
(BB'A(A'A)-1ll) C (A) flR(B) = = (Bir) by assumption 

R(B'A(A'A)1H) C (ir) sinceN(B) = {O} 

R({}rxtH) C R(lr) - }rxt-1) C R(lr) by definition of H in i) of above lemma 

= =c2 Vi,j=njj=nj.(cj+?) Vi,j 
= n. = n.(rc+ -) = n.(rc + 1) Vi summing overj =' c = 0 Vi. 

Thus,n=n. =gh3 Vi,j =N=' =(N)= 1. . 

Theorem: For the 2-Way Mixed Model with No Interaction, GZC holds 4 (N) = 1. 

The proof of the theorem follows from the above two lemmas. Note that (N) = 1 if and only if there 

are proportional frequencies. By the Y-ELMLQE theorem, an ELMLQE exists for A' and is given by 

= = H'(A'A)1A'y = H'[diag(mi., 
..., 

flt.) }1{diag (1')}nY 
V1. Vi. - Vt. 

= - = . 
The solution to the ML equations has a simple interpretation 

V. - V. 
in this explicit case. However, if the MLQE was not explicit, such a simple interpretable formula would 

not be obtained. 
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5.5. REML Example: 3-Way Mixed Model under Pseudo Balance

The best design has complete balance. For the ML procedure, it is possible not to have an FELMLQE

for in a completely balanced design. For the REML procedure, there is an FELREMLQE for in

balanced designs as shown in section 4.3.3. The next type of balance to examine for the REML procedure

is pseudo balance, which is defined in section 3.1.3. Under pseudo balance, there may not be an

FELREMLQE for , but there might be an ELREMLQE for a linear combination of interest. This section

will describe such examples.
k+ I

For some 3-way mixed models with two-level factors, there exists an ELREMLQE for 1'L = I

i=1

or the variance of a single observation, under pseudo balance. An example of an incidence matrix with

pseudo balance in which is estimable under the REML procedure is given by:
r 0 r r

{njii} r 0
{n2} where r> 1. A search was conducted over all proper two-level

models with an incidence matrix of the above form in which there were at least 2 variance components.

Models that had an ELREMLQE for are listed in Table 5.1 using the notation:

-1 = fixed effect, 0 omitted, and 1 = random effect. These models also have an ELREMLQE for o, but

not for the other components individually.

Table 5.1. 3-Way Models with ELREMLQE for Sum of Variance Components and Residual

a b c ab ac bc abc e

-1 0 0 1 1 0 1 1

-1 1 1 0 1 1 1 1

-1 1 1 1 0 1 1 1

-1 1 1 1 1 0 1 1

-1 1 1 1 1 1 0 10111011101 1 0 1 1 1 1

11 1 1 1 1 1 1
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6. UBLUE for the Full Rank Case

This chapter discusses a generalization of the results of Szatrowski (1980) and ElBassiouni (1983)

under the assumption of a full rank model or one whose parameter vector is estimable. The results of the

chapter are a special case of those in the previous chapter. The previous chapter examined the existence of

a UBLUE for a linear combination of the parameter, while this chapter examines the existence of a

UBLUE for a subvector of the parameter vector. This formulation provides another way to think about the

problem which is convenient to work with. The results will first be presented for the underlying model and

then applied to the particular models of interest for examining a subvector of the fixed effects vector and a

subvector of the variance components vector.

6.1 UBLUE for the Full Rank Underlying Model

The conditions for a UBLUE in this model could be derived using the results in chapter 5. However,

it is informative to construct the conditions in a different manner. Consider the U-Model under [SI, where

Tu is a subset of fl.P such that spTu = W3, U E £(R.P, W), and E Tu. It is assumed that is

estimable. By the Full Rank theorem in section 3.2.2 assuming [51, 0 is estimable if and only if z(U) = p.

In this case, (U) {0}. Let j = {e} E W' where
{

and suppose b = Ui. Then

U= U>.O =
i=1 i=1

Consider a partition of the parameter vector where px1 = [x1 . Suppose

interest is in estimating Consider the following notation, which partitions the U-Model accordingly:

p p1 p

i) E[w] = U0 = = + = U11 + U22 for U3 E £(Ri, W)
i=1 i=1 i=p1+1

ii) VEVCPD(W,W)

iii) F1v : WW F1v V V1U1(UV'U1)'UV1

iv) N1 : W W Nu1 = I U1(UjU1)1U

v) DefineQiNu1=QiQ and QQi=Ij,.

The notation in i) provides a partition of the expectation, while the covariance in ii) remains

unchanged. The notation in iii), iv), and v) will be used in the next four lemmas to obtain a UBLUE

condition for .

Lemma 1: i) FiUi = 0 ii) Fiv = Q1(QVQ1)1Q
iii) VFv isaPOon (UV1)along R(U1)

iv)F1vV is a P0 on (Uj) along (V1U1).
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proof i) From the definition of Fiv. ii) Follows from the F-lemma in section 3.1.4.

iii) iv) From the general projection theorem in section 2.5.

IMivlLemma 2: If Mv = (U*VU )_IU*V_I E £(W, 7V) is partitioned as Mv
M2v I

where Miv E £(W, 1V'1) and M2v E £(W, R?2), then M2v = (UFivU2)1UFiv
and Mw = (UV-'U1)-1UV-'(I U2M2v).

proof (1) Note < UO,w> w= < Ui91+U2,w> < UlOi,w> w+ < U22,w>w
= <i,Uw>+

[&i,[U1*w1 [1 IUi*wl 1U1*1
1p

LJ [uw] <Li' [uj>
(2) (U*V_1U )_1 is invertible, so the inverse formula in section 2.4 gives

Mv (U*V_lU)U*V_l = ([U11v_1[U U21)_lrullV_l by (1)
U2] Lu]

ruv-1u1 UV1U21 Fuv1 1 1A B11UVh1
L uv-'u1 uv-'u2] [uv-'j [B' Dj [uv1j

GE11 1UV'1- - E_1G* E1 ] [UV_1]
where E = D B'A'B = UF1vU2 and C = A'B = (UV1U1)-1UV1U2. Thus,
M2 = - E_lG*U V1+E1U V1 = (UF1vU2)UF1v and
M1v = (A-1 + GEG*)UjV GE1UV' = A-'UV-' + GE(G*UV UV)

= (UV1U1)-1UV-1 CM2v = (UV1U1)-1UV1(I U2M2v).

Lemma 3: The following are equivalent:

i) M2v = (UFivU2)UFiv = (UFiv0U2)'UFiv0 = M2v0

ii) R(F1v0(J2) C R(F1vU2)

iii)R(Nu1VF1v0U2) c R(Nu1U2)

iv) R(VFi0U2) C R(U).

proof (1) By the general projection theorem in section 2.5, U2M2v is a P0 on (U2) along (UFiv).
Since N(U2) = {}, i) U2M2v = U2M2v0 4z N(UF1v) = N(UFiv0) R(FivU2) = R(F1v0U2)

' (F1v0U) C R(F1vU2) ii). The second to last equivalence is true V PD V because

r(F1vU2) = r(U2) dim[R(U2) fl N(Fiv)] = i(U2) dim[R(U2) fl N(VFw)]

= (U2) dim[li(U2) fl (Ui)J by previous lemma 1 iii)

= (U2) as U has full column rank.

(2) ii) R(F1v0U2) C R(F1vU2) Fiy0U = F1vU2B for some B

Q1(QVoQ1)'QU2 = Q1(QVQ1)'QU2B by lemma lii)



ItA

(Q1QV )Q1(QVoQ1)1QU2 = Q1QU2B left multiplying by Q1QV or Q1(QVoQ1)'Q

Nu1VF1v0U2 = Nu1U2B by lemma 1 Nu1 = QiQ
R(NuVFiv0U) C R(NuU2) iii).

(3) iv) R(VF1v0U2) C R(U) Nu1[R(VF1v0U2)] C N1[R(U)

R(Nu1VFiv0U) C R(NuU2) iii) as R(Nu1U) = R(N1[Ui U2]) = R([ONu1U2]).

(4) iii) R(Nu1VF1v0U2) C R(Nu1U2) Nu1VF1v0U2 = Nu1U2B for some B

z Nu1(VF1v0U2 U2B) =0 R(VF1v0U2 U2B) C N(Nu1) = R(U1) C R(U)

R(VFiv0U2) C R(U) iv). .

Lemma 4: 2v0 = (UFivaU2Y'UFivow isUBLUEforO2 R(VFiv0U2) C R(U) V V E V.

proof By lemma 1, E1vJ = (UF1v0U2)1UF1v0[Ui& + U2] = (UF1v0U2)'UF1v0U2 =
By Zyskind's theorem, 2v0 is UBLUE for (VF1v0U2(UF1v0U2)1) C R(U) V V E V

R(VFv0U) C R(U) V V E V.

For purposes of discussing the least squares estimator, interest is in V0 = I. Lemma 2 partitions the

GLSE in the U-Model to obtain an expression for the GLSE for and the GLSE for Condition iv) of

lemma 3, can be used to indicate when the GLSE for 2 and the LSE for 2 are equal. The least squares,

generalized least squares, and estimated generalized least squares estimators for 2 are listed below:

LSE: 2I = M21 = (UNu1U2)1UNu1w
GLSE: v = M2vw = (UF1vU2)'UF1vw for a given V £PD(W, Vt))

EGLSE: = M2,w = (UF1,U2)1UF1,w with V = i7() E £PDVV, W) V w E W.

The LSE has a simple linear form which does not depend on the covariance, the GLSE depends on

the unknown true V, and the EGLSE is not linear and requires an estimate for the unknown variance.

Lemma 3 can be used to indicate when the LSE is equal to the GLSE. The following UBLUE theorem is

a special case of the U-UBLUE theorem in the full rank (FR) setting.

U-UBLUEFR Theorem: The following are equivalent under [SI:

i) 2I is UBLUE for in the U-Model

ii) (VNu1U2) C R(U) V V E V

iii) (U'F1vU2)'UF1v = (U'Nu1U2)'UNu1 V V E V.

proof ii) iii) from lemma 3 and i) ii) by lemma 4.
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Proposition 1: If V E spV and V is PD, then the conditions in the U-UBLUE1 theorem imply 2V = ffii.

proof 11(VNu1U2) C 11(U) V V E V 11(VNu1U2) C 11(U) V V e spV by proposition in section 2.3

Mv = M21 V V E spV V is PD by the U-UBLUE1 theorem.

Proposition 2: If I E spV, then has a UBLUE Oi is UBLUE for .

proof i) 021 is UBLUE for has a UBLUE.

ii) Suppose has a UBLUE given by 2V0 where V0 E V

11(VF1v0U2) C 11(U) V V E V by lemma 4 11(VF1v0U2) C 11(U) V V spV

11(Fiv0U2) C 11(FivU2) V V E spV by lemma 3 = R(F1v0U2) C 11(Nu1U2) as I E spV

Mv0 = M21 by lemma 2 = 2V0 = 2I = 2I is UBLUE for by the Uniqueness theorem. .

Condition i) of the U-UBLUE theorem indicates the UBLUE has an expression which does not

depend on V. Condition ii) gives the GZC for in this full rank setting, which will be denoted GZC.

The conditions of the U-UBLUE1 theorem can be re-expressed in a convenient form. Define the set

.Cu2(W, W) = {V E £PD(W, W)I 11(VNu1U2) C 11(U)}. The first three corollaries restate the previous

results, while the last one applies the results to the EGLSE.

Corollary: GZCn V C £u2(W,)'V).

Corollary: If V C £u2(W,W), then GLSE = LSE = UBLUE.

Corollary: If V C £u2(W,W), thenspVflrpD(W,W) C £u(W,W).

Corollary: If has a UBLUE and V e u2(W, W), then EGLSE = GLSE = LSE = UBLUE.

Assume V = V9 and let V = V9. Suppose the GZC1 holds and V E £u2(W, W). An iterative

procedure would still be required to solve for . The (i + i)t solution in the iterative procedure is
* -1 -1 * -1given by = (U1 Vj) U1) U1 V (w U22j).

O_1,Q2I

The next theorem shows the relationship between ZC and GZC. The results assuming GZC are

more general than the results assuming ZC, as ZC implies GZC1.
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Theorem: i) If Ui = 0, then GZC ZC

ii) If (VU1) c R(U1) V V e V, then GZC1 = ZC
iii) ZC = GZC.

proof NoteB(Nu1U)=R(Nu1[Ui U21)&[ONiU21).
i) Since U1 = 0 by hypothesis, Nu1 = I. Thus, V V E V,

R(VNiU2) C R(U) R(VNu1U) C R(U) R(VU) C R(U).
ii) V V E V, (VNu1U2) C (U) (VNu1U) C R(U) VN1U = UB for some B

zrVU=VP1U+UB
R(VU) C R(VP1U + UB) C (VU1) + R(U) C R(U1) + R(U) = (U) as R(VU1) C R(U).

iii) Note Nu1U2 = U2 P1U2 R(Nu1U2) C R(U).ThenV V E V,

(VNu1U2) c (VU) C (U) under the assumption of ZC. .

6.2. The Generalized Zyskind's Conditions

The section explores the relationship between GZC and GZC1. First, consider the full rank setting to

examine how the GZC can be used to obtain the GZC. Note 2 = F'O where F' = IJ2]. The
following theorem gives the equivalence in this case.

Theorem 1: Let the U-Model under [SI have full rank. Then

R(VNiU2) C R(U) R(VU(U*U)F) C R(U).

proof i) R(VU(U*U)_F) C R(U)
F/(U*V_lU)_lU*V = F/(U*U)U* by U-UBLUE theorem

[0 I]Mv = [0 I]M1 = M21 from lemma 2 and definition of F

R(VNu1U2) C (U) by U-UBLUE theorem.

Assume the GZC involving an estimable function ll'O where II : 7q_y and r(ll) = q and consider

translating it to the GZC1 for a corresponding parameter 2(qx 1). This direction is useful for checking the

GZC condition in the full rank setting.

Since (ll) = q there exists a matrix ipxpq = [ II] is invertible. Thus, K' =
p

= (K') where (K')' = {h} and so = These definitions give
j=1

p p p p p p

UO= = = >( = = T whereT E £('R,P,W). Consider the
i=1 i=1 j=1 j=1 i=1 j=1

following notation for estimating H' = = F' where F' = [Oqx(p_q) 'qxq J:
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i) E[w}=U=T=Tii+T2 TEr(nYi,W) with vl=p-q,v2=q
ii) NT1 :WW NT1 =ITi(TjTi)1T.

Theorem 2: For the estimable function H' = = F' and using the transformations defined above,

&(VU(U*UYH) c (U) (VNT1T2) c R(T).

proof R(VNT1T2) C B(T) R(VT(T*T)F) C (T) (VU(U*U)H) C (U)

by theorem 1 as the GZC is invariant under a reparameterizaton from the theorem in section 5.1. .

6.3. UBLUE for Estimable Fixed Effects

This section examines UBLUE results for the subvector of the fixed effects given by in the

Y-model that has full rank or where j(X) = p. Recall RY and RY contains a non-empty open set,

so the Full Rank theorem can be applied. First, results will be presented for UBLUEs, which will then be

applied to maximum likelihood estimation for .

6.3.1. UBLUE Results

This section examines conditions under which a UBLUE exists in the Y-Model for . Consider the

following definitions:

P P1 P

i)

i=1 i=1 i=p1+1

ii) Fiv = V1 iii) Nx1 = I Px1.

The definition in i) shows the partition for the expectation, while ii) and iii) define matrices that will

be of interest. The least squares estimator, the generalized least squares estimator, and the estimated

generalized least squares estimator for will also be of interest in this section. They are listed below:

LSE: 2I = (XNx1X2)1XNx1Y
GLSE: = (XF1vX2)'XF1vY
EGLSE:2j = (XF1X2y1XF1y

for a given where V is PD

where = Y)
is PD V I E RY.

The UBLJJE result for the U-Model in the full rank setting can be directly applied in this setting to

indicate when the LSE is equal to the GLSE for estimating . This is stated in the next theorem and

restated in the following proposition under assumptions [LI and [0].
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Y- UBLUEFR Theorem: The following are equivalent:

i) .2I is UBLUE for in the Y-Model

ii) R(VNx1X2) c R(X) V

iii) (XF1vX2)1XF1v = (XNx1X2)'XNx1 V E

Proposition: Assume [LI and [0]. Then V E V is PD, the conditions in the Y-FUBLUE1

theorem imply that = /2I.

proof Under [LI, [0], spV = {VI sp } = {V E 1k+1}. Apply proposition I in section 6.1.

The Y-UBLUE theorem does not make any assumptions about normality, linear covariance structure,

or classfication matrices. Only the form of GZC1 given in ii) is necessary to apply this theorem to the

special cases of the Y-Model under [LI, [01, and [CI.

6.3.2. ELMLQE Results

For doing maximum likelihood estimation in the Y-Model, the assumptions [LI, [0], and [N] were

used. Extending the definition of Szatrowski (1980), an explicit linear maximum likelihood equation

estimator (ELMLQE) for satisfies 2MLQ = AY for a constant matrix A which is not random and does

not depend on any parameters. In this case, the estimator 2MLQ is linear and the explicit part indicates

that A is constant. The following lemma shows that the MLQE = EGLSE in this setting.

Lemma: 2MLQ =

proof It has been shown that XMLQ = X

= MLQ = 4 multiplying both sides by (X'X)1x as X has full column rank where

MLQ
can be partitioned as in lemma 2.

The next theorem presents a sufficient condition for the existence of an ELMLQE for . This

condition is the GZC for the Y-Model.

Y-ELMLQEFR Theorem: Consider the Y-Model under [U, [0], and [N]. If IlMLQ exists is PD

and R(VNx1X2) C R(X)V e ,then21 is anELMLQEfor.
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proof Since is PD by hypothesis, = .2I by the proposition in section 6.3.1.

By the above lemma, 2MLQ 2MLQ Thus, 2MLQ = 2I = A where A = (X'2Nx1X2)1XNx1

= 2I is an ELMLQE for by definition. .

The proof of the theorem shows the MLQE is equivalent to the LSE under the assumptions. Because

the LSE is linear and explicit, there exists an ELMLQE for .

6.4. UBLUE for Estimable Variance Components

UBLIJEs for the estimable variance component vector can be obtained using linearized quadratic

estimation models and applying the results from the U-Model. The UBLUE results can be used to

determine the existence of a linear estimator for a subvector of the variance component vector E

In order to apply the results of the Full Rank theorem, it is sufficient to assume contains a non-empty

open set in 7?. This assumption does hold for the ALQEM for (Y X) and the LQEM for NxY. The

UBLUE results will be presented for the LQEM for , and then applied to the ALQEM for ( X) for
maximum likelihood estimation and the LQEM forNxY for restricted maximum likelihood estimation.

6.4.1. UBLUE Results

The UBLUE results will be given for the LQEM for under the open set assumption for . Consider

the following notation where r2 = r

i) E[Yt] X = R = = + > = X zi + X for X E (R?i, Sn)
i=1 i=1 i=rj+1

ii) V = E Vt C £p(Sn,Sn)

-1
ii) F1t : Sn' Sn F1t = -

iii) Nt : Sn Sn Nt = I - =

The definition in i) gives a partition of the expectation and an expression for the covariance. The

notation in ii) and iii) will be useful for the following results. The objective is to estimate in the full

rank model where (X) = r, or equivalently when the Ri's i = 1, ..., r are linearly independent. The

associated least squares, generalized least squares, and estimated generalized least squares estimator for

will be of interest. These are listed here for reference:
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LSE: 2h21 = (X*NxtX1X*Nxt yt
GLSE: = (X*FiX)1X*FivtYt
EGLSE: 2

= (X*X1X*F1Y
for a given where is PD

where is PD V Y E R,.

The UBLUE result for the U-Model can be used to indicate when the LSE is the same as the GLSE

when estimating . This is stated in the next theorem. The proof of the theorem follows directly from the

proof of the U-UBLUEFR theorem. The result is restated in the following proposition. The proof of this

proposition follows from the proposition in section 5.3.1, as it is a special case.

LQZ- UBL UEFR Theorem: The following are equivalent when contains a non-empty open set in lZr:

i) jJ21 is UBLUE for in the LQEM for Z

ii) R(VNtX)cR(X) VE
iii) = (X*NxtX)_1X*Nxt V E E.

Proposition: For any R is PD, the conditions in the LQZ-UBLUE theorem imply = 2I

This theorem was stated for the LQEM for Z, so it applies to both the ALQEM for NxY and the

LQEM for NxY. The following sections use these models to examine the maximum likelihood and

restricted maximum likelihood procedures.

The next corollary gives another condition which has interpretative value. There are a few cases in

which it can be applied. The condition can also be applied to the other LQEMs of interest.

Jordan Ideal Condition: If A R(Xt), B e =. ABA E R(NtX) (o), then

(VNtX) c (Xt).

proof: (a) = V[R(NtX)I C = R(VNtX)] C R(NtX)
=. B(NtVNtX) C R(N,tX) = R(VNtX) C E(X) by lenima3 in section 6.1. .

The next two propositions examine the linear transformation Nt. The first proposition indicates

Nt is the same whether R(X)' is taken with respect to (Xt) or S, while the second proposition

gives expressions for and linear tranformations involving Nt.

Proposition: Nt defined on B(X )-- is the restriction of Nt on S.
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proof i)LetA = R(X), B = R(Xt), and S = S. Then
A-'-'={BEBI<B,A> =0 VAEA} and A±S={SE S<S,A> =0 VAEA}
r: AJ8=A±sfl13.

ii)Let = perpendicular sum (Seely,1996). Then B = A A' and S = B J3±S

=S=A 5,4Ll3 '13IS LS_4JJ3 B±s

iii) For B E B, B = A C where A E A, C E A and B = A C where A E A, C E A by ii).

Thus, P1(B)= A= P$(B).
iv)Byiii), N=P3(B)=(I8P)(B)=BP(B)=BPJ(B)

(JS_PS)(B)PS(B)_NS

[T11 T121 where T19 is r1 x r9. For A E 5n letProposition: Let T = {tr(RRj)}
L

T21 T22]

= {tr(RhA)}rxl = I I where &Af is r1 x 1. ThenL2i
Ti

i) PtA = >ahRh where a = Tjj'1
h=1

ii) X Nt A = i&A2 T2iT1j1i
iii) 2 NtX = T22 T21T1j'T12

proof i) PtA = W where A = W + Z withWE R(X) and Z E

W = for some a. Inaddition,V m= 1,...,r1 <Z,Rm> 0
"=1

Ti

= tr(ZRm) 0 tr(ARm) tr(WRm) 0 tr(ARm) = >ahtr(RhRm)
h=1

{tr(ARm)}rixi = {tr(RhRm)}rixria a = {tr(RhRm)}1{tr(ARm)} = T1j11.
ii)X*NxtA = x*A_X*pxtA = X*A_ahX*Rh byi)

= {tr(R.jA)}1+1 >Iah{tr(RRh)}=T1+l by lemma ii) in section 3.2.3
h=1

= LA2 T21Tj'1 by the definition of.
r

iii) Forv= {v}1+1 E Rr2 NtR
i=ri + 1

= > v(j2 T21Tj'1.1) by ii)
i=r1+1

= VI4.2Vi T21T > = T21TT12 = (T22 T2iTj1Ti2)v. .
ir1+1 i=ri+l
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6.4.2. ELMLQE Results

For doing maximum likelihood estimation in the Y-Model, assumptions [U, [0], and [NI were used.

Extending the definition of Szatrowski (1980), the explicit linear maximum likelihood estimator

(ELMLQE) for 2(k2x1)' with k2 = k + 1 k1, satisfies 2MLQ = AY20, where A is a linear

transformation that is not random and does not depend on any parameters and Y2° does not depend on any

estimators or unknown parameters.

Consider the following notation for the ALQEM for (Y X), where it is artificially assumed that

E[Y20] E {X
I

E } as indicated in section 3.2.1

k+1 k1 k+1i) E[YI= X= V2 = = = Xi +X2 forX' E
i=1 i=1 i=k1+1

ii) V = 2Wv E V° C £PD(Sn,Sn)

iii) F117 : Sn' S Fiv = -

iv) Nx : Sn -* S = I - X(X*X)_l X1* = I Px1.

The definition in i) gives a partition of the expectation while ii) gives the form of the covariance. The

notation in iii) and iv) define linear transformations that will be of interest in later results. Assuming the

are linearly independent, then i(X) = k + 1 and this model fits into the full rank setting. The

EGLSE for can be partitioned to give an EGLSE for which can be compared to the LSE for . The

least squares, generalized least squares, and estimated generalized least squares estimators for the

ALQEM forNxY are:

LSE: !I2I = (X*NxX)_lX*Nx1 Y.°

GLSE: =

EGLSE: 2 =

for a given where is PD

where = is PD V Y E fl!1.

For clarity, the EGLSE will often be labelled as The ALQEM for (Y X) was defined so
that the equations for the EGLSE correspond to the ML equations for . The following lemma establishes

the equivalence between the EGLSE and the MLQE for

Lemma: !h2MLQ = 12EGLs

proof From section 4.3.2, XOMLQ = XOEG MLQ = EGLS multiplying both sides by
(X*X)_lX as X° has full column rank. Then EG can be partitioned as in lemma 2 in section 6.1. .
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Under the ALQEM for (Y Xi), the response = X) (Y X)' will generally depend

on as X = X(X'V1X)-X'V1y. This is likely to present a difficulty in satisfying the definition of

an ELMLQE for 3/. In order to deal with this difficulty, it will be assumed that ZC holds for the

Y-Model where (VX) C R(X) V E . As shown in section 4.2.2, this condition is sufficient for

X NxY V e k+1 such that V is PD. Under ZC for the Y-Model, the ALQEM for

(Y X) can be used to obtain conditions for the existence of an ELMQE for F'3/. However, it is

possible that a weaker condition could suffice for some examples as only the subvector 3/ is of interest.

Still, the following theorem will assume ZC.

ALQNY-ELMLQEFR Theorem: Consider the Y-Model under [U, [0], [N], and ZC. If 3/MLQ exists

MLQ
is PD and R(VNxX20) c R(X) V , then 3/221 is an ELMLQE for .

proof Since
MLQ

is PD by hypothesis and 2MLQ = 2EGLS by the above lemma,

3/2MLQ = 21221 = AY2° by the proposition in section 6.4.1 where A = (X*NXX)_lX20*NXi and

Y' = NxYY'Nx does not depend or by ZC = 31221 is an ELMLQE for 3/ by definition. .

Note 31221 may not be an unbiased estimator for 31, but it does satisfy the requirement of an

ELMLQE. An example will be presented in section 6.6. The explicit expression for 31221 is given below.

[TI1 T121 and u = {Y'NxV2NxY}(k+l)l = I I.Lemma: LetT = {tr(VVj)}(k+1)(k+1)
LT21 T22J [!j

For the ALQEM for ( X) under ZC for the Y-Model, 31221 = (T22 T21Tj1T12)-1( T2iTjti).

proof Since ZC holds for the Y-Model, then Y = NxY by the Y-FUBLIJE theorem

= {tr(VY)} = {tr(VY'NxNxY)} = {Y'NxVjNxY} = . By the last proposition in section 6.4.1,

31221 = (X*NxX20)Xl0*Nx? Y<> = (T22 T21Tj'T12)-1( T2iT11z&i).

6.4.3. ELREMLQE Results

For doing restricted maximum likelihood estimation in the Y-Model, assumptions [U, [0], and [NJ

were used. Extending the definition of Szatrowski (1980), the explicit linear restricted maximum

likelihood estimator (ELREMLQE) for 2(k2x1)' with k2 = k + 1 k1, satisfies 3112REMLQ = AY°, where

A is a linear transformation which is not random and does not depend on any parameters and Y°does not

depend on any estimators or unknown parameters. Consider the notation listed below for the LQEM for

NxY where V = NxVNx:
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k+1 k1 Ic

i) E[Y°] = X° = = = + >2 = X1 + Xth forX E £(R!ci,S)
i=1 i=1 i=k+1

ii) V = 2W E V° C £PD(S,S)
- V1 -iii) Fiv : Sn' S Fivo

iv) Nx : S, + S NX? = I - = I Px.

The definition in i) gives a partition of the expectation while ii) gives the form of the covariance. The

notation in iii) and iv) give linear transformations that will be of interest in later results. Assuming the

NxVNx's are linearly independent, then i(X°) = k + 1 and this model fits into the full rank setting. The

EGLSE for can be partitioned to give an EGLSE for which can be compared to the LSE for . The

associated least squares, generalized least squares, and estimated generalized least squares estimators for

the LQEM for NxY are given by:

LSE: !1221 =

GLSE: =

EGLSE: 2 =

for a given where is PD

where = is PD V I E R,.

For clarity, the EGLSE will often be labelled as 1LEGLS. The LQEM for NxY was defined so that the

equations for the EGLSE correspond to the REML equations for . The following lemma establishes the

equivalence between the EGLSE and the REMLQE for 2

Lemma: 1L2REMLQ = 2EGLS

proof From section 4.3.3, X°REMLQ = XOEG REMLQ = EGLS multiplying both sides by
(X0*X0)_1X0 as X° has full column rank. Then EGLs can be partitioned as in lemma 2 in section 6.1.

The main theorem can now be stated concerning the existence of an ELREMLQE for 2

LQNY-ELREMLQEFR Theorem: Consider the Y-Model under [U, [01, and [NI. If exists

REMLQ
is PD and R(V°NxX) C R(X°) V 1f E , then I22J is an ELREMLQE for .

proof Since is PD by hypothesis and 2REMLQ = 2EGLS by the above lemma,

2REMLQ = !J2J = AY° by the proposition in section 6.4.1 where A = (X*Nx1X20)_lX20*Nx1 and

= NxYY'Nx does not depend or = is an ELREMLQE for by definition. .
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The ELREMLQE for is given by 21221 which is linear and UBLUE for 2. Examples will be

presented in section 6.7 and 6.8. A lemma is now given which shows how to calculate 21221. Note that
= as given in the last lemma in section 6.4.2.

IT11 T121 1thIand ü = {Y'NXc'iNXY}(k+l)l = I

- I.Lemma: Let i = {tr(cTjcTj)}(k+l)X(k+l)
L21 T22] L2J

For the LQEM for NxY, 2/221 = (1'22 T21T1iT12)'([Qa T2iT112i).

proof Note {tr(%?Y°)} = = {y'Nc/Ny} = . By the last proposition in

section 6.4.1, 31221 = = (i'22 T21T11 Ti2) l(3&2 T2iT11ji). .

6.5. Checking the Conditions

This section discusses methods and issues involved in checking the UBLUE conditions under

assumptions [LI and [01 for the Y-Model. These checks are designed for a programming language that

can handle matrix computations. The following result is useful for performing the checks.

Lemma: i) R(A) c R(B) R(vecA) C R(vecB).
ii) A1, ..., An E 5p {B1, ..., Brn } R({ vecA1, ..., vecA) J C R( [vecBi, ..., vecB,) }.

1 2 1 41 (vecA)' 1 2 2 2proof i) Counterexample: A
2 2

B
2 4]' (vecB)' 1 2 4 4

ii) A1, ..., A e sp{Bi, ..., Bm} A = for some E m

vec A = vec B3 by the linearity of vec

R( [vecAi, ..., vecA)] C ([vecBi, ..., vecB,)] by the definition of containment. .

Assuming [LI and [0], consider the following checks that can be made for Zyskind's Condition in the

Y-Model (1), the full rank assumption in the LQEM for (2), the Quadratic Subspace Condition in the

Z-Model (3), and the Generalized Zyskinds Condition for the full rank setting in the LQEM for Z (4).

(1)ZCCheck:R(VX) cR(X) V3/2e.

E(VX) c R(X) V 31 (VX) C (X) V 31 E flk+i as contains a non-empty open set

z(ViX)C(X) 11,...,k

r([V1X X]) r(X) = 0 1 = 1, ..., k from the proposition in section 2.3

([V1X V2X ... VkX XJ) (X) =0.
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(2) Full Rank Check: (Xt) = dim spVt = r.
Consider S = {vec(Rj)}n2xr . The model has full rank provided r.(S) = r fl(S) r = 0.

(3) QS Check: E(Xt) = sp{Ri, ... , Rr} is a QS.

Let d = () + () = r+ r(r 1) = r(r+ 1).Forj = 1,... ,r, I = 1, ...,r, j <1, let
M1 = RR + R1R3. Then spV is a QS M31 E spV V j, 1 from the proposition in section 2.8

R(M) C (S) where M = {vec(M1)}fl2Xd and S = {vec(Rj)}n2<r by the above lemma

r(M,S) fl(S) 0 from the proposition in section 2.3.

(4) GZCFR Check: R(1'NtX) C R(X) V E

i) Characterize P4 R.

Let i = r1 + 1, ...,r, h = 1, ...,r1, m = 1,..., Ti, and r2 = r r1. By lastproposition in section 6.4.1,

vec(PtR1) = vec( a2Rh) = >avec(Rh) = [vec(Ri) ... vec(Rr1) ]Tfjp1

where a(') T1jitjj.i = {tr(RmRh)}<ri{tr(RjRh)}rixi. Then unvec vec(PxtR2) to obtain PtRj.

ii) Find a spanning set for B(Nt Xi).

NoteB(NxtX) = Nt[B(X)] = sp{Eri+i,...,Er} whereE2 = NtR = R PtR.
iii) Find a spanning set for sp{B( VNtX) j E }.

B(VNtX) = V[B(NtX)1 Y{sp{Eri+i,...,Er}] sp{VEr1+i,...,VEr} by ii)

= 5p{REr,+iR, ..., RErR}. Thus,
sp{B(VNtX)k1 E = 5p{REr1+iR, ..., RErRJJ E
= sp{Giri + 1 <i <r, 1 <j < 1 < r} where = RER1 + R1ER by lemma I in section 4.3.1.

iv) Thus, GZC holds E(VNtX) C B(X) V
sp {R311< j< r} Vi,j,lr1+1<i< r, 1< j< l<r by iii)

B(G) C B(S) where G = {vec Gjjl}n2xr2d and S = {vec by the above lemma

z(G, S) = 0 from the proposition in section 2.3.

The checks (2)-(4) have been demonstrated using the notation from the LQEM for . This was done

to demonstrate their applicability to both the ML and REML estimation procedures using the ALQEM for

(Y X) (a) and the LQEM for NY where c/ = NxV2Nx (b). The respective changes for checks

(2)-(4) would be as follows for these two models:

S M G

(a) {vec(V)} {vec(VjV + VV)} {vec(VjEV + V1EVj)} Nx1V,

(b) {vec()} {vec(i7Vi + Vi7)} {vec ('EV, + 1E')} Nx'



For purposes of characterizing examples which meet the UBLUE conditions, certain tools are helpful

in addition to the checks described above. The first item is an RTABLE which examines pairwise

products of the matrices in the set spVt. The entries of the table assess the balance in the design. The Ti!

entry of the RTABLE is given by:

f 1 if RRjcR forsomec,p
0 if R3R,=0
1 if R3R1 =cR forsomec0,p

The second tool involves the elements f) defined by the relation >a tr(RmRh) = tr(RmRi)

for 1 m T and Ti + 1 i < r which is given in part i) of the last proposition in section 6.4.1. If

a 0, then it is likely that Tmh = 0 or 1 would be needed in order for the relation to hold. However, if

a = 0, then factor h would not need to have balance properties with respect to factor m. This tool

provides model-based conditions, as it indicates whether or not the effect associated with factor h should

be in the model given the design. The significance of ) will be evident in later examples.

It is helpful to know that when checking for the existence of an ELMLQE or an ELREMLQE for a

subvector of the variance component vector it is only necessary to consider models with more than two

variance components. This is due to the fact that a model with two variance components which satisfies

the GZC will automatically satisfy the QS condition.

Theorem: Assume spV = {R1, R2} where R = R2, R1R2 = R1, and tr(Ri) 0. If GZC1 holds for

or , then spVt is a QS.

proof i) GZC for1 C112 e spV where G112 is defined in the GZC check. Thus,

Ri(R1 aR2)R2 + R2(R1 aR2)Ri = R? aRi + R? aR1 = 2(R aRi) E spV

= R e spVt since R1 E spV. Thus, spVt is a QS given the properties of R2.

ii) GZC for = C212 E spV

= R1(R2 aRi)R2 + R2(R2 aR1)R1 = R1 aR + R1 aR = 2(R1 aR?) E spV.
By the last proposition in section 6.4.1, a !' 0 as tr(Ri) 0 by hypothesis.

Hence, R? spVt since R1 E spVt. Thus, spVt is a QS given the properties of R2. .

Consider the variance component vector rx1 = [ILl'i(rixl) 1Li2(r2)<1)I where there is interest in

= {L'i}r2xi. For the purposes of checking GZCm for , it is possible to check simultaneously for the

vector or individually for the components l'j i = Ti + 1, ..., r. The check described above was

presented for the simultaneous case. However, it may be computationally easier to check for the GZC
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individually. In this case, the check would be applied to '/ for i = r1 + 1, ..., r where is a

subcomponentof [I(r_ixi)1'iI'

Theorem: GZCpi for (r2x1) GZC for J'j V i = ri + 1, ..., r.

proof i) Suppose GZC for . Then 2I is UBLUE for 2 by the LQZ-UBLUE theorem

= 4i is UBLUE for /'j V i = ri + 1, ..., r by the Linear Closure Property where

6={6}= {. GZCgfor Vi=ri+1,...,rbytheLQZ-UBLUEmtheorem.

ii) SupposeGZCiforVi=ri+1,...,r.Thenfori=ri+1,...,r
b1 is UBLUE for by the LQZ-UBLUEm theorem

= {J}i,<i is UBLUE for by the Linear Closure Property

= GZC for (k2x 1) by the LQZ-UBLUEpg theorem.

The methods presented here for checking the conditions are used to verify the existence of examples

that satisfy the GZCm. Such examples are given in sections 6.6, 6.7, and 6.8. The methods were also used

to search for examples among 3-way models which are presented in section 6.9.

6.6. ML Examples: Balanced Models with Random Highest Possible Order Effect

This example assumes complete balance and that the highest possible order effect is random and

included in the model. The highest order effect may correspond to an interaction or nested effect. It is

necessary to assume that is estimable in this setting, or equivalently that dim spV = k + 1, in order to

use the results of this chapter.

Theorem: Consider the Y-Model under [LI, [01, [CI, and [NI. Suppose the design is completely balanced

and the model contains the highest possible order interaction as a random effect. If 1MLQ exists and
MLQ

is PD, then a has an ELMLQE.

proof Let r = number of replicates and T be the design matrix associated with the highest order

interaction. Let k + 1 identify the residual term and k identify the random effect associated with the

highest order effect. Note Vk = rPT due to complete balance.

By last proposition in section 6.4.1 with m = 1,..., k,

k k-i
I

ahtr(VhVm) = tr(IVm) = > ahtr(VhVm) + aktr(rPTVm) = tr(Vm)
h=1 h=i

k-i
ahtr(VhVm) + raktr(Vm) = tr(Vm) as T is associated with the highest order effect

h=1
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I'h=k . 1= ah =
h k

as is uniquely determined since is estimable. Thus, PxI = rPT = PT

Ee(1 PX1)I=IPT.Then
(a) ifjor 1 e Gj1 = 1/3(1 PT)V + V1(I PT)V3 = 0 E as R(Vj) C R(PT)

(b)if j=l=e Geee=I(IPT)I+I(IPT)I=2(IPT)2Ve Vk E(X°).
By the GZC check and the ALQNY-ELMLQEn, an ELMLQE for o as Cjei E (X°) Vj, 1.

6.7. REML Examples: Random Pseudo Balanced Models

Particular models have ELREMLQEs for the residual variance component under pseudo balance.

Pseudo balance is defined in section 3.1.3. Consider a random model that has the highest possible order

effect as random and at least one other random effect. LetH denote the matrix associated with the highest

possible order effect and let C denote the matrix for any other random effect in the model not including

the residual error term. Let V, V,, and Ve denote the covariance matrices associated with the arbitrary

random effect, the highest order effect, and the residual term. It is also necessary to assume is

estimable, or equivalently that dim spV° = k + 1, in order to apply the results of this chapter.

Lemma: For the random model described above under pseudo balance:

i) /9=(IP1)GG'(IP1) Vh=r(PHPi) Ve= IP1
ii) V9Vh = rV9 VgVe =

iii) Ee = (I Pi)Ve = Ve V,.

proof i) Note H'H = rI by pseudo balance. Thus,

Vh = (I P1)HH'(I Pj) = r(I Pl)PH(I P1) = r(PH P1)

and the other covariance matrices follow from definition under the REML procedure.

ii) V9Vh = r(I P1)GC' (PH P1) = r(I P1)G(G' C'P1) = rc/9 by i) and R(G) c (H).

In addition, VgVe (I P1)GG'(I P1) = c/g.

k

iii) From the last proposition in section 6.4.1, Px Ve amVm where for g = 1,.., k
m=1

k

atr(129f/) = tr(c'gQe) = tr(1'9) b.ii). Note tr(9V5) = rtr(9) by ii) = ah = and ag = 0

m=1

for g = 1, .., k as is uniquely determined since is estimable. Thus, Ee = (I Pxi)c'e = 2e V.

Theorem: Consider the Y-Model under [LI, [01, [CI, and [NI. Suppose the design is pseudo balanced and

that the model contains the highest possible order interaction as a random effect. If 1REMLQ exists and

V- is PD, then a2 has an ELREMLQE.
ILREMLQ e
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proof Note G1 = c7Ec71 + V*IEC7. By the lemma,

V9Ee=V9 r79 =0 Gget0 Vg 1,..,k, 1 1,...,k+1

c7eEe Ee Geee = 2Ee e R(X°). Thus, G1 E (X°) Vj, 1.

By the GZC check and the LQNY-ELREMLQEFR theorem, an ELREMLQE exists for o.

6.8. REML Examples: Random Models

This section provides conditions for the existence of ELREMLQEs for variance components in a

class of random models. In order to achieve a result that includes all random models in this class, the

notation is quite cumbersome. Consider p factors in a classification model with the random vectorY
indexed as Yj*r, where f* is a vector of indices indicating the levels of the factors associated with the

observation Yf*r. Additonal notation is given below using definitions from section 3.1.3:

Notation: F* = {1, ..., p} = the complete set of all factors

F = {F
I

F c F, F-effects included in model} = collection of factor subsets of all included effects

E = [Ii,..., f1' = vector form ofF = {fi, ..., f}

f = Eu, ...,
= vector of indices of levels of factors in E where i e {1, ..., t} for j = 1, ..., u

tF = JJtj2 = number of levels associated withf

#11' = number of elements in IF

F' 11 F = vector listing the factors associated with F' fl F

= { 1, ..., p, p + 1 } = factor subset associated with the residual error term

R = vector listing residual factor associated with 1Z..

In order to include the residual, 1Z, let Ft = F U R.. Now examine a partition of F* where
= U T' U K, using the symbol U to denote disjoint union. Consider the additional notation and

assumptions for the above partition:

Notation: II = {I 11 C I, I non-empty, I-effects included} K = Ft\ll = JIC

= {J 3 C J, 3 non-empty, 3-effects included}
K = {K

I

K C )C*, K non-empty, K-effects included}

11J= {IuJIIEE, 3 EJJ} JJ!K= {JuKIJ EJ, K e K}

II Lii = {I U 3 1 11,3 E JJ, (I U 3)-effects included} = ii din F

dill K = {3 U K 13 E JJ, K E K, (3 U K)-effects included} = JJ K fl F

1111K = {I U K 1 e 11, K e K, (I U K)-effects included}

IILIJLJK={IUJUKIIEII,3 EJJ,K EK, (IUJUK)-effectsincluded}
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Assumptions: i) II U JJ = II l JJ ii) TI U K = 0 iii) II Li J U K = 0

iv) It is possible for K = 0 or J UK = 0, but not both.

Under the partition, notation, and assumptions, the set of all factors can be represented as

IF = 11 U JI U K U (II U J) U (J UK). The associated model can now be written as for

r = 1, ..., njj where:

*fk.r=L+a+ b+ + > (ab).+ > (bc)+ej.j*k*r
IcII JEJJ XEIK IuJEIIUJJ JUEJJUX

= ijz + + ZJ + ZKc} + > Zu()11 + Zj( + .

IEJI JEll AEK IuJEIIuJJ JuKJJuK

In addition, define Nx = I P1, VF = NxZpZNx = NxVFNX, and denote the incidence matrix

by N = {n[j*j*k*1} {fl[CjC/C]}. If the incidence matrix is summed over f*, then its position will

be replaced by '*'. If the incidence matrix is sunimed over a subvector of f c, then its position will be

replaced by . '. The following lemmas will be used to show that if the set J has a dominating factor, then

Bal(I1 U dJ) and Bal(II dl K) implies there exists an ELREMLQE for or for all variance components in

the 11-set. It is necessary to assume that is estimable, or equivalently, that the F's are linearly

independent V F E IF.

Trace Formula for Quadratic Expression: Let C = {c3}, D = diag({d2}), then tr(C'DC) = >22diic?j.

proof Note (C'DC) = = dc c1.

Lemma1:i)BaI(!UJ) n[i.j.*I=n[1.1.*] VIE II,JE dl.
ii)IfBal(IILJJI),thenVIE 11,JE dl

V =m1(PiPj) rn =n[1.**]
Vj =m(P.jP1)

=mu(Pjj-Pi) mij=n[1*] where m=tmjjm=tmjj.

proof i)Bal(11IJdl)Bal(IUJ) VIE II,Y E dl
VIE11,JEdl n[1.j.*]= >

fl[j*j*k*]fl[11*]
I'Ell\I J'Ell\J EK

ii) Bal(11 U dl) Bal(I U J) V I E II, J E dl
= V1=miPi,Vj=mjPj,Vij =mjjPjj where mu=ri[.j.*]=n[1.1.*]

m =n[.**]= n[1. **]zztjn[1.1.*Irtjmjj
mj =n{*j.*J=n[*.*]=tjn1.k.*}=timij.
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VIE J1,3'E JJ,KE K.
ii) Bal(11 J K) n[j aob k.] = n{. aob . k]

V I E 11, 3' E J with j jajo j' J with
'

ob K E K.

iii)Ba1(1IJJJK) = Ba1(11JJIJK).
iv) If E J j' c jd V 3' E J (D), then Bal(1[ JJK) Bal(11 J K).

proof i)Ba1(11JK)Bal(II3'UK) VIE 11,JE J1,KE K
VIE ]I,JE JJ,KE K n[i.j.k.]= n[j*j*k*]_n[ijkI

I'ElI\I J'cJ\J K'elK\K

ii) Bal(11
I

JJ ] K) <z Bal(113' U 3" U K) V I E 11,3' E dl, 3" E JJ, K E K

VIE 1l,JE JJ,3"E dl,KE K
fl[jjajojbk]_

i:
fl[j*j*k*]=fl[1.jajojb.k.].

I'JI\I JtEJ\JUJ' 'EK\

iii) By ii), V I E II, 3' E JJ with j jajo 3" E dl with j' K E K

Bal(11 dl dl K) n[i aob k ] = n[1 aob . k.] V I E 11, 3' E dl, K E K

> fl[j.1a1olb.k.I=fl[j.jalo.k.I=fl[1.2.k.] VIE 1I,3'E JJ,KE 1K
T J\J

Bal(11IdJK) byi).
iv) Bal(11 dl dl K) < Bal(I13' U 3' U K) V I E 11,3' E JJ, 3" E dl, K E K
(D) (D)

Ba1(IJ U jd U K) V I E 11, 3' E dl, K E 1K Bal(IlJ" U K) V I E 11, K E K
(D) *Ba1(I3 U K) V I E 11,3 E dl, K E K Bal(I[ dl UK).

Lemma 3: i) Bal(11 U dl), Bal(1I dl J K) = 0 V I E 11, K E K.
ii)Ba1(11Udl),Bal(liIdlIiK)=VjjcVI=0 VIE 11, 3'UKE dJUK
iii) Bal(IIUJ), Bal(I[Idl iK) => 1c'1) = 0 VIE 11,3 E dl, K E K
iv)Bal(11Udl),Bal(11dlI]dJK)=VjqcVjtiVpKVJJ 0 VIE 11,3'EJJ,3"UKE JJUK.

proof i)(1) Note tr(Z(Pi Pl)ZK) = tr(ZkZI(ZZI)ZZK
(i k) 1 i(k) (k)F(k,i)tr({n{ *.&. ]};1diag(1__1__}){n[i. *k. 1}'tK {n{* *. ]}-1{n[**k. }}1;)

tK t1 tK
n2[1.*k.] t?n2[1.*k.l

>1( >n2[i.*k.]
n2[**k

n[i. * *] n[* * * I' Y (>12 n[1. * * I
tjn[1. * *] ) = 0 by lemmas 1 and 2

k=1 =1 i=1 =1

= Z(P Pl)ZK = 0 since NND = Z(Pi P1) =0.

(2) By lemma I iii) V I E II, K E K,

= (I Pl)ZKZ(I Pi)mi(Pj P1) = mj(I Pi)ZKZk(PI P1) = 0 by (1).

ii)(1) Note tr(Z(Pj Pi)ZJK) = tr(ZZI(ZZJ)ZZJK Z1(1'1)11'Z)
'Uki)

xt1t

() r (jk){n[*j.k. J}tKxl{n1*i ]})n[* * * *



= = ) = Oby lemmas land 2
j=1L=1 i=1 j=1=1=1

='Z(PIPl)ZJK=O sinceNND=Z(PiPi)=O.
(2) By lemma liii) VIE II, JU/CE JJUK,

= m(I Pl)ZJKZ&(I P1)(P1 Pi) = mi(I Pi)ZJKZ&(Pj P1) =0 by (1).
iii) (1) Note tr(Z(Pu PJ)ZK) = tr(ZZu(ZJZu)Zj'JZK ZZj(ZZj)ZZK)

(ik)= tr({n[ j ]}< 11diag({ -*1}){n[ j L ]}tltjxtK

(i,k){n[* j k }{n[* i
n2[ik] n2[* .k.] 4 4 n211ik1 t?n2{i] = 0 by lemmas 1 and 2= > ( nj.*1 n[*j.*1 ) = n.i.*i t1fl[111)21 =1 1 j=1 =1 il=1

= Z(PUPJ)ZK=0 sinceNND = Zk(PuPj)=0=' Z(PjPu)=0.
(2) By lemma I iii) V I E II, 3 E J, /C E K,

t1jj) = f/K(mJ(PJ P1) timij(Pjj P1)) = mJfTK(PJ P11)

= mj(I Pl)ZKZk(I P1)(j Pu) = mj(I Pj)ZKZk(Pj P11) = 0 by (1).
iv) (1) For 3 E JJ, let j jajo and for 3' e dl, let f

jOjI) Note

tr(ZK(Pu Pj)ZJ,K) = tr(Z,KZu(ZJZuY1ZcJZJ, ZjIKZJ(ZZJ)1ZZK)
= tr({6o,on[i.jaj0jb k k

- {6.,fl[*jafjb k k
- (

5o,on[* fjojbk]
( ___________ n jojojbkj

L_ L_ L_k n[i.j.*] n[*j.*] I Z_. L' n[*j.*]j=1 =l =1 =1 1=1 k=1 =1

= (
n2[if2O1b/i I

) 0 by lemma 1, lemma 2, and
j=1 k=1 =1

using the trace formula for a quadratic expression where the first part of the difference has

C' = = {c(.jIk)()} = {än[i jao1b
k

D = (ZZuY1 = {d()()} = {fl[I} = tr(C'DC) =

Then Z,K(Pu-1I)Zl'K= 0 sinceNND Z,K(PuPJ)=0= ZK(PjPu)= 0.
(2) By lemma 1 iii) V I E II, 3 E dl, 3' U /C E dl Li K,

t1c') c'YK(mJ(PJ F1) tlmlJ(PIJ F1))

= mjf7JI(PJ Pu) = mj(I P1)Zj'KZ,K(I P1)(Pj P11)

=mj(IPl)Zj'KZ.,K(PjPiJ)=0 by (1).

Lemma 4: Assume Bal(1I II dl), Bal(JI IJJ ti dl I K) and consider T111) = 11 V I E 11 where

{tr(VHc'w)}(#aJ)(#1u){p4?} = {tr(iiHJ)}(#1u)1. Then V 3 E dl U)

(I) (I)
T1' = (1), p1k, = tpT, and = 0 V Fi' i' ,fl' provided

(ci) {'f}(#J)(#J){pP} = and (c2) ti
J'E .IJ
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proof By the definition of ), V I E II, V 7-L E H tr(H7Hl)pf) = tr(c'H7I) 
fl'E]HI 

i tr(cTHcTj,)p + : tr(c'jy)p? = tr(cTHcTI) 
J7EJJ - IUJ'EIIUJJ' - 

> pP[tr(17Vj') - tItr(VHIJ')] = tr('H'J) (*) as I stays the same. 
J,EJ - 

The goal is to verify that p( satisfies (*) V R E H under (ci) and (c2). The conditions (ci) and (c2) are 

shown to hold for cases i), ii), iii), but they are obtained using cases iv), v). Thus, consider the following: 

i) V.7 E JJ p[tr(cjcTj,) - titr(j'iji)J 
J'eJJ - 

= p[mjmj'tr(Pjnj' - F1) - tjmjrnjj'tr(Pjnj' - P1)] by lemma 1 

J'EJJ - 

= pP[mjmjitr(Pjnji - P1) - mjmjitr(Pjnj' - P1)] = 0 by lemma 1 

J'EJJ - 

= tr(c'jc'1) by lemma 1. 

ii) V K; e K pP[tr(cl(c'J') - tItr(KIJ')] = > pP[tr(( - t111)] = 0 by lemma 3 iii) 
J'EJJ - J'E.If - 

= tr(K'I) by lemma 3 i). 

iii) V .7 U IC i UK >2 pP{tr(VjjVji) - tltr(VJKc'u') 
.J'EJJ - 

=>2 pP[trccnJK(c7y - t111')] = 0 by lemma 3 iv) 
J'EJ - 

= tr(jjci) by lemma 3 ii). 

The next two cases are where the effort is needed to obtain the conditions (ci) and (c2). 

iv) V I UJ E IlLi JJ >2 pP{trQj+jj') - tjtr(j+ju')] = tr(1+ji) 
J'EJT - 

>2 pP [mi+jinj'tr(Pjnj' - P1) - tJmI+JrnlJ'tr(P(I+ J)(JflJ) - F1)] 
J'E.lf - 

= mjjmitr(Pi+ 
n - F1) by lemma 1 

>2 - pPmJ'{tr(P(J+flI)(JflJ') - = mjtr(Pj+1 - F1) 
J7e JJ 

>2 - pPmytjnj'(tj+ni - 1) = mi(tj+nj - 1) (0). 
1' E JI 

Note (o) holds trivially when t1+ n = 1, so consider the case where t1-- > 1 

= >2 pmL'tjnJ' = m >2 PtjnJ' = as n = tm = tj'mj' by lemma 1 

J'EJJ .J'EJJ 
{}(#J)x(#J){PP} -j11(#JJ)x1 (ci). 

v) for R, >2 pP{tr(cRcTl,) - tJtr(Ri7u')] = r(c'jj) 
J'EJJ 

>2 pP [mjitr(Fji - P1) - tjmjjitr(Pjj# - P1)J = mitr(Pj - F1) by lemma I 
.J'EJJ - 
>2 - pPmji[tr(Piji - = mitr(Pi - P1) >2 - pPmjitj(tj - 1) = mi(tj - 1) (oo). 

J'EJ - J'eJ[ - 

Note (oo) holds trivially when t1+ ni = 1, so consider the case where t1+ n 1> 1 = >2 - pPmytji = m 
Y'e J 

>2 - pPm = >2 = (c2) as n = tm1 = tj'm' by lemma 1. 
J'EJ ,TEJJ 
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The next lenmrn is given here for convenience to show that covariance matrices which correspond to

the effects in II, JJ , II LI JJ have a closure property.

Lemma 5: Let -y = sp{I E 11,3' E 'i, , u}. Under Bal(I[ U JJ),

V1''VsEy VI'UJ'E 11LJJJ,V VsEy.

proof Since VsE-y= Vs=k1V1+kJV+k1V forsomeki,kj,ku.ByBal(IIUJ),
= mpj'(kimj(Pyni P1) + kjm(Pjinj F1) + kumu(P(J'fll)(1'flJ) F1)

= 11i1V11 + lj'niVynj + l(PnI)(J'nJ)V(I'nJ)(FnJ) E y
mj'J'kF-- if F' fl F 0

as I' 111 E 11, 3" H 3' E .11 and 1_F'flE { if F = 0

The following theorem gives a main result which states that an ELREMLQE exists for all variance

components simultaneously for the set of factors II under model based conditions (ci) and (c2), as well as

the design based conditions Bal(1I UI JJ) and Bal(]I IJJ SiT I 1K). The factors in 11 are examined

simultaneously so that TEl = lF\Jl II.

Theorem: Consider the Y-Model under [L], [0], [C], and [NI under the notation and assumptions given in

this section. In addition, assume conditions (ci) and (c2) in lemma 4 hold and that the design has

Bal(Il Li J) and Bal(I1 SiT JJ 1 1K). IfREMLQ exists and is PD, then an ELREMLQE for

proof Bylenima4under(cl)and(c2),V IE11 E1= pf'1= 'i+ p[c' t1V11]
flEIIh[ Je.1J

= C = 12EIc/ + VFEIVP. To show Gp E E(X°) V F, F' E iF. Then
i) V I' E 11 c'1E1 mpmi(Pi#ni P1) + p[O timi'mu(Pj'nj P1)1

Je JJ

= (mym! p'tjmi'mu)(Pp -ii P1) cx or 0 E R(X°)
.7E I

z V I E llGiqi+ cx "Fn"I+ cx 'yri or 0 e (X°) by lemma 1
= V 3" e SiT cx 0 e (X°) by lemma 1

= V .AC' E 1K Gi'jK' cx = 0 E (X°) by lemma 3 i)

=. V I U J E 1111 JJ C11++ cx cx 'i'rnr- or 0 E B(X°) by assumption i)
= VJ' UKY E SiT UK Grqç cx VI?njVJ,K, = 0 E R(X°) bylemma3 ii)
=> G1q cx V-iVR = V111- or 0 E R(X°).

ii) V 3" E SiT 17j,E1 = 0 + p'[mj'mj(Pjinj F1) timj'mu(Pj'nj F1)]
JEJI

= p)[myrn(Pyn P1) mjimj(Pyfl P1)] = 0 by lemma 1
JE I

VFE1Ft Gj'w=OER(X°).
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iii)VCEK KEI=KI+ p 7K(Jt1cTIJ)=O bylemma3i)iii)
Ye.J

=VEFt G=OEB(X°).
iv)V 3' UK7 E dl LJIK /JIKIEL = p jqc[ tIV'u} = 0 by lemma 3 ii)iv)

Ye.II

=.VFEFt GYK'WOER(X°).
v) V I' U 3' E 11 U dl

VIJ'EI = mi'j'mi(Pvni P1) + p'{mpj'mj(Pj'nj F1) tlrnl'J'mu(P(rfll)(yflJ) F1)]
Ye Jr

or 0 E sp{I E 11,3 E dl
I

,, = y.
Then V I U 3 E TIll .11 cx VV1++ = E y (X°) by lemma 5

and GI'yiR cx VSVR = or 0 E
By the GZC check and the LQNY-ELREMLQE1 theorem, an ELREMLQE exists for as

Gp E R(X°) V F, F' E Ft as the above holds VI E 11. .

The model based conditons (ci) and (c2) are helpful for identifying random models that have

ELREMLQEs for variance components corresponding to main effects. However, the conditions are

somewhat abstract, so possible structures in J will be examined which satisfy these two conditions.

Additional notation will be needed to describe such structures in IT.

Let dl = {3i, ..., J.} and 3* = {i, ..., s}. The set dl has a dominating factor providing jd E dl

j c jd V 3 E dl. Note that a dominating factor exists when dl has a nested or complete structure. In

addition, let M1 = ({'}J,J')rxr and M2 where R(M1) = R(M2).

A complete structure in dl will be useful for later results. Some special notation will be defined for this

case. For purposes of convenience in this setting, let Jo = 0 e JJ so r = 2. Then M = {tjnj}2sX2S has a

row and column of i's. Note M2 is a principal submatrix of M. In addition, define

.The

horizontal direct product 0 is defined in section 2.9.

This notation can be demonstrated by an example where 3* = {i, 2} and tj0 = 1. Then

Ii 1 1 i
i

=
Ii 1 2 [13> .M2

1 t1 1 t1 F 1 11x3]

Li t1 t2 tit2
Ii 01 Ii 01 Ii
Ii 1J Ii oJ Ii

Ii oI®Ii ii ii

Li 1] Li 1] LiIi 0

T = diag({(1,ti i)o (1,t2 i)}) 0 t2 1
0 0

0

)00)i0
0 0

andii
0 0
0 0tii 0
0 (t1 i)(t2 1)
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The following three lemmas establish properties that will be necessary for the final result.

Lemma 6: If Axbc = Bxb 0 C1< and Dbcxbc = diag(b ® f), then AD = (B' 0 )' 0 (C' of)'.

proof Letj= 1,...,b,k=1,...,c,i= 1,...,nandB={b3},C={ck},e={e3},f={fk}.Then
AD = {3k}diag({efk}) = {j ® }diag({efk}) = {bck}diag({efk})

= = {bJeJ}flb ® {ckfk}C

= ( o ) o {c o f} = o x1)' 0 a

Lemma7:Letm=#(.1TflJ').Then fl t3= 1+ (tj1 1)...(t3-1)jJflJ' {ji ..... j} c JnJ'

where {ji, ...,j} is non-empty and 1 u m.

proof i) Form = 1, fi tj = tj1 = 1 + (t1 1) = 1 + (t1 1)
jEJflJ' (ji)cJflJ'

=1+ >
{ji ......j}cTnJ'

ii) Assume the relation holds for m = k where J fl J' = (jl, ..., jk). Then the relation can be expressed
kasfJt.=1+ (t31-1)...(t--1)=A (1).

i=1 (j1 ..... j)c(j1 ..... ik)

Let Uk = {(ji,...,ju) C (j1,...,jk)U E [1,k]}

U+i = {(ji,...,ju) C (il,..,ik)IU e [0,k+ 1]} = {(j1,...,j)\(k+ 1) C (jl,...,jk)Iu e [0,k}}
{(ji,...,j)LJ(k+1) C (ji,...,j)Iu [0,k]}=UkJW (2).

k+1

Form=k+1, fltj.=tk+1A=(1+(tk+1-1))A=A+(tk+l-1)A
i=1

= [1 + (t1 1)] + [1 + (t1 1)...(t 1)](tk+1 1) by (1)

Uk Uk

= [1 + (t1 1)...(t3 1)1 + (t1 1)(tk+1 1) by definition ofW
Uk W

=1+ > (t1-1)...(t3-1) by(2).
Uk+1

fl t = 1 + (t1 1)...(t3 1) by induction. a
jEJflJ' {j1 ..... j}c.Jfl.7'

Lemma 8: i) The (.7, .7') entry of G is 1 'J' C .7, and 0 otherwise.

ii) The (J,J')entry of(1 0... o)(g1 0... ®)' is 1 {ji, ...,ju} C .7 flJ', and 0 otherwise.
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proof i) Follows from the definition of G.

ii) The column vector (si, ® ... 0 has entry 1 in row 3 {jl, ..., j} C 3 (1) by i).

The row vector (gd, 0 ... 0 )' has entry 1 in column 3' {ji, ...,ju} C 3' (2) by i).

Thus, ji ® ® ju)ji ® ® ju)' has entry 1 at (3, 3') {ji, ...,ju} C 3 fl 3'

as both (1) and (2) must hold for the entry to be 1. .

Corollary: Consider the Y-Model under [LI, [0], [CI, and [N] under the notation and assumptions given

in this section. In addition, assume Bal(lI Li dl), Bal(JI dl 1K), and that the set JT has a dominating factor. If

REMLQ exists and V is PD, then an ELREMLQE for .

proof i) Suppose dl = {Ji, ..., Jr} has a complete structure. Then Ji, ..., J, which contain only a single

element, are also in JJ. Hence,

(CTG')22 = [(1, 0 ... 0 (1., )] [diag({(1, t31 1) 0 ... 0 (1, 1)})]G'

= [. ([ 10 [
i])']G'rePeatedlyapPlyingLemmaoi=1 ji Ji_

= [ (k (t l))] G'i=1
= [(i (t31 1)ji) 0... 0 (i (t, 0... 0 (i3)J'

= [(1,...,(t1

= II' + ... + (t1 1)(ji 0 ... 0 0... 0
= {1 + (t1 1)...(t3 by Lemma 8 where {j1, ...,j} non-empty

{ii .....j}cYnJ'

= { fl t3} byLemma7
jJflJ'

1 .1

t'[fl1'i = LV.L2.

ii) Order the matrix G to obtain G°so that the Jo column comes first (Jo = 0), the J columns which

contain exactly 1 member come next, and so on. This results in G° having ordered columns if

3 C 3', then the column corresponding to 3 precedes the column corresponding to 3'. Order the rows

of G°in the same manner. On the diagonal, the (3, 3) entry of G°is 1 since3 C 3 by Lemma 8. Above

the diagonal, the (3,3') entry of G°is 0 because if it were 1, then 3' C 3 and 3' would precede 3.

This cannot be the case as 3 must precede 3' in order for the 3, 3' entry to be above the diagonal.

G°is lower triangular and nonsingular.

iii) Note (G) = 2 by ii) = M is PD by i) as it is NND and has full rank

= every principal submatrix ofM is PD =' M is PD as it is a principal submatrix of M

= Mi is non-singular since R(M2) = R(M1). Thus, for any structure within J and

corresponding matrix (M1) (#J) (#J)' a unique solution (I) M {pP } = 1 (ci).
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iv) When dl has a dominating factor, then for the last row ofM1 corresponding to

j, c j-d V columns correponding to J'
= = 1 and so (ci) Mi{pP} = (1) i (c2)

J'EJ

v) By lemma 2 iv), JJ has a dominating factor = Bal(1l dl dl l K) z' Bal(lI dl 1 K).

a unique solution (1) which satisfies (ci) and (c2) by i)-iv). By v) and the above theorem, under

Ba! (II U dl) and Bal(Jl Idl I K), if the set dl has a dominating factor, then 3 an ELREMLQE for .

The conditions for the existence of an ELREMLQE for in random models are dependent on a

partition corresponding to 11, dl, K, 11 Li JJ, dl Li K under (ci) and (c2). The conditions (ci) and (c2) are

satisfied when dl has a dominating factor such as when there is a nested or complete structure. The design

needs to have Bal(ll LI JJ) and Bal(1l dl 1 K) in order for this model to have the ELREMLQE for . The

conditions for the random models may provide insight into conditions for other classification models.

6.9. Searching for Examples Involving 3-Way Models

In order to identify examples that satisfy the GZCrr for the variance component vector, a search was

conducted for 3-way classification models with 2 levels of each factor. Patterns were examined to identify

classes of examples such as those proven in sections 6.6, 6.7, and 6.8. These examples are tabled in this

section for reference.

Table 6.1 identifies the incidence matrices that were used for the search. These were chosen to reflect

types of balance (bal). Some of the designs are permutations of one another where these permutations

were used to identify the behavior of particular factors.

Table 6.2 lists models and the associated designs that had ELMLQEs or ELREMLQEs, but not

FELMLQEs or FELREMLQEs for the variance components. The results were obtained from a search of

all possible proper 2 level 3-way classification models under the designs listed in Table 6.1. However,

duplicate cases involving permutations of the factors were removed. In addition, REML cases do not

include those involving pseudo balance for random models that contain the highest possible order

interaction term and have an ELREMLQE for the residual component. These cases were proven in section

6.7. Also, the ML cases do not include completely balanced models that have the highest possible order

interaction and have an ELMLQE for the residual component. These cases were proven in section 6.6.

Such cases were removed to keep the table succinct.

For example, consider the first line of Table 6.2 denoted by (*). This line shows that for the ML

method with ZC for the Y-Model under incidence matrix 1 in Table 6.1, 3 an ELMLQE for o in a mixed

model with effect A fixed, effects B C BC random, and effects AB AC ABC omitted. The other lines of

the table follow in the same manner.
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Table 6.1. Particular Incidence Matrices for 3-Way Models with 2 Levels

# axbc axb axc bxc a b c balance

1
12 2 2 21

bat bal bat bat bat bat bat(abc)[2 2 2 2]

2
[

bal
[ ] [ ]

hal bal [] bal(ablc)

3
Ii 1 1 11 r2 21 [2 21

bal
r41

bal bal bat(bcla)[2 2 2 2] [4 4j [4 4] [8]

Ii 2 1 21 12 41
bat

12 21
bal

141
bat bal(aclb)[1 2 1 2] [2 4] [4 4] [8]

[

2 21
bal 12 41

bat bal bal bal bat(blac)
1 1] 4 2]

6
Ii 2 1 21 r2 41

bat hal bat bat bat bat(clab)[2 1 2 i] [4 2]

'

Ii 2 2 11
bat bal

12 41
bal bal bal bat(albc)

[
2 2 1]

L
4 2]

8
11 2 2 11

bal bat hal bat bal bal[2 1 1 2]

2 21 13 31 r2 41 [3 51
1 61

bat
1 6 1

bal(blac)
3 3] [5 5] [4 6] [3 s] Lio] [io]

10
3 31 r4 41 r2 61 13 71 r 8

1 bal
r 61

bal(blac)
2 4 4] [6 6] [4 8] [3 7] [12j [14]

11
Ii 2 1 21 12 41 13 31 13 31 1 61 r 6 1

bal bal(clab)[2 3 2 3] [4 6] [5 5] [5 5] [io] [io]

12
3 21

bal
[3 51 13

bat bat bat
3 2 ] [ 3] [s 3j

13
[

2 31 13 51 13 1 r3 51 [81 r81 [81
3 3 4] [s 7] [ 7] [5 7] [12] [12] [12]

2 41 13 61 13 61 13 61 191 r91 [81
14 [2 3 4 6] [6 9] [s io] [s io] [is] [15] [16]
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Table 6.2. Particular 3-Way Models with ELMLQE and ELREMLQE for Variance Components

f = FIXED . = NOT IN MODEL 1 = RANDOM EXPLICIT 0= RANDOM NOT EXPLICIT

DESIGN TYPE A B C AB AC BC ABC e

ML+ZC 1 mixed f 0 0 . . 0 . 1 (*)
3 mixed f 0 0 . . 0 . 1

mixed f 0 0 . . 0 1 1

1 mixed f 0 0 . 1 0 . 1

1 mixed f 0 0 . 1 0 1 1

1 mixed f 0 0 1 . 0 .

mixed f 0 0 1 . 0 1 1

1 random . 0 0 . . 0 . 1

3 random . 0 0 . . 0 . 1

5 random . 0 0 . . 0 . 1

6 random . 0 0 . . 0 . 1

8 random . 0 0 . . 0 .

15 random . 0 0 . . 0 . 1

1 random . 0 0 . . 0 1 1

1 random . 0 0 . 1 0 . 1

1 random . 0 0 . 1 0 1 1

1 random . 0 0 1 . 0 . 1

random . 0 0 1 . 0 1 1

random 0 0 0 0 . 0 . 1

1 random 0 0 0 0 . 0 1 1

1 random 0 0 0 0 0 . .

1 random 0 0 0 0 0 . 1 1

REML 3 mixed I . f . 0 0 0 0
5 mixed 1 . f . 0 0 0 0
3 mixed 1 0 f . 0 . 0 0
5 mixed 1 0 f . 0 . 0 0
3 mixed 1 0 f . 0 0 0 0
5 mixed 1 0 f . 0 0 0 0
2 mixed 1 0 f 0 . 0 . 0
6 mixed 0 0 f 1 0 0 0 0
8 mixed 0 0 f 1 0 0 0 0
3 mixed 1 f f 0 . 0 0 0
6 mixed 1 f f 0 . 0 0 0
8 mixed 0 f f I . 0 0 0
6 mixed 0 f f 1 0 0 0 0
8 mixed 0 f f 1 1 0 0 0
6 mixed f f f 1 0 0 0 0
3 mixed 1 f f 0 . . 0 0
6 mixed I f f 0 . . 0 0
3 mixed 1 f . 0 . . 0 0
6 mixed 1 f . 0 . . 0 0
2 random 1 0 . 0 . 0 . 0
7 random 1 0 . 0 . 0 . 0
7 random 1 0 0 0 . . . 0
2 random 1 0 0 0 . 0 . 0
7 random 1 0 0 0 . 0 . 0
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7. UMVUE in the Full and General Case

This chapter applies the results in chapters 4 and 5 to uniformly minimum variance unbiased

estimation. It has been shown that the conditions for the existence of an ELMLQE or an ELREMLQE are

equivalent to the existence of a UBLUE for the associated model. This section examines the relationship

of the ELMLQE and the ELREMLQE to the uniformly minimum variance unbiased estimator (UIMVTJE).

The UMVIJE is defined below for euclidean vectors T, 8,9, and :

(Casella and Berger,1990)

UMVUE: An estimator is IJMVUE for a parameter if it satisfies E9f1} = V , and for any

other estimator 8 E[SJ = 9 V 9, Varo(d'T) <Var(d'8) V 9, d.

The definition indicates that the UMVIJE has minimum variance over all unbiased estimators. Note

that the IJMVUE is model dependent through the expectation and variance. The results will first be

presented for the full case using the results of chapter 4 and then for the general case using the results of

chapter 5. Section 7.2 gives exact forms of the covariance of the ELMLQE and the ELREMLQE. For the

ELMLQE involving the fixed effects and the ELREMLQE involving the variance components, the

covariance can shown to be a function of the information matrix.

7.1. UMVUE in the Full Case

This section demonstrates that A'MLQ, MLQ' and FREMLQ are UMVUE for their expectation in

the appropriate model under the full UBLUE conditions. This purpose of this section is to show how the

results of this thesis are related to previous results concerning UMVUEs from Seely (1969,1971,1977).

The previous results prove that, under the full UBLUE conditions, a complete sufficient statistic (CSS)

exists for the normal family of distributions under both the ML and REML methods. This is established in

the following two theorems for the given family of normal distributions. This section assumes that is

mean estimable in the Y-Model, is mean estimable in the ALQEM for (Y X), and is mean

estimable in the LQEM for Q'Y.

(Seely, 1971)

Theorem 1: Consider the Y-Model under [L], [01, [N], ZC, and QS. Then ('V1, ... , Y' V1Y, Y'Y)'

and X'Y are jointly a CSS.

proof: (1) Note (VX) C R(X) = R(VX) = B(X)

= VPx = PxV and PxV1 = V1Px by the proposition in section 3.3.5.
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k+ 1

(2) From Seely(1971), spV is a QS = V1 = 9()V where

= [O1(J ) ..... 9k( )]' is an open mapping.

(3)f(,) = (21) IV as - N(X,V)

= h(, )exp(1y'V1 + = h(, )exp(V' + 'X'PxV')
= h(, )exp(1 V' + 'X'VPx) by (1)

k+1 k+1

= h(, )exp(1 9(2J2)y'Vj1 + 'X'( 9()Vi)Pxu) using (2)
k+1= h(,)exp( >j(th)j'Vj1+ [(,)]'X').
i=1

(4)Letl = k+1()]'L E 1V',2 E }.

Note R. x (q (i), ..., qk+1 ()) e l since for fixed , ranges over IV' and so ) ranges over IV'.

Thus, l = IV' x (E) contains a non-empty open set as R, contains a non-empty open set, contains

a non-empty open set by [0], and is an open mapping by (2).

(Y'V1Y, ... , Y'VY, Y')" X'_Y are jointly CSS from Lehmann (1986,Theorem 4.3.1).

The restricted maximum likelihood estimation method was presented in section 3.1.4. Consider the

matrix Qnxq forq = n z(X) which has columns that form an orthonormal basis for R(X)'. Then

Q'Q = I and QQ' = I Px = N. For the Y-Model under [N], Y N(X, V) which implies

Q'Y Nq(, Q'VQ). The latter model will be denoted the QY-Model. In addition, let

spV' = sp{Q'V1Q, ... ,Q'VkQ,I}.

(Seely, 1971)

Theorem 2: Consider the Y-Model under [LI, [0], and [N] where spV is a QS. Then

(Y'NxViNxY, ..., Y'NxVkNxY,Y'NxY)' is a CSS in the QY-Model.

k±1

proof (1) Let V = Q'VQ. From Seely(1971), spVD is a QS . = O()1' where

= [Oi() ...,Ok(! )]' is an open mapping.

(2) f(Q') = (27r) as - N(Q,Q'VQ)
k+ I

= h(!J)exp( using (1).

(3) Under [0], contains a non-empty open set

zz. (Y'NxViNY, ..., Y'NxVNxY, Y'NxY)' is a CSS from Lehmann (1986,Theorem 4.3.1). .

Seely (1977) also shows that the conditions in theorems 1 and 2 are necessary and sufficient for the

existence of a CSS. However, sufficiency is adequate for this section.
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It will be shown that the ELMLQE and ELREMLQE are functions of the CSS. This indicates that the

these quantities are UMVT.JE by the Lehmann-Scheffe theorem (Casella and Berger,1990,p320).

Lemma 1: If T(W) is sufficient for the family P = {fo(iz)I E 0} and if is a solution to the ML

equations, then is a function of T(W).

proof: By the Factorization theorem (Lehmann,1983,Theorem 5.2), T(W) is sufficient for the family P

4 fo(z) gg(T(jj))h(is) forsomeg,h. Thus, lnf() = 0 ln(g(T(iz))h(jjz)) = 0

1n(go(T(z)) + ln h() = 0 1n(go(T(j)) = 0 (*). Then is a solution to (*) which

depends only on T(z) is a function of T(W).

Theorem 3: Consider the Y-model under [LI, [0], [N], ZC, and QS where 1MLQ exists and is PD.

Then A'1 and F'i are FELMLQE and UMVUE for A' and E[F'1].

proof Since ZC holds and spV is a QS where
MLQ

is PD by hypothesis, A'MLQ = A'1 and

"1IMLQ = are FELMLQEs by the Y-FELMLQE and ALQNY-FELMLQE theorems. In addition,

a complete sufficient statistic for the family of distributions by theorem 1 where A'MLQ and 'MLQ

are functions of the sufficient statistic by lemma 1. Thus, A'J and ["j are UMVUE for their

expectation by the Lehmann-Scheffe theorem (Casella and Berger, l990,p32O).

Theorem 4: Consider the Y-Model under [L], [01, and [N] where spV is a QS, zLREMLQ exists, and

is PD. Then F' is FELREMLQE and UMVUE in the QY-Model for F'.

proof Since spV is a QS by hypothesis, FREMLQ = F'1 are FELREMLQE by the

LQNY-FELREMLQE theorem. In addition, a complete sufficient statistic for the family of distributions

by theorem 2 where F'REMLQ is a function of the sufficient statistic by lemma 1. Thus, F'1 is

UMVUE in the QY-Model for F' by the Lehmann-Scheffe theorem (Casella and Berger, 1990, p320). .

These results only apply to the full case and cannot be extended to the general case, since the family

of distributions do not necessarily admit a complete sufficient statistic under the general UBLUE

conditions. Results for the general case are given in the next section.
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7.2. UMVUE in the General Case

The previous section examined UMVUE properties under the UBLUE conditions in the full case

presented in chapter 4. This section will examine UMVUE properties under the UBLUE conditions in the

general case presented in chapter 5. These conditions will be used to provide expressions for the

covariance of A'MLQ, MLQ' and 'REMLQ Without the UBLUE conditions, such exact expressions

cannot be obtained. In addition, it will be proven that A'MLQ, rMLQ where is known, and FREMLQ

are UMVUE in the appropriate model for A' and F' under the UBLUE conditions. An estimator can be

shown to be UMVUE by showing that the covariance of the estimator attains a lower bound over all

unbiased estimators.

7.2.1. The Covariance Inequality

The next result gives the lower bound for the variance of an estimator. It will be used to identify the

existence of a UMVTJE.

(Lehmann,1983,Theorem 2.7.1)

Covariance Inequality: For an estimator 6 of g() and any function which depends on the data, and

has finite second moments, Var(6) Cov(6, ) [Cov()J'Cov(, 6) where equality holds if and only if

6 = Cov(6,)[Cov()]'+ c for some constant c.

proof: i) Var(6 Cov(6,)[Cov()11) 0

Var(S) + Cov(6, ) [Cov(Q.)]' [Cov()] [Cov()] 1Cov(, 6) 2Cov(6, ) [Cov()] 'Cov(, 6) 0

Var(S) Cov(6,)[Cov()]'Cov(,6) 0.

ii) The inequality in i) is an equality 6 = Cov(6, )[Cov()]1 + c for some constant c. .

The Covariance Inequality cannot be used directly since the right hand side depends on 6 through

Cov(6, ). For particular choices of 6 and , it will be the case that Cov(6, ) only depends on the

parameter and not on 6. For this purpose, some definitions and notation will be used from likelihood

theory (Lehmann,1983,Ch.2). Consider a family of distributions P0 for E T C RY where T contains a

non-empty open set in RY. Suppose the distribution P0 has density po The following definitions and

notation are useful:
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Definitions: Likelihood Function: L(OIw) pQ(:1)

Log-Likelihood Function: l(I) = in L(zL)

Score Statistic: u(OJw) =

Information Matrix: i(0) = Cov(u(t)) = {Covo(-l(tjj),

These definitions as well as the following results require certain regularity conditions pertaining to

the existence of derivatives, the existence of expectations, and the ability to interchange differentiation

and expectation (Lehmann,1983,p125-6). These conditions are met for the normal family of distributions

where the parameter space contains a non-empty open set (Lehmann, 1986,Theorem 2.9). Only this family

of distributions is of particular interest, so it will be assumed that the regularity conditions are satisfied.

(Lehmann,1983,Lemma 2.6.1)

Lemma 2: i) EQ[u(OIw)] = 0

ii) Covo(6, (Iz)) E0[6I V 6 with finite second moments.
I \ i rin) ij =

proofi i) Eo[I)] = Ee[inpz)] = E9[1 = ' po(w)dw = jfpg(w)diQ = 1 = 0.
J J - -

ii) Cov9(6,.i&(Ii)) = E[6,(I)] Ee{6]E[(I)] = Ee[6,i(I)] by i)
= = f6(w)(lnpo())pe()dz by definition of()
= f6()po(z)dw= jEe[6].

iii) Note 0ln pg() = --po(Q)) By definition of i(),

= Covo(-l(Q), -l(I)) = byi)

= = E[ô-p) +
E1 _a2 pQ(W)]+&E[&lflpO(W)J E{4-p0] byi).

(Lehmann, 1983,Theorem 2.7.3)

Lemma 3: For an unbiased estimator of g() and V d, Varg(d) '[i()]-'
with equality if and only if = d'[i()I'i() + c for some constant c = c(, d).

proof Apply the Covariance Inequality with 6 = and (I) = noting that

Cov(()) = i() by definition and Cov &(Iz)) = = = by lemma 2.
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7.2.2. UMVUE Results

The next step is to examine whether the quantities A', rMLQ, and FREMLQ can be written in

the linear form given in lemma 3 for attaining the lower bound. For the ML and REML methods,

assumptions [L], [0], and [N] are being used for the Y-Model. Lemma 1 in section 3.2.3 can provide a

convenient representation of the score function and the information matrix, given in section 3.1.4, for the

ML and REML estimation methods. These representations are given below:

1()1 [ x'v'Yx'v-1x 1

ML: i&() Li - xo*vixj

IX/V1X 0 1= diag(i11(,),i22(,))
{

0 xv1xoj

REML: !&R(I1) = - xo*vlxok = X0*VlX0.

Note that depends on Y, not Y, as and are not being estimated. In order for the

information matrix to be PD, it is necessary to assume is mean estimable in the Y-Model, is mean

estimable in the ALQEM for ( Xe), and is mean estimable in the LQEM for NxY. The following

lemma demonstrates that the GLSE for these models are linearly related to the score statistic. The

expression for the GLSEs can be found in chapter 4. Due to the issue of the response in the ALQEM for

the ML method, let denote the GLSE given in section 4.3.2 and let denote the same

expression using 1' instead of Y. In addition, let (Y°) denote the EGLSE given in section 4.3.2.

Lemma 4: i) For the ML method, = +
ii) For the ML method, (Y) = + [i22(a,)]1Q,zL).

iii) For the REML method, = + [iR()]'jl().

proof i) = (X' V2'X)1X' V'Y = (X' V1X)1(X' VY X' V1X) +
+ [iii()J1i().

ii) (Y°) = (X*VX0)lX0*V_lY10 = (Xo*VX0)_l{X0*V_lY10 - X°VXJ +

- + [i22()J1().

iii) = (X0*VX0)_lX0*V_lY0 = (X0*VlX0)_h{X0*V_lY0 XX°]+
= + [iR(J)I'iij(Jj2).
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Corollary: For the ML method, (Y) = +

proof: (Y2) = = - X0*VXO] +

= + U

The following two results indicate that under the appropriate GZC conditions, A', FI(Yj))

where is known, and F'REMLQ are UMVUE. These expressions are the same as those for the GLSE

except they use MLQ and REMLQ as estimates in place of . Such expressions, as well as expressions for

the LSEs, are given in chapter 5. The following results assume 1MLQ and IIREMLQ exist. The GZC

conditions are conveniently referenced below. Note that the conditions do not depend upon the response.

GZC-1: (VX(X'X)-A) C R(X) V E

GZC-2: R(V'X°(X°tX°)-F) c R(X°) V

GZC-3: B(VXo(Xo*Xo)_F) C R(X°) V E

Theorem 5: i) If V- is PD, then GZC-1 A' = A' + A'[iii(,)]1ui(,) V E
2MLQ

ii) If V- is PD and is known, then GZC-2 F' (Yr) = F' + F' [i22(L)] _hiL2(,) V E a
I2MLQ

iii) If V- is PD, then GZC-3 F'- = F' + F'[iR(th)]1iJ?() V E
ZREMLQ REMLQ

proof i)(1) Suppose GZC-1. By the proposition in section 5.2.1, V E V is PD,

= A'1 = A' = A'(X'V1X)1X'V'Y = A'+A'[iii()]1ui() bylemma4.
(2) Let 1%c = {O, ..., 0, 1]' E V = I. Suppose A' = A' + V E

= A' = A'(X' V1X)1X' VY V E by lemma 4. In addition, the above holds for o E

so A' = A'(X'X)1X'y from above. Thus, A'(X' V'X)'X' V'Y = A'(X'X)'X'Y Vth c

GZC-1 by the Y-UBLUE theorem.

ii) Since is known, is a function of Y which can be seen in section 3.2.3.

(1) Suppose GZC-2. By the proposition in section 5.3.1, V E is PD,

= r'1(Y1°) = F'(Y1°) =
= F' + by lemma 4.

(2)Leto=[0,...,0,1]'EV=I='V=I.
Suppose F'(Y1°) = F' + V E

= F'(Yj) = V E by lemma 4.

In addition the above holds for E , so F'(Y1°) = F/(X0*X0)_lX*Y from above.
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Thus, FF(X0*V_lX0)_lX0*V_lY10 = F/(X0*X0)_lX*Y V E 

= GZC-2 by the LQZ-UBLIJE theorem. 

iii)(1) Suppose GZC-3. By the proposition in section 5.3.1, V E k+1 V is PD, 

REMLQ 
= = F' = F/(X0*y_lX0)_lX0*VY0 = F'+ r'[iR()]-'() by lemma 4. 

(2)Letilo = [0, 
..., 

0,11' E = V = I = V = Nx. By lemma 1 in section 3.2.3, 

X0*V_lA = {tr(NxVjNx(Nx)A(Nx))} = {((Nx)NxNxV2NxNx(Nx)A)} 

= {tr(PNXNXViNXPNXA)} as PNx = (Nx)Nx = Nx(Nx). 

= {tr(NxV1NxA)} = Xo*A by lemma 1 in section 3.2.3. 

Suppose F' = F'2J + F'[iR()]1() V 

= = r(x0*_lx0)_lx0*v_lY V E by lemma 4. 

In addition the above holds for E, so F'z = F/(X0*X0)_1X0*Y0 from above. 

Thus, rF(x0*v;_lx0)_lx0*v_lY0 = r(x0*x0)_lx0*Y0 V E 

= GZC-3 by the LQZ-UBLUE theorem. . 

Theorem 6: i) V PD and GZC-1 = A' is ELMLQE, UBLIJE, and IJMVUE in the Y-Model. 

ii) 

1MLQ 
PD, known, and GZC-2 = r'1(Y) is ELMLQE, UBLUE, and UMVUE in the Y-Model. 

iii) V PD and GZC-3 = F' is ELREMLQE, UBLIJE, and UMVUE in the QY-Model. 

proof i) From proof of theoremS, A' = A'1 A' = A' + A'[iii(,)]11&i(,) V E 

= Var('A') is a minimum for unbiased estimators of d'A' V e 
, 

by lemma 3 

= A' is a UMVIJE in the Y-Model by definition. 

Also, by the Y-UBLUE and Y-ELMLQE theorems, A'1 is UBLIJE and ELMLQE. 

ii) From theorem 5, F(Yj0) r'1(Y) = F'(Y1°) = F' + V/ : 
=. Var(d'F'j(°)) is a minimum for unbiased estimators of dT'th V E E, d by lemma 3 

= F'(Y) is a UMVUE in the Y-Model by definition. 

Also, by the LQZ-UBLUE and ALQNY-ELMLQE theorems, F'1(Y10) is UBLUE and ELMLQE 

as Y does not depend on any unknown parameters. 

iii) As shown in proof of theoremS, F' = = F' = F' + r'[iR()1-1,?(th) v 

= Var(d'F'j) is a minimum for unbiased estimators of d'I"il, V E 
, 

by lemma 3 

= r' is a UMVIJE in the QY-Model by definition. 

Also, by the LQZ-UBLUE and LQNY-ELREMLQE theorems, F'1 is UBLUE and ELREMLQE. 
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Theorem 6 indicates that, given a PD covariance, the GZC is a sufficient condition for the existence

of a UMVUE in the appropriate family of distributions. The GZC and UMVUE results stated in theorem 6

are not equivalent since the UMVUE does not necessarily imply that the CRLB is attained

(Casella and Berger,1990,p314).

The results of theorem 5 can be used to obtain expresssions for Cov(A'MLQ), Cov(F'MLQ(Yl°)),

and CoV(F'REMLQ). Generally, such covariance expressions cannot be obtained, since these quantities

are not linear in terms of Y, Y, and Y°, respectively.

Corolla,y: Suppose the conditions in theorem 5 hold for the three cases. Then

i) Cov(A'MLQ) = A'(X'V1X)-'A = A'[iu(/)11A
ii) Cov(F'MLQ(Y°)) = P (Xo* V1X') lç = F'{i22 (,)] 'F
iii) Cov(r'REMLQ) = F(X0*v_lXo)_lF = r'[iR(,)J1F.

proof These above covariance expressions can be obtained using the expressions in theorem 5, where the

information matrix is constant and the score statistic is a random quantity. .

In general, such expressions for the covariance cannot be obtained. Searle et al. (1992) and Miller

(1977), recommend using the expressions in i), ii), and iii) as approximations for the covariance of

A'M, FMLQ, and 'REMLQ' respectively. Their recommendation is due to the fact that these are the

asymptotic expressions for the covariance. However, under the UBLUE conditions, the above corollary

shows these covariance expressions are exact.

SAS (1996) uses the recommended approximations in its covariance calculations for the ML and

REML methods in the PROC MIXED procedure. Since the unknown parameter is involved in the

expression, it must be estimated. This is typically done using the ML or REML estimate of to calculate

the estimated covariance. It should be noted that the estimated covariance is not equivalent to the exact

expression, even under the UBLUE conditions. It is not clear how well these estimates perform

(Searle et al.,1992,p320).

An exact expression still has not been examined for Cov(F'M) when is unknown. This

situation requires the use of the response Y2° which did not fit into the above formulation. However, an

exact form can be given under GZC-2 and ZC for the Y-Model. The exact form is not the same as the

expression in ii) of the above corollary since Cov(Yfl = instead of under ZC for the Y-Model.

Theorem: For the ALQEM for (Y X) under GZC-2 where ZC holds for the Y-Model andVis PD,

Cov(F'MIJ,(Y20)) = rI(x*x0)_lx*v xo(xo*xo)_lr.
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proof By the proposition in section 4.2.1, (Y X) = NxY under ZC = NxYY'Nx.

By the proposition in section 5.3.1, V E k+1 V is PD, F'(Y2°) = (X)*X0)_lX)*Y. Thus,
Cov(T' (XG*X))_lX0*Y) = F from above

= from section 3.2.1. .

This theorem gives the exact form for the covariance of the MLQ when GZC-2 and ZC hold. It would

be interesting to compare the covariance estimates using the exact form in the above theorem with the

asymptotic form in corollary ii).
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8. Data Applications

This chapter applies the general UBLIJE results obtained in chapters 4, 5, and 6 to issues that arise in

the analysis of data. The applications include an iterative procedure for obtaining MLQEs and REMLQEs

as well as profile likelihood calculations and computing time. The Battery Life Example

(Montgomery, 199 l,p2O7) is used throughout this chapter to demonstrate the applications. The PROC

MIXED procedure in SAS (SAS,1996) will also be discussed, since it is a standard statistical tool for

analyzing data from mixed models.

8.1. An Iterative Procedure for Obtaining MLQEs and REMLQEs

This section presents a general procedure for calculating MLQEs and REMLQEs in the general case

for linear combinations of the fixed effects A' and linear combinations of the variance components F'.

An iterative procedure will be given with respect to the existence of an explicit linear solution. Data

examples will be used to illustrate the procedure.

8.1.1. The Procedure

Consider estimating the variance component vector () under the ML and REML estimation

methods. The likelihood equation for the ML method can be written as function of only by substituting

(X'V1X)1X'V1Y in place of where is estimable. This is a convenient way to have the ML and

REML equations depend on only (Harville, 1977).

Linear quadratic estimation models were defined so that the EGLSE would correspond to either the

MLQE or the REMLQE. Section 3.2.3 shows how the ALQEM for (Y X) can be used to obtain the

ML equations for and how the LQEM for NxY can be used to obtain the REML equations for . These

equations are given below assuming that is mean estimable in both models which is equivalent to the

V's and the NxVNx's being linearly independent. Recall F = V V1X(X'V1X)X'V1:

MLQE: = (X0* X0)X*VlY20 = {tr(V1VV'Vj)}1{Y'ViFY}
REMLQE: = (X0* X0)X0*VY0 =

These equations demonstrate that an iterative procedure is needed to identify the solution given by

the MLQE and the REMLQE as both sides of the equations involve . Such an iterative procedure based

on the above equations is called Anderson's Iterative Algorithm (Harville,1977). The following steps

define the iterative procedure, assuming there are no parameter constraints:
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i) Choose an initial starting value

For i = 0, 1, 2 ..... repeat the following steps given

ii) Find the covariance matrix V(j) and use it to calculate the right side of the equation.
(i+l)

in) Let the result in ii) be
_-(i+1) -(i)

iv) Check if H < . If yes, then stop, else continue.

v) Replace i by i + 1 and go to ii).

Conditions were obtained in sections 5.3.2 and 5.3.3 under which there exists an ELMLQE or an

ELREMLQE for a linear combination of the variance components given by F'. The ELMLQE

corresponds to the LSE in the ALQEM for (Y X) under Zyskind's condition and the ELREMLQE

corresponds to the LSE in the LQEM for NxY. The equations for the ELMLQE and ELREMLQE are:

ELMLQE: F' = F,(xo*xYlx*Y = F'{tr(VjV)}-1{Y'NxV2NxY}

ELREMLQE: r, = r'(x°x0) -'x°Y° = r'tr(v1Nxv3Nx) }1 {Y'NxV1NxY}.

When the sufficient conditions for an ELMLQE or an ELREMLQE are satisfied, then the iterative

procedure will converge in a single iteration for the linear combination F' as the right side of the

equation does not involve .

The scoring method is another iterative procedure that can be used to estimate (Searle, et al., 1992).

Consider the notation for the information matrix and the score statistic given in section 7.2.2. Note that

the ML equations, when substituting (X' V'X)X' V1 in place of, no longer depend on . Thus,

the score statistic can be represented as u() = (il) and the information matrix as i() =

The iterative scoring equations, for the ML and REML methods are then given by:

MLQE:
(z+i) (i)

+

REMLQE: +

The same iterative steps i)-v) can be used to solve these equations. By the corollary to lemma 4 and

lenmia 4 iii) in section 7.2.2, the equations from the scoring method are the same as the equations in

Anderson's Iterative Algorithm. From the ML theorem in section 3.2.3, Y is the appropriate response in

the equations for the scoring method, since is being estimated. Thus, if an ELMLQE or an

ELREMLQE exist, then the equations in the scoring method will converge in a single iteration. Other

iterative procedures for are presented and compared in Harville (1977) and (Searle, et al., 1992).

Now consider estimating the fixed effect vector , where is mean estimable or equivalently that the

matrix X has full rank. From section 4.2.1, the EGLSE is given by:
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EGLSE: = (X'V1X)1X'V'Y.

For the ML method, the solution for the fixed effect vector can now be obtained using the variance

component estimate from the above ML equations. In section 4.2.2, it is shown that the MLQE for is the

same as the EGLSE for where = MLQ Thus, the MLQE for depends on . However, if the

sufficient conditions for an ELMLQE are satisfied for a linear combination A', then A' does not

depend on as shown in the following equation from section 5.2:

ELMLQE: A' = A'(X'X)'X'Y.

This suggests that when an ELMLQE exists, the value of A' will not change with the value of .

One method to evaluate this is to calculate A' for each iterative value to see whether the quantity

A' changes. Another method is to estimate under a different procedure to obtain an estimate p

where is PD, calculate the EGLSE with = ,, and determine whether A' = A'M. If

$ A', then A', is not the MLQE for A' and an ELMLQE does not exist for A'. For

example, it is common practice in data analysis to calculate the EGLSE with = 1REMLQ In general, the

resulting estimate
EMLQ

is not the MLQE, nor the REMLQE. It is the EGLSE using the variance

component estimate from the REML procedure as REML is preferred by many over ML for estimating

variance components (Searle et al.,1992,sections 6.6-6.8).

The equations described in this section can be calculated using any computing language that has

matrix computation ability. In particular, the PROC MIXED procedure in SAS will provide calculations

of the above quantities (SAS,1996). The ML procedure in SAS does represent the maximum likelihood

equations in terms of only by substituting (X'V1X)1X'V'Y in place of (SAS,1996). However, it

is necessary to adjust the defaults of the MIXED procedure in SAS in order to implement the scoring

method. The following options should be specified:

a) method specifies the estimation method ML, REML, or MIVQUEO

b) nobound - no boundary constraints on the variance components

c) noprofile - includes residual component in iterations

d) scoring - uses expected hessian in estimation method (need to specify for all iterations).

The MIXED procedure allows the user to choose among the ML, REML, or MIVQUEO methods for

estimating variance components. The MIVQUEO method is described in Searle et al. (1992,Section 11.3)

and the resulting equations are identical to those for the FELREMLQE presented in section 3.2.3.
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The remaining three options are necessary since the scoring method does not assume any constraints,

includes the residual component as part of the overall calculations, and uses the expected hessian matrix

for all iterative calculations. The expected hessian corresponds to the information matrix which is given

in the above equations for the scoring method. By default, the MIXED procedure uses the observed

hessian which is the matrix of second derivatives. In addition, SAS uses the information matrix with the

estimated variance component vector as its estimate of the asymptotic covariance matrix of the variance

components (SAS,1996) (Searle, et al.,1992,Chapter 6).

There are also options available in SAS that are helpful for interpreting the output. The itdetails

option outputs the variance component parameter values at each iteration. This output indicates whether

the iterative procedure for the variance components converges in a single iteration or whether some linear

combination converges in a single iteration. The solution option outputs the estimates of the fixed effects.

This output can indicate whether the estimates of the fixed effects are the same over different estimation

methods. The asycov option outputs the asymptotic covariance matrix of the the variance components.

This can be useful for purposes of interpretation. SAS offers a variety of choices for stopping rules. The

default, under the absolute option, iterates until &()' < 1 x 10-8 where is
.

the score function at and i ( ) is the information matrix at . The absolute option prevents the

criterion from being scaled by a multiple of the log likelihood function evaluated at (SAS, 1996).

The PROC MIXED procedure in SAS will be applied to the examples described in the following

three sections. These examples illustrate the applicability of the UBLUE results to data examples.

8.1.2. Battery Life Example I

The data for this example is from Montgomery (l99l,p2O7) and is shown in Table 8.1. The responses

represent battery life (in hours) for batteries with certain material types at given temperatures. It should be

noted that the design is balanced as there are four observations per treatment combination.

Table 8.1. Data for Battery Life Example

Temperature (°F)
Material 15 70 125
1 130 74 155 180 34 80 40 75 20 82 70 58
2 150159188126 136106122115 25 58 70 45
3 Ui110 160 U4UQ 120 139 9 Z 104(60X

Assume material [M] and temperature [T] represent random effects in a 2-way random model with

interaction M*T. The variance components and the overall mean will be estimated using the MIXED

procedure in SAS. The output from this procedure is summarized in Table 7.2. The SAS code used to

generate this output for the ML method is given in Appendix A.
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Table 8.2. SAS Output for Battery Life Example I

REML

Estimation Iteration History

M I M*T RESIDUAL ITERATION
0 0 0 1 0

244.8681 1429.6597 432.0579 675.2130

Asymptotic Covariance Matrix of Estimates

Coy Parm Row T M M*T Residual
T 1 1555452.2 -71357.3 -34965.5 0
M 2 -71357.3 210768.1 -58117.4 0
T*M 3 -34965.5 -58117.4 182061.1 -8442.8
Residual 4 0 0 -8442.8 33771.3

Solution for Fixed Effects

Effect Estimate Std Error
INTERCEPT 105.5278 24.9988

Estimation Iteration History

M T M*T RESIDUAL ITERATION
0 0 0 1 0

191.2087 439.3520 591.4815 675.2130 1

55.2815 1007.2364 511.5329 675.2130 2
205.0174 843.4741 461.2602 675.2130 3
163.4037 955.1122 459.7966 675.2130 4
185.0232 917.4251 456.5319 675.2130 5
177.0576 934.4312 457.0915 675.2130 6
180.4469 927.8164 456.7242 675.2130 7
179.0962 930.5594 456.8477 675.2130 8
179.6498 929.4543 456.7929 675.2130 9
179.4256 929.9052 456.8143 675.2130 10
179.5169 929.7222 456.8055 675.2130 11
179.4798 929.7966 456.8090 675.2130 12

Asymptotic Covariance Matrix of Estimates

Coy Parm Row T M M*T Residual
T 1 966242.4 -24197.8 -47838.6 0
M 2 -24197.8 166293.3 -62957.2 0
T*M 3 -47838.6 -62957.2 196944.9 -8442.8
Residual 4 0 0 -8442.8 33771.3

Solution for Fixed Effects

Effect Estimate Std Error
INTERCEPT 105.5278 20.9587
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Since the design is balanced, Zyskind's condition holds for the Y-Model. By the Y-FELMLQE

theorem in section 4.2.2, there exists an FELMLQE for i which is the overall mean . This can be seen

in the output since the two methods of estimation yield the same fixed effect estimate for the intercept.

The estimate does not depend on the variance component estimates, which are not the same for the ML

and REML methods. An exact expression for the standard error of the FELMLQE Y.. is . The

standard error estimate in the output is obtained by plugging in MLQ or REMLQ into the exact expression.

By the corollary in section 4.3.3, there is an FELREMLQE for in balanced designs. This can be

seen in the REML estimation iteration history as only a single iteration is needed to obtain the solution. As

shown section 7.2.2, there exists an exact expression for the covariance of the REML estimate. The values

in the asymptotic covariance matrix are obtained by plugging in REMLQ into the exact expression. Thus,

these values are estimates from an exact expression, rather than estimates of the asymptotic expression.

The ML estimation iteration history indicates there is not an explicit linear solution for the variance

components under the ML procedure since it takes 12 iterations to converge. There does not exist an

FELMLQE for since spV = {PM, PT, PMXT, I} is not a QS as PMPT + PTPM = P1 spV. However,

by example 6.6, there exists an ELMLQE for o as this model includes the highest possible order term.

This is evident from the ML estimation iteration history where the estimate of the residual component

does not change over the iterations. It is interesting to note that the ELMLQE and ELREMLQE for o are

the same in this example. Since the estimate of o is the same for both methods, the exact estimate of

Cov(o) will also be the same.

8.1.3. Battery Life Example II

For illustrative purposes, consider a modification of Battery Life Example I. For this example, the

first two observations are removed for material 3 at each temperature level. The deleted observations are444
underlined in Table 7.1. This results in an unbalanced design which has the incidence matrix 4 4 4222
where each row denotes a material and each column denotes a temperature. Also, suppose temperature is a

fixed factor in a model which does not include the interaction term M*T. Let Y be the response for

temperature i, material j, and observation k. Also, let c, be the treatment effect associated with

temperature i. Then the expectation for this model is given by E[YkJ = + c for all j, k.

The variance components and the fixed effects will be estimated using the MIXED procedure in SAS

under the ML, REML, and MIVQIJEO methods. The MIVQUEO method is presented since it is not the

same as the REML method in this case. The output from this procedure is given in Table 8.3. The SAS

code used to generate this output for the REML method is given in Appendix A.
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Table 8.3. SAS Output for Battery Life Example II

REML

Covariance Parameter Estimates

M 194.4 Residual 929.8

Solution for Fixed Effects

Parameter Effect T Estimate Std Error
INT 60.78227290 12.64288343
1 1 84.00000000 13.63633746

23 1 2 37.50000000 13.63633746
0 1 3 0.00000000

ML

Covariance Parameter Estimates

M 104.5 Residual 860.6

Solution for Fixed Effects

Parameter Effect I Estimate Std Error
INT 60.42803353 11.06201142
1 1 84.00000000 13.11971264
T 2 37.50000000 13.11971264

0 T 3 0.00000000

MIVQUEO

Covariance Parameter Estimates

M 211.3 Residual 921.8

Solution for Fixed Effects

Parameter Effect T Estimate Std Error
INT 60.83984741 12.83522304
1 1 84.00000000 13.57776055
1 2 37.50000000 13.57776055

0 T 3 0.00000000



122

The variance component estimates for the ML and REML methods required iterations. The values of

these estimates over the iterations are not of interest in this example. However, note how the final

estimates differ across the estimation methods.

The solutions for the fixed effects are from SASs default parameterization, which provides estimates

ofi + a, c c3, and c2 a3. Despite the different variance component estimates, the output shows

that the estimates for the treatment effect differences c1 c3 and c2 a3 remain the same across the

estimation methods. As shown in section 5.4, there indeed exists an ELMLQE for the treatment effect

differences when the rank of the incidence matrix is 1, or equivalently when the incidence matrix has

proportional frequencies.

This model did not include the interaction term M*T. If the model did include this term, then an

ELMLQE would not exist for the treatment effect differences when the rank of the incidence matrix is 1.

From section 7.2.2, the standard error of the treatment differences has an exact expression. The

associated standard error estimates for an estimation method are obtained by plugging in either

MLQ' 1LREMLQ' or MWQUEO into the exact expression.

8.1.4. Battery Life Example III

For illustrative purposes, consider a modification of Battery Life Example I. For this example, the last

two observations are removed from the combination material 3, temperature 3. The two deleted

observations are marked by 'x' in Table 7.1. This results in an unbalanced design which has the incidence444
matrix 4 4 4 where each row denotes a material and each column denotes a temperature. Also,442
suppose temperature is a fixed factor. The interaction term M*T will be included in the model as a

random effect. The expectation for this model is also given by E[kJ = p + c for all j, k as described in

section 8.1.3.

The variance components and the fixed effects will be estimated using the MIXED procedure in SAS

under the ML, REML, and MIVQUEO methods. The MIVQUEO method is presented since it is not the

same as the REML method in this case. The output from this procedure is given in Table 8.4. The SAS

code used to generate the output for the MIVQUEO method is in Appendix A.
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Table 8.4. SAS Output for Battery Life Example III

REML

Covariance Parameter Estimates

M 247.8 M*T 446.3 Residual 686.4

Solution for Fixed Effects

Parameter Effect T Estimate Std Error
T 1 144.83333333 16.98671077
T 2 107.58333333 16.98671077
T 3 64.32324833 17.46732374

p ip

Covariance Parameter Estimates

M 159.9 M*T 243.2 Residual 684.6

Solution for Fixed Effects

Parameter Effect T Estimate Std Error
T 1 144.83333333 13.83577091
1 2 107.58333333 13.83577091
T 3 63.90099970 14.38532825

MIVQUEO

Covariance Parameter Estimates

M 205.7 M*T 491.6 Residual 683.1

Solution for Fixed Effects

Parameter Effect T Estimate Std Error
u+ci 1 1 144.83333333 17.01108447

T 2 107.58333333 17.01108447
,LL+c3 T 3 64.29243163 17.49171658



124

The variance component estimates for the ML and REML methods required iterations. The

values of these estimates over the iterations are not of interest in this example. However, note how the

final estimates differ across the estimation methods.

The solutions for the fixed effects are from SAS's parameterization under the NOINT option. The

output from this parameterization gives the estimate for a + ci, ,u + a2, and t + a3. Despite the

difference in the variance component estimates, the output shows that the estimates for the first two

treatment means are the same across the estimation methods. A check of the UBLTJE conditions reveals

that there indeed exists an ELMLQE for + c and t + a2.

From section 7.2.2, the standard error of the first two treatment mean has an exact expression. The

associated standard error estimates for the estimation methods are obtained by plugging in either

3IMLQ' 1REMLQ' or 1MIVQUEO into the exact expression.

The examples in these last two sections illustrate that the ability to identify an ELMLQE for a linear

combination of the fixed effects may depend upon the parameterization. For example, it was easier to

identify the ELMLQE in the previous section under the SAS default parameterization while it was easier

to identify the ELMLQE in this section using the NOINT option.

In the previous examples, the existence of an ELMLQE and ELREMLQE were already proven in

previous chapters. However, in this section, the existence of an ELMLQE had to be verified separately

using a matrix computing language to perform the check described in section 6.5. This leads to the

question of whether it is possible to verify the existence of an ELMLQE or ELREMLQE using the

iterative procedure. This question is investigated in the next section.

8.1.5. Checking the Conditions Using the Iterative Procedure

This section describes a method to check the conditions using the iterative procedure presented in

section 8.1.1. Consider checking the GZC presented in chapter 5 which is sufficient for the existence of an

ELMLQE or ELREMLQE for a linear combination of the fixed effects or a linear combination of the

variance components. The previous sections in this chapter show the outcomes of the iterative procedure

when the GZC does and does not hold. However, misleading conclusions could be drawn by observing

these outcomes without knowledge of whether or not GZC holds. This is due to the dependence of the

iterative procedure on particular data values and particular parameter values . However, it is possible

to verify the conditions, with a degree of certainty, using the iterative procedure. This section only

presents the method and its interpretation. A formal justification of the method is given in Appendix B.

In order to implement the method, it is necessary to have two items. The first item is a randomly

generated observation ( from a continuous distribution with support that contains a non-empty open set.

In data analysis problems, it is likely that the observations can be assumed to be randomly observed from
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a normal distribution. The second item is a randomly generated value of liZ from a continuous distribution

with support = { 7,k+1
I

V is PD}. In addition, the value T must be generated independent of [.

Consider checking the GZC for the ML procedure for a linear combination of the fixed effects A'.

The GZC, in this case, is the sufficient condition for the existence of an ELMLQE for A' (section 5.2.2).

This method does not need to involve the iterative procedure to solve for , but it is necessary to have a

given value of . For a fixed value of given by l/2, A'1 () is the GLSE based on 11/ and Ur

(section 5.2.1). Method A is as follows:

1. For any given value, lJ9 e *, calculate Ag(r) (ex. 11! = [0 0... 0 1]').

2. For the random value f, calculate A' ([).

3. Does A11g(Ur) =

Consider checking the GZC for the ML or REML procedure for a linear combination of the variance

components r'. The GZC, in this case, is the sufficient condition for the existence of an ELMLQE or

ELREMLQE for F' (section 5.3.2, 5.3.3). Let F' ([) denote the EGLSE based on ( (section 5.3.2,

5.3.3). In order to calculate the EGLSE, it is necessary to use the iterative procedure to solve for where

the starting value is specified. Method B is as follows:

1. Use the random value as a starting value in the iterative procedure.

2. Calculate F' (Ur)

3. Does the iterative procedure converge in a single iteration for r' (Iir)?

Methods A and B can be implemented in a computing language that can perform the iterative

procedure described in section 8.1.1, generate ( and , fix the variance component values at 9 or ,

and specify liZ as a starting value in the iterative procedure. For instance, it may be the case that these

methods can be used in SAS in the PROC MIXED procedure with the PARMS statement (SAS,1996).

Consider the random variables Y and . For either Method A or B, let S(th, Y) = 1 if the answer to
Ii if GZC holdsstep 3 is yes and let S(, Y) = 0 if the answer is no. Also, let = j 0 if GZC does not hold and be

the joint probability distribution of the independent random variables I and . From the results in

Appendix B, = 1 implies P(S(, ).) = 1) = 1 and = 0 implies P(S(, ) = 0) = 1.
However, the goal is to use S(, ) as a statistic to draw inference about the unknown parameter .

Informally, one could ignore the probability measure and say = 1 if and only if S(,I) = 1 and

= 0 if and only if S(, ) = 0. For either Method A or B, this means that the answer to step 3 is 'YES'

if and only if the GZC holds and the answer to step 3 is 'NO' if and only if the GZC does not hold.
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Formally, it is necessary to account for the probability measure when drawing inference to . This can

be done using a confidence region. A 100% confidence region for is given by

{
. This confidence region indicates that if S(, )) = 1, then

C(S(, Y)) = { 1 } contains the true value of e with 100% confidence. On the other hand, if S (, Y) = 0,

then C(S(, Y)) = {0} contains the true value of with 100% confidence. Thus, the coverage

probability is C(, Y)) = 1 as shown in Appendix B.

This section has demonstrated how the iterative procedure in section 8.1.1 can be used to check the

GZC for fixed effects and variance components. Justification of the results in this section is given in

Appendix B. One problem with these methods is that the numbers randomly generated from a computer

are not truly random, rather they are 'pseudo-random'.

8.2. Profile Likelihood Calculations and Computing Time

Suppose there exists an ELMLQE for a subvector of an estimable parameter vector which could

consist of fixed effects or variance components. This section demonstrates that computing time and

resources could be saved by accounting for the ELMLQE in the iterative procedure given in section 8.1.1.

In particular, profile likelihood calculations are examined. This section discusses adjusting the iterative

procedure for the ELMLQE and computing profile likelihood confidence intervals. These results will be

applied to Battery Life Example I.

8.2.1. Adjusting the Iterative Procedure

The iterative procedure presented in section 8.1 can be altered when there are explicit linear

likelihood estimators. This alteration may be helpful for saving computing time and resources. For large

data sets with numerous variables, the savings could be dramatic. The adjustments for the iterative

procedure will be presented with respect to the maximum likelihood procedure as fixed effects are of

interest.

Consider the variance component vector = k, xl k, <1]' If there is an ELMLQE for the

subvector , then the iterative procedure can be adjusted to account for the simple explicit linear

expression given by From the formulas in given in section 6.4.2, the MLQE for would consist of the

subvectors given by:

ELMLQE: 11221 = (X* Nx?X°) 'X N1Y2°

MLQE: :i = X21).
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The ELMLQE can be identified on a single iteration, while the MLQE will require an iterative

procedure. However, the MLQE for can now be calculated using the inverse of a k1 x k1 matrix instead

of a (ki + k2) x (k1 + k2) matrix. It should be noted these expressions assume ZC holds, so there must

exist a FELMLQE for X as indicated by the Y-FELMLQE theorem.

Consider the case where there does not exist an FELMLQE for or for . The iterative procedure

discussed in section 8.1 shows how to find the MLQE for after an MLQE for has been obtained.

However, it may be informative to calculate for each iterative solution of in this case. There is

potential to save computing time and resources in this case as well. Suppose = ><i P2>< 1]'
where

there exists an ELMLQE for 2 Using the formulas in section 6.2, the MLQE for would be given by:

ELMLQE: 2I = (XNx1X2)'XNx1Y
MLQE: 1 = (XVX1)-1XV'(Y X221).

The ELMLQE can be identified on a single iteration while the MLQE will require an iterative

procedure. However, the MLQE for can now be calculated using the inverse of a inverse P1 x P1 matrix

instead (P1 + p2) x (P1 + P2) matrix.

8.2.2. Computing Profile Likelihood Confidence Intervals

The profile likelihood procedure is a technique which provides inference about a parameter in the

presence of nuisance parameters. Particular interest in this section is obtaining a profile likelihood

confidence interval. This procedure can be defined as in McCullagh and Nelder (1983). Suppose there is

interest in & where = 2t2x1 ' and consider the following definitions:

Definitions: Profile Log Likelihood Function (for th): l(&) = sup ln L(1, )

Likelihood Ratio Test (LRT): For testing H0 : & = vs HA : & &o, the LRT is given by

= 2[ l() l(9)
I x under H0

Approximate 100(1 cl)% Confidence Region (for &) : The region given by

{th : T(&) = {& : 2[l(&) l()]
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Using the profile likelihood function, a likelihood ratio test statistic can be obtained and inverted to

produce an approximate confidence region for &. In order to calculate this approximate confidence

region, it is necessary to find l(th) = 1(1,29) or th for each value of 9. Thus, there is a

computational advantage if there exists an explicit likelihood estimator for21 or some of its components.

Saving computer time is important in this case since an iterative procedure must be repeated for each

value of &. The iterative procedure would be adjusted as indicated in section 8.2.1. The difficulty is how

to incorporate the given value of & when calculating l (i).

The following changes can be made to account for a given value of when th = i. For a particular

value o, the response is Zo = I X110 where E{o] = X2 and Cov(.Zo) = Cov(Y) = V. Zyskinds

condition for the Zo-Model would be (VX2) C R(X) V E . The corresponding LQEM has

response Y = ( X2) ( X2)'. The iterative procedure to estimateand 2 would be applied

to this LQEM as in section 8.1.1. The conditions for the existence of an ELMLQE for the subvector of

will not be changed since these conditions do not depend on

The following changes can be made to account for a given value of th when th = It is more

difficult in this case to account for an ELMLQE. Let * = [1Lo k, xl xl !123k, xl] where is a

particular value and it is of interest whether there exists an ELMLQE for . Hence, the covariance matrix

isCov(Y)=V=V10+V+Vand
From the U-UBLUE theorem, an ELMLQE would exist for when R(V X) C R( [X + X])

for all * where Cov(Yj) = V = . Thus, the sufficient condition for the existence of an ELMLQE

is affected by ií through * The following proposition gives an example in which an ELMLQE exists in

this setting.

Proposition: Consider the balanced random 1-way model where = [o o1. If IMLQ exists and
MLQ

is PD, then an ELMLQE for o V = [c oo I
where o is a fixed value of o.

proof V2 = moPA + aI = V + V E{Y1 aI] = moPA and
Cov(Y1° = 2"v. = V.. Note B(V X) = R(V X) since X2° = 0.

Thus, V = [o a] and u E R, V.X3°u = 2V.VuV.
= 2u(I + maPA)mcrPA(aI + mcrPA) = 2uma(ciPA + muPA)(cI + mcrPA)
=2nmo(o+ma)2PA ER(X) Va,u

= an ELMLQE for by the LQNY-ELMLQEj theorem. .
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8.2.3. Batteiy Life Example I

Battery Life Example I was presented in section 8.1.2. In this section, it will be used to indicate the

saving of computing time for calculating a profile likelihood confidence interval for the fixed effect

= where the complete parameter vector is given by = [i a 4 a< of]' = {Oi 2(4x1)I For

this example, it was observed that there exists an ELMLQE for the subcomponent 2 consisting of o.

Computing time could be saved by removing a from the iterative procedure as described in section 8.2.1.

Also, note that ZC holds in this example, so there is an ELMLQE for i as well.

The CPU time was measured for finding the profile likelihood when acounting for the ELMLQE for

o and when ignoring the ELMLQE for o. The MATLAB program was used on a Pentium II 200 MHz

computer and generated an approximate 95% profile likelihood confidence interval for given by

(49.25, 161.75). The CPU time for a particular computer varies on a run and depends on the parameter

range, step size, and convergence criteria. For purposes of illustration, the values were set to [0, 200], .5,

and .1 respectively. The times are given in Table 8.5 for a single run. This table indicates that over 15

minutes were saved by accounting for the ELMLQE for o-. The time savings were substantial in this

example. The savings would be much larger for examples with more observations and more variance

components.

Table 8.5. CPU Time for Profile Likelihood for Mean in Battery Life Example I

CALCULATION CPUTIME

Account for ELMLQE for o- 35 mm 55 sec
Do not account for ELMLQE for o 51 nun 5 sec (>15 mm)
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9.1. Summary
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Szatrowski (1980) and Elbassiouni (1983) establish conditions for the existence of a full ELMLQE

and a full ELREMLQE for the fixed effect vector and the variance component vector. These results are

presented in chapter 4. This thesis presents the previous results using models carefully defined in chapter

3. The sufficient conditions were related to the UBLUE conditions in chapter 4.

This thesis extends the results of Szatrowski (1980) and Elbassiouni (1983) to identify conditions for

the existence of an ELMLQE and an ELREMLQE for linear combinations involving the fixed effects and

variance components. The general case was formulated in chapter 5 and the most general version is given

in section 5.1. A special case involving conditions for the existence an ELMLQE and an ELREMLQE for

a subvector of the fixed effect vector or a subvector of the variance component vector is presented in

chapter 6. The general procedure for obtaining these conditions involves deriving UBLIJE results for the

underlying model defined in section 3.3.1. These UBLUE results can be applied to the specific models to

obtain conditions for existence of the ELMLQE and the ELREMLQE. Under the UBLUE conditions, the

ELMLQE and ELREMLQE are given by the least squares estimators with respect to the models of

interest.

This thesis also presents examples in which the ELMLQE and ELREMLQE conditions hold in the

general case. The most comprehensive example is given in section 6.8 and defines a class of random

models under specific design and model conditions that have an ELREMLQE for a subvector of the

variance component vector. Other examples that have ELMLQEs or ELREMLQEs for a subvector of the

variance component vector are discussed at the end of chapters 5 and 6. Tables are given in section 6.9,

which illustrate 3-way models that have an ELMLQE or ELRELMQE for the variance components under

various designs.

Chapter 7 applies the UBLUIE conditions to UTvIVUE's in the full and general cases. In the full case in

section 7.1, there exists a complete sufficient statistic statistic for the family of normal distributions under

the ML and REML procedures (Seely, 1971). The ELMLQE and ELREMLQE can be shown to be

functions of the complete sufficient statistic. In section 7.2, it is shown that the ELMLQE for a linear

combination of fixed effects and the ELREMLQE for a linear combination of variance components are

IJMVIJE. This is done by showing that the covariance attains the lower bound for unbiased estimators.

This section also gives exact expressions for the covariance of the ELMLQE and ELREMLQE.

This thesis also applies these results in chapter 8 to an iterative procedure for obtaining the MLQE

and REMLQE. Section 8.1 discusses the procedure and how to implement it in SAS using PROC

MIXED. Sections 8.1.2, 8.1.3, and 8.1.4 apply the procedure to data examples. Section 8.1.5 shows how

to use the iterative procedure to check the conditions in the iterative algorithm. Methods to save
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computing time are given in section 8.2. The savings is shown to be dramatic for profile likelihood

calculations. The methods are demonstrated using a data example in section 8.2.3.

The UBLUE conditions have been used to generalize the results of Szatrowski (1980) and

Elbassiouni (1983) to linear combinations of the parameters. The underlying linear model establishes a

framework in which to extend the results, so that they can be applied to the particular models of interest

for the purposes of ML and REML estimation. Under the UBLUE conditions, the ELMLQE and

ELREMLQE are given by the least squares estimator in the appropriate model. Such estimators are easy

to compute, simple to interpret, and have optimal properties. The general idea behind these results can be

applied to any situation where least squares and generalized least squares estimation is applicable.

9.2. Further Research

This study has identified interesting questions for future research. The UBLUE conditions, which are

mentoned below, refer to the GZC or those conditions presented in chapter 5 for estimating the fixed

effects and variance components. The questions for further research are listed below:

(1) Apply the UBLUE conditions to hypothesis testing in mixed models. For instance, these conditions

may useful for identifying the existence of exact F-tests.

(2) Generalize the results to the case where the covariance is not PD. Christensen (1996,section 12.5)

discusses maximum likelihood estimation for singular normal distributions. Sections 3.3.4 and 3.3.5

provide results where the covariance is NND.

(3) The UBLUE conditions indicate when the maximum likelihood and restricted maximum likelihood

estimators are unbiased. Additional work could be done to determine whether these estimators are equal

to analysis of variance estimators (ANOVA) (Searle et al., 1992).

(4) Determine whether other iterative procedures converge in a single iteration under the UBLUE

conditions (Searle, et al.,1992). In particular, examine convergence subject to constraints on the variance

components (Harville, 1977).

(5) Examine whether the results pertaining to the class of random models presented in section 6.8 can be

extended to a class of mixed models.

(6) Identify conditions under which the MLQE and REMLQE exist. Such conditions could be used to

show when ML and REML procedures are applicable.
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(7) Determine whether it is possible to use a less restrictive condition than ZC for the Y-Model when

applying the ALQEM for (Y X) to identify the existence of an ELMLQE in the partial case. This

issue is discussed in sections 5.3.2 and 6.4.2. For these cases, it may be possible to use a weaker condition

since the full variance component vector is not of interest.

(8) Examine whether the existence of an ELMLQE or ELREMLQE for a subcomponent of the variance

component vector is equivalent to part of the inverse of the covariance matrix being explicit. Rogers and

Young (1977) and Seely (1971) examine this relationship in the full case.

(9) Examine whether the UBLUE conditions can be applied to generalized linear models. In particular,

consider generalized estimating equations.

(10) Extend the UBLIJE conditions to general covariance structures. For example, this could include

repeated measures designs. It would require a reformulation of the conditions to covariances that do not

have the linear structure.

(11) Derive design based conditions in which is estimable in the ALQEM for ( X) and the LQEM
for NxY for particular classes of models.

(12) Find out whether the existence of a partial ELMLQE implies the existence of a partial ELREMLQE.
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Appendix A - SAS Code Used for the Battery Life Examples

The SAS code is given below that was used to generate the output for the Battery Life Example I given

in Table 8.2 for the ML procedure using the data set batti:

proc mixed data=battl method=ml nobound noprofile scoring=30 itdetails asycov absolute;
class TM;
model Y = / solution;
random T M T*M;

run;

The SAS code is given below that was used to generate the output for the Battery Life Example II

given in Table 8.3 for the REML procedure using the data set batt2:

proc mixed data=batt2 method=reml nobound noprofile scoring=30 asycov absolute;
class T M;
model Y = T I solution;
random M;

run;

The SAS code is given below that was used to generate the output for the Battery Life Example III

given in Table 8.4 for the MIVQUEO procedure using the data set batt3:

proc mixed data=batt3 method=mivqueO nobound noprofile scoring=30 asycov absolute;
class TM;
model Y = T I noint solution;
random M T*M;

run;
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Appendix B - Details For Checking the Conditions Using the Iterative Procedure

The purpose of this appendix is to provide details to accompany the discussion in section 8.1.5

pertaining to checking the conditions using the iterative procedure presented in section 8.1.1. The

justification is complex and requires results and definitions concerning real analytic varieties and measure

theory. Real analytic varieties are used to characterize the UBLUE conditions for the Y-Model in section

5.2.1 and the LQEM for Z in section 5.3.1. Measure theory results allow probabilistic conclusions to be

made about the UBLUE conditions based on information which can be obtained from the iterative

procedure. The following definitions will be useful in this section.

(Krantz and Parks,1992,p25)

real analytic function - A function f : T-.R. where T is a non-empty open set in fl. V E T

f can be represented by a convergent power series in some neighborhood of .

(Krantz and Parks,1992,p152)

real analytic variety - Set of common zeros in T of a finite set of real analytic functions.

(Smith, 1971,p255)

regular function :
R. is regular if exists, is continous, and has maximal rank V 9 E

(Smith, 1971,p255)

smooth manifold - A smooth manifold of dimension k in R?1 is a setM V E M a function

E: jrn_k which is regular on an open set ci containing and is such that

Mnci={eRmIE()=}nci.

(Lehmann, l983,p9)

lebesque measure A probability measure Am defined on the smallest a-algebra containing all open

rectangles in 7. ForT = {x 7ma < ii < b i = 1,..., m}, Am(T) = [T(b at).

These definitions are incorporated into the following three lemmas which will be used to derive the

theorem.

(Krantz and Parks,1992,p25)

Lemma 1: Suppose f and g are real analytic functions with domain T g() 0 V E T. Then f + g

and f/g are real analytic functions.
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(Smith, 1971,p299)

Lemma 2: A smooth submanifold in of dimension < rn has rn-dimensional lebesque measure 0.

Lemma 3: For 9 TI where TI is a non-empty open set in 7m, consider real polynomials p(9) and q(9)

where q(9) 0 V 9 E TI, so that -(0) = is a non-zero rational function. If A = {0 E Tlr(9) = 0},

then Am(A) = 0.

proof i) By definition, p and q are real analytic functions

z. r is a real analytic function with domain TI by lemma 1 as q(9) 0 V 9 E TI

A is an real analytic variety in -grn by definition.

ii) Consider the notation and results in theorem 5.2.3 of Krantz and Parks (l992,pl54) which establishes

that a real analytic variety is the finite union of real analytic smooth submanifolds of dimensions < rn.

For each 00 E TI, define ro(0) r(9+9°), = {91 1911 <}, Z = {9 E QoIro(9) = 0}

where = {o E 7ml[9i, ..., e]' E ci and E(9) = 0} with ci open in k and

gk+1(O,,...,Gk) 9k+l

E(9) = for real analytic functions g defined on ci. Note 13o) can be written as
gm(O1,...,Ok)Gm

= {9 e 7mIF(9) = 0 n (ci x 1Zm_)} where M = ci x 'Jim-k is open in Rm In addition,

= 1rn-i] has maximal rank rn k = F is regular on Mby definition.

iii) Let = Q;0 + 0°. Note that 91 + 90 91 90 E Z
91 90 E Q and ro(9' 9°) = 0 E Q0 + 0° = Qo and r(01 0° + 0°) 0
91 E {0 E Q901r(0) = 0} = Zo. Thus, Z = + 0° = fl A as the above holds V 01.

iv) From ii), Q is open is open. Then 9 V 9° TI C U
QT

= TI C as fltm is separable (Royden,1988,p 142)

A=TIflAc(UQ)flA=U(QflA)= UZ byiii).
z=1

v) From ii), 13 is a smooth manifold of dimension k <rn by definition V j, 9°

)rn(Bo,j) = Obylemma2 Vj,9°
40

Arn(Zo) = )rn( U,!3o,3) .\m(!3oj) = 0 V 9° by ii) and subaddivity Royden (1988, p57)

)trn(Zo) = )rn(Zo +9°) = )rn(Zo) = 0 V9° by iii) and translation invariance Royden (l988,p58)
00

)'rn(A) = Arn(U Z) Arn(Zi) by iv) and subadditivity Royden (1988). .
i=1
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Theorem: Let* = { k+lIVjspD} 

i) If 2 = { E = A'(X'X)-1X'}, then Ak+l(Z) = 0 or 2 = 
ii) IfZ = { E FF(XttV Xf)_1Xt*V = F/(Xt*Xt)Xt*}, then )k+1(Z) = 0 or 2 

proof From section 3.1.2, E is open in R1. 

i) The entries of the matrix A'(X'V1X)1X'V1 - A'(X'X)'X' are ratios of polynomials in 

givenby r()= !4.Thedenominatorsqjj(th) 0 V.E since VisPD VE 
(1) If at least one entry r() 0, then )k+1(Z) = 0 by lemma 3. 

(2) If r() = 0 V i, j, then 2 by definition of 2. 
ii) For A E S, define ZA = { E 

FF(XttY_lXt)_1Xt*V_iA = r(xt*xt)_lxt*A}. Note 
r/(xttv-lxt)_1xt*vA = F'{tr(RR1R 1)}1{tr(R 1AR')} by lemma 1 section 3.2.3. 

The entries of the matrix r/(xt*v Xt)_1Xt*V-lA - 1Y(Xt*Xt)Xt*A are ratios of polynomials in 

?/)k+1 given by r() = The denominators qjj() OV E since is PD V E 

(1) If for some A e S,, at least one entry r() 0, then )'k+1(ZA) = 0 by lemma 3. Then 

2 = fl Z = Ak+1(Z) Ak+1(ZA) = 0 by monotonicity (Royden,1988,p55). 
AES,. 

(2) If V A E Si-,, r() = 0 V i, j, then 2 = fl Z = fl I 
AES,. AeS,. 

By the Y-UBLUE and LQZ-UBLUE theorems in chapter 5, the UBLUE condition, or GZC, is 
11 2= equivalent to 2 = . 

Consider the unknown parameter = 0 2 . 
When = 1, the GZC will 

holdV E Whene = 0, the GZC will not hold V. e 

In order to devise a method for checking the conditions based on the results of the above theorem, it 

will be useful to consider probability measures P defined on R, that are absolutely continuous with 

respect to Am. The probability measure on the set Acan be written as P(A) = fApdAm where 0 p < 1 

is the probability density ofF (Lehmann,1983). Then Am(A) = 0 = P(A) = 0 since 

0< P(A) = fAP''\m fA(1)dAm )tm(A) 0. 

Suppose is randomly distributed with respect to an absolutely continous probability distribution 

P with support 
. 

Also, suppose the random observation vector Y is distributed with respect to an 

absolutely continous probability distribution F with support )) that contains a non-empty open set in 1Z. 

Also, assume that and Y are independent. Let denote the joint probability distribution defined on 

>< 
k+1 For A = A1 x A2 where A C 7Z1' x 7k+1 A1 C RY, .A2 c R,k+l the joint probability 

distribution is defined by F(A) = J'A pdAm = fA1[fA2 i4pdAmIdAm = P (A1)PK(A2) using the 

independence of and Y (Lehmann,l986,p40). 
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Let D(1J2) be the difference between the two quantities given in the set Z and let B(Y) be the

response for either the Y-Model, the ALQEM for (Y X), or the LQEM for NxY. Then

T(, Y) = D()B(Y) corresponds to the difference between the GLSE and the LSE in the appropriate

model.

The statistic T(, ) and the probability distribution will be used to draw inference about the

unknown parameter . This will be accomplished by generating a confidence region for . Define the

confidence region C(T(, y {
. The following theorem gives the coverage

probability for this confidence region (Casella and Berger,p404).

Theorem: C(T(,y)) is a 100% confidence region for as P( E = 1.

proof i)= 1 = Z=Et D()=0VE* T(,y)=D()B(y)=0 VE,YER!
= = 0) = 1
= C(T(,Y)) = {1} VE E, Ye R! w.p. 1withrespecttoP by definition of C(T(,Y))
= P(1 C C(T(,y))) = 1.

ii) = 0 = Z $ = .\k+1(Z) = 0 by the above theorem

F ( E 2) = 0 by absolute continuity = P ( Z) = 1
2 w.p. 1 with respect to 11 D() 0 w.p. 1 with respect to 11

P(T(,Y) = D()B(y) = 0) = 0 w.p. I with respect toll
= E[PK(T(,y) = 0I)] = 0

f.pP(T(k,Y) = 0J)p(th)d\m = 0 where F = {I T(,Y) = 0}
fF[fG(_YI) P( lAm]dArn = 0 whereG = {YIT(,Y) = 0}

= 0 as and Yare independent

1FXGPh, Y)dAm = 0 as and Y are independent

= P(T(,Y) =0) =0 = P(T(,y) 0) = 1

= C(T(,Y)) = {0} V C I C 7 w.p. 1 with respect to P by definition of C(T(, I))

= P(0 C C(,Y)) = 1.
By i) and ii), C(T(, I)) is a 100% confidence region for as C C(T(k, I))) = 1.

Note the above proof also shows that = 1 implies P(T(, Y) = 0) = 1 and = 0 implies
0) = 1. The above two theorems in this section prove the details given in section 8.1.5.

Section 8.1.5 provides a method for checking the GZC using the iterative procedure presented in section

8.1.1. Methods A and B generate the statistic T(, Y) or equivalently S (, I), and state the results

using the 100% confidence region given above (section 8.1.5).
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Appendix C - Summary of Models and Theorems

This appendix gives a summary of the models that are considered in this thesis as well as the

associated theorems that are of main importance. It is hoped that this summary will provide an easy

reference to help the reader.

The Underlying Model

Purpose: Examine the UBLUE in a general framework that can be applied to the special cases.

Notation: w E W, 0 E Tu C P, U E .C(P, W), V C £PD(W, W).

Definition: Eo[w] = U0 Cov(w) = V E V (section 3.3.1).

UBLUE for Full Case: U-FUBLUE Theorem (section 4.1).

UBLUE for General Case: U-UBLUE Theorem (section 5.1).

UBLUE for General Case in Full Rank Setting: U-UBLUEFR Theorem (section 6.1).

Special Cases of the Underlying Model

A. Y-Model

Purpose: Use to model the fixed effects for the ML method.

Notation: Y E 7Z, E 7?)', X72,<, V is PD for all E

Definition: E[Y] = X Cov(Y) = V (section 3.1.1).

UBLUE for Full Case: U-FUBLUE Theorem (section 4.2.1).

UBLUE for General Case: Y-UBLUE Theorem (section 5.2.1).

UBLUE for General Case in Full Rank Setting: Y-UBLUE Theorem (section 6.3.1).

ELMLQE for Full Case: Y-FELMLQE Theorem (section 4.2.2).

ELMLQE for General Case: Y-ELMLQE Theorem (section 5.2.2).

ELMLQE for General Case in Full Rank Setting: Y-ELMLQE Theorem (section 6.3.2).
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B. ALQEM for (Y X)

Purpose: Use to model the variance components for the ML method.

Notation: Z = Y = (I X(X' V21X)X'V3-')Y, Y2 =

Definition: E[Y] = X° Cov(Y) = = 2Wv (section 3.2.1).

UBLUE for Full Case: LQZ-FUBLUE Theorem (section 4.3.1).

UBLUE for General Case: LQZ-FUBLUE Theorem (section 5.3.1).

UBLUE for General Case in Full Rank Setting: LQZ-UBLUE Theorem (section 6.4.1).

ELMLQE for Full Case: ALQNY-FELMLQE Theorem (section 4.3.2).

ELMLQE for General Case: ALQNY-ELMLQE Theorem (section 5.3.2).

ELMLQE for General Case in Full Rank Setting: ALQNY-ELMLQE Theorem (section 6.4.2).

C. LQEM for NY

Purpose: Use to the model variance components for the REML method.

Notation: Z = NxY, Y° = ZZ', E

Definition: E[Y0] = X° Cov(Y°) = = 2WNXVNX (section 3.2.1).

UBLUE for Full Case: LQZ-FUBLUE Theorem (section 4.3.1).

UBLUE for General Case: LQZ-FUBLUE Theorem (section 5.3.1).

UBLUE for General Case in Full Rank Setting: LQZ-UBLUE Theorem (section 6.4.1).

ELREMLQE for Full Case: LQNY-FELREMLQE Theorem (section 4.3.3).

ELREMLQE for General Case: LQNY-ELREMLQE Theorem (section 5.3.3).

ELREMLQE for General Case in Full Rank Setting: LQNY-ELREMLQEFR Theorem (section 6.4.3).
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Appendix D - Abbreviations and Symbols

CQS = Commutative Quadratic Subspace (2.8)

EGLSE = Estimated Generalized Least Squares Estimator (3.3.3)

ELMLQE = Explicit Linear Maximum Likelihood Equation Estimator (5.2, 5.3)

ELREMLQE = Explicit Linear Restricted Maximum Likelihood Equation Estimator (5.3)

FELMLQE = Full ELMLQE (4.2, 4.3)

FELREMLQE = Full ELREMLQE (4.3)

FUBLIJE = Full UBLUE (3.3.4)

g-inverse = Generalized Inverse (2.5)

GLSE = Generalized Least Squares Estimator (3.3.3)

GZC Generalized Zyskinds Condition (5.2)

IBLUE = Best Linear Unbiased Estimation with respect to multiple of identity transformation I (3.3.4)

LQEM = Linearized Quadratic Estimation Models (3.2)

LSE = Least Squares Estimator (3.3.3)

ML = Maximum Likelihood (2.4.4)

MLQE = Maximum Likelihood Equation Estimator (3.1.4)

NND = Non-Negative Definite (2.1.1)

OPO = Orthogonal Projection Operator (2.1)

QS = Quadratic Subspace (2.7)

PD = Positive Definite (2.1.1)

PU = Projection Operator (2.1)

REML = Restricted Maximum Likelihood (3.1.4)

REMLQE = Restricted Maximum Likelihood Equation Estimator (3.1.4)

UBLUE = Uniformly Best Linear Unbiased Estimator (3.3.4)

VBLUE = Best Linear Unbiased Estimator with respect to NND transformation V (3.3.4)

ZC = Zyskinds Condition (3.3.5)
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= such that

= there exists

= implies

= if and only if

A = matrix or linear transformation (2.1)

A* = adjoint of A when A is a linear transformation (2.1)

A' = transpose of A if A is a matrix (2.1)

a=vector (2.1)

R(A) = range of A (2.1)

r(A) = rank of A (2.1)

N(A) = nulispaceofA (2.1)

R(A) = range space of A (2.1)

U= subspace (2.1)

U-'- = orthogonal complement of U (2.1)

dimU = dimension of U (2.1)

Sn = set of symmetric n x n matrices (2.1)

Mnxrn set of n x m matrices (2.1)

PA = OPO on B(A) (2.5)

= g-inverse of A (2.5)

A+ = Moore-Penrose Inverse for A (2.5)

tr(A) = trace of A (2.6)

vec(A) = vector form of the matrix A (2.9)

A 0 B = horizontal direct product between the matrices A and B (2.9)

U V = direct sum = U+ V UflV = {O} (2.5)
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Y-Model = the original model of interest (3.1)

[U = linearity assumption for the covariance matrix in the Y-Model (3.1)

[0] = open set assumption for parameters of the covariance matrix in the Y-Model or in U-Model (3.1)

[Nil = normality assumption for the Y-Model (3.1)

[CI = classification assumption for the Y-Model (3.1)

Bal(g) = balance with respect to a particular subset of factors g (3.1.3)

LQEM for Z = Linearized Quadratic Estimation Model for the random vector Z (3.2)

lJJ = A linear transformation from S -* Sn given by W(A) = E A E (3.2.2)

U-Model = Underlying Model (3.3)

[SI = spanning assumption in the U-Model (3.3)

£PD(W, 3'V) = the set of PD linear transformations mapping W.W (3.2.2, 3.3.1)

.CNND(W, W) = the set of NND linear transformations mapping W'W (3.3.4)




