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Explicit Linear Maximum Likelihood Estimation in Mixed Models

1. Introduction

1.1. Motivation

Mixed linear models have been widely used to model data from experiments which have fixed and
random factors. There is often interest in estimating the fixed effects and variance components in these
models. Likelihood procedures have been used to solve this estimation problem. However, likelihood
procedures can be computationally difficult, as iterative algorithms are needed to solve for the estimators
that satisfy the likelihood equations. The estimators from the iterative procedure can also be hard to
interpret and their performance can be difficult to assess.

Previous research has found conditions under which likelihood estimators of the vector of the fixed
effects and the vector of the variance components are explicit and linear. These results characterize the
full case where the complete parameter vector is under consideration. However, there are many cases
under which such explicit linear estimators do not exist. The purpose of this study is to generalize these
results by obtaining conditions under which the likelihood estimator of a linear combination of fixed
effects or variance components is explicit and linear when explicit and linear estimators do not exist in the
full case. Knowledge of the existence of explicit linear likelihood estimators for linear combinations of
interest involving the fixed effects and variance components can be helpful for calculation, interpretation,

and assessing performance.

1.2. Previous Results

The estimation of fixed effects and variance components has been a important statistical problem.
Fixed effects can be estimated using least squares techniques. Ordinary least squares solutions are often
inadequate in models with random effects since they do not account for the covariance. Generalized least
squares can be used to account for the covariance when it is known. However, it is usually the case that
the covariance depends on some unknown parameters. Estimated generalized least squares estimators can
be used to estimate the fixed effects where the generalized least squares estimator is calculated using the
estimated covariance matrix. However, the issue then is how to estimate the variance components
(Searle et al.,1992). "For balanced data, it has been common practice to estimate these parameters by
equating the means squares in the ANOVA table to their expectations” (Harville,1977). This method of
estimation was generalized to the unbalanced case using techniques by Henderson (1953). Likelihood

techniques have become a more popular alternative and these methods are reviewed in the next section.



1.2.1. Likelihood Estimation

The likelihood procedure is a general technique that can be applied to estimating variance
components in balanced and unbalanced mixed models. This technique requires an assumption of a
probability distribution for the data. It is typically assumed that the data are from a multivariate normal
distribution (Searle et al.,1992). Thus, the multivariate normal distribution will be assumed in this thesis.

Harville (1977) gives some of the advantages of using likelihood procedures in this setting:

A maximum likelihood approach to the estimation of variance components has
some attractive features. The maximum likelihood estimators are functions of
every sufficient statistic and are consistent and asymptotically normal and
efficient. Certain deficiencies of various other methods are not shared by
maximum likelihood. In particular, the maximum likelihood approach is
'always' well-defined, even for the many useful generalizations of the ordinary
ANOVA models, and, with maximum likelihood, nonnegativity constraints on
the variance components or other constraints on the parameter space cause no

conceptual difficulties.

On the other hand, complicated computational issues can arise when calculating likelihood
estimators, since the solutions require solving nonlinear equations (Harville,1977). Iterative algorithms
are necessary for finding such solutions and have been implemented with the use of modern computing
software. Such computational algorithms and other issues related to likelihood estimation can be found in

Harville (1977), Callanan and Harville (1991), and Searle et al. (1992).

1.2.2. Explicit Linear Likelihood Estimation

Due to the difficult computations necessary to solve the likelihood equations, there is an advantage to
knowing when these estimators can be solved linearly and explicitly. In these cases, an iterative procedure
is not necessary and the resulting estimates are easier to interpret and assess. This issue has been
investigated by Rogers and Young (1977), Szatrowski (1980), and ElBassiouni (1983). All of these results
pertain to the full case which involves the entire vector of fixed effects or the entire vector of variance
components.

Rogers and Young (1977) identify conditions involving explicit linear maximum likelihood equation

estimators for the entire vector of variance components. They examine when the inverse of the covariance



matrix has linear structure. This allows the maximum likelihood equations to be solved linearly and
explicitly.

Szatrowski (1980) finds conditions for the existence of explicit linear maximum likelihood equation
estimators for the full case involving fixed effects and variance components. This approach involves
obtaining models that have estimated generalized least squares estimators that correspond to solutions of
the maximum likelihood equations. Under certain sufficient conditions, Szatrowski shows the estimated
generalized least squares estimators for these models equal the least squares estimator. The least squares
estimator satisfies the definition of an explicit linear maximum likelihood estimator.

ElBassiouni (1983) applies the results of Szatrowski (1980) to the restricted maximum likelihood
procedure. Conditions are obtained under which the variance component vector has an explicit linear
restricted maximum likelihood equation estimator.

The method of Szatrowski is of particular interest since it will be used in this study to extend the

previous results.

1.2.3. Best Linear Unbiased Estimation

Best linear unbiased estimation is a concept which will be useful for obtaining conditions for the
existence of explicit linear likelihood estimators. This type of estimation is defined by Puntanen and Styan
(1989) and Seely(1996).

The relationship between best linear unbiased estimation and explicit maximum likelihood estimation
can be explained for the fixed effects in a mixed effects linear model. Let this linear model be called the
Y-Model. The best linear unbiased estimator for a given covariance matrix is the generalized least squares
estimator (Searle et al.,1992). When the covariance matrix depends on an unknown variance component
parameter that varies in some set, the generalized least squares estimator will not necessarily be the best
over all possible parameter values. Under Zyskind's condition for the Y-Model (Zyskind,1967), for each
value of the parameter, the associated generalized least squares estimators are equivalent and equal to the
least squares estimator. In this case, the least squares estimator is the best linear unbiased estimator over
all possible parameter values. Suppose the unknown variance component parameter is estimated using a
solution to the maximum likelihood equations where the resulting estimate lies in the parameter set. Then
Zyskind's condition can be used to show that the estimated generalized least squares estimator using the
maximum likelihood equation estimator is equal to the least squares estimator. The least squares estimator
is explicit, linear, and equivalent to the maximum likelihood equation estimator.

In order to apply similar results to variance components, it is necessary to obtain models to conduct
quadratic estimation. Such models are formulated by Seely (1969,1971) and will be called linearized
quadratic estimation models. A linearized quadratic estimation model can be defined for the maximum

likelihood procedure and for the restricted maximum likelihood procedure. The response in such models



involves quadratic forms of the original response. Generalizations of best linear unbiased estimation have
been examined for these models by Seely and Zyskind (1969). In addition, Seely (1969) shows that
Zyskind's condition in the linearized quadratic estimation model is equivalent to a quadratic subspace
condition. Further discussion of least squares, generalized least squares, and best linear unbiased

estimation is given by Puntanen and Styan (1989), Rao (1968), Seely (1996), and Birkes (1996).

1.3. Summary of Results

The approach of Szatrowski (1980) for the full case, which involves the entire vector of fixed effects
or the entire vector of variance components, requires the use of the Y-Model and two linearized quadratic
estimation models. These three models can be combined into a single underlying model in which
Zyskind's condition can be investigated. The results derived for this underlying model will then be applied
to the specific models of interest.

The results for the full case can be generalized to linear combinations involving the parameters. In
this case, a full explicit linear estimator may not exist, but there may exist an explicit linear estimator for a
linear combination of interest. This generalization is done using the underlying model by equating the
linear combination involving the least squares estimator with the linear combination involving the
generalized least squares estimator to obtain a generalized Zyskind's condition. This condition is applied
to the particular models of interest to give results for the general case involving linear combinations of the
fixed effects or linear combinations of the variance components in the maximum likelihood and restricted
maximum likelihood procedures.

Another perspective relates to examining a subvector of the parameter vector. This perspective is
useful for understanding and for checking the existence of an explicit linear estimator in specific
examples. This is done using the underlying model by equating the subvector involving the least squares
estimator with the subvector involving the generalized least squares estimator to obtain a generalized
Zyskind's condition. The condition is again applied to the particular models of interest to obtain the
associated results for estimating a subvector of the fixed effects vector or a subvector of the variance
components vector in the maximum likelihood and restricted maximum likelihood procedures.

The existence of explicit linear estimators will be demonstrated for the full and general cases in
mixed linear classification models. Specific examples will be examined as well as classes of examples that
meet certain design and model conditions. A search of 3-way models under various designs is also
presented.

The conditions for the existence of explicit linear estimators in the full and general cases will be
applied to uniformly minimum variance unbiased estimation. The full case will be presented with respect
to results from Seely(1971,1977) that prove the existence of a complete sufficient statistic for a family of

normal distributions under the conditions. The general case will be presented to show that, under the



conditions, the explicit linear estimator has uniformly minimum variance for all unbiased estimators in
certain cases in the maximum likelihood and restricted maximum likelihood procedures. In addition, it is
shown that an exact form can be obtained for the covariance of an explicit linear estimator.

The conditions for the existence of explicit linear estimators in the full and general cases will also be
applied to data. An iterative procedure is defined and demonstrated through a data example using PROC
MIXED in SAS. It is also demonstrated how an iterative procedure can be used to check the conditions.
Data examples also demonstrate that computing time can be saved when accounting for explicit linear
estimators. This savings is explained for the iterative procedure and for profile likelihood confidence
intervals. A data example will be given to illustrate the savings in computing time.

This thesis will present notation and definitions pertaining to linear transformations in chapter 2.
Chapter 3 will be used to define the models of interest, as well as results for these models. Chapter 4 gives
the previous results of Szatrowski (1980) and ElBassiouni (1983), along with clarifications. Extensions
involving the general cases will be given in chapters 5 and 6. Applications of the results pertaining to
uniformly minimum variance unbiased estimation will be given in chapter 7, while chapter 8 discusses the
application of the results to data. Chapter 9 provides a conclusion to the thesis. Appendices C and D have
been included to help the reader. Appendix C gives a summary of the models and related theorems while

Appendix D gives section numbers for common symbols and abbreviations.



2. Linear Transformations

The results of this study require knowledge of linear transformations. This chapter could be a review
for a reader with a background in linear algebra. However, particular notation, definitions, and properties
will be presented that provide an essential framework for later chapters. This chapter starts by presenting

basic terminology and then gives particular results that will be useful.

2.1. Basic Terminology

The following definitions provide a foundation to build on. This study will focus on finite
dimensional inner product spaces defined over the reals (). An inner product space is a vector space

with an inner product. The following definitions can be found in Halmos (1958) and Seely (1996).

Definitions: Vector Space - V is a vector space provided that V o, € R, a,b,c €V

) a+b=b+a i) a+(b+c)=(a+b)+c
iii) Junique03a+0=a iv) Junique —ada+{(—a)=0
v) a(fa) = (af)a vi) Juniquel > la=a

vil) a{a +b) =aa+ ab viii) (a + B)a = aa + fa.

Subspace - A non-empty subset I{ of V is a subspace provided thatV o, 8 € R, a,b € U, aa + Bb € U.

Linear Transformation - Iif W and V are vector spaces, then the function A : V=W is a linear

transformation from V into W provided that A(aa + 0b) = aA(a) + BA(b) Vo,BER, a,be V.

Linear Functional - [ is a linear functional on V provided that [ : V=R is a linear transformation.

Dual Space - The dual space of a vector space V is the vector space V* = {{ : [ a linear functional on V}.

Adjoint - The adjoint of the linear transformation A is given by A* : V*-W* defined by
{A(v)) = A*(l(v)) VveV,leWw.

Self-Adjoint - A linear transformation B : V=V > B* = B.

Inner Product - For o, 3 € R and a, b, ¢ € W, denote the inner product of aand b by < a,b > where
) <a,b> = <ba> i) <aa+ Bb,c> =a<a,c> +f<b,c>

i) <a,a> >0 iv) <a,a> =0&a=0.



Range Space - For the linear transformation A : V-W, it is the subspace of W denoted by R(A) = A(V).

Rank - The dimension of the range space where dim{(R(A)) = r(A).

Null Space - For the linear transformation A : V-+W, it is the subspace of V given by
N(A)={z € V| A(z) = 0}.

Nullity - The dimension of the null space where dim(N(A)) = n(A).

Orthogonal Complement - For a subspace I of W in an inner product space, it is the subspace of W given

by Ut ={aeW,be M| <a,b> =0}

Non-Negative Definite (NND) - The linear transformation Bis NND or B > 0if B s self-adjoint and
< Bw),v> >0 Vwvel.

Positive Definite (PD) - The linear transformation B is PD or B > 0 if B is self-adjoint and
< B(w),v> >0 VwveV.

Consider the inner product space (W, <, > ). A norm and a metric can be defined by
llw]| = < w,w> % and d(wy, ws) = ||Jw; — wol|, respectively. For notational simplicity, a linear
transformation A operating on an element v of a vector space will be denoted by Avinstead of A(v) as
above. This should not be confused with matrix multiplication and should be clear from the context.
Any linear transformation can be expressed as a matrix. Consider a linear transformation A : U-»W
where {u, ..., up} and {wy, ..., w, } are bases for U and W respectively. Thenfor j =1, ..., p
n

Auj = Y m;;w;. The matrix is a rectangular array of the np numbers m;; given by My, = {m;;}
i=1

which has column ¢; = [myj, ..., my;|" and row 7 = [myy, ..., mip] (Marcus and Minc,1965). The matrix
M is a linear transformation from R? into R". The following definitions are given to summarize the

notation which will be used for matrices.

Definitions: Matrix - Let M : RP=R" be denoted by Myxp = {mi;}nxp = My, -

Vector - Let ¢ : R1-R"™ be denoted by cux1 = {Ci}nx1-

d 1=]

Diagonal Matrix - The matrix Dy, = diag(dnx1) = diag({di}nx1) = { 0 it



Indexing and sizes will be suppressed when these values can easily be determined from the context
or when they are not important. Notationally, A could represent a linear transformation or a matrix, but its
representation should be clear from the context. In addition, let S, = set of symmetric n X 7 matrices and
Mm = set of n x m matrices. Specific inner product spaces that will be considered include

(Rn7 < Qn)(l;bn)(l > = glb) and (STH < ATL)(TL)BTLXTL > = [r(AB))

2.2. Dual Spaces

The following propositions give some properties of the dual space. These propositions indicate that
dual space W*is isomorphic to W when W has an inner product. Thus, the dual space will be of little

concern, since the main interest is in the real inner product space (W, <, > ).

(Halmos, 1958)

Proposition: A* : W*—=V"* is a linear transformation.

proof: i) Let Lo € W* and consider l»(v) = ly(A(v)) € V*. ThenVv eV
le(v) = Ly (A(v)) = A* lyo(v) by definition of adjoint

= le = A*(ly) since above holds V v € V.

Thus, Vu® € W A*(ly) = o forsomev® €V = A* : W V",

i) Letw* = aywi + agwy where wj,wy € W*. ThenVv eV

4w @) L w (A0)) = (1w} + aw3)(A@) D s (A®)) + a2w(A®))

1 2
WD 44" (i) + aod (w3(©) D (4" (w}) + A" (w3)) (v)
= A*(w*) = o A*(w}) + a2 A*(w}) asthe above holdsVv eV

where (1) follows from definition of adjoint and (2) follows from linearity properties. =

(Halmos,1958)
Proposition: dim W* = dim W.

proof: Suppose dim W = n and {wl, ., Wy } is a basis for W.

i) Define [: W—-R by l(w Zalﬁl where w = Y aqw; = l(w;i) =6 = l(w) =
1:1

™M=

ail{w;) (x).

1

.
[l

n n
Yw,veW= yiw+ 10 € W, 80 qw + Yav = Z'ylauwj (Y yazjw;) = Y (niaj+ rag;)w;
J=1 J=1 J=1
n

n *
= l(nmw+yv) =1 Z ’Ylalj+'72a2j)wj)( ) Y (mai; + o) l(w;)
j=1 =1

= 2 azl(wy) + Z az;l(wy) (—) Ml ZaleJ + 72l( Za2.7w] = mnl(w) +2l(v)
j=1 j=1 =1 j=

=>leWw.



ii) Suppose l; ¢ = 1,...,n € W* where l-(wj) = bij. Thean E W, lewr
Li(w) = L(X aqw;) = YLoyla(wy) = ZO‘J‘SU =a = l(w Ea,ﬁ, = Z Bi li(w)
i=1 j=1 =1
n
= | = 5" 1; since the above holds Vw € W = sp{!y,...,ln} = W* as the above holds V [ € W".
i=1

iii) Z,Bili:0:>2ﬁili( —OV’U}EW :>Z,B”w] —0 Vi=1,..
i=1 i=1

i=

=Y 6:6j=0Vj=1,..,n=0=0Vj=1,.,n = {l,.., .} are linearly independent.
i=1

Al -y 1n )} is abasis for W* = dimW* =n =dimW. »
Proposition: Suppose (W, <, > ) is areal inner product space. Then W* = W.

proof: ThenVw € W, define [ € W*by l(w) = <w,v> VveW.
Consider the linear operator & : W—W* defined by ®(w) = I. Note
d(w)=0=> <w,v> =0VveEW = <ww> =0 = w =0= ®is 1-1 (isomorphism)

= W is isomorphic to W since J an isomorphism & and dim W* = dim W by above proposition. =

2.3. Subspaces

A number of relationships will be presented concerning subspaces. Many of these results will be used

in later sections. Consider a finite dimensional inner product space given by (W, <, > ).

(Halmos,1958) (Seely,1996)
Proposition: Let T and U be subspaces of W. Then
i) TClUanddim7 =dimU & T =U
i) U+ut=w
i) (T +U)*r =T+ nut
iv)dim(7 + U) = dim T + dim¥ — dim(7 NU)
v) Utt =U.

proof:)Note 7 =U < T CUandBaclUU>a¢T < T CUand dimT = dimU .

ii) Let S = {ui, ..., u,} be an orthonormal basis for Y and V w € Wdefinez = ) < w,u; > u; € U.
i=1

By the properties of the inner product and the orthonormal basis S,

m
<w-—z,z> = <w,r> — <z,x> = (Y <wu; > ) <wu > — <z,u>)
i=1

m
= (Y <wuw>)N<wu> — <w,u > <upu;>)=0 as <uju; > =1.
i=1

Thus, w—z €Ut m>w=z+ (w—z) EU+U" = U+U" =W asthe above holds w € W.



ilwe (T+U*r e <wv> =0 VveT+U & <w,z+y> =0 VzeT,yel
o <wz> =0and <w,y> =0 VzeT,yecld SweT+NUt.

iv) Let Sty = {w1, ..., ux} be a basis for 7 N Y. Choose vy, ..., m D

St = {u1, ..., U, v1, ..., Um} is a basis for 7 and choose wy, ..., wn >

Sy = {u1, ..., ug, w1, ..., Wy } is a basis for Y.

For purposes of contradiction (*), suppose the elements of St U Sy, are linearly dependent

m
= 3 linear combinations 3> Y av; = ) Bjw; € T NU
=1 =1

m n k
= S = Y fBywj = Y &u for some linear combination of elements in Szry
=1 =1 =1

= S7, Sy cannot be bases by definition since their elements are not independent ().

Thus, S7 U Sy is a basis for 7 + U as it is an independent spanning set for 7 + U. Also,

10

M) dim(T + U)=k+m+n 2)dimT +dim¥ —dim(T NU)=k+m+k+n—k=k+m+n

= the result holds as (1) and (2) are equal.

v) By definition, U** = {a e W, beU*| <a,b> =0} DU (x).

(1) Note dimW = dim(Yf + U*) = dimU + dim(U*) — dim(U N U*) by ii) and iv)
= dimY + dim(U*) — dim(W*) = dim U + dim(U4+) by iii).

(2) Also, dimW = dim(U* + U*L) = dimU* + dim(U*) — dim(U*+ NUYLL) by ii) and iv)
=dimU* + dim(U+) — dim(W*) = dimUt + dim(U+L) by iii).

Thus, U+ =U by (x),(1),(2). =

By definition, range and null spaces are subspaces. The next proposition gives results for range

spaces, null spaces, and ranks.

(Seely,1996)

Proposition: Consider conformable linear transformations A and B. Then
i) R(A,B)=R(A)+ R(B)
i) r(A4,B) =r(A)+r(B) — dim(R(A) N R(B))

iii) R(A)L = N(4") N(A)' = R(A")

iv) R(AB) C R(A) N(B) C N(AB)

v) r(AB) = r(B) - dim(R(B) N N(A))

vi) R(B*B)= R(B") N(B*B) = N(B)

vii) R(A) C R(B) ¢ (A, B) = r(B).

proof: 1) Let T, Uy, Us be subspaces and A : Uy—7 and B : Uy~ 7 . Then
E(A,B) = {[AB][u1u2] Suy €Uy, ug € ug} = {A’U1 + BUQ| uy €Uy, ug € ug}
= {AU1| u € Lﬁ} + {B’u2 l Ug € ug} = E(A) + E(B)
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ii) Follows from iv) in proposition above.
iii) Let A be defined as in the proof of i). Then
(M RA ={Au|yy ey} ={weT| < Au,w> =0 Vu €U}
={weT| <u,A'w> =0Vu €U}
={weT|A*w =0} = N(A*) as above holds V u; € U;.
(2) By (1) and v) in above prop, N(A) = R(A*)* = N(A)* = R(A*)** = R(4").
iv) Let 7, U, Us be subspaces and A : Uyj—7 and B : Us—U;. Then
(1) R(AB) = {ABw|w € U} = {A(Bw)| Bw € Ui} C {Av|v e U} = R(A)
(2Q)Lett € N(B)= Bt=0= ABt=0=>t € N(AB) = N(B) C N(AB).
v) Let T be a linear transformation > 7 : R(B) »W defined by Tv = Av V v &€ R(B). Then
r(B) =r(T) +n(T) = r(AB) + dim(R(B) " N(A))  and the result follows.
vi) (1) R(B*B) C R(B”*) by iv) and by v). Also,
r(B*B) = r(B) - dim(R(B) N N(B")) = r(B) — dim(
(2) By (1), R(B*B) = R(B*) < R(B*B)* = R(B*)" < N(B*B) = N(B) by iii).
vii) r(A4, B) = r(B) < r(4) + r(B) — dim(R(A) N B(B) ) = r(B)
r(A) = dim(R(A) N R(B)) < R(A) = R(A) N B(B) as R(A)NR(B) C R(A) & R(A) C E(B). =

o
5
D
=
)
<
I
Il
)
o
<

Proposition: Let T = {11, ..., T;} and U, W be conformable linear transformations. Then
RIU)CRW)VT €T < RITIU)CRW)VTespT.

proof: ) R(TU) CRW)VT esp7 = RTU) CRW)VT €T since 7 C sp7.
i) R(TU) C RW)V T € T = R(LU) CRW) i=1,..t

=> LR CRW) i=1,..,t

= i:aiﬁ[ﬂ(U)] C R(W) V a; € R since R(W) is a subspace

1
= TIRO)) CRW) Va€eR, T=>YaT €spT
i=1

> R(TU)CRW) VTecsp7T. =

2.4. Inverses

Under certain properties, a linear transformation A has an inverse (A™!) or is invertible. These

conditions and a useful proposition are presented below.

Definition: Invertible - A linear transformation A : V=W is invertible providing
(1) Av; = Avy = v1 = v2(1-1) and (2) R(A) = W (onto).
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(Halmos,1958) (Marcus and Minc,1965)

Proposition: The linear transformation A : V-V is invertible if and only if Av =0 = v = 0.

proof: 1) Suppose A is invertible. Then Av =0 = A0 = v = 0.
ii) Suppose Av =0 = v = 0. Then Av; = Ava => A(t1 —19) = 0= v1 — v = 0 = v; = vs.
In addition, suppose {b1, ..., b, } is a basis for V. Then

Za,-Ab,- =0 = A(Za,-b,-) =0= Za,-b,- =0=>a;=0 1= 1,...,n
=1 i=1 =1

= {Aby, ..., Ab,}is also basis for V = R(A)=V. =

There will be interest in calculating the inverse for partitioned matrices containing linear
transformations. This special setting will be described in a later chapter, but the result is given here. The
inverse formulas can be verified by left and right multiplying the transformation and its inverse to obtain

the identity transformation.

(Christensen,1996)
Inverse Formulas: Assuming all linear transformations are conformable, then
i) [A+ BCD|"'!= A1~ A"'B[C~'+ DA"'B]'DA!
" [ A B}“ _ [A“ +GE'G" —G'E}

2 D g pull E=D-B'A'B G=A"'B

2.5. Projection Operators and Generalized Inverses

Projection operators play a fundamental role in later results. These operators have special properties,
as indicated by their definitions. Another special transformation is the generalized inverse or g-inverse.
These inverses are useful for characterizing projections and have special properties (Seely,1996).
Definitions: Projection Operator (PO) - Pis a PO on R(P)along N(P) < P?=P.
Orthogonal Projection Operatior (OPO) - P4 is an OPO on R(A) < R(P4) = R(A), P4 = P, = P3.

G-Inverse (A7) - A is defined by the relation AA~A = A.

Moore-Penrose Inverse (A1) - A* is defined by the properties
1)AATA=A 2) ATAAT = At 3) (AAY)* = AAY 4) (ATA)* = A*A.
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Note that P, is used to represent an OPO on R(A) while the range and null space need to be
specified for a PO. The next proposition establishes an alternative definition of projection operators. The
second proposition uses the alternative definition to show that projections are unique linear operators. For

subspaces I/ and V, the direct sum (@ )is definedby USV =U+V > UNV = {0} (Seely,1996).

(Halmos,1958)
Proposition: Let P : V=Y. Then P2 = P & V = R(P) ® N(P) and v € V can uniquely be expressed

as v=u+w where Pw= 0and Pv=u.

proof: i) Suppose P2 = P. (1) Letv € V. Thenv = Pv+ (v — Pv) € R(P) + N(P).

(2) Suppose w € R(P) N N(P).Then w = Pv for some v € Vand Pw = 0. Thus,

0= Pw= PPv=Pv=w= R(P)NN(P)={0}. -.by(1)and (2),V = R(P)® N(P).

(3)Byi), v=u+w€ R(P)+ N(P)where u € R(P)and w € N(P).

Letu; € R(P), w; € N(P) i=1,2 andassume v = uj + w1 = ug + W2 = U — U = W2 — W

= u; = Uy, w1 = We since u; — uz € R(P), w; —wqs € N(P),and R(P)NN(P)={0}.

= v € V can uniquely be expressed as v = u + w.

(4) Consider the unique expression in (3) given by v = u + w. Let u = Pz for some z and note Pw = 0.
Then Pv= Pu+ Pw= PPz = Pz=uby(3).

ii) To show P? = P. By hypothesis, v € V can uniquely be expressed as v = u + w where u € R(P),

w € N(P), and Pv = u. Thus, P>v = PPv= Pu=u= Pv= P?= P astheabove holds Vv € V. =

Proposition: 1) Pis a linear transformation.

ll) If P12 = P1, P22 = Pz, E(Pl) = E(Pz), and H(Pl) = H(Pz), then P1 = Pz.

proof: i) Letv; € V i = 1,2. By the above proposition, v; = u; + w; where u; € R(P), w; € N(P),
and Pv; = u; i = 1,2. Then oqv; + av; = a1ur + asuz + aqwy + aswz where

a1u + asug € R(P) and aywy + agwy € N(P). By the above proposition,

P(oyv + aats) = aquy + apus = a1 Pvy + a2 Pos.

ii) By the above proposition, Vv € V, v = u + w where u € R(P;) = R(P;) andw € N(P,) = N(P,)

= Pv=u=Pow= P,=P, asaboveholdsVve V. u

A g-inverse for A may not be unique while the Moore-Penrose inverse for A is unique. The choice of
a g-inverse in later applications will depend upon the context. Usually, a g-inverse will be used unless the
specific properties of a Moore-Penrose inverse are needed. The following propositions demonstrate

properties of A~ and A*. The next six results are given in Seely (1996).



Proposition: For any linear transformation A, there exists A~ .
proof-Let Pbe aPOon R(A) > IG3AG=P=>AGA=PA=A=G=A". »

Proposition: A g-inverse A~ satisfies
) (A" =47 ii) If Ais invertible, then A~ = A~!
iii) AA” isaPOon R(A) iv) ATA isaPOalong N(A).

proof: i) By definitionof A=, AATA=A= A*(A))A*"=A* = (A7) = (4")".
ii) By definitionof A, AA"A=A = ATAA"AA 1= A1AA™! = A~ = A™!
iii) (AA7)(AA7) = AA™ by definition of A~ and

R(A) = R(AA”A) C R(AA™) C R(A) = R(A) = R(AA7).

iv) (ATA)(A"A) = A A by definition of A~ and

N(A)C N(A"A)C N(AA"A)=N(A) = N(A) =R(A"A). =

Proposition: Py = AGA* where G = (A*A)~ is any g-inverse of A.

proof: Let P = A(A*A)~ A* and note A*A(A*A)” isaPOon R(A*A) = R(A")
=> A*A(A*A)"A* = A*P = A*. Then

i) P*=(A(A*A)*A*)* = P since G* = G

ii) P2 = (A(A*A)" A" )(A(A*A)"A*) = A(A*A)"A* =P

iii) N(A4*) C N(A(A"A)"A") = N(P) C N(A*"P) = N(4")

= N(A") = ( ) = R(A) = B(P") = R(P) by ).

o.Py=P = Py = AGA* where G = (A*A)~ is any g-inverse of A. =

Proposition: If A* = A, then (At)* = A.

proof: Let C = (A")*. Using the definition of A" it can be shown that C = (A*)* since
1) A*CA* = (AAYA)* = A* 2) CA'C = (ATAAY ) = A =C

(AC) =C"A=ATA=(ATA)* = ATC 4) (CA*)* = AC* = AAT = (AAM)*
Hence, C = (At)* = (A*) = At asA"=A =

(Seely,1996) (Schott,1997)

Proposition: For a linear transformation A, there eXists a unique A*.

=CA".



proof: i) Let B= (A*A)”A* and C = (AA")~ A where B and C exist since the g-inverses exist.
Define G = C*AB = A*(AA*)"A(A*A)” A*.
i) To show Atexists and A* = G. Using the above expressions for Py gives
DAGA = AC*AB = AA*(AA*) A(A*A) " A*A = AA*(AA*) " PjA

= AA*(AA*)"A=A since AA*(AA*)" isaPOon R(AA*) = R(A).
2) GAG = C*ABAC*AB = (A" (AA*)"A(A*A) " A*)A(A*(AA*)"A(ATA)" AY)

= A" (AA") PyAPs.(A*A) " A* = A*(AA") " A(AA)"A* =C*"AB=G.
3)AG = AC"AB = AA*(AA*) A(A*A)  A* = APy (A*A) A* = A(A*A)"A* = P,
= (AG)* = Py =Py = A.
4)GA=C*ABA= A*(AA*)"A(A"A) " A"A = A" (AA*) " PpA = A*(AA*)"A = Py
= (GA)* =P}, = Py.=GA.
. AT = G = for an arbitrary matrix A there exists A* by definition.
ii) To show A" is unique. Suppose 3 2 Moore-Penrose inverses Giand Ga. By definition,
1) AG, = (AGy)* = G A* = G (AG24)" = (AG1)"(AGa)* = AG1AG: = AG,
2) G1A = (G1A)" = A'G} = (AGA)* Gy = (GRA) (G A) = GRAGLA = G A.
G = GlAG = GIAG: = G AG: = G w

Corollary: For a linear transformation A, AA" = P4 and A* A = Py..

The proof of the corollary follows from the proof of the above theorem. The next results will be useful

in characterizing projection operators. The theorem was given its name in order to identify it easily.

(Seely,1996)
General Projection Theorem: Suppose D and A are conformable linear transformations >
r(A*DA) = r(A*) and G is a g-inverse of A*DA. Then
i) DAGA* isthe PO on R(DA)along N(A*) ii) AGA*D isthe PO on R(A) along N(A*D).

proof: iy Note (1) (DAGA*)(DAGA*) = DAGA* since A*DAGisaPOon R(A*DA) = R(A*)
2Q) N(A*) ¢ N(DAGA*) C N(A*DAGA*) = N(A*) since A® = A*DAGA*

(3) R(DA) = R(DAGA*DA) C R(DAGA*) C R(DA) since A = AGA*DA.

ii) Note (1) (AGA*D)(AGA*D) = AGA*D since A*DAGisaPOon R(A*DA) = R(A*)

(2Q) N(A*D) C N(AGA*D) C N(A*DAGA*D) = N(A*D)  since A* = A*DAGA*

(3) R(A) = R(AGA*DA) C R(AGA*D) C R(A) since A= AGA*DA. =

Proposition: If P : W-Wisan OPO, then 3T : T-W3 P=TT*and T*T = I.



proof:Let T = R(P)and define Tt =t V¢te€ T =>T:T-W.ThenVwe W, t€T
<T'wt>7= <wTt>wyw=<wt>w= <w,Pt>w= <Puwt>7r=Tw= Puw.
Now, TT* : W-W andVwe W, TT"w=TPw=Pw= P=TT".

Note T*T : T-+T whereVte 7, T"Tt=T"t=Pt=t=>TT=1. =

The next propositions are useful for describing combinations of projection operators.

(Halmos,1958) (Christensen,1996)
Proposition: If Py and P, are OPOs, then the following are equivalent for P = P, + P,
)P?=P i) AP, = PP, =0 iii) P is the OPO on R(P;) + R(P,).

proof (1)i) & P2+ P!+ PP+ Pi= P+ Py PP+ PP =0 (%)
= PPy, + PLP,P, =0 and P,P,P, + P,P, = 0 by left and right multiplying by P,
= PP, = P,P; (o) = ii) from (x) and (o).
(2) Note ii) = PP, + P, P, = 0 = i) from (x) in (1).
(3) Note iii) = i) by definition of OPO.
(4)i) = Pisan OPO since P? = P and P’ = P.In addition, R(P) C R(P\) + R(P,).
To show equality in the range spaces, let v € R(P;) + R(P») = v = Pyu; + Pyus for some uq, us.
Then Pv = P(Piu; + Pous) = (P + P2)(Piuy + Poup) = Piuy + Py Pous + PoPiuy + Poug
= Piuy + Pous = v asi) = ii) by (1). Thus, v € R(P) = R(P,) + R(P,) C R(P) = iii). =

(Halmos,1958)
Proposition: If Piand P, are OPOs, then the following are equivalent for P = P, P,
HDP =P i) R(P) C R(P) iii) P is the OPO on R(P) N R(P,).

proof: (1)i) = P' = P = (P\B,) = PP, = P,P, = PP, = P = P,P, = R(P) C R(P) = ii).

(2) Suppose ii). ThenV u Pu — P,Pu € R(P;) + R(P) C R(P,) byii) and

0= Py(Pu— PyPu) = Pu— PyPuc R(P) NN(P;) = {0} = PP =P (x).

Using (+), P = P,P = P,P|P} = (PP, P, = P'P}= P' = i).

(3) Note iii) = P/ = P = 1).

(4) i) and hypothesis = P’ = P and P? = P = Pis an OPO. By (1),

P=PP,= PP = R(P) C R(P))N R(P2).In order to show equality of the range spaces,
suppose w € R(P1) N R(P,) = w = Pyu; = Puy for some uy,up and

Pw= P P,Piu; = PLPyu; = PoPiuy = Pow= PoPyus = Pous =w = we R(P)

= R(P)) N R(P,) C R(P) = iii). =

16
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2.6. Trace Operator

A few linear algebra results are needed involving eigenvalues, the spectral theorem, and the trace
operator. Let A be a linear transformation on an n-dimensional vector space W and consider the following

definitions and propositions (Halmos,1958).
Definitions: Eigenvalue - A scalar A 3 Az = Az for some non-zero .
Multiplicity - If C) = collection of all z 3 Az = Az, then the multiplicity of A is dimC,.

Trace - The trace operator is given by tr(A) = Y mAi = Y\
i=1 i=1

where m; is the multiplicity for the eigenvalue A\; and m; + ... + m, = n.

(Halmos,1958)
Spectral Theorem: For every self-adjoint linear transformation A on a finite-dimensional inner product
space,3 Ay, ..., A, € Rand OPOs Ey, ..., E,. >
i) Ay, ..., Ar are distinct E#0 EE;=0 i#j5=1,..,7
iii) ZT:E,- =1 ivyA= Zr:l/\,-Ei.
i=

i=1

The value ); in the spectral theorem is an eigenvalue of A, because for u € R(E;) (u # 0)

Au = (Y ME;)u = Mu. The multiplicity associated with A; is given by r(E;). Also,
i=1

A= (DNE) =
i=1

.
A E; due to the properties of the E;'s. The next proposition gives a corresponding
i=1

spectral theorem for matrices.

(Christensen,1996)

Proposition: For a symmetric matrix Mpxr», 3 a symmetric matrix R 5 R'MR = D = diag({\:}).

proof: Let vy, ..., 1, be an orthonormal set of eigenvectors of M corresponding to the eigenvalues

_ . (1l i=y
Aly oy An. Then R = [v1,...,¥n] and noting vjy; = { 0 ]
R'MR = R'[Muv,...Mu,] = R[A01,-. s nn] = {01 A¥n }uxn = diag({\i}) = D. =

gives

Since the trace operator plays a crucial role in the development of later results, it will be developed in
this section. The next proposition gives an expression for the trace of a matrix. Then the properties of the

trace are explored using both formulations. The matrix formulation will be most useful in later chapters.
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The following results illustrate linear concepts concerning the relation between a linear transformation and

its associated matrix representation.

n
Proposition: If the linear transformation A has matrix representation M, x, = {m;;}, then tr(A) = > m;;.
i
n
proof: i) Define the function (M) = Y my;.

To show if M and R are two matrix representaﬁons of A, then 7(M) = 7(R).
Let sp{e1,...,en} = sp{f1, ..., fu} = W where f; = Zbijej Vi=1,..,n ().

Since A is a mapping on W, define Ae; = Zmﬂe, (2) and Af; = > "ri;f; (3).
j=1

@ i( Spumae = b Somae) S Ybye, s, O e,
ZTU Zn:bﬂel = é(jf:lﬂjbﬂ)ez
Hence, zé gbijmﬂ e = l_zn:l(i:r” bi)e, & IZ:I:( i(bijmj[ —ribp)er =0
& Zn:l(bumﬂ rijby) = 0 as e are linearly independent
=
= Zn:bumﬂ = Zru i1 < BM = RB& R = BMB™! where B, = {b;} is 1-1 and ontoby (1).

1

j
LetD=B1= {dh} Thus,

R) = z > Zbumﬂdu - Zmﬂ@ dubig) = z Z mady = Zmn = (M),

i=1 =1 1= =1i=
i) For the matrix M, 3 a non-singular matrix B > R = BM B! is triangular (Halmos,1958,p107).
To show r; i = 1,...,n are the eigenvalues of A where r; is the " diagonal element of R.
a) Define R?to be a diagonal matrix with entries r; s = 1, ...,n. Note |R| = |R%| (4)
and R4§; = 1,6, (5) where §; = = {6i;} where 6;; = 1 if i = j and O otherwise. By definition of eigenvalue,
R — 11| =0 = [(R—r:)% =0 |R~r|=0=> r;is an eigenvalue of R.
b) Mz = Az < B 'BMB Bz = \z ©& BMB !Bz = \Bz
< R(Bz) = A(Bz). Thus, A is an eigenvalue of M < ) is an eigenvalue of R (Halmos,1958).

c) Let sp{e1, ...,en} = W. Then X is an eigenvalue of A with eigenvector z = ) _v;e;
=1

& Az = Az & Y v de;, = Z/\w& @ Z Zvlm”e] = Z/\Uz& =3 Z Zvlm” ej = Avje;
=1

=1 =1 j=1 7=1 =1

= Z((szmu) Avjle; =0 & Zvimij = Av; j=1,..,n by linear independence
=1 i=1 =1

& My= Xy foru=[vy, ...,vs] & Aisaneigenvalue of M (Marcus and Minc,1965).
Thus, Somis = (M) L 7(R) = 3or: Wir(4). =

i=1 i=1
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Proposition: Consider linear transformations A and B on an n-dimensional vector space W. Then
i) tr(aA + BB) = atr(A) + pu(B) fora,B€R
ii) tr(AB) = tr(BA)
iii) If A2 = A, then tr(A) = r(A).

proof: The above proposition can be used to obtain the above equalities. Suppose Myyn = {mi;}
and Ry, = {ri;} are matrix representations of A and B respectively.
i) The matrix representation of oA + 3B is given by {am;; + Bri;} by definition of matrix addition and
scalar multiplication (Marcus and Minc, 1965) Then
atr(A) + pur(B) = azmn + 6 ZT“ = Zl amg; + Bry) = tr(aA + BB).
iz

ii) The matrix representation of AB is given by { Zmisrsj} by definition of matrix multiplication
s=1
n

(>om lJTJl) =

1 5=1

( Zj:rﬁm,-j) = [I‘(BA)

'M=

(Marcus and Minc,1965). Then tr(AB) =

HM:

t

iii) (1) Let sp{ey, ...,en} = W, Ae; = Zn:lm,-jej, and M = {mij}. Consider the mapping ® : W—-R"
=
givenby ®(u) = {ci}nx1 = ¢ where u = Zn:lcie,-. In addition, suppose v = Zn:ld,-ei and o,0 € R. Then
1= 1=
a) ®(ou + fv) = i (aci + Bdi)e;) = {ac; + Bdi}nx1 = ac+ Bd = a®(u) + BP(v)
b)<I>(u) = <I> ’U = ;ciei = Zd,-ei = Zn:(ci—-di)ei =0=¢ = d;i= 1,...,n:> u=v

) R(®) = d(W) = ®(sp{ei, ..., ex}) = sp{®(e1), ..., B(en)} = sp{d1,...., 6} = R"
by 1) with §; = {(51]} where 6,1 = 1 ifi = 7 and O otherwise.

d) ®(Au chAe Z:m,”eJ where Ae; = Zmijej
@& -
= Z cimi®(e;) = Z

i=1 j= i=1

<)

mib; = Zc,ml Mc = M®(u).

Hence, r(A ) = dim B(A)% dim _R(<I>A)(—) dim R(M®) ) dim R(M) = £(M).

(2) Consider the matrix representation of A given by M. Then 3 a non-singular matrix B > R = BMB™!

(b,©)

/‘\

y

is triangular (Halmos,1958). Note r(M) = r(R) = number of non-zero diagonal entries.
(3) Suppose Az = Az. Then A\z = Az = A%z = A(Az) = Mz =Xz => M =A=>A=0orl
= r; =0o0r1i=1,..,n as diagonal elements of R (r;) equal eigenvalues of A from ii) in above proof.

() Lrn Prr) 2 551D r(4).

i=1

2.7. Non-Negative Definite Linear Transformations

A few results will be presented in this section concerning non-negative definite (NND) and positive
definite (PD) linear transformations which are defined in section 2.1. These linear transformations will be

defined on the n-dimensional vector space W with inner product <, > .
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(Christensen,1996)
Proposition: 1) The eigenvalues for a NND linear transformation are greater than or equal to zero.

ii) A self-adjoint linear transformation A is NND < A = BB"* for some B.

proof: i) Let A be an NND transformation defined on W. By the spectral theorem,
IA, s\, €ERandOPOs Ey, ..., E, 3 A = Y AEi. Then < Av,v> >0 V v by definition of NND

=1

= <Au,u> >0 foruce R(E)du# 0 = < (Y MEi)u,u> > 0 by the spectral theorem
=1

> N<uu> >0= >0 as<u,u> >0sinceu # 0.

ii) (1) Suppose A is NND. By spectral theorem, 3 Ay, ..., A, € R and OPOs Ey, ..., E, 2 A = S AE;

=1

= A} = YAIE; = A= A}A} = BB,

=1
(2) Suppose A = BB*.Then A is self-adjoint and < Av,v > = < BB*v,v> = < B'v,B'v> >0
=> Ais NND by definition. =

Proposition: Consider conformable linear transformations D and V.

i) If V is NND, then R(D*V D) = R(D*V). i) If V is PD, then R(D*V D) = R(D").

proof: i) (1) Note N(D) C N(VD) C N(D*V D).

(2) Because V is NND = 3 B 3 V = BB* by above proposition. Suppose

te N(D'VD)= D'VDt=0= B*'Dt=0= BB*Dt=0=VDt=0 (x) >t € N(VD).
Thus, by (1) and (2), N(D*VD)= N(VD) = R(D*VD) = R(D*V).

(3) From (*) in (2) and since V is PD, Dt = 0 = t € N(D). Thus, by (1) and (2)
N(D*'VD)=N(D)= R(D'VD)=R(D*). =

Proposition: If V', W are NND linear transformations, then

Du(W)=0eW=0 i) r(VW) =0 VW = 0.

proof: By the spectral theorem, 3 Ay, ..., A, € R and OPOs Ey, ..., E; 3
T T 1

W=SME = (X NE)=B.Then ()W =0= (W) =tu(0) =0
i=1 i=1

2) 0=tu(W)=u(XNE) = Y \tr(E;) = u(E;)V i by i) of above proposition as since W > 0
i=1 i=1

= r(E;) = 0 Vi by iii) of proposition in section 2.6 since E? = E;Vi = W = 0.

i) VW =0 = (VW) =u(0) =0.

2) 0 = (VW) = u(VB?) = tr(BVB) = BVB = 0 by i)(2) as BV B is NND

= V B = 0 by above proposition = VW = 0. =
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2.8. Quadratic Subspaces

Quadratic spaces, developed by Seely (1969), will be useful in later results. This section pertains to

symmetric 7 X 1 matrices (Sy). Definitions are given below where C is a subspace of Sy,.

Definitions: Quadratic Subspace (QS) - C is a QS provided A2 C V A€ C.

Commutative Quadratic Subspace (CQS) - C is a CQS providedCisaQSandV A, Be€ C AB = BA.

The next proposition can be used to check whether or not a subspace is a QS or a CQS.

(Seely,1969)
Proposition: i) CisaQS & AB+BA€C VA BcC.
ii) CisaCQS& ABe(C VA BeC.
iii) IfCisaQS,then ABA€(C VA,BeC.
iv) Suppose 3D €C >3 AD=DA=A.IfABAcC VA, BeC(,thenCisaQS.

proof:i)(1)CisaQS = (A + B)?= A+ (AB + BA) + B> C = AB+BA €C as A>,B*eC
(2)AB + BA €C=2A?€C lettingA=B = A€ C.

i) (1)CisaCQS = AB + BA=2AB€¢(C by 1)

(2)ABe(C > AB=(AB) > AB= BA since A, B € C.Hence, AB+ BA € C = Cis aCQS.
ii)CisaQS => AD+ DA € C with D= AB + BA by (1)

= A’B+ ABA+ ABA+ BA>€C = ABA€C as A’€C so A’B+ BA?€C by (l).

iv) Note [A,B € C = ABA € C] = ADA € C = A? € C is a QS by definition of D. =

The definitions and proposition given in this section are sufficient to develop quadratic subspaces in

later results.

2.9. Vec Operator and Horizontal Direct Product

Special matrix operators will also be of interest in later applications. These include the vec operator
and the horizontal direct product. The vec operator allows matrices to be represented as vectors while the
horizontal direct product combines matrices in a particular manner. The operators are defined below along

with some of their properties:
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vec operator - For A = {a;;} € M,, define vec(A) by

i
vec (A) = [a11, ey A1y Q124 ceey Ap2 y coey Alpy oony ann]ngxl.

horizontal direct product ( ® ) - Let Anxr = [a1, ..., @) and Bpxs = [b1, ..., bs] . Then

[A © Blaxrs = {apubpw} Z; i; (1,1,1) Where ap = pt" element of g,,.

The definition of the horizontal direct product does not specify a particular order for combining the
column vectors of A and B. However, a consistent ordering should be used. The following propositions

provide some elementary results involving vec and the horizontal direct product.

Proposition: i)Fora,B € R, A,B € Muxm, vec(aA + BB) = avec(A) + Bvec(B).
ii) For A, B € Myxm, tr(A’'B) = vec(A) vec(B).

proof: i) Result follows as scalar multiplication and addition operates same for matrices and vectors.

ii) Let A = {g;}™ ,and B = {b;}™,. Then
by
vec(A)'vec(B) = [d}...a] : Za b =

2Zm po a4

(AB)ii = w(A'B). »

H'Ms

Proposition: i) R(A® B) = R(B® A).
i) RLAOB)0C)=R(AG(Ba ().
i) (A+B)0C=AcC+BoC.

proof: 1) Follows from definition where columns of A ® B and B ©® A are identical, but interchanged.
ii) From definition where columns of (4 ® B) ® C'and A ® (B ® C) are identical, but interchanged.
iii) Then (A+ B) © C = {(a;; + bij)ciu} = {aijciu} + {bijen} = AGC+BOC

which does not depend on the ordering associated with ©. =

This chapter provided notation, terminology, and results pertaining to linear transformations. These
concepts will be used repeatedly in the later chapters. Linear transformation concepts will be particularly

important for the models presented in the next chapter.
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3. Linear Models

Models are tools which can be used to represent responses from random processes. For a random
response in a linear space, a linear model assumes the expectation and variance exist. It is convenient to
parameterize the model by expressing the expectation and variance in terms of unknown parameters that

can be estimated from the random response.

(Seely, 1996)

Linear Model: When the set of possible expectations of a random response is a linear subspace.

(Searle et al.,1992)
Linearly Mean-Parameterized Model : When the expectation of the random response is parameterized so

that the expectation is a linear function of the parameter.

The latter model is usually called a linear model as well, but a distinction is made in this study. While
these definitions are not exactly the same, the distinction is not critically important. Linearly mean-
parameterized models will be presented which are not linear models, but they are essentially equivalent to
linear models for purposes of this study, as will be demonstrated in section 3.3.

In order to use the approach of Szatrowski (1980), speciﬁc models need to be defined. These models
include the Y-Model, linearized quadratic estimation models (LQEMs), and the Underlying Model
(U-Model). The models, as well as their associated properties, are discussed in the following sections so

they can be easily referenced for later chapters.

3.1. The Y-Model and Assumptions

3.1.1. Definitions and Assumptions

This study is particularly concerned with the linear model given in this section. The Y-Model is

defined below for a random vector Y € R".
Y-Model: E[Y] € £&¥ = {Xg8|8€ R?} = R(X) Cov(Y) € V¥ = {Vy|¢ € E}

The variance component vector # lies in a parameter set = in which V, is PD for all 3 € Z. This
model does not assume any constraints on the fixed effect vector g and the matrix X may not have full
column rank. The following assumptions will be required for some of the results, and will always be stated

either in the result or at the start of the section.
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Assumptions: Normality [N] - ¥ ~ No(X3,Vy)

k+1
Linear Structure [L] - Cov(Y) = Vp = Y ¢V, y € EC R¥*L Vi = 1.
i=1

Open Set [O] - = contains a non-empty open set in RF+1,

f k
Classification [C] - E[Y] = 1p + >.X;8; and Cov(Y) = >.02Z,Z] + 02,1
=1 i=1

where X1,..., Xy, Z1, ..., Z), are classification matrices which are defined in section 3.1.3.

Classification models are assumed to be proper as defined in section 3.1.3.

The Y-Model is a mixed effects model, as it contains both random and fixed effect parameters. The
Y-Model under [L] has been referred to as a variance component model by Harville (1977) and Seely
(1996), as having a patterned covariance matrix by Rogers (1977), and as having a covariance matrix with
linear structure by Anderson (1969). A random effects linear model is a Y-Model under [L] with X = 1
and a fixed effects linear model is a Y-Model under [L] with k£ = 0.

The Y-Model under [C] has been referred to as a mixed classification model by Birkes (1996) and an

f k
ANOVA model by Harville (1977). This model is often expressed asY = 1u + Y X;8;+ > Zidi + e
=1 i=1

where dy, ..., dx,e are uncorrelated random vectors with mean 0, Cov(d;) = 021, and Cov(e) = 02 1.

2

; 2
- 1s used to denote o, ;.

Sometimes o
The next sections develop linear model results that are needed for the Y-Model. These sections

discuss the open set condition, balance, and likelihood estimation.

3.1.2. Open Set Condition

The section examines properties associated with the open set condition [O] which accompanies the
linearity assumption [L]. This condition is also presented in a more general setting in sections 3.3.1 and

3.3.2. The following propositions illustrate some basic properties.

Proposition: Suppose = contains a non-empty open set of dimension k + 1. If
k+1

V={Vy =Y u:Vi|g € E}, thenspV = sp{V1, ..., Vin}.
i=1

k+1
proof: Define the linear operator V : R¥*1-8, by Vi = 3" 4,V;. Since E contains a non-empty open

i=1

set of dimension k + 1 and V is linear, spV = spV (Z) = V(sp E) = V(R**!) = sp{Wi, ..., Viy1}. =
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k+1
Proposition: If Z* = {1 | Vy = 3.4V, is PD}, then Z* is anon-empty open set in R¥*1 .
i=1

1=

proof: i) The linear operator V : R¥*1- &, defined in the preceding proof is continuous. Define

D, ={M € S,/ MisPD} and §: S,»R" by §(M) = [6:(M), ..., 6.(M)]’ where

8;(M) = 4% principal determinant of M. Note §;, j = 1, ...,n, is continuous since the determinant is a
sum of products of the entries of the matrix (Halmos,1958). Hence, 8 is continuous (Rudin,1976,4.10).
Note M € D, & §;(M) >0 j=1,..,n (Harville,1997,sec. 15.6)

& §(M) € (0,00)", which is an open subset of R". Hence,

D, = §71((0,00)™) is an open subset of S,, since § is continuous (Rudin,1976,4.8)

s0 Z* = V(D) is an open set in R¥*1as V is continuous (Rudin,1976,4.8). =

Another common form of = which contains an open set in R**! is given by
E={¢=[0} ...,00,08.,] |0} >0, ..,02 > 0,0, > 0}. The open set condition will be important to

consider in later results.

3.1.3. Balance

Under the classification assumption [C], the number of observations in a class can be examined. Later
results will consider patterns in the number of observations in a class or some sort of balance. This section
establishes notation and definitions for balance in the Y-Model under [C]. The following notation and

definitions are from VanLeeuwen et al. (1997) for p factors labelled 1, ..., p:

Definitions:
The design for an p-way classification model is given by an p-dimensional incidence matrix
N ={ny, . ,z‘p}tlx... xt, » where n;, . ;, is the number of experimental units at level i of factor f

withif=1,..,t;and f = 1,...,p.

factor subsets - A subset G = {f1, ..., fo} with g < p represents an effect corresponding to the interaction
of the main effects of factors f1, ..., fy or a nested effect such as when the effect of factor f is nested

within factors fi, ..., fo-1.

containment - An effect associated with factor subset G is contained in an effect associated with factor

subset Hif G C H.
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marginal incidence matrix (N(®) - For the factor subset G = {fi, ..., fo} C {1,.,p}, N@isa

g-dimensional matrix obtained from N by summing over the indices for the other p — ¢ factors. Let

a= (f1,..., fg) denote the vector form of G.

classification matrix - The classification matrix G for the effect associated with factor subset G has a row
for each observation in the data set and a column for each | combination of levels of factors in G. In the
row corresponding to a particular observation, all entries are 0 except for a I in the single column
corresponding to the levels of the factors f, ..., f, that were applied to that observation. Columns with all

zero entries are deleted. The sum of the j** column of G corresponds to number of observations at level j.

completely balanced design - When n;, ;. =m Vi1, . ip

pseudo balance - When n;, ;. =mor 0 V iy, ... 1,

balanced incidence matrix (Bal(G)) - the designis balanced with respect to a particular subset

of factors G if all of the entries in N (@ are equal.

conditionally balanced (Bal(H|G)) - NN is balanced with respect to a particular subset of factors H given

G if ¥ combination of levels of G the number of observations is the same for all combinations

of levels of the factors in H that are not in G.

balanced classification matrix - The classification matrix G is balanced if and only if each column of G

has the same number of observations.

maximal rank - A classification matrix G has maximal rank provided that it has the same rank as when

N@ has all non-zero entries.

included effect - When the effect associated with some combination of factors is in the model.

proper classification model - Whenever ‘H and G are random effect subsets then either HN G is a

random effect subset or it is contained in a fixed effect subset.

In almost all classification models that occur in practice, if the intersection of two included
interaction effects is in the model and, if an included lower order effect is random, then all included higher
order effects containing it must be random. Such models are proper. All mixed classification models that

will be considered will be proper.
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Complete balance is equivalent to a balanced incidence matrix with respect to the set of all factors.
The notation Bal(G) or Bal(H|G) will be used to denote Bal(G) or Bal(H|G) for all factor subsets G and
‘H in a collection of factor subsets defined by G and H.

The following proposition characterizes properties of a classification matrix. These properties follow

directly from the definition of a classification matrix.

(Birkes, 1996) (Seely,1996)
Proposition: Let H,»; be a classification matrix and n; = # of 1's in the 4" column j = 1, ..., s. Then

i) H'H = diag(ny, ...,ns) i) H'L = (ny, ...,ns) ii)HLl=1  iv) o(H)=s.

These properties of a classification matrix are helpful for examining balance. The following

propositions demonstrate the relation between the classification matrix and balance.

(VanLeeuwen et al.,1997)
Proposition: If the incidence matrix is balanced with respect to G, then the associated classification matrix

G is balanced.

proof: Bal(G) = all combinations of levels of the factors in G have the same number of observations

= all columns of G have the same number of observations = G is balanced. =

(VanLeeuwen et al.,1997)
Proposition: Suppose H, G are associated classification matrices for H, G, respectively.
i) Bal(H) = H'H = ¢l; where H isn x tand q = # of observations in each column of H.
ii) Bal(H) = Py = ;HH'.
iii) Bal(H U G) = Py P; = P, where K is a classification matrix of an included effect with
R(K) = R(H) N R(G).

proof: i) Let q; = # of observations in column of H i = 1,...,t. Note

Bal(H) = ¢; =gV i=1,...,t bydefinition

= H'H = diag(qi, -..,q;) = diag(q, ...,q) from classification matrix results

= H'H = qdiag(1, ...,1) = ql,.

ii) Since H is a classification matrix it has full column rank. Then Py = H(H'H) 'H' = %HH’ by i).

iii) The proof of this result is given by VanLeeuwen et al. (1997). =
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This subsection concludes by showing that complete balance gives Zyskind's condition for the

Y-Model under [C]. Zyskind's condition will be discussed further in section 3.3.5.

(Birkes,1996)
Proposition: If the Y-Model under [C] is completely balanced, then R(V;X;) C R(X) V 1, 7.

proof: Note R(V; X;) = R(Z;ZX;) = R(PzPx,) = R(Z;) N R(X;) from above propositon
= R(ViX;) C R(X;) C R(X). =

3.1.4. Likelihood Estimation

Likelihood estimation provides a way to estimate 3 € R” and ¢ € Z in the Y-Model under [L], [O],
and [N]. This estimation method identifies the parameter estimate that maximizes the likelihood function.
The maximum likelihood estimate is the parameter point under which the observed sample is most likely
to occur (Casella and Berger,1990). Thus, this type of estimation requires a distribution. Under normality,

Y ~ N,(X,Vy). The density of ¥ and the likelihood function are given below assuming V, is PD:

F@lB, ) = (2m) 73 |Vy|~texp(5Hu — XB) Vi (u - XB))
0B, %) =Inf(Y|8,4) = — EIn2r— 1n|Vy| - L(¥ — XB)' V;'(¥ — XB).

In order to find the parameter points under which the samples are most likely to occur, the likelihood
function can be maximized by differentiating with respect to 3 and 1, setting these derivatives equal to
zero, and verifying these estimators generate a global maximum. A local maximum would exist when the
matrix of second derivatives is negative definite. However, it can be difficult to determine the existence of
a global maximum. Due to this difficulty, this study will focus on those estimators that are roots of the
equations involving the first derivative. For differentiation, it is necessary to take the derivative of a
matrix A which depends on a scalar t. The derivative of A(t) = {a;;(t)} is defined to be
L A(t) = {ZLai;(t)}. The following matrix derivatives will be used where the first two require that A is

invertible (Searle et al.,1992) (Harville,1997):
LA = — AN LA@R)A™! d1n|A(t)| = w(A T L A(2)) Lir(A(t) = (L A(2)).

The derivatives will now be taken assuming [L] and [O]. The maximum likelihood equations,

maximum likelihood equation estimators, and the information matrix are (Searle et al.,1992,ch6):
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(1) Maximum Likelihood (ML) Equations

0= 613%,3&) - leﬂ—ll/ - X V_lXQ = XIV_l(Z -—Xﬁ)
0= 288 = _ Le(V;V;) + 3(Y - XBYVi ViV (Y — XB)

(2) Maximum Likelihood Equation Estimators (MLOE) - the solutions (8o, &uio) = (B, %) given by

(X'VI'X)B=X'V'Y {tr(V ViV Vil oy ein@ = (Y FRViFy Y
where Fy = V' -V IX(X'V ' X)" X'V,

(3) Information Matrix (i(8,2))

_NBY) _
— BQ(BQ’) — _X/V 1X
2
u = el = ~ XV ViV (Y - Xp)
wij = %ggjf) = (VWi — (Y — XB) VWiV WV N(Y - XB)
’ —{Elu]} — {E[wy]} 0 A A

(p+h+1)x(p+k+1)

The ML equations in (1) and the information matrix in (3) can be obtained using the derivative rules.
The matrix Fy, defined in (2) will often be of use and is further discussed below. The MLQEs solve the

equations in (2) where the equation for the variance components has been re-expressed using the

following proposition.
Proposition: {[I'(Vi )}(k+1)x1 = {tI' 1VV V)}(L+1)><(L+1)1ﬁ

proof: {u(V;'Vi)} = {t(V ' ViV V) } = {w(V Vvt Z% D}

k+1

={ ;tr(VNVij)wj} = {u(VF ViV V) . w

The MLQEs will be maximum likelihood estimators when Byiq € R?, @i € Z» and (Buio» Do)
maximizes the likelihood equation. This thesis will focus on the MLQE, which does not have to be in the

parameter space and does not have to be a maximum.
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Restricted maximum likelihood estimation is another likelihood method for estimating 3 € RF+1.
Define the matrix Qx4 forg = n — r(X) which has columns that form an orthonormal basis for R(X)*.
Then @'Q = I and QQ' = I — Px = Nx.The following proposition gives properties of Fy,, which will

be useful for this estimation method.

Fy-Lemma:i) F;Y = Vil(l" — XDB).
i) R(VyNx) = R(VaQ) = N(X'V).
i) Fy = V5! — Ve XXV X)XV = Q(QV,Q)7'Q = Nx(NxVyuNx)™Nx.

)
|

proof- D) FgY = V'Y — VI X(X'VIX) X'V'Y = VoY - XB) where 3 is given in (2).
i) (1) B(VyQ) = VR(Q)] = Vi[R(QQ")] = V[R(Nx)] = B(VyuNx

(2) Note t € R(VyQ) & V't € R(Q) = R(QQ) = N(X') & t € N(X'V;h).

e

~—

iii) By the general projection theorem in section 2.5 and ii),

() VeQ(Q'V4Q)7'Q" is aPO on B(VyQ) = N(X'V, 1) along N(Q') = R(X)

(2) VuNx(NxV,Nx)“Nx isaPOon R(VyuNx) = N(X'V;?!) along N(Nx) = R(X)
B3 I-X(X Vi,‘lX)‘X’ VSL,‘1 isaPOon E(X’Vw_‘l) along R(X)

= (1) = (2) = (3). Left multiplying by Vi,‘lgives the result. =

Under normality, Y ~ N, (X3, V) and so Q'Y ~ Ng(0,Q'V,,Q). The density of Z = Q'Y and the

likelihood function are given below assuming Vy, is PD:

f(el) = (2m)1Q'V,Qlexp(32'(QV4Q) '2)
lr(¥) = Inf(ZlY) = — 25%In 27 — 3In [Q' V,Q | - 32'(Q'V,Q)7'Z.

The derivatives will be taken assuming [L] and [O]. The restricted maximum likelihood equations,
restricted maximum likelihood equation estimators, and the information matrix can now be given

(Searle et al.,1992,ch 6):

(4) Restricted Maximum Likelihood (REML) Equations

0="228 = — lr((QV,Q)7'QViQ) + iY'QQV,Q'QViQQV,Q'QY .

(5) Restricted Maximum Likelihood Equation Estimators (REMLQE) - the solution ﬁREMLQ = 32 given by

{tr(FleFlz‘/j)}(k+l)X(k+l)3Z = {Z’FEVQ F,z Z}(k+1)x1 .
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(6) Information Matrix (ir(%))

uy = G = Jr(QV,Q) ' QVQ @V, Q) QVQ)
~YQQV,Q)'QVQQV,Q)TQVRQVQ QY.

in(¥) = — {Eluyl} = {30((QV,Q) ' QViQ(Q'V,Q) ' QViQ)} = {Fu(EFLViF Vi ) kriyx(hsy-

The REML equations in (4) and the information matrix in (6) can be obtained using the derivative
rules and the Fy-lemma. The REML equations are identical to the MINVAR and the iterated MINQUE
equations (Searle et al.,1992,section 11.3). The REMLQE for the variance components solves the

equation in (5), which has been re-expressed using the following proposition.

Proposition: {tr((Q'VyQ) Q' ViQ) Ys1y1 = {tr(FeVi) Yryx1 = {r(FeViFy Vi) Yoy b2 -

proof: By the general projection theorem in section 2.5, Fy,Vy, is a PO, so

(FyVy)? = FyVy = FyVyuFy = Fy (x). Then

{H(Q@VaQ@ ' QViQ)} = {te(FuVi)) since Fy = Q(Q'V4Q)™'Q’ by the Fy-lemma
= {tr(FpVpFyVi)} = {w(FpViFyVy)} by (*) and symmetry of trace operator

k41 ki1
= {tr(FyViFy Z:levj)} = {thr(FzManVj)%} = {u(FViFyVy)}g. =
J= =

The REMLQE will be a restricted maximum likelihood estimator when @REMDQ € = and @REMLQ
maximizes the restricted likelihood equation. This thesis will focus on the REMLQE, which may not be in
the parameter space and does not have to be a maximum.

Maximum likelihood and restricted maximum likelihood estimation for the Y-Model under [L], [O],
and {N] are of main interest for this study. Linearized quadratic estimation models will be defined in the

next section to represent the likelihood equations in a convenient form.

3.2. Linearized Quadratic Estimation Models
3.2.1. Definitions

Linearized quadratic estimation models (LQEMs) will provide a modelling framework in which to
conduct quadratic estimation. These models have been called dispersion-mean models by Searle et al.

(1992) and were introduced by Seely (1971). They are useful for estimating variance components in the
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Y-Model under [L], [O], and [N]. Some preliminary results are needed before presenting the models in

this section. The next lemma gives the expectation and covariance of particular quadratic forms.

(Schott,1997)
Lemma: Let Y ~ N,(u,V) and A, B be symmetric n x n matrices. Then
i) EY'AY] = u(AV) + /Ay ii) Cov(Y'AY,Y'BY) = 44/ AV By + 2trf(AV BV).

A special linear transformation will also be used. Consider ¥p : S,— S, givenby ¥p(A) = DA D.

The next propositon gives some properties of this mapping.
Proposition: 1) ¥p is linear ii) \Il;) =V, iii) \1151 = Wp-1 where D is invertible.

proof:1) For A, B € S, and a,0 € R,
Vp(aA + BB)=D(aA+ 3B)D = aDAD + BDBD = a¥p(A) + ¥ p(B).
il) <¥p(A),B> =u(Vp(A)B)=t(DADB) = w(ADBD)
=tr(A¥p(B)) = < A,¥p(B) > = V¥ is self-adjoint.
i)VAeS, ¥pa¥p(A)=D Y (DAD)D'=A = VUp.Up=1 astrueV A € S,.

Thus, ¥;! = ¥p-1 by definition of inverse. =

Linearized quadratic estimation models are defined using a quadratic form Y' = ZZ' € S,, where
Z ~ N,(0,Ry) and Ry = > ;R; is a matrix having linear structure with 12 € =. In addition, define the
=1

linear transformation X* : R"=S, by X'u = Y_u; R; and the mapping VSZ : Sp—Sn by VJZ =2Vp,.

=1

The next lemma indicates how these models are constructed.

(Seely,1971)
Lemma: E[Y'] e U' = {X"¢ | € E} and Cov(Y) e V' = {VJI;Q €=}

proof: i E[Y'] = Cov(Z) + E[Z|E[Z) = Y-tiRi = Ry = X' .
=1

ii) Consider symmetric matrices A and B. Then using the trace inner product gives:

Cov(< A, Y' >, < B, Y'>) = Cov(tr(AY ), r(BY))

= Cov(Z'AZ,Z'BZ) = 2u(ARyBRy) from above lemma

= < A,2RyBRy > = < A,Cov(Y")B> = Cov(Y')B = 2Wg,(B) = Cov(Y") = 2Up, = V.
iii) From i) and i), E[Y'] e U' = {X ¢ | € Z} and Cov(Y") € V' = {VJ@ €=} =
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This lemma provides the definition for the linearized quadratic estimation model for Z. This general

model is summarized below.
LOEMfor Z: E[Y'| e U’ = {X'p |y €5}  Cov(Y') e V' = {V]|p € E}.

This model is not a linear model as defined by Seely unless 47 = sp &/". It is a linearly mean-
parameterized model. The linearized part of the LQEM refers to Seely's notion of linearizing the
expectation with respect to the parameter using a quadratic transformation of the original response vector.

Suppose = contains a non-empty open set of dimension 7. By the linearity of X",
spU' = spX'(E) = X (spE) = XT(R") = R(X"). Then the LQEM is a linear model when
u = R(X 1‘). In addition, there is a functional relationship between the mean and the variance in the
LQEM. It will be shown in section 3.3 that this is not a problem in this study. Also, the parametric vector
1 is estimable if and only if the R;'s are linearly independent.

Specific LQEMs are of interest which can be used to generate equations that correspond to the
likelihood equations. These models are based on the Y-Model assuming [L], [O], and [N]. Four such

models are stated below:

LOEMfor (Y — XB3): LetZ =Y — X@ and Y7 = ZZ'. In addition, define
k+1
X°o: R+, S, by X°u = Y u;V; and Vi Sp—S, by vy = 2\11‘@' Then

=1

EYPleU ={X¢ |¢ e Z}, Cov(Yp) e V°={V2|¢eE}

ALQEM for (Y — XB):Let Z=Y — XB and Yy = ZZ' where X§ = X(X'VIIX)"X'VSY.
Instead of using the true distribution of Y7, artificially assume the same model as above,

EYyleur ={X°¢ |y €E}, Cov(¥y)eV*={Vp|y€E}

LOEM for NxY :Let Z = NxY and Y° = ZZ'. In addition, define
k+1
X°:RMILS by Xou= i:EluiNXV}NX and Vy : Sp—Sn by Vi = 2¥ .y v, Then

E[Y’] ew° = {X°¢|g € E}, Cov(Y°) e V° = {Vg|yeE}

LOEM for Q'Y : Let Z= QY and Y> = ZZ' for Quxq 3 QQ = Nx, Q' Q =1, 2(Q) = q.
k41
Define X : Rk“—qu by X°u= i:ZluiQ’V}Q and V} : S;=S, by V} = 2\IIQ,Vﬁq. Then

EY’l el = {X"¢|¢ € B}, Cov(Y?) eV ={V;|¢ €=}
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The LQEM for (Y — X3) can be used theoretically whether or not g is unknown. However, it cannot
be directly applied when 3 is unknown. The ALQEM for (Y — X@) can be applied when g is unknown,
given an estimate g’ﬁ This model is artificial (A), since it assumes the expectation and covariance of ZZ'
corresponds to the LQEM for (Y — X 3) rather than the true expectation and covariance of
(Y — XB)(Y — XB)'. This is important to remember when examining the unbiasedness of estimators
with respect to this model.

A special case of the ALQEM for (Y — XE) that will be of interest is when Y — XE = NxY .In this
case, the model will be identified as the ALQEM for NxY . This model is still artificial, which
differentiates it from the LQEM for NxY.

The LQEM for NxY and the LQEM for Q'Y are essentially the same for estimation purposes. The
differences between these models are explored in the next section. The models of primary interest are the
LQEM for Z, the ALQEM for (Y — Xf3), the ALQEM for NxY, and the LQEM for NxY . The LQEM
for Z is useful, as it incorporates the other LQEMs. The ALQEM for (Y ~ XE) will be used for the
maximum likelihood method where G is unknown and the LQEM for NxY will be used for the restricted

maximum likelihood method. These models are further examined in the following sections.

3.2.2. Covariance Properties

This study requires that the covariance be positive definite. The next proposition illustrates that the
covariance matrices for the LQEMs do satisfy this property. For a linear space W, let Lpp(W, W) denote

the set of positive definite transformations from W—W and consider the following two propositions.

Proposition: Let V be a PD matrix and K = {NxANx| A € §,,}. Then
)Ty € ﬁPD(Sn, Sn) i) \I/QIVQ S ﬁpD(Sq,Sq) iii) \IleVNx S ﬁpD(K:, ’C)

proof: Since V is PD matrix = 3 B > V = BB’. Also, by definition of adjoint and inner product,
<Uee(A),A> = <GG'AGG',A> = <G AG,G'AG > >0 = Vgg isNND (1).
Also, ¥ (A) =0 = GG'AGG = 0 = A = 0 providing GG’ is invertible (2).

i) Set G = B = ¥y is NND by (1). Also, GG’ = V is invertible = ¥y is invertible.

ii) Set G = Q'B = ¥y is NND. Also, GG’ = Q'VQ is invertible since @ has full rank

= ¥gy is invertible.

iii) Set G = NxB = ¥ n,vn, is NND. Also, for NxANx € K

Unvng (NxANx) = 0= NxVNxANxVNx = 0= (NxVNxANxV Nx)ANxVNx =0
=> NxVNxANx =0 since R(NxV Nx) = R(Nx) when Vis PD

=> NxANxVNxANx =0 = NxANx =0 since R(NxV Nx) = R(Nx) when V is PD.
Thus, ¥y, v, isinvertible V NxANx € K. =
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Proposition: For the PD matrix V, ¥ yn, (D) = ¥y yn,- (D) VD EK.

proof i) Since V is PDmatrix = 3 B3> V = BB'.Note N(Nx) C N(NxV Nx). Also, suppose
t € N(NxVNx) = NxVNxt=0= NxBB'Nxt=0= B Nxt=0=VNxt=0
= Nxt=V10=0=tec N(Nx) = N(NxVNx) C N(Nx). Hence,
N(NxVNx) = N(Nx) = R(NxV Nx) = R(Nx).
i) Note VD € K= D = NxANx for some A € §,. Then
U v e Yoy g+ (D) = (NxV Nx) (NxV Nx)* (Nx ANx) (NxV Nx)* (NxV Nx)
= Pnyvny) (NxANx) Pingvny) = Pny(NxANx) Py, = NxANx = D
as R(NxV Nx) = R(Nx) when V is PD. Thus, 3 yn (D) = ¥y vy, +(D) VDEK. =

Since the LQEMs have a covariance which can be treated as positive definite, it will be assumed that
the LQEM for Z has a positive definite covariance. The above proposition also illustrates the issue
between using the LQEM for NxY and the LQEM for Q'Y Since the matrix Nx does not have full rank,
the linear transformation ¥ y, vy, needs to be restricted to X in order to be invertible as
Uy, vy (Px) = 0 where Py € S,. This should not be a problem, since matrices of the form NxV Nx are
of primary interest. In addition, the identity matrix is not a possible covariance matrix for this model. This
also is not a problem for discussing least square estimators and uniformly best linear unbiased estimators.
The results in this study could be applied to the LQEM for Q'Y . The decision of which to use is a matter
of preference. Even though @ has full rank and the identity matrix is a possible covariance matrix, the

LQEM for NxY seems easier to work with in applications.

3.2.3. Relation to Likelihood Estimation

This section will demonstrate the usefulness of the LQEMs. These models were defined in order to
easily represent the likelihood equations. A preliminary result is needed to represent particular linear

transformations for the LQEMs.

Lemma I: Consider the mappings X' and VSZ, defined for the LQEM for Z in section 3.2.1. Then
i) X :S,»R" where {X"*B}; =u(R:B) fori=1,...,rand B€S,
i) X"V, 'Y = Y{Z'R'RR;' Z}r1
i) XV, ' X" = Htr(Ry' RiRg Ry} rur
iv) X X' = H{tr(RiR;}rr-
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proof: i) Let ¢; = {X“B}i be the 7" element of X™* B. Hence,
<X'Y,B> = <¢, X"*B> = u((X'¢)B) = ¢ X"*B = ¢/{c;}
=Y it(RB) = Y dhici > ¢ = {X“B}i =u(R;B) i=1,..,r.
=1 i=1
i) iii) For A € S,, the results follow from i) where XT*VJ_lA = %XT*RilARlzl = %{tr(R,-RjzlARlzl)}.

iv) Follows from iii) where V,; = I. =

Corollary: If R; i = 1, ..., are linearly independent, then X** X" and X**Vlgle* are invertible.

proof: Define R, = 3" a;R;.
J
i) Let M = {tr(R;R;)}. Then Ma=0= S t(RiR;)a; =0 Vi = tr(RiR,) =0 Vi
J

= > aitt(RiRy) = 0 = tr(RyR,) = 0= R R, = 0 as R, NND since sum of NND matrices is NND
5

=R,=0=>a=0 since R;'s are linearly independent.

i) Let M = {tr(R;'RiR;'R;)}. Then Mg =0
= tr(RllegRlleg) =0 using same techniques as in i)
= R,'R,R;'R; =0
= Ry'R;=>R;=0=a=0

as RyR;'R, and R, NND

since R;'s are linearly independent. =

The ALQEM for (Y — X E) defined in section 3.2.1 can be used to obtain the maximum likelihood

equations for estimating 3 when g is unknown. This is demonstrated in the next theorem.
ML Theorem: The ML equations for fQMDQ = g are given by X°* V;Z‘lX%Z = X°*V£‘1Y2°.

proof: X"V X % = X'V U (Y - XB)(Y — XB)' where 8 = Buiq
& %{tr(I/,-Vlz‘lvlelzf1 )= %{tr(%Vil(Z - XB)(Y - X,B)’Vil)} by lemma 1
& {u(VVi)} = (¥ - XBYV;'ivs 'Y - XB))
& {tr(Vifll/}Vlzfll/j)} e={Y F,ViF;Y'} by proposition after ML equations and Fy-lemma. =

Proposition: XO*XO_IZ = XO*Y; = {tr(ViVj)}(k+1)x(k+1)lz = {X’NXV,-NXZ}(,CHN

whenY — X8 = NyY.

proof: X°*X°h = X**NxYY'Nx < {tr(ViV})} = {tr(V;NxYY'Nx)} by lemma 1
& {r(ViVj)}& = {Y'NxViNxY} by proposition after ML equations. =
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The equations in the above proposition will be of interest since they do not depend on the covariance.
Thus, these equations are linear and explicit so that they can be solved without the use of an iterative
procedure and they do not depend on any other unknown parameters. A goal in this study will be to
characterize when the ML equations are equivalent to the equations given in the above proposition.

For the case where 3 is known, the ML equations would be obtained using the LQEM for (Y — X3).
The equations would be given by X“V;Z‘IX%Z = X°*V;Z'1Y1°.

The LQEM for NxY defined in section 3.2.1 can be used to obtain the restricted maximum
likelihood equations for estimating #. This is demonstrated in the next theorem. Additional propositions

will be given which are related to this theorem.
REML Theorem: The REML equations for fxgmiq = & are given by X°*V£'1X°fg = X"Veolye.

proof: XO*VZE_IXO_IZ = XO*Vi_INxﬂINX = %{tr(NxviNx(Nxvﬁ Nx)+Nxvlz Nx(Nxvlz Nx)+)}
= %{tr(NxViNx(Nxvlz Nx)+Nxﬂ/Nx(Nxvlz Nx)+)} by lemma 1
(=4 {tr((NXVﬁ Nx)+NXv,'Nx)} = {Z/Nx(Nxvzz Nx)+NXv,'Nx(Nxvzz Nx)+Nxz}
& {w(F3Vi)} ={Y'F;ViF; Y} by the Fy-lemma
& {u(F.V;F,V))}¢ = {Y'F; ViF;Y} by the proposition after REML equations. =
¢ z 7 ¢ ¢

Proposition: X**X°3) = X*Y° & {u(ViNxViNx) s yxern?d = {Y' NxViNxY }einy1.

proof: X*X°¢ = X*NxYY'Nyx
& H{ur(NxViNxNxV; Nx)} = 3{r(NxViNxY Y'Nx)} by lemma 1
o {tr(V,-NijNx)}gAQ = {Y'NxV;NxY} by proposition after REML equations. =

The equations in the above proposition will be of interest since they do not depend on the covariance.
Thus, these equations are linear and explicit, so they can be solved without the use of an iterative
procedure and do not depend on any other unknown parameters. These equations are identical to the
MINQUEO or MIVQUEQ equations which can be obtained from the REML equations by plugging in

= {40} where ¢, = 0 L= K (Searle et al.,1992,section 11.3). A goal in this study will be to
0 0T 1 i=k+1 y

characterize when the REML equations given in the REML theorem are equivalent to the equations given
in the above proposition.

The REML equations could also have been obtained using the LQEM for Q'Y given in section 3.2.1.
The equations under this model would have the form X* *Vi Xy = X0 *Vi -ly®.
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3.3. The Underlying Model
3.3.1. Definitions

This section will establish an underlying model which incorporates those models presented in the
previous sections. This will provide a convenient tool, since the results can be presented with respect to
this model and applied to the other models as special cases. Thus, the results of this section can be applied
to any of the previous sections in this chapter. A set of useful inner product spaces and linear

transformations are listed below:

Spaces
* (W, <, > w) = n-dimensional real inner product space = observation space
s (P, <, > p) = p-dimensional real inner product space = mean parameter space
* (H, <, > %) = h-dimensional real inner product space = estimation space

+ £ = linear subspace of W = expectation space

Linear Transformations
U :P-W U*: WP R(U)=¢&
I : H-P - . P-H
* H: H-W H : W-H.

Suppose w € W is a random response. The expectation, E[w], and the covariance, Cov(w), are

uniquely defined by:

E|w] satisfies E[ < a,w>w]|= <¢,Ew]>w VaeW

Cov(w) satisfies Cov( < a,w > w, < b,w>w) = <a,Cov(w)b>w V a,b €W.
It will be necessary to assume Cov(w) € Lpp(W, W) or the set of positive definite linear

transformations from W—-W. With these definitions, models can be used to represent E[w] and Cov(w).

Two general models of interest are given below. Such models have been considered by Seely (1996).

U-Model: (E[w], Cov(w)) € T C W x Lep(W, W).

The underlying model (U-Model) allows the expectation and covariance of w to be related. This is the

most general representation of the expectation and covariance that is needed. Also, define the sets:
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U={ueW]|(u,v) €T for some v} spU =&
V = {v € Lep(W,W)| (u,v) € T for some u}.

Parameterizations will be used to provide a setting in which estimation can be defined with respect to

the U-Model. Parameterization for the whole model, expectation, and the variance are given below.

Whole Model  7: T->W x Lpp(W, W) where 7(T) =T
Expectation Tyt Ty—» W where 74(Ty) = U and spTy = P
Variance T Ty—=Lpp(W, W) where mp(Ty) = V.

Despite the relationship between the mean and the variance, only the parameterization of the
expectation is of concern. It is assumed that T;y C P, spTy = P, and the mapping 77, can be extended to
a linear transformation U : P-W. For 0 € Ty, 7,(8) = U8 € U and spU = sp{U0|0 € Ty} = spU(Ty)

= U(spYy) = U(P) = R(U). The parameterization for the expectation is often expressed as

Eglw] = Ub, 8 € Ty. Such parameterizations can always be defined using
YT=7, r(u,v) = (u,v) Ty=Umyu)=u,Uu=u Ty =V, rp(v) = v

Certain assumptions may be required for the U-Model. These assumptions are listed below, and will
always be stated either in the result or at the start of the section. The reason behind the assumptions is
demonstrated in the next section. A lemma is presented to demonstrate these assumptions do fit into the

above framework as spY; = P under both [O] and [S], and that [O] is a stronger assumption than [S].
Assumptions: Open Set [O] - Ty contains a non-empty open set in P.

Spanning Condition [S] - sp(Ty — Tu) = P.
O-§ Lemma: 1) Under [O], spTy = P. ii) Under [S], spYTy = P. iii) [O] = [S].

proof: i) Let C C Ty be a non-empty open setin P, 6y € C, and u € (spC)* = C*. Because C is open,
Je>036+dueC V|5 <eSinceueCll, <u,p+éu>p=0VY|§ <e

= <u,fp>pté<uu>p=0V|fl<e=> <u,u>p=0=u=0.

Thus, C* = {0} = spC =P = spTy =P asC C Ty or spC C spYy.

ii) Note sp(Yu — Ty) = {lf:lai(')’il —Yi2)|lm > 1,791, %2 € Tu, ai € R}

C {2 ami — D bpy)lm > 1,7,7; € Tu, ai, b € R} C sp(Ty).
i=1 =1
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Thus, sp(Yy — Tu) = P = sp(Ty) = P.

iii) Using [O], let C C Ty be a non-empty open set in P and let g € Ty. Then

C—7 C YTy — {7} is a non-empty open set in P. Hence, sp(Tyy — {w }) =P by i)

= sp(Ty — Yy) =P [S]since Yoy — {0} C Tu— Yy orsp(Tyy — {7 }) Csp(Teu— Tu). =

The U-Model is more general than a linear model. It is a linear model if and only if U = spU = £.
Under the parameterization 7y, the U-Model is a linearly mean-parameterized model since the expectation
and the parameter are linearly related. For purposes of this thesis, the U-Model is equivalent to a linear
model, namely the M-Model defined below. This model separates the mean and covariance. Seely (1996)

refers to this model as the artificial model.

M-Model : Ew] € € Cov(w) € V.

Note that the M-Model is a special case of the U-Model when 7 = £ x V. A parameterization could
be defined for the M-Model, but it is not necessary for this study.
In the U-Model setting, the goal will be to estimate I1*6 using estimators of the form H*w . The next

proposition gives the mean and variance of such an estimator.

Proposition: Suppose 7 € 7. Then i) E;[H*w| = H*E;|w] ii) Cov,(H*w) = H*Cov,(w)H.

proof: ) E.[H*w] € H. Then ¥V h € H using the definition of expectation and adjoint

< hE|H*w] >3 =E;[ < h,H'w> y] =E;[ < Hh,w > W]

= < Hh,E|w]>w= <h,HE;|w] > %.

ii) Note H*w € H, so Cov,(H*w) : H—H. ThenV hj, ho € H using definition of covariance and adjoint
< h1,Covi(H*w)ha > 3 = Cove( < h, H'w > 3, < ho, H*w > %)

= Cov;( < Hhy,w> w, < Hho,w>w) = < H~y,Cov,;(w)Hhs > w

= < h, H*Cov, (W) Hho > 3. =

The purpose behind the U-Model is to have a linearly mean-parameterized model which is general
enough to incorporate the particular models of interest. The results can then be derived for the general
model and applied to the others as special cases. The U-Model fulfills this purpose as demonstrated

through the following relations:

Y-Model : T=RPxE, Ty=RP, Ty==E P=TR?P Uf=Xg
LQEMforZ: T=Ty=Typ=E P=TR" U =X .
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The mean parameter set R always contains a non-empty open set for the Y-Model and = will
contain a non-empty open set in R¥*! under assumption [O] for the Y-Model which holds for the LQEM
for (Y — XB) and for the LQEM for NxY in order for these models to generate the ML and REML

equations, respectively.

3.3.2. Mean Estimability

Estimation is naturally only concerned with parameters that can be estimated. Thus, concepts related
to estimability should be examined for the underlying model. Mean estimability will be examined for

estimating I1*8 in the U-Model. Consider the following definition:

Definition: Mean Estimable - The linear transformation II*8 is mean estimable provided

U, =068, = 16, = 11*6, Vv 01,92 € Ty.

The mean part of the definition indicates that the definition only applies to the behavior of the mean
and not to the behavior of the variance. Some results concerning mean estimability are given below. The

last two results demonstrate the necessity of assumption [S] in the U-Model.

Theorem: U# is mean estimable.

proof: Follows directly from the definition. =

(Seely,1996)

Mean Estimability Theorem: Under [S], the following are equivalent:
1) IT*@ is mean estimable
i) R(IT) C B(U")
ii)IH : H-Wa Eg[H*w] =1I"¢ V § € P.

proof-i) & (U6 = Uy = TI°6, = II'6, V 6,62 € Ty | & [Us=0= 116 =0 V6 € Ty — Ty]
S [U6=0=T'6=0 V6esp(Ty—Ty) =P ] using[S]

& N(U) C N(IT") & R(I) C R(U") + ).

Also, i) & U"H =1l for some H : H»W & H*U =II*

SHUI=II"0 VOcPSEHwW=II" VOcP i) s

(Seely,1996)
Full Rank Theorem: Under [S], 8 is mean estimable < r(U) = p.
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proof: Using the Mean Estimability theorem shows § = 16 is mean estimable

o R(I)CRUY) & RU) =P r(U)=dmP=ps r(U)=p. =

Estimation results can be given with respect to U@ since this linear transformation is mean estimable.
The three cases in the Mean Estimability theorem are equivalent under [S]. The O-S lemma indicates that
this condition is also satisfied under [O].

Some later results will require mean estimability of 8. If € is not mean estimable, it is possible to
obtain a parameterization which is full rank or one in which the parameter vector under the new

parameterization is estimable. This is demonstrated in the next proposition.

Proposition: Suppose [S] and Eg|w] = U6, § € Ty, where 6 is not mean estimable. The expectation can
be reparameterized as E,[w] = Ta where a € Ay = {a € R™|Ta € U}, T is a linear

transformation, and o is mean estimable.

proof: i) Suppose R(U) = sp{u1, ..., um} where 7(U) = m and define T : R™->W by T(a) = ) aiu;.
i=1

Note R(U) = R(T) and N(T) = {0
i) T'(sp(Au — Au)) = sp(T(Ay) — T(Au)) = sp(d —U ) = sp(U(Tu) — U(Tu))

= U(sp(Yu — Tu) = U(P) = R(U) = R(T) =T(R™) byi)
= sp(Ay — Ay) = R™ ([Sla,)as N(T) = {0} by i) and spAy = R™ by the O-S lemma.

—~—
—

iii) Then E,[w] = Te is a parameterization of the expectation of w, because T is a linear transformation

with T(Ay) = U and spAy = R™ byii).Now, r(T) =m —o(T) =m—0=dimR"™

=> o is mean estimable by the Full Rank theorem under [S]4,,. =

Methods of estimation can now be presented for parameters of interest that are mean estimable. The

estimation methods include least squares and uniformly best linear unbiased estimation.

3.3.3. Least Squares Estimation

Least squares estimation will be presented in terms of the U-Model. This method of estimation may
be more interpretable under the M-Model. However, in section 3.3.4, it will be shown that the estimators
are equivalent under both models.

Consider the U-Model where U8 € I and V € V. The least squares and generalized least squares
estimators are defined for 8 which may or may not be mean estimable. When § is not mean estimable, the

least squares solution is not unique.
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Definitions: Least Squares Estimator (LSE) - 8;(w) = 0; is an LSE for  provided it minimizes

<w-Ubw-Ub8>pw V 0P

Generalized Least Squares Estimator (GLSE) - Let V be the true V € V. Then @V(w) =By is a GLSE for
6 provided it minimizes < w— U8, V- w-Uf) >y V € P.

The LSE does not depend upon the covariance, while the GLSE does depend upon the covariance.
For the GLSE, the given variance V is fixed at the true V' € V, whereas the 8 in U6 varies over all § € P.
This can be understood to mean that one covariance is selected from the set V and it is desired to estimate

@ based on this V. The LSE theorem and the GLSE theorem provide representations for these quantities.
LS E Theorem: The following are equivalent: i) @ is an LSE i) UrU8=U'w  iii) U = Pyw.

proof V< w—-Uw—-Ub8>w= <w—-Pyw+ Ppw—-Ub,w— Pyw+ Pyw—-UB8 >
<{I-Pow,(I-Pylw>w+ <{I-Pylw,Ppw—-Ub>wpw

+ <Ppw-Ub8,(I-Pylw>w+ < Pypw—Ub,Pyw— U8 > y Dby linearity of inner product
<(T-Pow,(I-Pylw>w+ <Pyw—-U8,Pyjw—-U8>, as (I —Py)wl Ppw—-U8

which is minimized when U6 = Pyw. Hence, i) < iii).
(2) Note Uf; = Pyw = U*U8; = U*w and U*U0; = U*w = U*(Ub; — Pyw) = 0= Ub; = Pyw
as Uf; — Pyw € R(U) N N(U*) = {0}. Hence, ii) < iii). =

GLSE Theorem: The following are equivalent for a given V € V
1)@ is a GLSE WUV e =UvVie i) UG = U(UV-IU) U V3w,

proof: (1) By the spectral theorem, Jreal numbers A, ..., A, and OPOs Fy,..., E, >

no1
V-1 =S\E; = V=1 exists where V=2 = STAZE;, 50

1=1 =1
<w-Ud, VW w—-Ub)>pw= <V iw—V"iUlV iw—- ViUl >
which is minimized when (V:U)*(V:U)8 = (V":U)*V iw by proof of LSE theorem
or equivalently when U*V~1U8 = U*V ~'w. Hence, i) < ii).
(i) = UV WU = U V-iw= UWU VU UV WU = UWUVIU) UV w
= MU = Mw where M is the PO on R(U) along N(U*V~!) by general projection theorem in 2.5.
= Ul = Mw=UUVU)" UV lw= iii).
B)ii)) = U =UUVWU) UV iw= UV WU = UV IU(UV-WU) UV lw
= U*V~1Uf = KU*V~'w where K is a PO on R(U*V~U) = R(U*) using proposition in 2.3, 2.5
S UV We=UVw=i). =
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The LSE and GLSE are unbiased estimators of U#f. In order to be a valid estimator, the GLSE
requires the covariance to be known. If the covariance is unknown, then it has to be estimated. In this
case, the GLSE would actually be an estimated GLSE or EGLSE where V = V (w) € Lpp(W, W)
¥V w € W. Using the above corollary, the EGLSE for U8 would be the value of @V which solves
U@V (w) = U(U*/VAIU)“U*/V—Iw. Because V = V(w), the EGLSE is not necessarily linear or unbiased.

3.3.4. Uniformly Best Linear Unbiased Estimation

Uniformly best linear unbiased estimation provides a method to assess the performance of estimators.
Consider estimators of the form H*w and let Lnnp(H,H ) be the set of NND linear transformations from
H—H and denote Cov(H*w) € Lnnp (W, W) by Cov(H*w) > 0. In addition, let
7 = (Elw],Cov(w)) € 7, u = Elw] € U, and v = Cov(w) € V.

Definition: Uniformly Best Linear Unbiased Estimator (UBLUE) - H*w is UBLUE for its expectation
& Cov,(K*w) > Cov,(H*w) VT E€T V K*: WoH SE[K'w|=E, [Hw]|VT€eT.

The next result indicates that the existence of a UBLUE in the U-Model is equivalent to the existence

of a UBLUE in the M-Model. This is done by showing that UBLUEs are equivalent under both models.

(Seely,1996)
U-M UBLUE Theorem: H*w is UBLUE in the U-Model if and only if it is UBLUE in the M-Model.

proof: 1) Cy = {K*w| E,[K*w| = E.[H*w|V 7 € T} = {K*w| K*E;[w] = H*E;[w] YV 7€ T}
={K*w| K*u= H*u Yuel}
={K'w|K*u=H'u Vuef&} since the condition is linear it is the same under { and £
= {K*w| K*E,[w| = H*E,[w] Vu €€} = {K*w| E,|K*w] = E [H'w] Yu€E}=Cn.
i) By i) Cu = Cm = C,s0 Dy = {K*w € C| Cov,(K*w) > Cov.(H*w) VT € T}
={K*we C| K*Cov,(w)K > H*Cov,(w)H VT €T}
={K*'weC|K'VK >H'VH YV €V}
= {K*w € C| K*Covy(w)K > H*Covy(w)H VV €V}
= {K*w € C| Covy(K*w) > Covy (H*w) VV € V} = Dy.
.. Cy = Cmand Dy = Dy, then H*W is UBLUE in the U-Model < H*W is UBLUE in M-Model. =

Additional definitions with respect to the U-Model are given below. These definitions will be used to

develop properties of UBLUEs.



Definitions: IBLUE: A UBLUE with respectto V = {I}.

VBLUE: A UBLUE with respect to V = {V'} where V is given.

Full UBLUE (FUBLUE): A UBLUE for E[w].

The definition of a FUBLUE is for convenience, since it will be desirable to differentiate UBLUE
properties in full and non-full cases. The next theorems will be used to identify UBLUEs and their

uniqueness.

(Seely and Zyskind,1969)
Zyskind's Theorem: Assume E[w] € W and Cov(w) = V > 0. Then H*wis VBLUE & R(VH) C £.

proof- 1) Suppose R(VH) C £.
(1) Consider K*w 2 E,;[K*w| = E,[H'w|VT1e€T & K*'u=HuVueéf
S(K*—HYu=0Vuel & Fu=0Vuecf where F = K — H & R(F) C &L
(2) Note F*VH = 0 by (1) since R(F) C £+and R(VH) C €.
(3) Then Cov(K*w) = Cov((H + F)*w) = H*VH + H'VF + F*VH + F*'VF
= H*VH + F*VF by (2) = Cov(K*w) = H'VH + F*'VF > H'VH = Cov(H"w).
i1) Suppose H*w is VBLUE.
@) LetB= {t|[Vt € £} and show B+ L = W.
Suppose u € B- N € and note N(V) C B= B+ C N(V)* = R(V).
Thenu € B+ C R(V) = u= Vw forsome w. Also,u = Vw € E = weE B.
Thus, W'w = 0= w/'Vw= 0= Vw=0as V is NND = u = 0. Hence,
BLAE={0}=>B+E =W,
(5) From (4), can write W = B + £+ = C ® £+ where C C B. Define P to be a PO on C along £+
= P*isaPOon £ along C*.
6)Set K=PH, N=I~-~P,and F = NH. Note H = K + F.Then
a) E[K"w| = E[H*P*w] = H*P*Elw| = H*E|w] = E[H"*w| since P* isa PO on & by (5)
b) R(K) C R(P) C B by (5) = R(VK) C £ = K*w is a VBLUE by i).
¢) R(F) C R(N) = N(P) = &+ by (5).
Thus, by (6) and the hypothesis, K*w and H*w are VBLUE for E[H*w]. By definition of VBLUE,
Cov(H*w) = Cov(K*w) & H'VH = K'VK & (K + F)'V(K + F) = K*'VK by (6)
SK'VK+FPVK+K'VF+ F'VF=K'VK & FVF=0 since F*VK =0 by (6)
< VF = 0 by proposition in 2.3 & V(H — K) = 0 by definition of F in (6)
o VH=VK = R(VH)=R(VK)CE by(6). =
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(Seely,1996)
Uniqueness Theorem: Assume V is PD and H*w is VBLUE. Then K*w is VBLUE for
EHw)|< K=H.

proof:1)If K = H, then the conclusion follows directly.

ii) Suppose K*w is VBLUE for E[H*w]. By (1) in the above proof, F = K — H where R(F) C £+.

In addition, R(V K) C £ by Zyskind's theorem. Hence,

Cov(K*w) = Cov(H*w) e K*'VK =H'VH & (F* + H*)V(F+ H)=H'VH

< F*VF+ H'VH = H'VH by(l)& F*VF =0 = F = 0 using proposition in 2.3 where V is PD
= K = H by definitionof F'. =

The above results can be applied to UBLUEs by noting thata UBLUE is a VBLUEV V € Vor
equivalently V V' € spV by the linearity of the condition in Zyskind's theorem. Because this study is
concerned with UBLUEs in the U-Model under a mean parameterization, the UBLUE definition is

restated for the mean parameterized case.

Lemma: H*w is UBLUE in the U-Model for I1*§ if and only if
i) BglH*'w]=1"0 V 0P
ii) Covy (H*w) < Covy(K*w) VV €V andV K* : WoH S Ey[K 'w]=1I"0 VO P.

The first condition in the lemma defines unbiasedness for estimating I1*§. The second condition
indicates that the UBLUE is the best linear estimator for all possible covariances among all unbiased
estimators. Zyskind's theorem can be applied to least squares and generalized least squares estimators to

show these estimators are IBLUE and VBLUE, respectively.
Corollary: i) U8y is IBLUE for US. ii) Uy is VBLUE for U#.

proofi) (1) Note Eg[UB; | = Eg[Pyw] = PyUf = UG by LSE theorem.
(2) R(Py) = R(V).

.. U®; is IBLUE for U# by Zyskind's theorem.

ii) (1) Note Eg[UBy ] = Eg[Mw] = MUO = Uf by the GLSE theorem.
)R(VM*) = R(U(U*V~U)"U*) C R(U) by the GLSE theorem.
. UBy is VBLUE for U6 by Zyskind's theorem. =
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The LSE and GLSE are special cases of UBLUEs, so they have a correspondence to the LSE and
GLSE in the M-Model. By the U-M UBLUE theorem and the uniqueness theorem, U¥b; is the unique
IBLUE in the U-Model and the M-Maodel, and U@V is the unique VBLUE in the U-Model and the
M-Model. Thus, least squares estimation in the U-Model is equivalent to least squares estimation in the
M-Model, and generalized least squares estimation in the U-Model is equivalent to generalized least
squares estimation in the M-Model.

The next theorem shows that linear combinations of UBLUEs are UBLUE for their expectation. An

example of the importance of this result is given in the corollary concerning FUBLUEs.

(Seely,1996)
Linear Closure Property: If H*wand K*w are UBLUE, then [H

K+ ] w and L* H*w are UBLUE.
proof: Using Zyskind's theorem gives the following VV €V,

DR(VIH K]) = R(VH)+ R(VK) CE+ & =€ as H*w, K*ware UBLUE = [g*

*

]w is UBLUE.

i) R(VHL) C R(VH) C £ as H*w is UBLUE = L*H*wis UBLUE. =
Corollary: If U8 has a FUBLUE, II*8 is estimable, and [S] holds, then II*@ has a UBLUE.

proof: Since IT*§ is estimable = R(IT) C R(U*) by the Mean Estimability theorem under [S]
= Il = U*M for some linear transformation M

= II* = M*U. Suppose H*w is the FUBLUE for U8 and consider M* H*w. Note
E[M*H*w| = M*U6 = 11" and M*H*w is UBLUE by the linear closure property. =

The above corollary indicates that the UBLUE for IT*@ can be derived from the FUBLUE. However,
this may not always be the case, as a UBLUE may exist for II*8, but not for U#§. For this study, it is
convenient to distinguish between these two settings. If a FUBLUE exists, then this will be referred to as
the full case and it is reasonable to think of the UBLUE for II*8 as a FUBLUE as it is derivable from the
FUBLUE. If a FUBLUE does not exist, but a UBLUE exists for II*8, then this will be referred to as the
general case. The full case is presented in chapter 4 while the general case is presented in chapters 5 and
6. The UBLUE conditions will provide some of the basic tools that will be examined in this study. These

methods have been defined for the U-Model, and can be applied to the other models in this chapter.
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3.3.5. Zyskind's Condition

Zyskind's condition leads to many nice properties. Some of these properties will be shown in this
section. This condition has briefly been mentioned for the previous models, but it will be further
developed in this section for the U-Model. The U-Model assumes that V is PD ¥V V' € V. This condition

is defined as:

Definition: Zyskind's Condition (ZC) - The condition R(VU) C R(U) YV € V.

Zyskind's condition is linear and can be extended from V to spV. Also, LSE = GLSE V V € V under
ZC. This is demonstrated in the next theorem. The theorem also provides a condition under which

V1-GLSE = V;,-GLSE.

ZC Relation Theorem: i) For invertible V, R(VU) C R(U) & UU*V-IU)-U*V 1 =UU*U)"U".
ii) For invertible V where N(U) = {0}, R(VU) Cc R(U) & (U*V-U)"'U*v-1 = (U*U) U
iii) If V4, V4 are invertible, then R(V'U) C R(Vy'U) & R(V,Vy 1U) C R(U)
& UUVTIU)- UV = UU V) U VgL,

proof: i) By general projection theorem, A = U(U*V~1U)~U*V~! isaPO on R(U) along N(U*V1).
By uniqueness of POs, A = Py & N(U*V;}) = N({U*) & R(V-U) = R(U)

& R(VU)=R(U) < R(VU) C R(U) since r(VU) =r(U) as Vis invertible.

ii) Note that {0} = N(U) = N({U*U) = (U*U) !exists.

(1) Suppose (U*V-tU)~tU*V~1 = (U*U)"IU".

Then R(VU) C R(U) follows immediatedly from (1) by left multiplying by Uand using ).

(2) Suppose R(VU) C R(U). Then A = Py fromi) = U(U*V-'U)"U*V-1 =UUU)U*
o (U)W UV U)WV = (U)W T (U)W

iii) Let A; = U(U*V;"'U) " U*V; and Ag = U(U*Vy'U) U*Vy ). Then 4, = 4,

& N{U*V) = N(U*V;) by the general projection theorem in section 2.5

& R(VF'U) = ROG'0) & R(U) = ROV, 'U)

& R(V,V,'U) C R(U) since have equality of ranks. =

The next theorem uses the results of the preceding section to show LSE = UBLUE if and only if ZC.
The theorem also provides conditions which are equivalent to V5-GLSE = UBLUE. This theorem is the

main result of this section.



49

Theorem: i) UB; is UBLUE for U§ < R(VU) C R(U) VV €V
ii) UBy, is UBLUE for U < R(Vy;\U) c R(V"'U) & R(VV;'U) C R(U) YV €V,

proof: 1) (1) Note Eg[U6; ] = Eg[Pyw] = PyU# = U6 by LSE theorem.

(2) U8; is UBLUE for U < UB; is VBLUE for UG YV € V

< R(VPy)=R(VU) C R(U)VV €V by Zyskind's theorem.

ii) (1) Note Eg[Uby | = U(U*V;'U) " U*V;'UO = UG as AA~ isa PO on R(A).

(2) By Zyskind's theorem, U8, is UBLUE for U#

& R(VVO‘lU(U*VO‘lU)‘U*) CRU) YVeV
R(VyIU(U*V;WU) U*) CR(V-IU) YV eV
RWVyWU)CR(V™WU) YV €V asMy =V, \UU*V;U) U*isaPO on R(V; 'U)
RVV,WU)CRU)VVeV. =

The following proposition demonstrates a useful commutativity property involving projection

operators and Zyskind's condition.
Proposition: R(VU) C R(U) = PyVPy =V Py = PyV and NyVNy =V Ny = NyV.

proof: R(VU) Cc R(U) = R(VPy) Cc R(U) = PyVPy = VPyand PyV Py = PyV by symmetry.
Also, NyVNy = (I — P))V(I - Py) = — Py)(V = VPy) = (I - Py)(V — PyV) = NyV
and NyV Ny = V Ny by symmetry. =

Even though the U-Model assumes the covariance is PD, it is informative to consider the case where
V is singular in order to establish the limitations of applying Zyskind's condition. Consider the case where
the true V' is singular. Puntanen and Styan (1989) define the GLSE by U(U*V*U)*U*V*w. Evenif Vis
singular, the result [LSE = VBLUE & Z(] still holds. However, the following propositions indicate ZC
is not sufficient to show GLSE = LSE and GLSE = VBLUE in this case.

Proposition: IV is singular, then U(U*VTU)TU*VT = U{U*U)'U* < R(V*U) = R(U).

proof: (1) Note V is self-adjoint = V' is self-adjoint by section 2.5. Since V' is NND, V' = BB* for some
Bfromsection2.7 = VT = VtVV*t = V+BB*V* = CC* = V' is NND by section 2.7.
QP=UUVU)*'U*V*isaPOas P> =U{U*VtU)*U*VTUU*VtU)*U*'V*+ = P

Using (1), NND properties in section 2.7, and Moore-Penrose inverse properties in section 2.5
RUUVT) = RUU*VTUU*) = RUUVTU) = RUUVTU)Y)

O R(P) D RUUVTU)*U*VTU) = RUUVU) = RUUVTUU*) = RUU*VT).
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Thus, R(P) = R(UU*VT). Also,

R(V*U) 5 R(P*) > R(V*UU V*U)*U*V*) = R(V*P) = R(V*UU*V*) = R(V*U).

= R(P*) = R(V*U) = N(P) = N(U*V*).

(3)From(2), P= Py & R(UU*V™) = R(U)and R(V*U) = R(U). However, R(V*U) = R(U)
=r(U) =c(V*U) = o(V*UU*) = c(UU*V*) = RUU*V*) = R(U). =

Proposition: 1) If V is singular, then the GLSE = VBLUE < R(U) C R(V).
i1) If V is singular and the GLSE = LSE, then the GLSE is VBLUE.

proof: 1) By Zyskind's theorem, the GLSE = VBLUE & R(VVTU(U*V*U)TU*) C R(U)
< R(VP*) C R(U) where Pis the PO on R(UU*V*)along N(U*V'*) by above corollary
& R(VV*U) C R(U) asR(P")=R(V'U)
< PyR(U)C R(U) asVV+t =Py
< R(U) C R(V).

ii) By the above proposition, GLSE = LSE & R(V*U) = R(U) = R(U) C R(V*) = R(V)
= GLSE = VBLUE by i). =

This section defined Zyskind's condition and demonstrated some of the results that can be derived
from it. This condition will be referred to in the next chapters and is presented for the U-Model so that it

can be applied directly to the other models of interest.
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4. UBLUE for the Expectation

This chapter examines the existence of full uniformly best linear unbiased estimators (FUBLUES)
which are UBLUEs for the expectation of the model. These estimators are defined in section 3.3.4
FUBLUE:s will first be identified in the underlying model and these results will be applied to the other
models for estimating fixed effects and variance components. This chapter will also discuss explicit linear
likelihood estimators under the maximum likelihood and restricted maximum likelihood procedures which
have been presented by Rogers and Young (1977), Szatrowski (1980), and ElBassiouni (1983). The

chapter concludes with an example.

4.1. FUBLUE for the Underlying Model

This section examines conditions under which a FUBLUE exists in the U-Model for the mean
estimable quantity U/. The least squares estimator, the generalized least squares estimator, and the
estimated generalized least squares estimator for U6 will be of interest in this section. These were given in

the previous chapter using the LSE theorem, but they are listed here for reference:

o~

<

LSE: 9, =UU'U) U'w
GLSE: Uby = U(U*V-WU) UV lw for the true V € Lpp(W, W)
EGLSE: Uy = U(U*V'U) UV 'w with V' = V (w) € Lep(W, W) ¥V w € W.

The LSE has a simple linear form which does not depend on the covariance, the GLSE depends on
the unknown true V', and the EGLSE is not linear and requires an estimate for the unknown covariance.
The objective is to determine when the LSE is equal to the EGLSE. The UBLUE results of the previous

chapter can be used to address this objective.

U-FUBLUE Theorem: The following are equivalent:
i) U®; is UBLUE for U6 in the U-Model
i) RVU)CR(U) YV eV (ZO)
i) U(U VU UV = U(UTU) U YV EV.

proof: By Zyskind's theorem i) <> ii) and by the ZC Relation theorem ii) < iii). =

Proposition 1: 1f V € spV and V is PD, then the conditions in the U-FUBLUE theorem imply
Uy = Udy.
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proof RVU) CR(U)VV € V= RVU)C R(U) VV € spV by section2.3
= UU*V-WU)-U*V 1 =UU*U)"U" VYV € spV by the ZC relation theorem where V' is PD
= U’év = U@I. ]

Proposition 2: If I € spV, then U8 has a UBLUE < U?9; is UBLUE for U6.

proof: i) UB; is UBLUE for U# = U6 has a UBLUE.

ii) Suppose U8 has a UBLUE given by U@%where VeV
= R(V;U) C R(V"IU) ¥V V €V by theorem in section 3.3.5 = R(VV;'U) C RU) VYV eV
= R(VV;'U) C R(U) VV € spV by proposition in section 2.3 = R(V;"'U) C R(U) as I € spV
= Uby, = UB; by ZC Relation theorem = U8 is UBLUE for U8 by Uniqueness theorem. =

The U-FUBLUE theorem indicates when the estimator U8 is best among unbiased linear estimators
for U#6. In this case, the best estimator has the same variance as the GLSE, since these estimators are
equal. It is not necessary for I € spV in order for U?B; to be best. However, if I € spV and U8 is not
UBLUE, then there does not exist a UBLUE for U#.

Consider the set of transformations Ly (W, W) = {V € Lep(W, W)|R(VU) C R(U)}. This set can
be used to re-express the conditions in the U-FUBLUE theorem and apply them to the EGLSE. This is

demonstrated by the following corollaries which follow directly from the U-FUBLUE theorem.
Corollary: ZC <V C Ly(W, W).
Corollary: If V C Ly (W, W), then GLSE = LSE = FUBLUE.
Corollary: If V C Ly (W, W), then spV N Len(W, W) C Lu (W, W).
Corollary: If U9 has a FUBLUE and V € Ly (W, W), then EGLSE = GLSE = LSE = FUBLUE.
A sufficient condition for the existence of a FUBLUE is Zyskinds condition (ZC). The FUBLUE is

the LSE, which does not depend on the covariance matrix V. The results of this section will be applied to

the other models of interest for purposes of estimating fixed effects and variance components.
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4.2. FUBLUE for Fixed Effects

FUBLUE:s for fixed effects can be obtained using the Y-Model and applying the results from the

U-Model. The FUBLUE results can be used to determine the existence of an explicit linear maximum

likelihood estimator for the full fixed effect vector X 3.

4.2.1. FUBLUE Results

This section examines conditions under which a FUBLUE exists in the Y-Model. The least squares
estimator, the generalized least squares estimator, and the estimated generalized least squares estimator

for X3 will be of interest in this section. They are listed here for reference:

LSE: XB;=X(X'X) XY
GLSE: XB, = X(X'V;'X) X'V;'Y foragiven g where Vy is PD
- XB. — /=1y - x'y/-1 Y. i n
EGLSE: X§; = X(X Vs& X)X Vs& Y where Vzé Vi(l,)ls PDVY eR"
The UBLUE result for the U-Model can be used to indicate when the LSE is a good estimator for

estimating X 3. This is stated in the next theorem, which follows directly from the U-FUBLUE theorem.

Y-FUBLUE Theorem: The following are equivalent:
i) X3, is UBLUE for X3 in the Y-Model
i) R(VyX) CR(X) VygeE
i) X(X'VIX ) X'Vl =X(X'X)" X' VyeE.

Proposition: Assume [L] and [O]. Then V 3 € R¥*1 3 Vi is PD, the conditions in the Y-FUBLUE
theorem imply that X Bi = XB;.

proof: Under [L] and [O], spV = {Vy| & € sp E} = {Vy| & € RF¥*1}. Use proposition 1 in section 4.1. =

The Y-FUBLUE theorem does not make any assumptions about open sets, linear covariance
structure, normality, or classification matrices. Only the appropriate form of ZC given in ii) is necessary to

apply this theorem to the special cases of the Y-Model under [L], [O], and [C].

4.2.2. FELMLQE Results

For doing maximum likelihood estimation in the Y-Model, the assumptions of [L], [O], and [N] are

used. Following the approach of Szatrowski (1980), the full explicit linear maximum likelihood equation
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estimator (FELMLQE) for X 3 satisfies X EMLQ = AY fora constant fixed matrix A, which is not random
and does not depend on any parameters. In this case, the estimator X EMDQ is linear and the explicit part

indicates that A is constant. The following lemma shows that the MLQE = EGLSE in this setting.
Lemma: X Byiq = XﬁIZMLQ'

proof: Note from the likelihood equations and the definition of the EGLSE both are a solution to
XB; = X(X'V;'X )" X'VZ'Y where 0= Dyg ®

The next theorem presents a sufficient condition for the existence of an FELMLQE for X 3. This
condition is ZC for the Y-Model.

(Szatrowski, 1980)
Y-FELMLQE Theorem: Consider the Y-Model under [L], [O], and [N]. If @MLQ exists > VAZMLQ is PD and

R(V,X) C R(X) Vg € E, then X[3; is an FELMLQE for X3.

proof: Since V&Mwis PD by hypothesis, XB:ZMLQ = XEI by proposition in section 4.2.1.
By the above lemma, X By o = Xf_iﬁm. Thus, XByg = XB; = AY where A = X(X'X)~ X'

= XBI is an FELMLQE for X3 by definition. =

The proof of the theorem shows the MLQE is equivalent to the LSE under the assumptions. Because
the LSE is linear and explicit, there exists a FELMLQE for X 3. The condition for the existence of an
FELMLQE is sufficient, but not necessary. This is due to the fact that the relation X E@ = AY for some
Aand 9 € E does not necessarily imply R(Vy X) C R(X) V1 € E. The result in the following

proposition does hold.

Proposition: If X Bzé = AY Vg € E for some constant A and 3 ¢y € sp = > Vy, = I, then
R(Vy X) CR(X) VyeE

proof: XBy, = X(X'V;1X)"X'V;'Y = AY V4 € spE 3V, is PD by Proposition 1 in section 4.1
= X(X'VX )" X'V 'Y = X(X'X)"X'Y = AY foryy € spE. Thus, Vi € E,
X(X’Vlé‘lX)‘X’V‘1 =X(X'X)"X' = R(Vy X) C R(X) Vi € E by the ZC Relation theorem. =

For completely balanced mixed classification models, ZC is satisfied so there exists an FELMLQE

for X 3. However, a more general result involving balance can be stated.
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(VanLeeuwen et al.,1997)

Corollary: For the Y-Model under [C] and [N], let H be the set of factors corresponding to all random
effects and G be the set of factors corresponding to all fixed effects. If the design is Bal(H|G), then 3 an
FELMLQE for X3.

proof: VanLeeuwen et al. (1997) show this balance condition implies ZC. This gives the desired result

from the Y-FELMQE theorem. =

4.3. FUBLUE for Variance Components

FUBLUEs for the variance components can be obtained using linearized quadratic estimation models
and applying the results from the U-Model. The FUBLUE results can be used to determine the existence
of a linear estimator for the full variance component vector. The results will be applied to maximum
likelihood estimators and restricted maximum likelihood estimators. The FUBLUE results will be

presented first for the LQEM for Z and applied to the ALQEM for (Y — X0) and the LQEM for NxY.

4.3.1. FUBLUE Results

The U-FUBLUE theorem indicates ZC is a sufficient condition for the least squares estimator to be
FUBLUE. The first task will be to characterize ZC for the LQEMs. Two results will be presented to show
that ZC for the LQEM for Z is equivalent to a QS condition.

Lemmal:Let B, Ry, ..., R, € Sp, Ry = Y ¥;R;for ¢ € R", and Z contain a non-empty open set in R".
=1

Then sp{ RyBRy|¢ € E} = sp{ RyBRy|¢ € R"} = sp{RiBR;j + R;BR;|1 <i < j <r}.

proof: (1) Define T(y) = ¥/ and D(C) = 3.3 ¢;;R:BR; for C = {c;;} € S;. Then
g
RyBRy = 3% ¢i;RiBR; = D(T(¢)).
i J

(2) To show spT(Z) = S;. Suppose F € (spT(Z))L. Then tr(Fynl)) = Y/ Fop = 0 V ¢ € E (%).

Letu € R™ and G be a non-empty open set contained in =. Choose ¥y € G. Since G is open J € > 0
Sy +06u€ GV |6 <eBy(x),0= (o+6u)F(o + 6u) = hFih + 26¢yFu + 6*u Fu. Because
the quadratic polynomial in § is 0V |6] < ¢, its coefficients must be 0. Hence, W’ Fu =0Vu € R"

= F = 0. Thus, (spT(E))* = {0} = spT(E) = S,.

(3) Since Dis linear, D(T(R™)) C D(S,) D D(spT(E)) = spD(T(E)). Thus,

spD(T(R")) = spD(T(Z)) as T(Z) C T(R"). This establishes the first equality.
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(4)NoteV ¢ € R" RyBRy = > ?R:BR; + >.5° 1/Ji1/1j(RiBRj + R;BR;)
i=1 1<i<j<r

= Sp{RiBRilj(Q € RT} C Sp{RiBRj + RjBR,ill <i1<73< r}.
(5) Let ™ = {4} where ¢ = { LEk=lorm e g™ € R™. ThenV¥i,j 51<i<j<r,

0 otherwise

R;BR; + R;BR; = (R;BR; + R;BR; + R:BR; + R;BR;) — RiBR; + R;BR;

= Ry» BRys» — Ryen BRyey — Ryu» BRyos
= sp{R;BR;j + R;BR;|1 <i < j<r} Csp{RyBRyl¢z € R"}.
Hence, the last equality follows from (4) and (5). =
Lemma2: Let Ry, ..., R, € Sy and for ¥ € R define Ry, = erlq/]iRi. Consider a set of symmetric matrices
A = {Ry| € E} where = contains a non-empty open set in R”. Assume 3 M € spA
5> MA = AV A € A. Then the following are equivalent:

i) ABAespA VA Be A ii) ABAcspA VAe A BespA

iii) ABA €spA V A B € spA iv) spA isaQS.

proof. (1) Note iii) < iv) by QS results in section 2.7 and since I M € spA S MA=A V Ac A.

(2) Also, iii) = ii) = i) as A C spA.

(3) Suppose i) holds and fix A € A. Define o : 5,5, by a(B) = ABA.By i), a(A) C spA. Since a is
a linear transformation, a(spA) = sp a(A) C spA. Thus, ABA € spA V A € A, B € spA = ii).

(4) Assume ii) and fix B € spA. Let Ry, € spA = {Ry|¢ € R"}as spZ = R" by O-S lemma in 3.3.1.
By lemma 1 and using ii), sp{RyBRy|% € R"} = sp{RyBRy|¢ € Z} C spA = iii). =

The matrix M is necessary in order to have a matrix in the set which acts like the identity. The next
theorem uses the above result to represent ZC for the LQEM for Z, which is given by _E(VJXT) C R(X")
V 1 € Z. Recall, R(X") = spU’.

QS Theorem: If = contains a non-empty open setin R" and IM € spU' > MR =RV R €U, then
R(V/X") C R(X")V ¢ € E & spUtisaQs.

proof: R(V, X') C R(X') V y € E V/(S) € spUdt = sp{Ry,...,R,} VS €splll, V€ E
& 2Up(S)espl’ VSespU,RelU' & RSRe spUf VS espUt,Relst

& spU' is a QS from lemma 2 as = contains a non-empty open set in R” and 3 M € spU'. =
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The QS theorem and the U-FUBLUE theorem can be used to obtain a corresponding FUBLUE
theorem for the LQEM for Z. The associated least squares, generalized least squares, and estimated

generalized least squares estimator for X 1 will be of interest. These are listed for reference:

LSE: X'g, = XT(x*x")-x"Y?

GLSE: X'g, = X'(X™V]'X")"X"V['Y"  for a given g where V] is PD

EGLSE: X' = X' (XT*VZg‘lXT)‘X**Vi_IYT where V] = VZZT(Z) isPD VY € R™.

The UBLUE result for the U-Model can be used to indicate when the LSE is the same as the EGLSE
when estimating X" 1. This is stated in the next theorem. The proof of the theorem follows directly from

the proof of the U-FUBLUE theorem and the QS theorem.

LQZ-FUBLUE Theorem: The following are equivalent for the LQEM for Z when = contains a non-empty
opensetin R"and IM € spUU' > MR=R V ReU":

i) X'g; is UBLUE for X'y

i) R(V]X") CR(X") VyeE

i) XT(xP VT X )XY = XX X)X Vel

iv) spU" = sp{Ry,...,R,}isaQS.

Proposition: For any 3 € R™ 5 Ry, is PD, the conditions in the LQZ-FUBLUE theorem imply
X'y, = X',

proof: Condition ii) in the LQZ-FUBLUE theorem = ﬂ(VIZXT) CRX"HYVyeE

=V X'ue R(X) Vg eZ, uecR

= 2RyByRy € R(X") VY eZ,ue R where By = X'ue S,

= {RyBuRyl € E} C R(X")Vu € R" = sp{RyB,Rylb € E} C R(X")V u e R"

= sp{RyB Ryl € R"} C R(X")V u € R" by lemma 1 = RyB,Ry € R(X') VY ER , u€R"
=>ViX'ueRX") VyYeR, ueR = RV]X) CR(X") VyeR

= condition iii) in the LQZ-FUBLUE theoremV 3 € R™ > Ry is PD

= X', = X', VY ER S RyisPD. =

This theorem was stated for the LQEM for Z, so it can be applied to both the ALQEM for (Y — X5)
and the LQEM for NxY . The following sections use these models to examine the maximum likelihood

and restricted maximum likelihood procedures.
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4.3.2. FELMLQE Results

Maximum likelihood estimation was defined for the Y-Model under [L], [O], and [N]. This
estimation procedure for the variance components generally requires an iterative procedure. Following a
similar approach to Szatrowski (1980), the full explicit linear maximum likelihood estimator (FELMLQE)
for X°y satisfies X ‘@MLQ = AYZ where Ais a linear transformation which is not random and does not
depend on any parameters and Y3 does not depend on any estimators or unknown parameters.

The associated least squares, generalized least squares, and the estimated generalized least squares

estimators for the ALQEM for (Y — X E) will be of importance in this section. They are listed below:

LSE: X°Y; = X° (X X°)~ XYy

GLSE: X°y, = Xo(XVy1X0)~ XV~ 'Yy  fora given Y where V) is PD

EGLSE: X°y = X°(X°*V£"1X°)_X°*Vi‘1Y2° where Vi = i(x) isPDVY € R™.
For clarity, the EGLSE will often be labelled as ;Z&EGLS. Recall, the ALQEM for (Y — X[3) was

defined so that the equations for the EGLSE correspond to the ML equations.
Lemma: XO&MLQ = XO&EGLS‘

proof: Note from the ML theorem and the definition of the EGLSE for the ALQEM for (Y — X E) both
are given by X°% = X(XTVRIX) XV Yy e

For the ALQEM for (Y — XB), the response Y3 = (Y — XG)(¥ — X8)' will in general depend on
das X0 = X(X’V&‘lX)_X’VZZ”Z. In this setting, it will not be possible to obtain a FELMLQE for X°y
by definition. The additional assumption ZC for the Y-Model will be applied so that the ALQEM for
Y -X E) can be used to obtain conditions for the existence of a FELMLQE for X°1. As shown in
section 4.2.2, this condition is sufficient for Y — Xﬁm = NxY V1 € RF! such that Vg is PD.

(Szatrowski, 1980)

ALQONY-FELMLQE Theorem: Consider the Y-Model under [L], [O], [N], and ZC. If ;Z&MLQ exists 3
VzZMLQ is PD and spV = sp{V4, ..., Vi, I} is a QS, then X°¢; is a FELMLQE for X°1.

proof: Since VlZMLQ is PD by hypothesis and X °1ZMDQ =X ‘@EGLS by the above lemma,

X°Uyrq = X°¢; = AY5 by the proposition in section 4.3.1 where A = X°*(X°*X°)~X°* and
Yy does not depend on 1 or § by ZC = X°i; is an FELMLQE for X° by definition. =
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Note X °3AQI may not be an unbiased estimator for X°¢, but it does satisfy the requirement of a
FELMLQE. The explicit expression for X°3AQI is given in section 3.2.3. An example of a case in which

there exists an FELMLQE is given in the following theorem.
Theorem: A completely balanced nested mixed classification linear model has FELMLQEs for X 3, X°1.

proof: Note ZC holds for the Y-Model in balanced classification models. In addition, balance gives
spV = sp{P, ..., Px}. Hence, fori < j = 1, ..., k (assuming ordered by nesting)

P,P;+ P;P; = 2P, € spV using nesting = spV is a QS

= JELMLQEs for X3 and X°% by the Y-ELMLQE and ALQNY-FELMLQE theorems. =

4.3.3. FELREMILQE Results

Restricted maximum likelihood estimation was defined for the Y-Model under [L], [O], and [N]. This
estimation procedure for the variance components generally requires an iterative procedure. Following a
similar approach to Szatrowski (1980), the FELREMLQE for X°1 satisfies X °3AQREMLQ = AY"°, where A
is a linear transformation that is not random and does not depend on any parameters and Y° does not
depend on any estimators or unknown parameters.

The associated least squares, generalized least squares, and estimated generalized least squares

estimators for X °% in the LQEM for NxY will be of importance in this section. They are listed below:

LSE: X°Y; = X°(X*X°) LX*ye
GLSE: X°_1AQlé = X°(X°*V£"1X°)‘X°*V£‘1Y° for a given ¢ where V; is PD

. vo T _ vo ox170—1 yo\— yox1/o—1y 0 o __ 170 - n
EGLSE: X°% = X°(X* V31 X°) X Ve lY°  where V3 = V5, isPD VY € R™.

For clarity, the EGLSE will often be labelled as {gq;s. Recall, the LQEM for NxY was defined so

that the equations for the EGLSE correspond to the REML equations.
Lemma: XOZZREMLQ = XOZZEGLS‘

proof: Note from REML theorem and the definition of the EGLSE for LQEM for NxY both are given by
Xol’b: = X°* (Xo*Vi—lxo)‘Xo*ViAIYO‘ .

The main theorem can now be stated concerning the existence of a FELREMLQE for X°¢.
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(ElBassiouni, 1983).
LONY-FELREMLQE Theorem: Consider the Y-Model under [L], [O], and [N]. If ;Z&REMDQ
exists > VJZREMLQ is PD and spVn, = sp{NxViNx, ..., NxVi.Nx, Nx}is a QS, then

X°g; is a FELREMLQE for X°1.

proof: Since Viumw is PD by hypothesis and X °1ZREMLQ =X ‘@EGLS by the above lemma,
X°1ZREMLQ = X°i; = AY® by the proposition in section 4.3.1 where A = X°*(X°*X°)~ X°* and
Y does not depend on ¢ or § = X°i; is an FELREMLQE for X°% by definition. =

The explicit expression for X ‘@1 is given in section 3.2.3. The following corollaries establish cases

in which there exists a FELREMLQE for X°.

Corollary: If the sufficient conditions hold for the existence of an FELMLQE for X3 and X°%, then
there is a FELREMLQE for X°.

proof: Hence, ZC holds for the Y-Model and QS holds for spV. Using ZC,V V.W €V
NxWNxVNx + N\VNxWNx = Nx(WV + VW)NX = NxUNx € SpVNX

where U € spV since spVis a QS = spVy, is a QS using QS results in section 2.8. =
Corollary: In a completely balanced mixed model, 3 an FELREMLQE for X°1 .

proof: Recall ZC holds in balanced mixed models. For any two matrices F' and G,

Qr¢ = NxPrNxNxPeNx + NxPoNxNxPrNx = 2Nx PgNx using ZC and balance results
from section 3.1.3. Since H is a matrix in the model, then it corresponds to a fixed or random effect.
If H corresponds to a fixed effect, then Qrg = 0 € spVn, and

if H corresponds to a random effect, then Qrg € spVn,

=> spVn, is a QS = J an FELREMLQE for X°1 by the LQNY-FELREMLQE theorem. =

Corollary: If there are 2 variance components including o3 with associated matrix BB’ and

r(NxBB') = 1, then spVn, is a QS.

proof: Note R(Nx BB'Nx) C R(NxBB') C R(NxB) = R(NxBB'Nx) = r(NxBB'Nx) = 1
= NxBB'Nx = chh’ € Vy, for some h . Hence, (NxBB'Nx)? = c>hi/hh' = dhh' € spVn,

=> spVn, is a QS as all other combinations are in spVy,. =
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(VanLeeuwen et al.,1997)

Corollary: For the Y-Model under [C] and [N], let H be the set of factors corresponding to all random
effects and G be the set of factors corresponding to all fixed effects. If Bal(H; U Hs) V H;, Hs € H and
Bal(H|G), then 3 an FELREMLQE for X°¢.

proof: VanLeeuwen et al. (1997) show these balance conditions produce a QS for spVn, . The

desired result follows from the LQNY-FELREMLQE theorem. =

The general result of the last corollary may be clarified with an example. Consider the mixed model
Yijtt = M+ o + bj + ¢ + e where a; is fixed and b, ¢, are random. The balance conditions in the

above corollary would be equivalent to:

i) Bal(H; UHs) & Bal({2} U {3}) = Bal({2,3})
ii) Bal(H|G) < Bal({2}|{1}) and Bal({3}|{1}) .

If each factor had two levels, then these conditions would be satisfied under the incidence matrix:

{nin} = [; ;} {nijp} = [; ;}

D) {nj} = [; ” = Bal({2,3})

i g} = (s = [§ 5| = BACRNQDBa((EHY.

4.4. Example: Balanced Random 1-Way Model

The balanced random 1-way model will be used to illustrate the ease of computation of ML and

REML estimators when these estimators are linear and explicit. Consider the Y-model given by

Yij =1 + b + e i=1,.,b 7=1,...,ror Yoopx1i=1lpu+ Buxwb +e .

The usual case would require a maximization of the following density with respect to u, o7, 0>

where 1 € R and Z = {[0} 02]"|0% >0, 02 > 0}:
flu,03,02) = (2m)7[0}BB + 02 1| 2exp - H(¥ — 1p)(0}BB' + 0217} — 1)),

However, explicit forms for the estimators can be found, since the sufficient conditions are satisfied under

complete balance for this model. These estimators are derived below:
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1) MLQE for p.
Note R(VyX) = R((c; BB + 021)1) = R((ro}Pg+o2I)1) = R(ro?l+o21)= R(1)
= FELMLQE exists for u by Y-FELMLQE theorem and is given by

B o= XVIX)TXVIY = (U)LY =g lY =Y.

ii) MLQE for ¢ = [o? 02]’.
Note spV = sp{I, BB'} = sp{I, Pg} forms a QS
= J FELMLQE for 3 by the ALQNY-FELMLQE theorem given by

{tr(ViV;) Yaxamg = {Y'NViNY }aa1

o l’b: _ [r2tr(PB) rtr(PB) :| - [TX’N)(PBN)(X
MLQ rte(Pg)  te(I) Y'NxY
B ) b —rb]|[rY'(Ps - P)Y
= T2rb—(rb)? | _ rb r2b :| [ Zl(I _ PL)X :|

o r?bY'(Pg— P)Y —rbY'(I - Pg+ Ps — P))Y

T -1 [ - T2le(PB - PL)X + ’l"2le(I — PL)X :|

g [rb(r —1)Y'(Pg - P)Y —rbY'(I — PB)X] _ [”r‘—blMSA — IMSE
= -1 r’bY'(I — Pp)Y - MSE )

iii) REMLQE for ¥ = [o2,0°]’.

Let Nx = I — P; and note spVy, = sp{Nx, NxBB'Nx} = sp{I — P;,Pg— P1} isa QS
= 3 FELREMLQE for 1 by the LQNY-FELREMLQE theorem given by
{tr(ViNxV;Nx)}ax2 Lremrq = { Y’ NxViNxY }au1

:>l’b: _ T2tr(PBNXpBNx) Ttr(PBleNx) -1 —TXlNXpBNx_Y
REMLQ — Ttr(INXpBNx) tr(IleNx) ZlNXx

_ {r2tr(PB —P) rte(Ps—Py) ] - {TX’(PB - P)Y

rtr(PB — Pl) tI‘(I - Pl) X’(I - Pl)Z
_ . br—1 —r(b—l)] ‘rz'(PB—Pl)z]
= r-Dr-1)-(r(-1))2 | _— r(b—1) r2(b -1) Y'I-P)Y
B . (br —1)rY'(Ps— P)Y —r(b—1)Y'(I - Pg+ Pg— )Y
N1 —r(b-1)Y'(Ps-P)Y +r*(b-1)Y'(I - P)Y ]

_ 1 br(r—1)Y'(Pg— P)Y —r(b-1)Y'(I - Pp)Y
— 2 -1)(r-1) ’l"2(b _ 1) Zl(I _ PB)Z

MSE ] = ANOVA (Searle et al.,1992,p59).

_ F(MSA — MSE)

The estimates under both the ML and REML procedures are explicit and linear. Note that the
FELMLQE for u has an interpretative expression. The FELMLQE and FELRELMQE for GZ are identical
while the FELMLQE and the FELRELMQE for o are not the same.
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5. UBLUE for Mean Estimable Functions

The results of this chapter extend the work of Szatrowski (1980) and ElBassiouni (1983). This
chapter examines explicit linear representations involving mean estimable linear combinations of the
parameter vector. The assumption of a full rank model is not necessary in this chapter and will be
discussed further in chapter 6. The results will first be presented for the underlying model and then
applied to the particular models of interest for examining linear combinations of the fixed effects and

linear combinations of the variance components.

5.1. UBLUE for the Underlying Model

This section examines conditions under which a UBLUE exists for a linear transformation of the
mean parameters in the U-Model. Consider the linear transformation defined in section 3.3.1 given by
IT* : P—H, also denoted II*8. Assumptions for this section are that II*8 is mean estimable in the U-Model
under [S]. Assumption {S] is needed to apply the Mean Estimability theorem in section 3.3.2 which

indicates that IT*@ is mean estimable if and only if R(IT) C R(U*). Two useful lemmas are given below.
Lemma 1: If R(IT) C R(U*) and V is PD, then Il = U*V-IU(U*VU)1I.

proof:-Let P = U*VIU(U*V~U)~ = PisaPOon R(U*V~1U) from section 2.5
and R(U*V~U) = R(U*) from section 2.7. Thus,
UV-U(UV-U) T = PTL =TI as R(IT) C R(U*) by hypothesis. =

Lemma 2: The following are equivalent under [S] :
i) II*6y, = II*(U*V;'U)~U*V; 'w is UBLUE for IT*6 in the U-Model
i) RV lU(U* VWU IT) cR(U) VV e V.
i) (U V-0~ UV =IOV WU) UV VYV eV,

proof: (1) Note E[II*y,] = II*(U*V;U) " U*Vy U9 = II* by lemma 1.

(2) i) & II*Gy, is UBLUE for II*0 < R(VV;'U(U*V;'U)"II) C RU) VYV €V

4 ii) by Zyskind's theorem and (1).

(3) Then i) & R(VV; WU UV, WU) ) CRU) VYV eV

& R(VZ U UV iU)O) € R(V™U) VVey

& VyIUU ViU = vIUUv-IU) UV lU(U VU)LYV V€V by projection theorem
S VWU V) O =V VU T VYV eV bylemmal

& IFU VW) UV I=I'UVWU) UV VYV eV e iii). n
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For purposes of discussing the least squares estimator, interest is in Vj = I. The least squares
estimator, the generalized least squares estimator, and the estimated generalized least squares estimator
for IT*6 will be of particular interest. Since T1*§ is mean estimable and II = U* M for some M, the least

squares estimators for IT*# are linear combinations of those derived in section 3.3.3. They are given by:

LSE: II'g; = I*(U*U) U*w
GLSE: II'fy = *(U*V'U) UV 'w for a given V € Lpp(W, W)
EGLSE: 0, = I'(U*V 'U)- UV 'w  with¥ = V(w) € Lop(W, W) ¥ w € W.

The LSE has a simple linear form which does not depend on the covariance, the GLSE depends on
the unknown true V', and the EGLSE is not linear and requires an estimate of the unknown variance. The
objective is to determine when the LSE is equal to the EGLSE. The above lemma can be used to generate

the main UBLUE results of this section. These results are now presented.

U-UBLUE Theorem: The following are equivalent under [S]:
i) H*@I is UBLUE for IT*@ for the U-Model
iy RWVUWU*U) ) CR(U) YV eV
iii) MUV~ UV ="(U*U)U* VV e V.

proof: Apply the above lemma where V, = 1. =
Proposition 1: If V € spV and V is PD, then the conditions in the above theorem imply e, = H*@V.

proof: RVUUU) ) CR(U) VV e V= RVUUU) ) Cc RU) VV € spV by section 2.3
= *U*V-IU)" UV =" (U*U)"U* VY V € spV 2 V is PD by the U-UBLUE theorem. =

Proposition 2: If I € spV, then IT*6 has a UBLUE & I1*6; is UBLUE for IT*4.

proof: i) 1*9; is UBLUE for IT*@ = I1*6 has a UBLUE.

i1) Suppose I1*4 has a UBLUE given by H*@%where VoV

= R(VV; iU UV, IU)~I) € R(U) VYV €V bylemma

= R(VV; lU(U*V,lU)~O) € R(U) YV € spV from section 2.3.

= R(V;'U(U*VyU)-TI) ¢ R(U) = R(Py) since I € sp V

= VvV, lu) I = U(UU) UV lU(UVyIU) L= U(U*U)"TT by lemma 1
= UV WU) UVl = INUU) U* = 0y, = II°6;

= I1*6; is UBLUE for IT*@ by the Uniqueness theorem in section 3.3.4. =
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Condition ii) of the U-UBLUE theorem is a general form of Zyskind's condition (ZC) and will be
called the Generalized Zyskind's condition (GZC). This condition is equivalent to ZC when A = U*.
Condition i) of the U-UBLUE theorem indicates the UBLUE has an expression which does not depend on
V. The conditions of the U-UBLUE theorem can be re-expressed in a convenient form. Define the set
Lo(W,W) ={V € LepW,W)|R(VU(U*U)"II) C R(U)}. The first three corollaries restate the

previous results while the last one applies the results to the EGLSE.

Corollary: GZC <V C Lo(W, W).

Corollary: 1t V C Lg(W, W), then GLSE = LSE = UBLUE.

Corollary: If V C Lu(W, W), then spV N Lep(W, W) C Ln(W, W).

Corollary: If IT*6 has a UBLUE and V € Lu(W, W), then EGLSE = GLSE = LSE = UBLUE.

It is important to know that the GZC does not depend upon the parameterization of the expectation.
This property will be examined by defining a reparameterization for the mean of the U-Model. Consider
the mean parameterization defined in section 3.3.1 and the reparameterization T : Q—+W where T is a
linear transformation, T'(Ay) = U, and spAy = Q. Thus, R(T) = T(Q) = T(spAu) = spT(Ay)

= spld = R(U). The following definition is useful for relating two linear transformations IT*8 and I'*

into the same space where II* : P—H and I'* : Q—H.

Definition: Mean Correspondence - IT*¢ and I'* o have mean correspondence (IT*8 = I"* ) provided that

Ve Ty,a€ Ay, U =Ta = 1I"0 = Ta].

The next lemma is useful for defining I" in order to have mean correspondence. This lemma and the

reparameterization defined above will be used to generate the theorem.

Lemma: Consider the U-Model under [S] where I1*8 is estimable and II = U* M for some M. Then
meg=Taesl=TM.

proof: i) By the Mean Estimability theorem assuming [S], IT*6 is estimable < R(II) ¢ R(U*)

< II = U* M for some M.

it) Suppose II*0 = T™a. Then T(Ay) = U =U(Yy) > Va € Ay 30 € Ty > U8 =To
>Vac€Ay30eTysMUI=MTa=>Vaec Ay30 € Ty>II*0 = M*Ta byassumption
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=>Va€ Ay Ma=MTa sinceIl'd =T"a

=>Va€spAu=Q IMa=MTa=>T*"=MT=>T=TM.

iii) Suppose ' = T*M. Then V8 € Ty,a € Ay [Uf = Ta = M*U0 = M*Ta = II*§ = I™a|
= II*0 = T by definition. =

Theorem: If II*@ = I'* under the two parameterizations described above, where II*§ is estimable in the

U-Model under [S], then the GZC for II*8 is equivalent to the GZC for I .

proof: Note R(U) = R(T). By the Mean Estimability theorem assuming [S], II = U* M for some M.

Then R(VU(U*U)"II) = RVU(U*U) " U*M) = R(VPyM)
=R(VPrM)=RVT(IT*T)"T*M)= R(VT(T*T)T') by the above lemma.

Hence, RVU(U*U) II) c RU) < RVT(T*T) T) C R(T). w

The next theorem shows the relationship between ZC and GZC. The results assuming GZC are more

general than the results assuming ZC as ZC implies GZC.

Theorem: i) If r(I1) = r(U), then GZC = ZC i) ZC = GZC.

proof: i) By mean estimability R(II) C R(U*) = R(II) = R(U*) as have equality of ranks.
Thus, GZC = R(VU(U*U) II) CR(U) VYV eV

= RVUU*U) U )CRU) VVeVasR(II)=R({U*)

=>RVP) CRU)VVeV=RVU)CRU) VVeV.

ii) By mean estimability R(II) C R(U*) = [I=U"M.ThenZC = R(VU) CR(U)VV €V
= UUV-IU)"U*V- ' =UU*U)"U* VV €V by the ZC Relation theorem

= MUUVIU)-UVi=MUUU)U* YVeV

= U V-IU)- UV i=II"UU)"U* YV €V

= R(VUWUU)'II) CR(U) VV € V= GZC by the U-UBLUE theorem. =

A sufficient condition for the existence of a UBLUE is the Generalized Zyskind's condition. Under
this condition, the UBLUE is the LSE, which does not depend on the covariance matrix V. The results of
this section will be applied to the other models of interest for purposes of estimating fixed effects and

variance components.
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5.2. UBLUE for Fixed Effects

UBLUE:s for fixed effects can be obtained using the Y-Model and applying the results from the
U-Model. Consider the estimable linear combination of the fixed effect vector A’3. Recall 8 € R? and
R? contains a non-empty open set, so the Mean Estimability theorem can be applied. First, results will be

presented for UBLUEs which will then be applied to maximum likelihood estimation.

5.2.1. UBLUE Results

This section examines conditions under which a UBLUE exists in the Y-Model for A’G. The least
squares estimator, the generalized least squares estimator, and the estimated generalized least squares

estimator for A’3 will be of interest in this section. They are listed here for reference:

LSE: AB;=AN(X'X)"XY
GLSE: A'B, = N(X'V;'X) X'V;'Y for a given ¢ where Vy, is PD
AR — AYYV LY V- YL  — V. i n
EGLSE.AQIQ—A(XV@ X) XV;Q Y whereVlé Vlé(x)lsPDVXGR .
The U-UBLUE theorem for the U-Model can be directly applied in this setting to indicate when the
LSE is equal to the GLSE for estimating A’3. This is stated in the next theorem and restated in the

following proposition under assumptions [L] and [O].

Y-UBLUE Theorem: The following are equivalent:
i) A'B;is UBLUE for A’8 in the Y-Model
i) R(V,X(X'X)"A) CR(X) V¢ €=
i) X'V X) " X'Vl = N(X'X)" X' Vg eE

Proposition: Assume [L] and [O]. Then V 32 € REH 5 Vg is PD, the conditions in the Y-FUBLUE
theorem imply that A’ Bx& = NG

proof: Under [L], [O], spV = {Vy| ¢ € sp E} = {Vyl2 € R¥*1}. Apply proposition 1 in section 5.1. =

The Y-UBLUE theorem does not make any assumptions about normality, linear covariance structure,
or classification matrices. Only the form of GZC given in ii) is necessary to apply this theorem to the

special cases of the Y-Model under [L], [O], and [C].
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5.2.2. ELMLQE Results

For doing maximum likelihood estimation in the Y-Model, the assumptions [L], [O], and [N] were
used. Extending the definition of Szatrowski (1980), the explicit linear maximum likelihood equation
estimator (ELMLQE) for A’ satisfies A’ EMLQ = AY fora constant matrix A which is not random and
does not depend on any parameters. In this case, the estimator A’ EMLQ is linear and the explicit part

indicates that A is constant. The following lemma shows that the MLQE = EGLSE in this setting.
Lemma: A’BMLQ = AlBIZMno'

proof: Since A’ is estimable = R(A) C R(X') = A = X'M for some M.Recall, it has been shown
XEMLQ = XB@MLQ = MlXEMLQ = MlXBIZMLQ = A,BMLQ = A’Ei&m . m

The next theorem presents a sufficient condition for the existence of an ELMLQE for A’G. This
condition is GZC for the Y-Model.

Y-ELMLQE Theorem: Consider the Y-Model under [L], [O], and [N]. If @MLQ exists 3 VAZMLQ is PD and
R(V,X(X'X)"A) C R(X) V % € E, then A'B; is an ELMLQE for A'.

proof: Since VIZM]_Q is PD by hypothesis, AlBlZMLQ = A’[3; by the proposition in section 5.2.1.
By the above lemma, A’EMDQ = A@ﬁmq' Thus, A’EMLQ = NG, = AY where A = AN'(X'X)" X'

= A'B; is an ELMLQE for A’ by definition. =

The proof of the theorem shows the MLQE is equivalent to the LSE under the assumptions. Because
the LSE is linear and explicit, there exists an ELMLQE for A’3. An application of the Y-ELMLQE

theorem is given in section 5.4.

5.3. UBLUE for Variance Components

UBLUE:s for the variance components can be obtained using linearized quadratic estimation models
and applying the results from the U-Model. Consider a vector of mean estimable linear combinations of
the variance components 'y where I' : R*-R" and % € =. In order to apply the results of the Mean
Estimability theorem, it is sufficient to assume = contains a non-empty open set in R". This assumption

does hold for the ALQEM for (¥ — X E) and the LQEM for NxY . The UBLUE results will be presented
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first for the LQEM for Z, and applied to the ALQEM for (Y — XB) for maximum likelihood estimation

and to the LQEM for NxY for restricted maximum likelihood estimation.

5.3.1. UBLUE Results

The UBLUE results will be given for the LQEM for Z under the open set assumption for =. The
associated least squares, generalized least squares, and estimated generalized least squares estimator for

T4 will be of interest. These are listed here for reference:

LSE: I'g; =D'(X™x')-xtyt

GLSE: I'gh, =I'(X™V;'X")"X"™V/™'Y"  fora given 1 where V] is PD

EGLSE: I'g = I'(X"V ' X")~x v "'y where V) = V;Z(Z) isPD VY € R™.

The UBLUE result for the U-Model can be used to indicate when the LSE is the same as the EGLSE
when estimating 4. This is stated in the next theorem. The proof of the theorem follows directly from

the proof of the U-UBLUE theorem and is restated in the following proposition.

LQZ-UBLUE Theorem: The following are equivalent when = contains a non-empty open set in R":
i) I'¢; is UBLUE for I3 in the LQEM for Z
i) R(V, X" (X" X")T) c R(X")V g e E
i) (X ™V X XY = DX X)X vy eE

Proposition: For any € R™ 3 Ry, is PD, the conditions in the LQZ-UBLUE theorem imply
', =y

proof: Condition ii) in the LQZ-UBLUE theorem = E(VJXT (X*XHT)CRX) Vye=E
= VXX X)) Tue R(X) VL EE, ueR

= 2RyB,Ry € R(X") V € E,ue R® where B, = XT(X™"X") Tucs,

= {RyB,RylY €Z} C R(XT)Vu € R* = sp{RyByRyl¥ € E} C R(X")V u € R*

= sp{RyByRy|¢ € R"} C R(X") V u € R® by lemma 1 in section 4.3.1

= RyByRy € R(X") VypeR,ueR =V X"(X"X") Tue RX") Vg eR ueR
= RV, X'(X"X")T) C R(X") Vg eR

= condition iii) in the LQZ-UBLUE theoremV 3 € R" 3 R, is PD

=T/, =D'd; VYL ER S RyisPD. »



70

This theorem was stated for the LQEM for Z, so it applies to both the ALQEM for NxY and the
LQEM for NxY . The following sections use these models to examine the maximum likelihood and

restricted maximum likelihood procedures.

5.3.2. ELMLQE Results

For doing maximum likelihood estimation in the Y-Model, the assumptions [L], [O], and [N] were
used. Extending the definition of Szatrowski (1980), the explicit linear maximum likelihood estimator
(ELMLQE) for I"4 satisfies I {&MLQ = AY7, where Ais a linear transformation that is not random and
does not depend on any parameters and Y5 does not depend on any estimators or unknown parameters.

The associated least squares, generalized least squares, and the estimated generalized least squares

estimators for the ALQEM for (Y — X[3) will be of importance in this section. They are listed below:

LSE: D¢, = ['(X°* X°)~ X°'Yy
GLSE: I";@l& = I"(X""VSZ“lX")‘X""VIZ‘1Y2o for a given 3 where V} is PD
LT — T Yoryo—1 yoy— yoryo—1ly e o __ : n
EGLSE: Iy = TV(X Vﬁ X)X VJZ Y, wheresz— i’(z)lsPDVZ’ER.
For clarity, the EGLSE will often be labelled as @, 5. The ALQEM for (Y — X[3) was defined so
that the equations for the EGLSE correspond to the ML equations for #. The following lemma establishes
the equivalence between the EGLSE and the MLQE for [2.

Lemma: T ;@MDQ = Mpgis-

proof: Since I'4 is estimable = R(I') C R(X®*) = ' = X>*M for some M. From section 4.3.2,
XOZZMLQ = X°Upors = M*XOSZMIQ = M*X°Pggs = FllZMLQ = D'Pegrs.

Under the ALQEM for (Y — XJ), the response Y3 = (Y — XB)(Y — XB) will generally depend
ony as X3 = X(X’Vlz‘lX)_X’ViIZ. This is likely to present a difficulty in satisfying the definition of
an ELMLQE for I"%. In order to deal with this difficulty, it will be assumed that ZC holds for the
Y-Model where R(V,,X) C R(X) V 3 € Z. As shown in section 4.2.2, this condition is sufficient for
Y- X Ezé = NxY V1 € R¥*1such that V, 1s PD. Under ZC for the Y-Model, the ALQEM for
(Y — X3) can be used to obtain conditions for the existence of an ELMLQE for I 1. However, it is
possible that a weaker condition could suffice for some examples as only the linear combination I'4 is of

interest. Still, the following theorem assumes ZC.
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ALQNY-ELMLQE Theorem: Consider the Y-Model under [L], [O], [N], and ZC. If ;Z&MLQ exists >
Vﬁm is PD and R(VX°(X°" X°)T) C R(X°) V ¢ € E, then I3, is an ELMLQE for V4.
proof: Since VZZMLQ is PD by hypothesis and I ;Z&MLQ =T ;@EGLS by the above lemma,

F’;@MLQ = I, = AY; by the proposition in section 5.3.1 where A = IV(X°*X°)~ X°" and

Yy = NxYY'Nyx does not depend ¢ or § by ZC = I'%; is an ELMLQE for '3 by definition. w

Note I ;Z&I may not be an unbiased estimator for I3, but it does satisfy the requirement of an

ELMLQE. The explicit expression I ;Z&I is a linear combination of the equations given in section 3.2.3.

5.3.3. ELREMLQE Results

For doing restricted maximum likelihood estimation in the Y-Model, the assumptions [L], [O], and
[N] were used. Extending the definition of Szatrowski (1980), an explicit linear restricted maximum
likelihood estimator (ELREMLQE) for I satisfies I ;Z&REMDQ = AY°, where Ais a linear
transformation that is not random and does not depend on any parameters and Y does not depend on any
estimators or unknown parameters.

The associated least squares, generalized least squares, and estimated generalized least squares

estimators for I'% in the LQEM for NxY will be of importance in this section. They are listed below:

LSE: I'g¢; = [V(X**X°)~X>*Y°
GLSE: F,-@:& = I"(X"*‘VJI:,"lX")‘X"*ij_lYo for a given Y where V;; is PD
EGLSE: "¢ = I"(X°*V;Z*1X°)“X°* VZAZ“IY" where V2 =V isPD VY € R™.

For clarity, the EGLSE will often be labelled as @EGLS. The LQEM for NxY was defined so that the

equations for the EGLSE correspond to the REML equations for 3. The following lemma establishes the
equivalence between the EGLSE and the REMLQE for IV¢.

Lemma: F’QREMLQ = FlQEGLS'

proof: Since IV is estimable = R([') C R(X°*) = ' = X°*M for some M.From section 4.3.3,
X 0lZRErvxLQ = XUpoLs = M* XUyiq = M*X *UsoLs = FlleLQ = FllZEGLs- .

The main theorem can now be stated concerning the existence of an ELREMLQE for I
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LONY-ELREMLQE Theorem: Consider the Y-Model under [L], [O], and [N]. If _@REMLQ exists 3
VJZREMLQ is PD and R(V; X°(X°* X°)T) C R(X°) V % € E, then ['¢; is an ELREMLQE for 3.

proof: Since Vg _ is PD by hypothesis and I'dgemio = I UggLs by the above lemma,

M dremo = I 3@1 = AY™ by the proposition in section 5.3.1 where A = I(X°* X°)~ X" and
Y° = NxYY’'Nx does not depend 3 or ¢ = I'g; is an ELREMLQE for 'y by definition. =

The ELREMLQE for I is given by I"%;, which is linear and UBLUE for ['%. An application of

this result is discussed in section 5.5.

5.4. ML Example: 2-Way Mixed Model with No Interaction

This example will be used to demonstrate the results for an ELMLQE for the fixed effects in a 2-way

mixed model with no interaction. Consider the following notation:

yijkz,u+ai+bj+eij i=1,.,t 7=1,.,7r k=1,.., ng
Y=1u +Aa+Bb+e, E[Y]=1u + Aa= X0,

Cov(_)szzaZBB’—I-azI, E={¢=[0f 0|0} >0, >0},
t

N= AlB = {nij}tx, y Ny = Znij. .
i=1

Assuming R(A) N R(B) = R(L,) which is equivalent to (A, B) = ¢ + r — 1, the problem is to

a1 — oy
determine the conditions under which an ELMLQE exists for A’/ = [ : } .

1 — Ot
Lemma: r(N) = 1 = R(V,X(X'X)"'A\) CR(X) V¢ €E.

proof: i) Note R(X) = R([1 A ]) = R(A). Since the GZC is invariant under a reparameterization by
proposition in section 5.1, it is helpful to consider the reparameterization given by

lp+Ag=Ar=> ptai=n=a-—ou=@Eta)—(kta)=T—"n
] — Oy n—T
=>ANB =[0;; [+-1 —1,4]8 = : = : =1 -1l 4)r =1z

Q-1 — Oy Tt-1— Tt
where 1,JT1 =0, r(I) = ¢t — 1, n(1;) = t — 1. Thus, R(IT) = R(1,)* = N(1}).
ii) Let w € R(IT) = N(1/,) by i). Note

r(N) = 1= A'B = gh' = nyj = gih; = ni. = gih. = gz 1—1—
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Thus, [(A'A)"ig)w =

iii) For s € E, V,A(A'A)'w= (0fBB' + 021 )A(AA)w
= 02Bhd(A'A)'w+ o2 A(A'A)"lw byii) A'B = gh'
= 02A(A'A)'w € R(A) since g'(A'A)~'w = 0 by ii).
Hence, R(V,A(A’A)7'II) C R(A) as the above is true Vw € R(IT)and V3 € 2

= R(V,X(X'X )"!A) € R(X) V % € E as the condition is invariant under a reparameterization. =
Lemma: R(V,X(X'X)'A) CR(X)V g € E=r(N) = 1.

proof: R(VQX(X’X)_IA) CRX)Vype=
= R(V,A(A'A)7'TI) C R(A) V ¢ € E under the reparameterization defined in above lemma i)
(03BB' + 621 )A(A'A)MI) C R(A) ¥ = [oF o2 € 2
BB'A(A'A)7'II) C R(A)
R(BBA(A'A)"'TT) C R(4) N R(B) = R(L,) = R(BL,) by assumption
R(B'A(A’A)~'TT) C R(1,) since N(B) = {0}
R({7Z}rxIl) C R(1;) = R({7Z — 22}rxt-1) C R(L,;) by definition of IT in i) of above lemma

=

R(
(

UUUU

e}
n;

—wzci Vi,j= nij=n;(c+ Z‘J) Vi,g

= ni. = ni(rei + =) = ni(re; + 1) Vi summing overj = ¢; = 0 V4.

Thus,mj - TL,K = gih]‘ V’L,] = N = gﬁ' = [(N) =1. =
Theorem: For the 2-Way Mixed Model with No Interaction, GZC holds < r(N) = 1.

The proof of the theorem follows from the above two lemmas. Note that £(N) = 1 if and only if there
are proportional frequencies. By the Y-ELMLQE theorem, an ELMLQE exists for A’3 and is given by
NB =NX'X)*X'Y = T(A'A)TAY = I'(diag(ny., ..., ne.) ] {diag (1}, ) }ixnY

Y. Y. -Y.
= [It—l "lt—l] _3 =1_ : _
Y, Y1 -Y:

in this explicit case. However, if the MLQE was not explicit, such a simple interpretable formula would

] . The solution to the ML equations has a simple interpretation

not be obtained.
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5.5. REML Example: 3-Way Mixed Model under Pseudo Balance

The best design has complete balance. For the ML procedure, it is possible not to have an FELMLQE
for 14 in a completely balanced design. For the REML procedure, there is an FELREMLQE for  in
balanced designs as shown in section 4.3.3. The next type of balance to examine for the REML procedure
is pseudo balance, which is defined in section 3.1.3. Under pseudo balance, there may not be an
FELREMLQE for 1, but there might be an ELREMLQE for a linear combination of interest. This section
will describe such examples.

For some 3-way mixed models with two-level factors, there exists an ELREMLQE for 1’y = g:llwi,
or the variance of a single observation, under pseudo balance. An example of an incidence matrix with
pseudo balance in which 2 is estimable under the REML procedure is given by:

{nin} = [: 8] {nip} = [(T) :] where r > 1. A search was conducted over all proper two-level

models with an incidence matrix of the above form in which there were at least 2 variance components.
Models that had an ELREMLQE for 1’4 are listed in Table 5.1 using the notation:
-1 = fixed effect, 0 = omitted, and 1 = random effect. These models also have an ELREMLQE for az, but

not for the other components individually.

Table 5.1. 3-Way Models with ELREMLQE for Sum of Variance Components and Residual

a b ¢ ab ac bc abc e
-1 0 01 1 0 1 1
.11 1 0 1 1 1 1
-11 1 1 0 1 1 1
.11 1 1 1 0 1 1
.11 1 1 1 1 0 1
01 1 1 0 1 1 1
o1 1 0 1 1 1 1
1 1 1 1 1 1 1 1
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6. UBLUE for the Full Rank Case

This chapter discusses a generalization of the results of Szatrowski (1980) and ElBassiouni (1983)
under the assumption of a full rank model or one whose parameter vector is estimable. The results of the
chapter are a special case of those in the previous chapter. The previous chapter examined the existence of
a UBLUE for a linear combination of the parameter, while this chapter examines the existence of a
UBLUE for a subvector of the parameter vector. This formulation provides another way to think about the
problem which is convenient to work with. The results will first be presented for the underlying model and
then applied to the particular models of interest for examining a subvector of the fixed effects vector and a

subvector of the variance components vector.

6.1 UBLUE for the Full Rank Underlying Model

The conditions for a UBLUE in this model could be derived using the results in chapter 5. However,
it is informative to construct the conditions in a different manner. Consider the U-Model under [S], where
Ty is a subset of R? such that spTy = R?, U € L(RP, W), and 8 € Ty,. It is assumed that @ is
estimable. By the Full Rank theorem in section 3.2.2 assuming [S], € is estimable if and only if #(U) = p.

In this case, _]_\_](U) — {0} Let e = {61‘]’} € RP where €ij = { 1=7

1
0i+j and suppose b; = Ug;. Then

P P
UQ = Uzaig = Z&ibi.
=1 =1

Consider a partition of the parameter vector where 8,1 = [8,, 1 &5,,x1 ] - Suppose

interest is in estimating #,. Consider the following notation, which partitions the U-Model accordingly:

P P P
1) E[w] = UQ = Z&ibi = Z&bi + Z 0ibi = U1Q1 + UQQQ for Uj € E(Rpj, W)
=1 3

i=1 i=p 41
i) VevclemWW)

iii) Fiy : W oW Fiy = V- = VU (U3 V1D W vt
iv) Ny, : W oW Ny, = I — Uy(U;U)"\U;

v) Define @1 > Ny, = 1Q] and Q1@ = Iy,

The notation in i) provides a partition of the expectation, while the covariance in ii) remains
unchanged. The notation in iii), iv), and v) will be used in the next four lemmas to obtain a UBLUE

condition for @s.

Lemma 1: i) FiyU; = 0 i) Fiy = Q1(Q1V Q1) '@
iii) VFiy isaPO on N(U;V~1)along R(U;)
iv) F},V isaPOon N(U;)along R(V~I1)).
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proof. i) From the definition of Fiy. ii) Follows from the Fy-lemma in section 3.1.4.

iii) iv) From the general projection theorem in section 2.5. =

Lemma 2:1f My = (U*V U )7'U* V! € £L(W, RP) is partitioned as My = [MWJ

My
where M1y € L(W, RP) and Moy € L(W, RP), then Moy = (U FiyU,) U Fiy
and My = (Ul*V_lUl)_lUl*V_l(I - UQMQV).

proof: (1) Note < U, w>w= <Uif1+Usbo,w>pw= <Ui,w>w+ <Ush,w>w
=< Ql,’ Utw> gn + < 02, Usw > g = QU w+ BUsw
o] [ee] = <[] [Ez] w2 o= [E5]
(2) (U*V~IU )7L is invertible, so the inverse formula in section 2.4 gives
v =@ vy oy = (| v o) [Z&]v L by
3 [U{V‘lUl U V-, r[Ufw1 J 3 [A B] [Ulv_lJ
"y, yvon,| v | T B D] |upva
_ [A_l-l-G_E’*lG* —G_E‘l] [U{V:l]
_E@ B | |ypv
where E= D — B'A™'B = U;FiyU; and G = A™'B = (U;V~'U,)~'U; V~'U,. Thus,
My = — E\G'U;V '+ E-\U;V! = (U FwU,) ‘U Fy  and
My = (A + GE-\G)U;V ! — GE-'U3V-! = AU V-1 + GE-NG' UV~ - U3V 1)
= (VW) WV — GMyy = (UFV U)WV (I = UpMay). w

Il

Lemma 3: The following are equivalent:
) Moy = (U3 FwvU,) 'Us Fiy = (U; Fiy,U,) U3 Fiy, = Moy,
iy R(Fiy,Uz) C R(FiyUs)
iii) R(Ny, V Fiy,Uz) C R(Ny,Uz)
iv) R(VFiy,Us2) C R(U).

proof: (1) By the general projection theorem in section 2.5, Uy Moy is a PO on R(Us) along N(U; Fiy).
Since N(Us) = {0}, i) ¢ UsMay = UpMay, < N(U; Fiy) = N(U; Fiy,) < R(FivUs) = R(Fiv,Us)
& R(Fiy,Us) C R(FiyU,) < ii). The second to last equivalence is true V PD V' because
r(FivU,) = r(Up) — dim[R(U>) N N(Fiv)] = r(U) — dim[R(U>) N N(V Fiy)]
= r(U,) — dim[R(Uz2) N R(U1)] by previous lemma 1 iii)

=r(U,)  asU has full column rank.
(2)ii) & R(Fiv,Us) C R(FivUz2) & Fiy,Us = FiyUsB for some B
& Q1Q1VoQ1) QiU = Q1(Q1VQ1)!QiU.B by lemma 1 ii)
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& @QIV)Q:(@Q1Q1) 'QiU: = QiQiU,B  left multiplying by Q1Q;V or Q1(Q%@1) '@}
& Ny, VFEyUs: = Ny, U, B by lemmal Ny, = Q1Q}

& R(Ny,V Fiy,Us) C R(Ny,Us)  iii).

(3) iv) = R(VFy,Us) C R(U) = Ny, [R(VFiy,Us)] C Ny, [R(U)]

= R(Ny,VFEyUs) C R(Ny,U,) = iii) as R(Ny,U) = R(Ny, (Ui Uz]) = R([0 Ny, Uz )).

(@) iii) = R(Nv,VFiyUs) C B(Ny,Uy) = Ny, VFiy Uz = Ny, U B for some B

= Ny, (VFyUs — UsB) = 0 = R(VFiyUs — U2B) C N(Ny,) = R(U1) C R(U)

=> RVFiyUs) CR(U) = iv). =

Lemma 4: Doy, = (U} Fyy,U,)"'U; Fiyw is UBLUE for 8y & R(V Fiy,Us) C R(U) YV V € V.

proof: By lemma 1, E{ay;] = (U Fiy, Uy)~\U; Fyy, [Urdy + Uo8s) = (U3 Fuy,Us) "1U3 Fuy, Unfs = 6.
By Zyskind's theorem, fay, is UBLUE for 82 < R(V Fyy, U2 (U Fiy,Us) 1) CR(U) YV €V
& R(VFyU) CRU) YV EV. u

For purposes of discussing the least squares estimator, interest is in Vy = I. Lemma 2 partitions the
GLSE in the U-Model to obtain an expression for the GLSE for 8; and the GLSE for g-. Condition iv) of
lemma 3, can be used to indicate when the GLSE for 82 and the LSE for 8 are equal. The least squares,

generalized least squares, and estimated generalized least squares estimators for 8 are listed below:

LSE: 8oy = Myw = (U3 Ny, Uy)"'U; Nyw

GLSE: G = Moyw = (U3 FiyU,) U3 Fiyw  foragiven V € Lep(W, W)

EGLSE: 8,5 = Mypw = (U3 FyipUy) U3 Fipw  with V =V (W) € Lep(W, W) Y w € W.

The LSE has a simple linear form which does not depend on the covariance, the GLSE depends on
the unknown true V/, and the EGLSE is not linear and requires an estimate for the unknown variance.
Lemma 3 can be used to indicate when the LSE is equal to the GLSE. The following UBLUE theorem is
a special case of the U-UBLUE theorem in the full rank (FR) setting.

U-UBLUEfgg Theorem: The following are equivalent under [S]:
i) @y is UBLUE for 8- in the U-Model
ii) R(VNy,Uy,) CR(U) YV eV
iii) (Uy FiyU,)"'Us Fyy = (U3 Ny, Uy) 21U Ny, VV € V.

proof: ii) & iii) from lemma 3 and 1) < ii) by lemma 4. =



78

Proposition 1: If V € spV and V is PD, then the conditions in the U-UBLUEg theorem imply Bay = 051

proof R(VNy,U,) C RU)VV € V= R(VNyU,) C R({U)V V &spV by proposition in section 2.3
= Moy = My V'V €spV 3V is PD by the U-UBLUEgg theorem. =

Proposition 2: If I € spV, then 82 has a UBLUE & Egl is UBLUE for 8.

proof: i) 827 is UBLUE for 82 = @ has a UBLUE.

ii) Suppose 82 has a UBLUE given by ’Q\gvo where Vy € V

= RVFyU:) CRU)YV €V bylemma4 = R(VFyUs) C RU)VV €spV

= R(Fiy,Us) C R(FiyU2) V V € spV bylemma 3 = R(FiyUz) C R(Ny,Us) asl €spV

= Moy, = Msr by lemma 2 = Egvo = Ey = Ey is UBLUE for 8, by the Uniqueness theorem. =

Condition i) of the U-UBLUEgR theorem indicates the UBLUE has an expression which does not
depend on V. Condition ii) gives the GZC for @5 in this full rank setting, which will be denoted GZCpr.
The conditions of the U-UBLUEgg theorem can be re-expressed in a convenient form. Define the set
Ly, W,W) ={V € Lep(W,W)| R(VNy,Us) C R(U)}. The first three corollaries restate the previous

results, while the last one applies the results to the EGLSE.

Corollary: GZCg & V C Ly,(W, W).

Corollary: If V C Ly,(W, W), then GLSE = LSE = UBLUE.

Corollary: ¥V C Ly,(W, W), then spV N Lpp(W, W) C Ly, (W, W).

Corollary: If 9> has a UBLUE and V € Ly,(W, W), then EGLSE = GLSE = LSE = UBLUE.

Assume V = Vyand let V = V5. Suppose the GZCr holds and V e Ly,(W, W). An iterative
procedure would still be required to solve for Elf/ . The (i + 1)* solution in the iterative procedure is
. (i) i lrrers -~
givenby 0,p = (Uy Vaml I Y Vaml - (w— Usbap).

0.3, a1 0.3, 021

The next theorem shows the relationship between ZC and GZCpr. The results assuming GZCpr are

more general than the results assuming ZC, as ZC implies GZCrgr.
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Theorem: i) 1f Uy = 0, then GZCpr = ZC
i If R(VU;) Cc R(Uy) VV €V, then GZCpr = ZC
iii) ZC = GZCrr.

proof: Note R(Ny,U) = R(Ny,[U; Uz]) = R([0 Ny, U ).

i) Since U; = 0 by hypothesis, Ny, = I. Thus, VV €V,

R(VNyUz) C R(U) = R(VNyU) C R(U) = R(VU) C R(U).

VvVVeV, RIVNy,U,) CRU)= R(VNyU) CRU) = VNyU =UB forsome B
=>VU=VP,U+UB

= R(VU) CR(VP,,U+UB) CR(VU,)+ R({U) C R(Uh) + R(U) = R(U) as R(VU;) C R(Uy).
iii) Note Ny, Uz = Uy — Py, Uz = R(Ny,Uz) C R(U). ThenV V €V,

R(VNy,Ux) C R(VU) € _R(U) under the assumption of ZC. =

6.2. The Generalized Zyskind's Conditions

The section explores the relationship between GZC and GZCgr. First, consider the full rank setting to
examine how the GZCrg can be used to obtain the GZC. Note 8, = I’ where I = [0p,xp, Ip,xp, |- The

following theorem gives the equivalence in this case.

Theorem I: Let the U-Model under [S] have full rank. Then
R(VNy,U,) C R(U) & R(VUU*U)™'T") C R(U).

proof: ) R(VU(U*U)~'T’) C R(U)

o D(U*V-W)"W*V-' = '(U*U)"'U* by U-UBLUE theorem

& [0I]My =[01]M; <& My = My;  from lemma 2 and definition of I’
& R(VNy,Us) € R(U) by U-UBLUEg theorem. s

Assume the GZC involving an estimable function IT'8 where II : R?=RP? and r(II) = ¢ and consider
translating it to the GZCrr for a corresponding parameter £3(4x1). This direction is useful for checking the
GZC condition in the full rank setting.

Since r(II) = g there exists a matrix Ayyp—g S Kpxp = [A II] is invertible. Thus, K'8 = £

= 0 = (K')7'¢ where (K')™! = {hy;} and s0 §; = i:lhijﬁj. These definitions give
=

M

p
Ug =3 6:b; =
=1

2

P P ) P
Y hii&ibi = D &( Do hasbi) = Y €je; = TE where T € L(RP,W). Consider the
15=1 =1 =l =1

following notation for estimating IT'8 = £ = I'¢ where I = [0yx(p—g) Lyxq):
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) Ew]=U8=T¢=T¢& + Tt T; € L(RY, W) with v =p—q,va=¢q
i) Np :WoW  Np =1 - T(T;T) 15 .

Theorem 2: For the estimable function IT'8 = ¢, = £ and using the transformations defined above,

R(VUU*U)"'M) c R(U) & R(VNyTs) C R(T).

proof: R(VN,T,) € R(T) & R(VT(T*T)"'T) c R(T) & R(VU(U*U)"'T) c R(U)

by theorem 1 as the GZC is invariant under a reparameterizaton from the theorem in section 5.1. =

6.3. UBLUE for Estimable Fixed Effects

This section examines UBLUE results for the subvector of the fixed effects given by 3, in the
Y-model that has full rank or where 7(X,x,) = p. Recall § € R? and R? contains a non-empty open set,
so the Full Rank theorem can be applied. First, results will be presented for UBLUEs, which will then be

applied to maximum likelihood estimation for 3;.

6.3.1. UBLUE Results

This section examines conditions under which a UBLUE exists in the Y-Model for 3,. Consider the

following definitions:

) EY]=Xg8= é&iﬁi = i&iﬁi + Zp: zifi = X161+ X282

i=p1+1

i1) FlVﬁ = Vm_l - Vm_le(XIVZQ_lXﬂ_lXIVI_l i) Nx, =1 — Py,.

The definition in i) shows the partition for the expectation, while ii) and iii) define matrices that will
be of interest. The least squares estimator, the generalized least squares estimator, and the estimated

generalized least squares estimator for G, will also be of interest in this section. They are listed below:

LSE: o = (XpNx, X2) ' XpNx Y

GLSE: By, = (X3Fiv,X,)'X3Fv,Y  for a given 3 where Vy is PD

EGLSE: 8, = (X;Fiv, X,) ' X;FiY  where V; = Vi sPDV Y € R™.
The UBLUE result for the U-Model in the full rank setting can be directly applied in this setting to

indicate when the LSE is equal to the GLSE for estimating 3,. This is stated in the next theorem and

restated in the following proposition under assumptions [L] and [O].
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Y-UBLUErg Theorem: The following are equivalent:
1) Bz ; 1s UBLUE for £, in the Y-Model
i) R(VuyNx, X;) CR(X) V¢ €E
i) (X3 Fiv, X,) ' X5 Fiy, = (X3Nx, X,) ' X5Nx, Vg € E.

Proposition: Assume [L] and [O]. Then V ¢ € R¥1 3 Vi is PD, the conditions in the Y-FUBLUE

theorem imply that 221& = By
proof: Under [L], [O], spV = {Vy| & € sp =} = {Vy|ez € R**1}. Apply proposition 1 in section 6.1. =

The Y-UBLUE theorem does not make any assumptions about normality, linear covariance structure,
or classfication matrices. Only the form of GZCgr given in ii) is necessary to apply this theorem to the

special cases of the Y-Model under [L], [O], and [C].

6.3.2. ELMLQE Results

For doing maximum likelihood estimation in the Y-Model, the assumptions [L], [O], and [N] were
used. Extending the definition of Szatrowski (1980), an explicit linear maximum likelihood equation
estimator (ELMLQE) for 3, satisfies Bzmu} = AY fora constant matrix A which is not random and does
not depend on any parameters. In this case, the estimator B2MLQ is linear and the explicit part indicates

that A is constant. The following lemma shows that the MLQE = EGLSE in this setting.
Lemma: E2MLQ = 32211\’“‘0.

proof: It has been shown that X@MDQ = X‘Bﬁmw

= EMDQ = Bﬁm multiplying both sides by (X'X)~! X as X has full column rank where

Bﬁmo can be partitioned as in lemma 2. w»

The next theorem presents a sufficient condition for the existence of an ELMLQE for 3;. This

condition is the GZCggr for the Y-Model.

Y-ELMLQEgg Theorem: Consider the Y-Model under [L], [O], and [N]. If QZMLQ exists 3 VlZMLQ is PD
and R(Vy,Nx, X2) C R(X) V % € Z, then G is an ELMLQE for 5,.
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proof: Since Vg is PD by hypothesis, Z_azﬁm = B, by the proposition in section 6.3.1.
By the above lemma, B2MLQ = B%Z'MLQ' Thus, E2MLQ = Bo; = AY where A = (X4Nx, X2) 1 X4 Nx,

= B, is an ELMLQE for 3, by definition. =

The proof of the theorem shows the MLQE is equivalent to the LSE under the assumptions. Because

the LSE is linear and explicit, there exists an ELMLQE for 3;.

6.4. UBLUE for Estimable Variance Components

UBLUE:s for the estimable variance component vector can be obtained using linearized quadratic
estimation models and applying the results from the U-Model. The UBLUE results can be used to
determine the existence of a linear estimator for a subvector 1, of the variance component vector ¢ € =.
In order to apply the results of the Full Rank theorem, it is sufficient to assume = contains a non-empty
open set in R". This assumption does hold for the ALQEM for (Y — X B) and the LQEM for NxY. The
UBLUE results will be presented for the LQEM for Z, and then applied to the ALQEM for (Y — X33) for

maximum likelihood estimation and the LQEM for NxY for restricted maximum likelihood estimation.

6.4.1. UBLUE Results

The UBLUE results will be given for the LQEM for Z under the open set assumption for Z. Consider

the following notation where ro = r — rq:

D) E[YT=X'g=Ry=YwiRi= S %R+ ¥ iRi= Xl + X for X! € L(R™,S,)
=1 =1 3

i=r1+1
ii) V) =2¥p €V'C Lro(Sa,Sn)
i) Fyys: Sum S Fy =V = VX oq vy o xn vy

i) Ny : 82— Sn Ny =I-X{(X]"X]))"'X)" =1 - Py,.

The definition in i) gives a partition of the expectation and an expression for the covariance. The
notation in ii) and iii) will be useful for the following results. The objective is to estimate 9 in the full
rank model where z(XT) = r, or equivalently when the R;'s ¢ = 1,...,r are linearly independent. The
associated least squares, generalized least squares, and estimated generalized least squares estimator for

2o will be of interest. These are listed here for reference:
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LSE:  dy = (X3 Ny X3) ' X3 Ny Y
GLSE: by, = (X3 Fyy 1 X; )‘1X;*FW£ Y*  foragiven 3 where V is PD
EGLSE: ¢, = (X;*Flvixg)—lx;Fwiy* where V' =V} isPD VY € R™.

The UBLUE result for the U-Model can be used to indicate when the LSE is the same as the GLSE
when estimating . This is stated in the next theorem. The proof of the theorem follows directly from the
proof of the U-UBLUEgr theorem. The result is restated in the following proposition. The proof of this

proposition follows from the proposition in section 5.3.1, as it is a special case.

LQZ-UBLUErg Theorem: The following are equivalent when = contains a non-empty open set in R":
1) _@21 is UBLUE for %0 in the LQEM for Z
ii) ﬂ(ngNXIX;) CR(X") Vyge=
T Ty — * * Ty — * —_

Proposition: For any 3 € R™ 3 Ry, is PD, the conditions in the LQZ-UBLUE theorem imply _@21& = s -

This theorem was stated for the LQEM for Z, so it applies to both the ALQEM for NxY and the
LQEM for NxY. The following sections use these models to examine the maximum likelihood and
restricted maximum likelihood procedures.

The next corollary gives another condition which has interpretative value. There are a few cases in

which it can be applied. The condition can also be applied to the other LQEMs of interest.

Jordan Ideal Condition: If A € R(X'), B€ ﬂ(NX{X;) = ABA € —R(NXIX;) (o), then
R(VyNy; X;) C B(X).

proof: (o) = VJ[R(Ny X})] C R(Ny; X}) = R(V{Ny:X})] C R(Ny; X})
= ﬂ(NXIVlg Ny X;) C R(Ny X]) = RV} NX;X; ) € R(X') by lemma3 in section 6.1. =

The next two propositions examine the linear transformation N . The first proposition indicates
1

N

X! is the same whether R(X I )* is taken with respect to R(X ") or S, while the second proposition

gives expressions for Py+ and linear tranformations involving N .
1 1

Proposition: N.,; defined on R(X] )% is the restriction of N,; on S,.
X 1 X
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proof: i) Let A = R(X]), B= R(X"), and S = S,. Then

AB={BeB|<B,A> =0VAcA}and A¥={Sc S|<S5,A> =0V Ac A}

= A8 =ASNB.

i) Let é‘a = perpendicular sum (Seely,1996). Then B = A eLa AtBand S=B é BLS

S S=ABAB GBS 5 A5 = 4B GBS,

iii)For BE B, B= A C where A€ A, C € ABand B= A C where A€ A, C € ALS by ii).

Thus, P§(B) = A= PJ(B).

iv) By i), N§ = P3,(B)= (I P$)(B)=B - P} (B)=B— PJ(B)
=(I°-P§)(B)=P{s(B)=N5. =

Proposition: LetT = {tr(Rle)}rxr = [;n ;12] where ng is Tf X T For A € S, let
21 22

_ _ua .
ug = {r(RRA)}ru1 = |:MA2:| where uas is 77 x 1. Then
T1
1) PXIA =Y apRn where a = T7'ua
h=1

i) X3 Nyt A= wa — TnTyi'un

iii) X;* NXI X; = Toy — TQlTﬁ1T12 .

proof.i) Pys A=W where A=W + Z with W € R(X]) and Z € R(X])*

T1
= W = }"a, Ry for some g. In addition,V m=1,...,7y < Z,Rp > =0
h=1

= tt(ZRp) = 0 = tt(ARp) — tt(WRp) = 0 = tr(ARp) = 3" a, tr(RsBom)
h=1

= {trf(ARm)}rx1 = {tr(RaRm) }rixna = a = {tr(RyRm)} Ht(ARy)} = T uar.
i) X' Ny A= XJ" A~ X}' Py A= X["A~ Y- a,X}' Ry byi)
h=1

= {(RA) Y,y —glah{tr(RiRh)}{:nH by lemma 1 i) in section 3.2.3

= uge — To1 T ua; by the definition of @.

.
iii) For y = {v:}]_,, 11 € R, XI' Ny Xju= 3 1viX;’* Ny R;
=71+

= 3 vilure — TnT'uga) byii)

r
i=r+1
T

= 2 wrovi — TnT' Y wravi = Topw — Tn T Tiov = (Toy — T T Tho)u. =

i=r+1 i=ri+1

o
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6.4.2. ELMLQE Results

For doing maximum likelihood estimation in the Y-Model, assumptions [L], [O], and [N] were used.
Extending the definition of Szatrowski (1980), the explicit linear maximum likelihood estimator
(ELMLQE) for 1112“.2“), with kg = k + 1 — ky, satisfies QZMLQ = AYy, where Ais a linear
transformation that is not random and does not depend on any parameters and Y5 does not depend on any
estimators or unknown parameters.

Consider the following notation for the ALQEM for (Y — XB), where it is artificially assumed that
E[Yy] € {X°¢ | € Z} as indicated in section 3.2.1 :

) EYl=X¢=Vy= Iiwm = fﬁlwivi + 'if 1¢iVi = X1 + X3¢y for X5 € L(RY, S,)

i= i= i=ky+

ii) Vi =20y, € V° C Lpp(Sn,Sn)

i) Fiyp : Sn— S F; = VJZ‘1 - Vi"lX}’(X}’*VIZ‘lX}’)‘lX}’* VZZ‘l

iv) Nx; : Sp = Sp NX;:I_XT(XT*XT)_le* =1—Px; .

The definition in i) gives a partition of the expectation while ii) gives the form of the covariance. The
notation in iii) and iv) define linear transformations that will be of interest in later results. Assuming the
Vi's are linearly independent, then 7(X°) = k + 1 and this model fits into the full rank setting. The
EGLSE for 3 can be partitioned to give an EGLSE for 22 which can be compared to the LSE for 1. The
least squares, generalized least squares, and estimated generalized least squares estimators for the

ALQEM for NxY are:

LSE: gy = (X3"Nx; X3) ' X5" Ny Yy’
GLSE: y, = (X3"Fiv; X3)7'X3' Fi;Yy  for a given i where V is PD

EGLSE: §, = (X3' Five X3) ' X3 Fiy: Yy where V2 = V2

fi ) isPD VY € R™.

For clarity, the EGLSE will often be labelled as _@EGLS. The ALQEM for (Y — XB) was defined so

that the equations for the EGLSE correspond to the ML equations for 2. The following lemma establishes
the equivalence between the EGLSE and the MLQE for 2,.

Lemma: g = YoreLs-

proof: From section 4.3.2, X °;@MLQ =X ";@EGLS = @MDQ = ;@EGLS multiplying both sides by

(X**X°)~1X° as X° has full column rank. Then ;Z&EGLS can be partitioned as in lemma 2 in section 6.1. =
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Under the ALQEM for (Y — XJ3), the response Yy = (Y — X8) (Y — X[3)' will generally depend
ongas X3 = X(X’V&_lX)‘X’VZilX. This is likely to present a difficulty in satisfying the definition of
an ELMLQE for 3. In order to deal with this difficulty, it will be assumed that ZC holds for the
Y-Model where R(V,,X) C R(X)V 3 € Z. As shown in section 4.2.2, this condition is sufficient for
Y-X Bi = NxY V% € RF*! such that Vi is PD. Under ZC for the Y-Model, the ALQEM for
Y -X E) can be used to obtain conditions for the existence of an ELMQE for 4. However, it is
possible that a weaker condition could suffice for some examples as only the subvector 3 is of interest.

Still, the following theorem will assume ZC.

ALONY-EILMLQEgg Theorem: Consider the Y-Model under [L], [O], [N], and ZC. If ;Z&MLQ exists 3
Vﬁmo is PD and R(V}Nx: X5) C R(X°) V 1 € E, then ©y; is an ELMLQE for 1.

proof: Since VzZMLQ is PD by hypothesis and ;@QMDQ = 1/&21301.5 by the above lemma,
;@QMDQ = 1,; = AY; by the proposition in section 6.4.1 where A = (X3* Nx:X3)"' X3* Nx; and
Yy = NxYY’'Nx does not depend 3 or 0 by ZC = {&21 is an ELMLQE for 2 by definition. =

Note ;@21 may not be an unbiased estimator for 19, but it does satisfy the requirement of an

ELMLQE. An example will be presented in section 6.6. The explicit expression for ;@21 is given below.

T Tio
Ty T

For the ALLQEM for (Z — XE) under ZC for the Y-Model, 3221 = (T22 — T21T1_11T12)_1(_’l£2 - T21T1_11g1).

Lemma:LetT = {tr(‘/i‘/j)}(k+1)x(k+1) = [ :| and u= {X’NXV}NXX}(,M)“ = [i;] .

proof: Since ZC holds for the Y-Model, then Y — X E = NxY by the Y-FUBLUE theorem
= {tr(ViY?)} = {r(ViY'NxNxY)} = {Y'NxV.NxY } = u. By the last proposition in section 6.4.1,
Bor = (X3*Nx: X3) ' X5*Nxo Yy = (Tog — T T1' Th2) (o — Tu Ti7'en). ®

6.4.3. ELREMLQE Results

For doing restricted maximum likelihood estimation in the Y-Model, assumptions [L], [O], and [N]
were used. Extending the definition of Szatrowski (1980), the explicit linear restricted maximum
likelihood estimator (ELREMLQE) for Yaryx1)r with ks = k + 1 — kq, satisfies ;@2REMDQ = AY°, where
A is a linear transformation which is not random and does not depend on any parameters and Y °does not
depend on any estimators or unknown parameters. Consider the notation listed below for the LQEM for

NxY where V = NxV Nx:



87

. k+1 ky . k .
1) E[YO] =Xy = V:(é = Zd)iVi = Zini + Z YiVi= X1 + X3yo for X; € C(’R,kf,Sn)
i=1 i=1 i=k;+1
ii) VJE = 2‘11(/ﬂ € V° C Lpp(Sn,Sn)
iii) Fiv; : Sp= Sn Fryy = Vgt = VI X (X VI X) TIX Vg
V) Nxs : Sn = S, ng:I—X?(X?*Xf)_lX?*:I—PX;.

The definition in i) gives a partition of the expectation while ii) gives the form of the covariance. The
notation in iii) and iv) give linear transformations that will be of interest in later results. Assuming the
NxV;Nx's are linearly independent, then 7(X°) = k + 1 and this model fits into the full rank setting. The
EGLSE for % can be partitioned to give an EGLSE for 202 which can be compared to the LSE for . The
associated least squares, generalized least squares, and estimated generalized least squares estimators for

the LQEM for NxY are given by:

LSE: gy = (X3' Nx; X3) ' X3 Nx; Y°
GLSE: ;@2]& = (Xg*FWzX‘Z’)_lXS*FWzY" for a given 3 where Vj is PD

EGLSE: §, = (X3' Fiv; X5) 1 X5' Fiy:Y° where V2 =V isPD VY € R™.

wY)

For clarity, the EGLSE will often be labelled as ;Z&EGLS. The LQEM for NxY was defined so that the
equations for the EGLSE correspond to the REML equations for 1. The following lemma establishes the
equivalence between the EGLSE and the REMLQE for 3.

Lemma: Yoremig = LoecLs-

proof: From section 4.3.3, X°Yremig = X°PeoLs = Premio = LecLs Multiplying both sides by

(X°*X°)~1X° as X° has full column rank. Then gg, 5 can be partitioned as in lemma 2 in section 6.1. =
The main theorem can now be stated concerning the existence of an ELREMLQE for 5.

LONY-ELREMLQErr Theorem: Consider the Y-Model under [L], [O], and [N]. If ;Z&REMDQ exists 3
VJZREMLQ is PD and R(V;Nx; X3) C R(X°)V % € E, then ©y; is an ELREMLQE for 1.

proof: Since VJZREMLQ is PD by hypothesis and ;@2REMLQ = ;@2501‘5 by the above lemma,

;@2REMLQ = 1y; = AY° by the proposition in section 6.4.1 where A = (X5" Nx; X5)"' X3* Nx» and
Y? = NxYY'Nx does not depend 1/ or ;@ = ;@21 is an ELREMLQE for 3, by definition. =



The ELREMLQE for s is given by @21 which is linear and UBLUE for 5. Examples will be

presented in section 6.7 and 6.8. A lemma is now given which shows how to calculate $,;. Note that

|

% = u as given in the last lemma in section 6.4.2.

Tll Tl?.
T21 TZ?.
For the LQEM for NxY, &21 = (Tzz — Tle;llle)Al(ﬂg - Tlel_llﬂl).

Ex El

Lemma: Let T = {tr(ViVj)}(kH)x(kH) = ': :| and 4 = {X’NXViNXZ}(kH)Xl = |:

proof: Note {tr(V;Y°)} = {tr(V;NxYY'Nx)} = {Y'NxV;NxY} = @By the last proposition in

. - = 5 el P
section 6.4.1, 1&21 = (X;*NX;XQ)‘ng*NX;Y" = (T22 - T21Tu Tlg)_l(ug - T21T11 gl). [ ]

6.5. Checking the Conditions

This section discusses methods and issues involved in checking the UBLUE conditions under
assumptions [L] and [O] for the Y-Model. These checks are designed for a programming language that

can handle matrix computations. The following result is useful for performing the checks.

Lemma: i) R(A) C R(B) % R(vecA) C R(vecB).
ii) A1, ..., An € 5p{B, ..., Bn} & R([vecAy, ..., vecA,) ] C R([vecBy, ..., vecBp)].

- P {1 4 (vecA)Y] 1 2 2 2
proof.l)Counterexample.A_{2 2], B_-L 4}, [(vecB)’]_[l 9 4 4].

m . .
ii) A1, ..., An € p{By, ..., Bn} & A =Y. a\"B; for some o® € R™ V i
=1
m .
S vech; = Zagl)vec B; by the linearity of vec
i=1

& R([vecAy, ..., vecA,)] C R([vecBy, ..., vecBy,)] by the definition of containment. =

88

Assuming [L] and [O], consider the following checks that can be made for Zyskind's Condition in the

Y-Model (1), the full rank assumption in the LQEM for Z (2), the Quadratic Subspace Condition in the
Z-Model (3), and the Generalized Zyskind's Condition for the full rank setting in the LQEM for Z (4).

(1) ZC Check: R(VyX) C R(X) Vg €E.

R(VyX) CR(X) V¥V g€ E& R(VyX) C R(X) Vi€ R¥! as = contains a non-empty open set
SRVIX)CR(X) I=1,..,k

& r(ViX X]) —r(X)=0 [=1,..,k from the proposition in section 2.3

& r((ViX VX .. iX X]) —r(X) = 0.
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(2) Full Rank Check: (X)) = dim spV’ = r.

Consider S = {vec(R;)},2x, . The model has full rank provided r(S) =r & r(S) —r =0.
(3) QS Check: R(X") = sp{Ry, ...,R,} isa QS.

Let d= (1) + () =r+ %r(r— 1) = %r(r—i—l).Forj: 1,..,r,1=1,..,7r <1 let

M = R;R; + RiR;. ThenspV is a QS < My € spV V j,{ from the proposition in section 2.8
& R(M) C R(S) where M = {vec(M;i)}n2xa and S = {vec(R;)},2«, by the above lemma

< r(M,S) —r(S) = 0 from the proposition in section 2.3.

(4) GZCrg Check: R(V Ny X3) C R(X') V€ E.
1) Characterize PXIRi'
Let¢e=r;+1,...,7, h=1,...,71, m=1,...,71, and ro = r — r1. By last proposition in section 6.4.1,

1 . 1 .
vec(Pyt R;) = vec( :L::l‘l;zl)Rh) = Elas)VeC(Rh) = [vec(Ry) ... vec(Ry,) | T un1

where al) = Ti'ury = {tr((RmRy)}; L, {tr(RiRA)}r,x1. Then unvec vec(Py:R;) to obtain Pyt R;.
if) Find a spanning set for R(N XJ).

Note R(Ny; X3) = le[ﬂ(xg)] = sp{En 1., E;} where E; = Ny; Ri = R; — Py R;.

iii) Find a spanning set for sp{R(V, Ny: X3)|¢2 € Z}.

R(VyNy X3) = V3 |B(N g X})] = Vi[sp{Er 11, -, Er}] = sp{V{ Ery 1, ., Vy B} byii)
=sp{RyEr +1Ry, ..., RyE, Ry} Thus,

Sp{R(Vy{ Ny: X))\t € Z} = sp{RyEr, 11 Ry, ., RyE,Ry|ts € 5}
=sp{Giilr1+1<i<r,1<j<1<r} where Gy = R;E;R; + R,E;R; by lemma 1 in section 4.3.1.
iv) Thus, GZCrg holds & R(V, NXIX;) CR(X)VyeE

S Guesp{Ri|1<j<r}Vijlorm+1<i<nrl1<j<I<r byiii)

& R(G) C R(S) where G = {vec Giji}n2xr,a and S = {vec R;} 2., by the above lemma

& r(G,S) —r(S) = 0 from the proposition in section 2.3.

The checks (2)-(4) have been demonstrated using the notation from the LQEM for Z. This was done
to demonstrate their applicability to both the ML and REML estimation procedures using the ALQEM for
(Y - Xﬁ) (a) and the LQEM for NxY where Vj = NxV;Nx (b). The respective changes for checks

(2)-(4) would be as follows for these two models:

S M G E;
(a) {vec(V;)} {vec(V;Vi+ViV;)} {vec(V;E:Vi+ VIE;V))} Nx:V;

(b) {VCC(VJ')} {VCC(VJ'V[ + V[VJ)} {vec (VjEiV[ + V[EiVj)} NXfVi
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For purposes of characterizing examples which meet the UBLUE conditions, certain tools are helpful
in addition to the checks described above. The first item is an RTABLE which examines pairwise
products of the matrices in the set spV’. The entries of the table assess the balance in the design. The r;

entry of the RTABLE is given by:

—1if R;R; # cR, forsomec,p
’I‘jl = 0 lf RJ’RJ = 0
1 if RjR; = cR, forsomec # 0,p

. 71 .
The second tool involves the elements of a(*) defined by the relation Y agf) tr(R,Rp) = tr( R, R;)
h=1

for ]l <m < r; and r; + 1 < ¢ < r which is given in part i) of the last proposition in section 6.4.1. If
agf) # 0, then it is likely that r,,,, = 0 or 1 would be needed in order for the relation to hold. However, if
aﬁj) = 0, then factor A would not need to have balance properties with respect to factor m. This tool
provides model-based conditions, as it indicates whether or not the effect associated with factor A should
be in the model given the design. The significance of a(* will be evident in later examples.

It is helpful to know that when checking for the existence of an ELMLQE or an ELREMLQE for a
subvector of the variance component vector it is only necessary to consider models with more than two
variance components. This is due to the fact that a model with two variance components which satisfies

the GZCrr will automatically satisfy the QS condition.

Theorem: Assume spV’ = {R;, Ry} where R2 = Rs, RiRs = Ry, and tr(R;) # 0. If GZCrr holds for
a1 or Y, then spV* is a QS.

proof: i) GZCrr for i1 = G112 € spV' where G112 is defined in the GZCgr check. Thus,
Ri(R1 — aR2)Rs + R2(Ry — aR2)R; = R? — aRy + R? — aR; = 2(R? — aR,) € spV!

= R? € spV' since Ry € spV*. Thus, spV7 is a QS given the properties of Ro.

ii) GZCrr for ¢ = Goapp € spV!

= Ri(R2 — aR1)R2 + R2(R2 — aRy)R; = Ry — aR?+ Ry — aR? = 2(R; — aR}) € spV’.
By the last proposition in section 6.4.1, a = t—‘%{%—) = ::(4—72112) # 0 as tr(R;) # 0 by hypothesis.

Hence, R? € spV' since R; € spV'. Thus, spV* is a QS given the properties of Ry. =

Consider the variance component vector rx1 = [, x1) La(r,x1)]’ Where there is interest in
Y2 = {¥i}r,x1. For the purposes of checking GZCrr for 1, it is possible to check simultaneously for the
vector o or individually for the components ¢; ¢ = r; + 1, ..., 7. The check described above was

presented for the simultaneous case. However, it may be computationally easier to check for the GZCgr
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individually. In this case, the check would be applied to ¢, fori =71 +1,...,7 where ¢ is a

subcomponent of %), = [Whr—1x1) i)' -
Theorem: GZCrx for ¥o(r,x1) <> GZCpr for ¢ Vi=r +1,...,7.

proof: 1) Suppose GZCrr for 1,. Then ;@2 ;7 is UBLUE for 12 by the LQZ-UBLUEg theorem
= éﬁﬁz, is UBLUE for ; Vi = r; + 1, ..., by the Linear Closure Property where
& =1{6;)= {(1) : ; j = GZCrg for ¢; Vi =11 +1, ..., by the LQZ-UBLUE theorem.
ii) Suppose GZCg for ;Vi=r;+1,...,r. Thenfori =r;1 +1,...,7
¥ is UBLUE for 1; by the LQZ-UBLUEgg theorem
= {1 }#,x1 is UBLUE for 32 by the Linear Closure Property

= GZCrr for 32 (1,x1) by the LQZ-UBLUEg theorem. =

The methods presented here for checking the conditions are used to verify the existence of examples
that satisfy the GZCrr. Such examples are given in sections 6.6, 6.7, and 6.8. The methods were also used

to search for examples among 3-way models which are presented in section 6.9.

6.6. ML Examples: Balanced Models with Random Highest Possible Order Effect

This example assumes complete balance and that the highest possible order effect is random and
included in the model. The highest order effect may correspond to an interaction or nested effect. It is
necessary to assume that 2 is estimable in this setting, or equivalently that dimspV° = k£ 4 1,in order to

use the results of this chapter.

Theorem: Consider the Y-Model under [L], [O], [C], and [N]. Suppose the design is completely balanced

and the model contains the highest possible order interaction as a random effect. If ;Z&MLQ exists and VJZMLQ

is PD, then az has an ELMLQE.

proof: Let = number of replicates and T be the design matrix associated with the highest order
interaction. Let k + 1 identify the residual term and k& identify the random effect associated with the
highest order effect. Note Vi, = rPr due to complete balance.

By last proposition in section 6.4.1 withm = 1,..., k,

K k-1
S aptt(ViVi) = t(IV) = 3 aptt(VaVi) + artr(rPrVy) = tr(Vi)
h=1 h=1
k-1
= aptt(ViVip) + ragte(Vy,) = r(Vy,) as T'is associated with the highest order effect
h=1
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= ap = { 0 };lj:]; as g is uniquely determined since 3 is estimable. Thus, Pxs] = %’I‘PT = Pr

3

= E,= (I — Px;)I = I — Pr.Then

(@ifjorl#e Ge=V;(I-Pr)Vi+Vi(I-Pr)V;=0 € R(X°) as R(V;) C R(Pr)

O)if j=l=e Gee=1I(I—Pr)I+I(I— Pr)I=2(I—Pr)=2V, - 2V, € R(X°).

.. By the GZCgx check and the ALQNY-ELMLQEgg, 3an ELMLQE for 02 as Gju € R(X°) V7, 1. =

6.7. REML Examples: Random Pseudo Balanced Models

Particular models have ELREMLQE:s for the residual variance component under pseudo balance.
Pseudo balance is defined in section 3.1.3. Consider a random model that has the highest possible order
effect as random and at least one other random effect. Let H denote the matrix associated with the highest
possible order effect and let G denote the matrix for any other random effect in the model not including
the residual error term. Let Vg, V4, and V, denote the covariance matrices associated with the arbitrary
random effect, the highest order effect, and the residual term. It is also necessary to assume 2 is

estimable, or equivalently that dimspV° = k + 1, in order to apply the results of this chapter.

Lemma: For the random model described above under pseudo balance:

i)y Vy=(I-P)GG'(I-P) Vy=r(Pg—P) Ve=I-P

i)y VoV =1V, V, V.=V,

i) E. = (I — Pxg)Ve=Ve— 1V,

S =

proof: i) Note H'H = rI by pseudo balance. Thus,
Vi=(I-P)HH'(I-P)=r(I-P)Py(I - P)=r(Py—P)
and the other covariance matrices follow from definition under the REML procedure.
i) VVh=r(I-P)GG (Pg— P)=r(I-P)G(G -GP) = rV, byi)and R(G) C R(H).
In addition, V,V. = (I - P)GG'(I — P}) = V,.
iii) From the last proposition in section 6.4.1, Px; Ve= ijlamf/m whereforg=1, ..,k
m=

ilamtr(vgvm) — w(7,7.) = (V) byii). Note t(V,V'4) = rtr(V,) by i) = an = L and ay = 0

m=

for g = 1,.., k as a is uniquely determined since g is estimable. Thus, E, = (I — PXf)Ve =V,-1V,. »

S =

Theorem: Consider the Y-Model under [L], [O], [C], and [N]. Suppose the design is pseudo balanced and
that the model contains the highest possible order interaction as a random effect. If @REMLQ exists and

Vi is PD, then o2 has an ELREMLQE.
REMLQ
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proof: Note G = VjEeV, + V,Eer. By the lemma,
VE=V,~4Vy=0=Gu=0 Vg=1,.,k I=1,..,k+1
V.E. =V.- 1V, = E. = Geee = 2E. € R(X®). Thus, Gja € R(X°) Vj, L.
.. By the GZCpg check and the LQNY-ELREMLQEgR theorem, an ELREMLQE exists for 62. =

6.8. REML Examples: Random Models

This section provides conditions for the existence of ELREMLQE:s for variance components in a
class of random models. In order to achieve a result that includes all random models in this class, the
notation is quite cumbersome. Consider p factors in a classification model with the random vector ¥
indexed as Yy, , where f* is a vector of indices indicating the levels of the factors associated with the

observation Yy-,. Additonal notation is given below using definitions from section 3.1.3:

Notation: F* = {1, ..., p} = the complete set of all factors
F = {F|F c F*, F-effects included in model} = collection of factor subsets of all included effects
E=[f1, -, ful' = vector form of F = {f1, ..., fu}
£ = [i1, ..., %] = vector of indices of levels of factors in E where 4; € {1,...,t5.} forj=1,..,u

U
tg = []ts, = number of levels associated with f
j=1

#F = number of elements in F
F M E = vector listing the factors associated with 7' N F
R = {1,...,p,p+ 1} = factor subset associated with the residual error term

R = vector listing residual factor associated with R .

In order to include the residual, R, let F¥ = F U R. Now examine a partition of F* where
F* =19 J* g K*, using the symbol U to denote disjoint union. Consider the additional notation and

assumptions for the above partition:

Notation: 1 = {T|Z c I*, T non-empty, Z-effects included } H=F\I=1I°
J ={JI|J c J*, T non-empty, J-effects included }
K = {K|K C K*, K non-empty, K-effects included }
0] ={ZIuJ|T€l, J €} JOK = {JUK|J €], K €K}
IUJ={ZTUJI|T €], J €J,(TUJ)-effects included } = 10JNF
JUK = {JUK|J €], K € K, (J UK)-effects included} = J 1K NF
ILK={ZUKI|Z €L, K € K, (T U K)-effects included }
IVJUK={ZUJUKI|ZTeLJ €J,KeK, (ZTUJUK)-effects included}



Assumptions: ) TUT =10 J DIUK=0 a)IUJUK=20
iv) It is possible for K = 0 or J LUK = @, but not both.

Under the partition, notation, and assumptions, the set of all factors can be represented as

F=I"]JUBKY Iul) 9 (JUK). The associated model can now be written as Yy jo+, for

r=1,..,n4p where:

Yeppr=p+yd+ Y0+ Y+ ¥ (@F+ X (bo)F

% & 1 erpker
Zel Jel KeK TuJelud J UKe JUK
Y=lu+XZid + X0+ ¥ Zx® + ¥ Zya)!+ ¥ Zx(ad)® +e.
Zel Jel KeK TuJelul J UKe JUK

In addition, define Nx = I — P, V= NXZEZENX = NxVgNx, and denote the incidence matrix
by N = {n[i*7°k*]} = {n[ii® 7°kk¢]}. If the incidence matrix is summed over f*, then its position will
be replaced by 'x'. If the incidence matrix is summed over a subvector of f¢, then its position will be
replaced by ' - '. The following lemmas will be used to show that if the set J has a dominating factor, then
Bal(T U J) and Bal(I|J Ij K) implies there exists an ELREMLQE for 1; or for all variance components in

the I-set. It is necessary to assume that 1 is estimable, or equivalently, that the VE's are linearly
independentV F € F.

Trace Formula for Quadratic Expression: Let C = {c;;}, D = diag({di:}), then tr(C'DC) = }_3" duc};.
T

ij ijl. [ ]

proof:Note (C'DC)jy = 3 c;5dic;y = 3 diic;c

Lemma I: ) BallUJ) & nli-i-x|=n[l-1-x] VIe€elLJel.
i) IfBal(IL J),thenV Z € L, J € J

Vi =m(P - P) my = n[l-xx ]
Vi =my(P - P) my =mn[*1-x]
Vu = my(Py— P) my =mn[l-1-%]

where my = {ymymy = timy .

proof: ) Bal(IU]) & Bal(ZUJ)VZI e ,Jel

eVIelLLJel ni-i-x]=3> Y >no@rE]=nl-1-x]
IT'el\T J'e\T KeK

i)BallUJ) »Bal(ZuUJ) VIel, Jel
= VlzmlPl,VlzmlPl,VuzmuPuwheremuzn[i-j-*]:n[l-l-*]
my =n[1'-**]:n[l-**]:tln[l-l-*]:tlmg

my = n[xg-x]=nlxl-x]=tnll-1-*]=tymy. =
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Lemma 2: ) Bal(l|J0K) & nli-j-k-]=n[l-i-k-] VIELIT€J,Ke K
i) Bal(1J O 8K) & nfi - 3°7°4 k-] =nlL- *°8 - k-]
VIel, JeJwithj=z, J el withf=7:3KeK.
iii) Bal(1|J 1 J 1K) = Bal(I|J O K).

WMIE3Jéel 5T C T VT e J (D) thenBal(1J 11J 1K) & Bal(1]J (1K)

proof: ) Bal(1|J (1K) & Bal(Z|JUK) VIeLJe J,Ke K
eVIcelL,Jel,KeK nli-j-k-]= % S nlifk]=nll-ik-]
T'eNT J'el\J K'eK\K

i BalIJOIUK) & Bal(Z|JUJ'UK) VIeL,Jel, J €l KeK

svVIcel,LJel,Jel],KekK

nli-*°7 k1= % > nlitfk)=nll-00 k).
eI JteNJUT' KeK\K

iiyByii), VI e, JeJwithj=3%" J € Jwithi=3;7 KeK

Bal(]Il.]IL!.]IL!]K) enli-1°°0 k-] =nll- %5 -
J'eNT

& Bal(I[J U K) by i).

k-] VIel,Lgel,KeKk

nli-3°°3" k-1=nli-%° - k-]=n[l-1-

k- ]VIel,Jel,KeKk

iv)Bal(I|JUJUK) & Ba(Z|JUJ' UK)VIE LT e J, T €], Ke K
(D)

D
SBal(Z|JUJYUK) VIe L, Jel, Ke ]K(@)Bal(IIJdLJIC) VIelLKeK
D
(@)Bal(zuux) VIel,JelKeKeBalJUK)

Lemma 3: i) Bal(IU J), Bal(I|J [ K) =

ViVi=0VZTel KeK.
ii)Bal(]IU,]I),Bal(]IL]I[kJK):>I7&~1=0VI I, JUK € JUK .

iii) Bal(IL J), Bal([JJ 1K) = V(V; — Vy) =0 VI € 1,J€J,Ke K.
iv) Bal(IU I), Bal(I|J 1 T 1K) = me/; %

tWVkVy=0 VIel, Jel,JuKe JuK.
proof: i) (1) Note tr(Zg (P — Py)Zg) = w(Zg Zy(Z{Zy) ' Z{ Zy — Zg1(1'1)~'1' Z)

—tr{n[z vk Y 0diag({h g Dinli- « k- 188, — sy {nbx k- I {nlx k- 1Yy
_ E( EM M ) = i Z:

nfg-* * nlex*] :[[ll:%]] - txtll:[[i:%]} ) =0 by lemmas 1 and 2

= Zy (P, — P)Zg = 0 since NND = Z{(P — Py)

2)Bylemma lii) VZ € I, K € K,
ViV =

= 0.

(I - Pl)ZKZ]’((I — Pl)mI(PI - Pl) = mI(I - Pl) IK(

1— P
ii) (1) Note tr(Zjx (P — P1)Zix) = tr(ZJKZI(ZIZI) 1ZIZJK——Z L't

= tr({nli-i-k- Yoy diag({7

Fr Dl 4k 1Y
****]{"[*l ]}tm‘n{"[*l ]}lxt_ltx
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Zl: ZK:(ZE"LLU M)= Zl: i(i"llk —ZIZ"ZLM”]]):Obermmasland2

nfg**) nlxxx x| 71n[1 * % tym[x o * *

= Zi(Pi— P)Z)x =0 since NND = Zy (P — P;) = 0.
(2)Bylemmalii) VZ eI, JUK € JUK,
ViV =my(I - P)ZZ(I — P))(R — P1) = my(I — P)ZZj (B — P1) =0 by (1).
iii) (1) Note tr(Z (Py — Py) Zx) = tr(Zg Zy(Z}y Zy) " Z}y Zx — Z42)(Z12) 1 212 )
= tr({nli- - k- |V, diag({ st Dnli- 4 k- 1155,

bk NYind diag{ o Ml d- k- 1}35)
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t .
= Z Z(ZM ﬂi&i) Zl: Z(i 2[1“1— t%"z[l‘w‘])=0 by lemmas 1 and 2

=1 k=1 i= nles +] nlx i+ i=1 k=1 i= n[l-1-*] tn[l-l*]

= Z’K(Pu— P;)Zx =0 since NND = ZL(_(PL[_ P)=0=> Z/K(Pl_ Py)=0.
@ Bylemmalii)VZe L JeJ,Ke K,
Vk(Vy—tiVy) = Vk(my(P; = P1) = tymy(Py — P1)) = myV(P; — Py)
=my(I — P1)ZxZx(I — P)(P, — Py) = my(I — P1)Zx Zg (P, — Py) =0 by (1).
iv) (1) For J € J, let j= 7*5° and for J' € J, let § = 7°7°. Note
te(Zyx (Pu — Py) Zyy) = te(Zyx Zu(Z) Zy) " 2y Zyy — ZJI’KZJ(Z/ZJ)_lzJIZJ’K)

= ({8 ppmli - 108" - k- Vet diag({ G DG pmli - 2°5°2 - k- 1}EED,
- {«slwlon[* I -1}£§ﬁfﬁzdlag({m} ){8prpml 1* 1 & 1}tlﬁtf,1x)
ty ‘a0 i
= 2 B e < 5 St st
= Zl: i A}L[llllfb]k] tfﬁt[lln[lllllj]i] ) =0 by lemma 1, lemma 2, and

using the trace formula for a quadratic expression where the first part of the difference has
C' = Zj Zu = {cumyip} = {§ppnli- - 1°5°4" k- ]}
D = (Z}2Zy)™" = {dupaup} = {757} = w(C'DC) = 23 diicy -
1

Then Zyy (Py —~ Py)Zykx =0 since NND = Zjy(Py— P)) =0= Zjx(Pi— Py) = 0.
Q) Bylemmalii)VIel, JelJ, JJUK € JUK,
Vik(Vi—tiVy) = Vyx(my(P, — Py) — tymy(Py — Py))
= myVyx(Py — Py) = my(I — P1) Zyx Zj (I — P)(P; — Py)
(I — P)ZyxZjx(P— Pg) =0 by (). =

Lemma 4: Assume Bal(I U J), Bal(T |J Grd K) and consider T;p¥ = ¢ V T € T where

{r(Vy )}(#H)x(#ﬂ){iﬂw} = {r(VaV1)}smyx:. Then VT €J 30 >

Typ® =D, p) = —t1p}, and piy =0 VH #7,1II' provided

=1

(cD) {tl’ }(#J)x(#ﬂ){Pj}— Lanx1 and (c2) jZJPJ =3
‘e
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proof- By the definitionof p®, VZ e LYHeH 3 u(VaVu)pl = u(ValV))

HeHl
& S uVuVnr + ¥ u(VaVy)pf = e(VuV))
J'el Zugeluy
= pJ, [tr Vi) —tir(VaV)) = t(VaV)) (%) asstays the same.
J'el

The goal is to verify that p® satisfies (*) ¥V 'H € H under (c1) and (c2). The conditions (c1) and (c2) are
shown to hold for cases i) ii) iii), but they are obtained using cases iv), v). Thus, consider the following:

Jel

= ¥ g lmymyte(Pyry — P) — timymytr(Piny — P)] by lemma 1

J'el
= 3 py [mumytr(Piry — Py) — mymyte(Pyny — P)] =0 by lemma 1
J'el
= tr(V1V9) by lemma 1.
vKeK X p,, [tr ViVy) — tir(Vi V) = S py [tr gV, —tVy)] =0 by lemma 3 iii)
J'el J'el -

= tr(VVi) by lemma 3 i).

v JuKkeJuk Y pJ, Ne(VVy) — titr(V ik Vi)
J'el

=3 pg,l) [r(Vig(Vy — V)] = 0 by lemma 3 iv)
J'el

=tr(VixV]) by lemma 3 ii).
The next two cases are where the effort is needed to obtain the conditions (c1) and (c2).

vy VITUJelul Z pj, [tr Vll) - tltr(Vpru/)] = tr(V1+JV1)

& ¥ P mpmyptr(Pyny — Py) — tynpgmyte(Ps o paryy — PL)]
J'ed
= mplmltr(Ppm — P) bylemma I
& 3 - pPmylte(Pgnpany — Pnr) ] = me(Ppng — Py)
J'el

o —Pmpting(tprng—1) = myltrn - 1) (o).
J'el

Note (o) holds trivially when t+ 1 = 1, so consider the case where tj+qy > 1

M n

= Z — py)mlftjru/ =my = Z - Dy t/tJ”J’ = ﬁ[ asn = tymy = tymy by lemma 1

Jel Jel
{ }(#.H Y (#3) {Py }=F 7 Lunxa (c1).
v) for R Z PP lr(VeVy) — tite(Ve V)] = r(Vr V)

s 3 pl,‘ [mytr(Py — P)) — tymytr(Py — Py)] = mytr(P; — P;) by lemma 1
J'el
& Y - pPmyle(Ry — Py)]=m(F - P) & ¥ — pPmyty(ty — 1) = my(t; — 1) (o0).

J'el J'el
Note (oo) holds trivially when t;+ 11 = 1, so consider the case where tj+qp > 1 = Y — p§,l)m1/ty =my
T N

> —pg,l)n =2e ) Pl = =L (c2) asn = tymy = tymy by lemmal. =
Jger T Logrer !
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The next lemma is given here for convenience to show that covariance matrices which correspond to

the effects in I, J , I U J have a closure property.

Lemma 5:Let vy =sp{Z € 1,J € J|V},V},Vy}. Under Bal(I Ll J),

VHV§€’Y vVI'uJ elul,v V§€’Y.

proof Since Vs € y=> Vs = kiV1+ kV; + kuVy for some ky, ky , ky. By Bal(IU J),
my(Prrp = Pr) + kymy(Pyng — Py) + kymu(Pynpany — P

<
—
|‘-<
| |
n—
I‘—i
/\ |U)

= ll/vam +lyrVyny + l(l’ﬂI)(J’HJ)V(I’HI)(J’HJ) €7
I’HI ]IJ’HJ J] d1 m[/ku lf}-,ﬂ}-#@
as c 1, € J an / = { " nE .
EnE 0 if F'NF=0

The following theorem gives a main result which states that an ELREMLQE exists for all variance
components simultaneously for the set of factors I under model based conditions (c1) and (c2), as well as
the design based conditions Bal(I LI J) and Bal(I |J Gl K). The factors in I are examined

simultaneously so that H = F'\I = I°.

Theorem: Consider the Y-Model under [L], [O], [C], and [N] under the notation and assumptions given in
this section. In addition, assume conditions (c1) and (c2) in lemma 4 hold and that the design has

Bal(IL J) and Bal(1|J J J (1 K). If @repq exists and Vo 18 PDs then 3 an ELREMLQE for ¢;.

proof: By lemma 4 under (c1)and (¢2),V I €1 E=V;- ) p](_%)Vﬂ =Vi+ Y p I)[VJ ~ tiVyl

= GF’IF = VF/E[VF + V;:EIVF/.TO show GF’IF S R( °) v F, F' € F*. Then
DVvZIel VIIEI mI/mI(Pym - Pl) + Z Dy )[0 - t[m[/mU(Pym Pl)]
Je

= (mymy — ¥ pPtymymy) (Pynp — PL) o Vg or 0 € R(X°)
Jel

=>VI" elGrr & ViV & Vpnpap or 0 € R(X°) by lemma 1
>V J €l G Vg Vy=0¢R(

2>V K eK Gug Vg Vg=0€R(X?) bylemma3i)

S>VItUJrelul G & Vin Vi « Vininp or 0 € R(X°) by assumption i)
=>VJ'UK € JUK  Gruk « Vyn Vg =0€ R(X°) by lemma 3 ii)

= Grr « Vyr (Vg = Vpnpor 0 € R(XO).

iV J €l VyB=0+Y pPlmymy(Pyny — Py) — tymymy(Pyny — P)]
Jel

X°) by lemma 1

=¥ pPlmymy(Pyny — Py) — mymy(Pyn; — P)] =0 by lemma 1
Jel

=V FeTF' Gy = 0 € R(X°).
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iV KeK VB =VgVi+ X pPVk(V, - tVy) =0 by lemma 3 i) iii)

>V FeF' Ggr=0¢€R(X°

VMV J'UK € JUK  VywE = VeV + Y pPVie [V, — V] = 0 by lemma 3 ii) iv)
Jel -

=V Fe ]FT GJ'K/EIO EQ(XO)

WYTUJ € 1uJ

Viy By = myymy(Pyng — P) + 3 pf” lmpymy(Peny = Pr) — tymyymy Py — P
Jel

=Vgor0esp{Ze LT el |V,V,Vu}=1.
Then VI*UJ* €TU] Gryprr x VgV = Vg € v € R(X®) by lemma 5
and Gryr x ViV = Vgor 0 € R(X°).
.. By the GZCrg check and the LQNY-ELREMLQE¢x theorem, an ELREMLQE exists for 3y as
Gpir € R(X°) VF,F € F' astheabove holds VI € I. =

The model based conditons (c1) and (c2) are helpful for identifying random models that have
ELREMLQE:s for variance components corresponding to main effects. However, the conditions are
somewhat abstract, so possible structures in J will be examined which satisfy these two conditions.
Additional notation will be needed to describe such structures in J.

Let J = {J1,...,J:} and J* = {1, ..., s}. The set J has a dominating factor providing 3 J¢ € J 3
J Cc J?% ¥ J € J. Note that a dominating factor exists when J has a nested or complete structure. In
addition, let M; = ( bt—;ﬂ}j,j,)m and My = ({tyry} 7.9/ )rxr where R(M;) = R(Ms).

A complete structure in J will be useful for later results. Some special notation will be defined for this
case. For purposes of convenience in this setting, let Jp = 0 € J so 7 = 25. Then M} = {t;rp }2:x2s has a

row and column of 1's. Note Mz is a principal submatrix of M;. In addition, define

. s s 1 JSiCT:
T= dlag({i © l(l,ti -1)}) and G :z' S 1(l,gv-i) where g; = {g;,;;} = {0 Tiq J: .The

horizontal direct product © is defined in section 2.9.

This notation can be demonstrated by an example where 7* = {1,2} and t;, = 1. Then

1 1 1 1
. _ 1 t1 1 t _ 1 ll><3
My ={tiw}=|] ; ta  t _[lsxl MJ
1 tl t2 t1t2
1 0] [t o 1000
11 11 1111
1 0 0 0
. 0 to—1 0 0
T =diag{{L,t1i—1) e (Lt —1)}) = 0 2() t1—1 0
0 0 0 (t1—-1)(t2—1)
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The following three lemmas establish properties that will be necessary for the final result.
Lemma 6:If Anxpe = Brxp © Cnxe and Dicxpe = diag( €], © fiy.), then AD = (B ¢e) 0 (C' o £).

proof:Letj=1,...,b,k=1,..,c,i=1,..,nand B = {b;;},C = {ci}, e = {e;}, f = {fe}. Then
AD = {g;.}diag({e;fi}) = {b; © cx }diag({e;fi}) = {bijeu }diag({e;fi})

= {bijcice;fi tnxbe = {bijej}nxs © {Cit fi}nxe

=50e)0{g0f}= (B, Oemx1) O (Clin® fox1). =

Lemma7:Letm =#(JNJ').Then T[] t;=1+ > (ty —1)..(¢,— 1)
jegng’ {jtmiu} € TN’

where {ji, ..., j,} is non-empty and 1 < u < m.

proof:iyForm=1, [] t;=t; =1+(t; -1)=1+ > (t; -1)
jeIng’ (ycIng’

=1+ 3 (ti —1)..(t;, = 1).
{dmi} CIOT’

ii) Assume the relation holds for m = k where 7 N J' = (Ju, ..., Jx)- Then the relation can be expressed

k
as Ht]‘i =1+ 3 (tjl —-1)..(t;,-1)=4 ().
=1

(J19eenu) C(J1500-JK)
Let Uy = {(j1, - Ju) C (G, gl w € [1,k]}
= Uerr ={(J1, - Ju) C (G1y-y )l w € [0,k + 1]} = {(J1, -, )\ (K + 1) C (G, ..., Jie) [w € [0, K]}
B {1, d) U(k+1) C (1, de)lu € [0,K]} =U W (D).

k+1
Form=Fk+1, Htji =tppA=14+trr1—1)A=A4+ (try1 —1)A
i=1

=1+ %‘j(th =1)..(t, = D]+ [1+ Z;j(tjl —1).(ts, = D](ter1 — 1) by ()

=[1+ Z(t]‘l -1)..(t;, - 1]+ Z(t]‘l —1)...(t;, — 1)(te1 — 1) by definition of W
U w

=14 % (4, —Delt, —1) by Q).

Ue1

IIt=1+ > (tjy —1)...(t;, — 1) byinduction. =
€eIng’ (g cang’

Lemma 8:1) The (J, J')entry of Gis 1 < J' C J, and 0 otherwise.
ii) The (J, J") entry of (g; © ... © g; )(g;, © ... © g; ) is 1 & {j1, .-, Ju} € T N J’, and 0 otherwise.
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proof: 1) Follows from the definition of G.

ii) The column vector (g; © ... © g;,) hasentry linrow J < {j1,...,ju} C J (1) by ).
The row vector (g;, © ... ® g;,)" hasentry 1 in column J’ < {j1, ..., 7.} C J’ (2) by i).
Thus, (g;, ©...0g; )(g; ©...0g;) hasentry 1 at (7, J') & {j1,..., ju} C T NT’
as both (1) and (2) must hold forthe entrytobe 1. =

Corollary: Consider the Y-Model under [L], [O], [C], and [N] under the notation and assumptions given
in this section. In addition, assume Bal(IL! J), Bal(I|J i K), and that the set J has a dominating factor. If
YRremMLQ €Xists and VJZREMLQ is PD, then 3 an ELREMLQE for 1 .

proof: i) Suppose J = {J1, ..., -} has a complete structure. Then Ji, ..., J; , which contain only a single
element, are also in J. Hence,
(GTG v =[(1,4;,) © ... © (1, g)lldiag({(L,t; ~ 1) ©... © (1,85, — 1}

1/
= & ) ([g ] ©) [t» {_ 1]) ] G’ repeatedly applying Lemma 6
1= Ji Ji

[, Wt~ gl ¢

=[Q, ;- 1)g;) ©... (L, (t;, - Dg;)I[(L,g;,)0... ©1,g;,)]

= [,y (t, = 1)oltyy = (g, © . © g;), ][ 1, ey (gjl ©..0g)- |
et (b, = 1)t — 1)(g;, ©..©g;)(g;, © ... O g )

> (t;, = 1)...(t;, —1)}7,5» by Lemma 8 where {7, ..., j.} non-empty
{hendu} cINT’

={ ]I t;} byLemma?7
Jjegng’

= {tinr} = M3.
ii) Order the matrix G to obtain G°so that the Jy column comes first (Jo = @), the J; columns which

contain exactly 1 member come next, and so on. This results in G° having ordered columns 3 if

J C J’, then the column corresponding to J precedes the column corresponding to 7'. Order the rows
of G°in the same manner. On the diagonal, the (7, J) entry of G°is 1since J C J by Lemma 8. Above
the diagonal, the (7, J') entry of G°is 0 because if it were 1, then J' C J and J' would precede 7.
This cannot be the case as J must precede 7' in order for the 7, J’ entry to be above the diagonal.

.. G°is lower triangular and nonsingular.

iii) Note r(G) = 2° by ii) = M5 is PD by i) as it is NND and has full rank

= every principal submatrix of M3 is PD = M, is PD as it is a principal submatrix of M;

= M is non-singular since R(M>) = R(M). Thus, for any structure within J and

corresponding matrix (M, , 3a unique solution p{l 5 M; p,) = 11 (cl).
p (#I) x (#7) q Y
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iv) When J has a dominating factor, then for the last row of M corresponding to J d
J' C J¢ V columns correponding to J’

= ﬁ‘;TL = % =1 andso (c1) = Mi{p)} = a1 % b = 2 ().
J'el

v) By lemma 2 iv), J has a dominating factor = Bal(I{J 630 K) < Bal(I|J Ij K).
.". 3 a unique solution Q(D which satisfies (c1) and (c2) by i)-iv). By v) and the above theorem, under

Bal(TU J) and Bal(I|J i K), if the set J has a dominating factor, then 3 an ELREMLQE for 1. =

The conditions for the existence of an ELREMLQE for 21 in random models are dependent on a
partition corresponding to I, J, K,TU J, J U K under (c1) and (c2). The conditions (c1) and (c2) are
satisfied when J has a dominating factor such as when there is a nested or complete structure. The design
needs to have Bal(I Ll J) and Bal(I|J Ij K) in order for this model to have the ELREMLQE for 2. The

conditions for the random models may provide insight into conditions for other classification models.

6.9. Searching for Examples Involving 3-Way Models

In order to identify examples that satisfy the GZCgr for the variance component vector, a search was
conducted for 3-way classification models with 2 levels of each factor. Patterns were examined to identify
classes of examples such as those proven in sections 6.6, 6.7, and 6.8. These examples are tabled in this
section for reference.

Table 6.1 identifies the incidence matrices that were used for the search. These were chosen to reflect
types of balance (bal). Some of the designs are permutations of one another where these permutations
were used to identify the behavior of particular factors.

Table 6.2 lists models and the associated designs that had ELMLQEs or ELREMLQEs, but not
FELMLQEs or FELREMLQE: for the variance components. The results were obtained from a search of
all possible proper 2 level 3-way classification models under the designs listed in Table 6.1. However,
duplicate cases involving permutations of the factors were removed. In addition, REML cases do not
include those involving pseudo balance for random models that contain the highest possible order
interaction term and have an ELREMLQE for the residual component. These cases were proven in section
6.7. Also, the ML cases do not include completely balanced models that have the highest possible order
interaction and have an ELMLQE for the residual component. These cases were proven in section 6.6.
Such cases were removed to keep the table succinct.

For example, consider the first line of Table 6.2 denoted by (*). This line shows that for the ML
method with ZC for the Y-Model under incidence matrix 1 in Table 6.1, 3 an ELMLQE for o‘f in a mixed
model with effect A fixed, effects B C BC random, and effects AB AC ABC omitted. The other lines of

the table follow in the same manner.



Table 6.1. Particular Incidence Matrices for 3-Way Models with 2 Levels
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# axbc axb axc bxc a b c balance
2 2 2 2]

1 22 2 2 bal bal bal bal bal bal bal(abc)
11 2 2] 2 4 2 4 4

2 11 2 2] bal [2 4] [2 4] bal bal [8] bal(ablc)
1 1 1 1] 2 2 2 4

3 2 2 2 [ 4 [ 4 4] bal [8] bal bal bal(bcla)
1 2 1 2] 2 2 2 4

4 121 2 [2 bal [ 4 4] bal [8] bal bal(aclb)
1 1 2 2] 2 4

5 22 1 1] bal [ 4 2] bal bal bal bal bal(blac)

6 1 1 2] 2 bal bal bal bal bal bal(clab)
21 2 1] 4 a a a a a al(clal
1 2 2 1] 2 4

7 122 1] bal bal [ 4 2] bal bal bal bal(albc)
1 2 1]

8 211 2_ bal bal bal bal bal bal
1 1 2 2] [3 [2 41 [3 5] (6] 6

o 3 3 5 4 6] [3 5] 10 bal {10 bal(blac)
1 1 3 3] [4 (2 6] [3 7] [ 8] 6

012 2 4 4] 6 4 8] |3 7 2] M [14 bal(blac)
1 2 1 2] 2 3 3] [3 3] (6] 6

1 2 3 2 3] 4 5 5] |5 5] 10| [10 bal bal(clab)
(1 2 3 2] 3 51 [3 5]

12 23 2 1 bal 53 |5 3 bal bal bal

A 1 2 2 3] 3 3 51 [3 5] 8 8 8
2 3 3 4] 5 5 7] |5 7 12 12 12

” 1 2 2 4] 3 3 613 6 9 9 8
2 3 4 6] 6 5 10 |5 10 15 15 16




Table 6.2. Particular 3-Way Models with ELMLQE and ELREMLQE for Variance Components

f = FIXED

DESIGN

. = NOT IN MODEL

TYPE

A

1 = RANDOM EXPLICIT

B

C

AB

AC
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0 = RANDOM NOT EXPLICIT

BC ABC e

ML+ZC 1

REML
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mixed
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7. UMVUE in the Full and General Case

This chapter applies the results in chapters 4 and 5 to uniformly minimum variance unbiased
estimation. It has been shown that the conditions for the existence of an ELMLQE or an ELREMLQE are
equivalent to the existence of a UBLUE for the associated model. This section examines the relationship
of the ELMLQE and the ELREMLQE to the uniformly minimum variance unbiased estimator (UMVUE).
The UMVUE is defined below for euclidean vectors T, S, 8, and d:

(Casella and Berger,1990)
UMVUE: An estimator T' is UMVUE for a parameter @ if it satisfies Eg[Z] = 8 V 8, and for any
other estimator S > Bg[S] = 8 V 8, Varg(d'T) < Varg(d'S) V 4, d.

The definition indicates that the UMVUE has minimum variance over all unbiased estimators. Note
that the UMVUE is model dependent through the expectation and variance. The results will first be
presented for the full case using the results of chapter 4 and then for the general case using the results of
chapter 5. Section 7.2 gives exact forms of the covariance of the ELMLQE and the ELREMLQE. For the
ELMLQE involving the fixed effects and the ELREMLQE involving the variance components, the

covariance can shown to be a function of the information matrix.

7.1. UMVUE in the Full Case

This section demonstrates that A’ BMLQ, F'_@MLQ, and I ﬁREMLQ are UMVUE for their expectation in
the appropriate model under the full UBLUE conditions. This purpose of this section is to show how the
results of this thesis are related to previous results concerning UMVUEs from Seely (1969,1971,1977).
The previous results prove that, under the full UBLUE conditions, a complete sufficient statistic (CSS)
exists for the normal family of distributions under both the ML and REML methods. This is established in
the following two theorems for the given family of normal distributions. This section assumes that 3 is
mean estimable in the Y-Model, ¢ is mean estimable in the ALQEM for (¥ — XB), and 70 is mean
estimable in the LQEM for Q'Y .

(Seely,1971)
Theorem 1: Consider the Y-Model under [L], [0], [N], ZC, and QS. Then (Y’'VIY, ..., Y'V,Y,Y'Y)
and X'Y are jointly a CSS.

proof: (1) Note R(V, X) C R(X) = R(V, X) = R(X)

= VyPx = PxVy and PxV;' = V! Px by the proposition in section 3.3.5.
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k+1
(2) From Seely(1971), spV isa QS = Vﬁ)_‘1 =Y 6:;(x)V; where
i=1

= [61(), ...0k( )] is an open mapping.
3) f(ulB,v) = ( m)"E |Vl Rexp(F(u— XB)' Vi (u— XB) asY ~ N(XB,Vy)

= h(B,%)exp(FYVy lu+ B X'V y) = h(B,)exp(5¢/ V 'u+ 8'X PxVy'y)

= h(B, 1 )exp(F V Y+ X'V 1ny) by(l)

= h(B,1)exp(F 29( )yVy+.Q’X’(Z9( )Vi)Pxy) using (2)

k+1

= h(8,1 Jexp( i;@(dz)z{%y + (88, ) X'y).
(4) Let Q = {[61(B, ), .-, 65(8, %), $1(2), -, $er1(L)]'|B € R?, ¢ € E}.
Note R? x (¢1(1h), ..., dr+1(2h)) € Q since for fixed 3, 8 ranges over R? and so §([3, 1) ranges over R?.
Thus, = RP x ¢(Z) contains a non-empty open set as R? contains a non-empty open set, = contains
a non-empty open set by [O], and ¢ is an open mapping by (2).
Y'Y, ... Y'VY,Y'Y), X'Y are jointly CSS from Lehmann (1986, Theorem 4.3.1). =

The restricted maximum likelihood estimation method was presented in section 3.1.4. Consider the
matrix Qnxq forg = n — r(X) which has columns that form an orthonormal basis for B(X ). Then
QQ=1and QQ = I— Px = Nx.For the Y-Model under [N], Y ~ N,(Xg, V) which implies
Q'Y ~ Ny(0,Q'VyQ). The latter model will be denoted the QY-Model. In addition, let
spV” = sp{QV1Q, ..., Q'V:Q, I}.

(Seely,1971)
Theorem 2: Consider the Y-Model under [L], [O], and [N] where spV” is a QS. Then
(YNxViNxY, .., Y NxV.NxY,Y'NxY) is a CSS in the QY-Model.

k+1
proof: (1) Let V* = Q'V Q. From Seely(1971), spV” isa QS = V=1 = 3~ 0:(¢)V;> where
i=1

= [61(2), .--.8k( )] is an open mapping.
2 f(Qulx) = (2 ) 2|Q’V1QI 2exp(F(WQQV,Q) QY as QY ~ N(Q,QVyQ)
= h(¥)exp(3 29( WQQ'ViQQ'y) using (1).

(3) Under [O], = contains a non-empty open set

= (Y'NxViNxY, ..., Y'NxV.NxY, Y'NxY) is a CSS from Lehmann (1986, Theorem 4.3.1). =

Seely (1977) also shows that the conditions in theorems 1 and 2 are necessary and sufficient for the

existence of a CSS. However, sufficiency is adequate for this section.
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It will be shown that the ELMLQE and ELREMLQE are functions of the CSS. This indicates that the
these quantities are UMVUE by the Lehmann-Scheffe theorem (Casella and Berger,1990,p320).

Lemma 1: 1f T(W) is sufficient for the family P = {fo(w)| 8 € ©} and if 4 is a solution to the ML

equations, then § is a function of T(W).

proof: By the Factorization theorem (Lehmann,1983,Theorem 5.2), T(W) is sufficient for the family P
& fa(w) = go(T(w))h(w) for some gy, h . Thus, Flnfa(w) = 0 & Z In(gp(T(w))h(w)) = 0

=3 a% In(gp(T(w)) + (% Inh(w) =0« (% In(gg(T(w)) = 0 (*). Then @ is a solution to (*) which
depends only on T(w) = 8 is a function of T(W). =

Theorem 3: Consider the Y-model under [L], [O], [N], ZC, and QS where ;Z&MLQ exists and V&MLQ is PD.
Then A’B; and I'g); are FELMLQE and UMVUE for A’ and E[I"3;] .

proof: Since ZC holds and spV is a QS where VzZMLQ is PD by hypothesis, A’ BMLQ = A'B; and
I"¥mrg = 9y are FELMLQEs by the Y-FELMLQE and ALQNY-FELMLQE theorems. In addition,
Ja complete sufficient statistic for the family of distributions by theorem 1 where A’ BMLQ and I ;Z&MLQ
are functions of the sufficient statistic by lemma 1. Thus, A’3; and I'1; are UMVUE for their

expectation by the Lehmann-Scheffe theorem (Casella and Berger,1990,p320). =

Theorem 4: Consider the Y-Model under {L], [O], and [N] where spV” is a QS, ;Z&REMDQ exists, and
VSZREM]Q is PD. Then I 1’&1 is FELREMLQE and UMVUE in the QY-Model for I.

proof: Since spV” is a QS by hypothesis, IV ;Z&REMLQ = I, are FELREMLQE by the
LQNY-FELREMLQE theorem. In addition, 3 a complete sufficient statistic for the family of distributions
by theorem 2 where IV ;Z&REMLQ is a function of the sufficient statistic by lemma 1. Thus, '3, is

UMVUE in the QY-Model for I3 by the Lehmann-Scheffe theorem (Casella and Berger,1990, p320). =

These results only apply to the full case and cannot be extended to the general case, since the family
of distributions do not necessarily admit a complete sufficient statistic under the general UBLUE

conditions. Results for the general case are given in the next section.



108

7.2. UMVUE in the General Case

The previous section examined UMVUE properties under the UBLUE conditions in the full case
presented in chapter 4. This section will examine UMVUE properties under the UBLUE conditions in the
general case presented in chapter 5. These conditions will be used to provide expressions for the
covariance of A’EMLQ, I _1ZMLQ, and I ﬁREMLQ. Without the UBLUE conditions, such exact expressions
cannot be obtained. In addition, it will be proven that A’ BMLQ, "o Where 8 is known, and T DrEMLO
are UMVUE in the appropriate model for A’G and V% under the UBLUE conditions. An estimator can be
shown to be UMVUE by showing that the covariance of the estimator attains a lower bound over all

unbiased estimators.

7.2.1. The Covariance Inequality

The next result gives the lower bound for the variance of an estimator. It will be used to identify the

existence of a UMVUE.

(Lehmann, 1983, Theorem 2.7.1)
Covariance Inequality: For an estimator & of g(8) and any function a(f), which depends on the data, and
has finite second moments, Var(6) > Cov(8, a)[Cov(a)] "' Cov(g, §) where equality holds if and only if

8 = Cov(6,a)[Cov(a)] 'a + ¢ for some constant c.

proof: i) Var(6 — Cov(8, a)[Cov(a)]la) > 0
& Var(6§) + Cov(§, a)[Cov(a)] ! [Cov(a)][Cov(a)] " !Cov(a, §) — 2Cov(§, a)[Cov(a)]Cov(a, §) > 0
& Var(6) — Cov(6, a)[Cov(a)]'Cov(a,§) > 0.

ii) The inequality in i) is an equality < § = Cov(§,a)[Cov(a)] 'a + ¢ for some constant c. =

The Covariance Inequality cannot be used directly since the right hand side depends on ¢ through
Cov(6, o). For particular choices of § and g, it will be the case that Cov(§, o) only depends on the
parameter £ and not on §. For this purpose, some definitions and notation will be used from likelihood
theory (Lehmann,1983,Ch.2). Consider a family of distributions Py for 8 € T C RP where T contains a
non-empty open set in R?. Suppose the distribution P, has density pg. The following definitions and

notation are useful:
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Definitions: Likelihood Function: L(8|w) = pg(w)
Log-Likelihood Function: [(€]w) = In L(8]w)
Score Statistic: u(8jw) = {ai (8lw) }px1
Information Matrix: i(8) = Covg(u(flw)) = {Con(a%il(Qlw), a%jl(Qlw))}pxp.

These definitions as well as the following results require certain regularity conditions pertaining to
the existence of derivatives, the existence of expectations, and the ability to interchange differentiation
and expectation (Lehmann,1983,p125-6). These conditions are met for the normal family of distributions
where the parameter space contains a non-empty open set (Lehmann, 1986, Theorem 2.9). Only this family

of distributions is of particular interest, so it will be assumed that the regularity conditions are satisfied.

(Lehmann,1983,Lemma 2.6.1)
Lemma 2: 1) Eglu(8lw)] =0

ii) Covg(6,u(flw)) = E9[6] ¥ & with finite second moments.
iif) i(8) = { - E[3 aope]}
proof: i) Eg[u(8|w)] = Eql £1n pp(w) ] = Eg ["’”"” ) = aﬁ,fgwl;)pg(w)dw = Z[p(w)dw=F1=0.

w)
i) Cova( ( o )) Eql6, w(@lw)] — Eql6]Eqlu(6lw)] = Eqls, u(@lw)] by i
w))pg(w)dw by definition of u(f|w)

%
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iii) Note aoiaa 1;1 pa(w) = 5 z 7 9
i15(8) = Covg(FyUOlw), 75 U0lw)) = Ee[a%,.l(elw)g%;l(alw)l by i)
= gl 5 Po(w) % o ()] = Elg535,Pe(w) + 3 (505, Pe()]
[aaao po(w) ] + 7 E [ao Inpg(w) | = E[mpgl by D).

(Lehmann,1983,Theorem 2.7.3)
Lemma 3: For an unbiased estimator 8 of g(@)and V d, Varg(d@) > d'[i(9)]"\d

with equality if and only if '8 = d'[i(8)] 'u(8) + ¢ for some constant ¢ = (8, d).

proof: Apply the Covariance Inequality with § = d'8 and a(6|lw) = u(8|w) noting that

Cov(u(flw)) = i(8) by definition and Cov(dB.u(flw)) = 2Esld'8] = £d'0=d bylemma2. =
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7.2.2. UMVUE Results

The next step is to examine whether the quantities A’ Bﬁmo’ r i&MLQ, and I" @REMDQ can be written in
the linear form given in lemma 3 for attaining the lower bound. For the ML and REML methods,
assumptions [L], [O], and [N] are being used for the Y-Model. Lemma 1 in section 3.2.3 can provide a
convenient representation of the score function and the information matrix, given in section 3.1.4, for the

ML and REML estimation methods. These representations are given below:

- _[mBw)] _ | XVe'X -X'V,XE
ML: y(ﬁv@ﬁ) - |:ﬂ2(ﬁﬂﬁ):| - Xo*vmo—l)/lo . Xo*vmo—lXoZQ
o , C[xvgix 0
z(ﬁ#ﬁ) _ dlag(zll(ﬁvw)a 222(‘@’3&)) - 0 Xo*Vlz—lXo
REML: ugp(¢) = XV 1Y° — XV X% ip(g) = XV 1Xe.

Note that uo(3,2) depends on Y7, not Y3, as § and 3 are not being estimated. In order for the
information matrix to be PD, it is necessary to assume 3 is mean estimable in the Y-Model, ¢ is mean
estimable in the ALQEM for (Y — XB), and ¢ is mean estimable in the LQEM for NxY . The following
lemma demonstrates that the GLSE for these models are linearly related to the score statistic. The
expression for the GLSE's can be found in chapter 4. Due to the issue of the response in the ALQEM for
the ML method, let @i(Y;) denote the GLSE given in section 4.3.2 and let @m(Yf’) denote the same

expression using Yy instead of Y5. In addition, let #(Y3) denote the EGLSE given in section 4.3.2.

Lemma 4: i) For the ML method, B, = 8+ [in(8.4)]'wm(8.0).
ii) For the ML method, £,(Yy) = 1 + [i22(8.4)] 'u2(8.2).-
iii) For the REML method, o, = % + [ir(¥)) 'ur(2).

proof:i) By, = (X' VX)X VY = (X' V' X) (X V'Y — X'V XB) + 8
=B+ [in(8)] 'w(8.Y)-
i) B, (¥7) = (XVEX) XV Yy = (XVE X)XV Y - XV Xou) o
= ¢+ [in(B0) 'w(8).
lll) @1& — (Xo*VioXo)—lXo*Vwo—lyo — (Xo*ij—lxo)—l[Xo*VZZAlyo _ XO*Vlzngolﬁ] + ZQ
=3+ [ir(W)] ur(¥). =
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Corollary: For the ML method, §(Y3) = © + [i22(8.0)] ' u2(B.2).

proof : h(¥5) = (X*V2 X)XV = (XPVE X)XV YR — XUV X + 0

= @+ li(B.0)] 'u(B.0).

The following two results indicate that under the appropriate GZC conditions, A’ B:ZMLQ’ r ;@MDQ(Yf’)
where 3 is known, and I ;@REMLQ are UMVUE. These expressions are the same as those for the GLSE
except they use 1ZMDQ and _1ZREM[Q as estimates in place of 1. Such expressions, as well as expressions for
the LSEs, are given in chapter 5. The following results assume ;Z&MLQ and ;Z&REMLQ exist. The GZC

conditions are conveniently referenced below. Note that the conditions do not depend upon the response.

GZC-1: R(V,X(X'X)"A) C R(X) Viyges
GZC-2: R(V3X°(X°*X°)T) C R(X°) Vyes
GZC-3: R(ViX°(X°*X°)T) C R(X°) ViyeR.

Theorem 5: i) If Vy _ is PD, then GZC-1 & A’,BJZMLQ = NGB+ N[in(B)]'w(B) V % €E.
i) IV is PDand g is known, then GZC-2 & "y, (¥?) = I"b + ['[iza(Ba)] 'ua(B.4) Vb € .

i) If Vg, isPD, then GZC-3 & Iy =" + I'[ir(W)] 'ur(w) V & € E.

proof: i) (1) Suppose GZC-1. By the proposition in section 5.2.1,V 12 € R¥1 3 Vy 1s PD,
NBg,,=NBr=NBy=NX'Vi' X)X V'Y = N+ Nin(B)) 'wi(B:4) by lemmad.
(2) Lety = [0, ..., 0,1] € = = Vj, = I. Suppose A’Eﬁm = NGB+ N[in(B)] 'w(Ba) V¢ €=
= A@ﬁm =N(X'Vi'X)"'X'V;'Y Vg €E by lemma 4. In addition, the above holds for gy € Z,
$0 A’BJZ,MLQ = AN (X'X)"'X'Y from above. Thus, (X' V1 X) ' X' V'Y = N(X'X)T'X'Y Ve B
= GZC-1Dby the Y-UBLUE theorem.
i) Since 3 is known, ;@ﬁm is a function of Y¥;” which can be seen in section 3.2.3.
(1) Suppose GZC-2. By the proposition in section 5.3.1,V ¢ € R¥1 3 Vg 1s PD,
MO, () = DB (YY) = DB, (F7) = DXV X)XV 1Yy

=Ty + Min(B.4)] 'u2(B,3k) by lemmad.
Q) Letgy=[0,..,0,1) €E=Vy =I=V; =L
Suppose 'y, (¥7) = It + IV[ina (Bab)] "u2(B) V b € E
= I";@ﬁMLQ(Yf’) = I"(X"*VE“X")“X"*VJ”‘Y{’ V i €Z bylemma4.
In addition the above holds for ¢y € Z, so I";@ZZMLQ(Yf’) =I"(X*X°)"1X°*Y? from above.
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Thus, ['(X>* V7 1X°) 1X V7Y = T/(X> X°) XYy VY €E
= GZC-2 by the LQZ-UBLUE theorem.
i) (1) Suppose GZC-3. By the proposition in section 5.3.1,V ¢ € R**! 5V, is PD,
r'ﬁﬁmw =T, =Ty, = D(X*V1X0) XV Y = TVp + Dfir(¥)] 'ur () by lemma 4.
(2)Letyp = [0, ..., 0,1] € E= Vy, = I = V; = Ny. By lemma 1 in section 3.2.3,
XVl A = Hu(NxViNx(Nx)t A(Nx) ")} = 3{tr((Nx)* Nx NxViNx Nx(Nx)* A)}
= Hur(PnyNxViNxPnyA)} as Py, = (Nx)*Nx = Nx(Nx)™.
= H{u(NxV;NxA)} = X>*A by lemma 1 in section 3.2.3.
Suppose 'y, . ="t + ['lir (V)] 'ur(®) ¥ € E
= r'ﬁﬁw =T/(XVp 1X°) 71XV, lY° V ¢ € E by lemma 4.
In addition the above holds for i € Z, so I” ZZ&REMLQ =I'(X°*X°)"1X°*Y" from above.
Thus, I'(X** V71 X°) 1 XV lYe = T/(X** X°) I X*Y° VY € B
= GZC-3 by the LQZ-UBLUE theorem. w

Theorem 6: 1) VzZMLQ PD and GZC-1 = A’ B, is ELMLQE, UBLUE, and UMVUE in the Y-Model.
ii) VJZMLQ PD, 3 known, and GZC-2 = I/ fﬁ 1(¥?) is ELMLQE, UBLUE, and UMVUE in the Y-Model.
iii) VJZREMLQ PD and GZC-3 = I fﬁ ; is ELREMLQE, UBLUE, and UMVUE in the QY-Model.

proof: i) From proof of theorem 5, A,Bﬁmq =NB;=NBy=NB+ Nin(By)| 'm(By) VY eE
= Vary(d'A 3 ;) is a minimum for unbiased estimators of d'A’8 V ¢ € E, d by lemma 3
= A’B, is a UMVUE in the Y-Model by definition.

Also, by the Y-UBLUE and Y-ELMLQE theorems, A’ E 7 is UBLUE and ELMLQE.

ii) From theorem 5, r'ﬁﬁm(yf) = D', (YP) = D'y (YY) = T + Dling(Bh)] 'wa(B) VL € E
= Vary(d'T"#;(Y?)) is a minimum for unbiased estimators of d'T"¢ V 3 € E,
= T4, (Y?) is a UMVUE in the Y-Model by definition.

Also, by the LQZ-UBLUE and ALQNY-ELMLQE theorems, I"¢,(Y7) is UBLUE and ELMLQE

d by lemma 3

as Y7* does not depend on any unknown parameters.

iii) As shown in proof of theorem 5, F’g’ﬁ&um =D'¢; =T, =T + Mir(@)] 'ur(®) VY €E
= Vary(d'T'¢;) is a minimum for unbiased estimators of d'T"s) ¥ ¢ € Z, d by lemma 3

= T4, is a UMVUE in the QY-Model by definition.

Also, by the LQZ-UBLUE and LQNY-ELREMLQE theorems, I"'gZ ; 18 UBLUE and ELREMLQE. =
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Theorem 6 indicates that, given a PD covariance, the GZC is a sufficient condition for the existence
of a UMVUE in the appropriate family of distributions. The GZC and UMVUE results stated in theorem 6
are not equivalent since the UMVUE does not necessarily imply that the CRLB is attained
(Casella and Berger,1990,p314).

The results of theorem 5 can be used to obtain expresssions for Covy (A’ EMLQ), Covy (T _1ZMLQ(Y1°)),
and Covy(I” _1ZREMLQ). Generally, such covariance expressions cannot be obtained, since these quantities

are not linear in terms of Y, Y, and Y°, respectively.

Corollary: Suppose the conditions in theorem 5 hold for the three cases. Then
D) Covy(ABuig) = N (X'V ' X) ™A = Nin(B)] A
i) Covy(Mémio(¥?)) = (X V371 X°)"'T = I'[i(84)]'T
iii) Covy(I"remo) = I'(X™ V1 X°) 7T = I"in(8.4)] T

proof: These above covariance expressions can be obtained using the expressions in theorem 5, where the

information matrix is constant and the score statistic is a random quantity. =

In general, such expressions for the covariance cannot be obtained. Searle et al. (1992) and Miller
(1977), recommend using the expressions in i), ii), and iii) as approximations for the covariance of
N EMLQ, r ZZMLQa and I ﬁREMLQ’ respectively. Their recommendation is due to the fact that these are the
asymptotic expressions for the covariance. However, under the UBLUE conditions, the above corollary
shows these covariance expressions are exact.

SAS (1996) uses the recommended approximations in its covariance calculations for the ML and
REML methods in the PROC MIXED procedure. Since the unknown parameter ¢ is involved in the
expression, it must be estimated. This is typically done using the ML or REML estimate of 3 to calculate
the estimated covariance. It should be noted that the estimated covariance is not equivalent to the exact
expression, even under the UBLUE conditions. It is not clear how well these estimates perform
(Searle et al.,1992,p320).

An exact expression still has not been examined for Covy (I” _1ZMLQ) when [ is unknown. This
situation requires the use of the response Y5 which did not fit into the above formulation. However, an
exact form can be given under GZC-2 and ZC for the Y-Model. The exact form is not the same as the

expression in ii) of the above corollary since Covy(Yy) = V;; instead of V,; under ZC for the Y-Model.

Theorem: For the ALQEM for (Y — X@) under GZC-2 where ZC holds for the Y-Model and V&Mwis PD,

Covy(I'Ewo(¥s)) = (X X)L X Vg X°(X** X°) 'T.
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proof: By the proposition in section 4.2.1, (¥ — XB) = NxY under ZC = Y9 = NxYY'Nx.

By the proposition in section 5.3.1,V 3 € R**! 5V, is PD, F’;@sz(YZ") = (X X°)"1X°*Yy. Thus,

Covy (I' (X** X°)"LX>Yg) = [V(X** X°) 1 X*Cov(Nx XY’ Nx) X°(X** X°)"'T from above
=I'(X*X°)"1X**Vy X°(X*X°)"'T from section 3.2.1. =

This theorem gives the exact form for the covariance of the MLQ when GZC-2 and ZC hold. It would
be interesting to compare the covariance estimates using the exact form in the above theorem with the

asymptotic form in corollary ii).
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8. Data Applications

This chapter applies the general UBLUE results obtained in chapters 4, 5, and 6 to issues that arise in
the analysis of data. The applications include an iterative procedure for obtaining MLQEs and REMLQEs
as well as profile likelihood calculations and computing time. The Battery Life Example
(Montgomery, 1991,p207) is used throughout this chapter to demonstrate the applications. The PROC
MIXED procedure in SAS (SAS,1996) will also be discussed, since it is a standard statistical tool for

analyzing data from mixed models.

8.1. An Iterative Procedure for Obtaining MLLQEs and REMLQEs

This section presents a general procedure for calculating MLQEs and REMLQE:s in the general case
for linear combinations of the fixed effects A’3 and linear combinations of the variance components Iz
An iterative procedure will be given with respect to the existence of an explicit linear solution. Data

examples will be used to illustrate the procedure.

8.1.1. The Procedure

Consider estimating the variance component vector () under the ML and REML estimation
methods. The likelihood equation for the ML method can be written as function of ¢ only by substituting
(X’ Vlé“lX )X Vlé_lz in place of 8 where [ is estimable. This is a convenient way to have the ML and
REML equations depend on 3 only (Harville,1977).

Linear quadratic estimation models were defined so that the EGLSE would correspond to either the
MLQE or the REMLQE. Section 3.2.3 shows how the ALQEM for (Y — Xﬁ) can be used to obtain the
ML equations for 22 and how the LQEM for NxY can be used to obtain the REML equations for . These
equations are given below assuming that 3 is mean estimable in both models which is equivalent to the

V;'s and the NxV;Nx's being linearly independent. Recall Fj = VzZ'_l - Vile(X’Vile)‘X’Vil:

MLQE: § = (X*"Vg L X°) X"V 1Yy = {n(Vy ViV 'V;)) Y FpViFpY )
REMLQE: § = (X*V2 1 X°) L X VElYe = {w(FViFyVy)} Y FViFyY }

These equations demonstrate that an iterative procedure is needed to identify the solution given by
the MLQE and the REMLQE as both sides of the equations involve @ Such an iterative procedure based
on the above equations is called Anderson's Iterative Algorithm (Harville,1977). The following steps

define the iterative procedure, assuming there are no parameter constraints:



116

~(0
i) Choose an initial starting value 2.
For i = 0,1,2,...,repeat the following steps given @(l).
i1) Find the covariance matrix Vﬁ(i) and use it to calculate the right side of the equation.

iii) Let the result in ii) be 2 1.
iv) Check if || 2" -

v) Replace i by 7 + 1 and go to ii).

@(l)H < e. If yes, then stop, else continue.

Conditions were obtained in sections 5.3.2 and 5.3.3 under which there exists an ELMLQE or an
ELREMLQE for a linear combination of the variance components given by I''3. The ELMLQE
corresponds to the LSE in the ALQEM for (Y — XB) under Zyskind's condition and the ELREMLQE
corresponds to the LSE in the LQEM for NxY. The equations for the ELMLQE and ELREMLQE are:

ELMLQE: I['{ = I"(X** X°) "' XYy = ['{u(V;V})} " {Y'NxViNxY'}
ELREMLQE: I'g = I'(X**X°) "' X>*Y° = I'tr(ViNxV;Nx)} " {Y'NxViNxY}.

When the sufficient conditions for an ELMLQE or an ELREMLQE are satisfied, then the iterative
procedure will converge in a single iteration for the linear combination I as the right side of the
equation does not involve @

The scoring method is another iterative procedure that can be used to estimate % (Searle, et al., 1992).
Consider the notation for the information matrix and the score statistic given in section 7.2.2. Note that
the ML equations, when substituting (X’Vl&‘lX)‘lX’VlQ”Z in place of 3, no longer depend on 3. Thus,
the score statistic can be represented as u(1) = u2(8,%) and the information matrix as (%) = 422(8,%).

The iterative scoring equations, for the ML and REML methods are then given by:

MLQE: +
REMLQE: Y+ @) ur @),

The same iterative steps i)-v) can be used to solve these equations. By the corollary to lemma 4 and
lemma 4 iii) in section 7.2.2, the equations from the scoring method are the same as the equations in
Anderson's Iterative Algorithm. From the ML theorem in section 3.2.3, Y3’ is the appropriate response in
the equations for the scoring method, since 3 is being estimated. Thus, if an ELMLQE or an
ELREMLQE exist, then the equations in the scoring method will converge in a single iteration. Other
iterative procedures for 1 are presented and compared in Harville (1977) and (Searle, et al.,1992).

Now consider estimating the fixed effect vector 8, where 3 is mean estimable or equivalently that the

matrix X has full rank. From section 4.2.1, the EGLSE is given by:
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EGLSE: Qi' = (X VAZ X) XV:Z Y.

For the ML method, the solution for the fixed effect vector 8 can now be obtained using the variance
component estimate from the above ML equations. In section 4.2.2, it is shown that the MLQE for g3 is the
same as the EGLSE for § where ;@ = ;@MDQ. Thus, the MLQE for E depends on ;@ However, if the
sufficient conditions for an ELMLQE are satisfied for a linear combination A’3, then A’ @ does not
depend on ;@ as shown in the following equation from section 5.2:

ELMLQE: A8 = N'(X'X)"1X'Y.

This suggests that when an ELMLQE exists, the value of A’ E will not change with the value of ;@
One method to evaluate this is to calculate A’ @ for each iterative value ﬁ(i) to see whether the quantity
N Bﬁ“) changes. Another method is to estimate 1 under a different procedure to obtain an estimate &Zp
where V7 is PD, calculate the EGLSE with © = Up, and determine whether A’ B&P =N Bﬁmm' If
AN B@P #N B:ZMLQ’ then A’ B@P is not the MLQE for A’ and an ELMLQE does not exist for A’3. For
example, it is common practice in data analysis to calculate the EGLSE with ¢ = ;Z&REMLQ. In general, the
resulting estimate BEREMLQ is not the MLQE, nor the REMLQE. It is the EGLSE using the variance
component estimate from the REML procedure as REML is preferred by many over ML for estimating
variance components (Searle et al.,1992,sections 6.6-6.8).

The equations described in this section can be calculated using any computing language that has
matrix computation ability. In particular, the PROC MIXED procedure in SAS will provide calculations
of the above quantities (SAS,1996). The ML procedure in SAS does represent the maximum likelihood
equations in terms of 3 only by substituting (X'V; ' X)X’V 'Y in place of 8 (SAS,1996). However, it
is necessary to adjust the defaults of the MIXED procedure in SAS in order to implement the scoring

method. The following options should be specified:

a) method - specifies the estimation method ML, REML, or MIVQUEO
b) nobound - no boundary constraints on the variance components
¢) noprofile - includes residual component in iterations

d) scoring - uses expected hessian in estimation method (need to specify for all iterations).

The MIXED procedure allows the user to choose among the ML, REML, or MIVQUEOQ methods for
estimating variance components. The MIVQUEO method is described in Searle et al. (1992,Section 11.3)

and the resulting equations are identical to those for the FELREMLQE presented in section 3.2.3.
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The remaining three options are necessary since the scoring method does not assume any constraints,
includes the residual component as part of the overall calculations, and uses the expected hessian matrix
for all iterative calculations. The expected hessian corresponds to the information matrix which is given
in the above equations for the scoring method. By default, the MIXED procedure uses the observed
hessian which is the matrix of second derivatives. In addition, SAS uses the information matrix with the
estimated variance component vector as its estimate of the asymptotic covariance matrix of the variance
components (SAS,1996) (Searle, et al.,1992,Chapter 6).

There are also options available in SAS that are helpful for interpreting the output. The itdetails
option outputs the variance component parameter values at each iteration. This output indicates whether
the iterative procedure for the variance components converges in a single iteration or whether some linear
combination converges in a single iteration. The solution option outputs the estimates of the fixed effects.
This output can indicate whether the estimates of the fixed effects are the same over different estimation
methods. The asycov option outputs the asymptotic covariance matrix of the the variance components.
This can be useful for purposes of interpretation. SAS offers a variety of choices for stopping rules. The
A(i))’ [i(gz(i))]'ly(gz(i)) <1 x 1078 where y(gz(i)) is

default, under the absolute option, iterates until u(z
A(l)) is the information matrix at 12(1). The absolute option prevents the

the score function at _@(i) and i (¢
criterion from being scaled by a multiple of the log likelihood function evaluated at " (SAS,1996).
The PROC MIXED procedure in SAS will be applied to the examples described in the following

three sections. These examples illustrate the applicability of the UBLUE results to data examples.

8.1.2. Battery Life Example I

The data for this example is from Montgomery (1991,p207) and is shown in Table 8.1. The responses
represent battery life (in hours) for batteries with certain material types at given temperatures. It should be

noted that the design is balanced as there are four observations per treatment combination.

Table 8.1. Data for Battery Life Example

Temperature (°F)

Material 15 70 125

1 130 74 155 180 34 80 40 75 20 82 70 58
2 150 159 188 126 136 106 122 115 25 58 70 45
3 138 168 110 160 174 150 120 139 96 82 104* 60*

Assume material [M] and temperature [T] represent random effects in a 2-way random model with
interaction M*T. The variance components and the overall mean will be estimated using the MIXED
procedure in SAS. The output from this procedure is summarized in Table 7.2. The SAS code used to

generate this output for the ML method is given in Appendix A.
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Table 8.2. SAS Output for Battery Life Example I

REML

Estimation Iteration History

M T M*T RESIDUAL ITERATION
0 0 0 1 0
244 .8681 1429.6597 432.0579  675.2130 1
Asymptotic Covariance Matrix of Estimates
Cov Parm Row T M M*T Residual
T 1 1555452.2 -71357.3 -34965.5 0
M 2 713573 210768.1 -581174 0
T*M 3 -34965.5 -58117.4 182061.1 -8442.8
Residual 4 0 0 -8442.8 33771.3
Solution for Fixed Effects
Effect Estimate Std Error
INTERCEPT 105.5278  24.9988
ML
Estimation Iteration History
M T M*T RESIDUAL ITERATION
0 0 0 1 0
191.2087 439.3520 591.4815 675.2130 1
55.2815 1007.2364 511.5329 675.2130 2
205.0174 843.4741  461.2602 675.2130 3
163.4037 955.1122  459.7966 675.2130 4
185.0232 917.4251 456.5319 675.2130 5
177.0576 934.4312 457.0915 675.2130 6
180.4469 927.8164 456.7242 675.2130 7
179.0962 930.5594 456.8477 675.2130 8
179.6498 929.4543  456.7929 675.2130 9
179.4256  929.9052 456.8143 675.2130 10
179.5169 9297222  456.8055 675.2130 11
179.4798 929.7966 456.8090 675.2130 12
Asymptotic Covariance Matrix of Estimates
Cov Parm Row T M M#*T Residual
T 1 966242.4 -24197.8 -47838.6 0
M 2 -24197.8 166293.3  -62957.2 0
T+*M 3 -47838.6 -62957.2 196944.9 -8442.8
Residual 4 0 0 -8442.8 33771.3
Solution for Fixed Effects
Effect Estimate Std Error
INTERCEPT 105.5278  20.9587
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Since the design is balanced, Zyskind's condition holds for the Y-Model. By the Y-FELMLQE
theorem in section 4.2.2, there exists an FELMLQE for ¢ which is the overall mean Y ... This can be seen
in the output since the two methods of estimation yield the same fixed effect estimate for the intercept.
The estimate does not depend on the variance component estimates, which are not the same for the ML
and REML methods. An exact expression for the standard error of the FELMLQE Y. is % 1'Vyl . The
standard error estimate in the output is obtained by plugging in _1ZMLQ or ZZREMLQ into the exact expression.

By the corollary in section 4.3.3, there is an FELREMLQE for 3 in balanced designs. This can be
seen in the REML estimation iteration history as only a single iteration is needed to obtain the solution. As
shown section 7.2.2, there exists an exact expression for the covariance of the REML estimate. The values
in the asymptotic covariance matrix are obtained by plugging in _@REM[Q into the exact expression. Thus,
these values are estimates from an exact expression, rather than estimates of the asymptotic expression.

The ML estimation iteration history indicates there is not an explicit linear solution for the variance
components under the ML procedure since it takes 12 iterations to converge. There does not exist an
FELMLQE for 4 since spV = { Py, Pr, Pyx7,1}is not a QS as Py Pr + PrPy = P, ¢ spV. However,
by example 6.6, there exists an ELMLQE for o2 as this model includes the highest possible order term.
This is evident from the ML estimation iteration history where the estimate of the residual component
does not change over the iterations. It is interesting to note that the ELMLQE and ELREMLQE for o2 are
the same in this example. Since the estimate of 03 is the same for both methods, the exact estimate of

Covy(0?) will also be the same.

8.1.3. Battery Life Example I1

For illustrative purposes, consider a modification of Battery Life Example I. For this example, the

first two observations are removed for material 3 at each temperature level. The deleted observations are

4 4 4
underlined in Table 7.1. This results in an unbalanced design which has the incidence matrix |4 4 4
2 2 2

where each row denotes a material and each column denotes a temperature. Also, suppose temperature is a
fixed factor in a model which does not include the interaction term M*T. Let Y} be the response for
temperature ¢, material j, and observation k. Also, let a; be the treatment effect associated with
temperature ¢. Then the expectation for this model is given by E[Y;x] = u + «; for all 5, k.

The variance components and the fixed effects will be estimated using the MIXED procedure in SAS
under the ML, REML, and MIVQUEQ methods. The MIVQUEO method is presented since it is not the
same as the REML method in this case. The output from this procedure is given in Table 8.3. The SAS

code used to generate this output for the REML method is given in Appendix A.



Table 8.3. SAS Output for Battery Life Example II

Parameter
#tos
] — Q3
Qg — a3
0

Parameter

u+as

] — Q3

Qo — a3
0

Parameter

#+as

] — Q3

Q9 — (3
0

REML

Covariance Parameter Estimates

194.4

Residual 929.8

Solution for Fixed Effects

Effect T
INT

T 1

T 2
T 3

ML

Covariance Parameter Estimates

104.5

Estimate
60.78227290
84.00000000
37.50000000
0.00000000

Residual 860.6

Solution for Fixed Effects

Effect T Estimate
INT 60.42803353
T 1 84.00000000
T 2 37.50000000
T 3 0.00000000
MIVQUEO

Covariance Parameter Estimates

211.3

Residual 921.8

Solution for Fixed Effects

Effect T
INT

T 1

T 2

T 3

Estimate
60.83984741
84.00000000
37.50000000
0.00000000

Std Error

12.64288343
13.63633746
13.63633746

Std Error

11.06201142
13.11971264
13.11971264

Std Error

12.83522304
13.57776055
13.57776055
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The variance component estimates for the ML and REML methods required iterations. The values of
these estimates over the iterations are not of interest in this example. However, note how the final
estimates differ across the estimation methods.

The solutions for the fixed effects are from SAS's default parameterization, which provides estimates
of u + a3, a1 — as, and as — a3. Despite the different variance component estimates, the output shows
that the estimates for the treatment effect differences a; — a3 and as — a3 remain the same across the
estimation methods. As shown in section 5.4, there indeed exists an ELMLQE for the treatment effect
differences when the rank of the incidence matrix is 1, or equivalently when the incidence matrix has
proportional frequencies.

This model did not include the interaction term M*T. If the model did include this term, then an
ELMLQE would not exist for the treatment effect differences when the rank of the incidence matrix is 1.

From section 7.2.2, the standard error of the treatment differences has an exact expression. The

associated standard error estimates for an estimation method are obtained by plugging in either

lQMLQv lQREMIQv or iMIVQUEO into the exact expreSSiOn.

8.1.4. Battery Life Example II1

For illustrative purposes, consider a modification of Battery Life Example I. For this example, the last
two observations are removed from the combination material 3, temperature 3. The two deleted

observations are marked by 'x' in Table 7.1. This results in an unbalanced design which has the incidence

4 4 4
matrix |4 4 4 | where each row denotes a material and each column denotes a temperature. Also,
4 4 2

suppose temperature is a fixed factor. The interaction term M*T will be included in the model as a
random effect. The expectation for this model is also given by E[Y;;z] = p + a; for all j, k as described in
section 8.1.3.

The variance components and the fixed effects will be estimated using the MIXED procedure in SAS
under the ML, REML, and MIVQUEO methods. The MIVQUEO method is presented since it is not the
same as the REML method in this case. The output from this procedure is given in Table 8.4. The SAS
code used to generate the output for the MIVQUEO method is in Appendix A.



Table 8.4. SAS Output for Battery Life Example III

Parameter
Bt
b+ oo
H+as

Parameter
Ht o
Y+ o
utas

Parameter
u+ar
u+ a2
Ht+ag

REML

Covariance Parameter Estimates

247.8 M*T  446.3

Solution for Fixed Effects

Effect T Estimate

T 1 144.83333333

T 2 107.58333333

T 3 64.32324833
ML

Covariance Parameter Estimates

159.9 M*T 243.2

Solution for Fixed Effects

Effect T Estimate

T 1 144.83333333

T 2 107.58333333

T 3 63.90099970
MIVQUEQ

Covariance Parameter Estimates

205.7 M*T 491.6

Solution for Fixed Effects

Effect T Estimate

T 1 144.83333333
T 2 107.58333333
T 3 64.29243163

Residual 686.4

Std Error

16.98671077
16.98671077
17.46732374

Residual 684.6

Std Error

13.83577091
13.83577091
14.38532825

Residual 683.1

Std Error

17.01108447
17.01108447
17.49171658
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The variance component estimates for the ML and REML methods required iterations. The
values of these estimates over the iterations are not of interest in this example. However, note how the
final estimates differ across the estimation methods.

The solutions for the fixed effects are from SAS'’s parameterization under the NOINT option. The
output from this parameterization gives the estimate for u + ay, i + a2, and p + a3. Despite the
difference in the variance component estimates, the output shows that the estimates for the first two
treatment means are the same across the estimation methods. A check of the UBLUE conditions reveals
that there indeed exists an ELMLQE for i + a1 and u + ao.

From section 7.2.2, the standard error of the first two treatment mean has an exact expression. The
associated standard error estimates for the estimation methods are obtained by plugging in either
_1ZMDQ, ﬁREMDQ, or ﬁMIVQUEO into the exact expression.

The examples in these last two sections illustrate that the ability to identify an ELMLQE for a linear
combination of the fixed effects may depend upon the parameterization. For example, it was easier to
identify the ELMLQE in the previous section under the SAS default parameterization while it was easier
to identify the ELMLQE in this section using the NOINT option.

In the previous examples, the existence of an ELMLQE and ELREMLQE were already proven in
previous chapters. However, in this section, the existence of an ELMLQE had to be verified separately
using a matrix computing language to perform the check described in section 6.5. This leads to the
question of whether it is possible to verify the existence of an ELMLQE or ELREMLQE using the

iterative procedure. This question is investigated in the next section.

8.1.5. Checking the Conditions Using the Iterative Procedure

This section describes a method to check the conditions using the iterative procedure presented in
section 8.1.1. Consider checking the GZC presented in chapter 5 which is sufficient for the existence of an
ELMLQE or ELREMLQE for a linear combination of the fixed effects or a linear combination of the
variance components. The previous sections in this chapter show the outcomes of the iterative procedure
when the GZC does and does not hold. However, misleading conclusions could be drawn by observing
these outcomes without knowledge of whether or not GZC holds. This is due to the dependence of the
iterative procedure on particular data values y and particular parameter values 2. However, it is possible
to verify the conditions, with a degree of certainty, using the iterative procedure. This section only
presents the method and its interpretation. A formal justification of the method is given in Appendix B.

In order to implement the method, it is necessary to have two items. The first item is a randomly
generated observation " from a continuous distribution with support that contains a non-empty open set.

In data analysis problems, it is likely that the observations can be assumed to be randomly observed from
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a normal distribution. The second item is a randomly generated value of 1" from a continuous distribution

with support Z* = {3 € R'“’“IV]k is PD}. In addition, the value ¢" must be generated independent of y".
Consider checking the GZC for the ML procedure for a linear combination of the fixed effects A’g.

The GZC, in this case, is the sufficient condition for the existence of an ELMLQE for A’ 3 (section 5.2.2).

This method does not need to involve the iterative procedure to solve for 1, but it is necessary to have a

given value of 1. For a fixed value of ¢ given by 1/, A8, (y") is the GLSE based on 3/ and g

(section 5.2.1). Method A is as follows:

1. For any given value, 9 € =*, calculate AlBlQQ (¥) (ex.¥=1[00..01}).
2. For the random value 3", calculate A’Bw (u".
3. Does A’Bmg(y') = A’Bw(y')?

Consider checking the GZC for the ML or REML procedure for a linear combination of the variance
components IV1. The GZC, in this case, is the sufficient condition for the existence of an ELMLQE or
ELREMLQE for I3 (section 5.3.2, 5.3.3). Let I @ (y") denote the EGLSE based on y" (section 5.3.2,
5.3.3). In order to calculate the EGLSE, it is necessary to use the iterative procedure to solve for 12 where

the starting value is specified. Method B is as follows:

1. Use the random value 0" as a starting value in the iterative procedure.
2. Calculate I'% (y).

3. Does the iterative procedure converge in a single iteration for I @ (¥")?

Methods A and B can be implemented in a computing language that can perform the iterative
procedure described in section 8.1.1, generate y"and ", fix the variance component values at 19 or 2",

and specify 10" as a starting value in the iterative procedure. For instance, it may be the case that these
methods can be used in SAS in the PROC MIXED procedure with the PARMS statement (SAS,1996).

Consider the random variables Y and . For either Method A or B, let S(¢,Y) = 1 if the answer to
1 if GZC holds
0 if GZC does nothold 274 £ P

step 3 is yesand let S(i,Y) = 0 if the answer is no. Also, let £ = {
the joint probability distribution of the independent random variables Y and . From the results in
Appendix B, £ = 1implies P,(S(¢,Y) = 1) = 1and £ = Oimplies P,(S(,Y) =0) = 1.

However, the goal is to use S(z,Y) as a statistic to draw inference about the unknown parameter .
Informally, one could ignore the probability measure F; and say § = 1 if and only if S(3,Y) = 1 and
& = 0if and only if S(2,Y) = 0. For either Method A or B, this means that the answer to step 3 is 'YES'

if and only if the GZC holds and the answer to step 3 is 'NO' if and only if the GZC does not hold.
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Formally, it is necessary to account for the probability measure when drawing inference to £. This can
be done using a confidence region. A 100% confidence region for £ is given by

C(S(¥,Y)) = { E(l)% iiggi:i}g z (l).This confidence region indicates that if S(¢,Y) = 1, then

C(S(,Y)) = {1} contains the true value of £ with 100% confidence. On the other hand, if S(,Y) = 0,
then C(S(x,Y)) = {0} contains the true value of £ with 100% confidence. Thus, the coverage
probability is P;(¢ € C(¢,Y)) = 1as shown in Appendix B.

This section has demonstrated how the iterative procedure in section 8.1.1 can be used to check the
GZC for fixed effects and variance components. Justification of the results in this section is given in
Appendix B. One problem with these methods is that the numbers randomly generated from a computer

are not truly random, rather they are 'pseudo-random’.

8.2. Profile Likelihood Calculations and Computing Time

Suppose there exists an ELMLQE for a subvector of an estimable parameter vector which could
consist of fixed effects or variance components. This section demonstrates that computing time and
resources could be saved by accounting for the ELMLQE in the iterative procedure given in section 8.1.1.
In particular, profile likelihood calculations are examined. This section discusses adjusting the iterative
procedure for the ELMLQE and computing profile likelihood confidence intervals. These results will be

applied to Battery Life Example 1.

8.2.1. Adjusting the Iterative Procedure

The iterative procedure presented in section 8.1 can be altered when there are explicit linear
likelihood estimators. This alteration may be helpful for saving computing time and resources. For large
data sets with numerous variables, the savings could be dramatic. The adjustments for the iterative
procedure will be presented with respect to the maximum likelihood procedure as fixed effects are of
interest.

Consider the variance component vector 3 = [¢; 1 ¥, |- If there is an ELMLQE for the
subvector 2, then the iterative procedure can be adjusted to account for the simple explicit linear
expression given by _@2. From the formulas in given in section 6.4.2, the MLQE for 2> would consist of the

subvectors given by:

ELMLQE: &y = (X$"Nx: X3) ™' X Nxg Y5
MLQE: @ = (XPVE 1X}) X VEH(Yy - Xibyy).
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The ELMLQE can be identified on a single iteration, while the MLQE will require an iterative
procedure. However, the MLQE for 2 can now be calculated using the inverse of a k; x k; matrix instead
of a (k1 + k2) x (k1 + k) matrix. It should be noted these expressions assume ZC holds, so there must
exist a FELMLQE for X as indicated by the Y-FELMLQE theorem.

Consider the case where there does not exist an FELMLQE for § or for #. The iterative procedure
discussed in section 8.1 shows how to find the MLQE for G after an MLQE for % has been obtained.
However, it may be informative to calculate 3 for each iterative solution of % in this case. There is
potential to save computing time and resources in this case as well. Suppose 8 = [8,,, .1 55,,.] where

there exists an ELMLQE for S3,. Using the formulas in section 6.2, the MLQE for 8 would be given by:

ELMLQE: [, = (X)Nx, X,) ' X3Nx, Y
MLQE: G = (X{V;'X) ' XiV; (¥ - X8y

The ELMLQE can be identified on a single iteration while the MLQE will require an iterative
procedure. However, the MLQE for § can now be calculated using the inverse of a inverse p; X p; matrix

instead (p; + p2) X (p1 + po) matrix.

8.2.2. Computing Profile Likelihood Confidence Intervals

The profile likelihood procedure is a technique which provides inference about a parameter in the
presence of nuisance parameters. Particular interest in this section is obtaining a profile likelihood
confidence interval. This procedure can be defined as in McCullagh and Nelder (1983). Suppose there is

interest in §; where § = [8], ., 85, ,,]" and consider the following definitions:

Definitions: Profile Log Likelihood Function (for €1): [,(61) = sup In L(61,6,)
[0

Likelihood Ratio Test (LRT): For testing Hy : §; = 610 vs Ha : @1 # 610, the LRT is given by
Tp(Qm) = 2[lp Ql) — lp(Qm)] ~ X?,Z under H,

Approximate 100{1 — @)% Confidence Region (for 8;) : The region given by
{&:: Tp(Ql) < X%z,l—a} = {0 : 2[111@1) = &)] < Xt22,1—a}'
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Using the profile likelihood function, a likelihood ratio test statistic can be obtained and inverted to
produce an approximate confidence region for 8;. In order to calculate this approximate confidence
region, it is necessary to find [,(8;) = l(Ql,/Q\ggl) or @2@1 for each value of @;. Thus, there is a
computational advantage if there exists an explicit likelihood estimator for Eggl or some of its components.

Saving computer time is important in this case since an iterative procedure must be repeated for each
value of 8;. The iterative procedure would be adjusted as indicated in section 8.2.1. The difficulty is how
to incorporate the given value of §; when calculating [,(8:).

The following changes can be made to account for a given value of §; when 8; = ;. For a particular
value Gy, the response is Zg = Y — X310 where E[Zy] = X283 and Cov(Zp) = Cov(Y) = V. Zyskind's
condition for the Zg-Model would be R(VX2) C R(X3) V¢ € =. The corresponding LQEM has
response Yy = (Zo — X202)(Zo — X28:)'. The iterative procedure to estimate ¢ and [, would be applied
to this LQEM as in section 8.1.1. The conditions for the existence of an ELMLQE for the subvector of
will not be changed since these conditions do not depend on Y5.

The following changes can be made to account for a given value of #; when 8; = #;. It is more
difficult in this case to account for an ELMLQE. Let &* = [¥g, 1 %ok,x1 Lakyx1) Where gioisa
particular value and it is of interest whether there exists an ELMLQE for 103. Hence, the covariance matrix
is Cov(Y) = Vi = Vo + Vi + Vi and E[YP — V| = Vi — Ko = Vi, + Vi, = X580 + X313
From the U-UBLUEgg theorem, an ELMLQE would exist for 13 when R(V Ny, X3) C R([X3 + X3])
for all ¢* where Cov(Yy) = Vj = 2Wy,,. Thus, the sufficient condition for the existence of an ELMLQE
is affected by 110 through *. The following proposition gives an example in which an ELMLQE exists in

this setting.

Proposition: Consider the balanced random 1-way model where ¥ = [02 o2]. If @MLQ exists and VzZMLQ

is PD, then 3 an ELMLQE for 02 V ¢* = [02 02 | where 02, is a fixed value of o2.

proof: Vg = mo2Py+ 031 = Vy, + V,, = E[YY — 051 = mo2Ps and

Cov(Yy — 051 ) = 28y, = V.. Note R(Vy. Ny X3) = R(V . X3) since X3 = 0.

Thus, V ¢ = [02 03] andu € R, V. X5u = 2V V uVye
= 2u(0%] + mo2Pa)mo2Py(0%] + mo2Py) = 2umoi(02Pa + moiPy) (03] + mo?Py)
= 2umo?2(o2) + mo2)?Py € R(X3) V 02, 02

= dan ELMLQE for 03 by the LQNY-ELMLQEgR theorem. =
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8.2.3. Battery Life Example 1

Battery Life Example I was presented in section 8.1.2. In this section, it will be used to indicate the
saving of computing time for calculating a profile likelihood confidence interval for the fixed effect
61 = p where the complete parameter vector is givenby 8 = [ 03y 0F o3p,p 02) = [01 B54,1)]'- For
this example, it was observed that there exists an ELMLQE for the subcomponent §, consisting of o2.
Computing time could be saved by removing o2 from the iterative procedure as described in section 8.2.1.
Also, note that ZC holds in this example, so there is an ELMLQE for y as well.

The CPU time was measured for finding the profile likelihood when acounting for the ELMLQE for
o2 and when ignoring the ELMLQE for o2. The MATLAB program was used on a Pentium I 200 MHz
computer and generated an approximate 95% profile likelihood confidence interval for u given by
(49.25,161.75). The CPU time for a particular computer varies on a run and depends on the parameter
range, step size, and convergence criteria. For purposes of illustration, the values were set to [0, 200], .5,
and .1 respectively. The times are given in Table 8.5 for a single run. This table indicates that over 15
minutes were saved by accounting for the ELMLQE for o2. The time savings were substantial in this
example. The savings would be much larger for examples with more observations and more variance

components.

Table 8.5. CPU Time for Profile Likelihood for Mean in Battery Life Example I

CALCULATION CPUTIME

Account for ELMLQE for 0?2 35 min 55 sec
Do not account for ELMLQE for ¢2 51 min 5sec (>15 min)

e
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9. Conclusion

9.1. Summary

Szatrowski (1980) and Elbassiouni (1983) establish conditions for the existence of a full ELMLQE
and a full ELREMLQE for the fixed effect vector and the variance component vector. These results are
presented in chapter 4. This thesis presents the previous results using models carefully defined in chapter
3. The sufficient conditions were related to the UBLUE conditions in chapter 4.

This thesis extends the results of Szatrowski (1980) and Elbassiouni (1983) to identify conditions for
the existence of an ELMLQE and an ELREMLQE for linear combinations involving the fixed effects and
variance components. The general case was formulated in chapter 5 and the most general version is given
in section 5.1. A special case involving conditions for the existence an ELMLQE and an ELREMLQE for
a subvector of the fixed effect vector or a subvector of the variance component vector is presented in
chapter 6. The general procedure for obtaining these conditions involves deriving UBLUE results for the
underlying model defined in section 3.3.1. These UBLUE results can be applied to the specific models to
obtain conditions for existence of the ELMLQE and the ELREMLQE. Under the UBLUE conditions, the
ELMLQE and ELREMLQE are given by the least squares estimators with respect to the models of
interest.

This thesis also presents examples in which the ELMLQE and ELREMLQE conditions hold in the
general case. The most comprehensive example is given in section 6.8 and defines a class of random
models under specific design and model conditions that have an ELREMLQE for a subvector of the
variance component vector. Other examples that have ELMLQEs or ELREMLQE:s for a subvector of the
variance component vector are discussed at the end of chapters 5 and 6. Tables are given in section 6.9,
which illustrate 3-way models that have an ELMLQE or ELRELMQE for the variance components under
various designs.

Chapter 7 applies the UBLUE conditions to UMVUE's in the full and general cases. In the full case in
section 7.1, there exists a complete sufficient statistic statistic for the family of normal distributions under
the ML and REML procedures (Seely,1971). The ELMLQE and ELREMLQE can be shown to be
functions of the complete sufficient statistic. In section 7.2, it is shown that the ELMLQE for a linear
combination of fixed effects and the ELREMLQE for a linear combination of variance components are
UMVUE. This is done by showing that the covariance attains the lower bound for unbiased estimators.
This section also gives exact expressions for the covariance of the ELMLQE and ELREMLQE.

This thesis also applies these results in chapter 8 to an iterative procedure for obtaining the MLQE
and REMLQE. Section 8.1 discusses the procedure and how to implement it in SAS using PROC
MIXED. Sections 8.1.2, 8.1.3, and 8.1.4 apply the procedure to data examples. Section 8.1.5 shows how

to use the iterative procedure to check the conditions in the iterative algorithm. Methods to save
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computing time are given in section 8.2. The savings is shown to be dramatic for profile likelihood
calculations. The methods are demonstrated using a data example in section 8.2.3.

The UBLUE conditions have been used to generalize the results of Szatrowski (1980) and
Elbassiouni (1983) to linear combinations of the parameters. The underlying linear model establishes a
framework in which to extend the results, so that they can be applied to the particular models of interest
for the purposes of ML and REML estimation. Under the UBLUE conditions, the ELMLQE and
ELREMLAQE are given by the least squares estimator in the appropriate model. Such estimators are easy
to compute, simple to interpret, and have optimal properties. The general idea behind these results can be

applied to any situation where least squares and generalized least squares estimation is applicable.

9.2. Further Research

This study has identified interesting questions for future research. The UBLUE conditions, which are
mentoned below, refer to the GZC or those conditions presented in chapter 5 for estimating the fixed

effects and variance components. The questions for further research are listed below:

(1) Apply the UBLUE conditions to hypothesis testing in mixed models. For instance, these conditions

may useful for identifying the existence of exact F-tests.

(2) Generalize the results to the case where the covariance is not PD. Christensen (1996,section 12.5)
discusses maximum likelihood estimation for singular normal distributions. Sections 3.3.4 and 3.3.5

provide results where the covariance is NND.

(3) The UBLUE conditions indicate when the maximum likelihood and restricted maximum likelihood
estimators are unbiased. Additional work could be done to determine whether these estimators are equal

to analysis of variance estimators (ANOVA) (Searle et al.,1992).

(4) Determine whether other iterative procedures converge in a single iteration under the UBLUE
conditions (Searle, et al.,1992). In particular, examine convergence subject to constraints on the variance

components (Harville,1977).

(5) Examine whether the results pertaining to the class of random models presented in section 6.8 can be

extended to a class of mixed models.

(6) Identify conditions under which the MLQE and REMLQE exist. Such conditions could be used to
show when ML and REML procedures are applicable.
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(7) Determine whether it is possible to use a less restrictive condition than ZC for the Y-Model when
applying the ALQEM for (Y — X B) to identify the existence of an ELMLQE in the partial case. This
issue is discussed in sections 5.3.2 and 6.4.2. For these cases, it may be possible to use a weaker condition

since the full variance component vector is not of interest.

(8) Examine whether the existence of an ELMLQE or ELREMLQE for a subcomponent of the variance
component vector is equivalent to part of the inverse of the covariance matrix being explicit. Rogers and

Young (1977) and Seely (1971) examine this relationship in the full case.

(9) Examine whether the UBLUE conditions can be applied to generalized linear models. In particular,

consider generalized estimating equations.

(10) Extend the UBLUE conditions to general covariance structures. For example, this could include
repeated measures designs. It would require a reformulation of the conditions to covariances that do not

have the linear structure.

(11) Derive design based conditions in which g is estimable in the ALQEM for (Y — XB) and the LQEM

for NxY for particular classes of models.

(12) Find out whether the existence of a partial ELMLQE implies the existence of a partial ELREMLQE.
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Appendix A - SAS Code Used for the Battery Life Examples

The SAS code is given below that was used to generate the output for the Battery Life Example I given

in Table 8.2 for the ML procedure using the data set batt1:

proc mixed data=battl method=ml nobound noprofile scoring=30 itdetails asycov absolute;
class T M;
model Y =/ solution;
random T M T*M;

run;

The SAS code is given below that was used to generate the output for the Battery Life Example 11

given in Table 8.3 for the REML procedure using the data set batt2:

proc mixed data=batt2 method=reml nobound noprofile scoring=30 asycov absolute;
class T M;
model Y = T/ solution;
random M;

run;

The SAS code is given below that was used to generate the output for the Battery Life Example II1

given in Table 8.4 for the MIVQUEO procedure using the data set batt3:

proc mixed data=batt3 method=mivqueO nobound noprofile scoring=30 asycov absolute;
class T M;
model Y = T/ noint solution;
random M T*M;

run;
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Appendix B - Details For Checking the Conditions Using the Iterative Procedure

The purpose of this appendix is to provide details to accompany the discussion in section 8.1.5
pertaining to checking the conditions using the iterative procedure presented in section 8.1.1. The
justification is complex and requires results and definitions concerning real analytic varieties and measure
theory. Real analytic varieties are used to characterize the UBLUE conditions for the Y-Model in section
5.2.1 and the LQEM for Z in section 5.3.1. Measure theory results allow probabilistic conclusions to be
made about the UBLUE conditions based on information which can be obtained from the iterative

procedure. The following definitions will be useful in this section.

(Krantz and Parks,1992,p25)
real analytic function - A function f : T=R where T is a non-empty opensetin R™ 3 V §& T

f can be represented by a convergent power series in some neighborhood of .

(Krantz and Parks,1992,p152)

real analytic variety - Set of common zeros in T of a finite set of real analytic functions.

(Smith,1971,p255)
regular function - F : R™— R?is regular if %{(;Q) exists, is continous, and has maximal rank V 8 € R™.

(Smith,1971,p255)
smooth manifold - A smooth manifold of dimension k in R™isaset M 5V a € M 3 a function
E : R™— R™* which is regular on an open set { containing a and is such that

MNQ={8eR™E®) =0}NQ.

(Lehmann,1983,p9)

lebesque measure - A probability measure A, defined on the smallest o-algebra containing all open
m

rectanglesin R™. ForT = {z € R™a; < z; < b; i =1,...,m}, An(T) = [1(b; — as).
i=1

These definitions are incorporated into the following three lemmas which will be used to derive the

theorem.

(Krantz and Parks,1992,p25)
Lemma 1: Suppose f and g are real analytic functions with domain T > g(8) #0V @€ Y. Then f + ¢

and f/gare real analytic functions.
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(Smith,1971,p299)

Lemma 2: A smooth submanifold in R™ of dimension < m has m-dimensional lebesque measure 0.

Lemma 3: For § € T where T is a non-empty open set in R™, consider real polynomials p(8) and g(8)

where g(8) # 0V 8 € T, so that (@) = pggg is a non-zero rational function. If A = {8 € T|r(8) = 0},
then A, (A) = 0.

proof: i) By definition, p and g are real analytic functions
=>r= E is a real analytic function with domain T by lemmalasq(8) #0V e T
= A is an real analytic variety in R™ by definition.
i1) Consider the notation and results in theorem 5.2.3 of Krantz and Parks (1992,p154) which establishes

that a real analytic variety is the finite union of real analytic smooth submanifolds of dimensions < m.
feo
For each §° € T, define T (8) = (8 + 6%, Qp = {81 118l] < 6}, Zp = {8 € Qplrp(8) =0} = 4018501'
¢ =

where By, ;= {§ € R™ |[91, 0] € Q and F(8) = 0} with  open in R* and

gr1(01, ..., 0k) — 9k+1
E) = : for real analytic functions g; defined on 2. Note Bj ; can be written as
gm (b1, ..., Gk) —Om

By, ={8€ R™ME@) =0n(Q x R™*)} where M = Q x R™* is open in R™. In addition,

8 = [% — I, ] has maximal rank m — k = F is regular on M by definition.

iii) Let Qg = Qg + 8°. Note that §' € Zy + 0° = 8" — 6° € Z},

&0 -0 cQpandrjp(@ —0°) =04 0' € Qp +68° = Qgpandr(8' —°+6°) =0

& 0 € {0 € Qplr(8) = 0} = Zp. Thus, Zp = Zj +6° = Qp N A as the above holds V '
iv) From ii), Qp is open = Qg is open. Then ° € Qu V8" = T C QEJTQQ

=>7TC i:leQQi as R™ is separable (Royden,1988,p142)

S A=TNAC (i:leQQ.») NA= ;le(QQ.- N A) = ;0’12@ by ii).

v) From ii), BE", j is a smooth manifold of dimension k& < m by definition V j, 8°

= /\m(BEO,j) =0bylemma2 V j, 8°

= Am(Zp) = /\m(jfLiJolBéoyj) < ]gl/\m(Béo’j) = 0 V ¢° by ii) and subaddivity Royden (1988, p57)
= Am(Zp) = /\m(Zé‘o + 00) = An (Zé‘o) =0 V 4° by iii) and translation invariance Royden (1988, p58)
= An(A) = /\m( U ZQ. ) < Z/\ ) by iv) and subadditivity Royden (1988).
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Theorem: Let Z* = {¢ € Rk“lV]ﬁ is PD}.
) IfZ={ge=|NXVIX) ' X'V = N(X'X)"1 X'}, then Ay (Z) =0 or 2 = E*.
iIfZ={pe= ]I"(XT*VT IXHTIXMVT = DX XT)TIXT), then Mgy (2) = O or 2 =

*

(1]

proof. From section 3.1.2, Z* is open in R**1.
i) The entries of the matrix A'(X'V; ' X)~' X'V~ — A'(X'X)~' X" are ratios of polynomials in

Y1, ..., Yr41 given by ri5() = p 88 The denominators g;;(3) # 0 Vi € E* since V,is PD Vi € Z*

(1) If at least one entry r;;() # 0, then Ax11(Z) = 0 by lemma 3.

(2)Ifr;;(¢) =0V 4,5, then Z = E* by definition of Z.

ii) For A € Sy, define 24 = {g € = I'(XMV, ' X)"1x™V/ 14 = I"(X" X)L X ™ A}. Note
DXV XD IXMV T A = T {Lu(R: Ry R;Ry 1)} {Atr(RiRy VAR 1)} by lemma 1 section 3.2.3.
The entries of the matrix F’(XT*V]Z”IXJF)‘IXT*VJ_IA — I'(X™XT)~"1X™ A are ratios of polynomials in
Y1, ooy Yiy given by 745(2) = %{% The denominators g;;(2) # 0V 1 € E* since V,is PD V3 € E*

(1) If for some A € S,, 3 at least one entry 7;;(1) # 0, then Ax+1(Z4) = 0 by lemma 3. Then

zZ :AQS,,ZA = A41(Z) € Mey1(Z4) = 0 by monotonicity (Royden,1988,p55).

QI VAES,, rj() =0Vi,j, then Z :AQSHZA :AQS,,: == =u

By the Y-UBLUE and LQZ-UBLUE theorems in chapter 5, the UBLUE condition, or GZC, is
Z = "**

0 Z £ = .When £ = 1, the GZC will

equivalent to Z = =*. Consider the unknown parameter £ = {

hold V 3 € E*. When £ = 0, the GZC will not hold V ¢ € =*.

In order to devise a method for checking the conditions based on the results of the above theorem, it
will be useful to consider probability measures P defined on R™ that are absolutely continuous with
respect to An.. The probability measure on the set A can be written as P(A) = [,pdAm where 0 < p <1
is the probability density of P (Lehmann,1983). Then A,,(A) =0 = P(A) = 0 since
0< P(A) = [pdim < [, (1)dAn = An(A) = 0.

Suppose 7 is randomly distributed with respect to an absolutely continous probability distribution
Pgé with support =*. Also, suppose the random observation vector Y is distributed with respect to an
absolutely continous probability distribution Pg—’ with support Y that contains a non-empty open set in R".
Also, assume that 3 and Y are independent. Let F, denote the joint probability distribution defined on
R™ x R¥1.For A = A; x Ay where A C R" x R*1, A C R™, Ay C R¥L, the joint probability
distribution is defined by P;(A) = [, pedAm = [ [y, PEPEdAm]dAm = P¥ (A1) PY (A;) using the
independence of 3 and Y (Lehmann,1986,p40).
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Let D() be the difference between the two quantities given in the set Z and let B(Y') be the
response for either the Y-Model, the ALQEM for (Y — XB), or the LQEM for NxY . Then
T(y,Y) = D() B(Y) corresponds to the difference between the GLSE and the LSE in the appropriate
model.

The statistic T'(2£, Y') and the probability distribution P, will be used to draw inference about the

unknown parameter £. This will be accomplished by generating a confidence region for £. Define the

confidence region C(T'(1,Y)) = { }(1)% ii ;Eﬁ:_; # 0

probability for this confidence region (Casella and Berger,p404).

The following theorem gives the coverage

Theorem: C(T(1,Y)) is a 100% confidence region for £ as P (£ € C(T(,Y))) = 1.

proof )E=1=Z=2"=>D) =0V eE =>TY)=DWBY)=0V¢YcE,Y R
= P(T(,Y)=0)=
C(T(,Y)) ={1} VL €E*, Y € R" w.p. 1 with respect to P, by definition of C(T'(,Y))
= P(1eC(T(Y))) =
i) £=0= Z # E* = A;1(2) = 0 by the above theorem
= P (€ Z) =0 by absolute continuity = P¥ (2 ¢ Z) = 1
= 3 ¢ Z w.p. | with respect to P¥ = D(g) # 0w.p. 1 with respect to P¥
= PY(T(,Y) = D(¥)B(Y) = 0|22) = 0 w.p. 1 with respect to P*
= E[PY(T(4,Y) = 0]g)] = 0
= [pPE(T@,Y) = 0l)pf () dAm = 0 where F = {4 T(s,Y) = 0}
= [rlJoPE XIL)PE () dAm]dAm = 0 where G = (Y| T(,Y) = 0}
= [olfoP¥ ¥)pE (W) dAmldA,, = 0 aspand ¥ arc independent
= [recPe(,Y)dAn = 0 as ) and Y are independent
= P(T(1,Y)=0)=0= FP(T(,Y)#0) =1
C(T(4,Y)) ={0} V€ E", Y € R" w.p. 1 with respect to P, by definition of C(T'(,Y))
= P,(0€C(,Y))=1.
~.Byi)and ii), C(T(2,Y)) is a 100% confidence region for £ as Pr(§ € C(T(,Y))) =1. =

Note the above proof also shows that £ = 1implies P;(T'(1,Y) = 0) = 1and £ = Oimplies
P:(T(1,Y) # 0) = 1. The above two theorems in this section prove the details given in section 8.1.5.
Section 8.1.5 provides a method for checking the GZC using the iterative procedure presented in section
8.1.1. Methods A and B generate the statistic 7(12,Y), or equivalently S(1,Y), and state the results

using the 100% confidence region given above (section 8.1.5).
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Appendix C - Summary of Models and Theorems

This appendix gives a summary of the models that are considered in this thesis as well as the
associated theorems that are of main importance. It is hoped that this summary will provide an easy

reference to help the reader.

The Underlying Model

Purpose: Examine the UBLUE in a general framework that can be applied to the special cases.
Notationnw e W,0 € Ty C P,U € L(P,W),V C Len(W, W).
Definition: Eglw] = U6 Cov(w) =V €V (section 3.3.1).

UBLUE for Full Case: U-FUBLUE Theorem (section 4.1).
UBLUE for General Case: U-UBLUE Theorem (section 5.1).
UBLUE for General Case in Full Rank Setting: U-UBLUEg Theorem (section 6.1).

Special Cases of the Underlying Model

A. Y-Model

Purpose: Use to model the fixed effects for the ML method.
Notation: Y € R™, 8 € RP, Xpup, Vyynxn isPDforall g € =.
Definition: EglY] = X8 Cov(Y) =V, (section 3.1.1).

UBLUE for Full Case: U-FUBLUE Theorem (section 4.2.1).
UBLUE for General Case: Y-UBLUE Theorem (section 5.2.1).
UBLUE for General Case in Full Rank Setting: Y-UBLUEr Theorem (section 6.3.1).

ELMLQE for Full Case: Y-FELMLQE Theorem (section 4.2.2).
ELMLQE for General Case: Y-ELMLQE Theorem (section 5.2.2).
ELMLQE for General Case in Full Rank Setting: Y-ELMLQEm Theorem (section 6.3.2).
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B. ALQEM for (Y — X5)

Purpose: Use to model the variance components for the ML method.
Notation: Z=Y — XB = (I — X(XVIX) XV;OWY, Yy =22, g €E.
Definition: Ey[Y5] = X°¢  Cov(Yy) =V = 2¥,, (section 3.2.1).

UBLUE for Full Case: LQZ-FUBLUE Theorem (section 4.3.1).
UBLUE for General Case: LQZ-FUBLUE Theorem (section 5.3.1).
UBLUE for General Case in Full Rank Setting: LQZ-UBLUEg Theorem (section 6.4.1).

ELMLQE for Full Case: ALQNY-FELMLQE Theorem (section 4.3.2).
ELMLQE for General Case: ALQNY-ELMLQE Theorem (section 5.3.2).
ELMLQE for General Case in Full Rank Setting: ALQNY-ELMLQEgg Theorem (section 6.4.2).

C. LQEM for NxY

Purpose: Use to the model variance components for the REML method.
Notation: Z = NxY ,Y° = ZZ', 3y € Z.
Definition: E,[Y°] = X°¢  Cov(Y°) =V, = 28 y,v, Ny, (section3.2.1).

UBLUE for Full Case: LQZ-FUBLUE Theorem (section4.3.1).
UBLUE for General Case: LQZ-FUBLUE Theorem (section 5.3.1).
UBLUE for General Case in Full Rank Setting: LQZ-UBLUEg Theorem (section 6.4.1).

ELREMLQE for Full Case: LQNY-FELREMLQE Theorem (section 4.3.3).
ELREMLQE for General Case: LQNY-ELREMLQE Theorem (section 5.3.3).
ELREMLQE for General Case in Full Rank Setting: LQNY-ELREMLQEg Theorem (section 6.4.3).



Appendix D - Abbreviations and Symbols

CQS = Commutative Quadratic Subspace (2.8)

EGLSE = Estimated Generalized Least Squares Estimator (3.3.3)

ELMLQE = Explicit Linear Maximum Likelihood Equation Estimator (5.2, 5.3)

ELREMLQE = Explicit Linear Restricted Maximum Likelihood Equation Estimator (5.3)

FELMLQE = Full ELMLQE (4.2, 4.3)
FELREMLQE = Full ELREMLQE (4.3)

FUBLUE = FullUBLUE (3.3.4)

g-inverse = Generalized Inverse (2.5)

GLSE = Generalized Least Squares Estimator (3.3.3)

GZC = Generalized Zyskinds Condition (5.2)
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IBLUE = Best Linear Unbiased Estimation with respect to multiple of identity transformation I (3.3.4)

LQEM = Linearized Quadratic Estimation Models (3.2)
LSE = Least Squares Estimator (3.3.3)

ML = Maximum Likelihood (2.4.4)

MLQE = Maximum Likelihood Equation Estimator (3.1.4)
NND = Non-Negative Definite (2.1.1)

OPO = Orthogonal Projection Operator (2.1)

QS = Quadratic Subspace (2.7)

PD = Positive Definite (2.1.1)

PO = Projection Operator (2.1)

REML = Restricted Maximum Likelihood (3.1.4)
REMLQE = Restricted Maximum Likelihood Equation Estimator (3.1.4)

UBLUE = Uniformly Best Linear Unbiased Estimator (3.3.4)

VBLUE = Best Linear Unbiased Estimator with respect to NND transformation V' (3.3.4)

ZC = Zyskinds Condition (3.3.5)
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> = such that
3 = there exists
= = implies
< =if and only if
A = matrix or linear transformation (2.1)
A* = adjoint of A when Ais a linear transformation (2.1)
A’ = transpose of Aif Ais a matrix (2.1)

a = vector (2.1)

=

(A) =rangeof A (2.1)

r(A) =rankof A (2.1)

N(A) = null space of A (2.1)

R(A) = range space of A (2.1)

U = subspace (2.1)

U+ = orthogonal complement of 2/ (2.1)
dim U = dimension of & (2.1)

Sn = set of symmetric n x n matrices (2.1)
Mpxm = setof n x m matrices (2.1)

P, =0POon R(A) (2.5)

A~ = g-inverse of A (2.5)

At = Moore-Penrose Inverse for A (2.5)
tr(A) = traceof A (2.6)

vec(A) = vector form of the matrix A (2.9)
A © B = horizontal direct product between the matrices Aand B (2.9)

USY =directsum=U+V s5UNV = {0} (2.5)
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Y-Model = the original model of interest (3.1)

[L] = linearity assumption for the covariance matrix in the Y-Model (3.1)

[O] = open set assumption for parameters of the covariance matrix in the Y-Model or in U-Model (3.1)
[N] = normality assumption for the Y-Model (3.1)

[C] = classification assumption for the Y-Model (3.1)

Bal(G) = balance with respect to a particular subset of factors G (3.1.3)

LQEM for Z = Linearized Quadratic Estimation Model for the random vector Z (3.2)
¥ = A linear transformation from S, —» S, givenby ¥s(A) =L AL (3.2.2)
U-Model = Underlying Model (3.3)

[S] = spanning assumption in the U-Model (3.3)

Lpp(W, W) = the set of PD linear transformations mapping W-W (3.2.2, 3.3.1)

Lo (W, W) = the set of NND linear transformations mapping W—-W (3.3.4)





