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Alteration of natural areas in attempts to support increasing human 

populations has been a crucial yet less publicized contributor to the fall of many 

of the world's greatest civilizations, since healthy ecosystems can help maintain 

stable societies and economies. Given this unhappy fact and the ancient 

relationship between people and the natural world, it may be surprising that 

science has only recently begun to holistically-study the linkages among the 

social, economic, and ecological aspects of human society. This dissertation 

seeks to contribute a small piece to the growing body of knowledge about what 

might be socially, economically, and ecologically sustainable. Tools from 

ecology and economics are brought together in realistic modeling frameworks to 

explore interactions, and operations research techniques are employed to find 

solutions to complex problems that the human mind can only partially 

comprehend. 

In particular, the work builds by designing fixed-site reserve systems with 

attention to spatial design in Chapter 2. Chapter 3 extends the model by 



incorporating a simplistic economic aspect - maximizing combinations of 

ecological objectives subject to constraints on the total purchase price. However, 

the permanent restriction of economic activities in some areas might be excessive 

if accompanied by an ecologically-sensitive set of spatial and temporal 

management actions. Chapters 4 and 5 generalize the concept of reserve design 

by simulating the reactions of populations of two vertebrates to timber production 

on a 1. 7 million hectare landscape over a 100 year planning horizon. Theoretical 

production relationships between ecological and economic outputs were found, 

and tradeoffs between outputs were identified. Policies relating to timber 

production and species survival were implemented, and their resultant degree of 

inefficiency could be directly calculated. 

This dissertation demonstrates how combining ecological and economic 

models with operations research techniques could be used to better manage the 

natural resource base. By providing a means for identifying tradeoffs, more 

defensible decisions can be made, approaching alternatives that might be socially 

sustainable. 
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Optimizing Spatial and Temporal Aspects of Nature Reserve Design under 
Economic and Ecological Objectives 

Chapter 1. Introduction 

Operations Research (OR) offers many optimization, simulation, and other 

quantitative analysis tools that can provide efficient solutions when allocating 

scarce resources. These methods have been applied with great success in many 

fields, including finance, economic planning, manufacturing and supply chain 

management, pharmaceuticals and health care, information systems, 

transportation, industrial engineering, and telecommunications. Since the 

inception of the Nobel Prize in economics in 1969, roughly half of all winners 

were awarded the prize for their work that either used optimization tools or for the 

development and application of new optimization tools (The Nobel Prize Internet 

Archive 2001 ). 

The functionality of applied optimization could be attributed to George 

Dantzig, whose pioneering work during World War II for the United States Air 

Force and subsequently with The RAND Corporation led to his creation of the 

Simplex Method, first presented in 1947 (OR/MS Today 1996). The Simplex 

Method minimizes a continuous linear function subject to a set of continuous 

linear constraints. Although ''the world is nonlinear," as retorted a colleague 

when Dantzig finished his presentation (OR/MS Today 1996), Dantzig's method 

is still widely used today due to its solution speed, robustness of application, and 



the clever problem transformation techniques from many subsequent researchers. 

In the past five decades, exact solution algorithms for various constrained and 

unconstrained, continuous nonlinear, combinatorial, and mixed continuous and 

combinatorial problems have been developed (see Murty 1985; Nemhauser and 

Wolsey 1988; Bertsekas 1996) to augment the Simplex Method (as well as 

alternative exact algorithms to solve linear programs (Karmarkar 1984)). These 

traditional solution methods are deterministic and typically employ gradient 

searches at some level during solution. 

2 

Even though exact methods exist for many common optimization 

formulations, this alone is no guarantee that they may be successfully 

implemented. The number of variables under consideration is an essential factor, 

and solution times on many commonly occurring problem formulations increase 

exponentially with the number of variables. Despite increases in modem 

computing power, problem size still determines whether or not it is feasible to 

implement many exact solution methods. Some researchers hypothesize that 

problem size will still be a major obstacle even if a photon-based, rather than 

electron-based, computing system were to be developed (Cerny 1999). This 

limitation, known as the "curse of dimensionality", combined with the availability 

of modem computing power and the inadequacy of gradient searches on highly 

nonlinear problems and infeasibility on combinatorial problems, has spawned 

various alternative solution approaches. 

Many different heuristic techniques have been proposed and implemented 
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on common optimization formulations across various fields of study. These 

approaches are generally quite novel; for example, one approach simulates the 

development of transportation routes created by ant colonies (Dorigo 1992); 

another follows Darwin's notion of the survival of the fittest by searching with a 

population of solutions, mating the more fit individuals and producing genetically~ 

similar offspring (Holland 1975; Goldberg 1989); and yet another method mimics 

the annealing processes from the production of metal alloys and vitrification of 

glasses (Metropolis et al. 1953; Kirkpatrick et al. 1983). Most heuristics contain 

some degree of stochasticity that allows the search procedure to possibly extract 

itself from local optima and explore different portions of the solution space. The 

inability to do so with gradient techniques is one reason why heuristics have 

found extensive use, especially because some heuristic solutions on certain 

problem types have been far better than those found by traditional detem1inistic 

methods. However, no one heuristic procedure has been shown to be superior to 

all others across different optimization formulations, thus adding to their mystic. 

Operations Research techniques have also been used in forestry, although 

appearing later than in many other fields. Some of the earliest and most common 

forestry-specific applications take the form oflinear programs that have come to 

be referred to as the Model I and Model II formulations (Johnson and Scheurman 

1977). Each model schedules harvesting activities over a time horizon but does 

so in a slightly different manner. The main difference between the formulations 

lies in the definition of the programming variables. The Model I formulation 
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defines variables that track the activities applied to each stand over the entire 

planning horizon. In the Model II formulation, variables track only the lifetime of 

a stand regardless of the planning horizon. Both formulations have relative 

advantages and disadvantages (Johnson 1977); these include their ease of solution 

but general omissions of spatial issues. More recent applications of OR to 

problems with spatial components in forestry include Hof and Raphael 1997; Hof 

and Bevers 2000; and Sessions et al. 2000. 

The practice of forestry, i.e., silviculture, falls under the heading of 

applied ecology. Treatment options include clear-cutting, thinning, planting, 

fertilization, suppression of undesirable vegetation, prescribed burning, pruning, 

and no action at all. Such actions affect the assemblages, quantity, diversity, and 

distribution of wildlife, plant composition, soil characteristics, watershed flow, 

and micro and macroclimates in and around managed forests. Operations 

Research methods are beginning to be accepted in ecological applications, notably 

in nature reserve design. Because optimization, stochastic modeling, and 

simulation are not discipline-specific tools, one aspect of this dissertation is to 

explore areas where OR techniques might aide applied ecology and thereby 

broaden both fields of study. 

Forestry also falls under the heading of agricultural economics. Demand 

for wood and wood products will likely increase as human populations increase, 

as has been the historical trend (UN F AO Report 1999). From an investment 

standpoint, there is an intimate link between the rate of return and the rate of stand 
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growth. Because the rate of stand growth decreases with time, a profit maximizer 

will harvest when market conditions determine that the stand's monetary growth 

rate has fallen below the current rate ofreturn of the next best investment 

alternative. Harvesting then, as a silvicultural treatment, affects ecological 

conditions spatially and temporally, and the magnitude of spatial and temporal 

effects has caused much debate concerning landowner rights and economic 

objectives, silvicultural practices, and other issues pertaining to economic and 

ecological sustainability. Another aspect of this thesis is to employ OR 

techniques to find solutions that simultaneously identify and highlight tradeoffs 

between complementary and/or competing economic and ecological objectives. 

One means of balancing economic and ecological objectives is to 

permanently restrict economic production on some lands by establishing fixed­

site nature reserves. Operationally, the types and amounts of different habitat that 

occur within reserved areas and the location of reserves are of great ecological 

importance. Large contributions to biodiversity can be made by reserving as 

many distinct types of habitat as possible. Since different species have different 

habitat area requirements, the amount of habitat reserved directly influences 

population sizes and long-term survival likelihoods. Conventional wisdom 

dictates that enough habitat area should be set aside to maintain sufficient genetic 

diversity in the population. Also, the spatial arrangement of reserved lands is 

thought to promote long-tem1 species sustainability. A system of reserves located 

close together can provide a network of safe havens for species to travel to if a 
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catastrophic event were to occur in one of the smaller reserved areas. Conversely, 

a system of spatially distant reserves can help decrease the spread of disease and 

the risk of total loss from a large, concentrated disturbance such as a major fire. 

Tradeoffs between the survival of different species also arise from spatial design 

issues. Aviators and plants with air-born seed dispersal would generally benefit 

from a compact but not necessarily connected spatial design. On the other hand, 

slow moving terrestrial species would generally benefit from a contiguous design. 

Many other species, such as the deer, turkey, cougar, bobcat, elk, and black bear, 

would likely benefit from a combination of reserve compactness and contiguity. 

Chapter 2 develops a new spatially explicit optimization model and new 

heuristic solution method that can find the most compact and/or contiguous 

spatial arrangement of reserved lands while meeting habitat requirements. Within 

the model, a parameter is included that allows the user to explore how and where 

reserve location changes for different levels of compactness and contiguity. 

Additionally, the model allows for the inclusion of existing reserved areas. By 

solving the model with and without existing reserves, the effects of existing 

reserves on compactness and contiguity and on overall reserve location can be 

determined exactly. The model and solution method were applied using physical 

habitat data from the 44000 km2 Klamath-Siskiyou ecoregion of southwestern 

Oregon and northwestern California. It was found that existing reserves have the 

greater effect on future reserve contiguity but also affect future reserve 

compactness. Furthermore, it was observed that as the amount of each habitat to 
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be reserved increased, the location of the most compact and/or contiguous 

proposal moved across the landscape. This finding has important implications for 

land managers because the location of the best spatial design can change as 

conservation priorities change. 

The location of fixed-site reserves is not only a major ecological issue; it 

also has significant economic considerations. The model in Chapter 2 ignores cost 

and thereby assumes an unlimited budget for reserve proposals. Scarce resources 

are typically available for conservation purposes, and so the purchase price of 

land to be set aside is an essential factor in reserve design. Chapter 3 extends the 

model in Chapter 2 by requiring that the total reserve purchase price not exceed a 

fixed budget amount. As the available budget is increased, the marginal return on 

compactness and contiguity can be viewed as a function of cost. The new model 

was applied using physical habitat data and land values from Josephine County, 

Oregon. Within the county are existing reserves that are administered by different 

federal agencies. The new model was run both with and without the current 

reservation status under the same incrementally increasing allowable budget. For 

Josephine County, it was found that for the same budget amount and habitat 

reservation requirements, an augmented reserve network containing existing 

reserves could never be made as compact or contiguous as one without existing 

reserves. /Conversely, for the same degree of compactness or contiguity, the 

purchase price of an augmented network with existing reserves was always more 

expensive (at least 25% higher) than one without existing reserves. These results 
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suggested that coordinated planning across federal and state agencies and non­

governmental organizations can greatly improve the spatial attributes of a reserve 

design, thus increasing likelihoods of species survival while simultaneously 

decreasing purchase costs. 

The establishment of areas permanently restricted from economic use may 

not be the only means of balancing economic and ecological objectives. Instead, 

spatial and temporal alterations of traditional economic management actions 

might be sufficient to maintain species populations. Although there may indeed 

be lands that should be permanently set aside, the amount ofland that is 

permanently withdrawn under only a fixed-site reserve system might be excessive 

if accompanied by a species-sensitive, spatial and temporal set of management 

actions. Chapter 4 explores this notion by first developing methodology for 

predicting population responses of species with different vital rates, habitat 

preferences, and movement behavior from different spatial and temporal harvest 

patterns. In Chapter 5, the methodology is then embedded within an optimization 

model, and the estimated population responses of two species are maximized 

under species-sensitive spatial and temporal harvesting on a 1. 7 million hectare 

landscape in the western-central Cascades of Oregon over a 100-year planning 

horizon. Unlike Chapters 2 and 3 where spatial and temporal economic impacts 

on commodity production were ignored, the supply of logs produced over a long 

planning horizon was explicitly determined under expected market conditions 

using a newly developed hybrid heuristic optimization search procedure while 



maintaining allowable species population sizes through time. By incrementally 

changing the population size targets of each species, tradeoffs between the 

maximum expected population sizes of the different species and maximum 

stumpage production were found. Locating this relationship, known as a 

production possibility frontier, is useful because it represents the maximum 

possible combinations of outputs attainable from a landscape - in this case, both 

biological ( e.g., species populations) and economic ( e.g., timber). Therefore, for 

the two species selected, if a fixed-site reserve system is superior to all other 

alternatives for species conservation, this option would be identified by the 

optimization routine. Furthermore, the optimization routine will determine the 

best spatial design under differing levels of efficient economic production for 

each species as the landscape changes spatially and temporally. 

Another important component of the model is to simulate regulatory 

effects on ecological and economic production. Because roughly one half of the 

9 

1. 7 million hectare study region is federally owned, current policies pertaining to 

species and public timber management were imposed on those lands. These 

additions make the production relationships more realistic, and points along the 

new production possibility frontier were found. By comparing these point with 

the unrestricted frontiers, the level of effectiveness of policies intended for species 

conservation can be measured exactly. In this way, managers and politicians can 

use the tools and methods provided to make more informed and defensible 

decisions. 



In all of the studies in this dissertation, optimization techniques have been 

successfully used to show how the most can be had from scarce and possibly 

competing resources. Arguably, this is extremely important as people put 

increasing pressure on the land base for products and services such as commodity 

production, recreation opportunities, species survival, ecosystem functions, and 

personal values. In sum, although "the world is nonlinear", the comment 

exemplifies the potential shortcomings of linear thinking. The use of OR 

methods, in conjunction with the vast knowledge compiled across disciplines and 

intelligent planning, can aide in determining what is ecologically and 

economically sustainable, including the sustainability of our own population. 
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2.1 Abstract 

Conflicting opinions from environmental advocates and economic 

interests on the best strategy for management of public lands often leaves land 

managers in a difficult position. Since ecosystem sustainability is in the long­

term interest of each group, the establishment of nature reserves could 

simultaneously address both views. To promote sustainability, fragmentation of 

existing natural habitats should be avoided, since it is commonly recognized as 

being disruptive to the species adapted to these habitats. Therefore, when 

designing an efficient nature reserve, the compactness and contiguity of the land 

reserved is an essential consideration. 

Motivated by the on-going reserve efforts in the large and diverse 

Klamath-Siskiyou region of southwestern Oregon and northwestern California, 

common heuristic search techniques are implemented and results compared on 

various simulated test problems. From these findings a new heuristic is 

developed that reduces solution time and increases solution quality. When 

applied to the Klamath-Siskiyou region, results are promising. 

Keywords: Nature reserve problem, quadratic 0-1 programming, heuristics 
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2.3 Introduction 

Increasing pressure from the public and the scientific community for 

ecological sustainability is a primary consideration in the formulation of land use 

policy. This changing of objectives and re-emphasis of others (Committee of 

Scientists 1999) places added burden on land managers, especially those who 

oversee public lands, to balance multiple and often conflicting uses. In order to 

assess tradeoffs under such a management policy, sustainability must somehow be 

incorporated into the decision process. 

Nature reserves are regarded as an efficient tool for ecosystem and species 

sustainability (Noss and Cooperrider 1994). The conventional wisdom is that by 

protecting the broader habitat, the individual species, their inter-relatedness, and 

ecosystem processes will likely be protected as well (ignoring issues pertaining to 

specific threatened or endangered species). 

If managers use reserves to promote sustainability, then the potential 

locations must be known for multiple use tradeoff assessment. Furthermore, the 

proposal itself must be biologically and managerially defensible. Since 

management regions are typically large in size and contain diverse eco­

characteristics, and because design issues are complex, optimization 

methodologies are useful since they can identify the best proposal(s) for a pre­

defined set of reserve objectives. Thus, the use of these techniques enables 

managers to make more informed and defensible decisions. 
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When designing a reserve or system of reserves, issues include overall 

compactness and contiguity, representation of all species, maximal inclusion of 

especially rare and/or threatened species, establishment of wildlife corridors, 

representation of all habitats, and adherence of the final reserve proposal to 

management goals. To date, there is much research and debate over how to select 

areas to include in the final proposal; solution methods range from simple greedy 

algorithms (Pressey et al. 1997) to complex optimization routines (Arthur et al. 

1997; Ando et al. 1998). 

The problem addressed here differs from the body of literature that has 

come to be known as the Reserve Site Selection Problem (RSSP). A typical 

optimization formulation of the RSSP is represented as an integer program and 

reserves the minimum number of parcels of land necessary to cover as many 

species or ecosystems as possible (Cocks and Baird 1989; Possingham et al. 1993; 

Church et al. 1996; Snyder et al. 1999), sometimes subject to a budget constraint 

(Ando et al. 1998). Other variants (integer programs as well) seek to select 

parcels such that the probability of species occurrence is at least as large as some 

threshold value (Cocks and Baird 1989; Pressey and Logan 1998; Haight et al. 

2000). Neither of these formulations explicitly considers spatial placement, so the 

mathematically optimal reserve proposal under such formulations may be quite 

fragmented. Furthem1ore, the presence/absence ( or estimated probability of 

occurrence) data necessary for these formulations must be obtained from intensive 
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ground surveys and/or estimation techniques that are subject to detection and 

sampling errors. Such data is costly to generate in terms of both time and money. 

According to island biogeography theory, minimum parcel-to-parcel 

distance is expected to decrease the probability of extinction for any given species 

(MacArthur and Wilson 1967). In practice, strict adherence to this notion may be 

shortsighted, since a disjoint reserve system can provide benefits such as reduced 

risk to fire and disease. However, if fragmentation is thought to be a major threat 

to many species' survival, it is questionable how ecologically optimal the 

solutions of the RSSP and its variants are, because any proposal containing 

numerous disjoint parcels of land would have failed to address the underlying 

concern of habitat fragmentation. Therefore, reserve compactness and contiguity 

should be explicitly modeled. Assuming species are dependent upon habitat and 

that different habitats support unique assemblages of species, habitat 

representation is a coarse-filter attempt to sustain biodiversity. This approach has 

its own drawbacks; namely, potentially omitting ecological attributes that could 

only be observed from intensive ground surveys. However, protecting at least 

some pre-specified minimum amount of each habitat type attempts to preserve 

each distinct habitat and helps reduce subjectivity, and the goal of maximal 

species coverage is then implicitly addressed (Kirkpatrick and Brown 1994; 

Nantel et al. 1998). 

The contribution of this work is to provide a spatially explicit optimization 

model for selecting parcels of land for reservation in the most compact and/or 



contiguous manner possible while satisfying a minimum representation 

requirement per habitat type. The model is then used to demonstrate how 

currently reserved lands may affect compactness and contiguity of a future 
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reserve network. While models that include some spatial aspects are not unique 

(Williams and Revelle 1996, 1998; Clemens et al. 1999; Ball 1999; Possingharn et 

al. 2000; Leslie et al. 2000), the model in this paper explicitly addresses both 

compactness and contiguity objectives. 

It is essential to note that solution times for integer programming 

techniques increase dramatically with the number of decision units under 

consideration. Except for a few integer program formulations with very special 

structure (none of which are found in the RSSP literature), the use of branch and 

bound methods quickly becomes computationally infeasible as problem size 

increases (Arthur et al. 1997), and despite increasing computing efficiency this 

will likely be a major limitation for the foreseeable future. Therefore, to solve our 

formulation on large real world data sets, heuristic techniques are necessary. 

The remainder of the paper is organized as follows. Section 2.4 details the 

optimization formulation. Section 2.5 briefly presents results and comparisons 

from three common heuristic methods that were implemented on various test 

problems. From these results a new heuristic is developed, and results using this 

new algorithm on another simulated landscape are reported. Section 2.6 

introduces a real world data set from the Klamath-Siskiyou region of 

northwestern California and southwestern Oregon that contains many scattered 



20 

protected areas. Results are shown under a 10% and 25% minimum reservation 

requirement per habitat. This is done both with and without the current 

reservation status of parcels to reflect how current reserves may affect the future 

compactness and contiguity of a reserve network. Section 2. 7 contains 

conclusions and describes some ongoing extensions of the work presented in this 

paper. 

2.4 Optimization model 

For the purpose of this paper all habitats are assumed to be of equal 

ecological value. This ignores habitat-specific species abundance issues that may 

be important when reserving a large network containing both species rich and 

species poor habitats. Also, the approach does not account for temporal issues 

and changing ecological attributes. The model developed assumes that (i) all 

parcels in the database are immediately available for reservation, and (ii) those 

parcels comprising the final proposal are ecologically essential forever. In reality, 

decisions regarding the establishment of permanent reserves are often constrained 

by private ownership, existing mining claims, timber leases, grazing permits, and 

encroaching human urbanization. If the study region is threatened by 

urbanization, then part (ii) of this assumption is more realistic since land once 

urbanized typically stays that way. In regions where human encroachment is of 



lesser concern, there may still be subsets of the region which, for various 

ecological and/or aesthetic purposes, should be permanently set aside. 
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If the primary objective is to create or enhance a reserve network in the 

most compact manner possible, the optimal proposal will have a minimum 

perimeter to area ratio. Hence, the overall shape of the optimal reserve will be as 

circular as possible and the distance from any parcel to all other parcels will be as 

small as possible. Arguably the most accurate way to measure this is to sum the 

distances between every pair of parcels in the final reserve proposal. A problem 

with summing all pair-wise distances is that non-circular arrangements of parcels 

will be deemed less desirable, even if the resulting proposal is a preferred reserve 

design based on other non-geographic measures. Furthermore, for some regions a 

compact proposal may not exist due in part to minimum habitat representation 

requirements; in such cases, the sum of all inter-parcel distances would return a 

proposal that is, overall, in a circular arrangement but containing possibly many 

disjoint clusters of parcels. Disjoint areas pose a problem for two reasons: 

fragmentation not only decreases the likelihood of habitat sustainability, but it 

increases the management costs of the entire reserve. 

On the other hand, if the primary objective is to create or enhance a 

reserve network in the most contiguous manner possible, then each parcel should 

share at least some minimum width border with at least one other parcel. The 

overall shape need not be circular, but a compact and contiguous design should be 

selected if such a proposal exists. An efficient way to measure reserve contiguity 
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is to sum the number of parcel adjacencies. There are drawbacks associated with 

just summing adjacencies, since under such a measure it is possible to select a 

reserve design that is nowhere compact but completely connected ( e.g., a spider 

web pattern). 

When taken separately, minimizing distances and maximizing adjacencies 

between parcels have different ecological implications for different species. A 

minimum distance, disjoint reserve would generally benefit aviators and those 

plants with heavier reliance on wind-borne seed dispersal. On the other hand, a 

contiguous, non-compact design would generally benefit slow moving terrestrial 

species and plants with more gradual seed dispersal techniques. Some species, 

such as many game animals, would benefit from a combination of these two 

design characteristics. Hence, it is desirable to explore the tradeoffbetween 

reserve compactness and contiguity in a given area, and this capability is included 

in the optimization model. 

It is assumed that the geographic region under consideration is divided 

into a fixed number of uniformly sized sites, which are also referred to as cells, 

units, or parcels. In addition, it is assumed that each site is classified into one and 

only one type of habitat that does not change with time, and to accommodate 

situations where some areas of the study region are permanently protected, that 

each site is either unrestricted ( and thus a candidate for protection) or already 

withdrawn (denoted as Congressionally Withdrawn, or CW). To develop the 

optimization model, the following notation is used. Let m be the total number of 



distinct habitat classes in the study area, and denote a generic class by i. 

Similarly, let n represent the total number of cells in the study area, j denote a 

generic cell, and N = {l, 2, ... , n} the set of all cell indices. Also define: 

ni = the number of cells of habitat class i; 

N = the indices of the cells in habitat class i (N has cardinality of ni); 

nicw the number of cells in habitat class i already reserved as CW cells; 

23 

M{w the indices of the CW cells in habitat class i (M/w has cardinality of n{w); 

Mi= the indices of the non-CW cells in habitat class i (Mi has cardinality ofni-

ai = the minimal percentage of habitat i to be reserved; 

b1 the minimum number of additional parcels of class i that must be included in 

the reserve (bi= max {O, ai ni -n{w} ); 

b = the number of additional parcels of any habitat class to include in the reserve 

(where b ~ O); 

L = the total number of additional cells to include in the reserve proposal (note 

that 

djk = the Euclidean distance between the centers of cells j and k; 

Aj the set of cells k adjacent to j (restricting k > j). 
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The inclusion of the parameter b provides a useful analysis tool. By 

incrementally increasing band comparing the respective reserve proposals, the 

marginal return on reserve compaction and contiguity can be viewed as a function 

of increased availability of land for conservation. As a consequence of these 

definitions, the set of cell indices N = { 1, 2, ... , n} is partitioned into N 1, N2, ... , 

Nm and each N is expressed as {Mi u Mtv}; that is, cells are clustered by habitat 

class and further partitioned by their current legal status. 

Finally, each raster-type cell is represented by a binary decision variable Xj 

such that: 

( 1 if parcel j is included in the reserve proposal 
Xj = i 

( 0 otherwise. 

The quadratic 0-1 optimization model is: 

n-1 n n-1 

Minimize 

subject to: 

A L L Xj djk Xk - o (1- A) L L Xj Xk 

j=l kE Aj 

jEN 

X·>b· J - 1 for i 1, ... , m 

(2.1) 

(2.2) 

(2.3) 

Xj 1 for j E M{w (i = 1, ... ,m) (2.4) 
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Xj O or 1 for j E Mi (i 1, ... ,m) (2.5) 

The first summation in equation (2.1) measures the compactness of the 

cells in the reserve proposal and the second measures contiguity (the use of Aj 

avoids double-counting adjacencies). Since the objective is minimization, 

adjacencies are subtracted rather than added. The parameter AE[0,1] explores the 

tradeoffbetween compactness and contiguity, and the parameter 8 > 0 weights the 

sum of adjacencies so that the two measures are more directly comparable; that is, 

scaling 8 so that both measures are of roughly the same magnitude gives A a more 

intuitive meaning. Constraint (2.2) ensures that the minimum representation is 

met for each habitat, and constraint (2.3) requires L cells to be selected. In all 

subsequent results, b O was used for simplicity of presentation; consequently, 

the constraints in equation (2.2) held as equalities. Constraint (2.4) pragmatically 

includes all CW cells, and constraint (2.5) limits each decision variable to the 

required binary values. 

The optimization model in equations (2.1) - (2.5) differs from reserve 

design formulations that ignore spatial metrics. In particular, if the spatially 

explicit objective function in equation (2.1) was replaced with the commonly used 

objective of minimizing the number of parcels included in the reserve (i.e. 

minimizing 1: Xj over all j N), our formulation reduces to a set-covering 

problem. However, because each cell belongs to a unique habitat class, it can be 

seen that every feasible solution to the covering problem that consists of exactly bi 



26 

distinct cells from Mi is necessarily optimal and has minimal objective value of L 

bi. 

2.5 Heuristic comparison and development 

The model developed for compaction and connectivity in equations (2.1) -

(2.5) is a constrained quadratic 0-1 program. No polynomial time solution 

methods exist for such problems, although a transformation method can be used 

that results in a much larger linear integer problem (Klein and Aronson 1991 ). 

Using such a transformation causes a quadratic increase in the number of binary 

variables, and applying this method to equation (2.1) on a small landscape 

containing just 100 parcels results in a linear integer program with thousands of 

decision variables. Most real world data sets contain thousands of parcels, so 

branch and bound integer programming techniques are computationally 

intractable for such problems due to long solution times. 

Heuristic selection in practice is often based on various non-scientific 

criteria. Certain problem types can make some algorithms more attractive than 

others, but it is not currently known which heuristic technique consistently finds 

the best solutions across problem types. Our approach to heuristic design and 

eventual development was to implement different techniques on various simulated 

test problems (or grids). The ideal solution method would be robust to landscape 

characteristics such as size, shape, number of habitat types, and spatial correlation 
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within habitats, as well as find optimal or near optimal solutions in real time. We 

applied the three most commonly used heuristics: Simulated Annealing 

(Metropolis et al. 1953; Kirkpatrick et al. 1983), Tabu Search with short-term 

memory only (Glover 1989, 1990; Glover and Laguna 1997), and Genetic 

Algorithms (Holland 1975; Goldberg 1989). 

Each technique requires parameter settings that can greatly affect the 

quality of solution found, regardless of problem formulation. We first varied 

heuristic parameter settings, grid characteristics, the percent to reserve per habitat, 

and the values of A in equation (2.1) within each heuristic in factorial designs to 

see how algorithmic parameter values affected the speed and quality of the best 

solution found over all grid types. Once the best algorithmic parameter settings 

had been statistically identified using Multiple Comparisons with the Best (Hsu 

1984) for each heuristic across all grid types, comparisons between heuristics 

were then performed using the best settings from each heuristic. 

To assess the heuristics in terms of nearness to optimality, one test grid 

containing 144 cells was solved by complete enumeration using a 10% habitat 

constraint. This was done for four values of 'A,: 0 (adjacency measure only), 1/3, 

2/3, and 1 (compactness measure only)- a task that took one and a half months 

on four Sun Spare 40 stations running in parallel. For brevity, only results when 

A= 1 are presented, but these are typical of what was found across all values. On 

average, Simulated Annealing (SA) found the best solutions (1.6% ± 2.2% above 

optimality) with Tabu Search (TS) and the Genetic Algorithm (GA) doing 
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significantly worse (10. 7% ± 5.8% and 11.5% ± 7 .2%, respectively). However, 

the average time until SA found its best solution on a run was about four times 

slower than TS, and the GA runtime was about five times longer than that of SA. 

To improve solution speed while maintaining closeness to optimality, a 

new method was developed that used relative heuristic strengths to offset their 

respective weaknesses. First, it was observed that solution quality from a simple 

greedy algorithm (i.e., using TS but maintaining no history list to decrease CPU 

time) was statistically no different from TS or GA. Furthermore, when using TS, 

instead of computing all pair-wise distances for all of the candidate entering cells 

(a very expensive task computationally, especially on large data sets), a proxy 

measure was identified. The distance between each candidate cell and the current 

solution's centroid (without the cell selected for removal) was substituted for the 

compactness measure. Because the cell with the shortest distance to the current 

solution's centroid is highly correlated with the cell that has the smallest sum of 

all pair-wise distances, the proxy dramatically reduces CPU time without 

degrading solution quality. Incorporating the proxy compactness measure into the 

simple greedy routine and denoting this algorithm as 'TSO', it was found that 

solution quality was statistically no different than TS and GA, but the time until 

the best solution was found with TSO was 20, 8, and 150 times faster than SA, TS, 

and GA. 

To improve on the nearness to optimality of TSO, the algorithm was 

augmented with SA. The approach, denoted SA-TSO and overviewed in Figure 
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2.1, is as follows. An initial feasible solution is randomly generated and TSO is 

applied (an intensification strategy). The best solution found by TSO is likely a 

local optimum, so this solution is supplied to SA Since the degree of overlap 

with an optimal solution is unknown, SA is used to either fine-tune 

(intensification) that from TSO or move away from spatially distant local optima 

(diversification). The parameter values of SA are set to rather small values so that 

not too many objective function evaluations are performed (to save CPU time), 

and SA is terminated sooner than is typical. Upon termination of SA, the current 

SA solution not the best found is handed back to TSO and the cycle is 

repeated. Since SA's current solution is probably not the best one found, this 

technique adds to the diversification strategy. To obtain quality results with SA­

TSO, it was found that SA's initial temperature should be about 2-3% of the best 

solution found by TSO's first pass, and SA should be terminated when its 

temperature is about 1-2% of TSO's first pass best solution; with these parameter 

settings the best solution was typically found within four cycles between SA and 

TSO. 

Applying SA-TSO to the grid that was solved by complete enumeration, 

the optimal solution was found on 49 out of 50 runs after about 3 cycles (0.0001 % 

± 0.2% above optimal on average). Using a PC with 120 MHz processor and 32 

MBofRAM, 
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30 



31 

and performing all runs in the MATLAB v5.0 (The Mathworks 1999) software 

platform using uncompiled code (which is significantly slower than C-compiled 

code), the average time until finding the best solution was 68 ± 16 seconds. 

These times were about 2 times faster than TS, 8 times faster than SA, and 40 

times faster than GA. Hence, on this test problem, SA-TSO was superior to all 

other methods implemented in solution quality, and second only to TSO in speed 

until finding the best solution. 

Finally, before solving a large real world data set, SA-TSO was applied to 

another test grid with attributes similar to the area discussed in Section 2.6. A 

new grid with 144 cells and 6 equally sized habitats was randomly generated. 

Approximately 13.5% of the area in the real data set is reserved, so 20 cells (144 

cells *.135 ~ 20 cells) were randomly selected to be withdrawn in the test 

problem. This was done by selecting a random spatial pattern whose cells were 

fairly clumped together. 

The algorithm was run fifty times for four values of A, and every run 

began with a different random initial solution. Results are given in Table 2.1. 

With the exception of the contiguity measure (i.e., when A= 0), the algorithm 

identified the best globally found solution on every run. It also identified many 

alternate best solutions, even within a run. Across all 200 runs, the average 

computing time until the best solution was found was 55 ± 20 seconds. From 

these findings, the algorithm is expected to perform similarly on data from the 

real world study area. 
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Table 2.1. Results using the SA-TSO algorithm on a single landscape for 
various values of the objective function parameter A. 

Best objective Number of times Number of 
). value found 1 best value found2 alternate solutions 

0 -610.0 34 9 

1/3 212.8 50 2 

2/3 991.9 50 1 

1 1765.9 50 2 

1 Across all values of A, the average CPU time until finding the best solution 
on a run using a PC with 120 MHz processor and 32 MB of RAM was 55 ± 20 
seconds. All simulations were run on the MATLAB v5.0 (The Mathworks 1999) 
software platform using uncompiled code. 

2 Number shown is out of 50 runs using the given value of A, where each run was 
started with a randomly generated initial solution. Runs were performed with 8 = 
10. 
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2.6 Application, results and discussion in the Klamath-Siskiyou ecoregion 

The Klamath-Siskiyou region (Figure 2.2) of southwestern Oregon and 

northwestern California encompasses 43284 km2 (37% of which is privately 

owned) and is extremely diverse (Wallace 1992). Elevation ranges from sea level 

to 3000 m, and annual precipitation from under 50 cm to over 300 cm. Over 3500 

plant species have been found, including 75 conifer and hardwood tree species. 

For these reasons The World Conservation Union has declared the area to be of 

Global Botanical Significance, one of just seven in North America. The area has 

been remotely sensed, partitioned by a grid with 2 km resolution (resulting in 

10821 cells), and each cell classified as one of 19 distinct physical habitat classes 

based on climate and soil characteristics. Within the region are existing disjoint 

nature reserves (primarily Congressionally designated Wilderness Areas) that 

comprise approximately 13.5% of the total area but collectively do not represent 

all 19 habitat classes; percent coverage of each habitat ranges from 0% in low­

lying, fertile classes to 63% in a high, cool class with poor soil. Hence, the 

existing reserves alone do not equally address the sustainability of species that 

depend on each habitat in the region. 

For all results that follow, the SA-TSO algorithm was implemented in 
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Figure 2.2. Map of the Klamath-Siskiyou study area with current CW 
areas outlined. Inset shows location of the study area in the 
continental United States. 
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C-compiled MATLAB code and run on a PC with a 700 MHz processor and 512 

MB of RAM. Ideally, look-up tables containing all pair-wise distances and 

adjacencies between the 10821 cells would be computed prior to algorithm 

implementation to further reduce CPU time, but this proved infeasible due to 

limited RAM storage; hence, look-up tables for just the cells in the current 

solution could be maintained. This way only the distance and adjacency measures 

for the entering candidate cell had to be calculated, and this decreased the time 

until the best solution was found by an average factor of 30. 

2.6.1 Minimum Reservation Requirement of 10% and 25% with Existing 

Reserves 

To demonstrate the approach on a real world data set, two minimum 

habitat representation requirements were chosen: 10% and 25% reserved per 

habitat. The latter percentage falls roughly within the lower end of the range 

(25% to 75%) suggested by conservation biologists to withdraw (Noss 1996), 

while the former percent might be viewed as a tradeoff between conflicting 

interests in a region. 

At 10% minimum reservation per habitat, nine of the nineteen habitats are 

underrepresented and require an additional 487 cells to be reserved. Although 

there are on the order of 10711 ways to select these cells, the time until the best 

solution found was only about one hour. Figure 2.3 maps the best solutions found 
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Figure 2.3. Results for the Klamath-Siskiyou study area for 10% minimum 
reservation requirement per habitat class and various values of the 
objective function weighting factor lambda (A). The gray shaded 
areas are the current lands under protection (the CW cells) and the 
black areas depict the additional cells selected by the SA-TSO 
heuristic algorithm. 
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for the four values oO. of 0, 1/3, 2/3, and 1. When A= 0 (i.e., just adjacencies, 

where two cells are defined to be adjacent if they share a common edge or vertex), 

the solution adds cells onto six existing reserves, and identifies four areas where 

new reserves might be established. There are a handful of unconnected cells, but 

closer inspection revealed that this was due to the minimum habitat reservation 

requirement; that is, no cells of these habitat types existed that were adjacent to 

any of the current or suggested reserve areas. As the value of A increases, the new 

reserve areas move closer to the center of the region. It might be expected under 

the compactness measure that the centroid of the CW cells (1405 cells total) 

should pull in the additional cells and dominate their placement, but that the 

adjacency measure should not be affected by this phenomenon because distances 

beyond bordering cells are not accounted for. 

At 25% minimum reservation an additional 1638 cells need to be selected 

from 15 underrepresented habitats. There are on the order of 101932 ways to select 

these, and the time until the best solution was found increased to an average of 

three hours. Figure 2.4 maps the best solutions found over the four values of A. 

At A 0, cells are added to eight existing reserves, four large areas composed 

entirely of additional cells are created, and corridors between the three central 

CW areas are created. Again, as A increases, new reserve areas are pulled in 

towards the center of the region. Even though there are more additional cells to 

reserve than CW cells, the CW areas still appear to control new reserve placement 

when selecting for compactness, although this might also be a consequence of the 
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Figure 2.4. Results for the Klamath-Siskiyou study area for 25% minimum 
reservation requirement per habitat class and various values of the 
objective function weighting factor lambda (A). The gray shaded 
areas are the current lands under protection (the CW cells) and the 
black areas depict the additional cells selected by the SA-TSO 
heuristic algorithm. 
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spatial arrangement of physical habitats within the landscape. When A = 1, the 

most compact solution is more fragmented than that when A= 2/3; this occurs in 

part due to the greater emphasis on compactness and because some 

underrepresented habitats are not located near the overall centroid. 

Comparing proposals from the two reservation requirements, cell 

placement is consistent for the larger values of A (likely due to pull from existing 

reserves and spatial arrangement of habitat types); however, it is not entirely 

consistent for the smaller values. At 25% minimum reservation, six additional 

habitat classes are underrepresented that were fully represented at the 10% level. 

Some of the differences in location occur because land near existing reserves is 

classified as one of these six habitats (e.g., the Kalmiopsis; see Figure 2.2). Other 

differences are attributed to the greater flexibility in cell placement, since more 

land must be reserved and more habitat interactions, whether real or not, can be 

accounted for. 

2.6.2 Minimum Reservation Requirement of 10% and 25% without Existing 

Reserves 

To explore how existing CW areas in the region might control the 

placement of additional parcels, CW status was ignored and the algorithm was 

rerun. 
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At 10% minimum reservation per habitat, 1090 cells must be selected. 

There are now on the order of 101511 feasible solutions, and average solution time 

was about three hours. Figure 2.5 maps results for the same four values of A. 

With the exception of the pure compactness measure, there is very little overlap 

with existing CW lands; however, when comparing the locations of additional 

cells between Figures 2.3 and 2.5 for each value of A, placement is much more 

consistent. 

At 25% reservation, 2713 cells must be selected; average solution time 

increased to about five hours since there are now on the order of 102619 feasible 

solutions. Figure 2.6 plots these results. Again, there is very little overlap with 

CW lands for the pure contiguity measure, but more overlap occurs for the pure 

compactness measure. Since the same trend is found at 10% without CW status, 

this shows, for this data set, with its smaller number of CW cells compared to the 

total number of cells, that CW areas more strongly influence parcel location when 

selecting for contiguity, but the spatial arrangement of habitats more strongly 

influences parcel location when selecting for compactness. 

Comparing proposals at 10% and 25% with and without CW status, parcel 

location differs the most under the pure contiguity measure. This has important 

operational consequences if managers were to develop a hierarchical plan for land 

acquisition as the minimum percentage to reserve per habitat increased over time. 

That is, the most contiguous reserve proposal at one habitat reservation 

requirement may not be the most contiguous proposal at another reservation 
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Figure 2.5. Results in the Klamath-Siskiyou study area for 10% minimum 
reservation requirement per habitat class and various values of the 
objective function weighting factor (tc). The gray cells outline lands 
currently under protection and the black cells are those selected by the 
SA-TSO algorithm when CW status is ignored. 
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Figure 2.6. Results in the Klamath-Siskiyou study area for 25% minimum 
reservation requirement per habitat class and various values of the 
objective function weighting factor (A). The gray cells outline lands 
currently under protection and the black cells are those selected by the 
SA-TSO algorithm when CW status is ignored. 
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requirement. Furthermore, the same might hold for the compactness measure as 

well, but this was not observed in Klamath-Siskiyou data set. 

2.7 Conclusions and Future Efforts 

This paper has presented an optimization model and various algorithms for 

developing nature reserve proposals that minimize fragmentation and non­

adjacencies while representing at least a minimum percentage of all habitats. The 

hybrid SA-TSO algorithm selected additional parcels for reservation such that 

they: (i) suggested new areas for protection; (ii) connected with existing reserves; 

and (iii) developed wildlife corridors between reserves. Although the 

compactness and contiguity measures found different proposals for the Klamath­

Siskiyou region, this is a reflection of the nonexistence of a completely compact 

and connected arrangement of habitat representation requirements. Consequently, 

each measure selects cells under different objectives, and both measures can be 

useful to the land manager for trade-off assessment. 

It is the ultimate responsibility of decision makers to decide which areas 

must be included ( e.g., areas of particular ecological or geological significance, 

aesthetic value) and which areas should not be included (e.g., urban habitat, 

landfills). The model developed in this paper can accommodate such 

requirements by assuming that the necessary areas are CW and omitting the non­

desirable areas from the database. However, the algorithmic solution should 
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never be taken as the final word, but as a contributing step. Models and 

algorithms can help to simplify the task, but they cannot replace human judgment 

and should thus be considered as tools to assist in decision-making. 

It was anticipated that the adjacency measure would improve overall 

connectivity between disjoint individual reserves, but this was not entirely the 

case. Although the heuristic performed quite well in the minimization of the 

objective function, it is unclear how well the objective function measured total 

network contiguity. By summing all adjacencies about a cell, the measure was 

observed to select more rounded, disjoint individual reserves. Future work 

focuses on four areas: (1) improving connectivity, (2) considering budgetary 

restrictions, (3) specifically addressing requirements of threatened/endangered 

species, and ( 4) reducing algorithmic run time. It is anticipated that algorithm 

runtime can be decreased to the point where decision makers - when mutually 

convened in real time - can utilize the spatial intelligence, power, and flexibility 

of these approaches. 
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3 .1 Abstract 

An optimization model for land reservation was developed that explicitly 

selects parcels in the most compact or contiguous manner possible while meeting 

habitat requirements and a budget limitation. The model was used to compare the 

effects of an existing reserve network on future parcel spatial locations and total 

cost. Using habitat and land value data from Josephine County, Oregon, it was 

found that a system of existing reserves created by various policies and overseen 

by different agencies can decrease future reserve compactness and contiguity, and 

increase total cost. This work suggests that coordinated planning can result in 

more efficient conservation efforts for less cost. 

Keywords: nature reserves, quadratic 0-1 programming, conservation planning. 
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3. 3 Introduction 

Human population growth has driven the conversion of natural habitats for 

urban, agricultural, and other uses. Natural habitats have been altered and 

fragmented worldwide, and this occurrence is thought to have increased the rates 

of species extinction and extirpation (Wilson 1988). In response to such events, 

the establishment of fixed-site nature reserves has been proposed as an effective 

means for species preservation (Noss and Cooperrider 1994). 

The problem of selecting plots of land for reservation is complex since 

often many objectives possibly complementary or conflicting - must be 

simultaneously considered. These include the coverage of all species, adequate 

representation of each habitat, cost, and appropriate spatial arrangements. 

Optimization techniques are useful as a contributing step to aid in reserve design 

and selection because they find proposals that best meet objectives given the 

scarce resources available. Solutions are thus made more defensible through the 

efficient allocation of resources. 

Various optimization models have been proposed for site selection. The 

most common formulation is known as the Reserve Site Selection Problem 

(RSSP). These models maximize the number of distinct species included subject 

to a pre-specified amount ofland (Cocks and Baird 1989; Church et al. 1996) or 

for a given budget for land acquisition (Ando et al. 1998; Polasky et al. 2001). 

Although the formulation provides a useful upper bound on the total number of 
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species that may be included for a given amount of land or budget, there are 

limitations. Species presence/absence data may not be available (thus rendering 

the approach infeasible), and species abundance is ignored. Other variants 

address these concerns through the use of probabilistic species occurrence 

measures (Polasky et al. 2000) and probabilistic population thresholds (Haight et 

al. 2000), but these also do not consider the spatial arrangement of the selected 

sites. 

To account for habitat depletion as well as habitat fragmentation, another 

class of models has been developed. These differ from the RSSP and its variants 

in two main ways. First, these models represent habitat types rather than 

maximize species coverage. This method of species conservation is known as a 

coarse filter approach since the protection of habitat is thought to facilitate 

preservation of the assemblages of species adapted to each habitat. Thus habitat 

representation is used as a proxy measure for species coverage, and the larger the 

area protected, the larger population sizes are expected to be. The second 

difference is the incorporation of spatial considerations when selecting parcels of 

land for reservation (Williams and Re V elle 1996 1998; Hof and Raphael 1997; 

Clemens et al. 1999; Leslie et al. 2001; Nalle et al. 2001). These models 

generally attempt to select adjacent parcels for least cost while meeting habitat 

representation requirements. The model in (Nalle et al. 2001) is unique in that it 

explicitly selects parcels in the most compact or contiguous manner possible and 

allows evaluation of tradeoffs between compactness and contiguity. This paper 



extends that model by incorporating a budget constraint and illustrating the type 

of economic analysis that can be performed. 
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The regulatory framework and landowner behavior on the landscape are 

major issues in reserve design and selection that have received less attention in 

the literature. In the United States, various public policies have driven the 

creation of fixed-site nature reserves. However, most are species-centric in their 

intent ( e.g., Species Protection Act, National Environmental Policy Act, 

Endangered Species Act). These laws apply to all ownership types, but public 

lands have largely born the brunt of conservation efforts. Furthern1ore, many 

different public and private ownerships exist, each with different management 

objectives. These include the USDA Forest Service, USDI Bureau of Land 

Management, USDI Wildlife Refuge System, USDI National Park Service, and 

various state agencies (all public owners), in addition to industrial and 

nonindustrial private owners and nongovernmental organizations such as The 

Nature Conservancy and Wilderness Society. Little coordination exists between 

these somewhat autonomous groups for land preservation. Operationally, 

possible consequences for reserve design include over- or under-representation of 

important ecological attributes, disproportionate spatial economic impacts on 

local communities ( especially those whose economies depend more directly on 

the natural resource base), sub-optimal spatial arrangements of reserved areas 

arising from uncoordinated land withdrawals, and larger than necessary costs. 
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This paper makes two contributions to reserve selection and design. The 

first is a demonstration of how to compactly or contiguously select additional 

parcels of land when augmenting an existing reserve network under a budget 

constraint. The second contribution is a demonstration of how to directly 

compare the best compactness, contiguity, and cost between reserve proposals. 

Using data from Josephine County, Oregon, an existing reserve network was 

augmented by selecting new parcels of land in the most compact or contiguous 

manner possible while meeting habitat representation requirements and a set of 

budget limitations. The model was then rerun with the same habitat requirements 

and budget amounts but ignored the protection status of existing reserves. From 

these results, total cost curves were traced out and the marginal return on reserve 

compactness and contiguity can be seen as a function of cost. In Josephine 

County, it was found the current reserve design can always be made more 

compact or contiguous for less cost. 

The remainder of this paper is organized as follows. Section 3.4 develops 

the spatially explicit optimization model and overviews a new solution method 

used to solve the model. Section 3.5 describes how habitat and land value 

information from Josephine County was derived. Section 3.6 compares the effect 

of existing reserves on compactness, contiguity, and cost. The paper concludes 

with a discussion of key results and suggestions for future research. 
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3.4 Optimization model and solution method 

Two scenarios were investigated to compare reserve proposals in terms of 

compactness, contiguity, and cost. These can be envisioned as depicting two 

potential managerial situations. The first scenario addresses the concern of 

representing all habitats at some minimum level in the presence of existing 

reserves. The second scenario examines the minimum representation of all 

habitats ignoring the existing reserves. Because the first scenario's reserves 

constrain the selection of additional parcels, comparing the two scenarios reveals 

the first's degree of spatial and cost inefficiency. 

The model developed below assumes that the study region is partitioned 

into uniformly sized cells (which are also referred to as parcels or units), and each 

cell is classified by habitat type that does not change with time. For habitat 

classes i = 1, ... , m, and cells}= 1, ... , ni (where ni is the number of cells of 

habitat class i in the study area), define binary decision variables: 

( l if cell} of habitat i is included in the reserve proposal 
xv= i 

\ 0 otherwise 

For the scenario when the study region contains some protected lands, 

each cell is considered to be either unrestricted or free ( and thus a candidate for 

reservation), or restricted (already reserved). Specifically, each decision variable 

is classified according to its reservation status, and the free cells are denoted as 
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x/ while the reserved cells are referred to as x/. For each habitat i, the free and 

F reserved cells are assumed to be grouped separately so that the first ni cells are 

free and the remainder are reserved. Hence: 

F Xij O or 1 for i = l, ... , m andj == 1, 2, ... , nt 

R Xij = l for i = l, ... , m and j F F ni +1, ni +2, ... ,n; 

(3.1) 

(3.2) 

For the second scenario, only equation (3.1) is relevant since those cells 

currently reserved are allowed to be free so that the number of free cells is nt 

Let a; be the minimum percentage to reserve of habitat class i. Then a;n;, 

rounded up to the nearest integer, is the minimum number of cells in the study 

area of habitat i that have to be reserved. For the first scenario, the required 

number of cells for habitat i may be a combination of free and reserved cells ( due 

to equation (3.2)); thus we write: 

F 
ni n; 

I: F 
Xij + I: Xij 

R 
~ Utllt for i 1, ... , m (3.3) 

j=1 . F 
1= n; + l 

If the existing reserves contain at least aint cells of habitat i, then no free 

cells of this class must be selected. For the second scenario (where nt ni), the 
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second summation in (3.3) does not exist, so at least atnt cells of habitat i must be 

selected. 

Because funding for land acquisition is often a major limitation, the total 

purchase price must not exceed the available budget. Define Cij as the purchase 

price of cell Xij and let C be the total budget for acquisition. In order to directly 

compare the total cost between the two scenarios, the cost of the existing reserves 

is deducted from the total budget amount for the first scenario. The budget 

amount, C, thus represents the total amount available for conservation purposes 

under both scenarios. Thus we require: 

m F 
nt m n1 

L L Cij Xij 
F + L L R 

Cij Xij :S C for i 1, ... , m 
j=l i=l j=nt+I 

Again, the latter summation in (3.4) does not exist for the second scenario 

because there are no reserved cells. 

(3.4) 

To compare proposals spatially, two metrics were introduced. The first, 

compactness, was defined as the average Euclidean distance between any two 

parcels in a reserve proposal. To measure this, all pair-wise Euclidean distances 

between parcels ofland in a reserve proposal were summed together ( omitting 

redundancies). The smallest sum has the smallest average distance between 

parcels when the amount ofland in the reserve proposal is held constant. Shorter 

distances between reserved parcels can benefit species survival because less travel 
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through unprotected areas is required. The second metric, contiguity, was defined 

as the average number of reserved parcels that were adjacent to any other reserved 

parcel, where two parcels were defined to be adjacent if they share a common 

edge or comer. To measure contiguity, all adjacencies about each parcel were 

counted and then summed over all parcels (also omitting redundancies). By 

decreasing unprotected edges around a reserved parcel, the freedom of movement 

of some species is enhanced. Also, preserving disjoint clumps ofreserved areas 

that are spatially distant on a landscape can decrease the spread of disease and 

lower the risk of total habitat destruction from disturbances such as fire and wind. 

Let di)kl be the Euclidean distance between cells xu and Xkz, and define aukz = l 

if cells xu and Xkz are adjacent and aukz = 0 otherwise. Because the spatial 

measures sum distances and adjacencies between all cells (both free and reserved) 

in a proposal, the F and R superscripts were ignored for clarity of presentation, and 

combining both spatial measures into one statement yields: 

A L L L L Xij dijkl Xk[ -

i=l j=l k=i l=j+ l 
(1- "A) L L L L xu ai)kl Xkz 

i= l j= l k=i l=j+ l 
(3.5) 

The first summation in (3.5) measures compactness while the second measures 

contiguity, and the parameter "A E [O, 1] permits tradeoff assessment between the 

two spatial metrics. Minimizing (3.5) creates a compact and/or contiguous 

reserve system since distances and adjacencies are defined to be positive in sign. 
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Finally, in addition to the minimum habitat requirements, the reservation 

of more land of any habitat class was included here. In this way proposals from 

the two scenarios could be directly compared under the compactness and 

contiguity measures since both required the same number of cells to be reserved. 

Let L be the total number of cells that are to be included in a proposal. Then for 

both scenarios the decision variables must satisfy: 

m F ni m ni 

I: I: F + I: I: R L for i = 1, ... , m (3.6) Xij Xij 

i=l j=l i=l j= nt+l 

The first scenario (with existing reserves) was modeled by minimizing 

(3.5) subject to (3.1), (3.2), (3.3), (3.4), and (3.6). The second scenario (without 

existing reserves; i.e., nt = ni) was modeled by minimizing (3.5) subject to (3.1), 

(3.3), (3.4), and (3.6) where all cells are free. Both optimization formulations are 

examples of constrained quadratic 0-1 optimization models. No polynomial time 

solution methods were known that can optimally solve such programs. Quadratic 

programs can be transfom1ed into 0-1 integer programs (Rosing and ReVelle 

1986; Klein and Aronson 1991) and solved with branch and bound teclmiques. 

Unfortunately, the transformation increases the number of decision variables 

quadratically, and even for problems with only a few hundred 0-1 variables, this 

renders branch and bound computationally infeasible ( due to exponentially 

increasing solution times). Since most real world data sets contain many 

thousands of cells, an alternative solution method was needed for this model. 
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From previous work (N alle et al. 2000 2001 ), three common heuristic 

methods were implemented and experimentally compared on various problems. 

These were Simulated Annealing (Metropolis et al. 1953; Kirkpatrick et al. 1983), 

Tabu Search (Glover 1989; Glover and Laguna 1997), and Genetic Algorithms 

(Holland 1975; Goldberg 1989). From these results, a new method was 

developed that capitalized on their respective strengths. The new approach, 

denoted as SA-GS, was as follows. First, an initial feasible solution was 

randomly generated. The solution is an array that contains as many elements as 

the number of cells needed to satisfy the habitat reservation requirements plus 

possible additional cells of any habitat (a total of L entries). Each element in the 

array is a reference number that referred to a specific cell in the study region. An 

exploration search strategy was applied where an individual element was 

randomly chosen and the occupying reference number ( a specific cell) was 

replaced with a different reference number (i.e., a different cell) of the same 

habitat type. In this way, solution feasibility was always maintained. 

A purely greedy search (GS) was applied first. This operated by randomly 

choosing an individual vector element (cell reference number), and the occupying 

cell was replaced with the cell that returned a smaller objective function value, if 

found. The search terminated after no improvement was made in the objective 

function after a specified number of iterations had elapsed. The best solution 

found at this stage was rarely the optimal solution, so Simulated Annealing (SA) 

was applied to the best solution in hopes of improvement. 
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Because it was not known if a global optimum had been found, or if the 

GS solution was a local optimum, SA was used to either intensify the search 

about the best solution found by GS or move away from the GS best solution. 

The parameters of SA were tuned so that the initial temperature was 

approximately 2-3% of the best solution value found by GS, and SA tenninated 

when its temperature was approximately 1 % of the GS best objective function 

value found. Fewer iterations were performed by selecting a relatively small 

initial temperature and relatively large tennination value, thus helping reduce 

solution time. At termination, the current solution of SA (which most likely was 

not the best solution found by SA) was supplied as the initial starting solution to 

GS, and the process was repeated. In this manner, GS would typically begin with 

a different solution each time (a diversification strategy). Each repetition was 

referred to as a cycle, and it was observed that the best solution was usually found 

within four cycles. When tested on a data set whose global optimum had been 

found by complete enumeration, the method averaged 0.001 % above optimality 

(vs. 11 % above optimality on average for the three common heuristics), and found 

such solutions in a fraction of the times (8 times faster on average) than the next 

best heuristic procedure. 

3 .5 Data collection 
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Josephine County, Oregon was selected for analysis for several reasons. 

First, the county comprises approximately 10% of the Klamath-Siskiyou 

ecoregion. This region is diverse physically and biologically (Wallace 1992). 

Elevation ranges from sea level to 3000m, average January (winter) precipitation 

varies from under 70 mm to over 850 mm, and hundreds of soil types are found 

here, including sensitive serpentine soils. Biologically, about 3500 plant taxa are 

known to occur (8% of which are endemic to the region), including 45 hardwood 

and 30 coniferous species of trees. The region was declared to be of Global 

Botanical Significance by the International Union for the Conservation of Nature 

in 1992. 

In order to develop solutions, cell locations, habitat delineation per cell, 

and purchase price per cell were needed. Physical habitat classifications in the 

region were derived based on soils, temperature, and precipitation (Vance­

Borland 1999); thirteen habitat types were delineated in Josephine County. The 

region was partitioned with a 1 km grid, and each cell was classified as belonging 

to one and only one physical habitat type. This was the finest habitat resolution 

available, so the analysis was conducted using 1 km cells as the decision 

variables. 

Ownership in Josephine County is also diverse. Approximately 69% of 

the county's 4181 km2 are publicly owned- about half of this is managed by the 

USDA Forest Service and a little less by the USDI Bureau of Land Management. 

Portions of two wilderness areas (Kalmiopsis and Rogue River) comprise 6% the 
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county, the USDI National Park Service manages the Oregon Caves National 

Monument, the USDI Wildlife Refuge System administers stretches of Wild and 

Scenic Rivers and Viewpoints along the Rogue and Illinois rivers, and there is a 

small amount of scattered land owned by the state of Oregon. The local economy 

is primarily resource based ( forestry, mining, farming, and livestock grazing), and 

land management objectives of the different owners in the county include 

resource extraction, tourism, and recreation. 

Market values on all private and some public lots were obtained from the 

Josephine County Assessors Office database. It was assumed that the market 

value accurately estimated the net present value of all future income streams from 

the land. In cases where no assessed market values were available on public 

lands, the values were imputed based on the market values of neighboring lands 

so that all values were measured on a comparable basis. The habitat classification 

map and land value map were then overlaid to obtain an estimated purchase price 

per cell. 

Some caveats about this land value estimation procedure should be noted. 

Land is typically less expensive per unit area when purchased in large tracts. 

Hence, the value of cells contained within larger tracts might be underestimated. 

Also, price elasticities were ignored since it was unclear how a large reservation 

ofland (i.e., a decrease in the supply of economically viable land) in the county 

would impact the local economy and thus change land values. 
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3.6 Results 

For both scenarios, it was supposed that a minimum of 10% of each 

habitat must be reserved, although results were consistent for all percentages that 

were explored (these ranged from 5% to 40% per habitat). Each of the two 

scenarios was run separately for values of A = 0 ( contiguity measure only) and A 

1 ( compactness measure only). All optimization runs were performed using 

MATLAB v5.3 executable code (The Mathworks 1999) on a 700 MHz PC with 

512 MB of RAM. Solution times ranged from 3 to 10 minutes per run. 

For the first scenario, 266 cells are already reserved, and these completely 

meet the requirements of three of the thirteen habitat classes. An additional 254 

cells from the remaining ten habitats had to be reserved (i.e., in the optimization 

F n, m n1 m 't x: = 266 ) to satisfy the 10% minimum 
i=l J=nr+l 

model I Ix; = 254 and I 
i=I j=I 

requirement, thus reserving 520 cells in total. A breakdown of the number of 

cells per habitat, number of existing reserved cells per habitat, and the number of 

additional cells needed is found in Table 3 .1. For the second scenario, 424 cells 

had to be selected to meet the habitat requirements in Constraint (3.3). To make 

the first and second scenarios directly comparable spatially, an additional 96 cells 

F m fl, 

of any habitat class also had to be reserved (i.e., I 2:x[ = 520 and 
i=l }=I 
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m n,. L Ix; = 0) so that again 520 cells are reserved in total. Table 3.1 also lists 
i=l j=n{ +! 

the munber of cells per habitat that must be selected for the second scenario. 

To provide benchmark solutions that do not account for spatial design 

issues, the minimum cost proposal was first found for each scenario. That is, for 

the first scenario, the total estimated purchase price was minimized subject to 

constraints (3.1 ), (3.2), (3.3), and (3.6); for the second scenario, cost was 

minimized subject to constraints (3.1 ), (3.3), and (3.6). In order to meet the 

habitat requirements, the minimum purchase price of the existing reserve system 

is approximately $24.1 million, while the minimum cost without the existing 

reserves is approximately $19.5 million. To explore how cost affects total reserve 

compactness and contiguity, the budget amount, C, was increased incrementally 

from each scenario's minimum cost value until constraint (3.4) was no longer 

binding. 

Figure 3.1 maps the best solutions found for each scenario when selecting 

for contiguity (A = 0). As the budget amount increases, there is greater flexibility 

in cell 

placement and disjoint cells are allowed to clump together to form larger, disjoint 

reserve areas. For smaller budget amounts, cell placement between the two 

scenarios is fairly consistent but such overlap dissipates as the budget increases. 

The divergence is caused by the existing reserves and shows that even though 

they only cover three habitats at the 



Table 3.1. Cells per physical habitat type and number of additional cells to be 
selected. 

First Scenario Second Scenario 
with existing without existing 

reserves reserves 

Habitat total# free reserved free reserved 
1 35 4 0 4 0 
2 280 14 14 28 0 
3 61 7 0 7 0 
4 124 13 0 13 0 
5 1052 106 0 106 0 
6 154 16 0 16 0 
7 181 19 0 19 0 
8 357 36 0 36 0 
9 129 13 0 13 0 

10 830 0 130 83 0 
11 259 26 0 26 0 
12 605 0 93 61 0 
13 114 0 29 12 0 

total 4181 254 266 424 0 

additional 
cells 0 NA 96 NA 

total # of cells 
in the proposal 520 520 
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without existing reserves 

Figure 3.1. Cells are selected under the contiguity measure (A= 0). The left-hand 
column depicts the first scenario where an existing reserve system 
(266 cells) is augmented with additional cells (254 cells) to meet 
minimum habitat requirements (520 cells in total). The right-column 
depicts the second scenario where existing reserves are ignored; 424 
cells are needed to meet the minimum habitat requirements and 96 
additional cells are selected (520 cells in total) to make the first and 
second scenarios directly comparable using the contiguity measure. 
The black cells are the existing reserves, and the gray cells are those 
selected by the algorithm. 



10% level, this coverage is sufficient to skew future placement under the 

contiguity measure. 
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Figure 3.2 maps the best solutions found for each scenario when selecting 

for compactness (A 1 ). The maps on the top row of Figure 3 .2 are the same as 

those on the top row of Figure 3.1; these are the minimum cost solutions that 

ignore spatial considerations. As was found with the contiguity measure, cell 

placement between the two scenarios changes greatly as the budget increases. 

The second scenario (without existing reserves) pulls inward to form a nearly 

circular clump, whereas the first scenario remains fragmented. Once again the 

existing reserves skew future cell placement for compactness and greatly reduce 

the best compactness attainable. 

Direct analytical comparisons of reserve contiguity, compactness, and cost 

for the two scenarios are found in Figures 3.3 and 3.4. These four graphs depict 

total cost curves by connecting the spatial measures of the best proposals found 

over different budget amounts. Subplots 3.3(a) and 3.3(b) examine contiguity, 

and subplots 3.4(a) and 3.4(b) examine compactness. Both 3.3(b) and 3.4(b) 

rescale the abscissa of 3.3(a) and 3.4(a), respectively, so that the differences 

between the two scenarios can be more readily seen. In Figure 3.3(a) large 

marginal returns on contiguity for both scenarios are initially possible for slight 

increases in the allowable budget. However, returns decrease rapidly once the 

budget exceeds approximately $28 million (Figure 3.3(b)). Large initial returns 

on compactness also occur for both scenarios (Figure 3.4(a)), but these trail off 



with existing reserves without existing reserves 

minimum 
cost 

C=$30mil 

C=$50mil 

unlimlted 
budget 

Figure 3.2. Cells are selected under the compactness measure (A 1 ). The left­
hand column depicts the first scenario where an existing reserve 
system (266 cells) is augmented with additional cells (254 cells) to 
meet minimum habitat requirements (520 cells in total). The right­
column depicts the second scenario where existing reserves are 
ignored; 424 cells are needed to meet the minimum habitat 
requirements and 96 additional cells are selected (520 cells 
in total) to make the first and second scenarios directly comparable 
using the compactness measure. The black cells are the existing 
reserves, and the gray cells are those selected by the algorithm. 
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Figure 3 .3. Total cost curves for contiguity. Results found from the first scenario 
when existing reserves are included are plotted with a dashed line. 
Results when existing reserves are ignored are plotted with a solid 
line. 
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Comparing compactness 
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Figure 3.4. Total cost curves for compactness. Results found from the first 
scenario when existing reserves are included are plotted with a dashed 
line. Results when existing reserves are ignored are plotted with a 
solid line. 
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once the budget exceeds approximately $26 million (Figure 3.4(b)). The plots 

show that for the same budget amount, the second scenario always has greater 

reserve contiguity and compactness; conversely, for a given level of contiguity or 

compactness, the second scenario always finds a less expensive proposal. 

Furthermore, when satisfying the minimum habitat requirements at least cost 

(ignoring spatial measures), the existing reserve system costs $4.6 million more 

an inflation of24%. 

3. 7 Discussion 

The maps are a useful means of presentation because they show where and 

how reserve location changes for various levels of funding. The cost curves 

illustrate what levels of :financial investment are needed to achieve desired spatial 

outcomes for a reserve design. They also demonstrate what is spatially attainable 

if a management decision is made to "trade up" from an augmented design with 

existing reserves to one that is not bound by existing reserves. With these tools, it 

has been shown that existing reserves can constrain the best possible contiguity 

and compactness attainable. Also the cost curves show that the average cost per 

additional cell is higher for the existing reserve system. 

The existing reserve system represents the conservation efforts of different 

individuals and owners under many objectives. All operate within an institutional 

framework of landownership rights and regulations that influence and constrain 



management behavior. This work indicates that uncoordinated conservation 

objectives can impact overall design, and that additional effects are associated 

with these issues. A more efficient allocation of resources might result not only 

in more effective species preservation, but the potential cost savings could be 

transferred to other regions for enhanced protection. 
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We note that the total cost of acquiring land may not be a comprehensive 

measure of economic impact. Spatial economic effects have so far been ignored. 

It might be expected that as reserve locations change, so too will the magnitude 

and locations of regional economic impacts. Future work will incorporate 

economic input-output models and measures of non-market amenities to better 

estimate the costs and benefits of land withdrawals at different scales. These 

estimated effects could be used to spur dialogue between public and private or 

urban and rural groups concerning subjects such as public compensation to 

private owners for lost revenues, rural community-level transition assistance, or 

potentially higher commodity prices resulting from the loss of land for 

production. Consideration of all of these issues might help society better 

determine the levels of species conservation it is willing to maintain. 
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4.1 Abstract 

Ecologists have long recognized that landscape change is the rule rather 

than the exception. Human induced alterations, however, have greatly increased 

the rate of change and, consequently, affected species populations to various 

degrees. To better model the risk of species extinction or extirpation, the impacts 

of temporal and spatial changes must be included in the estimation procedure. 

This paper presents methodology for estimating habitat quality and population 

sizes obtained from a detailed wildlife simulator as a landscape changes through 

time and space. The estimates are based on the suitability of a territory for 

occupation as well as the suitability of surrounding territories. As changes to a 

landscape occur the estimates can be quickly updated, making it possible to 

interface with other software applications in real time. In particular, embedding 

the estimators within an optimization model is computationally feasible, whereas 

direct use of the wildlife simulator often is not. The approach is demonstrated 

using a wildlife simulator (PATCH) from the U.S. Environmental Protection 

Agency and species with different vital rates, habitat preferences, and movement 

behavior. 

Key words: extinction risk estimation, wildlife population modeling, PATCH. 
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4.3 Introduction 

Human demand for economic-based outputs from the land base has 

accelerated the rate of landscape change. These changes have in turn affected the 

populations of different wildlife species (Maurer and Villard 1996; Fagen et al. 

2001), and the consequences - both actual and anticipated have helped drive 

conservation policy and planning (Dunning et al. 1995; Turner et al. 1995; 

Murphy 2001). A frequent part of conservation policy and planning is 

measurement of the risk of species extinction and extirpation (Fahrig 1997; Fagen 

et al. 2001 ). Accurate estimation of future population trends requires, in part, 

simultaneous knowledge of species' vital rates (survival and reproduction), 

habitat requirements (source/sink characteristics), and movement behavior (site 

occupation and re-colonization) (Conroy et al. 1995; Brawn and Robinson 1996; 

Ruckleshaus et al. 1997; Mooij and DeAngelis 1999; Ruckleshaus et al. 1999; 

South 1999). Because extirpation risk is a measure of uncertainty over time and 

space, in addition to detailed species-specific knowledge, the incorporation of 

inter-temporal spatial relationships can lead to more realistic risk estimation. 

Timber harvest is used here, in addition to forest growth, as a vehicle for 

habitat alteration over time. Harvests are one of the most common activities 

having a major impact on wildlife in the selected study area for this work. To 

examine the impacts of landscape change on species populations, different 

management regimes could be implemented on the ground and their effects thus 
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observed. However, experimental methods cannot be applied because resource 

requirements are limiting, necessary time frames may be too long, and 

experiments might result in the extirpation of the species of concern. Simulation 

provides a useful alternative to real life manipulation and observation on the 

landscape especially the study of management scenarios that might lead to 

extirpation. 

Past efforts at simulating population responses have by and large been 

hampered by computing power and storage space, available species data (Conroy 

et al. 1995; Brawn and Robinson 1996; Ruckleshaus et al. 1997), and modeling of 

spatial relationships. To circumvent such limitations, researchers have often been 

forced to use simplistic modeling procedures, and these concessions generally 

reduce inferential power and can bring results into question. Recently, enhanced 

computing power and better knowledge of species vital rates, habitat preferences, 

and dispersal behavior have accelerated the development of species simulators 

with increased realism and flexibility. One such wildlife simulator is PATCH ( a 

Program to Assist in Tracking of Critical Habitat). PATCH (Schumaker 1998) is 

a spatially explicit, stochastic simulator that reads GIS imagery and species life 

history characteristics to link every attribute of a species' life cycle to the quality 

and distribution of habitat throughout a landscape. The model tracks an entire 

population of organisms comprised of individuals that are born, disperse, breed, 

and die. Landscape change is simulated by loading different maps of habitat 

quality as time progresses, and the effects on species populations (hence on 
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extinction or extirpation risk) are directly simulated. 

This work is motivated by the increasing pressure on land managers to do 

more with less. Managers must often make difficult resource allocation decisions 

that impact regional economic and ecological conditions. Costs are an important 

aspect in the decision process, and the single largest contributor may be the 

opportunity cost of foregone economic production. Optimization tools are useful 

in such situations since they can address questions of economic efficiency and 

cost-effectiveness on a large landscape over a long planning horizon. However, 

they also can be used to identify types of management actions that minimally 

affect important ecological factors that managers must consider, such as the risk 

of species extirpation. 

This paper is one component of a broader study that attempts to maximize 

the production of sustainable economic and ecological outputs from a large 

landscape. One obstacle to the combined economic and ecological modeling 

approach is that direct interfacing with PATCH during dynamic optimization is 

presently infeasible due to long simulation run times. Although results from 

PATCH can generally be obtained within seconds or minutes, this is too slow 

when used in conjunction with optimization procedures that can require millions 

of iterations ( especially if wildlife simulations are needed at each iteration of the 

optimization procedure). Thus a proxy measure for PATCH simulation results 

that could be quickly computed and updated was needed, and this is the focus of 

the current paper. Because wildlife simulation is the preferable alternative to 



large-scale, real-world landscape experimentation, and since PATCH and 

PATCH-like models provide the best predictions for wildlife simulation, the 

proxy should only be regarded as an approximation to estimated population 

reactions to different management scenarios. 

83 

Results are obtained here using forestry models and one specific wildlife 

simulator, but the approach is general and can be used for any application seeking 

to estimate the risk of species extirpation. There are three main contributions of 

this work: (a) spatial estimation methods for determining habitat quality as a 

landscape changes through time are developed, (b) a means of quickly updating 

habitat quality estimates when simulating landscape change is given, and (c) it is 

demonstrated how a time series of estimated population sizes can be quickly 

approximated on a large landscape. With these three steps, it is possible to build 

more realistic ecological estimation into a dynamic optimization procedure. 

The remainder of this paper is organized as follows. Section 4.4 describes 

the study area and the three species that were selected for modeling. Section 4.5 

introduces the associated data needed for the wildlife simulator and the methods 

used in deriving quick, spatially explicit, proxy measures for PATCH results. 

Section 4.6 presents results from a validation study of these measures. Lastly, 

Section 4.7 contains discussion. 

4.4 Study area and focal species 
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To realistically model species population sizes and estimate risks of 

extirpation, a large study area was selected from the map of vegetative cover for 

the Willamette River Basin in western Oregon in 1990 (Pacific Northwest 

Ecosystem Research Consortium 2001). The area stretches 108 km from the crest 

of the Cascade Range westward to the Willamette Valley and is 184 km from 

north to south (1.7 million hectares in total). The types of habitat that occur are 

similar on a north-south gradient but generally change uniformly on an east-west 

gradient due to topography. All farmland and major cities and towns lie near the 

western border of the study region. The remaining 70% is predominately 

coniferous forest cover with some mixed hardwood and softwood stands. 

Landscape change should affect species differently because each species 

has evolved its own set of habitat affinities. Hence, conservation planning must 

take into account potential tradeoffs between species. In this work, three focal 

species endemic to western Oregon were selected to explore how temporal and 

spatial harvest schedules affect expected population sizes and to identify tradeoffs 

among species. These species are the Gray jay (Perisoreus canadenis), the Great 

horned owl (Bubo virginianus), and the Common porcupine (Erethizon 

dorsatum). Ecologists have hypothesized these three species to prefer different 

types of forested habitat (Bigger and Vessely 2000). The Gray jay is expected to 

have the highest affinity for mature stands, is thought to be sensitive to human 

development, and is found at elevations of 600m to 1650m. The Great horned 

owl is thought to be a generalist (as long as larger diameter trees are available for 
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nesting) with the exception of intermediately-aged, dense stands. Such stands 

have reached canopy closure, are beginning to experience competition-induced 

mortality, and have little or no understory vegetation. Not only is navigation in 

these stands difficult for the large predator, but the absence of an understory can 

preclude the owl's prey of small mammals and other birds. The Common 

porcupine is also thought to be a generalist with its stand preference decreasing 

with stand age. The Great homed owl occasionally preys upon the Common 

porcupine, but the impact on populations is thought to be negligible (Verts and 

Carraway 1998). It was expected that the different dispersal distances will lead to 

different configurations of preferred habitat on the landscape. 

Vital rates are conferred with a population projection, or Leslie matrix 

(Caswell 1989). When life history data is limited, allometric scaling relationships 

(Brown 1995) that relate vital rates and movement ability to body size can be used 

instead. 

4.5 Methods 

Since temporal and spatial aspects are essential factors when estimating 

extinction risk, a two-step procedure was developed for (i) estimating habitat 

scores and (ii) approximating simulated population sizes as the landscape changed 

temporally and spatially. The first sub-section describes the different PATCH 

parameter settings used for all subsequent analyses, while the second sub-section 
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details how habitat quality was estimated through time and space. The third sub­

section overviews the statistical collection of data from smaller landscapes, and 

that last sub-section describes how the estimated population density prediction 

equations were derived. 

4.5 .1 PATCH parameterization 

PATCH offers a variety of parameters that can be fine-tuned to better 

model the species of interest. Each species was selected for its different life 

history characteristics, expected habitat preferences, minimum predator-prey 

interactions, and dispersal distances (Table 4.1 ). 

In addition to the territory size of a species, its maximum dispersal 

distance, and population projection matrix, the type of search a species performs 

when looking for quality habitat can be controlled. For all simulations and 

species in this paper, an intelligent search was imposed, meaning that an 

individual would select the highest quality site (from those that are unoccupied) 

within its maximum yearly dispersal distance. 

Another important setting is the distribution of the initial (simulated) 

population on the landscape. PATCH allows the user to do one of two things. 
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Table 4.1. Species life history characteristics, taken from Adamus (2000). 

Gray jay Great homed owl Common 
porcupme 

Perisoreus canadenis Bubo virginianus Erethizon 
dorsatum 

territory 65 50 80 
size (ha) 

max annual dispersal 11 75 3 
distance (km) 

General habitat rankings (0-10) 
stand age: 

young 1 4 10 
intermediate 4 8 8 
mature 10 10 7 

expected life 3-6 15 20 4-7 
span (yrs) 

Leslie matrix 0.00 0.90 0.00 0.35 0.35 0.00 0.50 
0.32 0.82 0.68 0.00 0.00 0.38 0.74 

0.00 0.76 0.85 

Either the software automatically places one individual on each territory that 

contains some amount of habitat, or the user can manually specify the set of 

occupied territories at the outset. If territories at the outset generally contain poor 

to marginal habitat, population sizes will decline during the first two to three 

decades when simulations are perfom1ed on static landscapes (i.e., simulating 

populations on a single, non-changing map for a specified number of years), until 

reaching a more-or-less steady state (due to stochasticity). The converse holds as 
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well. For this work, the initial population was always automatically specified by 

PATCH in order to save time when initializing the simulator. 

In order to run PATCH, at least one raster-based map must be loaded into 

memory. Each map is represents habitat quality for a single species by assigning 

integer scores to every pixel on the map. The higher the score of a pixel, the 

better its expected quality of habitat. Quality may depend on the interaction 

between many different factors, such as the vegetative structure, type of cover, 

and forest age-class in the pixel; type and amount of vegetative structure, cover, 

and age in the surrounding pixels; or the pixel's distance to the nearest stream, 

road, or urban area. For the purposes of this study, habitat scores ranged from 0 

(the poorest) to 10 (the highest). Management actions and habitat change are 

represented in PATCH by loading a new map for each desired time period. In its 

current form, the software can only estimate population responses of one species 

per simulation. Thus, in order to simulate multiple species on a changing 

landscape over time, multiple habitat maps ( one time-series of maps for each 

species) must be indi~idually generated, loaded, and simulated. 

One habitat map for each species was compiled by an expert panel of ecologists 

(Adamus 2000); these are found in Figure 4.1. The panel used species-specific 

knowledge and a map of the vegetative cover in 1990 with pixel resolution of 

30m by 30m (Pacific Northwest Ecosystem Research Consortium 2001 ). Hence, 

to reconstruct the panel's scoring mechanism for each species, the habitat quality 

of every pixel was a function of the pixel's vegetative cover and 



Gray Jay Great horned owl Common porcupine 

Figure 4.1. Initial habitat maps compiled by expert opinion. The lighter the 
shade of gray, the higher the quality of habitat for that species 
on the landscape. 
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other unknown factors. Furthermore, because the derivation of habitat maps was 

done only once and was based only on the vegetative cover in 1990, these maps 

represent the expert panel opinion at a single point in time. Therefore, to evaluate 

the impact of changes on the landscape, the landscape itself must be re-evaluated. 

4.5.2 Estimating habitat quality 

The habitat maps are a quantitative measure of the ability of each location 

on the landscape to support an individual member of a population. However, the 

maps are also qualitative since they were derived from expert opinion. The first 

task was to generate a spatial scoring procedure based on the observable 

landscape attributes in 1990 so that scores could be quickly updated when 

simulating landscape change (i.e., applying different management actions to 

different locations through time). It was assumed that the underlying map of 

vegetative cover in 1990 (from which the experts compiled the habitat map for 

each species) had sufficient variation to represent the full range of possible spatial 

habitat arrangements. 

The first step towards estimating habitat quality as the landscape changed 

was to examine how habitat scores for each species were derived. The habitat 

maps revealed that, for each species, habitat quality of a pixel was not a one-to­

one function of its stand age. For example, even though the gray jay is expected 

to have the strongest preference for mature ( old-growth) stands, this vegetation 
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class was not always rated a 10 and was often scored a 0. Error could account for 

some of these rankings, but preliminary regression analysis showed that a species­

specific habitat score for a pixel could be accurately modeled as a function of the 

its forest age class and the forest age class distributions of neighboring pixels. 

Because another component of our work was to contrast species survival with 

timber production, management units were defined on the landscape. This was 

done using a uniform grid, and the area of each square management unit (70.5 

hectares or 784 pixels) was chosen to be approximately the average territory 

size of the three species. So that an altered landscape could be re-scored, it was 

necessary to re-evaluate the habitat quality of each management unit (as well as 

those units within some proximity) when landscape attributes were dynamically 

changed during optimization. The habitat quality of each management unit for 

each species was measured by summing the habitat scores of all pixels within the 

management unit (for that species). 

Since the quality of habitat within a management unit might be influenced 

by the surrounding quality of habitat, a ring structure about each unit was devised. 

This is shown graphically in Figure 4.2. Those units whose geographic centers 

were within 840m, or a 1 "unit" distance, were defined be in the first ring about a 

generic management unit. The units whose centers were at least 840m but less 

than 1680m ( a 2 "unit" distance) comprised the second ring, and units centered at 

least 1680m but less than 2520m (a 3 "unit" distance) defined the third ring. This 



was repeated until a list of ten rings about each generic management unit were 

enumerated. 

To model these basic spatial relationships, regressions were performed. 

Specifically, the following notation is defined for each management unit u = 1, 

... , n and its associated ring structure r = 1, ... , 10: 

Cui number of coniferous pixels aged 0-20 years within generic unit u; 

Cu2 = number of coniferous pixels aged 21-40 years within generic unit u; 

Cu3 = number of coniferous pixels aged 41-60 years within generic unit u; 

Cu4 = number of coniferous pixels aged 61-80 years within generic unit u; 

Cus = number of coniferous pixels aged 81-200 years within generic unit u; 

cu6 number of coniferous pixels aged > 200 years within generic unit u; 
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Figure 4.2. Ring structure used for estimating a generic harvest unit's habitat 
score for each species. 
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cu7 = number of mixed hardwood and softwood pixels in generic unit u (no age 

classifications were available for mixed forested pixels); 

R/ = the set of management units in ring r about generic management unit u. 
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All management units were used when estimating habitat quality for the 

owl and porcupine, but only those units falling within the gray jay's elevation 

range were used. The total habitat score of a management unit, for each species, i 

= 1, 2, 3, was estimated from ordinary least squares with equation (4.1): 

(habitat score) 7 7 

EI for species i I = Pm+ 22 Pig Cug + 22 22 Pt(g+7) Cwg (4.1) 

\ in unit u ) g=l wER/ 

7 

+ ... + 22 22 P,rg+93) 

wERJO 
u 

The estimated regression coefficients (assuming unbiased, independently 

distributed normal errors for each species) are given in Table 4.2. It was found 

that only the first three rings were statistically significant for the three focal 

species, and that a large proportion of variation for the owl and porcupine was 

explained by the regression results. Even though these species have different 

dispersal characteristics, the three-ring sphere of influence likely represents the 

dampening effect of distance within PATCH. These relationships were assumed 
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to be constant through time since they were based on only the initial habitat map 

of each species. 

It was decided to drop the Gray jay from the study due to low predictive 

power and seemingly nonsensical results. The estimated coefficients for stands 

aged 61 to 80 years are always negative and are generally the largest in magnitude 

among the other coefficients within a ring. There is no reason for this to have 

occurred (Ernst 2001) and it could not be adequately explained. Possible 

contributors could be (i) an underlying error in the initial habitat maps compiled 

from expert opinion; (ii) the jay's restricted elevation range; (iii) an invalid 

assumption that the 1990 map contained sufficient variation; or (iv) interaction 

between (ii) and (iii). Although the cause is unknown, this demonstrates how 

dependent the habitat scoring procedure for each species is on just the one initial 

habitat map. 

The residuals from fitting the equations in Table 4.2 represent 

unobservable factors influencing a unit's habitat score (such as distance to a 

stream or road). These were recorded for each management unit. As forest cover 

changed through time and through harvesting (it was assumed that all harvested 

stands were regenerated into coniferous forest), the habitat score for each 

management unit and each species was computed with the equations in Table 4.2, 

and then adjusted by adding the residual to this value. This way, the predicted 

habitat scores for every management unit were calibrated to be the same as those 

from the initial habitat maps. By adding the residual value to each unit, it is 
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Table 4.2. Estimated regression coefficients for predicting a unit's habitat score. 
A '*' represents those coefficients that are statistically significant at 
the 0.05 level, while a'**' represents significance at the 0.01 level. 

Coefficient for 
variable Gray jay Owl Porcupine 

Intercept 3847.672** 364.621 ** 282.539 ** 

# of pixels in the unit aged 0-20 -0.031 0.180 * 0.189 * 
# of pixels in the unit aged 21-40 -0.071 0.042 0.376 
# of pixels in the unit aged 41-60 0.161 0.224 0.395 
# of pixels in the unit aged 61-80 -0.025 -0.365 -0.403 
# of pixels in the unit aged 81-200 -0.042 0.048 0.056 
# of pixels in the unit aged 200+ -0.074 0.197 * 0.337 ** 
# of pixels of mixed forest cover -0.060 0.162 * 0.297 ** 

# of pixels in 1st ring aged 0-20 -0.110 0.253 ** -0.340 ** 
# of pixels in 1st ring aged 21-40 -0.488 0.011 -0.131 
# of pixels in 1st ring aged 41-60 0.150 0.381 ** -0.302 * 
# of pixels in 1st ring aged 61-80 -1.429** 0.050 -0.484 * 
# of pixels in 1st ring aged 81-200 -0.385 ** -0.025 -0.345 ** 
# of pixels in 1st ring aged 200+ -0.398 ** 0.065 -0.127 * 
# of pixels in 1st ring of mixed forest -0.147* 0.042 -0.184 * 

# of pixels in 2nd ring aged 0-20 -0.080 -0.238 ** 0.825 ** 
# of pixels in 2nd ring aged 21-40 -0.259 -0.065 0.894 ** 
# of pixels in 2nd ring aged 41-60 0.378 ** -0.374 ** 0.643 ** 
# of pixels in 2nd ring aged 61-80 -0.360 0.033 1.007 ** 
# of pixels in 2nd ring aged 81-200 0.523 ** 0.132 ** 0.526 ** 
# of pixels in 2nd ring aged 200+ 0.740 ** 0.155 ** 0.473 ** 
# of pixels in 2nd ring of mixed forest 0.187 ** 0.326 ** 0.725 ** 

# of pixels in 3rd ring aged 0-20 -0.109 ** 0.173 ** 0.368 ** 
# of pixels in 3rd ring aged 21-40 -0.119 0.245 ** 0.408 ** 
# of pixels in 3rd ring aged 41-60 -0.020 -0.048 0.222 ** 
# of pixels in 3rd ring aged 61-80 -0.265 0.435 ** 0.257 ** 
# of pixels in 3rd ring aged 81-200 0.072 ** 0.214 ** 0.288 ** 
# of pixels in 3rd ring aged 200+ 0.074 ** 0.219** 0.252 ** 
# of pixels in 3rd ring of mixed forest -0.065 ** 0.282 ** 0.306 ** 

R2 0.35 0.76 0.88 
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implicitly assumed that the unobservable factors do not change with time. In 

reality this may not be true, but the assumption is necessary since only one habitat 

map per species was available that had been compiled by expert opinion. 

From the equations in Table 4.2, the habitat score for each unit and each 

species could be quickly computed as the forest cover within each pixel either 

aged or was changed by timber management activities. In order to simulate the 

effect of harvesting on habitat quality, if a unit was scheduled to be harvested, 

then its habitat score could be quickly changed by subtracting off the contribution 

of its current forest cover and then adding the effect of the new forest cover. 

Also, because habitat scores were found to change based on the distribution of 

forest type and age classes from all units in the three surrounding rings, harvest of 

a single unit would cause changes to all habitat scores in the 3-ring sphere of 

influence from the first period of harvest until the end of the planning horizon. 

The linearity of the equations in Table 4.2 allows scores to be quickly 

updated. This is important for two reasons. The first is because additivity does 

not require the entire habitat scoring measure for a unit and those units in the 

three surrounding rings to be recomputed every time a management action is 

altered. Only the change in forest cover type and coniferous forest age class 

within a single unit must be addressed. Second, linear functions require far less 

computation time than more complex operations such as SQRT, LN, or EXP. To 

better integrate a realistic species simulator in an optimization routine that might 
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require millions of iterations, any decrease in CPU time per iteration will magnify 

returns in speed over the course of solution. 

4.5.3 Population data generation 

With a means for predicting habitat score through time and space having 

been established, the next step was to generate data from which to estimate 

species population sizes as the landscape changed through time. Ideally, various 

management regimes would be simulated on the entire study landscape (1. 7 

million hectares) with dynamically changing, spatially-linked habitat scores. 

However, the habitat maps needed for one simulation run in PATCH on the entire 

study area required approximately 1.5 GB of storage space and about 3 hours of 

CPU time to generate on a PC with two 700 MHz processors in parallel. 

Consequently, forty smaller sub-landscapes were randomly selected from the 

study area. These ranged in size from approximately 2% to 20% of the larger 

region, and varied in shape ( e.g., square, rectangular). 

Simulated management activities were performed on each sub-landscape. 

The intent was not to generate likely or even feasible timber management, but to 

provide a broad range of series of landscapes on which to simulate species 

survival and, from these results, to develop dynamic linkages of population 

responses. The activities fell into four broad categories: "high" harvesting, 

"medium", "low", and "no" harvesting over the 100-year periods. Each unit was 
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deemed to be available for harvest if at least 25% of its pixels were classified as 

coniferous forest. If a unit was selected for harvest within the I 00-year planning 

horizon, a prescription was randomly assigned. Each prescription consisted of a 

series of actions in each decade which were to either clear-cut or do nothing. 

Harvest activities could occur in any decade, but a 20-year minimum rotation age 

was imposed to contain the number of possible prescriptions. For the "high" 

harvest category, all harvestable units were felled at least once during the I 00-

year horizon. In the "medium" category, at least half but not all of the harvestable 

units were felled at least once during the horizon. For the "low" category, at least 

one harvestable unit but less than half were felled, and for the "no" category, no 

harvesting ever occurred (i.e., the entire sub-landscape was allowed to grow for 

100 years). 

Twenty harvest schedules were randomly generated for each sub­

landscape. For each schedule, a series of ten habitat maps was generated for each 

species; each map thus represented decadal landscape change over 100 years. 

Each series of maps was loaded into PATCH and each species was simulated for 

the 100-year horizon. This was repeated 50 times per time-series; resulting in 50 

PATCH simulations per harvest schedule on each sub-landscape or in 

50*20*40=40000 population time-series per species. For each of the 20 harvest 

schedules on each of the 40 sub-landscapes, the 50 PATCH replications of 

population sizes were averaged on a year-by-year basis. The resulting 



observations thus consisted of 20 time-series of mean population sizes for each 

species, on each of the 40 sub-landscapes. 

4.5.4 Estimating population sizes 
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From initial work with PATCH using static landscapes, it was observed 

that species population sizes were highly correlated with the amount of habitat 

available on a landscape (the number of pixels with coniferous forest vegetative 

cover), the quality of the habitat (the sum of all pixel's habitat scores), the 

habitat's area to edge ratio, and population sizes in previous time periods. All of 

the landscape characteristics are straightforward to measure from GIS imagery, 

and population sizes in previous time periods can be obtained explicitly from 

PATCH simulation runs. 

Since the variable of interest was the mean species population size through 

time, and because the sub-landscapes were of different areas, a normalization was 

applied to make the variable of interest directly comparable across sub­

landscapes. This was to divide the mean population size time-series by the area 

of the sub-landscape. The resulting dependent variable was therefore one of 

population density through time rather than size. It was assumed that the amount 

and location of all forests did not change over time. Therefore, if a pixel was 

classified as coniferous or mixed forest cover on the initial vegetative coverage 



map, it would always remain classified as forested, regardless of the age class 

present (including recent clear-cuts). 

Each sub-landscape could be envisioned as a block effect, since 
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population densities arising from different harvest schedules on the same sub­

landscape might be correlated. Potential within-sub-landscape dependencies will 

not influence estimated regression coefficients (i.e., the estimates are still 

unbiased); however, if positive correlations are present, they will reduce estimated 

standard errors and thus artificially reduce associated p-values. Since the interest 

of this work was to merely estimate PATCH population sizes not to do 

hypothesis testing to identify those covariates that influence PATCH population 

sizes - all mean population time-series were aggregated together during analysis. 

Regressions were performed for each species using the 800 observations, but the 

amount of forested area was included as a regressor to account for one difference 

between the 40 sub-landscapes. 

For each harvest schedule on each sub-landscape (i.e., each observation), 

habitat scores in the ten decades and the total amount of coniferous forest were 

normalized by dividing each by the area of the sub-landscape (to account for 

differences in sub-landscape area). Mean population densities were regressed on 

past population densities, present and past normalized habitat scores, and the 

normalized amount of coniferous and mixed cover on each sub-landscape. 

Because PATCH was programmed to place one individual on every territory with 

habitat at the outset of all simulations, and because the initial population size 
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might artificially be too high or too low, regressions were performed on a decade­

by-decade basis. 

The following model (equation (4.2)) was fit for species/= 1, 2, decade t 

=1, 2, ... , 10, and sub-landscape k = 1, 2, ... , 40: 

E(population 1 
( densityjr )= PjtO + Pjtl (population densityj(i-1)) (4.2) 

+ P jt2 (population densitYJ(t-1)) 
2 

+ P1t3 (population dens it,VJ(t-2)) 

+ P114 (normalized habitat scoreJt) 

+ Pjr5 (normalized habitat scorej(i-JJ) 

+ P1r6 (normalized coniferous forest coverk) 

Results are provided in Table 4.3. The amount of variation explained by 

these equations for both species is lower when predicting the initial population in 

the first year, but by the ninth year and all decades thereafter, the equations 

always explain at least 90% of the variation. For each species, the coefficients 

tend towards similar values as the decades progress, suggesting that the effects of 

the PATCH-supplied initial populations have dissipated. 

The question may arise as to why habitat edge was not significant when 

predicting population densities. One explanation is that the spatially-embedded 

habitat scoring procedure has already accounted for it. Edge can be an important 



Table 4.3. Estimated population density prediction equations for the owl and 
porcupine. A'*' denotes those coefficients significant at the 0.05 
level, while a'**' denotes those significant at the 0.01 level. All 
measures are normalized by dividing each by the area of coniferous 
forest on the initial landscape. 

intercept 
cover 
habitat score in decade 1 

intercept 
cover 
habitat score in decade 1 
population in year 1 
(population in year 1 )2 

intercept 
cover 
habitat score in decade 1 
habitat score in decade 2 
population in year 1 
population in year 9 
(population in year 9)2 

Rz 

Population density in year 1 

owl 
-0.4808 
0.0021 
0.000021 

0.36 

Population density in year 9 

owl 
8.2758 ** 

-0.00265 * 
0.0000192 * 

-12.7215 ** 
6.7793 ** 

0.93 

Population density in year 19 

owl 
0.5144 

-0.0007104 
-0.0000431 
0.0000342 

-0.907 ** 
2.0883 

-0.2537 

0.90 

porcupme 
0.4508 

-0.0007142 
0.0003354 ** 

0.75 

porcupine 
1.8593 ** 

-0.0021500 ** 
0.0000855 * 

-1.3921 ** 
1.1219 ** 

0.96 

porcupme 
1.0125 ** 

-0.0004635 
-0.0004947 
0.005170 ** 

-0.2851 
0.3196 
0.2089 ** 

0.97 
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intercept 
cover 
habitat score in decade 2 
habitat score in decade 3 
population in year 9 
population in year 19 
(population in year 19)2 

Rz 

intercept 
cover 
habitat score in decade 3 
habitat score in decade 4 
population in year 19 
population in year 29 
(population in year 29)2 

Rz 

intercept 
cover 
habitat score in decade 4 
habitat score in decade 5 
population in year 29 
population in year 39 
(population in year 39)2 

Rz 

Population density in year 29 

owl 
-0.0667 
0.0000403 
0.0000990 

-0.0000894 
-0.5848 * 
1.5352 
0.176 

0.93 

Population density in year 39 

owl 
-0.0431 
0.0002620 
0.0000334 * 

-0.0000552 * 
-0.1638 
0.8738 * 
0.1569 

0.98 

Population density in year 49 

owl 
0.0064 
0.0000628 

-0.0000016 
0.0000003 

-0.3652 ** 
1.0776 ** 
0.1170 

0.99 

porcupme 
-0.3822 
0.0006361 

-0.0004032 ** 
0.0003618 ** 
0.0000021 
1.0332 ** 
0.0475 

0.98 

porcupme 
-0.8895 * 
0.0008713 

-0.0001793 
0.0001729 * 
0.0000001 
2.5651 ** 
-0.4383 ** 

0.97 

porcupme 
-0.3462 
-0.0009334 
-0.0002209 ** 
0.0004079 ** 
0.0000010 
1.5695 ** 

-0.1841 ** 

0.97 
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intercept 
cover 
habitat score in decade 5 
habitat score in decade 6 
population in year 39 
population in year 49 
(population in year 49)2 

R2 

intercept 
cover 
habitat score in decade 6 
habitat score in decade 7 
population in year 49 
population in year 59 
(population in year 59)2 

R2 

intercept 
cover 
habitat score in decade 7 
habitat score in decade 8 
population in year 59 
population in year 69 

Population density in year 59 

owl 
0.1095 

-0.0002500 * 
0.0000119 * 

-0.0000051 
-0.26003 
1.1656 ** 
0.1505 

0.99 

Population density in year 69 

owl 
-0.0467 
0.0000736 
-0.0000038 
0.0000017 

-0.71884 ** 
1.7139 ** 
0.1208 

0.99 

Population density in year 79 

owl 
0.0429 
0.0000039 
0.0000061 

-0.0000116 
-0.2996 
1.1133 ** 

porcupme 
0.3037 

-0.0003360 
-0.0001003 
0.0003209 
0.0000000 
1.8541 

-0.2104 

0.94 

porcupme 
-1.1164 
0.0008051 
0.0000568 

** 
** 

0.0001565 ** 
0.0000001 
1.2657 

-0.2597 

0.93 

porcupine 
-0.2367 
-0.0001253 
-0.0001022 
0.0001549 
0.0000031 
2.2810 ** 
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(population in year 69)2 

R2 

intercept 
cover 
habitat score in decade 8 
habitat score in decade 9 
population in year 69 
population in year 79 
(population in year 79)2 

R2 

intercept 
cover 
habitat score in decade 9 

0.0834 

0.99 

Population density in year 89 

owl 
-0.0213 
-0.0000358 
0.0000031 
0.0000033 

-0.8004 ** 
1.8912 ** 

-0.2269 * 

0.99 

Population density in year 100 

owl 
-0.4154 ** 
0.0006526 ** 
0.0001606 ** 

habitat score in decade 10 -0.0001667 
population in year 79 0.02033 ** 
population in year 89 0.8270 ** 
(population in year 89)2 -0.0294 

R2 0.99 

-0.3743 

0.94 

porcupine 
-0.3567 
-0.0000322 
0.0000047 
0.0000816 

-0.0000033 
2.3586 
-0.3698 

0.95 

porcupine 
-0.3382 
-0.0000258 
-0.0004518 
0.0005297 

-0.0000004 
1.8783 
-0.2309 

0.98 
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factor, but this effect was contained in the habitat score function since habitat 

close to or bordering an edge would be scored according to species preferences. 

4.6 Validation study 

The accuracy of the spatially-embedded habitat scoring procedure could 

not be verified since it was based on expert opinion. However, the accuracy of 

the population density prediction equations needed to be tested on the landscape 

of interest. To do so, 

more PATCH simulations were performed using the complete 1. 7 million hectare 

study area (thus using out-of-sample data). Specifically, six random harvest 

schedules from the "high" class were generated, as well as six from the 

"medium", six from the "low", and one from the "no" (there is only one way to 

grow out the landscape). For each of the nineteen sets of management actions and 

for each species, a time-series often habitat maps was generated using the habitat 

scoring measures. Each time-series was run in PATCH 50 times, and the mean 

population size (averaging the 50 runs within time period) was recorded. 

For each speciesj = 1, 2, and each decade t = l, 2, ... , 10, observed 

population densities were then regressed on the predicted population densities 

using equation (4.3): 



E( observed l 
I population I 
\ densityj 1 ) PjtO + Pjtl (predicted population densityjt) 

+ Pj12 (predicted population densityjt)2 
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(4.3) 

Assuming normal errors, significance testing was performed to test first for 

curvature (i.e., H0 : Pjt2 = O); if p-value > 0.05, then PjtZ was dropped and the model 

rerun to test for a slope of unity (i.e., H0 : Pjn = 1 ). In all cases (i.e., for each 

speciesj and decade t), Pjt2 was found to be statistically no different from zero and 

Pjil was found to be statistically no different from one. A total of forty t-tests 

were performed, and with a significance level of 0.05, two tests would be 

expected to be falsely significant under the null; however, this was not observed. 

Finally, the proportion of variation explained by each prediction equation was 

high (the smallest R2 observed was 0.97). 

4. 7 Discussion 

The integration of ecological simulation and optimization techniques to 

identify economic efficiencies and effective conservation policy and planning 

strategies is a powerful tool for management. Other researchers have recognized 

this capability, stating that "resource economists and management scientists 

probably need to pay more attention to simulation methodologies and ecologists 

probably need to pay more attention to optimization methodologies" (Hof and 
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Bevers, 1998). The work in this paper develops procedures to quickly estimate 

habitat quality through space and time, rapidly update habitat quality as landscape 

change is simulated, and instantaneously estimate the resultant population sizes 

one could obtain from a wildlife simulator. Because the intent of this work was to 

predict population sizes obtained from PATCH on a specific landscape using data 

observed on smaller landscapes (thus saving time), no attempt was made to 

develop a general set of prediction equations that could be applied to any 

landscape. However, the methods outlined provide a means of data collection that 

could be used to fit a random coefficients model for inference to any landscape. 

The purpose of the estimation procedures outlined in this work is not to 

replace the wildlife simulator; rather to bridge the gap between optimization 

technology and species simulation. As is the current trend, the amount of spatial 

information gathered and its associated attributes continues to increase while its 

resolution becomes more refined. Furthermore, knowledge of species vital rates, 

habitat preferences, and movement behavior is also increasing. However, such 

detailed information can be of little use for addressing some kinds of questions 

when simulating landscape change under realistic, spatially-dependent economic 

behavior, because embedding a detailed wildlife simulation model within an 

optimization application is infeasible due to long solution times. This paper 

presents methods to overcome such difficulty, thus making the powerful 

combined modeling approach feasible and operational. 
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5 .1 Abstract 

The scheduling and allocation of fixed resources for efficient levels of 

production is a common economic activity that obtains the most from that which 

is available. This concept is useful for natural resource management, especially 

as society places increasing pressure on the natural land base for multiple and 

possibly competing outputs. In this paper, a three-dimensional production 

possibilities frontier of timber production and two focal species with different 

habitat preferences, life history characteristics, and movement behavior is located 

for a 1. 7 million hectare forested region in central Oregon over a 100 year 

planning horizon. Economic and ecological theory are brought together within 

the unified modeling framework of Operations Research to explicitly identify 

spatial and temporal sets of management actions that maximize the efficient 

production of timber subject to constraints on the population sizes of the two focal 

species. Relevant policy scenarios are then implemented, and their degrees of 

inefficiency can be determined. It was found that each species benefited from 

different management strategies, but neither would be extirpated from the 

landscape when maximizing economic return alone. 

Keywords: production possibilities frontier, resource economics, optimization, 
conservation planning, policy simulation. 
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5.3 Introduction 

Much fruitful interaction between the traditionally disjoint disciplines of 

economics and ecology has occurred in recent decades. With hindsight, it might 

not be a surprise this has taken place because healthy economies often arise from 

healthy ecosystems and the maintenance of ecosystems is thought to sustain 

healthy economies. Neither economic- nor ecological-based decisions exist in a 

vacuum, but determining socially optimal levels of economic and biological 

production is yet an unresolved issue. There are many reasons for this, such as 

the inherent difficulty in valuing non-market goods and services, changes in 

public opinion, inefficient government policy and non-uniform enforcement of 

regulations, and incomplete scientific understanding of economic and biological 

linkages. 

Despite these shortcomings, a variety of methods have been proposed that 

attempt to better address society's desire for economic and ecological production. 

One approach seeks to permanently withdraw areas from economic production by 

creating nature reserves. Such models typically focus on representing as many 

species as possible for the least amount of land or cost. Variants of this approach 

exchange species for habitat representation, but spatial and temporal economic 

affects are most often ignored. The appropriateness of withdrawing areas from 

resource production is usually not in question; however, the concerns regarding 

the permanency of reserving lands could be minimized if accompanied by 
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ecologically less disruptive sets of management actions. Another general 

approach seeks to maximize the economically efficient production of marketable 

goods where the type and intensity of management actions are altered through 

time to address ecological concerns. Constraints can take the form of disallowing 

management actions in adjacent areas for a certain period of time following 

disturbance, leaving buffer zones around ecologically sensitive areas, or imposing 

maximum harvest amounts on the stock of species. Such ecological 

considerations are usually single-species-centric and therefore can be ecologically 

unsatisfactory. 

Social welfare economics provides a theoretical foundation for 

determining the socially efficient allocation of fixed resources. It can be shown 

there exist three necessary and sufficient conditions for achieving maximum 

social well-being. The first condition is that the marginal rate of substitution (i.e., 

a consumer's relative preference for one or more goods in terms of one or more 

other goods) must be equal across consumers. In other words, each individual 

consumes the mix of goods that maximizes their utility; if this did not occur, the 

solution would not be optimal to this individual and additional trading would take 

place. The second condition requires that the marginal rates of technical 

substitution (i.e., the ratios of shadow prices on inputs among all goods in 

production) must be equivalent. If the ratios were not equivalent, then it is 

assumed capital would be re-allocated for increased return on production. The 

third condition states that the marginal rate of transformation (i.e., the tradeoff in 
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production among goods the slope of the production possibility frontier) must 

be the same as the marginal rate of substitution. This last condition is the 

cornerstone of social efficiency, since it dictates that social utility is best met by 

maximally producing the relative combination of goods that are most preferred by 

society. 

Social efficiency is a theoretical construct and therefore can be extremely 

difficult, if not impossible, to attain in practice. Many obstacles exist. However, 

the better the information is pertaining to any one of the three conditions, the 

closer society can come to social efficiency through improved public policy 

making. Some researchers argue that the marginal rate of substitution for non­

market goods and services, such as species survival and ecosystem services, can 

never be truly known (this is an area of on-going study). Even if relative 

preference functions were known, a means of determining the set of combinations 

of outputs that are maximally obtainable from fixed resources (i.e., the production 

possibilities frontier) would have to be developed. This is the focus of the current 

paper. 

Information describing the production possibility frontier is useful for 

various reasons. The frontier determines inefficient combinations of goods 

(interior points), and the degree of inefficiency of these points can be explicitly 

measured. The slope of the frontier relates how much of one good must be traded 

in order to increase the amount of another good (i.e., the marginal rate of 

transformation). The change in the slope can highlight (i) decreasing returns 
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between competing goods if the shape of the frontier is concave with the origin; 

(ii) show which goods are rivals if convex to the origin; or (iii) determine which 

goods are incompatible if the slope is always zero or infinite. Perhaps most 

useful, the frontier provides a means of relating outputs without placing monetary 

value on non-market goods. 

The work in this paper is applied in nature and draws on economic and 

ecological theory to develop a more detailed and realistic combined modeling 

approach. The supply of one output (timber extraction) was maximized under a 

time-series of stumpage demand equations subject to thresholds on the expected 

population sizes of two species with different vital rates, habitat preferences, and 

movement abilities. Population sizes were estimated from a realistic and flexible 

wildlife model that simulates and tracks individuals on a changing landscape 

through time. Spatial and temporal harvest schedules were found using a hybrid 

heuristic optimization procedure. The combined modeling approach was used to 

estimate a production possibility frontier of efficient economic production and 

species survival. Once the frontier was located, different land-use regulations 

were imposed and points along the policy-restricted frontiers were located to 

directly estimate their degrees of inefficiency. Although no preference functions 

were found, this work provides a basis for better estimating social optimality. 

The application presented is specific to forestry, but the methodology is general 

enough for use in other natural resource applications with economic and 

ecological components. 
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The paper is organized as follows. Section 5.4 describes the ecological 

data needed and methods used, while Section 5.5 does the same for the economic 

component. Section 5.6 brings both aspects together within a single optimization 

model, and the new hybrid heuristic solution method is overviewed. Estimated 

production possibility frontiers are presented in Section 5.7, as well as the effects 

of three relevant policy scenarios on timber production and species survival. 

Finally, Section 5.8 contains discussion and suggests areas of future research. 

5.4 Ecological data and methods used 

This study focused on a 1. 7 million hectare tract of land located in the 

foothills and mountains of the central Cascade mountain range in Oregon, 

contained within the Willamette River Basin (Figure 5.1 ). The area was remotely 

sensed in 1990 and partitioned into 30 m by 30 m pixels (Institute for a 

Sustainable Environment 1999). Each pixel was classified as one of 35 dominant 

cover types, such as high-density urban, seasonal wetland, or oak savanna. 

Because the major economic output of interest for this study is softwood timber 

production, only coniferous and mixed hardwood and coniferous forested pixels 

were considered available for harvest (these classifications comprised 70% of the 

region). Pixels containing coniferous forest cover were further partitioned into 

10-year age classes, whereas the mixed forest cover types were not since no 

classification routine was available. 
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Two focal species were selected from available data to explore how 

different spatial and temporal resource extraction patterns affect their expected 

population sizes and to find tradeoffs between species. These species were the 

Great homed owl (Bubo virginianus) and the Common porcupine (Erethizon 

dorsatum). Both are native to the study region. In addition to different life spans, 

reproductive capability, and maximum dispersal distances, each species is 

expected to prefer differently aged forest stands. The Great homed owl is a forest 

generalist as long as some larger diameter trees are available for nesting, but it is 

not found in intermediate-aged dense stands. The Common porcupine is also a 

forest generalist but prefers younger stands. The owl very infrequently preys 

upon the porcupine, making negligible issues relating to predatory-prey 

interactions for the current work (Verts and Carraway 1998). 

To more realistically estimate population sizes through time, a detailed 

wildlife simulator from the U.S. Environmental Protection Agency was employed. 

PATCH (Schumaker 1998) stochastically simulates individuals as they move 

about a landscape, 
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Silverton -

Mill City 

Lebanon ~ 

Springfield ► 

Cottage Grove ---. 

Figure 5 .1. Map of study area and location of depots. Silverton is farthest north 
and Cottage Grove is farthest south. Forested areas are in darker gray. 
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breed, and die. Required inputs are species vital rates (survival and reproduction), 

habitat preference (source/sink characteristics), and movement behavior. Vital 

rates are entered with a population projection matrix (Caswell 1998), and 

movement behavior is specified by entering a maximum dispersal distance and 

territory search procedure. Habitat quality is represented by loading new maps 

periodically during the simulation. Each map is a matrix of pixels with assigned 

integer scores the higher the score of a pixel, the better the quality of habitat in 

that particular pixel. 

Because the harvest of timber will affect the amount, quality, and location 

of habitat, harvesting was expected to influence population sizes through time and 

space. It was initially hoped that the wildlife simulator could be dynamically 

linked to the optimization procedure discussed in Section 5.4. In this way, as 

management actions were altered, the effects on population sizes could be 

estimated directly using PATCH. However, although PATCH can simulate 

population responses in a matter of seconds, the simulator was still too slow to be 

used interactively with optimization procedures that can require many millions of 

iterations to find just a single solution. Since many solutions were needed to trace 

out the 3-dimensional frontier, another approach was required. 

In order to find solutions in real time, a two-step procedure was applied to 

estimate PATCH results. The first step developed a method of assigning habitat 

quality (i.e., pixel scores) based on the forest age class in the pixel, as well the 

forest age class of the pixels within a certain radius. Hence, as management 
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actions were altered changing which locations were harvested and when in the 

search for economically efficient solutions, habitat quality could be quickly 

updated. The second step involved estimating population sizes on the landscape 

through time. These were found by simulating thousands of different harvest 

schedules on the landscape in PATCH and then regressing population responses 

on metrics of habitat structure and quality. Further details may be found in Nallea 

et al. (2001). 

Lastly, forest stand volume in the western Cascades was predicted using 

average growth and yield estimates of a typical dominant Douglas-fir stand 

developed by Adams et al. (2001). The group obtained site indices (a measure of 

forest productivity) from a U.S.D.A. Forest Service inventory of western Oregon 

from 1995 to 1997; the average site index was found to be 117 feet at a base age 

of 50 years. Douglas-fir dominant stand volumes were predicted onward from an 

age of 15 years using the growth and yield simulator ORGANON (Hann et al. 

1997), while regenerated stand volumes were predicted up to 15 years using 

SYSTUMl (Richie 1993). All estimated yields were subject to peer review. No 

information on the locations of sampled forest stands used to estimate site indices 

could be discerned, so the estimated average site index in the western Cascades 

was assumed for all coniferous forest pixels in the study region. Furthermore, 

because ORGANON does not predict stand volume beyond 150 years, volumes 

for stands aged 150 to 200+ years were predicted by regressing volume 

quadratically on stand age and then extrapolating to 200 years. Because softwood 
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production is usually measured in board feet and ORGANON only measures 

stand growth in cubic feet, stand cubic foot volumes were transformed to board 

feet with standard conversion factors from northwest Oregon. Estimated board 

foot yields are found in Table 5.1. 

Table 5.1. Yield estimates from ORGANON using a typical stand from Forest 
Inventory Analysis database (site index 117' at 50 years), and 
estimated skyline harvest and haul costs for an average stand in the 
western Cascades of Oregon. 

haul costs per 1000 bf($), 
bf per pixel harvest costs per distance in km 

age (in l000's} 1000 bf($) < 80 80-200 
20 0.434 140 50 60 
30 1.819 125 40 48 
40 3.529 115 40 48 
50 6.440 100 35 42 
60 8.851 90 35 42 
70 10.069 80 30 36 
80 12.233 75 30 36 
90 14.188 75 30 36 
100 15.907 75 25 30 
110 16.773 75 25 30 
120 18.442 70 25 30 
130 19.789 70 25 30 
140 20.329 65 20 24 
150 21.283 65 20 24 
160 21.722 65 20 24 
170 22.217 65 20 24 
180 22.310 65 20 24 
190 23.218 65 20 24 
200 23.218 65 20 24 
200+ 23.218 65 20 24 
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5.5 Economic data and methods used 

A total of 28251 management units were delineated with a uniform grid 

that was 28 pixels on a side (resulting in an area of 0. 70 km2). This area was 

chosen to approximate the average territory size of the two species. If at least 25% 

of the unit's area was classified as coniferous forest at the outset, then the unit 

was deemed to be available for harvest (resulting in a total of 19622 harvestable 

units, referred to as management units). Harvests were only allowed to occur in 

10-year periods because this was the resolution of the coniferous forest age class 

data, and the planning horizon was set at 100 years to better capture the effects of 

harvesting on the two species through time. Only two harvest prescriptions could 

be applied in each decade; these were to either clear-cut and replant in the 

following year or take no action. It was assumed that the forested land base did 

not change through time. No thinning alternatives were used because no specific 

information on forest composition and structure that the two species might prefer 

was available. Such alternatives could provide a means of generating revenue 

while speeding the development of habitat quality. This is a topic of on-going 

silvicultural effort that could be used in the future to improve estimates of the 

production frontier. 

Stumpage prices were defined as log prices less harvest and haul costs. 

Log prices were determined explicitly under downward sloping aggregate demand 

for logs in western Oregon. This provides added realism to the economic 
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component since the study area is large and contains productive stands (thus 

avoiding large harvest amounts in a period that could severely depress prices). 

Demand equations were adapted from Adams et al. (2001) and are found in Table 

5.2. As time progresses, the price intercept was linearly increased to reflect the 

assumption of increasing demand for softwood in the future. 

Harvest costs depend on the method used (i.e., ground-based skidding, 

skyline systems, helicopter, etc.) and the type of management action performed. 

In this study, only skyline harvesting was considered. Although it is somewhat 

more expensive than ground-based skidding, less soil compaction and erosion 

occurs, and this better fosters future stand growth (and economic value). Skyline 

harvest costs decrease with stand age; estimates are also found in Table 5.1. 

These include the cost of capital and labor and contain a profit, risk, and overhead 

allowance of 20% (Kellogg et al. 1996). Site preparation and replanting costs 

were assumed to be $740 per hectare using 8' by 8' planting density ofDouglas­

fir. (Lettman 1997). 

Haul costs were determined based on four factors: transportation distance, 

stand age, truck rental, and time of commute. Straight-line distances from each 

management unit to the nearest of five pre-selected depots on the landscape were 

computed. The location of depots was based on historical occurrence (influenced 

by topography), and logs could only be brought to these sites during the planning 

horizon. Depot locations are found in Figure 5.1. More board feet can be taken 

from larger trees, so older stands are cheaper to transport on average per unit area. 



Table 5.2. Estimated stumpage demand equations adapted from (Adams et al. 
2001). 

Decade 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

price intercept ( a1), 
in $/billion bf 

10.694 
10.944 
11.194 
11.444 
11.694 
11.944 
12.194 
12.444 
12.694 
12.944 

slope (Bt) 
-0.6147 
-0.6147 
-0.6147 
-0.6147 
-0.6147 
-0.6147 
-0.6147 
-0.6147 
-0.6147 
-0.6147 

quantity intercept, 
in billions ofbf 

17.40 
17.61 
18.01 
18.42 
18.82 
19.22 
19.62 
20.03 
20.43 
20.83 
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Estimated haul costs per stand age and distance traveled are found in Table 5.1. It 

was assumed that 30 minutes was needed to either load or unload a truck and that 

average speed in transit is 40 km/hour regardless ofload. Finally, trucks and 

drivers were estimated to rent for $50 per hour and can haul 5 thousand board feet 

per load (Kellogg 2001). No limit was imposed on the number of available trucks 

and drivers or the total amount of timber brought to any particular depot. 

All harvest activities were assumed to occur immediately during a harvest 

period. If a unit was selected for harvest, its replanting, harvest, and haul costs 

were summed together and discounted to the first period with a rate of 4% (Row 

et al. 1981). 

5.6 Optimization model and methods used 
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To explore tradeoffs between timber production and the two focal species, 

the three-dimensional production possibility frontier was found empirically by 

maximizing the economically efficient production of timber subject to a series of 

thresholds on estimated population sizes. Instead, population sizes could have 

been maximized subject to a series of thresholds on economic efficiency, but the 

results obtained under either approach would be the same regardless of the choice 

of objective. 

It is assumed for modeling purposes that maximizing consumer and 

producer surpluses will simulate competitive market equilibrium outcomes. This 

equates to maximizing the discounted area under each decadal demand equation, 

up to the quantity harvested, less all discounted harvest and haul costs in each 

period. The summation of discounted areas and costs is expected to generate a 

smoother although not necessarily even-flow of timber. Also, because the slope 

of the demand equations is negative and because a stand not harvested in one 

period will grow in volume to the next period, a greater incremental gain in 

consumer and producer surpluses can be obtained by holding some timber for 

harvest in future periods. 

To develop the optimization model, the following notation is needed. Let 

j = l, ... , n refer to· a specific management unit, t l, ... , T represent each decade 

in the planning horizon, and i = 1, 2 denote each species. Let k = l, ... , K refer to 

each possible prescription ( a prescription is defined as a set of management 

actions assigned to each management unit taken over the entire planning horizon 
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either clearcut or do nothing in each period), and let k = 1 refer to taking no 

management actions at all in perpetuity. For each unitj and each prescription k 

define binary decision variables: 

f 1 ifunitj is assigned prescription k 
Yik= ~ 

l 0 otherwise 

Because the age class distribution within each management unit 

determines the quantity extracted as well as harvest and haul costs, the inventory 

of each unit in each decade must be accounted for and dynamically changed 

depending on the particular set of management actions, or prescription, assigned. 

To save time during optimization runs, some pre-processing measures were taken. 

First, a 20-year minimum rotation age was imposed to reduce the number of 

possible actions that could be taken. This resulted in a total of K = 127 sets of 

prescriptions, which included allowing the stand to grow over the entire horizon 

(k = 1 ). Next, for each management unit and each prescription, the amount of 

timber removed and discounted cost of harvest and haul was computed for every 

decade in which harvests occurred ( as specified by the particular prescription 

applied). These values were stored in matrices specific to each unit whose row 

numbers corresponded to the number of the unique prescription (k). To address 

the economic and ecological sustainability of management actions taken in the 

first 100 years, it was assumed that each stand would be managed under the same 
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prescription in perpetuity. This is important when determining the value in the 

first 100 years for those units containing mostly older stands at the outset that 

might be harvested both early and late during the horizon. For each unit and each 

prescription, the net present value of all future income streams (using the average 

decadal price over the first 100 years found when maximizing consumer and 

producer surplus without regard to species populations) was calculated at year 

100 and discounted to the present. These values were stored in vectors whose 

positions corresponded to each unique prescription (k). 

Furthermore, define additional notation and binary decision variables: 

a1 = discounted area under the linear demand equation for decade t 

hpct = quantity harvested from unit} under prescription kin decade t, 

in thousands of board feet 

Cjkt discounted harvest and haul cost of extracting timber from unit} 

under prescription kin decade t, in dollars 

fik net present value of managing unit j as prescription kin perpetuity, 

in dollars 

a1 = price intercept of the linear demand equation in decade t, in dollars 

per thousand board feet 

/31 slope of the linear demand equation in decade t 

r1 = stumpage price from linear demand equation in decade t, in dollars per 

thousand board feet 
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p 1 adjusted stumpage price in decade t, in dollars per thousand board feet 

su = estimated population size of species i in decade t, a complex spatial 

and temporal function arising from each harvest schedule on the 

landscape 

git= threshold on the population size of species i in decade t 

( 1 if r1 is> 0 
Zt ~ 

\ 0 otherwise 

( 1 if r1 is< 0 
w1=i 

\ 0 otherwise 

The optimization model is: 

T n K T n K 

Maximize 2: at 

t=l 
L L L Cjkt YJk + 

k=l t=l 
L L hk V'k J • J 

k-~1 

subject to: 
n K 

a1 + /Ji L L h1k1 Yik = r1 

j=l k=l 

Zt + Wt = 1 

fort 1, ... , T 

fort 1, ... , T 

fort= 1, ... , T 

fort 1, ... ,T 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

(5.5) 



½ rt Zt + ½ Yt (1 Wr) = Pt 

n K 

fort= 1, ... , T 

n K 
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(5.6) 

1/2 (ai-Pi) L L hJkt YJk + Pt L L hikt YJk a1 fort= I, ... , T (5.7) 
j=l k=l j=l k=l 

r 
I 

L 

r 
I 

L 

T l o11) 

n s11 I ~ g11 

t=l J 

T l c11 n 
n s21 I 

t=l J 
~ g21 
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L V"k .J 
k=l 

Zt 

Wt 

YJk 

fort= 1, ... , T (5.8a) 

fort l, ... , T (5.8b) 

1 forj 1, ... , n (5.9) 

0 or 1 fort 1, ... , T (5.10) 

0 or 1 fort 1, ... , T (5.11) 

0 or 1 forj l, ... , n and (5.12) 
k 1, ... ,K 

The first summation in equation ( 5 .1) sums the areas beneath the decadal 

linear demand equations down to the quantity axis. The second summation in 

equation (5.1) subtracts off all discounted costs associated with harvesting, and 

the third summation adds the sum of the net present values of managing each unit 
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in perpetuity under the assigned the set of prescriptions. Consumer and producer 

surpluses are thus maximized by subtracting all costs from the sum of the areas 

beneath the demand curves. 

Constraint (5.2) computes the decadal price of timber from the linear 

demand equations based on the total quantity harvested in each decade. From this 

constraint, it is possible for r1 to be negative in sign if large harvest amounts were 

to occur. To avoid this, constraints (5.3), (5.4), (5.5), (5.10), and (5.11) ensure 

that the price is set equal to zero in a decade if harvests amounts exceed the 

quantity intercept. To see why this is, if r1 < 0 then (5.3) forces Zt = 0, (5.5) sets w1 

= 1, and p 1 = 0 from (5.6). On the other hand, if ri > 0 then (5.4) sets W1 = 0, (5.5) 

sets Zr 1, and so Pt rr in ( 5.6). If it so happened that ri 0, then ( 5 .6) forces Pt 

= 0 in which case the values of z1 and w1 and would be irrelevant. For some 

applications, it might be desirable to allow prices to become negative to reflect 

costs that would need to be incurred, but in this paper it is assumed for simplicity 

that prices never drop below zero. The first set of terms on the left-hand side of 

constraint (5.7) computes consumer surplus in each period (the area of a triangle), 

while the second set on the left-hand side computes the total revenue received by 

land owners in each decade (the area of a rectangle). Constraint (5.8) is nonlinear 

and requires that the geometric mean of the estimated time-series of population 

sizes for each species exceed the pre-specified thresholds (see Nallea et al. 2001 

for the derivation of su). The geometric mean is used to capture temporal swings 

in population sizes since larger deviations from the threshold within each decade 
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will have a greater effect on the geometric mean value. This implicitly assumes 

that relatively stable population sizes through time are more desirable, but it still 

allows sizes to fluctuate. The geometric mean also reflects the fact that extinction 

is forever. Allowing populations to fluctuate about an aggregate value is 

important for this work since harsh restrictions on population sizes could 

artificially influence the location of the frontier, whereas light restrictions might 

not apply enough pressure on the algorithm to find solutions with sufficiently 

large population sizes. The geometric mean was selected over additive measures 

(such as a variance) since, from previous work, such additive measures allowed 

substantial declines in population sizes during the final decade. Finally, 

constraint (5.9) ensures that one and only one prescription set is assigned to each 

management unit, and constraints (5.10), (5.11 ), and (5.12) restrict Zt, w1 and YJk to 

binary values. 

In this basic model structure, no regulatory constraints are imposed. 

However, since one objective of the study was to examine the effect of different 

policy scenarios, these are later modeled as separate scenarios. Because 55% 

(935 thousand hectares) of the study area is owned by the U.S. government, three 

relevant policies pertaining to management actions on federal lands were also 

explored. These were: 

(1) to require a "non-declining even-flow" of timber (National Forest 

Management Act 1976) on public lands; 
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(2) to require non-declining even-flow on public lands, and that no federally 

owned stands can be harvested that have an average age of at least 200 years 

at the outset of the planning horizon (U.S. Forest Service Directive 2001); 

(3) to disallow all harvests on all public lands. 

The first policy intends to provide sustained yields that address matters of 

inter-generational equity and national security. The second policy at present is 

somewhat vague because no common definition of an old-growth stand has been 

formally accepted, and, as stated in the Directive, certain management actions 

might be allowable on old-growth tracts for protection against disease and 

destruction by fire. Finally, the third policy prohibits all timber production and 

seeks to manage public forests for species associated with old-growth. For the 

purpose of this work, a management unit was defined to be federally owned if at 

least half of its pixels were in public ownership. An old-growth stand was 

defined as a management unit where at least half of the pixels comprising the unit 

were at least 200 years old. This resulted in a total of 12374 management units 

that were classified as federally owned ( out of the 19622 harvest units on the 

landscape), and of these, 1218 (or 4.4% of the study region) were classified as 

both federally owned and old-growth. 

To incorporate each policy within the optimization model, some additional 

notation and constraints are required. Define: 
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L the set of management units j in federal ownership 

D = the set of management units j classified as both federally owned and as old-

growth 

K K 

L L hjkt Yjk s; L L hjk(t+J) Yjk 

jeL ~l ~1 

Yj 1 1 

yj 1 = 1 

fort 1, ... , (T-1) 

forj E {L nD} 

forj EL 

(5.13) 

(5.14) 

(5.15) 

Constraint (5.13) imposes a non-declining even-flow of timber on federal lands, 

constraint (5.14) disallows harvest activities on all federally owned old-growth 

management units, and constraint (5.15) disallows harvesting on any federally 

owned management unit. 

Solution times of the combinatorial model specified above increase 

exponentially with the number of management units and prescriptions, making 

traditional branch and bound techniques infeasible for the application presented in 

this paper. To solve the model, a hybrid heuristic approach was developed based 

on concepts from Simulated Annealing (Metropolis et al. 1953; Kirkpatrick 1983) 

and Tabu Search (Glover 1989a·\ Glover and Laguna 1997). When each was 

separately implemented, solution quality was comparable statistically, but 

solution times were measurable in days. This was an obstacle because, in order to 

locate a three-dimensional frontier, many different optimization runs were needed 

to trace out the boundaries. To maintain solution quality while increasing the 
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speed of solution, a hybrid procedure was developed that combined the relative 

strengths of each technique. 

Simulated Annealing (SA) is a variant of Monte Carlo sampling methods 

where a perturbed solution inferior to the current solution is accepted with 

probability proportional to the difference between objective function values 

weighted by a temperature parameter. A perturbed solution superior to the 

current solution is always accepted, but the stochastic element can allow the 

search to extract itself from local optima. One perturbation and resulting decision 

comprise one iteration of the algorithm. The initial temperature is slowly 

decreased (or "cooled") while the algorithm runs - thus accepting inferior 

solutions with decreasing probability as the search progresses and the search 

terminates once the temperature is near 0. Three parameters are specific to SA: 

the initial temperature (a positive constant), the rate of cooling (a constant greater 

than O but less than 1 ), and the number of iterations that pass before decreasing 

the temperature (the temperature is typically decreased by multiplying the current 

temperature by the rate of cooling). In practice, the determination of parameters 

for SA is generally done by trial and error. Smaller values of the initial 

temperature at first admit solutions nearer to the current best solution (in terms of 

objective function values), but by allowing a large number ofiterations to pass 

before cooling the temperature ( or by setting the rate of cooling to be almost equal 

to 1), more of these inferior solutions will be accepted on average (note that 



setting the initial temperature to O results in a purely random, greedy search 

through the solution space). 
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Tabu Search (TS) is a greedy algorithm that, in its basic form, evaluates 

all solutions in a neighborhood of the current solution. The neighborhood does 

not need to have any spatial component and is completely user-defined. If the 

best solution in the neighborhood is the best solution found globally, this solution 

is always accepted. However, if the best solution in the neighborhood is not the 

best globally found solution and is not tabu, it is still accepted. Once accepted, 

the move is placed on a tabu list for a user-defined number of iterations. The use 

of the tabu list forces the search into new areas of the search space (a 

diversification strategy) and helps prevent cycling of the algorithm. Generally, 

TS has only one parameter: the number of iterations a previously accepted move 

remains tabu. The larger the number oftabu iterations, the more diverse the 

search is expected to be. If the tabu iteration is 0, then the search is similar to SA 

when its initial temperature is O (TS accepts the best candidate solution in the 

neighborhood whereas SA accepts any randomly selected candidate that betters 

the current solution). For the application is this paper, simple TS was 

implemented, meaning that once a large, pre-specified number of iterations had 

elapsed, no additional diversification strategies were employed and the search 

terminated. 

The main drawback of TS is that for problems with large neighborhoods, 

generally only small gains in the objective function are achieved for large 
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amounts of computation time. For this application, even when the neighborhood 

was restricted to just a few dozen management units, SA found solutions with 

statistically comparable objective function values, but TS required two days more 

on average to find such solutions. A potential drawback with the general form of 

SA is that no model-specific information is utilized in the random selection of a 

solution to perturb. Because the problem in this work has spatial components, a 

spatial neighborhood was defined for each harvest unit. When embedding 

methodology from TS in SA, thus creating a hybrid algorithm, solution times 

decreased from days to about one hour while maintaining a quality of solution 

that was statistically no different from either SA or TS. This reflects similar 

results found when implementing other hybrid heuristics on nature reserve 

problems (Nalli,c et al. 2001) 

A :flowchart of the approach is found in Figure 5.2. First, for each 

management unit a neighborhood of other management units was enumerated. 

From previous work developing a fast proxy for the wildlife simulator, the type 

and amount of forest covers in units in the 3 surrounding rings was found to 

statistically influence the habitat quality of each management unit, as well as the 

type and amount of forest cover within the particular unit. Not coincidentally this 

was how the neighborhood about each management unit was defined (it included 

all units in the 3 surrounding rings as well as the management unit itself). 

Second, a randomized list of n numbers fromj = 1, ... , n was created (n is the 

total number of management units in the study area), and a random harvest 



Generate a neighborhood for each unit, n(unit), and an 
initial random harvest schedule 

Find averagesize round(average neighborhood size) 

Generate randomized list, rl, 
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if size(n(unit)) > 1 

randomly select a unit from the neighborhood, 
perturb, and accept or reject according to SA rules 

repeat averagesize times 

end 

End SA if termination criterion is met 

Else set niter = niter + l 

if niter> n 

I 
I 
I 
I 
I 
I 
I 
I 
I 

-----------------------~-----------------· 
else 

end 

Figure 5.2. Flowchart of the hybrid algorithm to solve the optimization model. 
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the randomized list was perturbed, and the next selected from this unit's 

neighborhood. In cases where the number of units comprising a neighborhood 

was less than the pre-specified number of iterations (because not all management 

units were spatially connected to other management units), no subsequent units in 

the neighborhood were perturbed and the next unit on the randomized list was 

perturbed. Once each unit on the list had been selected, a new randomized list 

was generated and the process repeated until the termination criterion of SA was 

met. 

It was observed from empirical testing that solutions of comparable 

quality were found in the least time when the number of iterations from which 

management units in a neighborhood were selected was set to the average size of 

all neighborhoods. This is an intensification strategy, and it is the main reason for 

improved solution times over both simple TS and standard SA. Fewer objective 

function evaluations occur than in simple TS, and the spatially-defined 

neighborhoods on this spatial problem improve the objective function faster than 

completely random selections about the landscape ( as is the case for standard 

SA). The use of the randomized list is a diversification strategy that forces and 

ensures the search will sample more areas on the landscape, while the use of 

standard SA during the sampling procedure serves as both an intensification and 

diversification strategy. 

5.7 Results 
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Due to the quantity of information generated while optimizing, general 

trends are presented first via the estimated production possibilities frontier. 

Constraints (5.13), (5.14) and (5.15) were initially ignored since policies can only 

constrain the location of the frontier. The non-policy constrained frontier thus 

provides a benchmark of efficiency against which all others solutions can be 

compared. Because each point on the frontier is the culmination of many spatial 

and temporal details, a number of specific solutions obtained from the 

optimization model are then examined to provide more insight into their distinct 

characteristics. 

All results were obtained using MATLAB v5.3 executable code (The 

Mathworks 1999). Solution run-times that were found using the hybrid solution 

method ranged from approximately 30 to 90 minutes on a PC with two 700 MHz 

processors and 512 MB of RAM. To satisfy the nonlinear species constraints 

(5.8), these were represented in the objective function through the use of penalty 

terms. Penalties were only incurred if a threshold was not met. 

5. 7 .1 Non-policy constrained analysis 

The non-policy constrained, three-dimensional frontier was found by 

maximizing timber production over a lattice of points representing thresholds on 

the geometric means of population size time-series for the two species. To 
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identify the lattice, the timber objective (equation (5.1)) was first maximized 

subject to a set of thresholds on each species individually, without regard to the 

other species, and the unconstrained population sizes of the other species were 

recorded. This located the range of geometric mean values that could be obtained 

under the timber objective for each species individually, and it provided values 

for thresholds from which to start when locating tradeoffs among species. Then, 

for a fixed target value on the owl, the timber objective was maximized subject to 

the fixed bound on the owl and an incrementally increasing bound on the 

porcupine. A boundary of the frontier was located once the iteratively increasing 

threshold on the porcupine could no longer be met for each fixed bound on the 

owl. This process was repeated by moving to the next fixed threshold on the owl 

and increasing the threshold on the porcupine until a new frontier boundary was 

located. 

There are many different spatial and temporal aspects in this problem, so it 

is not possible to simultaneously present all results in only one graphic. Each 

solution obtained from optimization contains one time-series over the ten decades 

of estimated population sizes for each species, a time-series of discounted 

consumer and producer surpluses, a time-series of board feet harvested, the 

objective function value, and the geometric mean values for both species 

population time-series. In addition to these, the solutions display different spatial 

attributes through time, such as patterns and locations of habitat quality for each 

species, and the locations and frequencies of management activities on the 
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landscape. General trends are presented first by summarizing the timber objective 

with the sum of discounted consumer and producer surpluses and representing the 

estimated population size time-series with their geometric mean values. These are 

the basic units of measurement when displaying the production possibility 

frontier. 

The three-dimensional production possibility frontier is presented via the 

projections in Figures 5.3 (a), (b), and (c). Figure 5.3 (a) projects the frontier onto 

the porcupine-timber value plane. Geometric mean target values for porcupines 

are plotted on the x-axis and the discounted sum of consumer and producer 

surpluses on the y-axis. The relationship between porcupines and timber values is 

complementary from approximately 4000 to 19500 porcupines, until the point of 

maximum timber value (occurring at approximately 19500 porcupines). The 

reason for this relationship is because porcupines have the highest affinity for 

younger stands. Thus, harvesting more frequently on the landscape decreases the 

average age of a stand, which in tum increases the quality and amount of 

porcupine habitat and porcupine population sizes. However, after the point of 

maximum timber value, the relationship between porcupines and timber values 

changes from complementary to one of substitutes. The reason for this is 

because, in order to increase the quality and quantity of porcupine habitat, the 

average age of a stand must decrease even further. The only way to do so is to 

harvest more stands at an earlier age than otherwise would be profitable (harvest 

and haul costs exceed the revenue from the stand), thus decreasing the aggregate 
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Figure 5.3. Projections of the non-policy constrained production possibilities 
frontier. Targets for the owl and porcupine are the geometric means 
of estimated population sizes. The timber objective value is the sum 
of discounted consumer and producer surpluses. 
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timber value. From the graph, it can be seen that estimated porcupine sizes can be 

increased from approximately 19500 to 32000 individuals (a 64% increase) for a 

corresponding decrease in the timber value from $24 billion to $16 billion (a 30% 

decrease from the maximum value). 

Figure 5.3 (b) projects the three-dimensional frontier onto the owl-timber 

value plane. Geometric mean target values for the owl are plotted on the x-axis 

and the discounted sum of consumer and producer surpluses on the y-axis. It can 

be seen that owl populations range from Oto about 15000 individuals. Although 

population sizes cannot drop below O in practicality, there is a range of timber 

production over which owl populations are estimated to be less than zero. Rather 

than represent negative population size estimates with the value of O (thus 

converting interval-type data into ordinal-type data), "negative" sizes are instead 

used to better relay information about the quality of owl habitat on the landscape 

at the corresponding levels of timber value and porcupine population size. In 

general, such information is useful since it more precisely measures the tradeoffs 

between economic and biological outputs. For the special cases where the owl 

population is predicted to be less than zero, the ending estimated population 

size in the last decade is substituted for the geometric mean value of the 

population time-series to avoid reporting imaginary numbers. From the plot, it 

can be seen that owls and timber values are substitutes when owl sizes range from 

about 3800 to 15000 individuals. Initially, owls decline from 15000 to about 

9000 individuals (a 40% decrease), while timber values increase sharply over this 
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range (a 475% increase). Then from about 9000 owls to 3800 owls, timber values 

increase slightly (by about 5%), but owls continue to decline (by about 58%). 

Once owls drop below 3800 individuals, the relationship between timber values 

and owls reverses; that is, they become complements ( although only slightly so). 

The reason for this, as noted above, stems from the ability to further increase 

porcupine sizes. Since porcupines have the highest preference for young stands, 

harvesting both (i) more frequently and (ii) more area than is economically 

profitable not only decreases the timber objective (since costs are excessive), but 

more and more owl nesting sites are converted into high quality porcupine habitat 

(i.e., young stands). 

Lastly, Figure 5.3 (c) projects the frontier onto the owl-porcupine plane. 

Geometric mean target values for the owl are found on the x-axis and geometric 

mean target values for the porcupine are on the y-axis. As in Figure 5 .3 (b ), 

negative owl values are plotted to better measure the tradeoffbetween the two 

species at different population sizes. The relationship between owls and 

porcupines is always one of substitutes. Although owls were predicted to be 

extirpated from the landscape when there are approximately 22000 porcupines, 

porcupines can still be increased by about 45%. A point of inflection occurs very 

near the point of maximum timber value ( at about 3800 owls and 19500 

porcupines). What is happening in this region is that in order to increase 

porcupines while minimally decreasing the timber value and owls, intermediate­

aged stands are harvested. Owls have the lowest affinity for such stands (those 
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aged from 40-60 years), so harvesting these has little to no negative affect on owl 

sizes (as witnessed by the increased slope of the frontier). Eventually, however, 

to further increase porcupine sizes, more and more older stands (preferable owl 

habitat) must be harvested, and this eventually causes the extirpation of the owl. 

Many items of interest can be construed from Figure 5.3. When the 

timber value was maximized without regard to either species, it was not possible 

to extirpate the owl or porcupine from the landscape. Both species are present on 

the actual landscape, thus providing limited validation to the models of economic 

production used in this paper. A distinct trade-off between population sizes of the 

owl and porcupine is present. There is also a distinct relationship between the 

timber objective and the owl, as is the case for the timber objective and the 

porcupine. These relationships are so strong that, according to the economic and 

ecological models, it is not possible to increase the value of one output without 

simultaneously decreasing ( or increasing) the value of another output. This is the 

reason why the frontier appears as a line in three-space rather than a three­

dimensional sliver. 

To view the general spatial and temporal trends that occur along the 

frontier, four representative points were selected. Their geometric mean target 

values are found in Table 5.3. One important aspect of the heuristic optimization 

procedure is its stochastic nature of solution. It is very likely that different 

solutions with similar objective function values will be found for the same set of 

geometric targets on population sizes. This occurrence is due in part to the 
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algorithm's stochasticity, but it also can be attributed to the shape of the objective 

function. A smoother surface will contain fewer local optima, but less well­

behaved functions will contain more areas in which the search procedure can 

become trapped. Each point on the frontier is the best solution found by the 

optimization procedure for the same set of geometric mean targets. These were 

found by 

Table 5.3. Location of four representative points along the non-policy 
constrained production possibilities frontier. 

Point 
A 
B 
C 
D 

Target for owl 
13000 
7500 
2424 

-4386 

Target for porcupine 
9808 

18619 
22000 
28000 

CS+PS surplus, 
in $ billions 

17.136 
24.010 
24.095 
23.561 

re-running the solution procedure 10 times, starting each run at a different initial 

solution. It is important to examine the characteristics of multiple solutions found 

by the stochastic optimization algorithm for the same set of population targets. 

This sheds light on solution reproducibility and whether or not there are multiple 

global optima. For each of the four representative points, graphs are displayed 

that plot different temporal aspects of the solutions found for each point's unique 

set of geometric mean target values. 

Figure 5.4 plots the number of board feet harvested in each decade for the 

four points. For each set of targets, results from a random sample of five different 
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optimization runs are plotted on the same graph. Although only five solutions are 

shown for each of points A, B, C, and D, the results are the same regardless of the 

sample chosen. It can be seen that the amount harvested through time is nearly 

identical in each situation. This suggests that in order to maximize efficient 

economic output, there is only one board-foot pattern that simultaneously 

manages for each set of species targets. The actual harvest locations from each 

optimization run are different, but the cumulative board-foot trajectory is nearly 

the same for a given set of species targets under the timber objective. When the 

owl target is 13000, the trajectory of the amount harvested generally decreases, 

and the amount harvested in the initial period is the largest because the algorithm 

selected a subset of stands to intensively manage, while allowing the remaining 

stands to age. However, as fewer owls are required on the landscape, the 

trajectory generally increases since fewer older stands are needed to provide owl 

habitat (and due to the linearly increasing price intercept from the stumpage 

demand equations (see Table 5.2)). 

Thus far, species time-series have been represented solely by their 

geometric means. However, it is important to know how this measure mirrors the 

predicted sizes through time since trajectories that crash in the final decade are 

not ecologically sustainable. Figures 5.5 (a), (b), (c), and (d) plot the predicted 

population sizes for each species over time. Figure 5.5 (a) shows the population 
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Figure 5.4. Board feet harvested per decade for the four representative points 
along the frontier. Each subplot is for a different set of species targets 
and contains the board feet time-series for five separate optimization 
runs. Due to scaling within each plot, all five trajectories fall more or 
less atop each other. 
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Figure 5 .5 (b ). Comparing predicted population sizes with their targeted 
geometric mean values. The geometric mean is the dashed line, 
while the five population time-series are the colored lines. Each 
set of subplots is for one of the four representative points on the 
frontier. This plot depicts the scenario when the owl target is 7500 
and the porcupine target is 18619. 
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Figure 5.5 (c). Comparing predicted population sizes with their targeted 
geometric mean values. The geometric mean is the dashed line, 
while the five population time-series are the colored lines. Each 
set of subplots is for one of the four representative points on the 
frontier. This plot depicts the scenario when the owl target is 2424 
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time-series for point A. The owl trajectory is at the top and the porcupine 

trajectory is at the bottom. The dashed line on each subplot is the specified 

geometric mean target, and the time-series from the five optimization runs are 

plotted with differently colored lines. Even though the five solutions were found 

from different starting points, they all have very similar trajectories for both 

species. The owl trajectories start near the target value (13000 owls), decline for 

the first five decades, but eventually increase and come to a more or less steady­

state by the 8th decade. The ending size is higher than the specified geometric 

mean target to adjust for the smaller earlier population sizes. The porcupine 

populations start much higher than the target, but decline below the target and 

also reach a somewhat steady state. 

Figure 5.5 (b ), plots population time-series for point B. The ending 

population size of the owl is much closer to the target, but the porcupine exceeds 

its target at the end to compensate for the outcomes in the 1 si, 5th
, and 6th decades 

when the population sizes were below the target. Figures 5.5 (c) and (d) show 

analogous time-series for points C and D, respectively. In all eight plots, the 

trajectories found from multiple optimization runs are very similar. This provides 

further evidence that on this landscape there is only one way to manage for 

specified species population sizes while maximizing efficient economic 

production. Finally, it is observed that as targets are increased, ending population 

sizes generally exceed the targets, but for lower targets, populations generally fall 

below the targets. It was anticipated that an extra constraint would be necessary 
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during optimization to prevent population sizes from dropping dramatically in the 

final decade, but this situation never occurred across all optimization runs. 

The species population size time-series presented thus far have been 

estimates of what might be expected from the wildlife simulator, PATCH (see 

Section 5.2). The estimated production possibilities frontier could be flawed if 

the estimates of PATCH outcomes used in the optimization were inaccurate. To 

examine how well estimated population size time-series matched PATCH 

simulation results, the five solutions for each of the four representative points 

were loaded into PATCH, and the effects of the management regimes were 

simulated for both species. Results that compare the estimated ( or predicted) 

population sizes with the observed PATCH outcomes on the landscape are found 

in Figures 5.6 (a) and (b). Figure 5.6 (a) compares observed and predicted 

population sizes for the owl at each of the representative points. Time is plotted 

on the x-axis and the difference between observed and predicted is on the y-axis. 

Each colored line on a subplot represents the time-series of differences for one of 

the five different optimization solutions. In general, the larger the population size 

target, the larger the variability was between observed and predicted sizes. 

However, the differences are generally off by no more than 1 % of each target 

value depicted, and all colored lines generally bounce about the zero line, 

demonstrating apparent unbiasedness. When the porcupine target was 28000, 

both the predictive wildlife proxy and actual PATCH results showed that owls 

were extirpated by the 6th decade. For this reason, the difference between 
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Figure 5.6 (a). Comparing observed owl population sizes from PATCH 
simulations with predicted sizes from optimization runs over the 
four representative points. Each colored line is from a separate 
optimization run. 

10 

10 



160 

owl=13000, porcupine=9808 owl=7500, porcupine=18619 
150 150 

"O 100 100 
G) 

~ 50 50 
I!:? 
Q. 

0 . 
"O 
G) 
> -50 -50 ... 
G) 
(/j 

-8 -100 -100 

-150 -150 
2 4 6 8 10 2 4 6 8 

owl=2424, porcupine=22000 owl= -4386, porcupine=28000 
150 150 

"O 100 100 
G) 

ti 
'ei 50 50 
G) ... 
Q. 

0 0 . 
"O 
G) 
> -50 -50 ,_ 
G) 
(/j 

-8 -100 -100 

-150 -150 
2 4 6 8 10 2 4 6 8 

decade decade 

Figure 5.6 (b). Comparing observed porcupine population sizes from PATCH 
simulations with predicted sizes from optimization runs over the 
four representative points. Each colored line is from a separate 
optimization run. 
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observed and predicted owl population sizes was not plotted beyond the 6th 

decade. Figure 5.6 (b) plots the same variables but does so for the observed and 

predicted porcupine populations. The trends are similar to those for the owl -

variability is somewhat higher for larger porcupine targets but it was never 

different than 1 % of the target, and the differences generally appear unbiased 

(although some curvature is present when the porcupine target was 28000). 

To examine spatial attributes of the four representative points, maps of 

harvest activities and habitat quality through time were developed. Only one 

time-series of maps per species for each representative point are shown. This is 

because the maps developed for the multiple solutions are very similar in terms of 

habitat pattern, but only the exact locations of the habitat structures created by the 

optimization model were different. Figures 5.7 (a), (b), (c), and (d) map harvests 

in each period for representative points A, B, C, and D, respectively. Those 

stands that are harvested in a period are colored yellow, and those that are not are 

colored green. Figures 5.8 (a), (b), (c), and (d) map owl habitat, and Figures 5.9 

(a), (b), (c), and (d) map porcupine habitat, for points A, B, C, and D, 

respectively. Habitat quality is represented with color. The closer the color is to 

red on the spectrum, the better the quality of habitat for that particular species. 

Figures 5.7 (a), (b), (c), and (d) shows that stands closer to the depots are 

generally more intensively managed in the first decade, creating a large block of 

young forest, but the economic objective generally makes the harvest of stands 

along the crest of the Cascades less attractive. Thereafter, harvest areas spread 
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Figure 5.7 (a). Maps displaying harvest locations in each decade for 
representative point A (owl= 13000, porcupine= 9808). 
Harvested areas appear in yellow. 
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Figure 5. 7 (b ). Maps displaying harvest locations in each decade for 
representative point B ( owl = 7 500, porcupine = 18619). 
Harvested areas appear in yellow. 
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Figure 5.7 (c). Maps displaying harvest locations in each decade for 
representative point C ( owl = 2424, porcupine = 22000). 
Harvested areas appear in yellow. 
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Figure 5.7 (d). Maps displaying harvest locations in each decade for 
repres.entative point D ( owl = -4386, porcupine = 28000). 
Harvested areas appear in yellow. 
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Figure 5 .8 ( a). Time-series of owl habitat maps for representative point A ( owl = 
13000, porcupine = 9808). The closer to red the color of an area 
is, the better its habitat quality for the owl. 
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Figure 5.8 (b ). Time-series of owl habitat maps for representative point B (owl= 
7500, porcupine= 18619). The closer to red the color of an area 
is, the better its habitat quality for the owl. 
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Figure 5 .8 ( c ). Time-series of owl habitat maps for representative point C (owl= 
2424, porcupine = 22000). The closer to red the color of an area 
is, the better its habitat quality for the owl. 
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Figure 5 .8 ( d). Time-series of owl habitat maps for representative point D ( owl = 
-4386, porcupine= 28000). The closer to red the color of an area 
is, the better its habitat quality for the owl. 
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Figure 5.9 (a). Time-series of porcupine habitat maps for representative point A 
( owl = 13000, porcupine = 9808). The closer to red the color of an 
area is, the better its habitat quality for the porcupine. 
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Figure 5.9 (b). Time-series of porcupine habitat maps for representative point B 
(owl= 7500, porcupine= 18619). The closer to red the color of an 
area is, the better its habitat quality for the porcupine. 
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t=S 1=7 1=8 1=9 1=10 

Figure 5 .9 ( c ). Time-series of porcupine habitat maps for representative point C 
( owl = 2424, porcupine= 22000). The closer to red the color of an 
area is, the better its habitat quality for the porcupine. 
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1=6 t=7 t=8 t=9 1=10 

Figure 5.9 (d). Time-series of porcupine habitat maps for representative point D 
(owl= -4386, porcupine= 28000). The closer to red the color of 
an area is, the better its habitat quality for the porcupine. 
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out across the landscape in a more-or-less random fashion. Harvest frequency 

becomes more intense as the owl target declines and porcupine target increases. It 

is important to note that if the objective was instead to simply maximize the 

quantity of board feet harvested over the 100-horizon, the owl will be extirpated 

from the landscape (from PATCH simulations). As the owl target is decreased, 

the high quality habitat across the entire landscape in Figure 5.8 (a) is first 

transformed into pockets of higher quality habitat surrounded by marginal habitat 

(b ), then fewer pockets of high quality habitat appear while the surrounding 

habitat is further marginalized (those stands closest to the depots are generally of 

the least quality) (c), and finally nearly all of the landscape is oflow quality 

habitat (d). In (d), it is important to note that the population drops to Oby the 6th 

decade. A handful of scattered quality habitat areas remain, but these are not 

estimated to be sufficient to support a viable owl population. What is occurring in 

the four owl habitat maps is that spatially, the owl can tolerate fragmentation on 

the landscape since it can travel great distances in search of food and habitat (see 

Nallea et al. 2001). However, it can only tolerate the marginalization of habitat 

until most of the older stands are harvested. No distinct, large, contiguous areas 

of solid red appear in the same location on all the maps, suggesting that the owl is 

not as affected as some species by forest age-class fragmentation as long as a 

sufficient amount of older stands are left. 

As for the porcupine, its habitat maps are mostly red because the 

porcupine is more of a forest generalist than the owl. Due to the trade-off 
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between timber production and owl populations, the deep red areas (younger 

stands) increase with the decreasing owl targets. Unlike the owl habitat 

development, the location of a few deep red areas persists, suggesting that larger, 

contiguous fixed-site reserves might better suit the porcupine. 

5.7.2 Policy-constrained analysis 

Once the frontier was located, relevant policy scenarios could then be 

examined. To see how well the three different policies described in equations 

(5.13), (5.14), and (5.15) related to the frontier, the optimization model was re-run 

to obtain three additional points for comparison. Species population targets 

(constraints (5.8)) were ignored to see how each policy might impact the owl and 

porcupine. The optimization model imposed the first policy by maximizing the 

objective function subject to constraints (5.2) through (5.13) (except for (5.8)). 

This scenario merely constrains timber production on public lands by requiring a 

non-declining even-flow. The model was next used to maximize the objective 

function subject to constraints (5.2) through (5.14) (except for (5.8)). This 

simulated the second policy of interest - that of requiring non-declining even-

flow on public lands and disallowing all harvests on publicly owned old-growth 

stands. Finally, the third policy scenario was implemented by maximizing the 

objective function subject to constraints (5.2) through (5.12), and constraint (5.15) 

(except for (5.8)). This last scenario disallows all harvests on public lands. The 
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results from the three scenarios are found in Table 5.4, as well as the result 

previously obtained when the timber objective was maximized while disregarding 

species populations. As should occur, objective function values decreased as 

harvest activities on public lands were more constrained. In all cases, as timber 

production was restricted, populations of the owl increased while populations of 

the porcupine decreased. 

Table 5.4. Species geometric mean population sizes for different policy­
constrained and non-policy scenarios. 

Discounted 
CS+PS 

Maximum timber value 
Even-flow on public 
Even-flow on public and 

no harvest of publicly­
owned old-growth 

No public harvests 

owl 
3851 
3914 
3943 

8503 

porcupme 
19562 
18806 
18695 

14121 

in $ billions 
24.340 
24.053 
23.976 

21.057 

Graphs similar to those above are shown in Figures 5 .10 to 5 .15. Figure 

5.10 plots board feet harvested in each decade for the four scenarios listed in 

Table 5.4. Amounts regularly increase and are nearly identical, except for the 

case when no timber is extracted from public lands. Because half of the forested 

tracts in the study area areowned by the U.S. Government, disallowing harvests 

on public lands essentially creates price incentives for other (i.e., private) owners 

to harvest more frequently. However, there is not sufficient private timber supply 
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in the region to force production at the margin, and this is the reason for the non­

smooth flow of stumpage in the last policy scenario. 

Figure 5.11 (a) plots the time-series of owl populations for the four 

scenarios. Populations decline until the fifth decade where they level off, except 

for the fourth scenario where populations rebound. Only when public harvests are 

disallowed is the ending owl population approximately the same as its beginning 

population. This results from allowing a portion of the landscape to age, thus 

creating more owl habitat in later periods. For the other three scenarios, the 

ending owl population is just 20% of its initial size. Figure 5.11 (b) plots 

porcupine time-series. In terms of stability, porcupine sizes are the least affected 

species for the different scenarios. However, their densities are most affected by 

the last policy scenario since they have less affinity for older stands. 
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Figure 5.11 (a). Plot of owl time-series for the four scenarios listed in Table 5.4. 
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Finally, maps for the four scenarios are displayed. Figures 5.12 (a) and (b) 

show owl and porcupine habitat maps at the point where the timber objective is 

maximized with no restrictions. Owl habitat quality is worse nearest the depots 

(haul costs are the least there; thus, stands closer to the depots can be harvested 

more frequently) but improves with distance. This trend holds as time progresses, 

but the total amount of owl habitat declines until the sixth or seventh decade, at 

which point the location of quality 

habitat becomes more or less fixed. The change in porcupine habitat (Figure 5.12 

(b )) progresses in nearly the opposite direction of owl habitat, with larger, 

contiguous blocks of deep red appearing at unchanging locations. 

Figures 5.13 (a) and (b), 5.14 (a) and (b), and 5.15 (a) and (b) show similar 

maps for the first, second, and third policies, respectively. In Figure 5.13 (a), 

when non-declining even-flow is required on public lands (all areas on the right 

half of the map), the higher quality owl habitat in Figure 5 .12 ( a) is converted into 

marginal owl habitat, but a greater area of marginal owl habitat exists in Figure 

5.13 (a). From Figure 5.13 (b ), the requirement of non-declining even-flow 

improves porcupine habitat over that when no harvest restrictions were placed on 

public lands (Figure 5.12 (b)). When non-declining even-flow and the harvest of 

"old-growth" stands on public land are disallowed, the corridor of high quality 

owl habitat reappears along the crest of the Cascades (Figure 5.14 (a)) and more 

marginal owl habitat areas are available (as opposed to Figure 5.12 (a) when no 
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t=1 1=2 1=3 1=4 1=5 

1=6 1=7 1=8 1=9 1=10 

Figure 5 .12 (a). Time-series of owl habitat maps at the point where the timber 
objective is maximized. The closer to red the color of an area is, 
the better its habitat quality for the owl. 
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t=S t=7 1=8 1=9 1=10 

Figure 5 .12 (b ). Time-series of porcupine habitat maps at the point where the 
timber objective is maximized. The closer to red the color of an 
area is, the better its habitat quality for the owl. 
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Figure 5.13 (a). Time-series of owl habitat maps under the first policy scenario 
where a non-declining even-flow of timber occurs on public 
lands. The redder the area, the better the quality of habitat for 
the owl. 
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l=6 t=7 1=8 t=9 t=10 

Figure 5 .13 (b ). Time-series of porcupine habitat maps under the first policy 
scenario where a non-declining even-flow of timber occurs on 
public lands. The redder the area, the better the quality of habitat 
for the porcupine. 



186 

1=1 1=2 t=3 t=4 t=S 

1=6 t=7 t=8 t=9 1=10 

Figure 5.14 (a). Time-series of owl habitat maps under the second policy scenario 
where a non-declining even-flow of timber occurs on public 
lands and no publicly-owned stands that are at least 200 years old 
at the outset can ever be harvested. The redder the area, the 
better the quality of habitat for the owl. 
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t=1 1=2 t=3 1=4 t=S 

t=6 1=7 1=8 t=9 t=10 

Figure 5.14 (b). Time-series of porcupine habitat maps under the second policy 
scenario where a non-declining even-flow of timber occurs on 
public lands and no publicly-owned stands that are at least 200 
years old at the outset can ever be harvested. The redder the 
area, the better the quality of habitat for the porcupine. 



188 

t=1 1=2 t=3 t==4 1=5 

1=6 t=7 t=8 1=9 t=10 

Figure 5 .15 ( a). Time-series of owl habitat maps under the third policy scenario 
where no timber harvests are ever allowed on public lands. 
The redder the area, the better the quality of habitat for the owl. 
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1=6 t=7 t=8 1=9 t=10 

Figure 5 .15 (b ). Time-series of porcupine habitat maps under the third policy 
scenario where no timber harvests are ever allowed on public 
lands. The redder the area, the better the quality of habitat for 
the porcupine. 
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harvest constraints are required). Finally, when no harvests are allowed on public 

land, it is clear from Figures 5.15 (a) and (b) that managing all public lands for 

species with affinities for older stands, e.g., the owl, under efficient economic 

timber production will create a large block of young stands (ideal porcupine 

habitat) in the private sector (those areas located nearest the depots) since haul 

costs are smaller. 

5 .8 Discussion 

The results obtained in Section 5.7 covering just three of the many outputs 

from the large study landscape are a small sample of the information generated 

when searching for the production possibilities frontier of lands managed for 

multiple objectives. However, to better understand economic and ecological 

linkages in the region, more factors could be included, such as: additional 

endemic species (to aid in reserve design); invasive species (for more efficient use 

ofresources in Integrated Pest Management); risk oflosses by natural 

disturbances (to better address uncertainty in species protection and flow of 

timber through time); water quality and flow (for riparian habitat restoration and 

maintenance); enhanced modeling of timber demand between regions (for added 

realism); and models ofland cover type conversion (to estimate changes in the 

location and amount of forested habitat). Each component adds another layer of 

complexity to the model, and this can make understanding, visualization and 
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communication of tradeoffs difficult. Such difficulty is no reason to abandon the 

approach, but it is nonetheless a legitimate concern to keep in mind when 

attempting to relate findings to decision-makers and the public. Certain outputs 

might serve as proxy measures for other outputs, such as the porcupine for the 

timber objective in this study, thereby reducing the dimensionality of the problem. 

However, caution should be taken if reduction is used since other important links 

could be lost. For example, by substituting the timber objective for the porcupine, 

the link to the threatened Pacific fisher - thought to be sensitive to forest 

fragmentation and a major predator of the porcupine-would not be accounted 

for. 

The work presented in this paper is an important step in the continued 

integration of Operations Research, Ecology, Economics, and Statistics to model 

real world actions and associated consequences on the landscape. Numerous 

results have come from this cross-disciplinary effort. Although the original intent 

was to use the wildlife simulator directly to model the effects of management 

actions through time and space, it was found that it is possible to accurately 

estimate population sizes based on sun1mary measures such as the amount of 

forested area, the quality of habitat in present and past time periods, and past 

population sizes. The use of a simple economic measure of output that included 

estimated demand for stumpage and travel costs resulted in realistic land 

management behavior and showed where and when on the landscape sub­

populations of species were expected to occur. By combining the economic and 
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ecological outputs within an optimization framework, the timing and location of 

management activities could be arranged to simultaneously manage for different 

amounts of owls and porcupines. In other words, the optimization routine 

identified the type and spatial configurations of habitat that best supported both 

species while maintaining efficient economic production. This showed that 

optimization tools can be very beneficial to managers who must manage for and 

justify the locations of multiple and possibly competing usages. Lastly, it has 

been demonstrated that the consequences of relevant policy scenarios can be 

obtained using optimization tools. Results can then be used to determine policy 

adherence to objectives, and uncover institutional shortcomings that can be 

corrected with more effective, defensible, and responsible policy-making. 

There are many possible avenues of further research. The inter-play of 

additional ecological outputs needs to be studied, as well as the effectiveness of 

proposed fixed-site reserves on these species. But before doing so, different 

spatial and non-spatial measures of habitat quality as it relates to the amount and 

distribution of forest cover must be examined to provide benchmarks against 

which alternative forest management plans can be compared. More points along 

the frontier must be studied in greater detail to see how well the proxy measure 

models the wildlife simulator, and the uncertainty of not meeting specified 

management goals needs to be addressed by modeling the probability of reaching 

different species target levels as a function of economic production, initial 

landscape conditions, habitat spatial layout, and other factors. It is hoped that this 
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work will provide decision-makers and the public with sufficient science-based 

information to better achieve long-term goals as measured by both economic and 

ecological objectives. 
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Chapter 6. Summary 

Ecologists have long hypothesized that species will benefit by varying 

degrees from different spatial arrangements of habitat. Whether all species native 

to a region could be sustained from a series of scattered, fixed-site nature reserves 

or one large, contiguous fixed-site reserve is still an open question. It is also not 

currently known if permanent reserves are a necessity for species survival. Such 

large-scale problems with spatial and temporal components are generally difficult 

to solve, and this is one reason why OR techniques have been used throughout the 

body of this dissertation. 

Chapter 2 developed a new solution heuristic and new spatial model to 

develop maximally compact and contiguous reserve proposals while meeting 

habitat requirements. The new model extended existing spatial optimization 

models for reserve design, and the new search technique improved upon existing 

optimization procedures to solve constrained quadratic zero-one formulations. 

When applied on a 44000 km2 tract, it was found that the percentage to reserve of 

each habitat changes the location of the best possible spatial arrangement, that 

spatial designs differ under a compactness or contiguity objective, and that 

existing reserves can constrain the location and quality of the best possible spatial 

arrangement. 

A shortcoming of Chapter 2 is that economic factors were completely 

ignored. All solutions were found under the assumption of an unlimited budget 
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for land acquisition. Funding for conservation purposes is usually a major 

restriction, so the total estimated purchase price ofland in a reserve proposal is an 

important consideration. Chapter 3 extended the spatial optimization model by 

incorporating a budget constraint. When applied on a 4200 km2 tract, it was 

found that large gains in terms of reserve compactness and contiguity could be 

had for very slight increases in the allowable budget. This trend continued until 

reserve proposals neared what was maximally possible spatially; at which point 

the trend sharply reversed and only small gains in spatial design could be had for 

very large increases in the allowable budget. Furthermore, when the same 

analysis was done in the presence of existing reserves, it was found that the 

spatial design could always be improved for the same or lesser cost when existing 

reserves were ignored. The contributions of these findings were threefold. They 

suggested that conservation planning can be improved through more coordinated 

efforts between different federal, state, and private organizations; they identified 

what was maximally obtainable for the same amount of resources; and they 

provided a means of measuring the efficiency of an existing reserve design. 

Chapters 2 and 3 noted that species are expected to respond differently as 

spatial arrangements change, but no species were simulated to verify how spatial 

designs might promote or adversely impact species survival. The models also did 

not account for temporal change on the landscape. Because habitat can change 

through time and because the assurance of species survival is a major driving 

force behind conservation planning, it is questionable how well these solutions 
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address species sustainability. Economic treatment was also lacking. A]though 

the estimated purchase price of1and is a measure of a11 future incomes streams 

under its current management, withdrawing land from economic production has 

other economic and social ramifications that were not accounted for. Regiona] 

impacts on resource-based production were ignored, and the assumption that 

permanent, fixed-site reserves are the best and only means of species 

sustainability was never examined. 

Chapters 4 and 5 sought to develop a more realistic modeling framework 

to identify tradeoffs between conservation purposes and economic production as 

we11 as between different species. To accomplish these goals, an advanced, 

realistic wildlife simulator, PATCH, from the U.S. Environmental Protection 

Agency, was employed to estimate spatia] and tempora] impacts on species 

popu]ations from spatial and temporal timber extraction and tempora] habitat 

change in forest growth. Optimization was used to determine the timings and 

locations of management actions under the objective of economic efficiency while 

maintaining predefined population thresholds. However, direct interfacing with 

PATCH during dynamic optimization was not possib]e due to long simulation run 

times. 

Chapter 4 developed spatial and tempera] methodology to quickly 

estimate population responses to landscape change. Three species were 

simulated: the Gray jay; Great homed owl; and Common porcupine. Each has 

different vital rates (survival and reproduction), habitat requirements (source/sink 
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From direct observation in PATCH, regression equations were found that 
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provided a means of spatial estimation that quickly determined habitat quality as a 

landscape changes through time. These also allowed for the rapid update of the 

habitat quality estimates when landscape change occurred, and with these 

equations a time-series of population sizes could be instantaneously determined 

on a large landscape. Since optimization procedures can require many iterations, 

the speed of estimating population responses is an essential factor for real-time 

solution. Chapter 4 makes economic tradeoff assessment possible by embedding 

the estimated behavior of a realistic species simulator within an optimization 

model. 

Chapter 5 sought a more unified modeling approach that could directly 

answer questions relating to tradeoff s between economically efficient resource 

production and species survival, reserve design, and policy effectiveness. A new 

heuristic optimization procedure was used to explicitly identify spatial and 

temporal sets of management actions that were maximally efficient under both 

economic and ecological objectives. This relationship, known as the production 

possibilities frontier, is useful since it shows which combinations of economic and 

ecological outputs are maximally obtainable on any given landscape, but, perhaps 

most importantly, the frontier provides a means for comparing the levels of 

different outputs without attaching economic value to non-market goods and 

services. When efficient timber production and the population sizes of two 
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species were compared on a 1. 7 million hectare forested landscape, the focal 

species benefited from different types of reserve designs arising from different 

management actions over a 100 year planning horizon. The Common porcupine 

tended to prefer large, compact, and contiguous blocks of habitat, whereas the 

Great homed owl could tolerate a certain degree of forest age-class fragmentation 

as long as enough older stands were available on the landscape in any given time 

period. This showed that it was not possible to simultaneously maximize 

population sizes of both species, but it was possible to maintain viable 

populations of each for near maximal amounts of economically efficient timber 

production on this particular landscape. 

The work in this dissertation attempts to bring together economic and 

ecological perspectives within the unified modeling framework of OR. It has 

been shown that OR can aid in decision-making, identify tradeoffs between 

competing uses, and improve efficiency when simultaneously addressing 

economic and ecological concerns. The lessons highlighted here show that purely 

economic-based decisions do not exist in a vacuum they have short- and long­

term ecological impacts. This issue has been a legitimate criticism from the 

environmental lobby. However, the same criticism can be made of purely 

ecological-based decisions - these also have short- and long-term economic 

impacts. The results found by optimization procedures in this work are not sets of 

management actions that should be taken, rather they are sets of actions that could 

be taken. Determining the levels of biological and economic production that 
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society is willing to manage for is no easy task, but it is nonetheless necessary as 

more information is gathered (through OR techniques or otherwise) about the 

interactions people have with the land, air, and water. 

The OR community is continually discovering new ways in which it might 

contribute to natural resource management. Despite its limited name recognition 

in other fields, OR practices have become staples in many industries, due in part 

to the trillions of dollars in gains from cost efficiencies and revolutionary pricing 

structures, as well as institutional backing. Acceptance arises from a track record 

ofresults. This has occurred in economics, but it is still needed for ecological 

applications. It is hoped this dissertation will help construct a portion of a bridge 

between economics and ecology towards more efficient natural resource 

utilization. 
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