
AN ABSTRACT OF THE THESIS OF

Paul Oprisan for the degree of Master of Science in

Electrical and Computer Engineering presented on April 6, 1998.

Title: Convergence Study for Adaptive Allpass Filtering

Abstract approved-

Wojtek Kolodziej

Adaptive filtering may be applied in areas where an optimal filtering algorithm

may not be known a-priori and where the filtering operation may be non-stationary. This

field, or more generally, the field of adaptive systems, is one which may be regarded as

mature, having been the subject of considerable research effort in the areas of control and

signal processing for almost four decades.

DFE (decision feedback equalization) in various forms has been proposed for detec-

tion on magnetic recording channel. An allpass filter is an alternative to the FIR (finite

impulse response) forward equalizer which is normally implemented with DFE. This is

because the allpass filter is a lower power and complexity alternative, though its behavior

and performance are not very well understood yet.

Here, an allpass structure implemented as first and second order IIR (infinite

impulse response) filters is examined. Convergence for the LMS (least mean square) adap-

tation algorithm is studied and, moreover, some convergence conditions and bounds are

developed, similarly to the well known FIR case. This thesis provides an useful analytical

study of convergence of IIR adaptive filtering. This is accomplished by a systematic ap-

proximation of the covariance terms of the adaptive coefficients. The range of the step-size

parameter of the LMS algorithm is developed under some simplifying assumptions. All

the results obtained are verified by simulation (Matlab and C routines are used).

Redacted for Privacy

©Copyright by Paul Oprisan

April 6, 1998

All rights reserved

Convergence Study for Adaptive Allpass Filtering

by

Paul Oprisan

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed April 6, 1998
Commencement June 1998

Master of Science thesis of Paul Oprisan presented on April 6, 1998

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Chair of the artment of Electrical and Computer Engineering

Dean of the Graduate Schr6bl

I understand that my thesis will become part of the permanent collection of Oregon State

University libraries. My signature below authorizes release of my thesis to any reader

upon request.

Paul Oprisan, Author

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2. BACKGROUND 5

2.1. More about magnetic media signal and channel equalization 5

2.2. FIR adaptive filtering 8

3. ALLPASS FORWARD EQUALIZATION FOR DFE 12

4. FIRST ORDER FORWARD EQUALIZER 14

4.1. Variance of the adaptive gain 14

4.2. Mean square convergence and experimental results 16

5. SECOND ORDER FORWARD EQUALIZER 21

5.1. Filter setup 21

5.2. Covariance matrix 23

5.3. Mean square convergence of the covariance matrix 29

6. CONCLUSION 34

BIBLIOGRAPHY 38

APPENDICES 39

A Mat lab functions used in first order filter simulation 40

B Mat lab functions used in second order filter simulation 47

LIST OF FIGURES

Figure Page

2.1 Read-head step response 5

2.2 Read-head dibit response 6

2.3 Dibit frequency response. 7

2.4 Block diagram of the DFE system structure used in design 7

3.1 Detector for adaptive decision feedback equalization. 12

4.1 Discrete time first order filter. 14

4.2 Mean of the adaptive coefficient 17

4.3 Variance of the adaptive coefficient 18

4.4 Variance comparison for different values of ,u 19

4.5 Variance final value vs. it 19

4.6 Variance final value vs. input noise variance 20

5.1 Continuous time second order filter 21

5.2 Discrete time second order filter 22

5.3 Means of the adaptive coefficients 29

5.4 Variances and covariance of the adaptive coefficients 30

5.5 Final values of variances and covariance vs. pi 31

5.6 Final values of K,00, Kci, and IC,01 for large it 32

5.7 Final values of variances and covariance vs. a 32

5.8 Surface plot of K, 33

5.9 Surface plot of K, 33

CONVERGENCE STUDY FOR ADAPTIVE ALLPASS FILTERING

1. INTRODUCTION

Adaptive filtering rapid development over the last thirty years has been made pos-

sible by extraordinary advances in the related fields of digital computing, digital signal

processing and high speed integrated circuit technology. Practically, adaptive filtering

began with research and development efforts in the late 1950's, but the field of adaptive

signal processing was established as a distinct discipline in its own right in the 1980's with

the publication of the first adaptive signal processing self-contained books by Honig and

Messerschmitt in 1984 and Widrow and Stearns in 1985. Nevertheless, one of the earliest

publications in adaptive filtering was the paper [2] published in 1960 by Widrow and Hopf

that first introduced the least mean squares (LMS) adaptive filtering algorithm. At that

time, over ten years before the invention of the microprocessor, digital hardware was not

sufficiently advanced for engineers to consider practical implementation of an adaptive

filter in purely digital form. Actually, the first experimental filters were implemented as

analog circuits with complicated arrangements of analog relays that performed the switch-

ing necessary to adjust the filter tap weights.

The simplicity of the least mean square (LMS) algorithm and its robust per-

formance in spite of the simplifying assumptions behind its derivation, attracted the at-

tention of a generation of electrical engineers and formed the basis for intense research

and development in adaptive filter architectures and algorithms that continues in force

to the present day. The use of adaptive algorithms, in general, and LMS (with a large

selection of implementations), in particular, is widespread across varied applications like

system identification, adaptive control, transmission systems and adaptive filtering.

2

In general an adaptive algorithm implies two things: an object upon which

processing is carried out (i.e. a control system, transmission system etc.) and the so-called

estimation process. The function of an adaptive algorithm is to adjust a parameter vector

(generally denoted by 0) with a view to an objective specified by the user; in order to tune

this parameter, the user must be able to monitor the system. This task is accomplished

via a state vector, generally denoted by Xn where n refers to the time of observation of

the system. The rule used to update 0 is typically of the form:

On ---= On-1 ± Pn,F(en-1, Xn) (1.1)

where bin is a sequence of small gains. The choices of the state vector Xn and the function

F(0, X) are application dependent.

The message that the user desires to send over a telecommunication channel

is usually coded to remove redundant information and perhaps allows for the correction

of errors at the receiver. The channel will distort the sequence of signals sent and may

also add noise. A channel equalizer is a filter whose input is the channel output and

whose output is an estimate of the transmitted signal (usually delayed). For a magnetic

recording channel the main distortion is produced by intersymbol interference (ISI). ISI

cancellation became a crucial problem in the modern magnetic media technology, espe-

cially in the view of the increasing demand for higher density disk drives. On the other

hand, new technology also requires low access time, which means that the disk is to be

read faster. This is an additional source of ISI and of noise, since the spectrum of the

transmitted signal extends towards higher frequencies.

Decision feedback equalization has been proposed for detection on magnetic

recording channels, mainly because its excellent bit error rate performance at a modest

implementation complexity. This is because the forward equalizer, that is normally im-

plemented with DFE, requires multipliers which means it is a major source of complexity

and power consumption, in the FIR alternative case. An allpass filter has been shown [1]

to be an advantageous structure for the forward equalizer.

3

The problem of continuous-time adaptive filtering using LMS has been in-

vestigated by some authors [6], [7], [12]. There are certain architectural benefits of the

continuous-time forward filter over the digital FIR one: sampling can be done at the de-

tector, thereby minimizing the sample delay in both the phase-looked loop (see figure 2.4)

and the automatic gain control (not considered in this thesis). Also, a physical implemen-

tation uses less die area and, consequently, less power is consumed..

FIR structures have been extensively studied in the literature [3], [4], starting

from general FIR structures, or MA models. The goal is to obtain certain convergence

conditions and regions of convergence. For example, in the case of a FIR equalizer, the

use of LMS as the adaptation algorithm is very common; starting from some assumptions

about the statistics of the input and the internal states, a domain of mean square con-

vergence of the adaptive coefficients is derived for the step-size parameter p (in this case

= µ is a constant) [3]. Nevertheless, only very few theoretical results were obtained for

an allpass structure, or more generally for an IIR structure, mainly because of its strong

nonlinear character.

The aim of this thesis is to provide the user of a specific application (DFE for

magnetic recording channels) with some useful tools in studying channel equalization. All

results are supported by simulation. This can be considered as a starting point to study

convergence of adaptive IIR nonlinear filters because the study can be extended from the

allpass filter to many IIR nonlinear filters and processes.

First and second order structures for an adaptive allpass filter are presented,

with a Lorentzian shape modeling the transition response of the head. The input of the

system is a random sequence of dibit responses (presented in section 2.1.), which is simu-

lated by a Mat lab procedure. As for any application where decision-directed equalization

is employed the error-signal is generated at discrete time instances. Because of the nature

of the internal states, this approach implies the sampling of the states of the filter at the

same time the input of the decision element in DFE is sampled. Previous work [6] used

an exhaustive search to find the optimal pole locations for a low-order allpass filter design

4

in discrete-time. The present study starts from the canonical form of a forward equalizer

which is discretized in order to search for the convergence of the adaptive coefficients.

As mentioned above, there are some simplifying assumptions behind LMS al-

gorithm derivation. These are presented in section 2.2. where a brief overview of FIR

adaptive filtering is also presented. Similar assumptions are used in this study for the

derivation of the variances of the adaptive coefficients of an allpass filter.

LMS algorithm uses the difference between the actual input of the decision

rule and its ideal value [3]. This difference is viewed as an error which is used in adapting

the filter feedforward and feedback coefficients.

5

2. BACKGROUND

2.1. More about magnetic media signal and channel equalization

The reading of a magnetic recording system process is characterized by the

step response s(t), shown in figure 2.1. Basically, it represents the response to a positive

PW50=3*Ts
0.9

0.8

0.7

2i0.60a
0.5 PW50

C0
0.4

0.3

0.2

0.1

0
-15 -10 -5 0 5 10 15

Number of symbol periods

FIGURE 2.1: Read-head step response

transition, from -1 to +1 in the stream of -1 and +1 recorded on the disk. A magnetic

recording channel is usually modeled as a linear system and the Lorentzian pulse model

for the step response is one of the most common choices:

s(t) = A
(2.1)

1 + (PW50)2

where A is a gain factor, taken 1 in this work, and PW50 is the half-height width of the

transition pulse (it is practically a parameter which specifies the density of data on the

disk). Because the step response is not convenient to be used in simulation and analysis,

the dibit response p(t), shown in figure 2.2, is used instead. The dibit response is the

6

convolution between s(t) and 1-D, where D is the unit delay:

p(t) = s(t) s(t T3), (2.2)

where T, is symbol period. The Fourier transform of p(t) is:

0.4

0.3

0.2

0.1

0

:14 0

-0.1

-0.2

-0.3

0.4
-15 -10 -5 0 5 10 15

Number of symbol periods

FIGURE 2.2: Read-head dibit response

P(w) = S(w)(1 C3Tsw), (2.3)

where:
PW507 A pw501.1S(w) = e 2 (2.4)

2

is the Fourier transform of the step response, s(t). Thus, the spectrum of the playback

signal is bandpass characterized, as shown in figure 2.3.

The spectral energy concentrates at lower frequencies as the symbol density

is increased. The receiver must to compromise between the noise power (AWGN in all

simulations) and the intersymbol interference (ISI) [8].

The noise in magnetic recording channels consists of media noise, crosstalk

between tracks at high data densities and electronic noise and it is common practice to

7

0.9

0.8

0.7

0.6

r 0.5

0.4

0.3

0.2

0.1 -

0
-0 5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0 5

Frequency (1/Ts)

FIGURE 2.3: Dibit frequency response.

consider it additive, white (correlation assumption) and Gaussian (AWGN) for analytical

tractability purposes.

A general model of the overall DFE system is given in figure 2.4. The equalizer

consists of an allpass filter followed by a lowpass filter. The forward equalizer can be

noise (white, Gaussian distributed)

y(t)symbols error
CHANNEL APF LPF DETECTOR ,-

EQUALIZER

FIGURE 2.4: Block diagram of the DFE system structure used in design

obtained by finding a model of the form:

h(t) = q(t) * q(-t), (2.5)

8

where q(t) is the minimum phase and q(t) is the maximum phase component of h(t),

respectively. The corresponding transfer function is:

H(s) = Q(s)Q(s),	 (2.6)

where Q(s) is modeled only by poles in the right half plane. Any zero in the right half

plane would appear as a right half pole in:

Q(s)W(s) =	 (2.7)Q(s)
the overall equalizer transfer function. Note that the optimum zero-forcing equalizer given

by (2.7) reflects the maximum phase component of the signal to the left half plane. The

all pole realization has the form:

K
Os) = k	 (2.8)

1 + Ei=1 azsi

where k is the order of the filter and ai E (0, oo), i = 1... k.

2.2. FIR adaptive filtering

Considering that u[n] is the input sequence (tap-input vector) of an adaptive

filter and d[n] is the desired response of it (the response of the optimal Wiener filter,

in many cases), the statistical analysis of the algorithm is carried on starting from the

following independence assumptions:

each sample vector u[n] is statistically independent of all previous sample vectors

u[k], k = 0,1, ,n 1,

each sample vector u[n] is statistically independent of all previous samples of the

desired response d[k], which is: E fu[n]d* [k]} = 0, k = 0,1, , n 1,

- the sample	 d[n] of the desired response is dependent only on the corresponding

sample vector u[n] of the input process and statistically independent of all previous

samples of the desired response d[k], k = 0, 1, , n 1,

9

- the tap-input vector and the desired response d[n] consist of mutually Gaussian

distributed random vectors for all n.

Assuming that u[n] and d[n] are jointly stationary, the mean square error is given

by [3]:

J(n) = ad aH (n)p pH a(n) + aH (n)Ra(n) (2.9)

where a(n) is the tap-weight vector, p is the cross-correlation vector between u[n] and

d[n], R is the correlation matrix of u[n] and ()H denotes the Hermitian transpose (this is

in the more general case of complex input signal).

By differentiating the mean squared error J(n) with respect to u[n], we get:

af(n)
V(n) = = 2p + 2Ra(n). (2.10)

aa(n)

The simplest choice of estimates for R and p is to use instantaneous estimates:

1'(n) = u[n]uH[n] (2.11)

P(n) = u[n]d *[n] (2.12)

The instantaneous estimate of the gradient vector is:

7(n) = 2u[n]cl*[n] + 2u[n]uH[n]a(n). (2.13)

At the minimum point of the error-performance surface (defined by J(n) as a function of

a(n)), the tap-weight vector takes the optimum value a°, which is given by the normal

equation:

Ra° = p (2.14)

The tap-weight vector is updated according to:

a(n + 1) = a(n) + /12 (V(n)) (2.15)

where p is positive constant. Substituting the estimate from (2.13) in this recursive

relation, we get:

a(n + 1) = a(n)+pu[n] [cl*[n] uln]a(n)] (2.16).

10

If we denote by E(n) = a(n) a° the weight error vector, by subtracting a°

from both sides of (2.16), we get:

E (n + 1) = [I ptu[n]uH [n]] e(n) + µ [u[n]d* [n] u[n]u* [n]al . (2.17)

Because "a(n) is independent of u[n], it follows that E(n) is independent of u[n], so:

E {E(n + 1)} = E {(I pu[n]uH [n]E(n)} + pE{u[n]d*[n] u[n]uH [n]a°1 , (2.18)

which yields:

E {c(n + 1)} = (I pR)E{E(n)} + 1.1(p Ra°). (2.19)

Taking into account the normal equation (2.14), it follows that:

E {e(n + 1)} = (I p11)E{E(n)}. (2.20)

This relation gives the necessary condition for convergence in mean of the LMS algorithm.

Thus, the mean of E(n) converges to zero as n approaches infinity for:

20 < < (2.21)
Amax

were Amax is the largest eigenvalue of R.

It is useful to develop a recursive relation for the time evolution of the corre-

lation matrix of the weight-error vector:

K(n) = EtE(n)EH (n)} (2.22)

In order to evaluate the correlation matrix K(n + 1), we take the expectation of the outer

product e(n + 1)EH (n + 1). Algebraic calculations [3] lead to:

K(n + 1) = K(n) i [RK (n) + K(n)R] + ,a2 Rtr[RK (n)] + ii2Jrntr,R. (2.23)

Note that the last term, p,24nR, prevents K(n) = 0 from being a solution to the equation.

Thus, E(n) only approaches zero, but then executes small fluctuations about zero. It can

be shown by induction [3] that K(n) is positive definite. Thus, after each iteration, (2.23)

11

produces a positive definite answer for the updated value of the weight-error correlation

matrix.

The minimum mean square error(MSE) J, is obtained when the coefficient

vector a(n) approaches the optimum value a°, defined by the normal equation. The LMS

algorithm relies on a noisy estimate for the gradient vector with the result that the tap-

weight vector estimate a(n) approaches the optimum value a° after a large number of

iterations and then executes small fluctuations about a°. Consequently, the use of the

LMS algorithm, after a large number of iterations, results in a mean square error J(oo)

that is greater than the minimum mean square error J,.

As it is shown in [3], the average mean squared error E{J(n)} converges to

0 <

a steady state value equal to Junin + (n)R6(n) if and only if the step-size parameter

satisfies the condition:
2 < m , (2.24)

Ez=1 Az

where M is the number of the tap inputs. The above relation gives the condition for the

convergence in mean square of the LMS algorithm.

A similar condition for the allpass filter cannot be derived because its strong

nonlinearity. Actually, updating K(n) using a relation similar to (2.23) is analitycally

untractable, so the approach of this study is to derive separate relations for each entry.

Several simulations done before have shown that the LMS algorithm works

with good results for an allpass structure. The idea behind this study is to provide the user

of DFE applications with some mean square convergence conditions. These conditions are

developed in sections 4.1. and 5.2. and all the results are in good agreement with the

simulation.

12

3. ALLPASS FORWARD EQUALIZATION FOR DFE

The optimum equalized response for DFE has a causal time-domain or mini-

mum phase response and it is such that the majority of its energy is represented by the few

initial samples. As shown in figure 3.1, the output of the forward equalizer is combined

en

y(t) r(t) rn sn

D/A
rn

FIGURE 3.1: Detector for adaptive decision feedback equalization.

with the output of the feedback filter in order to obtain the signal:

r(t) = y(t) ,fn * .57 (3.1)

where fn denotes the impulse response of the decision feedback filter and the data sn e

{-1, 1} are the previous decisions.

The sampled signal at the input of the slicer (the decision rule) is:

rn = Yn In * 8n, (3.2)

where rn is determined by sampling r(t) at nT+43. T is the sampling period and 4) E (0, T)

is a phase term which is established by a phase-locked loop using the minimum mean-

squared error criterion [9]. The decisions sn are made by simply taking the sign of rn.

The adaptation algorithm uses the difference between the actual input of the slicer rn and

13

its ideal value:

en = rn Sn (3.3)

LMS algorithm attempts to minimize the mean square value of the error-signal

at the input of the slicer:

2EfeD = (E(-1)2bix, fn* sn sn) 1. (3.4)
i=0

Usually, the gains of the forward equalizer are updated using the steepest descent algorithm

as follows:

bi(n + 1) = bi(n) 110E (3.5)
abfe,,il

where it is a small positive parameter which controls the rate of convergence. Explicitly:

bi(n + 1) = bi(n) µE {(-1)ix,(nT + Oen}. (3.6)

In practice, the above expectation cannot be obtained and the LMS algorithm, which uses

the instantaneous value inside the expectation, is applied:

bi(n + 1) = bi(n) p(-1)ixi(nT + 0)en (3.7)

This relation is used in the Matlab simulation of the forward equalizer for updating the

coefficients (first and second order filters, see appendices for Matlab functions).

14

4. FIRST ORDER FORWARD EQUALIZER

4.1.	 Variance of the adaptive gain

The first order continuous time forward equalizer is given by:

8 + a
(4.1)

W ks 1 8 + b '

where a = b.	 Applying the bilinear transform (by replacing s with 21 I-1-z) the canonical1+z-- ,

form of the discrete time filter is obtained as:

z-1- + cW (z) =	 (4.2)cz-1 + 1'

where c = 2a-12a+l The controllable canonical realization of the adaptive filter is shown in

figure 4.1.

c(k)

y(k)

c(k)

FIGURE 4.1: Discrete time first order filter.

For this simple structure, the state and output equations are:

x(k + 1) =- -c(k)x(k) + u(k)	 (4.3)

and

y(k) = [1 c2(k)]x(k) + c(k)u(k). (4.4)

In order to model the adaptation process, filter's coefficients have to be time-varying, as

they adapt towards the optimum MSE solution according to:

c(k + 1) = c(k) px(k)((1 + c2(k))x(k) + c(k)u(k) d(k)). (4.5)

15

By squaring 4.3,

X2 (k + 1) = c2 (k)x2 (k) 2c(k)x(k)u(k) + u2(k), (4.6)

and taking the expectation of both sides of (4.6), the second order moment is obtained:

E{x2(k + 1)} = E{c2(k)}E{x2(k)} 2E {c(k)x(k)u(k)} + E{u2(k)}. (4.7)

By squaring (4.5),

c2(k + 1) = c2 (k) 2 pc(k)x(k) ((1 + c2 (k))x(k) + c(k)u(k) d(k)) +

+ 112 x2 (k)((1 + c2 (0)x(k) + c(k)u(k) d(k)) 27 (4.8)

taking expectation of both sides and assuming statistical independence between desired

response, state and adaptive coefficient, respectively (similarly to the independence as-

sumptions considered for the FIR case), the variance of the adaptive coefficient is obtained

as:

E {c2 (k + 1)} = E {c2 (k)} 2 pE {c(k) c3 (k)} E{c(k)} E {x2 (k)}

2 pE {c(k)x(k)u(k)} + 112 E{[1 c2 (k)]2} E {x4 (k)} + ,u2E{c2(k)x2(k)u2(k)} (4.9)

Using the notations Kxx, Kee and Mc for E{x2}, E{c2} and E{c}, respectively, we can

rewrite (4.7) and (4.9) as:

Kxx(k + 1) = K ,c(k)Kxx(k) 2E {c(k)x (k)u(k)} + R(k) (4.10)

and

K ee(k + 1) = K ce(k) 2 p (A4. e(k) E {c3 (k)}) K (k) 2 pE {c(k)x(k)u(k)} +

+ ,u2 E {x4 (k)} (1 2K ec(k) + E {c4 (k)}) + pt2E{c2(k)x2(k)u2(k)}. (4.11)

Considering the input to be zero mean and independent of the internal state and adaptive

coefficient (similarly with the FIR case), (4.10) and (4.11) become:

K (k + 1) = K ee(k)K(k) + R(k) (4.12)

16

and

K (k + 1) = K (k) 2 it (IV c(k) E {c3 (k)}) K xx(k)+

+it2E{x4(k)}[1 2K (k) + E {c4 (k) }l + 11,2 Kcc(k)K ix (k) R(k) . (4.13)

In the above relations we have assumed that the state and the adaptive coefficient (gain)

are statistically independent, in the sense that a temporal average is considered for the

state (fast varying) and a statistical average of the coefficient (slow varying) is used.

The fourth order moment of x(k) in (4.13) can be approximated by (Gaussian approxi-

mation, see section 5.2. for a detailed explanation):

E {x4} = 2(E {x2 })2. (4.14)

Considering c(k) to be zero mean is not a reasonable assumption. However, the third and

fourth order moments of c(k) can be approximated by [5](see section 5.2.):

E {c3 (k)} = 111,(k) OK (k) 21W (k)) (4.15)

and

E{c4(k)} = 3(Kcc(k) MI (k))2 = 3V2(k), (4.16)

where M c(k) and V(k) are the mean and variance of c(k), respectively.

Thus, (4.13) becomes:

K (k + 1) = K (k) 2,u Mc(k) (1 + 2/W (k) 3K (k)) K xx (k)±

+2122 lqx(k) (1 2K (k) + 3V2(k)) + 112 K (k) IC ix (k)R(k) . (4.17)

The above recursive relation describes the adaptive coefficient variance behavior for the

first order forward equalizer.

4.2. Mean square convergence and experimental results

This section compares the results of a Matlab simulation of a first order for-

ward equalizer with the predicted behavior of the coefficient variance given by (4.17).

17

The influence of the input noise and the step-size parameter on the convergence of the

LMS algorithm is also studied. The former gives information about external parameters

influence on the system while the latter allows the user to choose a domain forµ which

fits the convergence requirements of a specific application.

The simulation of the first order forward equalizer is performed starting from

a given pole location. A sequence of simulated random dibit responses constitutes the in-

put of the channel and AWGN noise is added (with a given variance) in order to simulate

the real equalizer input. The forward and feedback coefficients are updated according to

(3.7), thus minimizing the output error (see appendices for Mat lab functions).

Figures 4.2 and 4.3 present averages of 30 runs of the DFE system. Both the

mean and the variance of the coefficient are in good agreement with the simulated behav-

ior of the mean and variance, respectively. These curves are very similar to the usual

0.9

0.8 i solid ine averaged coefficient from simulation

0. dotted line - theoretical approximation of first order moment

0.6

0.5	 step-size parameter = 0.006

nput noise variance = 0.8

0.4

0.3

0.2

0.1

4).10 100 200 300 400 500 600 700 800 900 1000
number of iterations

FIGURE 4.2: Mean of the adaptive coefficient

adaptation coefficient error produced by a FIR implementation of the system [3], thus

confirming previous results obtained in [6] and [1]. Indeed, both the mean and variance

decrease relatively fast (the mean simulation shows a steeper decreasing curve initially,

18

0.8

0.7 1 solid ine averaged squared coefficient from simulatio

0.6 dotted line - theoretical approximation of second order moment

a

-E 0.5 step-size paramete = 0.006

tti` nput noise variant = 0.8

0.4

°C 0.3

0

0.2

0.1

. -
100 200 300 400 500 600 700 800 900 1000

number of iterations

FIGURE 4.3: Variance of the adaptive coefficient

than the predicted behavior of the mean) and then exhibit small fluctuations about the

final value.

A question which may arise here is whether the minimum value obtained is

a global minimum or just a local one. This issue is addressed by performing several sim-

ulations, starting from different initial conditions (i.e. pole locations). In all simulations

the final value was the same. Thus, it may be concluded that the solution is 'stable' and

therefore acceptable from the practical point of view.

Figure 4.4 shows slight variations of the final value produced by the adap-

tation for different values of the step-size parameter This is expected because of the

similarity with the FIR adaptive filter (using LMS as the adaptive algorithm). In the

FIR adaptation case, a necessary and sufficient condition of mean square convergence of

the LMS algorithm is given by (2.24). Here, a similar relation cannot be easily derived.

Instead, figure 4.5 provides the estimation of the final value of the variance as a function

of it. It can be observed that the variance increases monotonically until convergence is

lost. This curve is particular to the given initial conditions, the critical value of p, varies

19

0.8

0.7

0.6	 solid line - step-size parameter = 0.01

dashed line - step-size parameter = 0.05

0.5	 dotted tine - step-size parameter = 0 1

0.4	 input noise variance = 0.8

0.3

0.2

0.1

oo
50 100 150 200 250 300 350 400

number of iterations

FIGURE 4.4: Variance comparison for different values of p,

0.25

0.2 nput noise variance =

number of iterations = 950
8 0.15

0.1

0.05

0
0	 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

step-size parameter

FIGURE 4.5: Variance final value vs. p

slightly with perturbations in initial conditions. These variations occur for values of p in

the vicinity of the critical one, thus producing variations in the range of p and do not

affect the overall behavior.

20

The curve from figure 4.5 provides a tool and a theoretical framework at the

same time, allowing the allpass DFE user to choose a certain domain of the step-size pa-

rameter, in accordance with the application requirements for convergence. It also can be

used as a good prediction of the LMS algorithm behavior in adapting the gain.

The input noise power is an important parameter which can affect the behav-

ior of convergence. Indeed, figure 4.6 shows a variation of the final value of the adaptive

coefficient with the variance of the input noise for a given value of the step-size param-

eter. The shape of this curve is somewhat similar to figure 4.5, the final value of the

0.14

0.12 step-size parameter = 0.01

number of iterations = 950

0.1

8
0.08

0

0.06

0.04

0.02

0
04	 0.5 0.6 0.7 0.8 0.9

input noise variance

FIGURE 4.6: Variance final value vs. input noise variance

variance increases until a certain value of the input noise variance for which convergence

is no longer achieved. This curve provides additional information for designing an allpass

forward filter for DFE.

21

5. SECOND ORDER FORWARD EQUALIZER

5.1. Filter setup

The controllable canonical realization of a second order continuous time filter

is given in Figure 5.1. The state and output equations are:

(t) = A(t)x(t) + Bu(t) (5.1)

y(t) = C(t)x(t) u(t) (5.2)

0 1
[where: A= B= [0, 1] T and C= [ao b0, al +, a0 al
The transfer function for the allpass filter is:

s2 + bis boW(s) = (5.3)52 + ais + a0

Choosing canonical form for the discretization, which can be obtained by

applying the bilinear transform as for the first order filter, we get:
8b0 -2 2b1 -460 -11Z-2 261+460+1 z 2bi +460+1W (Z) = (5.4)2a1 Liao l z-2 8a0 2 ,

2a1 -1-4a0+1 + 2c/1+4c/0+1z-1+1

where ai = b, i = 0, 1, for the allpass filter. We can rewrite (5.4) as:

z-2 Z1
W (Z) = + (5.5)c0z-2 ciz-1

xo(t)xl (0 y(t)
Us 1/s

a1

FIGURE 5.1: Continuous time second order filter.

22

co(')

(k)
y(k)c 1 (k)

c (k)

co(k)

FIGURE 5.2: Discrete time second order filter.

where the coefficients corresponding to the discrete time system are:

81)0 2
cl (5.6)

2b1 + 41)0 + 1

2b1 41)0 1
(5.7)

2b1 + 4b0 + 1

The discrete time system state and output equations of the adaptive filter are:

1

(k)= = [0,1r, (k) = [4(k) 1, ci(k)(co(k) + 1)] and,

co(k) el (k)

D(k) = co(k).

The controllable canonical form of the discrete time system is given in Figure

5.2. The state and output equations can be rewritten as:

xo(k + 1) = xi(k) (5.8)

xi(k + 1) = co(k)xo(k) ci(k)xi(k) + u(k) (5.9)

y(k) = (4(k) 1)xo(k) ci(k)(co(k) + 1)xi(k) + co(k)u(k) (5.10)

and the filter coefficients are updated according to:

co(k + 1) = co(k)

pxo(k)[(c(2)(k) 1)xo(k) (ci(k) + co(k)ci(k)) xi(k) co(k)u(k) d(k)] (5.11)

(k + 1) = (k)

23

maxi (k)[(c6(k) 1)xo(k) + (ci(k) + co(k)ci(k))xl(k) + co(k)u(k) d(k)] (5.12)

The recursive relations for updating the coefficients of the filter and the in-

ternal states are used in the next section for variances and covariance derivation.

5.2. Covariance matrix

Squaring (5.8) and (5.9), neglecting all terms containing u(k) (we consider

the input and the state variables to be statistically independent) and taking expectations,

yields:

E{x(i(k + 1)} = E {x(k)} , (5.13)

E {xT(k + 1)} = E{4(k)4(k) + d(k)x(k) co(k)ci(k)xo(k)xi(k) + u2 (k)} (5.14)

and:

E fx 1 (k + 1)xo(k + 1)} = E {co(k)xo(k)x 1 (k) ci(k)xi(k)} . (5.15)

Similarly, from (5.11) and (5.12) we get:

E {c6(k + 1)} = E {c6(k) + 112 (CF(k) 1)241(k)±

+p2 (ci (k) + co(k)ci(k))2 x6(k)xRk) + it2 c6(k)x4(k)u2 (k)+

+2/12 (c(2)(k) 1) (ci(k) + co(k)ci (k)) x8(k)x1 (k) 2 pco(k) (cF)(k) 11)4(k)
2 pco(k) (ci(k) co(k)ci(k))xo(k)x 1 (101 , (5.16)

E {d(k + 1)} = E {cT(k)} + 1.22 (CF(k) 02 x6(04.(0+

+p2 (ci (k) + co (k)ci (k))2x1(k) + pc24 (k)x(k)u2 (k)+

+2112 (c6(k) 1) (ci(k) + co(k)ci (0) xo(k)xl(k) 2pci(k) (c6(k) 1)xo(k)x 1 (k)

2pci (k)(ci(k) + co(k)ci(k))xi(k)} (5.17)

and:

E {co(k + 1)ci(k + 1)} = E {co(k)ci(k) + p2 (c6(k) 024 (k)xi (0+

24

+1.12 (ci(k) + co(k)ci(k))2 xo(k)xl(k) + ft2c6(k)xo(k)xi(k)u2(k)+

+4/2 (4, (k) 1) (ci (k) + co(k)ci(k))x6(k)x?_(k)

pci (k) (4)(k) 1) x6(k) pci(k)(ci(k) + co (k)ci (k)) x 0 (k)x (k)

Pco(k)(c6(k) 1) x o(k)x (k) Pco(k)(ci(k) + co (k)ci (0) xi(k)} (5.18)

With the same assumption as for the first order filter, that states and coeffi-

cients are independent, in the sense that the states (fast varying) are temporally averaged

and the coefficients (slow varying) are statistically averaged, (5.14) and (5.15) become:

E {xY (k + 1)} = E{c6(k)}E {x6 (k)} + E {cT(k)} E {xT(k)}

E {co (k)ci (k)} E {xo (k)x (k)} + (10} (5.19)

and:

E (k + 1)x (k + 1)} = E {co (k)} E o (k)x (01 E {ci (10} E {xi(k)}. (5.20)

Similarly, (5.16), (5.17) and (5.18) become:

E {c,F)(k + 1)} = E {c(2)(k)} + 112 (E {c`01 (k)} 2E {cg(k)} + 1) E {41(k)}+

{cT(k)} + 2Efco (k)ci(k)} + E {cO(k)ci (01) E {xO(Oxi(k)1+

+112E{c6(k)}E{x6(10}E{u2(k)} (E{c8(k)} E {co (01)E {x6(0}+

+2 /12 (E {c6(k)ci(k)} E {ci(k)} + E{c6(k)ci (01 E{co(k)ci (101)Efx8(k)xl (01

2p, (E{co(k)ci (k)} + E{c6(k)ci (k)1).E{x0(k)xi (01, (5.21)

E {cT.(k + 1)} = E {4. (k)} + 112 (E {e(1)(k)} 2E {c(1(k)} + 1) E {x6 (k)xT(k)1+

+112 (E {q(k)} + 2E {co (k) q(k)} + E {cO(k) ci (01) E {x1(0}+

+ 112 E {4(0} E {xi(k)} E {u2 (k)} 21.1(E {cF)(k)ci (01 E {el (0}) E {x o(k)x (01+

+2/12 (E {cF)(k)ci(k)}	 E {ci(k)} + E {cO(k)ci (01 E {co(k)ci (01) E {xo(k)xi(k)}

(E{d(k)} Etc° (k)cT(101) E {xi(k)} (5.22)

25

and

E{co(k + 1)ci(k + 1)} = E {co(k)ci(k) }+

+/.i2 (E{41(k)} 2E {c6(k)} + 11) E {x8 (k)x (k)} +

it2 (E{ (k)} + 2Efeo (k)ci(k)} + E{ cO(k)ci (01) E {xo(k)xi(k)1+

+//2E{c6(k)}E{x0(k)xl(k)1E{u2(k)} P(E{cO(k)ci(k)} E{ci(k)})-Efx6(01

ii(E{cT.(k)} + Etco(k)d(k)})-E{x0(k)xi(k)}

p,(E {co(k)} + E {co (k)}) E {x 0(k)x 1(0}

+2 ,u2 {c6 (k) ci (01 E fel (01 + E {c8(k) (01 E {co (k) ci (101) E {xO(k)xi(k)}

(E{co (k)ci (k)} + E{c6(k)ci (01)-E{xi (k)}. (5.23)

We need to approximate the third and fourth order moments in the equations

above using lower order moments. The fourth order moments of the states of the system

may be evaluated using the Gaussian moment factoring theorem 1 [3]. Thus:

E {4(k)} = 2(E {4(k)})2 (5.24)

E {4(k)x (k)} = 2E fx(2)(101 E {x o (k) x (k)} (5.25)

E {4)(04(0} = E {xO(k)} E {xi(k)} + (E Ixo(k)x (k)})2 (5.26)

In order to evaluate the third and fourth order moments of the adaptive

coefficients, we use the following approach: consider a random vector i = (7/1, TO and

denote by mn(a, b) the moment of order a of qi and order b of 972 and by sn(a, b) the

'If {u(n)} is a zero-mean complex Gaussian process that is wide-sense stationary and nu, n = 1, 2, ... , N
are samples picked from {u(n)}, then:

E[u:iu:2 74, ?hi Ut2 = 0,

if k # 1. If N is an even integer and k = 1 = N/2:

Ekt:1 u:2 u:kutiut2 ut = EK(1)ut1 l.E[u:,(2)ut2] .. . E[u:,(1) ut,],

where 7r is a permutation of the set of integers {1, 2, ... , 1} and 7r(j) is the jth element of that permutation.

26

corresponding cumulant (semi-invariant). The moments we need to approximate are given

then by the following relations 2 [5] :

mn(2, 1) = 8,7(2, 1) + 87 (0, 1)8,0(2, + 2871(1, 1)8,7(1, + 4(1, 0)871(0, 1), (5.27)

mn(3, 0) = 8,7(3, + 4(0,1) + 3871(1, 0)8,1(2,4 (5.28)

mil (4, 0) = 8,7(4, 0) + 4877(3, 0)8,1(1, 0) + 34(2, 0), (5.29)

mn(3, 1) = 871(3, 1) + 877(3, 0)877(0, 1) + 38,1(1, 0).5,1(1, 1)+

+34(1, 0)871(1,1) + 4(1, 0)8,1(0, 1) + 3877(2,1)8,1(1, 0) (5.30)

and

mil (2, 2) = 8,1(2, 2) + 24(1, 1) + 41(1, 0)41(0,1) + 4(1, 0)87(0, 2)+

+871(2, 0)4(0, 1) + 4871(1, 1)3,7(1, 0)s0(0,1) + 28,1(2, 1)877(0, 1)+

+2.871(1, 2)8,1(1, 0) (5.31)

In the following we will assume a bivariate Gaussian distribution for the ran-

dom vector 97 (which is assumed for the state vector x = (xo, xi) and the adaptive coeffi-

cient c = (co, c1)). The first and second order cumulants are given by [5]:

8,0(1,0) = mi)(1, 0) = m7/17 (5.32)

877(2, 0) = m71(2, 0) m21(1, 0) = var(m.), (5.33)

8,0(1, 1) = mii(1, 1) m71(1, 0)mii (0, 1) = cov(r/1,7/2) (5.34)

2The general formula connecting moments and cumulants is:

inT(r)
ri!...,.! [sW'('))1

friA(i)+...+,(x)-}

where EfriA(,)+...+A()=,} denotes summation over all unordered sets of different nonnegative integral
vectors A(2), > 0, and over all ordered sets of positive integral numbers r, such that rtA(1) + +
rxA(x) = L.

27

and all the higher order cumulants are zero. With the above notations (5.27),(5.28), (5.29),

(5.30) and (5.31) become, respectively:

mn(2, 1) = var(qi)mii2 + 2cov(711,772)mi1 + m271 , (5.35)

inn (3, 0) = m3, + var (711), (5.36)

mn(4, 0) = 3var2(771), (5.37)

mil (3, 1) = 3var (711)cov (m. , 712) + 3m21 cov(ni , 7/2) + 7777,31m7,2 (5.38)

and

Tao (2, 2) = 2cov2 (7)1, 772) + 774,i n72772 + 7777,2i var(772)+

var(m) + 4cov(m, 712)ritni (5.39)+m2
112

.

Considering all the above evaluations and using similar notations 3 as for the

first order allpass filter, (5.21), (5.22) and (5.23) become:

Kcoo(k + 1) = Kcoo(k) + 2p2 So(k)K100(k) + p2-Kcoo(k)Kx00(k)R(k) +

+112Si(k)(1Goo(k)lc1i(k) + K11(k)) 2pTo(k)Kx00(k)+

+4p2S2(k)Kx00(k)Kx01(k) 21.tWo(k)Kx.1(k), (5.40)

Kcii(k + 1) = Kc(k) + p2S0(k)(Kx00(k)Kx11 (k) + KL(k))+

+2112 Si(k)KL(k) + 1121Ccoo(k)Kx11 (k)R(k) 2pTi(k)Kx01(k)+

+4p2S2(k)Kx(k)Kx.(k) 2pW1(k)Kx11 (k) (5.41)

and

Ke01(k + 1) = K,01(k) + 2122 So(k)lcoo(k)Kx0,(k) +2p2Si(k)Kxii(k)&01(k)

+p2Kcoo(k)Kx0i(k)R(k) Pli(k)lcoo(k) P(W1(k) + To(k))1Goi(k)+

+2p2S3(k)(Kx01(k)Kx11(k) + 1(101(k)) ftWo(k)Kxll(k), (5.42)

3These are: Kcoo = E{c4}, K, = E{d}, Kc01 = E{coci}, Kx00 = E{xg}, Kx = E{4}, Kx =
E {xoxi }, Mco = E {co} and Mc1 = E {ci }.

http:5.27),(5.28

28

where:

S o(k) = 31000(k) 2K o(k) (3 MZ0(k) + 1) + 3 M'clo(k) + 1, (5.43)

S 1 (k) = K o(k)Ag(k) + K c (k) (M (k) + 1) 2±

+2Kccu (k)(K,(k) +2Mc1) M(k)Itg(k)(3M(k) + 2), (5.44)

S2(k) =2Ko(k)Mei (k) ± Kcol (k) (4M co (k) 1) Mc, (k)(MZ.(k) + 1) , (5.45)

To(k) = M(k)(3Ko(k) 2111Z0(k) 1) (5.46)

Ti(k) = K o(k)Mc, (k) + 2 M (k) (Kco, (k) Mco(k)Mc, (k)) M c, (k), (5.47)

Wo(k) = Kcoo (k)Mc, (k) + Kco, (k) (2M co (k) + 1) 2 MZ0(k)M c, (k) (5.48)

and

1471(k) = Kc (k) (M co (k) + 1) + 2Mc1 (k)(Kcol (k) M co (OM ci (k)) . (5.49)

The above relations, together with:

Mco(k + 1) = Mco(k)

,u(Kcoo(k) 1) K xoo(k) pt (Kc, (k) + Mc, (k)) Kxo, (k) (5.50)

and:

M c, (k ± 1) = M c, (k)

II (Kcoo (k) 1) Kxo, (k) et/ (IC,, (k) + Mc, (k)) Kx (k) , (5.51)

give the complete approximated second order statistics of the adaptive coefficients. The

entries in the state covariance matrix are given by the following recursive relations:

K xoo(k ± 1) =--- Kx 1, (k), (5.52)

K111(k + 1) = Kcoo(k)Kx(k) + K c(k)Kxii (k) Kc01(k)Kx,1 (k) + R(k), (5.53)

and

K xo,(k + 1) = M co(k)K xo, (k) Mc, (k)K x (k). (5.54)

29

Using these approximate recursive relations for the variances, covariance and

means of the adaptive coefficients, the MSE convergence is compared with the simulation

in the following.

5.3. Mean square convergence of the covariance matrix

This section follows the same line as section 4.2. in comparing the experimental and

approximated values of first and second order moments of the adaptive coefficients and

analyzing their average behavior as a function of the step-size parameter and the input

noise variance.

Figures 5.3 and 5.4 compare the experimental behavior of the LMS algorithm

with the approximated curves given by the relations developed in section 5.2.. The initial

conditions are the same for both coefficients (in contrast with starting from a given poles

location), in order to have a better visualisation of both coefficients mean square conver-

gence. The simulation (there is shown a 30 runs averaged assemble) and the theoretical

0.6

O

2 0.2

0.7

0.6

0.5

0.4
O

0.3

0.2 Mcl

0.1

Mc0 oo
100 200 300 400 500 600

number of iterations

FIGURE 5.3: Means of the adaptive coefficients

30

0.8
E

0.6

0.4
0

0.2 Kc11
Kc01

0 Kc00

-0.20
100 200 300 400 500 600

0.7

E 0.6

2,, 0.5

0.4

g 0.3

t, 0.2
Kc11

"F' 0.1
Kc01

0 c00
100 200 300 400 500 600

number of iterations

FIGURE 5.4: Variances and covariance of the adaptive coefficients

approximations are performed for the step-size parameter µ = 0.005 and the input noise

variance o = 0.1

The estimates (upper part of the images) are noisier than in the first order

equalizer case, with faster convergence to the final value (which was expected from pre-

vious simulation performed in [1] and [6]. The theoretical approximation shows a good

agreement with the estimates for both means and variances.

As shown in figure 5.5, the 'turn' corner of all three covariance terms (for

relatively large values of the step-size parameter) is sharper than for the first order (fig-

ure 4.5), which is closer to a FIR equalizer behavior. As a remark, the 'turn' points,

which give the maximum value of fc for which convergence can be achieved, are located at

slightly lower values ofµ than for the first order. For the FIR equivalent, this is translated

by bigger eigenvalues in the second order case than in the first order one. Figure 5.6 is a

zoom-in the 'turn' corner region, which is the region of interest for design purposes.

The input noise variance influence on the convergence of LMS algorithm for

both the variances and the covariance of the adaptive coefficients is shown in figure 5.7.

31

5

4 nput noise, variance,. 0.1

number of iterations = 550

3

2

1

0

0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
step-size parameter

FIGURE 5.5: Final values of variances and covariance vs. pc

The variances of the adaptive coefficients appear more sensitive to noise than the covari-

ance term. On the other hand, the curves show 'turn' points at lower input noise variances

than for the first order equalizer, which indicates that the second order filter is more sen-

sitive to noise than the first order one.

In order to better visualize the convergence, especially in the extreme regions,

the 3D plots are given for K, and Kg, in figures 5.8 and 5.9. These plots should be

helpful in design when there is the need to choose the optimum value of pc (from the speed

of convergence point of view) given a certain range for the input noise power.

32

Kc00
4.5 -

put noise variance - 0:1

number of iterations = 550
E 3.5

0; 2.5 -c

2

1
1 5

Kc01
Kc11

0.5

0
0.165	 0.166 0.167 0.168 0.169 0.17 0.171 0.172

step-size parameter

FIGURE 5.6: Final values of If,, If,. and If, for large

1.8

1.6 step-size parameter = 0.04 Kc00
number of iterations = 550

1.4

E
IT: 1.2
O
C

1
O

'5 0.8

Cs

0.6

0.4

Kc110.2

Kc01

0.02	 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0 2
input noise variance

FIGURE 5.7: Final values of variances and covariance vs. a

33

0.2
-0.5

0.165 0.166 0.167 0.168 0

input noise variance

step-size parameter

FIGURE 5.8: Surface plot of K,00

0.171

0.06 0.169
0.168

input noise variance step-size parameter

FIGURE 5.9: Surface plot of Kei,

34

6. CONCLUSION

Mean square convergence of the adaptive allpass filter, used for a DFE channel

forward equalizer is studied. LMS algorithm, or more generally, any stochastic gradient

algorithm can be used for adapting the coefficients of an allpass filter. The main reason for

using an allpass filter in designing the forward equalizer is based upon practical experience

that this type of filter achieves better performance than a regular zero/pole filter. Hence,

similar performance can be obtained, at lower implemenation complexity.

The idea behind this study is to provide a theoretical framework for the con-

vergence properties of first and second order allpass filters. The difficulty resides in the

filter's strong nonlinear behavior which voids the eigenvalue based method, as in the case

of the FIR implementation, and requires nonlinear techniques. A direct derivation of the

covariance matrix of the filter coefficients is analytically untractable. Approximate equa-

tions for each entry of this matrix are derived in the form of a nonlinear second order

system of difference equations. The recursive system of coupled equations is developed

under appropriate assumptions concerning the input, the internal states and the adaptive

coefficients (some of these approximations are inherited from the well established study

of FIR filtering). Finally, these equations are presented in a form suitable for implemen-

tation.

Symbolic mathematical software, like Maple or Matematica, could be help-

ful performing algebraic simplifications, thus reducing the computational burden. Here,

its main use is to find the steady state solution in order to verify the simulation results.

Maple, used here for the derivation of the covariance terms of the second order filter,

also provides the interface with LATEX, which is a convenient feature for publishing the re-

sults. The issue of a powerful design and analysis software package, with links to technical

computing environments like Mat lab and supporting mathematical software is already in

demand in signal processing and control. An example of such package is Saber Designer.

35

Enhanced packages should use a large variety of algorithms in adaptive filter design and

analysis and the LMS algorithm applied for nonlinear filtering belongs to this set of tools.

In the design of an adaptive system it is important to establish a performance

measure that provides comparison of various filter structures and adaptive algorithms in

order to select the best solution within the constraints of an application. Some of these

measures are: convergence rate, minimum mean square error (MMSE) and misadjust-

ment, the computational complexity, stability and robustness.

A faster convergence does not necessarily implies a better solution. The in-

creased cost and complexity of a faster converging algorithm is only worth the allocation

of additional resources if faster convergence is necessary for the system operation. This

is the case of DFE for magnetic storage devices such as hard-drives. This problem of fast

convergence is addressed in this thesis, in terms of the search for a proper range of the

step-size parameter.

The MMSE and the misadjustment (the filter's deviation around the optimal

MMSE) are direct measures of how well an adaptive system is able to perform its task.

The MMSE depends on many factors, such as: gradient noise, coefficient sensitivities,

sensitivities to numerical quantization, the order of the adaptive system, the magnitude

of the measurement noise, to name only a few. The coefficient sensitivities and input noise

were emphasized in this study.

Low computational complexity is particularly important for real time appli-

cations where the algorithm is to be implemented in custom designed VLSI. The allpass

filter structure has relatively low complexity. Also, the requirement for an adaptive al-

gorithm to meet performance objectives, while staying computationally simple enough to

meet the time constraints of real time operation, justifies the use of LMS algorithm.

In general, the use of IIR filters raises some stability problems, as opposed to

the usage of FIR structures which are inherently stable (for proper choices of adaptation

gain). Practically, if the poles of an adaptive IIR filter are driven too far outside the unit

circle during the adaptation process, the adaptive algorithm itself may become unstable

36

and the entire adaptation process may diverge. This is a real problem because it was

shown experimentally that many IIR filters will achieve faster convergence by allowing

their poles to wander outside the unit circle, only to be drawn back towards a stable

solution as the adaptive process converges. This study emerges exactly in this shadowed

area of adaptive filtering which is not very well understood at the current time.

Robustness is often difficult to measure in a quantitative manner. An im-

portant feature of an algorithm is to remain well conditioned regardless of the signal

characteristics and to behave well numerically. The first problem was addressed for both

first order and second order structure, by studying the influence of the input noise on the

final values of the variances of the adaptive coefficients. The simulation shows that the

controllable canonical form of the discrete time system does not misbehave numerically.

The theoretical approximations verified by simulation show good convergence

properties for the means and variances of the adaptive gains, even for the first order

implementation of the allpass filter. These results are in good agreement with previous

work reported by Kenney et al. ([1] and [6]). Further development could include similar

derivations for a third order implementation of the allpass filter. Additional simplifying

assumptions may be needed in order to deal with analytical complexity. One of these

assumptions could be to neglect all the terms multiplied by /22 in the expressions of the

covariance terms. This simplification is based upon the assumption that the third order

filter should be even more sensitive to noise than the second order one and the maxi-

mum admissible value of the step-size parameter for which convergence is achieved will be

smaller.

The adaptive algorithms were implemented as a package of Mat lab routines.

For the second order filter the routines contain a MEX function written in C language in

order to meet the memory and speed requirements. This package is suitable for design

purposes and can be easily expanded. Although this convergence study is presented as

a part of the decision feedback equalization process (calling for specific parameters and

37

conditions), it can be easily extended to any application involving nonlinear second or-

der adaptation, such as adaptive echo cancellation, adaptive techniques for audio band

noise cancellation and two dimensional filtering of images and video sequences. In the

case when adaptive filters need to track rapidly varying signal statistics, LMS algorithm

may not be appropriate. However, the moments approximation study can be extended

to some adaptive lattice or block adaptive IIR algorithms with reasonable computational

complexity.

38

BIBLIOGRAPHY

1.	 J. G. Kenney and R. Wood. Multi-level decision feedback equalization, an efficient
implementation of FDTS. IEEE Trans.Magn., 31:1115-20, March 1995.

2.	 B. Widrow and Jr. M. E. Hopf. Adaptive switching circuits. IRE WESCON
Conf.Rec., pages 96-104, 1960.

3.	 S. Haykin. Adaptive Filter Theory. Prentice Hall, second edition, 1991.

4.	 H. J. Kushner and G. G. Yin. Stochastic Approximation Algorithms and Applications.
Applications of Mathematics. Springer-Verlag, 1997.

5.	 A. N. Shiryaev. Probability, chapter II. Springer-Verlag, second edition, 1996.

6.	 P. A. Mc Ewen and J. G. Kenney. Allpass forward equalizer for decision feedback
recording. IEEE Trans.Magn, 31(6):3045-7, November 1995.

7.	 J. Brown and P. Hurst. Adaptive continuous-time forward equalization for DFE-
based disk-drive read channels. 29th Asimolar Conference on Signals,Systems and
Comp., 1496:668-72, 1996.

8.	 G. D. Fourney. Maximum-likelihood sequence estimation of digital sequences in the
presence of intersymbol interference. IEEE Trans.Information Theory, 18:4194-208,
May 1972.

9.	 J. M. Cioffi, W. L. Abbott, H. K. Thapar, C. M. Me las, and K. D. Fisher. Adaptive
equalization in magnetic-disk storage channels. IEEE Communications Magazine,
pages 15-29, February 1990.

10.	 W. K. Jenkins et al. Advanced Concepts in Adaptive Signal Processing. The Kluwer
International Series in Engineering and Computer Science. Kluwer Academic Pub-
lishers, 1996.

11.	 E. A. Lee and D. G. Messerschmitt. Digital Communication. Kluwer Academic
Publishers, 1988.

12.	 D. L. Johns, W. M. Snelgrove, and A. S. Sedra. Continuous-time lms adaptive
recursive filters. IEEE Trans. Circuits Syst., 38:769-778, July 1991.

39

APPENDICES

40

A Mat lab functions used in first order filter simulation

%Function fAllpass

h equations for mean and variance of the adaptive coefficient

%for first order allpass filter

7.initalization of the parameters used in simulation

mu=0.005;

sigmas=0.1;

STEPLEN = 35;

OSR = 1;

PW50 = 3.0;

samplen=950;

pol=0.4;

%input noise variance

Dibit = MakeDibit(OSR,STEPLEN,PW50);

N=length(Dibit);

R=zeros(1,N);

for i=1:N-1

R(i)=(1/N)*sum(Dibit(1:N-i).*Dibit(i+1:N));

end R0=(1/N)*sum(Dibit(1:N).*Dibit(1:N));

R= [R0 R];

R=R+(sigmasA2)*ones(size(R));

R=[R (sigmasA2)*ones(1,samplen-N)];

7, initial conditions

Kxx=0.01;

Mc= Startla(pol);

Kcc=Mc*Mc;

http:Kxx=0.01

41

% variance and mean iterative relations

for k=1:samplen

Kxx(k+1)=Kcc(k)*Kxx(k)+R(k);

Kcc(k+1)=Kcc(k)-2*mu*Mc(k)*(1+2*Mc(k)A2-3*Kcc(k))*Kxx(k)+...

2*muA2*(Kxx(k)A2)*(1-2*Kcc(k)+3*(Kcc(k)-...

Mc(k)A2)A2)+(muA2A2)*Kcc(k)*Kxx(k)*R(k);

Mc(k+1)=Mc(k)-mu*(1+Kcc(k))*Kxx(k);

Kcc=[Kcc Kcc(k)];

Mc=[Mc Mc(k)];

end

function [NumPass,DenPass,OffPass,CtPass] = DenlPas()

% this function calculates constants used by function MakeDibit

DenPass = [1 1]';

OffPass = [2 -2]';

NumPass = [2 -2; 1 1];

CtPass = [1 1; -2 2];

function Dibit = MakeDibit(OSR,STEPLEN,PW50)

% Function which provides a dibit response

DiffSig = zeros(OSR+1,1);

DiffSig(1) = 1;

DiffSig(OSR+1) = -1;

MidChan = OSR * ((STEPLEN + 1)/2);

for i= O:MidChan 1

Temp = 1 + (4 * i * i)/ ((OSR * PW50) * (OSR * PW50));

Step1(MidChan + i) = 1/Temp;

42

Step1(MidChan i) = Stepl(MidChan + i);

end

Dibit = conv(DiffSig, Stepl);

function Mc=Startlm(pol)

% Function which provides a starting vector a for adaptation

% from discrete-time pole location

xpoly = poly(pol);

bvec = -2-2*xpoly(2);

A=xpoly(2)-1;

Mc = (1/A) * bvec;

function [error,y,alfa,aa,mu1]=FirstOrdp(seedunif,SampLen);

% the function simulates an adaptive allpass filter using

' /control canonic structure

' /.constants used in the simulation

STEPLEN = 35;

DibitLen = 26;

SNR = 20;

Gainnum = 1;

PW50 = 3.0;

OSR = 1;

GAIN = 2.2;

pol = 0.4;

DELAY = 2;

FBLENGTH = 5;

mu = 0.06;

43

seedu=924;

SampLen = 950;

Sigma=0.2;

% Order of the equalizer

Order = 1;

% Number of states +1 in the equalizer

LengthXi = Order+1;

% Routine which calculates the functions from which the z-domain

% transfer function can be derived

[NumPass,DenPass,OffPass,CtPass] = Den1Pas;

% Function for generating the dibit response of the channel

Dibit = MakeDibit(OSR,STEPLEN,PW50);

% z-doman transfer function

a = Startla(pol);

aa=a;

% Initialization of the denominator polynomial

den = DenPass * a + OffPass;

% Numerator polynomial in z-domain

num=Gainnum*(-NumPass(1,:)+a*NumPass(2,:));

% adaptation process

y(DELAY+FBLENGTH) = 0;

b = y(DELAY:DELAY+FBLENGTH);

b1 = [zeros(1,DELAY-1),b];

for i=1:FBLENGTH+1

brev(i) = b(FBLENGTH + 2 i);

end

mu1 = mu;

rand('seed', seedunif);

44

datin = rand(SampLen,1) 0.5;

bindat = sign(datin);

beqoutl = conv(bindat,bl);

chanout = conv(Dibit, bindat);

noise = Sigma*Sigma*randn(SampLen,1);

% initializing ouput error

error = zeros(SampLen,1);

yout = zeros(SampLen,1);

ydiff = zeros(SampLen,1);

ystate = zeros(SampLen,1);

xi = zeros(LengthXi,1);

adjst0 = zeros(LengthXi,1);

ydi = zeros(LengthXi,1);

fbdata = zeros(FBLENGTH+1,1);

alfa = a;

for i=1:SampLen

% Evaluation of the recursion portion of the discrete-time filter

xi(1) = (-den(2:LengthXi)'*xi(2:LengthXi)+GAIN*...

(noise(i)+chanout(i)))/den(1);

ctstate = CtPass * xi;

%feedback adaptation

if i > (DELAY+FBLENGTH)

fbdata = bindat(i-DELAY-FBLENGTH+1:i-DELAY+1);

end

beqout(i) = brev * fbdata;

%Summing the scaled states of the forward equalizer to

45

%the output of the feedback filter

yout(i) = ctstate(LengthXi) + a(1:Order)'*...

ctstate(1:Order) begout(i);

if i > (DELAY+FBLENGTH)

error(i) = yout(i) bindat(i-DELAY+2);

end

% Update the feedback filter

brev = brev + (mu * error(i) * fbdata');

a = a mu1 * error(i) * (ctstate(1:Order));

alfa =[alfa a];

xi(2:LengthXi) = xi(1:Order);

adjst0(1) = (-den(2:LengthXi)' *adjst0(2:LengthXi)+...

2*ctstate(1))/den(1);

ctadjstO = CtPass * adjst0;

sgrad(i) = ctadjst0(2) + a * ctadjst0(1);

stateval(i) = ctstate(1);

adjst0(2:LengthXi) = adjst0(1:Order);

den = DenPass * a + OffPass;

end

seedunif = rand('seed');

% Function StFirst which calculates the adaptive vectors

seedu=924;

SampLen = 950;

no=30;

h initalization of the adaptation vector

beta1=zeros(1,SampLen+1);

46

'h initialization of the output error

errorstat=zeros(Sampen,1);

% the adaptation vector is updated

for k=1:no

[error,y,alfa,aa,mul] = FirstOrdp(seedu,SampLen);

errorstat = errorstat + error.*error;

betal=[betal; alfa] ;

end

gammal= betal(2:k +1,:);

coefl= mean(gammal);

47

B Mat lab functions used in second order filter simulation

'h Function sAllpass

% equations for means and variances of the adaptive coefficients

' /.for second order allpass filter

% initialization of the parameters used in simulation

sigmas=0.1;

STEPLEN = 35;

OSR = 1;

PW50 = 3.0;

samplen=550;

DELAY=17;

FBLENGTH=15;

pot= [0.4 0.4];

% input noise variance

Dibit = MakeDibit(OSR,STEPLEN,PW50);

N=length(Dibit);

R=zeros(1,N);

for i=1:N-1 R(i)=sum(Dibit(1:N-i).*Dibit(i+1:N));

end RO=sum(Dibit(1:N).*Dibit(1:N));

R= [R0 R];

R=R+(sigmasA2)*ones(size(R));

R =[R (sigmasA2)*ones(1,samplen-N)];

mu=0.00001;

% inital conditions

mc0=0.7;

48

mc1=0.7;

kc00=0.49;

kc11=0.49;

kc01=0.49;

% iterative equations

Kx00=[0.1 zeros(1,samplen)];

Kx01=[0.1 zeros(1, samplen)];

Kx11=[0.1 zeros(1, samplen)];

Kc00=[kc00 zeros(1, samplen)];

Kc01=[kc01 zeros(1, samplen)];

Kc11=[kc11 zeros(1, samplen)];

M0 =[mc0 zeros(1, samplen)];

M1=[mc1 zeros(1, samplen)];

K=[Kx00; Kx11; Kx01; MO; Ml; Kc00; Kc11; Kc01; R]';

% call the computing MEX function

kk=CovMatrix(K,mu);

% Function sAllpassMu

% using the same equations as function sAllpass, gives the final values

% of the second order moments vs. step-size parameter

sigmas=0.1;

STEPLEN = 35;

OSR = 1;

PW50 = 3.0;

samplen=550;

DELAY=17;

FBLENGTH=15;

Dibit = MakeDibit(OSR,STEPLEN,PW50);

http:kc01=0.49
http:kc11=0.49
http:kc00=0.49

49

N=length(Dibit);

R=zeros(1,N);

for i=1:N-1 R(i)=sum(Dibit(1:N-i).*Dibit(i+1:N));

end RO=sum(Dibit(1:N).*Dibit(1:N));

R= [R0 R] ;

R=R+(sigmasA2)*ones(size(R));

R=[R (sigmasA2)*ones(1,samplen-N)];

kvsmu=[0 0 0];

mc0=0.7;

mc1=0.7;

kc00=0.49;

kc11=0.49;

kc01=0.49;

Kx00=[0.1 zeros(1,samplen)];

Kx01=[0.1 zeros(1, samplen)];

Kx11=[0.1 zeros(1, samplen)];

Kc00=[kc00 zeros(1, samplen)];

Kc01=[kc11 zeros(1, samplen)];

Kc11=[kc01 zeros(1, samplen)];

M0 =[mc0 zeros(1, samplen)];

M1=[mc1 zeros(1, samplen)];

K=[Kx00; Kx11; Kx01; MO; Ml; Kc00; Kc11; Kc01; R]';

for mu=0.165:0.0001:0.17 kk=CovMatrix(K,mu);

finals= [kk(samplen,6:8)];

kvsmu=[kvsmu; finals];

end

kvsmu=kvsmu(2:size(kvsmu,1),:);

http:mu=0.165:0.0001:0.17
http:kc01=0.49
http:kc11=0.49
http:kc00=0.49

50

function [NumPass,DenPass,OffPass,CtPass] = Den2Pas()

'h this function calculates constants used by function MakeDibit

DenPass = [1 2 ; 2 0; 1 -2];

OffPass = [4; -8; 4];

NumPass = [4 -8 4; 2 0 -2; 1 2 1];

CtPass = [1 2 1; -2 0 2; 4 -8 4];

%Function CovMatrix (C language) which computes the covariance matrix entries

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <string.h>

#include "mex.h"

#define elem(i,j) pr[i+j*k]

/* Computational routine for the covariance matrix*/

void covmat(double* pr, int k,double mu)

{

int i;

double sO,s1,s2,t0,t1,w0,w1;

for (i=0; i<k-1; i++)

{

s0=3*pow(elem(i,5),2)-2*elem(i,5)*(3*pow(elem(i,3),2)+1)+

3*pow(elem(i,3),4)+1;

51

sl=elem(i,5)*pow(elem(i,4),2)+elem(i,6)*pow(elem(i,3)+1,2)+

2*elem(i,7)*(elem(i,7)+

2*elem(i,4))-elem(i,3)*pow(elem(i,4),2)*(3*elem(i,3)+2);

s2=2*elem(i,5)*elem(i,4)+elem(i,7)*(4*elem(i,4)-1)-

elem(i,4)*(pow(elem(i,3),2)+1);

t0=elem(i,3)*(3*elem(i,5)-2*pow(elem(i,3),2)+1);

tl=elem(i,5)*elem(1,4)+2*elem(i,3)*(elem(i,7)-

elem(i,3)*elem(i,4))+elem(i,4);

w0=elem(i,5)*elem(i,4)+elem(i,7)*(2*elem(i,3)+1)-

2*pow(elem(i,3),2)*elem(i,4);

w1=elem(i,6)*(elem(i,3)+1)+2*elem(i,4)*(elem(i,7)-

elem(i,3)*elem(i,4));

elem(i+1,0)=elem(i,1);

elem(i+1,1)=elem(i,5)*elem(i3O)+elem(i,6)*elem(i,1)-

elem(i,7)*elem(i,2)+elem(i,8);

elem(i+1,2)=elem(i,3)*elem(i,2)-elem(1,4)*elem(1,1);

elem(i+1,3)=elem(i,3)+mu*(elem(i,5)-1)*elem(i3O)-

mu*(elem(i,4)+elem(i,7))*elem(i,2);

elem(i+1,4)=elem(i,4)-mu*(elem(i,5)-1)*elem(i,2)-

mu*(elem(i,4)+elem(i,7))*elem(i,1);

elem(i+1,5)=elem(i,5)+2*pow(mu,2)*s0*pow(elem(i3O),2)+

pow(mu,2)*elem(i,5)*elem(i3O)*elem(i,8)+pow(mu,2)*sl*

(elem(i3O)*elem(i,1)+pow(elem(i,2),2))-2*mu*tO*elem(i3O)+

4*pow(mu,2)*s2*elem(i3O)*elem(i,2)-2*mu*w0*elem(i,2);

elem(i+1,6)=elem(1,6)+pow(mu,2)*elem(i,5)*elem(i,1)*elem(i,8)+

pow(mu,2)*s0*(elem(i3O)*elem(i,1)+pow(elem(i,2),2))+

2*pow(mu,2)*s1*pow(elem(i,1),2)-2*mu*tl*elem(i,2)+

52

4*pow(mu,2)*s2*elem(i,1)*elem(i,2)-2*mu*w1*elem(i,1);

elem(i+1,7)=elem(i,7)+pow(mu,2)*elem(i,5)*elem(i,2)*elem(i,8)+

2*pow(mu,2)*s0*elem(i3O)*elem(i,2)+2*pow(mu,2)*sl*elem(i,1)*

elem(i,2)-mu*tl*elem(i3O)-mu*(w1+t0)*elem(i,2)+

2*pow(mu,2)*s2*(elem(i3O)*elem(i,1)+pow(elem(i,2),2))-

mu*w0*elem(i,1);

}

}

/* Gateway routine */

void mexFunction(int nlhs, Matrix*plhs[], int nrhs, Matrix*prhs[])

unsigned int m,n;

double *muget;

double stepsize;

Matrix *ktp;

/* Size of the output covariance matrix*/

m=mxGetM(prhs[0]);

n=mxGetN(prhs[0]);

/* Create matrix for return argument*/

ktp=mxCreateFull(m,n,REAL);

memcpy((char*)mxGetPr(ktp),(char*)mxGetPr(prhs[0]),sizeof(double)*m*n);

/*Dereference arguments*/

muget=mxGetPr(prhs[1]);

stepsize=muget[0];

/*Call the operating function*/

covmat(mxGetPr(ktp),m,stepsize);

/*Return the new matrix*/

53

plhs[0]=ktp;

}

function [error,alfa,aa,mul] = SecondOrdp(seedunif,SampLen);

' /.adaptive allpass filter using control canonic structure

% constants used in the simulation

STEPLEN = 35;

DibitLen = 26;

SNR = 20;

Gainnum = 1;

PW50 = 3.0;

OSR = 1;

Sigma =0.08;

GAIN = 2.2;

pol = [0.2 0.2];

DELAY = 5;

FBLENGTH = 10;

mu = 0.005;

% Order of the equalizer

Order = 2;

h Number of states +1 in the equalizer

LengthXi = Order+1;

% Routine which calculates the functions from which the z-domain

% transfer function can be derived

[NumPass,DenPass,OffPass,CtPass] = Den2Pas;

% Function for generating the dibit response of the channel

Dibit = MakeDibit(OSR,STEPLEN,PW50);

a=[0.7 0.7]';

54

aa=a;

% Initialization of the denominator polynomial

den = DenPass * a + OffPass;

% Numerator polynomial in z-domain

num=Gainnum*(-NumPass(1,:)+a(2)*NumPass(2,:)-a(1)*NumPass(3,:));

% adaptation process

y(DELAY+FBLENGTH) = 0;

b = y(DELAY:DELAY+FBLENGTH);

bl = [zeros(1,DELAY-1),b];

for i=1:FBLENGTH+1

brev(i) = b(FBLENGTH + 2 i);

end

mul = mu;

rand('seed',seedunif);

datin = rand(SampLen,1) 0.5;

bindat = sign(datin);

beqoutl = conv(bindat,bl);

chanout = conv(Dibit, bindat);

noise = (SigmaA2)*randn(SampLen,1);

7. initializong output error

error = zeros(SampLen,1);

yout = zeros(SampLen,1);

ydiff = zeros(SampLen,1);

ystate = zeros(SampLen,1);

xi = zeros(LengthXi,1);

adjstO = zeros(LengthXi,1);

ydi = zeros(LengthXi,1);

fbdata = zeros(FBLENGTH+1,1);

55

alfa = a;

for i=1:SampLen

% Evaluate the recursion portion of the discrete-time filter

xi(1) = (-den(2:LengthXi)'*xi(2:LengthXi)+...

GAIN*(noise(i)+chanout(i)))/den(1);

ctstate = CtPass * xi;

tapnorm=(abs(ctstate(1)))A2+(abs(ctstate(2)))A2;

munorm=mu1/tapnorm;

h feedback adaptation

if i > (DELAY+FBLENGTH)

fbdata = bindat(i-DELAY-FBLENGTH+1:i-DELAY+1);

end

beqout(i) = brev * fbdata;

Y. Summing the scaled states of the forward equalizer to the output

yout(i) = ctstate(LengthXi) + a(1:Order)'*...

ctstate(1:Order) beqout(i);

if i > (DELAY+FBLENGTH)

error(i) = yout(i) bindat(i-DELAY+2);

end

% Update the feedback filter

brev = brev + (mu * error(i) * fbdata');

a = a munorm * error(i) * (ctstate(1:Order));

alfa =[alfa a];

xi(2:LengthXi) = xi(1:Order);

adjst0(1) = (-den(2:LengthXi)' *adjst0(2:LengthXi)+...

2*ctstate(2))/den(1);

ctadjstO = CtPass * adjst0;

sgrad(i) = ctadjst0(3) + a(2) * ctadjst0(2);

56

stateval(i) = ctstate(2);

adjst0(2:LengthXi) = adjst0(1:Order);

den = DenPass * a + OffPass;

end

% final impulse response

num=Gainnum*(-NumPass(1,:)+a(2)*NumPass(2,:)-a(1)*NumPass(3,:));

y = GAIN * filter(num,den,Dibit);

seedunif = rand('seed');

%Function StSecond which calculates the adaptive vectors

seedu =524;

SampLen = 550;

'h initialization of the output error

errorstat = zeros(SampLen,1);

no=30;

' /,initialization of the adaptation vectors

beta1=zeros(1,SampLen+1);

beta2=zeros(1,SampLen+1);

% the adaptation vectors are updated

for k=1:no

[error,alfa,aa,mu1] = SecondOrdp(seedu,SampLen);

errorstat = errorstat + error.*error;

betal= [betal; alfa(1,:)];

beta2=[beta2; alfa(2,:)];

end

gamal=betal(2:k+1,:);

gama2=beta2(2:k+1,:);

57

coefl=mean(gamal);

coef2=mean(gama2);

kcoef00=mean(gamal.*gamal);

kcoefll=mean(gama2.*gama2);

kcoefOl=mean(gamal.*gama2);

58

INDEX

adaptive, 2

filter, 3

channel, 2, 5

convergence, 3

in mean, 11

in mean square, 12

covariance

matrix, 32

cumulant, 29

DFE, 3, 4, 8

dibit, 6

eigenvalue, 11

equalizer

forward, 8, 14, 15

zero-forcing, 9

estimates, 10

filter

allpass, 2, 4, 8

FIR, 3

IIR, 3

lowpass, 8

optimal, 9

FIR, 9

Gaussian

approximation, 17

moment factoring theorem, 28

noise, 8

ISI, 7

LMS, 1, 4, 9, 12, 14

Lorentzian pulse, 6

MA, 3

MSE, 12

noise

additive, 8

AWGN, 7

crosstalk, 8

electronic, 8

Gaussian, 8

media, 8

white, 8

pole, 8

PW50, 6

response

desired, 9, 16

dibit, 3

dibit response, 6

equalized, 13

step response, 6

59

semi-invariant, 29

signal

error, 4

error-signal, 14

playback signal, 7

slicer, 13, 14

steepest descent, 14

step response, 7

step-size (parameter), 18

