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Adaptive filtering may be applied in areas where an optimal filtering algorithm 

may not be known a-priori and where the filtering operation may be non-stationary. This 

field, or more generally, the field of adaptive systems, is one which may be regarded as 

mature, having been the subject of considerable research effort in the areas of control and 

signal processing for almost four decades. 

DFE (decision feedback equalization) in various forms has been proposed for detec-

tion on magnetic recording channel. An allpass filter is an alternative to the FIR (finite 

impulse response) forward equalizer which is normally implemented with DFE. This is 

because the allpass filter is a lower power and complexity alternative, though its behavior 

and performance are not very well understood yet. 

Here, an allpass structure implemented as first and second order IIR (infinite 

impulse response) filters is examined. Convergence for the LMS (least mean square) adap-

tation algorithm is studied and, moreover, some convergence conditions and bounds are 

developed, similarly to the well known FIR case. This thesis provides an useful analytical 

study of convergence of IIR adaptive filtering. This is accomplished by a systematic ap-

proximation of the covariance terms of the adaptive coefficients. The range of the step-size 

parameter of the LMS algorithm is developed under some simplifying assumptions. All 

the results obtained are verified by simulation (Matlab and C routines are used). 
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CONVERGENCE STUDY FOR ADAPTIVE ALLPASS FILTERING  

1. INTRODUCTION 

Adaptive filtering rapid development over the last thirty years has been made pos-

sible by extraordinary advances in the related fields of digital computing, digital signal 

processing and high speed integrated circuit technology. Practically, adaptive filtering 

began with research and development efforts in the late 1950's, but the field of adaptive 

signal processing was established as a distinct discipline in its own right in the 1980's with 

the publication of the first adaptive signal processing self-contained books by Honig and 

Messerschmitt in 1984 and Widrow and Stearns in 1985. Nevertheless, one of the earliest 

publications in adaptive filtering was the paper [2] published in 1960 by Widrow and Hopf 

that first introduced the least mean squares (LMS) adaptive filtering algorithm. At that 

time, over ten years before the invention of the microprocessor, digital hardware was not 

sufficiently advanced for engineers to consider practical implementation of an adaptive 

filter in purely digital form. Actually, the first experimental filters were implemented as 

analog circuits with complicated arrangements of analog relays that performed the switch-

ing necessary to adjust the filter tap weights. 

The simplicity of the least mean square (LMS) algorithm and its robust per-

formance in spite of the simplifying assumptions behind its derivation, attracted the at-

tention of a generation of electrical engineers and formed the basis for intense research 

and development in adaptive filter architectures and algorithms that continues in force 

to the present day. The use of adaptive algorithms, in general, and LMS (with a large 

selection of implementations), in particular, is widespread across varied applications like 

system identification, adaptive control, transmission systems and adaptive filtering. 
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In general an adaptive algorithm implies two things: an object upon which 

processing is carried out (i.e. a control system, transmission system etc.) and the so-called 

estimation process. The function of an adaptive algorithm is to adjust a parameter vector 

(generally denoted by 0) with a view to an objective specified by the user; in order to tune 

this parameter, the user must be able to monitor the system. This task is accomplished 

via a state vector, generally denoted by Xn where n refers to the time of observation of 

the system. The rule used to update 0 is typically of the form: 

On ---= On-1 ± Pn,F(en-1, Xn) (1.1) 

where bin is a sequence of small gains. The choices of the state vector Xn and the function 

F(0, X) are application dependent. 

The message that the user desires to send over a telecommunication channel 

is usually coded to remove redundant information and perhaps allows for the correction 

of errors at the receiver. The channel will distort the sequence of signals sent and may 

also add noise. A channel equalizer is a filter whose input is the channel output and 

whose output is an estimate of the transmitted signal (usually delayed). For a magnetic 

recording channel the main distortion is produced by intersymbol interference (ISI). ISI 

cancellation became a crucial problem in the modern magnetic media technology, espe-

cially in the view of the increasing demand for higher density disk drives. On the other 

hand, new technology also requires low access time, which means that the disk is to be 

read faster. This is an additional source of ISI and of noise, since the spectrum of the 

transmitted signal extends towards higher frequencies. 

Decision feedback equalization has been proposed for detection on magnetic 

recording channels, mainly because its excellent bit error rate performance at a modest 

implementation complexity. This is because the forward equalizer, that is normally im-

plemented with DFE, requires multipliers which means it is a major source of complexity 

and power consumption, in the FIR alternative case. An allpass filter has been shown [1] 

to be an advantageous structure for the forward equalizer. 
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The problem of continuous-time adaptive filtering using LMS has been in-

vestigated by some authors [6], [7], [12]. There are certain architectural benefits of the 

continuous-time forward filter over the digital FIR one: sampling can be done at the de-

tector, thereby minimizing the sample delay in both the phase-looked loop (see figure 2.4) 

and the automatic gain control (not considered in this thesis). Also, a physical implemen-

tation uses less die area and, consequently, less power is consumed.. 

FIR structures have been extensively studied in the literature [3], [4], starting 

from general FIR structures, or MA models. The goal is to obtain certain convergence 

conditions and regions of convergence. For example, in the case of a FIR equalizer, the 

use of LMS as the adaptation algorithm is very common; starting from some assumptions 

about the statistics of the input and the internal states, a domain of mean square con-

vergence of the adaptive coefficients is derived for the step-size parameter p (in this case 

= µ is a constant) [3]. Nevertheless, only very few theoretical results were obtained for 

an allpass structure, or more generally for an IIR structure, mainly because of its strong 

nonlinear character. 

The aim of this thesis is to provide the user of a specific application (DFE for 

magnetic recording channels) with some useful tools in studying channel equalization. All 

results are supported by simulation. This can be considered as a starting point to study 

convergence of adaptive IIR nonlinear filters because the study can be extended from the 

allpass filter to many IIR nonlinear filters and processes. 

First and second order structures for an adaptive allpass filter are presented, 

with a Lorentzian shape modeling the transition response of the head. The input of the 

system is a random sequence of dibit responses (presented in section 2.1.), which is simu-

lated by a Mat lab procedure. As for any application where decision-directed equalization 

is employed the error-signal is generated at discrete time instances. Because of the nature 

of the internal states, this approach implies the sampling of the states of the filter at the 

same time the input of the decision element in DFE is sampled. Previous work [6] used 

an exhaustive search to find the optimal pole locations for a low-order allpass filter design 
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in discrete-time. The present study starts from the canonical form of a forward equalizer 

which is discretized in order to search for the convergence of the adaptive coefficients. 

As mentioned above, there are some simplifying assumptions behind LMS al-

gorithm derivation. These are presented in section 2.2. where a brief overview of FIR 

adaptive filtering is also presented. Similar assumptions are used in this study for the 

derivation of the variances of the adaptive coefficients of an allpass filter. 

LMS algorithm uses the difference between the actual input of the decision 

rule and its ideal value [3]. This difference is viewed as an error which is used in adapting 

the filter feedforward and feedback coefficients. 
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2. BACKGROUND  

2.1. More about magnetic media signal and channel equalization 

The reading of a magnetic recording system process is characterized by the 

step response s(t), shown in figure 2.1. Basically, it represents the response to a positive 

PW50=3*Ts 
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FIGURE 2.1: Read-head step response 

transition, from -1 to +1 in the stream of -1 and +1 recorded on the disk. A magnetic 

recording channel is usually modeled as a linear system and the Lorentzian pulse model 

for the step response is one of the most common choices: 

s(t) = A 
(2.1)

1 + (PW50 )2 

where A is a gain factor, taken 1 in this work, and PW50 is the half-height width of the 

transition pulse (it is practically a parameter which specifies the density of data on the 

disk). Because the step response is not convenient to be used in simulation and analysis, 

the dibit response p(t), shown in figure 2.2, is used instead. The dibit response is the 
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convolution between s(t) and 1-D, where D is the unit delay: 

p(t) = s(t) s(t T3), (2.2) 

where T, is symbol period. The Fourier transform of p(t) is: 
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FIGURE 2.2: Read-head dibit response 

P(w) = S(w)(1 C3Tsw), (2.3) 

where: 
PW507 A pw501.1S(w) = e 2 (2.4)

2 

is the Fourier transform of the step response, s(t). Thus, the spectrum of the playback 

signal is bandpass characterized, as shown in figure 2.3. 

The spectral energy concentrates at lower frequencies as the symbol density 

is increased. The receiver must to compromise between the noise power (AWGN in all 

simulations) and the intersymbol interference (ISI) [8]. 

The noise in magnetic recording channels consists of media noise, crosstalk 

between tracks at high data densities and electronic noise and it is common practice to 
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FIGURE 2.3: Dibit frequency response. 

consider it additive, white (correlation assumption) and Gaussian (AWGN) for analytical 

tractability purposes. 

A general model of the overall DFE system is given in figure 2.4. The equalizer 

consists of an allpass filter followed by a lowpass filter. The forward equalizer can be 

noise (white, Gaussian distributed) 

y(t)symbols error
CHANNEL APF LPF DETECTOR ,-

EQUALIZER 

FIGURE 2.4: Block diagram of the DFE system structure used in design 

obtained by finding a model of the form: 

h(t) = q(t) * q(-t), (2.5) 
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where q(t) is the minimum phase and q(t) is the maximum phase component of h(t), 

respectively. The corresponding transfer function is: 

H(s) = Q(s)Q(s),	 (2.6) 

where Q(s) is modeled only by poles in the right half plane. Any zero in the right half 

plane would appear as a right half pole in: 

Q(s)W(s) =	 (2.7)Q(s) 
the overall equalizer transfer function. Note that the optimum zero-forcing equalizer given 

by (2.7) reflects the maximum phase component of the signal to the left half plane. The 

all pole realization has the form: 

K
Os) = k	 (2.8) 

1 + Ei=1 azsi 

where k is the order of the filter and ai E (0, oo), i = 1... k. 

2.2. FIR adaptive filtering 

Considering that u[n] is the input sequence (tap-input vector) of an adaptive 

filter and d[n] is the desired response of it (the response of the optimal Wiener filter, 

in many cases), the statistical analysis of the algorithm is carried on starting from the 

following independence assumptions: 

each sample vector u[n] is statistically independent of all previous sample vectors 

u[k], k = 0,1, ,n 1, 

each sample vector u[n] is statistically independent of all previous samples of the 

desired response d[k], which is: E fu[n]d* [k]} = 0, k = 0,1, , n 1, 

- the sample	 d[n] of the desired response is dependent only on the corresponding 

sample vector u[n] of the input process and statistically independent of all previous 

samples of the desired response d[k], k = 0, 1, , n 1, 
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- the tap-input vector and the desired response d[n] consist of mutually Gaussian 

distributed random vectors for all n. 

Assuming that u[n] and d[n] are jointly stationary, the mean square error is given 

by [3]: 

J(n) = ad aH (n)p pH a(n) + aH (n)Ra(n) (2.9) 

where a(n) is the tap-weight vector, p is the cross-correlation vector between u[n] and 

d[n], R is the correlation matrix of u[n] and ()H denotes the Hermitian transpose (this is 

in the more general case of complex input signal). 

By differentiating the mean squared error J(n) with respect to u[n], we get: 

af(n) 
V(n) = = 2p + 2Ra(n). (2.10) 

aa(n)  

The simplest choice of estimates for R and p is to use instantaneous estimates: 

1'(n) = u[n]uH[n] (2.11)  

P(n) = u[n]d *[n] (2.12)  

The instantaneous estimate of the gradient vector is: 

7(n) = 2u[n]cl*[n] + 2u[n]uH[n]a(n). (2.13)  

At the minimum point of the error-performance surface (defined by J(n) as a function of 

a(n)), the tap-weight vector takes the optimum value a°, which is given by the normal 

equation: 

Ra° = p (2.14)  

The tap-weight vector is updated according to: 

a(n + 1) = a(n) + /12 (V(n)) (2.15)  

where p is positive constant. Substituting the estimate from (2.13) in this recursive 

relation, we get: 

a(n + 1) = a(n)+pu[n] [cl*[n] uln]a(n)] (2.16).  



10 

If we denote by E(n) = a(n) a° the weight error vector, by subtracting a° 

from both sides of (2.16), we get: 

E (n + 1) = [I ptu[n]uH [n]] e(n) + µ [u[n]d* [n] u[n]u* [n]al . (2.17) 

Because "a(n) is independent of u[n], it follows that E(n) is independent of u[n], so: 

E {E(n + 1)} = E {(I pu[n]uH [n]E(n)} + pE{u[n]d*[n] u[n]uH [n]a°1 , (2.18) 

which yields: 

E {c(n + 1)} = (I pR)E{E(n)} + 1.1(p Ra°). (2.19) 

Taking into account the normal equation (2.14), it follows that: 

E {e(n + 1)} = (I p11)E{E(n)}. (2.20) 

This relation gives the necessary condition for convergence in mean of the LMS algorithm. 

Thus, the mean of E(n) converges to zero as n approaches infinity for: 

20 < < (2.21) 
Amax 

were Amax is the largest eigenvalue of R. 

It is useful to develop a recursive relation for the time evolution of the corre-

lation matrix of the weight-error vector: 

K(n) = EtE(n)EH (n)} (2.22) 

In order to evaluate the correlation matrix K(n + 1), we take the expectation of the outer 

product e(n + 1)EH (n + 1). Algebraic calculations [3] lead to: 

K(n + 1) = K(n) i [RK (n) + K(n)R] + ,a2 Rtr[RK (n)] + ii2Jrntr,R. (2.23) 

Note that the last term, p,24nR, prevents K(n) = 0 from being a solution to the equation. 

Thus, E(n) only approaches zero, but then executes small fluctuations about zero. It can 

be shown by induction [3] that K(n) is positive definite. Thus, after each iteration, (2.23) 
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produces a positive definite answer for the updated value of the weight-error correlation 

matrix. 

The minimum mean square error(MSE) J, is obtained when the coefficient 

vector a(n) approaches the optimum value a°, defined by the normal equation. The LMS 

algorithm relies on a noisy estimate for the gradient vector with the result that the tap-

weight vector estimate a(n) approaches the optimum value a° after a large number of 

iterations and then executes small fluctuations about a°. Consequently, the use of the 

LMS algorithm, after a large number of iterations, results in a mean square error J(oo) 

that is greater than the minimum mean square error J,. 

As it is shown in [3], the average mean squared error E{J(n)} converges to 

0 < 

a steady state value equal to Junin + (n)R6(n) if and only if the step-size parameter 

satisfies the condition: 
2 < m , (2.24) 

Ez=1 Az 

where M is the number of the tap inputs. The above relation gives the condition for the 

convergence in mean square of the LMS algorithm. 

A similar condition for the allpass filter cannot be derived because its strong 

nonlinearity. Actually, updating K(n) using a relation similar to (2.23) is analitycally 

untractable, so the approach of this study is to derive separate relations for each entry. 

Several simulations done before have shown that the LMS algorithm works 

with good results for an allpass structure. The idea behind this study is to provide the user 

of DFE applications with some mean square convergence conditions. These conditions are 

developed in sections 4.1. and 5.2. and all the results are in good agreement with the 

simulation. 
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3. ALLPASS FORWARD EQUALIZATION FOR DFE  

The optimum equalized response for DFE has a causal time-domain or mini-

mum phase response and it is such that the majority of its energy is represented by the few 

initial samples. As shown in figure 3.1, the output of the forward equalizer is combined 

en 

y(t) r(t) rn sn 

D/A 
rn 

FIGURE 3.1: Detector for adaptive decision feedback equalization. 

with the output of the feedback filter in order to obtain the signal: 

r(t) = y(t) ,fn * .57 (3.1) 

where fn denotes the impulse response of the decision feedback filter and the data sn e 

{-1, 1} are the previous decisions. 

The sampled signal at the input of the slicer (the decision rule) is: 

rn = Yn In * 8n, (3.2) 

where rn is determined by sampling r(t) at nT+43. T is the sampling period and 4) E (0, T) 

is a phase term which is established by a phase-locked loop using the minimum mean-

squared error criterion [9]. The decisions sn are made by simply taking the sign of rn. 

The adaptation algorithm uses the difference between the actual input of the slicer rn and 
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its ideal value: 

en = rn Sn (3.3) 

LMS algorithm attempts to minimize the mean square value of the error-signal 

at the input of the slicer: 

2EfeD = ( E(-1)2bix, fn* sn sn) 1. (3.4) 
i=0 

Usually, the gains of the forward equalizer are updated using the steepest descent algorithm 

as follows: 

bi(n + 1) = bi(n) 110E (3.5)
abfe,,il 

where it is a small positive parameter which controls the rate of convergence. Explicitly: 

bi(n + 1) = bi(n) µE {(-1)ix,(nT + Oen}. (3.6) 

In practice, the above expectation cannot be obtained and the LMS algorithm, which uses 

the instantaneous value inside the expectation, is applied: 

bi(n + 1) = bi(n) p(-1)ixi(nT + 0)en (3.7) 

This relation is used in the Matlab simulation of the forward equalizer for updating the 

coefficients (first and second order filters, see appendices for Matlab functions). 
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4. FIRST ORDER FORWARD EQUALIZER 

4.1.	 Variance of the adaptive gain 

The first order continuous time forward equalizer is given by: 

8 + a 
(4.1)

W ks 1 8 + b '  

where a = b.	 Applying the bilinear transform (by replacing s with 21 I-1-z ) the canonical1+z-- , 

form of the discrete time filter is obtained as: 

z-1- + cW (z) =	 (4.2)cz-1 + 1' 

where c = 2a-12a+l The controllable canonical realization of the adaptive filter is shown in 

figure 4.1. 

c(k) 

y(k) 

c(k) 

FIGURE 4.1: Discrete time first order filter. 

For this simple structure, the state and output equations are: 

x(k + 1) =- -c(k)x(k) + u(k)	 (4.3)  

and 

y(k) = [1 c2(k)]x(k) + c(k)u(k). (4.4) 

In order to model the adaptation process, filter's coefficients have to be time-varying, as 

they adapt towards the optimum MSE solution according to: 

c(k + 1) = c(k) px(k)((1 + c2(k))x(k) + c(k)u(k) d(k)). (4.5) 
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By squaring 4.3, 

X2 (k + 1) = c2 (k)x2 (k) 2c(k)x(k)u(k) + u2(k), (4.6) 

and taking the expectation of both sides of (4.6), the second order moment is obtained: 

E{x2(k + 1)} = E{c2(k)}E{x2(k)} 2E {c(k)x(k)u(k)} + E{u2(k)}. (4.7) 

By squaring (4.5), 

c2(k + 1) = c2 (k) 2 pc(k)x(k) ((1 + c2 (k))x(k) + c(k)u(k) d(k)) + 

+ 112 x2 (k)((1 + c2 (0)x(k) + c(k)u(k) d(k)) 27 (4.8) 

taking expectation of both sides and assuming statistical independence between desired 

response, state and adaptive coefficient, respectively (similarly to the independence as-

sumptions considered for the FIR case), the variance of the adaptive coefficient is obtained 

as: 

E {c2 (k + 1)} = E {c2 (k)} 2 pE {c(k) c3 (k)} E{c(k)} E {x2 (k)} 

2 pE {c(k)x(k)u(k)} + 112 E{[1 c2 (k)]2} E {x4 (k)} + ,u2E{c2(k)x2(k)u2(k)} (4.9) 

Using the notations Kxx, Kee and Mc for E{x2}, E{c2} and E{c}, respectively, we can 

rewrite (4.7) and (4.9) as: 

Kxx(k + 1) = K ,c(k)Kxx(k) 2E {c(k)x (k)u(k)} + R(k) (4.10)  

and 

K ee(k + 1) = K ce(k) 2 p (A4. e(k) E {c3 (k)}) K (k) 2 pE {c(k)x(k)u(k)} + 

+ ,u2 E {x4 (k)} (1 2K ec(k) + E {c4 (k)}) + pt2E{c2(k)x2(k)u2(k)}. (4.11) 

Considering the input to be zero mean and independent of the internal state and adaptive 

coefficient (similarly with the FIR case), (4.10) and (4.11) become: 

K (k + 1) = K ee(k)K(k) + R(k) (4.12) 
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and 

K (k + 1) = K (k) 2 it (IV c(k) E {c3 (k)}) K xx(k)+ 

+it2E{x4(k)}[1 2K (k) + E {c4 (k) }l + 11,2 Kcc(k)K ix (k) R(k) . (4.13) 

In the above relations we have assumed that the state and the adaptive coefficient (gain) 

are statistically independent, in the sense that a temporal average is considered for the 

state (fast varying) and a statistical average of the coefficient (slow varying) is used. 

The fourth order moment of x(k) in (4.13) can be approximated by (Gaussian approxi-

mation, see section 5.2. for a detailed explanation): 

E {x4} = 2(E {x2 })2. (4.14) 

Considering c(k) to be zero mean is not a reasonable assumption. However, the third and 

fourth order moments of c(k) can be approximated by [5](see section 5.2.): 

E {c3 (k)} = 111,(k) OK (k) 21W (k)) (4.15) 

and 

E{c4(k)} = 3(Kcc(k) MI (k))2 = 3V2(k), (4.16) 

where M c(k) and V(k) are the mean and variance of c(k), respectively. 

Thus, (4.13) becomes: 

K (k + 1) = K (k) 2,u Mc(k) (1 + 2/W (k) 3K (k)) K xx (k)± 

+2122 lqx(k) (1 2K (k) + 3V2(k)) + 112 K (k) IC ix (k)R(k) . (4.17) 

The above recursive relation describes the adaptive coefficient variance behavior for the 

first order forward equalizer. 

4.2. Mean square convergence and experimental results 

This section compares the results of a Matlab simulation of a first order for-

ward equalizer with the predicted behavior of the coefficient variance given by (4.17). 
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The influence of the input noise and the step-size parameter on the convergence of the 

LMS algorithm is also studied. The former gives information about external parameters 

influence on the system while the latter allows the user to choose a domain forµ which 

fits the convergence requirements of a specific application. 

The simulation of the first order forward equalizer is performed starting from 

a given pole location. A sequence of simulated random dibit responses constitutes the in-

put of the channel and AWGN noise is added (with a given variance) in order to simulate 

the real equalizer input. The forward and feedback coefficients are updated according to 

(3.7), thus minimizing the output error (see appendices for Mat lab functions). 

Figures 4.2 and 4.3 present averages of 30 runs of the DFE system. Both the 

mean and the variance of the coefficient are in good agreement with the simulated behav-

ior of the mean and variance, respectively. These curves are very similar to the usual 

0.9 

0.8 i solid ine averaged coefficient from simulation 

0. dotted line - theoretical approximation of first order moment 

0.6 

0.5	 step-size parameter = 0.006 

nput noise variance = 0.8 

0.4 

0.3 

0.2 

0.1 

4).10 100 200 300 400 500 600 700 800 900 1000 
number of iterations 

FIGURE 4.2: Mean of the adaptive coefficient 

adaptation coefficient error produced by a FIR implementation of the system [3], thus 

confirming previous results obtained in [6] and [1]. Indeed, both the mean and variance 

decrease relatively fast (the mean simulation shows a steeper decreasing curve initially, 
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FIGURE 4.3: Variance of the adaptive coefficient 

than the predicted behavior of the mean) and then exhibit small fluctuations about the 

final value. 

A question which may arise here is whether the minimum value obtained is 

a global minimum or just a local one. This issue is addressed by performing several sim-

ulations, starting from different initial conditions (i.e. pole locations). In all simulations 

the final value was the same. Thus, it may be concluded that the solution is 'stable' and 

therefore acceptable from the practical point of view. 

Figure 4.4 shows slight variations of the final value produced by the adap-

tation for different values of the step-size parameter This is expected because of the 

similarity with the FIR adaptive filter (using LMS as the adaptive algorithm). In the 

FIR adaptation case, a necessary and sufficient condition of mean square convergence of 

the LMS algorithm is given by (2.24). Here, a similar relation cannot be easily derived. 

Instead, figure 4.5 provides the estimation of the final value of the variance as a function 

of it. It can be observed that the variance increases monotonically until convergence is 

lost. This curve is particular to the given initial conditions, the critical value of p, varies 
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FIGURE 4.4: Variance comparison for different values of p, 
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FIGURE 4.5: Variance final value vs. p 

slightly with perturbations in initial conditions. These variations occur for values of p in 

the vicinity of the critical one, thus producing variations in the range of p and do not 

affect the overall behavior. 
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The curve from figure 4.5 provides a tool and a theoretical framework at the 

same time, allowing the allpass DFE user to choose a certain domain of the step-size pa-

rameter, in accordance with the application requirements for convergence. It also can be 

used as a good prediction of the LMS algorithm behavior in adapting the gain. 

The input noise power is an important parameter which can affect the behav-

ior of convergence. Indeed, figure 4.6 shows a variation of the final value of the adaptive 

coefficient with the variance of the input noise for a given value of the step-size param-

eter. The shape of this curve is somewhat similar to figure 4.5, the final value of the 

0.14 

0.12 step-size parameter = 0.01 

number of iterations = 950 

0.1 

8 
0.08 

0 

0.06 

0.04 

0.02 

0
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input noise variance 

FIGURE 4.6: Variance final value vs. input noise variance 

variance increases until a certain value of the input noise variance for which convergence 

is no longer achieved. This curve provides additional information for designing an allpass 

forward filter for DFE. 
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5. SECOND ORDER FORWARD EQUALIZER 

5.1. Filter setup 

The controllable canonical realization of a second order continuous time filter 

is given in Figure 5.1. The state and output equations are: 

(t) = A(t)x(t) + Bu(t) (5.1)  

y(t) = C(t)x(t) u(t) (5.2)  

0 1 
[where: A= B= [0, 1] T and C= [ao b0, al +, a0 al 
The transfer function for the allpass filter is: 

s2 + bis boW(s) = (5.3)52 + ais + a0 

Choosing canonical form for the discretization, which can be obtained by 

applying the bilinear transform as for the first order filter, we get: 
8b0 -2 2b1 -460 -11Z-2 261+460+1 z 2bi +460+1W (Z) = (5.4)2a1 Liao l z-2 8a0 2 , 

2a1 -1-4a0+1 + 2c/1+4c/0+1z-1+1 

where ai = b, i = 0, 1, for the allpass filter. We can rewrite (5.4) as: 

z-2 Z1 
W (Z) = + (5.5)c0z-2 ciz-1 

xo(t)xl (0 y(t) 
Us 1/s 

a1  

FIGURE 5.1: Continuous time second order filter. 
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co(') 

(k) 
y(k)c 1 (k) 

c (k) 

co(k) 

FIGURE 5.2: Discrete time second order filter. 

where the coefficients corresponding to the discrete time system are: 

81)0 2  
cl (5.6)  

2b1 + 41)0 + 1  

2b1 41)0 1 
(5.7)

2b1 + 4b0 + 1 

The discrete time system state and output equations of the adaptive filter are: 

1  

(k)= = [0,1r, (k) = [4(k) 1, ci(k)(co(k) + 1)] and,  

co(k) el (k)  

D(k) = co(k).  

The controllable canonical form of the discrete time system is given in Figure 

5.2. The state and output equations can be rewritten as: 

xo(k + 1) = xi(k) (5.8)  

xi(k + 1) = co(k)xo(k) ci(k)xi(k) + u(k) (5.9)  

y(k) = (4(k) 1)xo(k) ci(k)(co(k) + 1)xi(k) + co(k)u(k) (5.10)  

and the filter coefficients are updated according to: 

co(k + 1) = co(k)  

pxo(k)[(c(2)(k) 1)xo(k) (ci(k) + co(k)ci(k)) xi(k) co(k)u(k) d(k)] (5.11)  

(k + 1) = (k)  
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maxi (k)[(c6(k) 1)xo(k) + (ci(k) + co(k)ci(k))xl(k) + co(k)u(k) d(k)] (5.12) 

The recursive relations for updating the coefficients of the filter and the in-

ternal states are used in the next section for variances and covariance derivation. 

5.2. Covariance matrix 

Squaring (5.8) and (5.9), neglecting all terms containing u(k) (we consider 

the input and the state variables to be statistically independent) and taking expectations, 

yields: 

E{x(i(k + 1)} = E {x(k)} , (5.13) 

E {xT(k + 1)} = E{4(k)4(k) + d(k)x(k) co(k)ci(k)xo(k)xi(k) + u2 (k)} (5.14) 

and: 

E fx 1 (k + 1)xo(k + 1)} = E {co(k)xo(k)x 1 (k) ci(k)xi(k)} . (5.15) 

Similarly, from (5.11) and (5.12) we get: 

E {c6(k + 1)} = E {c6(k) + 112 (CF(k) 1)241(k)±  

+p2 (ci (k) + co(k)ci(k))2 x6(k)xRk) + it2 c6(k)x4(k)u2 (k)+  

+2/12 (c(2)(k) 1) (ci(k) + co(k)ci (k)) x8(k)x1 (k) 2 pco(k) (cF)(k) 11)4(k)  
2 pco(k) (ci(k) co(k)ci(k))xo(k)x 1 (101 , (5.16) 

E {d(k + 1)} = E {cT(k)} + 1.22 (CF(k) 02 x6(04.(0+ 

+p2 (ci (k) + co (k)ci (k))2x1(k) + pc24 (k)x(k)u2 (k)+ 

+2112 (c6(k) 1) (ci(k) + co(k)ci (0) xo(k)xl(k) 2pci(k) (c6(k) 1)xo(k)x 1 (k) 

2pci (k)(ci(k) + co(k)ci(k))xi(k)} (5.17) 

and: 

E {co(k + 1)ci(k + 1)} = E {co(k)ci(k) + p2 (c6(k) 024 (k)xi (0+ 
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+1.12 (ci(k) + co(k)ci(k))2 xo(k)xl(k) + ft2c6(k)xo(k)xi(k)u2(k)+ 

+4/2 (4, (k) 1) (ci (k) + co(k)ci(k))x6(k)x?_(k) 

pci (k) (4)(k) 1) x6(k) pci(k)(ci(k) + co (k)ci (k)) x 0 (k)x (k) 

Pco(k)(c6(k) 1) x o(k)x (k) Pco(k)(ci(k) + co (k)ci (0) xi(k)} (5.18) 

With the same assumption as for the first order filter, that states and coeffi-

cients are independent, in the sense that the states (fast varying) are temporally averaged 

and the coefficients (slow varying) are statistically averaged, (5.14) and (5.15) become: 

E {xY (k + 1)} = E{c6(k)}E {x6 (k)} + E {cT(k)} E {xT(k)} 

E {co (k)ci (k)} E {xo (k)x (k)} + (10} (5.19) 

and: 

E (k + 1)x (k + 1)} = E {co (k)} E o (k)x (01 E {ci (10} E {xi(k)}. (5.20) 

Similarly, (5.16), (5.17) and (5.18) become: 

E {c,F)(k + 1)} = E {c(2)(k)} + 112 (E {c`01 (k)} 2E {cg(k)} + 1) E {41(k)}+ 

{cT(k)} + 2Efco (k)ci(k)} + E {cO(k)ci (01) E {xO(Oxi(k)1+ 

+112E{c6(k)}E{x6(10}E{u2(k)} (E{c8(k)} E {co (01)E {x6(0}+ 

+2 /12 (E {c6(k)ci(k)} E {ci(k)} + E{c6(k)ci (01 E{co(k)ci (101)Efx8(k)xl (01 

2p, (E{co(k)ci (k)} + E{c6(k)ci (k)1).E{x0(k)xi (01, (5.21) 

E {cT.(k + 1)} = E {4. (k)} + 112 (E {e(1)(k)} 2E {c(1(k)} + 1) E {x6 (k)xT(k)1+ 

+112 (E {q(k)} + 2E {co (k) q(k)} + E {cO(k) ci (01) E {x1(0}+ 

+ 112 E {4(0} E {xi(k)} E {u2 (k)} 21.1(E {cF)(k)ci (01 E {el (0}) E {x o(k)x (01+ 

+2/12 (E {cF)(k)ci(k)}	 E {ci(k)} + E {cO(k)ci (01 E {co(k)ci (01) E {xo(k)xi(k)} 

(E{d(k)} Etc° (k)cT(101) E {xi(k)} (5.22) 
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and 

E{co(k + 1)ci(k + 1)} = E {co(k)ci(k) }+ 

+/.i2 (E{41(k)} 2E {c6(k)} + 11) E {x8 (k)x (k)} + 

it2 (E{ (k)} + 2Efeo (k)ci(k)} + E{ cO(k)ci (01) E {xo(k)xi(k)1+ 

+//2E{c6(k)}E{x0(k)xl(k)1E{u2(k)} P(E{cO(k)ci(k)} E{ci(k)})-Efx6(01 

ii(E{cT.(k)} + Etco(k)d(k)})-E{x0(k)xi(k)} 

p,(E {co(k)} + E {co (k)}) E {x 0(k)x 1(0} 

+2 ,u2 {c6 (k) ci (01 E fel (01 + E {c8(k) (01 E {co (k) ci (101) E {xO(k)xi(k)} 

(E{co (k)ci (k)} + E{c6(k)ci (01)-E{xi (k)}. (5.23) 

We need to approximate the third and fourth order moments in the equations 

above using lower order moments. The fourth order moments of the states of the system 

may be evaluated using the Gaussian moment factoring theorem 1 [3]. Thus: 

E {4(k)} = 2(E {4(k)})2 (5.24) 

E {4(k)x (k)} = 2E fx(2)(101 E {x o (k) x (k)} (5.25) 

E {4)(04(0} = E {xO(k)} E {xi(k)} + (E Ixo(k)x (k)})2 (5.26) 

In order to evaluate the third and fourth order moments of the adaptive 

coefficients, we use the following approach: consider a random vector i = (7/1, TO and 

denote by mn(a, b) the moment of order a of qi and order b of 972 and by sn(a, b) the 

'If {u(n)} is a zero-mean complex Gaussian process that is wide-sense stationary and nu, n = 1, 2, ... , N 
are samples picked from {u(n)}, then: 

E[u:iu:2 74, ?hi Ut2 = 0, 

if k # 1. If N is an even integer and k = 1 = N/2: 

Ekt:1 u:2 u:kutiut2 ut = EK(1)ut1 l.E[u:,(2)ut2] .. . E[u:,(1) ut,], 

where 7r is a permutation of the set of integers {1, 2, ... , 1} and 7r(j) is the jth element of that permutation. 
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corresponding cumulant (semi-invariant). The moments we need to approximate are given 

then by the following relations 2 [5] : 

mn(2, 1) = 8,7(2, 1) + 87 (0, 1)8,0(2, + 2871(1, 1)8,7(1, + 4(1, 0)871(0, 1), (5.27) 

mn(3, 0) = 8,7(3, + 4(0,1) + 3871(1, 0)8,1(2,4 (5.28) 

mil (4, 0) = 8,7(4, 0) + 4877(3, 0)8,1(1, 0) + 34(2, 0), (5.29) 

mn(3, 1) = 871(3, 1) + 877(3, 0)877(0, 1) + 38,1(1, 0).5,1(1, 1)+ 

+34(1, 0)871(1,1) + 4(1, 0)8,1(0, 1) + 3877(2,1)8,1(1, 0) (5.30) 

and 

mil (2, 2) = 8,1(2, 2) + 24(1, 1) + 41(1, 0)41(0,1) + 4(1, 0)87(0, 2)+ 

+871(2, 0)4(0, 1) + 4871(1, 1)3,7(1, 0)s0(0,1) + 28,1(2, 1)877(0, 1)+ 

+2.871(1, 2)8,1(1, 0) (5.31) 

In the following we will assume a bivariate Gaussian distribution for the ran-

dom vector 97 (which is assumed for the state vector x = (xo, xi) and the adaptive coeffi-

cient c = (co, c1)). The first and second order cumulants are given by [5]: 

8,0(1,0) = mi)(1, 0) = m7/17 (5.32) 

877(2, 0) = m71(2, 0) m21(1, 0) = var(m.), (5.33) 

8,0(1, 1) = mii(1, 1) m71(1, 0)mii (0, 1) = cov(r/1,7/2) (5.34) 

2The general formula connecting moments and cumulants is: 

inT(r) 
ri!...,.! [sW'('))1

friA(i)+...+,(x)-} 

where EfriA(,)+...+A()=,} denotes summation over all unordered sets of different nonnegative integral 
vectors A(2), > 0, and over all ordered sets of positive integral numbers r, such that rtA(1) + + 
rxA(x) = L. 
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and all the higher order cumulants are zero. With the above notations (5.27),(5.28), (5.29), 

(5.30) and (5.31) become, respectively: 

mn(2, 1) = var(qi)mii2 + 2cov(711,772)mi1 + m271 , (5.35) 

inn (3, 0) = m3, + var (711), (5.36)  

mn(4, 0) = 3var2(771), (5.37)  

mil (3, 1) = 3var (711 )cov (m. , 712) + 3m21 cov(ni , 7/2) + 7777,31m7,2 (5.38)  

and 

Tao (2, 2) = 2cov2 (7)1, 772) + 774,i n72772 + 7777,2i var(772)+ 

var(m) + 4cov(m, 712 )ritni (5.39)+m2
112 

. 

Considering all the above evaluations and using similar notations 3 as for the 

first order allpass filter, (5.21), (5.22) and (5.23) become: 

Kcoo(k + 1) = Kcoo(k) + 2p2 So(k)K100(k) + p2-Kcoo(k)Kx00(k)R(k) + 

+112Si(k)(1Goo(k)lc1i(k) + K11(k)) 2pTo(k)Kx00(k)+ 

+4p2S2(k)Kx00(k)Kx01(k) 21.tWo(k)Kx.1(k), (5.40) 

Kcii(k + 1) = Kc(k) + p2S0(k)(Kx00(k)Kx11 (k) + KL(k))+ 

+2112 Si(k)KL(k) + 1121Ccoo(k)Kx11 (k)R(k) 2pTi(k)Kx01(k)+ 

+4p2S2(k)Kx(k)Kx.(k) 2pW1(k)Kx11 (k) (5.41) 

and 

Ke01(k + 1) = K,01(k) + 2122 So(k)lcoo(k)Kx0,(k) +2p2Si(k)Kxii(k)&01(k) 

+p2Kcoo(k)Kx0i(k)R(k) Pli(k)lcoo(k) P(W1(k) + To(k))1Goi(k)+ 

+2p2S3(k)(Kx01(k)Kx11(k) + 1(101(k)) ftWo(k)Kxll(k), (5.42) 

3These are: Kcoo = E{c4}, K, = E{d}, Kc01 = E{coci}, Kx00 = E{xg}, Kx = E{4}, Kx = 
E {xoxi }, Mco = E {co} and Mc1 = E {ci }. 

http:5.27),(5.28
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where: 

S o(k) = 31000(k) 2K o(k) (3 MZ0(k) + 1) + 3 M'clo(k) + 1, (5.43) 

S 1 (k) = K o(k)Ag(k) + K c (k) (M (k) + 1) 2± 

+2Kccu (k)(K,(k) +2Mc1) M(k)Itg(k)(3M(k) + 2), (5.44) 

S2(k) =2Ko(k)Mei (k) ± Kcol (k) (4M co (k) 1) Mc, (k)(MZ.(k) + 1) , (5.45) 

To(k) = M(k)(3Ko(k) 2111Z0(k) 1) (5.46) 

Ti(k) = K o(k)Mc, (k) + 2 M (k) (Kco, (k) Mco(k)Mc, (k)) M c, (k), (5.47) 

Wo(k) = Kcoo (k)Mc, (k) + Kco, (k) (2M co (k) + 1) 2 MZ0(k)M c, (k) (5.48) 

and 

1471(k) = Kc (k) (M co (k) + 1) + 2Mc1 (k)(Kcol (k) M co (OM ci (k)) . (5.49) 

The above relations, together with: 

Mco(k + 1) = Mco(k) 

,u(Kcoo(k) 1) K xoo(k) pt (Kc, (k) + Mc, (k)) Kxo, (k) (5.50) 

and: 

M c, (k ± 1) = M c, (k) 

II (Kcoo (k) 1) Kxo, (k) et/ (IC,, (k) + Mc, (k)) Kx (k) , (5.51) 

give the complete approximated second order statistics of the adaptive coefficients. The 

entries in the state covariance matrix are given by the following recursive relations: 

K xoo(k ± 1) =--- Kx 1, (k), (5.52) 

K111(k + 1) = Kcoo(k)Kx(k) + K c(k)Kxii (k) Kc01(k)Kx,1 (k) + R(k), (5.53) 

and 

K xo,(k + 1) = M co(k)K xo, (k) Mc, (k)K x (k). (5.54) 
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Using these approximate recursive relations for the variances, covariance and 

means of the adaptive coefficients, the MSE convergence is compared with the simulation 

in the following. 

5.3. Mean square convergence of the covariance matrix  

This section follows the same line as section 4.2. in comparing the experimental and 

approximated values of first and second order moments of the adaptive coefficients and 

analyzing their average behavior as a function of the step-size parameter and the input 

noise variance. 

Figures 5.3 and 5.4 compare the experimental behavior of the LMS algorithm 

with the approximated curves given by the relations developed in section 5.2.. The initial 

conditions are the same for both coefficients (in contrast with starting from a given poles 

location), in order to have a better visualisation of both coefficients mean square conver-

gence. The simulation (there is shown a 30 runs averaged assemble) and the theoretical 

0.6 
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0.6 
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FIGURE 5.3: Means of the adaptive coefficients 
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FIGURE 5.4: Variances and covariance of the adaptive coefficients 

approximations are performed for the step-size parameter µ = 0.005 and the input noise 

variance o = 0.1 

The estimates (upper part of the images) are noisier than in the first order 

equalizer case, with faster convergence to the final value (which was expected from pre-

vious simulation performed in [1] and [6]. The theoretical approximation shows a good 

agreement with the estimates for both means and variances. 

As shown in figure 5.5, the 'turn' corner of all three covariance terms (for 

relatively large values of the step-size parameter) is sharper than for the first order (fig-

ure 4.5), which is closer to a FIR equalizer behavior. As a remark, the 'turn' points, 

which give the maximum value of fc for which convergence can be achieved, are located at 

slightly lower values ofµ than for the first order. For the FIR equivalent, this is translated 

by bigger eigenvalues in the second order case than in the first order one. Figure 5.6 is a 

zoom-in the 'turn' corner region, which is the region of interest for design purposes. 

The input noise variance influence on the convergence of LMS algorithm for 

both the variances and the covariance of the adaptive coefficients is shown in figure 5.7. 
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FIGURE 5.5: Final values of variances and covariance vs. pc 

The variances of the adaptive coefficients appear more sensitive to noise than the covari-

ance term. On the other hand, the curves show 'turn' points at lower input noise variances 

than for the first order equalizer, which indicates that the second order filter is more sen-

sitive to noise than the first order one. 

In order to better visualize the convergence, especially in the extreme regions, 

the 3D plots are given for K, and Kg, in figures 5.8 and 5.9. These plots should be 

helpful in design when there is the need to choose the optimum value of pc (from the speed 

of convergence point of view) given a certain range for the input noise power. 
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6. CONCLUSION 

Mean square convergence of the adaptive allpass filter, used for a DFE channel 

forward equalizer is studied. LMS algorithm, or more generally, any stochastic gradient 

algorithm can be used for adapting the coefficients of an allpass filter. The main reason for 

using an allpass filter in designing the forward equalizer is based upon practical experience 

that this type of filter achieves better performance than a regular zero/pole filter. Hence, 

similar performance can be obtained, at lower implemenation complexity. 

The idea behind this study is to provide a theoretical framework for the con-

vergence properties of first and second order allpass filters. The difficulty resides in the 

filter's strong nonlinear behavior which voids the eigenvalue based method, as in the case 

of the FIR implementation, and requires nonlinear techniques. A direct derivation of the 

covariance matrix of the filter coefficients is analytically untractable. Approximate equa-

tions for each entry of this matrix are derived in the form of a nonlinear second order 

system of difference equations. The recursive system of coupled equations is developed 

under appropriate assumptions concerning the input, the internal states and the adaptive 

coefficients (some of these approximations are inherited from the well established study 

of FIR filtering). Finally, these equations are presented in a form suitable for implemen-

tation. 

Symbolic mathematical software, like Maple or Matematica, could be help-

ful performing algebraic simplifications, thus reducing the computational burden. Here, 

its main use is to find the steady state solution in order to verify the simulation results. 

Maple, used here for the derivation of the covariance terms of the second order filter, 

also provides the interface with LATEX, which is a convenient feature for publishing the re-

sults. The issue of a powerful design and analysis software package, with links to technical 

computing environments like Mat lab and supporting mathematical software is already in 

demand in signal processing and control. An example of such package is Saber Designer. 
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Enhanced packages should use a large variety of algorithms in adaptive filter design and 

analysis and the LMS algorithm applied for nonlinear filtering belongs to this set of tools. 

In the design of an adaptive system it is important to establish a performance 

measure that provides comparison of various filter structures and adaptive algorithms in 

order to select the best solution within the constraints of an application. Some of these 

measures are: convergence rate, minimum mean square error (MMSE) and misadjust-

ment, the computational complexity, stability and robustness. 

A faster convergence does not necessarily implies a better solution. The in-

creased cost and complexity of a faster converging algorithm is only worth the allocation 

of additional resources if faster convergence is necessary for the system operation. This 

is the case of DFE for magnetic storage devices such as hard-drives. This problem of fast 

convergence is addressed in this thesis, in terms of the search for a proper range of the 

step-size parameter. 

The MMSE and the misadjustment (the filter's deviation around the optimal 

MMSE) are direct measures of how well an adaptive system is able to perform its task. 

The MMSE depends on many factors, such as: gradient noise, coefficient sensitivities, 

sensitivities to numerical quantization, the order of the adaptive system, the magnitude 

of the measurement noise, to name only a few. The coefficient sensitivities and input noise 

were emphasized in this study. 

Low computational complexity is particularly important for real time appli-

cations where the algorithm is to be implemented in custom designed VLSI. The allpass 

filter structure has relatively low complexity. Also, the requirement for an adaptive al-

gorithm to meet performance objectives, while staying computationally simple enough to 

meet the time constraints of real time operation, justifies the use of LMS algorithm. 

In general, the use of IIR filters raises some stability problems, as opposed to 

the usage of FIR structures which are inherently stable (for proper choices of adaptation 

gain). Practically, if the poles of an adaptive IIR filter are driven too far outside the unit 

circle during the adaptation process, the adaptive algorithm itself may become unstable 
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and the entire adaptation process may diverge. This is a real problem because it was 

shown experimentally that many IIR filters will achieve faster convergence by allowing 

their poles to wander outside the unit circle, only to be drawn back towards a stable 

solution as the adaptive process converges. This study emerges exactly in this shadowed 

area of adaptive filtering which is not very well understood at the current time. 

Robustness is often difficult to measure in a quantitative manner. An im-

portant feature of an algorithm is to remain well conditioned regardless of the signal 

characteristics and to behave well numerically. The first problem was addressed for both 

first order and second order structure, by studying the influence of the input noise on the 

final values of the variances of the adaptive coefficients. The simulation shows that the 

controllable canonical form of the discrete time system does not misbehave numerically. 

The theoretical approximations verified by simulation show good convergence 

properties for the means and variances of the adaptive gains, even for the first order 

implementation of the allpass filter. These results are in good agreement with previous 

work reported by Kenney et al. ( [1] and [6]). Further development could include similar 

derivations for a third order implementation of the allpass filter. Additional simplifying 

assumptions may be needed in order to deal with analytical complexity. One of these 

assumptions could be to neglect all the terms multiplied by /22 in the expressions of the 

covariance terms. This simplification is based upon the assumption that the third order 

filter should be even more sensitive to noise than the second order one and the maxi-

mum admissible value of the step-size parameter for which convergence is achieved will be 

smaller. 

The adaptive algorithms were implemented as a package of Mat lab routines. 

For the second order filter the routines contain a MEX function written in C language in 

order to meet the memory and speed requirements. This package is suitable for design 

purposes and can be easily expanded. Although this convergence study is presented as 

a part of the decision feedback equalization process (calling for specific parameters and 



37 

conditions), it can be easily extended to any application involving nonlinear second or-

der adaptation, such as adaptive echo cancellation, adaptive techniques for audio band 

noise cancellation and two dimensional filtering of images and video sequences. In the 

case when adaptive filters need to track rapidly varying signal statistics, LMS algorithm 

may not be appropriate. However, the moments approximation study can be extended 

to some adaptive lattice or block adaptive IIR algorithms with reasonable computational 

complexity. 
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A Mat lab functions used in first order filter simulation  

%Function fAllpass  

h equations for mean and variance of the adaptive coefficient  

%for first order allpass filter  

7.initalization of the parameters used in simulation  

mu=0.005;  

sigmas=0.1;  

STEPLEN = 35;  

OSR = 1;  

PW50 = 3.0;  

samplen=950;  

pol=0.4;  

%input noise variance  

Dibit = MakeDibit(OSR,STEPLEN,PW50);  

N=length(Dibit);  

R=zeros(1,N);  

for i=1:N-1  

R(i)=(1/N)*sum(Dibit(1:N-i).*Dibit(i+1:N));  

end R0=( 1/N)*sum(Dibit(1:N).*Dibit(1:N));  

R= [R0 R];  

R=R+(sigmasA2)*ones(size(R));  

R=[R (sigmasA2)*ones(1,samplen-N)];  

7, initial conditions  

Kxx=0.01;  

Mc= Startla(pol);  

Kcc=Mc*Mc;  

http:Kxx=0.01
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% variance and mean iterative relations  

for k=1:samplen  

Kxx(k+1)=Kcc(k)*Kxx(k)+R(k);  

Kcc(k+1)=Kcc(k)-2*mu*Mc(k)*(1+2*Mc(k)A2-3*Kcc(k))*Kxx(k)+...  

2*muA2*(Kxx(k)A2)*(1-2*Kcc(k)+3*(Kcc(k)-...  

Mc(k)A2)A2)+(muA2A2)*Kcc(k)*Kxx(k)*R(k);  

Mc(k+1)=Mc(k)-mu*(1+Kcc(k))*Kxx(k);  

Kcc=[Kcc Kcc(k)];  

Mc=[Mc Mc(k)];  

end  

function [NumPass,DenPass,OffPass,CtPass] = DenlPas()  

% this function calculates constants used by function MakeDibit  

DenPass = [1 1]';  

OffPass = [2 -2]';  

NumPass = [2 -2; 1 1];  

CtPass = [1 1; -2 2];  

function Dibit = MakeDibit(OSR,STEPLEN,PW50)  

% Function which provides a dibit response  

DiffSig = zeros(OSR+1,1);  

DiffSig(1) = 1;  

DiffSig(OSR+1) = -1;  

MidChan = OSR * ((STEPLEN + 1)/2);  

for i= O:MidChan 1  

Temp = 1 + (4 * i * i)/ ((OSR * PW50) * (OSR * PW50));  

Step1(MidChan + i) = 1/Temp;  
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Step1(MidChan i) = Stepl(MidChan + i);  

end  

Dibit = conv(DiffSig, Stepl);  

function Mc=Startlm(pol)  

% Function which provides a starting vector a for adaptation  

% from discrete-time pole location  

xpoly = poly(pol);  

bvec = -2-2*xpoly(2);  

A=xpoly(2)-1;  

Mc = (1/A) * bvec;  

function [error,y,alfa,aa,mu1]=FirstOrdp(seedunif,SampLen);  

% the function simulates an adaptive allpass filter using  

' /control canonic structure  

' /.constants used in the simulation  

STEPLEN = 35;  

DibitLen = 26;  

SNR = 20;  

Gainnum = 1;  

PW50 = 3.0;  

OSR = 1;  

GAIN = 2.2;  

pol = 0.4;  

DELAY = 2;  

FBLENGTH = 5;  

mu = 0.06;  
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seedu=924;  

SampLen = 950;  

Sigma=0.2;  

% Order of the equalizer  

Order = 1;  

% Number of states +1 in the equalizer  

LengthXi = Order+1;  

% Routine which calculates the functions from which the z-domain  

% transfer function can be derived  

[ NumPass,DenPass,OffPass,CtPass ] = Den1Pas;  

% Function for generating the dibit response of the channel  

Dibit = MakeDibit(OSR,STEPLEN,PW50);  

% z-doman transfer function  

a = Startla(pol);  

aa=a;  

% Initialization of the denominator polynomial  

den = DenPass * a + OffPass;  

% Numerator polynomial in z-domain  

num=Gainnum*(-NumPass(1,:)+a*NumPass(2,:));  

% adaptation process  

y(DELAY+FBLENGTH) = 0;  

b = y(DELAY:DELAY+FBLENGTH);  

b1 = [zeros(1,DELAY-1),b];  

for i=1:FBLENGTH+1  

brev(i) = b(FBLENGTH + 2 i);  

end  

mu1 = mu;  

rand('seed', seedunif);  
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datin = rand(SampLen,1) 0.5;  

bindat = sign(datin);  

beqoutl = conv(bindat,bl);  

chanout = conv(Dibit, bindat);  

noise = Sigma*Sigma*randn(SampLen,1);  

% initializing ouput error  

error = zeros(SampLen,1);  

yout = zeros(SampLen,1);  

ydiff = zeros(SampLen,1);  

ystate = zeros(SampLen,1);  

xi = zeros(LengthXi,1);  

adjst0 = zeros(LengthXi,1);  

ydi = zeros(LengthXi,1);  

fbdata = zeros(FBLENGTH+1,1);  

alfa = a;  

for i=1:SampLen  

% Evaluation of the recursion portion of the discrete-time filter  

xi(1) = (-den(2:LengthXi)'*xi(2:LengthXi)+GAIN*...  

(noise(i)+chanout(i)))/den(1);  

ctstate = CtPass * xi;  

%feedback adaptation  

if i > (DELAY+FBLENGTH)  

fbdata = bindat(i-DELAY-FBLENGTH+1:i-DELAY+1);  

end  

beqout(i) = brev * fbdata;  

%Summing the scaled states of the forward equalizer to  
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%the output of the feedback filter  

yout(i) = ctstate(LengthXi) + a(1:Order)'*...  

ctstate(1:Order) begout(i);  

if i > (DELAY+FBLENGTH)  

error(i) = yout(i) bindat(i-DELAY+2);  

end  

% Update the feedback filter  

brev = brev + (mu * error(i) * fbdata');  

a = a mu1 * error(i) * (ctstate(1:Order));  

alfa =[alfa a];  

xi(2:LengthXi) = xi(1:Order);  

adjst0(1) = (-den(2:LengthXi)' *adjst0(2:LengthXi)+...  

2*ctstate(1))/den(1);  

ctadjstO = CtPass * adjst0;  

sgrad(i) = ctadjst0(2) + a * ctadjst0(1);  

stateval(i) = ctstate(1);  

adjst0(2:LengthXi) = adjst0(1:Order);  

den = DenPass * a + OffPass;  

end  

seedunif = rand('seed');  

% Function StFirst which calculates the adaptive vectors  

seedu=924;  

SampLen = 950;  

no=30;  

h initalization of the adaptation vector  

beta1=zeros(1,SampLen+1);  
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'h initialization of the output error  

errorstat=zeros(Sampen,1);  

% the adaptation vector is updated  

for k=1:no  

[error,y,alfa,aa,mul] = FirstOrdp(seedu,SampLen);  

errorstat = errorstat + error.*error;  

betal=[betal; alfa] ;  

end  

gammal= betal(2:k +1,:);  

coefl= mean(gammal);  
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B Mat lab functions used in second order filter simulation 

'h Function sAllpass  

% equations for means and variances of the adaptive coefficients  

' /.for second order allpass filter  

% initialization of the parameters used in simulation  

sigmas=0.1;  

STEPLEN = 35;  

OSR = 1;  

PW50 = 3.0;  

samplen=550;  

DELAY=17;  

FBLENGTH=15;  

pot= [0.4 0.4];  

% input noise variance  

Dibit = MakeDibit(OSR,STEPLEN,PW50);  

N=length(Dibit);  

R=zeros(1,N);  

for i=1:N-1 R(i)=sum(Dibit(1:N-i).*Dibit(i+1:N));  

end RO=sum(Dibit(1:N).*Dibit(1:N));  

R= [R0 R];  

R=R+(sigmasA2)*ones(size(R));  

R =[R (sigmasA2)*ones(1,samplen-N)];  

mu=0.00001;  

% inital conditions  

mc0=0.7;  
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mc1=0.7;  

kc00=0.49;  

kc11=0.49;  

kc01=0.49;  

% iterative equations  

Kx00=[0.1 zeros(1,samplen)];  

Kx01=[0.1 zeros(1, samplen)];  

Kx11=[0.1 zeros(1, samplen)];  

Kc00=[kc00 zeros(1, samplen)];  

Kc01=[kc01 zeros(1, samplen)];  

Kc11=[kc11 zeros(1, samplen)];  

M0 =[mc0 zeros(1, samplen)];  

M1=[mc1 zeros(1, samplen)];  

K=[Kx00; Kx11; Kx01; MO; Ml; Kc00; Kc11; Kc01; R]';  

% call the computing MEX function  

kk=CovMatrix(K,mu);  

% Function sAllpassMu  

% using the same equations as function sAllpass, gives the final values  

% of the second order moments vs. step-size parameter  

sigmas=0.1;  

STEPLEN = 35;  

OSR = 1;  

PW50 = 3.0;  

samplen=550;  

DELAY=17;  

FBLENGTH=15;  

Dibit = MakeDibit(OSR,STEPLEN,PW50);  

http:kc01=0.49
http:kc11=0.49
http:kc00=0.49
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N=length(Dibit);  

R=zeros(1,N);  

for i=1:N-1 R(i)=sum(Dibit(1:N-i).*Dibit(i+1:N));  

end RO=sum(Dibit(1:N).*Dibit(1:N));  

R= [R0 R] ;  

R=R+(sigmasA2)*ones(size(R));  

R=[R (sigmasA2)*ones(1,samplen-N)];  

kvsmu=[0 0 0];  

mc0=0.7;  

mc1=0.7;  

kc00=0.49;  

kc11=0.49;  

kc01=0.49;  

Kx00=[0.1 zeros(1,samplen)];  

Kx01=[0.1 zeros(1, samplen)];  

Kx11=[0.1 zeros(1, samplen)];  

Kc00=[kc00 zeros(1, samplen)];  

Kc01=[kc11 zeros(1, samplen)];  

Kc11=[kc01 zeros(1, samplen)];  

M0 =[mc0 zeros(1, samplen)];  

M1=[mc1 zeros(1, samplen)];  

K=[Kx00; Kx11; Kx01; MO; Ml; Kc00; Kc11; Kc01; R]';  

for mu=0.165:0.0001:0.17 kk=CovMatrix(K,mu);  

finals= [kk(samplen,6:8)];  

kvsmu=[kvsmu; finals];  

end  

kvsmu=kvsmu(2:size(kvsmu,1),:);  

http:mu=0.165:0.0001:0.17
http:kc01=0.49
http:kc11=0.49
http:kc00=0.49
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function [NumPass,DenPass,OffPass,CtPass] = Den2Pas()  

'h this function calculates constants used by function MakeDibit  

DenPass = [1 2 ; 2 0; 1 -2];  

OffPass = [4; -8; 4];  

NumPass = [4 -8 4; 2 0 -2; 1 2 1];  

CtPass = [1 2 1; -2 0 2; 4 -8 4];  

%Function CovMatrix (C language) which computes the covariance matrix entries  

#include <stdio.h>  

#include <stdlib.h>  

#include <math.h>  

#include <string.h>  

#include "mex.h"  

#define elem(i,j) pr[i+j*k]  

/* Computational routine for the covariance matrix*/  

void covmat(double* pr, int k,double mu)  

{ 

int i;  

double sO,s1,s2,t0,t1,w0,w1;  

for (i=0; i<k-1; i++)  

{ 

s0=3*pow(elem(i,5),2)-2*elem(i,5)*(3*pow(elem(i,3),2)+1)+  

3*pow(elem(i,3),4)+1;  
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sl=elem(i,5)*pow(elem(i,4),2)+elem(i,6)*pow(elem(i,3)+1,2)+  

2*elem(i,7)*(elem(i,7)+  

2*elem(i,4))-elem(i,3)*pow(elem(i,4),2)*(3*elem(i,3)+2);  

s2=2*elem(i,5)*elem(i,4)+elem(i,7)*(4*elem(i,4)-1)-

elem(i,4)*(pow(elem(i,3),2)+1);  

t0=elem(i,3)*(3*elem(i,5)-2*pow(elem(i,3),2)+1);  

tl=elem(i,5)*elem(1,4)+2*elem(i,3)*(elem(i,7)-

elem(i,3)*elem(i,4))+elem(i,4);  

w0=elem(i,5)*elem(i,4)+elem(i,7)*(2*elem(i,3)+1)-

2*pow(elem(i,3),2)*elem(i,4);  

w1=elem(i,6)*(elem(i,3)+1)+2*elem(i,4)*(elem(i,7)-

elem(i,3)*elem(i,4));  

elem(i+1,0)=elem(i,1);  

elem(i+1,1)=elem(i,5)*elem(i3O)+elem(i,6)*elem(i,1)-

elem(i,7)*elem(i,2)+elem(i,8);  

elem(i+1,2)=elem(i,3)*elem(i,2)-elem(1,4)*elem(1,1);  

elem(i+1,3)=elem(i,3)+mu*(elem(i,5)-1)*elem(i3O)-

mu*(elem(i,4)+elem(i,7))*elem(i,2);  

elem(i+1,4)=elem(i,4)-mu*(elem(i,5)-1)*elem(i,2)-

mu*(elem(i,4)+elem(i,7))*elem(i,1);  

elem(i+1,5)=elem(i,5)+2*pow(mu,2)*s0*pow(elem(i3O),2)+  

pow(mu,2)*elem(i,5)*elem(i3O)*elem(i,8)+pow(mu,2)*sl*  

(elem(i3O)*elem(i,1)+pow(elem(i,2),2))-2*mu*tO*elem(i3O)+  

4*pow(mu,2)*s2*elem(i3O)*elem(i,2)-2*mu*w0*elem(i,2);  

elem(i+1,6)=elem(1,6)+pow(mu,2)*elem(i,5)*elem(i,1)*elem(i,8)+  

pow(mu,2)*s0*(elem(i3O)*elem(i,1)+pow(elem(i,2),2))+  

2*pow(mu,2)*s1*pow(elem(i,1),2)-2*mu*tl*elem(i,2)+  
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4*pow(mu,2)*s2*elem(i,1)*elem(i,2)-2*mu*w1*elem(i,1);  

elem(i+1,7)=elem(i,7)+pow(mu,2)*elem(i,5)*elem(i,2)*elem(i,8)+  

2*pow(mu,2)*s0*elem(i3O)*elem(i,2)+2*pow(mu,2)*sl*elem(i,1)*  

elem(i,2)-mu*tl*elem(i3O)-mu*(w1+t0)*elem(i,2)+  

2*pow(mu,2)*s2*(elem(i3O)*elem(i,1)+pow(elem(i,2),2))-

mu*w0*elem(i,1);  

}  

}  

/* Gateway routine */  

void mexFunction(int nlhs, Matrix*plhs[], int nrhs, Matrix*prhs[])  

unsigned int m,n;  

double *muget;  

double stepsize;  

Matrix *ktp;  

/* Size of the output covariance matrix*/  

m=mxGetM(prhs[0]);  

n=mxGetN(prhs[0]);  

/* Create matrix for return argument*/  

ktp=mxCreateFull(m,n,REAL);  

memcpy((char*)mxGetPr(ktp),(char*)mxGetPr(prhs[0]),sizeof(double)*m*n);  

/*Dereference arguments*/  

muget=mxGetPr(prhs[1]);  

stepsize=muget[0];  

/*Call the operating function*/  

covmat(mxGetPr(ktp),m,stepsize);  

/*Return the new matrix*/  
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plhs[0]=ktp;  

} 

function [error,alfa,aa,mul] = SecondOrdp(seedunif,SampLen);  

' /.adaptive allpass filter using control canonic structure  

% constants used in the simulation  

STEPLEN = 35;  

DibitLen = 26;  

SNR = 20;  

Gainnum = 1;  

PW50 = 3.0;  

OSR = 1;  

Sigma =0.08;  

GAIN = 2.2;  

pol = [0.2 0.2];  

DELAY = 5;  

FBLENGTH = 10;  

mu = 0.005;  

% Order of the equalizer  

Order = 2;  

h Number of states +1 in the equalizer  

LengthXi = Order+1;  

% Routine which calculates the functions from which the z-domain  

% transfer function can be derived  

[ NumPass,DenPass,OffPass,CtPass ] = Den2Pas;  

% Function for generating the dibit response of the channel  

Dibit = MakeDibit(OSR,STEPLEN,PW50);  

a=[0.7 0.7]';  
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aa=a;  

% Initialization of the denominator polynomial  

den = DenPass * a + OffPass;  

% Numerator polynomial in z-domain  

num=Gainnum*(-NumPass(1,:)+a(2)*NumPass(2,:)-a(1)*NumPass(3,:));  

% adaptation process  

y(DELAY+FBLENGTH) = 0;  

b = y(DELAY:DELAY+FBLENGTH);  

bl = [zeros(1,DELAY-1),b];  

for i=1:FBLENGTH+1  

brev(i) = b(FBLENGTH + 2 i);  

end  

mul = mu;  

rand('seed',seedunif);  

datin = rand(SampLen,1) 0.5;  

bindat = sign(datin);  

beqoutl = conv(bindat,bl);  

chanout = conv(Dibit, bindat);  

noise = (SigmaA2)*randn(SampLen,1);  

7. initializong output error  

error = zeros(SampLen,1);  

yout = zeros(SampLen,1);  

ydiff = zeros(SampLen,1);  

ystate = zeros(SampLen,1);  

xi = zeros(LengthXi,1);  

adjstO = zeros(LengthXi,1);  

ydi = zeros(LengthXi,1);  

fbdata = zeros(FBLENGTH+1,1);  
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alfa = a;  

for i=1:SampLen  

% Evaluate the recursion portion of the discrete-time filter  

xi(1) = (-den(2:LengthXi)'*xi(2:LengthXi)+...  

GAIN*(noise(i)+chanout(i)))/den(1);  

ctstate = CtPass * xi;  

tapnorm=(abs(ctstate(1)))A2+(abs(ctstate(2)))A2;  

munorm=mu1/tapnorm;  

h feedback adaptation  

if i > (DELAY+FBLENGTH)  

fbdata = bindat(i-DELAY-FBLENGTH+1:i-DELAY+1);  

end  

beqout(i) = brev * fbdata;  

Y. Summing the scaled states of the forward equalizer to the output  

yout(i) = ctstate(LengthXi) + a(1:Order)'*...  

ctstate(1:Order) beqout(i);  

if i > (DELAY+FBLENGTH)  

error(i) = yout(i) bindat(i-DELAY+2);  

end  

% Update the feedback filter  

brev = brev + (mu * error(i) * fbdata');  

a = a munorm * error(i) * (ctstate(1:Order));  

alfa =[alfa a];  

xi(2:LengthXi) = xi(1:Order);  

adjst0(1) = (-den(2:LengthXi)' *adjst0(2:LengthXi)+...  

2*ctstate(2))/den(1);  

ctadjstO = CtPass * adjst0;  

sgrad(i) = ctadjst0(3) + a(2) * ctadjst0(2);  
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stateval(i) = ctstate(2);  

adjst0(2:LengthXi) = adjst0(1:Order);  

den = DenPass * a + OffPass;  

end  

% final impulse response  

num=Gainnum*(-NumPass(1,:)+a(2)*NumPass(2,:)-a(1)*NumPass(3,:));  

y = GAIN * filter(num,den,Dibit);  

seedunif = rand('seed');  

%Function StSecond which calculates the adaptive vectors  

seedu =524;  

SampLen = 550;  

'h initialization of the output error  

errorstat = zeros(SampLen,1);  

no=30;  

' /,initialization of the adaptation vectors  

beta1=zeros(1,SampLen+1);  

beta2=zeros(1,SampLen+1);  

% the adaptation vectors are updated  

for k=1:no  

[error,alfa,aa,mu1] = SecondOrdp(seedu,SampLen);  

errorstat = errorstat + error.*error;  

betal= [betal; alfa(1,:)];  

beta2=[beta2; alfa(2,:)];  

end  

gamal=betal(2:k+1,:);  

gama2=beta2(2:k+1,:);  
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coefl=mean(gamal);  

coef2=mean(gama2);  

kcoef00=mean(gamal.*gamal);  

kcoefll=mean(gama2.*gama2);  

kcoefOl=mean(gamal.*gama2);  
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semi-invariant, 29  

signal  

error, 4  
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