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This dissertation is about statistical methods for data analysis using generalized 

linear mixed models (GLMMs) with censored covariates.  Special attention in given to 

the particular problem of inference about age-specific reproductive success in wild 

animal populations using some animals with known ages and some animals with ages 

only known to exceed some lower bound. GLMMs allow for non-normal response 

distributions, such as a Poisson distribution for the number of offspring from a parent 

in one year, and they account for the correlation of repeated responses from the same 

observational unit, such as the correlation of the number of offspring from the same 

parent over multiple years.  A computational algorithm for maximum likelihood 

estimation and two approximate estimation methods are proposed. The full solution 

uses the EM algorithm with Markov Chain Monte Carlo techniques for the E-step. The 

approximations are presented as techniques that may be nearly as good as the full 

maximum likelihood analysis but that are easier for wildlife biologists to use. One 

uses a Laplace approximation to the log-likelihood to capitalize on existing programs 

for GLMM estimation. The other is a regression calibration method in which the 

missing ages are simply replaced by predicted values. The full likelihood analysis is 

demonstrated on a study of age-specific reproductive success of Northern Spotted 



 

Owls (Strix occidentalis caurina).   A simulation study was used to evaluate the 

operating characteristics of the three methods and to highlight the potential gains of 

these methods over the common practice of ignoring animals with unknown ages. The 

conditions of the simulations were chosen to roughly match those in the spotted owl 

study. It appears that the use of the owls with censored ages reduces the widths of 95% 

confidence intervals for important regression coefficients by about 39% if full 

maximum likelihood analysis is used. The corresponding reduction for the regression 

calibration estimator is about 27%.  A main conclusion of this thesis is that the 

regression calibration estimator can offer substantially higher efficiency than the 

commonly used GLMM estimator with animals of unknown ages excluded and, 

importantly, wildlife biologists can use it with computing modules that are already 

available in standard statistical computing packages.         
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Generalized Linear Mixed Models with Censored Covariates 

1. INTRODUCTION  

In a typical longitudinal study of age-specific reproductive success, researchers 

observe many animals over the course of many years, and observe one or more 

measures of reproductive success on each animal each year.  The measure could be a 

binary outcome for a successful mating, a count of the number of young produced in a 

year, or a count of the number of young produced in a year that survive and contribute 

to the breeding population.  The researchers may wish to estimate the age profile for 

mean reproductive success, to determine the ages at optimal reproductive success, to 

test for a decline in reproductive success at older ages, or to examine physiological or 

environmental variables that are associated with yearly reproductive success (after 

accounting for the effect of age).  They may wish to do these examinations either 

separately for males and females or jointly.  References on reproductive success 

include Clutton Brock (1988) and others. 

If the measures of reproductive success are binary, sums of Bernoulli trials, or 

small integer counts, it is appropriate for researchers to consider binomial or Poisson 

regression models, i.e. generalized linear models (GLMs).  In longitudinal studies, a 

response is measured repeatedly on each of several animals and different responses 

from a given animal should not be considered independent.  A common modeling 

approach for handling this lack of independence involves the inclusion of random 

effects for the different animals.  Generalized linear mixed models (GLMMs; see 

McCulloch and Searle, 2001) permit the inclusion of such random effects along with 

fixed effects in generalized linear models.  They also allow for departures from the 
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binomial and Poisson distributions with an additional parameter for extra-binomial or 

extra-Poisson variation.  GLMMs have been used for studying age-specific 

reproductive success in barn owls (Altwegg  et al. 2007), snow petrels (Angelier et al. 

2007),  brown thornbills (Green 2001), goshawks (Kruger 2005), brown bears 

(Zedrosser, et al. 2007), mountain goats (Côté, Festa-Bianchet 2001), and 

sparrowhawks (Newton, Rothery 2002).  

GLMMs offer a useful approach to these biological investigations.  They 

permit the inclusion of time-dependent and time-independent explanatory variables, 

detailed modeling of age effects and variance terms that lead to conclusions about 

between-male and between-female variability.  Furthermore, easy-to-use computer 

routines are available, such as GLIMMIX in SAS (Schabenberger 2005 and 

Schabenberger 2007) and lmer in R (Bates 2005 and Bates 2007). 

In practice, researchers observe reproductive success measures on some of the 

animals with known ages (because the animals have been observed their entire lives) 

and some animals of unknown age (because they were adults at the time of their first 

observation).  A common practice for investigation of age-specific reproductive 

success in this case is to use only those animals with known ages.  This is true in 

studies of snow petrels (Angelier et al. 2007), barn owls (Altwegg et al. 2007), 

goshawks (Kruger 2005), and sparrowhawks (Newton, Rothery 2002).  In a northern 

spotted owl (Strix occidentalis caurina) investigation, which motivated this work, 

yearly reproductive responses were observed on 404 male owls of known ages, 463 

male owls of unknown ages, 463 female owls of known age, and 579 female owls of 

unknown ages. 
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There is some information available, though, from the owls of unknown ages, 

and there may be substantially more power and precision available for answering the 

scientific questions of interest by incorporating them in the analysis.  In fact, the ages 

are known to exceed some number, so they are “right censored.”  At the time that an 

adult spotted owl is first observed, for example, the biologists can conclude from its 

adult characteristics that it is at least 3 years old.  Furthermore, if such an owl is 

observed in the reproductive success study for 10 years, then it is known to be at least 

13 years old in the 10th year of observation.  It seems very likely that this partial 

information could be useful in the estimation of age-specific reproductive success 

models. 

This dissertation, therefore, is about GLMM estimation with right censored 

explanatory variables, with specific attention to the problems inherent in studies of 

age-specific reproductive success.  The goals are to describe the increased efficiency 

that is available by incorporating animals whose ages are only known to exceed some 

number of years, to describe potential biases that result by replacing unknown ages by 

some fixed number, and to describe approaches for GLMM estimation that include 

animals with censored ages.  Particular emphasis will be on the study of approaches 

that are easy to use with currently available software.   

1.1 Example 

 In a recent study on Northern Spotted Owls (Loschl 2008) researchers are 

interested in determining the age of peak reproductive output and other features of 

age-specific reproductive success.  The study consists of three areas in Oregon and 

one area in Washington, collected from 1984 to the 2005.  One response of interest is 
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the number of young fledged per year, which ranges from 0 to 3 (with 3 being very 

rare).     
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Figure 1.1 Number of fledglings versus male age the four study areas.  The solid lines 
are lowess (locally-weighed polynomial regression smoother) curves. 
 
 Figure 1.1 shows the number fledged for the known-age males vs. the male age 

for the four study areas.  There appears to be an increase in the number fledged at 

early ages, with some leveling off and possibly a decrease in reproductive success as 

the male age increases.   
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If the birds were first observed and banded as fledglings or sub-adults, then the 

exact age is known.   These birds were recorded as 0, 1, or 2 year olds depending on 

physical characteristics.  However, if the birds were first observed as an adult, then it 

is only known that their age at first observation is at least 3 years.  At one of the study 

sites, only 40% of the owl/years observed were of known age owls.  Restricting 

attention to known age owls is an easy solution but the inclusion of the additional owls 

with censored ages—using statistical techniques for handling missing data—may 

result in important gains in efficiency and precision in answering the scientific 

questions of interest.    

1.2 Contributions of the Dissertation  

 In this dissertation, we propose three methods for fitting GLMMs with 

censored explanatory variables.  The first is an MCEM algorithm for maximum 

likelihood estimation that treats both the random effects and known ages as “missing 

data.”  The second is an approximate MCEM algorithm that only treats the known 

ages as “missing data” and uses a Laplace approximation to integrate out the random 

effects.  The third is a regression calibration method that replaces the censored ages 

with their expected value given the lower bound and possible covariates.     

Our goals are to clarify the potential efficiency gains and to provide techniques 

for incorporating animals with censored ages into the GLMM analysis for age-specific 

reproductive success. We are particularly interested in finding easy-to-use solutions, if 

possible. Our statistical interest is in the Spotted Owl study in particular, but the same 

data characteristics are found in other studies of age-specific reproductive success. We 

can imagine that there are other applications of GLMMs in which a covariate is 
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censored and our results would pertain to those. Austin and Hoch (2004) report a 

regression problem, for example, in which the explanatory variable “household 

income” is obtained from a survey questionnaire with highest category “greater than 

$80,000.” The main effort here, though, is directed towards the particular problems 

encountered in the study of age-specific reproductive success from wild animal 

populations. 

Chapter 2 presents a likelihood analysis based on the Markov Chain 

Expectation Maximization (MCEM) Algorithm. The E-step of the algorithm uses 

Monte Carlo simulation to approximate the expected value of the “complete data” log 

likelihood and the simulation requires the use of the Metropolis-Hastings algorithm (as 

in McCulloch and Searle, 2001). While the M-step of the algorithm is fairly 

straightforward, the overall algorithm is intricate, slow, and probably difficult for non-

statisticians to understand.  

One approximation in Chapter 3 uses a Laplace approximation to the complete 

data log likelihood, which permits the use of existing GLMM modules within a 

broader EM Algorithm. The E-step, however, still requires the Metropolis-Hastings 

algorithm and, therefore, does not go very far in simplifying the more full likelihood 

approach.    

The regression calibration approach, which is based on a commonly used 

technique for regression estimation in the presence of explanatory variable 

measurement errors, is more intuitive and easy to use. In a first stage of the analysis, 

the user estimates the unknown parameters in a probability distribution for the 

covariate that is censored on some subjects.  In a second stage, a GLMM module is 
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used but with censored ages replaced by their estimated expectations given that they 

exceed the specified lower bound (and with unknown parameters replaced by their 

first-stage estimates).  

A simulation study in Chapter 3 clarifies the sampling distributions of the three 

estimators and compares their characteristics to those of the naïve estimator that 

excludes animals with unknown ages and to the naïve estimator that replaces unknown 

ages by their lower bounds. There is convincing evidence of substantial gains in 

precision due to including the subjects with censored covariates.  

The simulation suggests that the regression calibration estimator performs 

quite well. Given it’s simplicity, it strikes us as the right approach for biologists to use. 

Furthermore, it allows for more complex modeling of random effects. In particular, the 

user can formulate a model in which there are random effects due to the male parent 

and to the female parent in a single model (provided there are enough partner changes 

to make the model identifiable), and to include random effects due to different years. 

While it would be possible to include these multiple random effects in the MCEM 

approaches, the complexity and slowness would make them practically unusable.  

 

  1.3 Organization of the Dissertation  

The rest of the dissertation proceeds as follows.  In Chapter 2, we propose a 

Monte Carlo EM algorithm for generalized linear mixed models with censored 

covariates that treats both the random effects and the censored explanatory variables 

as “missing data.”  This algorithm is then demonstrated on a subset of the Northern 

Spotted Owl data set.  Chapter 3 details the two easier-to-compute approximations and 
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a simulation study, which shows the increased precision due to including owls with 

censored ages and clarifies the operating characteristics of the three estimators that do 

include these owls.  Chapter 4 contains a discussion of the conclusions and possible 

directions of future research.  A major conclusion is that the regression calibration 

procedure offers an easy-to-apply approach that can substantially improve power and 

efficiency by including those units with censored covariates.    
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2. Likelihood Analysis for Generalized Linear Mixed Models with Censored 
Covariates 

 
 
 
 

John N. Giovanini* and Daniel W. Schafer**  
Department of Statistics, 
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2.1 Abstract 

This paper is about likelihood analysis of generalized linear mixed models (GLMMs) 

when some observational units have censored values of an explanatory variable.  

Special attention in given to age-specific reproductive success studies from wild 

animal populations when some animals have known ages and some have ages that are 

only known to exceed a lower bound.  GLMMs permit a small integer count 

response—such as the number of offspring produced in a season—and address the 

non-independence of repeated observations on the same animal in different seasons 

with random animal effects. A Monte Carlo Expectation Maximization (MCEM) 

algorithm is proposed for maximum likelihood analysis. The random effects and the 

censored covariates are both treated as “missing data.”  The algorithm is demonstrated 

on a recent Northern Spotted Owl dataset.     
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2.2 Introduction 

This work was motivated by an investigation of factors affecting individual 

reproductive success in a wild animal population. In particular, Figure 2.1 shows the 

number of fledged spotted owls in a year versus male parent age in that year, for 

multi-year observations on 108 male northern spotted owls.  The solid points are the 

sample means for each age and the vertical lines are approximate 95% confidence 

intervals (data from Pete Loschl, personal communication; see Loschl, 2008). The 

smooth curve is a nonparametric lowess fit, which indicates an apparent increase in 

mean number fledged up to a maximum of 0.7 fledglings per year at about age 9, with 

a subsequent decrease. 
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Figure 2.1 Number of fledglings versus male parent age from multiple-year 
observations on each of 108 Northern Spotted Owl males in the Oregon Coast Range; 
with sample means for each age, naïve 95% confidence intervals; and a lowess  
(locally-weighed polynomial regression soother) curve. 
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More formal investigation into patterns of age-specific reproductive success 

should account for dependence of different observations from the same male. Figure 

2.2 reproduces Figure 2.1 but includes the fit to a generalized linear mixed model 

(GLMM) that accounts for the dependence with random intercepts for the 108 

different males.  The solid curve is the GLMM estimate of a log-linear model with 

linear and quadratic effects of age, averaged over all males. The solid curve is the 

approximate maximum likelihood estimate of this GLMM.  The dashed lines show a 

95% confidence band for the mean fixed effect of male age. (This confidence band 

includes between-owl variability in intercepts.) 
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 Figure 2.2 Number of fledglings versus male age with GLMM fit for a typical year 
and an approximate 95% confidence band (Oregon Coast Range study area) 
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Such a GLMM is useful for investigating several scientific questions about 

age-specific reproductive success: 1.What evidence is there that male reproductive 

success decreases in older ages? 2. What is the age at which maximal mean 

reproductive success is achieved? 3. What proportion of variability in reproductive 

success can be explained by between-male differences after accounting for effects of 

age? 4. What evidence is there that various landscape and climate variables affect 

mean number fledged, after accounting for the effects of parent age? 

When number of fledglings or some other small integer count is used as a 

measure of reproductive success, these types of questions (and similar questions for 

females) can be addressed with GLMM analysis (McCulloch & Searle 2001 and 

Jiming, 2007).  The measure of reproductive success is taken to have a Poisson (or 

possibly binomial) distribution with a mean that depends on parent age and other 

explanatory variables, but with the inclusion of random effects to account for variable 

reproductive successes between males (or females).  This has been used, for example 

in studies of barn owls (Altwegg  et al. 2007), snow petrels (Angelier et al. 2007),  

brown thornbills (Green 2001), goshawks (Kruger 2005), brown bears (Zedrosser, et 

al. 2007), mountain goats (Côté, Festa-Bianchet 2001), and sparrowhawks (Newton, 

Rothery 2002). 

Our interest is in the use of GLMMS for this purpose when a substantial 

number of the animals in the data set have ages that are only known to exceed some 

lower bound. The plots and fitted models in the figure above, for example, are based 

on 542 observations from 108 male owls whose ages are known exactly. Also 

available are 839 additional observations from 165 male owls whose exact ages on 
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their first season of observation are only known to exceed 3 years.  When the 

researchers first band an owl, they might conclude with certainty—from adult 

characteristics—that the owl is at least 3 years old.  In the following year, therefore, 

they can be sure it is at least 4 years old.  After 10 years of observation, the 

researchers can be sure that the owl is at least 13 years old.   

It is common for researchers to exclude the animals with unknown ages from 

the statistical analysis of age-specific reproductive success.  This is true in the studies 

of spotted owls (Loschl, 2008), snow petrels (Angelier et al. 2007), barn owls 

(Altwegg et al. 2007), goshawk (Kruger 2005), and sparrowhawks (Newton, Rothery 

2002).  While the common practice of excluding animals of unknown ages isn’t likely 

to induce any bias into the scientific conclusions, the incorporation of information 

from the owls with censored ages may provide important gains in efficiency and 

power.  One does need to consider the possible that the age-specific reproductive 

success curves are different for the known age vs. the censored animals.  This is 

especially true if the animals that are excluded from the analysis are the older animals 

that were first observed as adults at the beginning of a study.   

Notice, for example, that there is some visual indication from Figure 2.2 that 

the mean number of fledglings decreases with older ages. The fairly wide confidence 

band at that end of the graph, though, suggests that the evidence for the decrease is not 

convincing. Including the additional owls with censored ages may result in more 

precise model estimation and therefore more resolution to this and other scientific 

questions of interest.   
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Our goals are to clarify the potential efficiency gains and to provide techniques 

for incorporating animals with censored ages into the GLMM analysis for age-specific 

reproductive success. We are particularly interested in finding easy-to-use solutions, if 

possible.   

Our focus is on the EM (expectation-maximization) algorithm for computing 

maximum likelihood estimates in the presence of missing data (Dempster, Laird, & 

Rubin 1977 and McLachlan & Thriyambakam 1997). For full likelihood analysis of 

models for studying age-specific reproductive success, the unavailable true ages and 

the random effects are all treated as “missing data.” The E-step is accomplished via 

Markov Chain Monte Carlo techniques. This algorithm parallels one suggested by Wu 

and Wu (2007) for GLMMs with missing data. Approximations that lead to easier 

calculations are discussed later. 

 

2.3 Notation and Model Specification. 

The model of interest specifies repeated measures on each of m subjects (or 

clusters) with responses that follow a generalized linear model with random intercepts 

for each subject, with time-dependent and time-independent explanatory variables, and 

with a time-independent explanatory variable that is censored.  Note that the first 

observed nesting age is a time independent, while the actual age is not.  Let iy  

represent the response observed for observational unit i, for i = 1,…,n. In the spotted 

owl example, the response is the number of young fledged and the “observational 

unit” is an “owl year” of observation.  
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Let 1( ,..., )i i imz z z= where ijz = 1 if observational unit i is associated with 

subject or cluster j and 0 if not; for i = 1,…,n and j = 1,…,m.  In the example, this 

variable indicates the particular male associated with observational unit i. 

Let ja represent the explanatory variable that is censored on some of the 

subjects or clusters, for subject or cluster j, for j = 1,…, m, and let 1( ,..., )ma a a= .  In 

the example, ja is the age of male owl j at the time it was first observed.  

Let jc be a censoring indicator, that takes on the value 0 if ja is observed and 

takes on the value 1 if it is only known that ja is greater than or equal to some known 

value.  Let *
ja  be the true age, ja , for those owls with known ages and the lower 

bound for age at first observation otherwise. Let* * *
1( ,..., )ma a a= .  Let ix  be a vector of 

explanatory variables associated with observational unit i, which may be time-variant 

or time- invariant. Let X be the matrix whose ith row is Tix .  Let 1( ,..., )mu u u=  

represent “random effects” associated with the M clusters or subjects.  

We suppose that the'iy s are conditionally independent, given u , with density 

  ( | , , ) ( | , , )T T
i i i i i if y a u x f y z a z u x=  with mean iµ , where 

  ( ) ( ; )T T T
i i i ig x h z a z uµ β α= + + , 

where α  and β  are p- and q-vectors of unknown parameters and g( ) is a known “link 

function.” In the owl example, the density is taken to be Poisson and the link function 

is the logarithm.  Since we will be using maximum likelihood analysis, we will not be 

using a dispersion parameter.  Such a parameter would complicate the analysis.   
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The term ( ; )T
ih z aα  is of unspecified form to permit the incorporation of 

nonlinear effects of the censored explanatory variable, such as a quadratic effect of 

age for the model displayed in Figure 2.2.    Note that if is represents the number of 

years since the male associated with observational unit i was first observed, then 

T
i iz a s+  is its age associated with observational unit i. One possible model, for 

example, is  

   2
1 2( ; ) ( ) ( )T T T

i i i i i ih z a s z a s z a sα α α+ = + + + .  

Suppose also that the random effects are independent and identically 

distributed, and independent of the explanatory variables:  

   ~ ( | , ; ) ( ; )j i iu f u a X f uτ τ= .  

In GLMMs, it is convenient to take this distribution to be normal with mean 0 and 

variance τ . 

It is also necessary to assume some distributional model for the marginal 

distribution of a.  Let 

   ~ ( | ; )j j ja f a w γ , 

where jw is a vector of explanatory variables that would be useful for predicting ja . In 

the owl example, the total number of years that the owl was observed would be such 

an explanatory variable. We assume that ja is independent of ju and of 'ja  for 'j j≠ . 
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2.4 EM Algorithm Treating Random Effects and Unknown Ages as “Missing 
Data”  
 

The EM Algorithm is often used for estimation of parameters in GLMMs without the 

additional problem of censored covariates (McCulloch 1997  and Booth &  Hobert 

1999), by treating the random effects, u, as missing data.  The approach here is to use 

the same techniques, extended to also treat the unknown ages at first observation, a, as 

missing. Let ( , , , )θ α β γ τ= denote the vector of unknown parameters.  The “observed 

data” are y  and *a .  The “complete data” arey ,uand a .  The complete data log 

likelihood is: 

  ( ; , ) log[ ( , , | ; )]cl y a f y u a Xθ θ=  

  log[ ( | , , ; )] log[ ( | , ; )] log[ ( | ; )]f y u a X f u a X f a Xθ θ θ= + +   

 
1

log[ ( | , , ; , , )]
n

T T
i i i i

i

f y z u z a xα β τ
=

=∑ +
1

log[ ( ; )]
m

j
j

f u τ
=
∑

1

log[ ( | , ; )]
m

j j j
j

f a c w γ
=

+∑ . 

 

The E-step (expectation) requires the expectation of the complete data log likelihood 

given the observed data and with unknown parameters in the expectation replaced by 

their estimates after t iterations. Let ( )tθ denote the estimate of θ  after t iterations of 

the EM algorithm. Then the expectation is: 

( )( | )tQ θ θ { }* ( )

1

log[ ( | , ; , , )] | , , ;
n

T t
i i i

i

E f y z a x y X aα β τ θ
=

= +∑   

   { }* ( )

1

log[ ( ; )] | , , ;
m

t
j

j

E f u y X aτ θ
=

+∑  
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   { }* ( )

1

log[ ( | ; )] | , , ;
m

t
j j

j

E f a w y X aγ θ
=
∑ . 

The expectations are with respect to the distribution of ( , )u a given y , *a , and 

X.  In general, the expectations are intractable, but they can be approximated by Monte 

Carlo methods in a way that parallels the approach for maximum likelihood with 

random effects alone (McCulloch and Searle, 2001, Sect. 10.3): 

 ( )( | )tQ θ θ ≈ ( ) ( )

1 1

1
log[ ( | , , ; , )

n R
T r T r

i i i i
i r

f y z u z a x
R

α β
= =

+∑∑ %  

     ( )

1 1

1
log[ ( ; )]

m R
r

j
j r

f u
R

τ
= =

+∑∑  

( )

1 1

1
log[ ( | , ; )]

m R
r

j j j
j r

f a c w
R

γ
= =
∑∑  

where ( ) ( ) ( )
1( ,..., )r r r

mu u u= and ( )r
ju  is a pseudo-random variable generated from 

* ( )( | , , ; )t
jf u y X a θ and ( ) ( ) ( )

1 1( ,..., , ..., )
c c

r r r
m m ma a a a a+= , where the first cm elements are 

known ages of first observation and where the remaining elements, ( )r
ja , are pseudo-

random variables generated from * ( )( | , , , ; )t
j j jf a w y X a θ .   

The EM algorithm is an iterative algorithm that, at each iteration, updates the 

expectations ( )( | )tQ θ θ based on current parameter estimates and then computes 

updated estimates as those values that maximize ( )( | )tQ θ θ . The following steps 

describe the algorithm: 

1. Choose starting values, (0) (0) (0) (0) (0)( , , , )θ α β γ τ= . Set t = 1. 

2. Repeat until convergence: 
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a. Generate R vectors ( ) ( )( , )r ru a  from the conditional distribution of 

( , )u a given y , X, and *a with unknown parameters θ  in the 

distribution replaced by the “current” estimates( 1)tθ −  

b. Calculate ( )tα and ( )tβ   as those values that maximize  

( ) ( )

1 1

1
log[ ( | , , ; , )]

n R
T r T r

i i i i
i r

f y z u z a x
R

α β
= =
∑∑ %  

c. Calculate ( )tτ as the value that maximizes 

( )

1 1

1
log[ ( ; )]

m R
r

j
j r

f u
R

τ
= =
∑∑  

d. Calculate ( )tγ as the value that maximizes  

 ( )

1 1

1
log[ ( | ; )]

m R
r

j j
j r

f a w
R

γ
= =
∑∑  

e. Set R = R+ /R c   , for some c >0 

f. Set t = t+1. 

Each of the pieces (b), (c), and (d) can be accomplished with formulas or 

routines that would be appropriate in the absence of censored explanatory variables 

and random effects, but based on the augmented data set corresponding to the R 

pseudo values for ( , )u a . Notice, in particular, that (b) can be accomplished with a 

GLM estimation algorithm, specifying the generatedT
iz u terms as “offsets.” 

The random number generation in 2a can be accomplished with the 

Metropolis-Hastings algorithm as follows (see, for example, McCulloch and Searle, 

2001, Sect. 10.3): 
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1. Generate (0) (0) (0)
1( ,..., )mu u u=  with (0)

ju generated from ( 1)( ; )t
jf u τ −  and 

(0) (0) (0)
1 1( ,..., , ..., )

c cm m ma a a a a+=  with (0)
ma  generated from * ( 1)( | , ; )t

j j jf a w a γ − . Set 

r = 1. 

2. For k from 1 to (R + R*): 

a. Generate 1( ,..., )mu u u=% % %  with ju% generated from ( 1)( ; )t
jf u τ −  

Generate 1 1( ,..., , ..., )
c cm m ma a a a a+=% % %  with ( )k

ma  element generated from 

* ( 1)( | , ; )t
j j jf a w a γ −  

b. Compute the acceptance criterion: 

( 1) ( 1)

1

( 1) ( 1) ( 1) ( 1)

1

( | , , ; , )
min 1,

( | , , ; , )

n
T T t t

i i i i
i

k n
T k T k t t

i i i i
i

f y z u z a x
p

f y z u z a x

α β

α β

− −

=

− − − −

=

 
  =  
 
  

∏

∏

% %

 

c. Generate v, a Bernoulli( kp ) random variable: 

d. If v =1 set ( )ku u= %  and ( )ka a= % . Otherwise, set ( ) ( 1)k ku u −= and 

( ) ( 1)k ka a −=  

3. Retain the final R of each of these vectors as the simulated sample. (R* is the 

burn-in number.)  

 

To speed up convergence, several authors (Levine and Fan, 2003 and Levine and 

Casella, 2001), recommend using importance weights instead of drawing a new 

MCMC sample at each iteration.  The use of importance weights can greatly decrease 

the convergence time because generating the pseudo-random variables via the 
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Metropolis Algorithm is computationally more intensive than generating the 

importance weights.  It is recommended that a burn-in period of regular Monte Carlo 

EM iterations is used before switching to the importance weights.  The burn-in allows 

the target and the candidate distribution to be ‘closer’ and therefore helps decrease the 

convergence time.  

 In the above algorithm, we increase the Monte Carlo sample size R using 

Booth and Hobert’s (1999) recommendation of  R = R+ /R c   , for some c >0.   This 

method is used because at early iterations, when the “current” parameter estimates are 

likely far from the MLE, one does not need a large sample size.  However, as the 

“current” parameter estimates get closer to the MLE, one needs more precision and 

therefore a larger Monte Carlo sample size.  Instead of using a naïve increase of the 

Monte Carlo sample size, Levine and Fan (2003), and Levine and Casella (2001) 

suggest automated algorithms that increase the Monte Carlo sample size after 

checking if the Monte Carlo error overwhelmed the EM estimate.  For our specialized 

algorithm, we simply used the naïve increase.  

 

2.5 Computing Standard Errors  

Approximate standard errors can be calculated using McLachlan and 

Krishnan’s (1997) method.  This method uses only first-order derivatives to find the 

approximate information matrix: 

( ) ( ) ( )
1 1

1ˆ ˆ ˆ
m R

T
jr jr

j r

I S S
R

θ θ θ
= =

≈∑∑ , where ( ) ( )( ) ( ) ( )

ˆ

; , ,  ,
ˆ

r r r
c j j j j

jr

l y x u a
S

θ θ

θ
θ

θ
=

∂
=

∂
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 The standard errors for the MLE can then be calculated by taking the square root of 

the diagonal elements of ( )1 ˆI θ− .   

 There are several other methods for calculating the information matrix, 

including calculating the observed Fisher Information from the observed data log-

likelihood, as well as Oakes (1999) and Louis’ (1982) method of writing the observed 

data log-likelihood as functions of the complete data log-likelihood.  Both of these 

methods would be rather complicated in our situation. 

 

2.6 Analysis of Spotted Owl Data 

The Monte Carlo EM algorithm for censored covariates in GLMMs will now 

be used to analyze one of the study areas from the Spotted Owl example from Section 

1.2.  The Oregon Coast Range study area is located in the central Coast Ranges of 

Oregon.  There are 108 known age owls and 165 owls with censored ages.  The known 

age owls have 542 owl/year observations, while the censored owls have 839 owl/year 

observations.  

This analysis will examine two particular questions that the wildlife biologists 

are interested in gaining insight on.  First, the biologists would like to know the age at 

peak reproductive success, after accounting for differences between years.  The 

biologists are also interested in possible declines in reproductive success after reaching 

peak performance.        

To answer these questions, we fit a Poisson log-linear model for mean number 

fledged, with linear and quadratic effects of male parent age, with year as a factor with 
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15 levels, and with random intercepts for the 273 male owls.  The intercepts are 

treated as a random sample from a normal distribution.  The age of first observed 

nesting is assumed to be normally distributed conditional on the number of years that 

the owl was observed.     

Starting values were obtained by fitting a GLMM with the censored ages 

replaced with their estimated expected value given that they exceed a lower bound. 

(This is the “regression calibration” estimator, which is discussed more fully in 

Chapter 3.)  A table of the parameter estimates and standard errors is shown below. 

Table 2.1 MCEM estimation results for Oregon Coast Range  
 

 MCEM All Males lmer Known Age Males Only 
Parameter Estimate SE Estimate SE 

0β  -0.6263 0.2315 -1.8092 0.6796 

ageβ  0.0776 0.0164 0.4824 0.0944 

2age
β  -0.0029 0.0005 -0.0269 0.0058 

1991β  -1.4385 0.3206 -15.8338 2211.3104 

1992β  -0.0214 0.2592 -15.9970 1157.3002 

1993β  -1.3692 0.3044 -0.9729 0.9513 

1994β  -0.1321 0.2601 -0.7218 0.7130 

1995β  -1.6351 0.3024 -1.7309 0.7672 

1996β  0.2211 0.2482 -0.0933 0.6490 

1997β  -0.9423 0.2576 -1.1617 0.6750 

1998β  -0.3310 0.2439 -0.3259 0.6477 

1999β  -1.8897 0.3255 -2.1913 0.7342 

2000β  -0.4901 0.2617 -0.6369 0.6564 

2001β  0.3157 0.2426 -0.0490 0.6461 

2002β  -0.8662 0.2847 -0.8955 0.6704 

2003β  -2.7019 0.4643 -2.9424 0.8631 

2004β  -0.0407 0.2470 -0.1555 0.6507 

2005β  -0.6701 0.2662 -0.9596 0.6745 

0α  1.6630 0.0100   
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yearsα  -0.0145 0.0010   

uσ  0.2709 0.0091 0.3388  

aσ  0.6304 0.0003   

 

Based on the MCEM analysis that considers all 273 owls, the age at peak 

reproductive success is estimated to be 13.38 years.  Based on the GLMM analysis 

using only the 108 known age owls, the age at peak reproductive success is estimated 

to be 8.97 years.  Both analyses suggest a decline in reproductive success after peak 

reproductive success is reached (one sided p-value for 2age
β < 0.0001 for both 

analyses).  Even though both of the analyzes suggest a decline after reaching peak 

reproductive success, Figure 2.3 shows that the analysis using all of the owls (heavier 

lines) is much flatter than the analysis that just uses the known age owls (lighter lines).  

The dashed lines show a 95% confidence bands for the mean fixed effect of male age.  

The heavier set of lines is for the analysis that considers all owls and the lighter set are 

for known age owls only.   These confidence bands include between-owl variability in 

intercepts.  The analysis that considers all owls has a much tighter confidence interval, 

especially around the peak of the known age curve.  See Appendix A2 for plots and 

tables of estimation results for the other study areas. 
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Figure 2.3 Number of owls fledged versus male parent age for the 108 known-aged 
owls, and GLMM model fits and approximate 95% confidence bands using only the 
known-age owls (thin line) and using all 273 owls (thick line) (Oregon Coast Range 
study area).   
 
2.7  Discussion 

 The MCEM algorithm for censored covariates can suffer from slow 

convergence.  In the models fit, the convergence time and number of iterations was a 

function of the number of owls and the percentage of censored age owls.  The number 

of iterations required for convergence (with a relative convergence criterion that 

estimates change by less than 0.5% in successive iterations) was generally around 14.  

Since the algorithm uses pseudo-random variables, the convergence time and the 

number of iterations can vary between the same models fit with the same starting 

values.  In addition the final estimates can vary slightly due to the convergence criteria 

being set so that the models do not take as long to converge.  
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 One way to help the MCEM algorithm converge faster is to use “good” starting 

values.  Possible choices include results from fitting only known age animals using an 

approximate technique for GLMMs (like lmer in R), replacing the censored ages with 

their conditional expected values (given that they exceed the recorded lower bound) 

and then fitting with lmer, or the final values from an approximate MCEM algorithm 

(detailed in the next chapter).  The final values from the approximate MCEM 

algorithm are the best starting values, but require the most work to obtain.  In our 

experience, the results from the model with the censored ages replaced by the 

expected value given that they exceed a lower bound are sufficient starting values that 

are relatively easy to obtain.  Obtaining “good” starting values is also important 

because the MCEM algorithm is sensitive to the starting values.  The standard 

deviation of the random effects distribution is the parameter most sensitive to the 

starting value.     

There is evidence of a benefit in including those animals with censored ages. 

In the spotted owl data problem, the standard error for the coefficient of the quadratic 

age term, for example, was reduced by 91% over that from the known-age owls only. 

For other regression coefficients the percentage reduction was 66% and 82%.  The 

simulation study in Chapter 3 shows that the MCEM parameter estimates can be 

biased.  This bias reduces the curvature of the age-specific reproductive success curve.  

Therefore, in addition to the standard error reduction one needs to also consider the 

actual parameter estimates.  Also note that in all four study areas, the MCEM curve is 

much flatter.  This indicates that there may be issues with the method and not just a 

different curve for the censored ages. 
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3.1 Abstract 

This paper is about statistical methods for data analysis using generalized linear mixed 

models (GLMMs) with censored covariates.  Special attention in given to the 

particular problem of inference about age-specific reproductive success in wild animal 

populations using some animals with known ages and some animals with ages only 

known to exceed some lower bound. GLMMs allow for non-normal response 

distributions, such as a Poisson distribution for the number of offspring from a parent 

in one year, and they account for the correlation of repeated responses from the same 

observational unit, such as the correlation of the number of offspring from the same 

parent over multiple years. Maximum likelihood analysis via the EM algorithm and 

Markov Chain Monte Carlo techniques was proposed in Chapter 2. This approach 

would not be attractive for immediate use by wildlife biologists, we suspect, because 

of the non-trivial programming required, the slowness, and the lack of transparency. 

We propose two other methods, which also incorporate animals with unknown ages 

but which are easier to compute.   First, a Monte Carlo EM algorithm is proposed in 

which censored covariates are treated as “missing data” and a Laplace approximation 
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is made to the complete data log likelihood. The Laplace approximation permits the 

use of existing computing modules for GLMMs.   This results in simpler programming 

than the likelihood analysis proposed in Chapter 2 but falls short of being simple 

enough for immediate use by most wildlife biologists. Second, a simple “regression 

calibration” method is proposed, which uses existing software for GLMMs but simply 

replaces missing ages by estimated expectations from a regression model and 

conditional on the age exceeding the censoring value. A simulation study clarifies the 

degree to which these methods improve upon the common approach of ignoring 

animals with unknown ages and clarifies their operating characteristics relative to 

those of the maximum likelihood estimator.          
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3.2 Introduction 

This work was motivated by an investigation of factors affecting individual 

reproductive success in a wild population of Northern Spotted Owls (Strix occidentalis 

caurina). For example, the scatterplot in Figure 3.1 shows the number of fledged 

spotted owls in a year versus male parent age in that year, for multi-year observations 

on 108 male Northern Spotted Owls.  The solid points are the sample means for each 

age and the vertical lines are crude 95% confidence intervals for each age group (data 

from Pete Loschl, personal communication; see Loschl, 2008). The smooth curve is a 

nonparametric lowess fit, which shows an apparent increase in mean number fledged 

up to a maximum of 0.7 fledglings per year at about age 9, with a subsequent decrease. 
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Figure 3.1 Number of fledglings versus male parent age from multiple-year 
observations on each of 108 Northern Spotted Owl males in the Oregon Coast Range, 
and lowess curve. 
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More formal investigation into patterns of age-specific reproductive success 

should account for dependence of different observations from the same male. The 

scatterplot below reproduces Figure 3.1 but includes the fit to a generalized linear 

mixed model (GLMM) that specifies a Poisson distribution for the integer count 

response and a regression model in which the log of the mean count is a quadratic 

function of age, and which accounts for the dependence of observations from the same 

male via random intercepts for the 108 different males.  The solid curve is the 

approximate maximum likelihood estimate of this GLMM. The dashed lines show a 

95% confidence band for the mean fixed effect of male age. (This confidence band 

includes between-owl variability in intercepts.) 
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 Figure 3.2 Number of fledglings versus male age as in Figure 3.1, with GLMM fit 
and approximate 95% confidence band.   
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This type of model is useful for investigating several scientific questions about 

age-specific reproductive success: 1.What evidence is there that male reproductive 

success decreases in older ages? 2. What is the age at which maximal mean 

reproductive success is achieved? 3. What proportion of variability in reproductive 

success can be explained by between-male differences after accounting for effects of 

age? 4. What evidence is there that various landscape and climate variables affect 

mean number fledged, after accounting for the effects of parent age? 

When number of fledglings or some other small integer count is used as a 

measure of reproductive success, these questions (and similar questions for females) 

can be addressed with GLMM analysis (McCulloch & Searle, 2001, and Jiming, 

2007).  The measure of reproductive success is taken to have a Poisson (or possibly 

binomial) distribution with a mean that depends on parent age and other explanatory 

variables, but with the inclusion of random effects to account for variable reproductive 

successes between males (or females).  Standard GLMM modules also allow for 

Poisson-like and binomial-like distributions with an additional dispersion parameter.  

Because GLMM modules have been added to standard statistical software 

packages only recently, some wildlife biologists have relied on ordinary mixed linear 

model analysis (Loschl, 2008, Coltman et al, 2002, and Reid et al 2003). Some have 

used GLMMs though.  This has been the case for age-reproductive success studies of  

barn owls (Altwegg  et al. 2007), snow petrels (Angelier et al. 2007),  brown thornbills 

(Green 2001), goshawks (Kruger 2005), brown bears (Zedrosser, et al. 2007), 
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mountain goats (Côté, Festa-Bianchet 2001), and sparrowhawks (Newton and Rothery 

2002). 

Our interest is in the use of GLMMS for this purpose when a substantial 

number of the animals in the data set have ages that are only known to exceed some 

lower bound. The plots and fitted models in Figures 3.1 and 3.2, for example, are 

based on 542 observations from 108 male owls whose ages were known exactly. Also 

available are 839 observations from 165 additional male owls whose exact ages on 

their first season of observation were only known to exceed 3 years. (They were 

known to exceed the age of three because of their adult characteristics).  In the year 

after their first observation, therefore, the researchers could be sure these owls were at 

least 4 years old.  After 10 years of observation, they were at least 13 years old, and so 

on.  

It is common for researchers to exclude the animals with unknown ages from 

the statistical analysis of age-specific reproductive success. Examples include Loschl, 

2008 (spotted owls); Angelier et al, 2007 (snow petrels); Altwegg et al., 2007 (barn 

owls); Kruger 2005 (goshawks); and Newton and Rothery, 2002 (sparrowhawks).  

While the common practice of excluding animals of unknown ages isn’t likely to 

induce any bias into the scientific conclusions, the incorporation of information from 

the owls with censored ages may provide important gains in efficiency and power.  

One does need to consider the possible that the age-specific reproductive success 

curves are different for the known age vs. the censored animals.  This is especially true 

if the animals that are excluded from the analysis are the older animals that were first 

observed as adults at the beginning of a study.    
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Notice, for example, that there is some visual indication from Figure 3.2 that 

the mean number of fledglings decreases with older ages. The fairly wide confidence 

band at that end of the graph, though, suggests that the evidence for the decrease is not 

convincing. Including the additional owls with censored ages may result in more 

precise model estimation and therefore more resolution to this and other scientific 

questions of interest.   

Our goals are to clarify the potential efficiency gains and to provide techniques 

for incorporating animals with censored ages into the GLMM analysis for age-specific 

reproductive success. We are particularly interested in finding easy-to-use solutions, if 

possible. Our statistical interest is in the Spotted Owl study in particular, but the same 

data characteristics are found in other studies of age-specific reproductive success. We 

can imagine that there are other applications of GLMMs in which a covariate is 

censored and our results would pertain to those. Austin and Hoch (2004) report a 

regression problem, for example, in which the explanatory variable “household 

income” is obtained from a survey questionnaire with highest category “greater than 

$80,000.” The main effort here, though, is directed towards the particular problems 

encountered in the study of age-specific reproductive success from wild animal 

populations. 

A full maximum likelihood estimator was proposed in Chapter 2. In this paper, 

we pursue simpler methods that wildlife biologists could use immediately with 

minimal extra programming. We first propose an MCEM algorithm that uses a 

Laplace approximation in order to make use of existing software modules. While 

simpler than the full likelihood approach, we would not characterize the necessary 



 37 

computations as “simple.” A “regression calibration” approach is also proposed, 

which makes use of an existing module for GLMM analysis but with unknown ages 

replaced by predicted values.    

This paper proceeds as follows.  Section 3.3 describes the model.  Section 3.4 

describes the approximate maximum likelihood methods for censored covariates in 

GLMMs.  Section 3.5 describes a regression calibration estimator for censored 

covariates.  Finally, in Section 3.6 a simulation study is described to investigate the 

properties of several methods for fitting GLMMs with censored covariates.   

 

3.3 Model 

We consider a model that specifies repeated measures on each of m subjects 

(or clusters) with responses that follow a generalized linear model with random 

intercepts for each subject, with time-dependent and time-independent explanatory 

variables, and with a time-independent explanatory variable that is censored. Let iy  

represent the response observed for observational unit i, for i = 1,…,n. In the spotted 

owl example, the response is the number of young fledged and the “observational 

unit” is an “owl year” of observation.  

Let 1( ,..., )i i imz z z= where ijz = 1 if observational unit i is associated with 

subject or cluster j and 0 if not; for i = 1,…,n and j = 1,…,m.  In the example, this 

variable indicates the particular male associated with observational unit i. 
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Let ja represent the explanatory variable that is censored on some of the 

subjects or clusters, for subject or cluster j, for j = 1,…, m, and let 1( ,..., )ma a a= .  In 

the example, ja is the age of male owl j at the time it was first observed.  

Let jc be a censoring indicator, that takes on the value 0 if ja is observed and 

takes on the value 1 if it is only known that ja is greater than or equal to some known 

value. Let *
ja  be the true age at first observation, ja , for those owls with known ages 

and the lower bound for age at first observation otherwise. Let * * *
1( ,..., )ma a a= . Let ix  

be a vector of explanatory variables associated with observational unit i, which may be 

time-variant or time- invariant. Let X be the matrix whose ith row is Tix . Let 

1( ,..., )mu u u= represent “random effects” associated with the M clusters or subjects.  

We suppose that the'iy s are conditionally independent, given u , with 

probability density or mass function 

 ( | , , ) ( | , , )T T
i i i i i if y a u x f y z a z u x=  with mean iµ , where 

 ( ) ( ; )T T T
i i i ig x h z a z uµ β α= + + , 

where α  and β  are p- and q-vectors of unknown parameters and g( ) is a known “link 

function.” In the owl example, the response distribution is taken to be Poisson and the 

link function is the logarithm.  A dispersion parameter can be added since we will be 

using GLMM modules that allow a dispersion parameter.   

The term ( ; )T
ih z aα  is of unspecified form to permit the incorporation of 

nonlinear effects of the censored explanatory variable, such as a quadratic effect of 
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age for the model displayed in Figure 2.2.  The need for this in the owl example is 

evident in the figures above.  Note that if is represents the number of years since the 

male associated with observational unit i was first observed, then Ti iz a s+  is its 

current age associated with observational unit i. One possible model, for example, is  

  2
1 2( ; ) ( ) ( )T T T

i i i i i ih z a s z a s z a sα α α+ = + + + .  

Suppose also that the random effects are independent and identically 

distributed, and independent of explanatory variables:  

  ~ ( | , ; ) ( ; )j i iu f u a X f uτ τ= .  

In GLMMs, it is convenient to take this distribution to be normal with mean 0 and 

variance τ . 

It is also necessary to assume some distributional model for the marginal 

distribution of a.  In the owl example, there is good reason to believe that those 

animals that are censored have larger values of a then those that aren’t—because most 

of the latter, presumably, were observed in their first year of life and then included in 

the study. Let 

  ~ ( | ; )j j ja f a w γ , 

where jw is a vector of explanatory variables that would be useful for predicting ja . In 

the owl example, the total number of years that the owl was observed would be such 

an explanatory variable. We assume that ja is independent of ju and of 'ja  for 'j j≠ . 
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3.4 Approximate Maximum Likelihood for GLMMs with Censo red Covariates  

 

Even without censored explanatory variables, the likelihood for all but the 

simplest GLMMs involves a multi-dimensional integral over the random effects.  This 

integral can be high dimensional with no closed-form solution.  Several of the 

currently popular methods for GLMM estimation involve approximations to the 

integral or other similar modifications to the likelihood.   

 There are several such methods that are justified differently but which use 

essentially the same algorithms.  One method, by Schall (1991), applies the link 

function to the response, linearizes the regression using a first order Taylor’s 

approximation, and then repeatedly fits linear mixed models to the working dependent 

variables.  Breslow and Clayton (1993) included a penalty to the quasi-likelihood 

function to derive the penalized quasi-likelihood (PQL).  Wolfinger (1993) showed 

how the Laplace approximation of the log-likelihood in the GLMM can be used to 

find estimates.  All three of these methods lead to the same computational algorithm 

that repeatedly fits linear mixed models to working dependent variables.  A good 

general reference on all three methods is McCulloch & Searle (2001).   For the 

problem of this paper, we wish to apply some of the same approximation techniques in 

the hopes of leading to an approximate maximum likelihood analysis for GLMMs 

when there are censored explanatory variables.  Although there will still be an 

additional part of the likelihood that involves the censored explanatory variables, the 

approximation will permit the use of currently available GLMM computing modules 

as part of the likelihood analysis. In particular, we can make use of existing modules 
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for GLMM estimation by using a Laplace approximation in the “complete data” 

likelihood specification for using the EM Algorithm (Dempster, Laird, & Rubin 1977 

and McLachlan & Krishnan 1997). 

The “observed data” are y  and *a .  The “complete data” are taken to bey and 

a .  This differs from the setup of Chapter 2, in which the random effects, u, were also 

specified as part of the complete data. Here, the complete data likelihood is based on 

the marginal distribution of y, obtained from the specified model by integrating out u. 

The complete data log likelihood is: 

  ( ; , ) log ( , , | ; )cl y a f y u a X duθ θ =  ∫  

  [ ]log ( | , , ; ) ( | , ; ) log ( | ; )f y u a X f u a X du f a Xθ θ θ = + ∫   

 
11 1

log ( | , , ; , , ) ( ; ) log[ ( | ; )]
n m m

T T
i i i i j j j

ji j

f y z u z a x f u du f a wα β τ τ γ
== =

 
= + 

 
∑∏ ∏∫   

The Laplace approximation is applied to the integral in the first term.  We may write 

the resulting approximate complete data log likelihood as  

 
1

( ; , ) ( , , ; , ) log[ ( | ; )]%
m

c glmm j j
j

l y a l y a f a wθ α β τ γ
=

= +∑ , 

where ( , , ; , )glmml y aα β τ  is the approximate log likelihood that is maximized by the 

Wolfinger approach if all the ages in a were available. We do not need to specify this 

approximation in more detail; for our purposes, it is enough to know that routines to 

maximize it are available. We will make use of those routines as part of the M-step in 

an EM algorithm that treats the unknown ages as missing data.  
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The E-step (expectation) requires the expectation of the complete data log 

likelihood given the observed data and with unknown parameters in the expectation 

replaced by their estimates after t iterations. Let ( )tθ denote the estimate of θ  after t 

iterations of the EM algorithm. Then the expectation is: 

( )( | )tQ θ θ { }* ( )( , , ; , ) | , ,  ; t
glmmE l y a y X aα β τ θ= +      

  { }* ( )

1

log[ ( | ; )] | , ,  ;
m

t
j j

j

E f a w y X aγ θ
=
∑  

The expectations are with respect to the distribution of a  given y , *a , and X.  In 

general, the expectations are intractable, but they can be approximated by Monte Carlo 

methods (McCulloch and Searle, 2001, Sect. 10.3): 

 ( )( | )tQ θ θ ≈ ( )

1

1
 ( , , ; , )

R
r

glmm
r

l y a
R

α β τ
=

+∑ ( )

1 1

1
log[ ( | ; )]

m R
r

j j
j r

f a w
R

γ
= =
∑∑  

where ( ) ( ) ( )
1 1( ,..., , ..., )

c c

r r r
m m ma a a a a+= , where the first cm elements are known ages of 

first observation and where the remaining elements, ( )r
ja , are pseudo-random variables 

generated from * ( )( | , , , ; )t
j j jf a w y X a θ% .   

The EM algorithm is an iterative algorithm that, at each iteration, updates the 

expectations ( )( | )tQ θ θ based on current parameter estimates and then computes 

updated estimates as those values that maximize ( )( | )tQ θ θ . The following steps 

describe the algorithm: 

1.  Choose starting values, (0) (0) (0) (0) (0)( , , , )θ α β γ τ= . Set t = 1. 

2.  Repeat until convergence: 
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a. Calculate the adjusted response  ( ) ( ) ( )y g y gµ µ µ′= + −%  as in Schall 

(1991).  This is needed to generate the pseudo random variables in the 

Metropolis step 

b. Generate R vectors ( )ra  from the conditional distribution of a  given y% , 

X, and *a with unknown parameters θ  in the distribution replaced by the 

“current” estimates ( 1)tθ −  

c. Calculate ( )tα , ( )tβ ,  and ( )tτ as those values that maximize  

( )

1

1
 ( , , ; , )

R
r

glmm
r

l y a
R

α β τ
=
∑  

d. Calculate ( )tγ as the value that maximizes  

 ( )

1 1

1
log[ ( | ; )]

m R
r

j j
j r

f a w
R

γ
= =
∑∑  

e. Set R = R+ /R c   , for some c >0 

f. Set t = t+1. 

Each of the pieces (c) and (d) can be accomplished with weighted formulas or 

routines that would be appropriate in the absence of censored explanatory variables, 

but based on the augmented data set corresponding to the R pseudo values for a .  In 

particular, piece (c) can calculated with a standard routine for GLMMs that uses the 

Laplace or penalized quasi-likelihood approach (such as lmer in R).   

The random number generation in 2b can be accomplished with the 

Metropolis-Hastings algorithm as follows (see, for example, McCulloch and Searle, 

2001 Sect. 10.3): 
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1. Generate (0) (0) (0)
1( ..., )

cm ma a a+=  with (0)
ma  generated from * ( 1)( | , ; )t

j j jf a w a γ − . Set 

r = 1. 

2. For k from 1 to (R + R*): 

a. Generate 1( ..., )
cm ma a a+=% % %  with ( )k

ma  element generated from 

* ( 1)( | , ; )t
j j jf a w a γ −  

b. Compute the acceptance criterion: 

( 1) ( 1)

( 1) ( 1) ( 1)

( | , , ; , )
min 1,

( | , , ; , )

t t

k k t t

f y u a X
p

f y u a X

α β
α β

− −

− − −

  =  
  

% %

%
  

c. Generate v, a Bernoulli( kp ) random variable: 

d. If v =1 set ( )ka a= % . Otherwise, set ( ) ( 1)k ka a −=  

3. Retain the final R of each of these vectors as the simulated sample. (R* is the 

burn-in number.)  

 

To speed up convergence several authors, (Levine and Fan 2003) and (Levine and 

Casella 2001), recommend using importance weights instead of drawing a new 

MCMC sample at each iteration.  The use of importance weights can greatly decrease 

the convergence time because generating the pseudo-random variables via the 

Metropolis Algorithm is computationally more intensive than generating the 

importance weights.  It is recommended that a burn-in period of regular Monte Carlo 

EM iterations is used before switching to the importance weights.  The burn-in allows 

the target and the candidate distribution to be ‘closer’ and therefore helps decrease the 

convergence time.  
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 In the above algorithm, we increase the Monte Carlo sample size R using 

Booth and Hobert’s (1999) recommendation of  R = R+ /R c   , for some c >0.   This 

method is used because at early iterations, when the “current” parameter estimates are 

likely far from the MLE, one does not need a large Monte Carlo sample size.  

However, as the “current” parameter estimates get closer to the MLE, one needs more 

precision and therefore a larger Monte Carlo sample size.  Instead of using a naïve 

increase of the Monte Carlo sample size, (Levine and Fan 2003) and (Levine and 

Casella 2001) suggest automated algorithms that increase the Monte Carlo sample size 

after checking if the Monte Carlo error overwhelmed the EM estimate.  For our 

specialized algorithm, we simply used the naïve increase.  

 

Approximate standard errors can be calculated using McLachlan and 

Krishnan’s (1997) method.  This method uses only first-order derivatives to find the 

approximate information matrix: 

( ) ( ) ( )
1 1

1ˆ ˆ ˆ
m R

T
jr jr

j r

I S S
R

θ θ θ
= =

≈∑∑ , where ( ) ( )( ) ( ) ( )

ˆ

; , ,  ,
ˆ

r r r
c j j j j

jr

l y x u a
S

θ θ

θ
θ

θ
=

∂
=

∂
 

 The standard errors for the MLE can then be calculated by taking the square root of 

the diagonal elements of ( )1 ˆI θ− .   

 There are several other methods for calculating the information matrix, 

including calculating the observed Fisher Information from the observed data log-

likelihood and Oakes (1999) & Louis’ (1982) method of writing the observed data log-



 46 

likelihood as functions of the complete data log-likelihood.  Both of these methods 

would be rather complicated in our situation. 

 

3.5 A Regression Calibration Estimator 

While the approximate maximum likelihood estimator of Section 3.4 avoids some 

of the complexity involved in the full maximum likelihood estimator, the need for the 

Metropolis-Hastings algorithm in the E-step voids any notion that the approach is 

simple. A second alternative, which is much more transparent than either of the 

maximum likelihood solutions, is a regression calibration estimator in which the 

unknown ages are replaced by predicted values. 

Regression calibration (Carroll, Ruppert, and Stefanski, 1995) is an approach 

usually associated with regression estimation in the presence of imprecisely measured 

explanatory variables. The idea is popular because it can be used in many different 

kinds of regression models and because it is particularly transparent. The idea is to use 

the regression techniques that would have been appropriate if the explanatory 

variables were available, but to replace the missing values by their expectations given 

the observed measurement and the remaining explanatory variables. The details and 

the performance of the regression calibration method differ depending on the degree 

of nonlinearity of the regression with respect to the mismeasured explanatory variable 

and the way in which the expectations are estimated (see, for example, Schafer and 

Gilbert, 2006).  

While the problem of interest in this paper is not thought of as a problem of 

measurement errors in explanatory variables, it can be cast that way. The measurement 
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of the explanatory variable age, if unknown, is measured by the lower bound for age. 

The regression calibration estimator replaces the unknown ages by their expectations 

given this measurement and the other available explanatory variables (including all 

those variables that would be useful for predicting age).  

In the measurement error terminology, the particular form of the regression 

calibration estimator for the spotted owl data problem would be described as 

regression calibration with internal validation, meaning that the data for estimating the 

expectation of the unknown ages given the other variables is a subset of the data with 

which the regression of interest will be estimated.  This requires a two-stage process: 

(1) Using the owls with known ages, fit a fully parametric regression model for 

predicting age at first observation from other available explanatory variables. (By fully 

parametric, we mean in particular that conditional distribution of age, or some 

transformation of age, given the other explanatory variables is normal so that the 

conditional expectation given some lower bound can be deduced.) Using these results, 

find predicted ages at first observation for those owls whose exact ages are unknown. 

(2) Fit the regression of interest using all owls and replacing unknown ages at first 

observation with these predicted values. 

It should be noted that the predicted ages in step (2) are themselves imprecise 

measurements of the explanatory variable of interest, so that the problem of 

imprecisely measured explanatory variables is still present. The predominant form of 

the imprecision, though, follows the Berkson error model (see Carroll, Ruppert, and 

Stefanski, 1995), which does not induce bias in the same way that the classical 

measurement error model does. The effect of sampling error in the estimation of the 
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inserted predicted values in regression calibration has been examined by Monleon 

(2006) and Schafer and Gilbert (2006). The effects differ depending on several 

conditions of the particular data problem. Here, we use a simulation study to 

investigate the potential bias and other operating characteristics of the regression 

calibration estimator. 

The following are the specific steps for regression calibration for estimating 

GLMMs with censored explanatory variables:  

1.  Find the expected value of the censored observations given that they exceed a 

lower bound  

a. Calculate ̂γ  and ˆaσ  that maximizes 

1

log[ (log( ) | ; , )]
cm

j j a
j

f a w γ σ
=
∑  

b. Using the estimates from (a), calculate the predicted value of the 

censored ages at first observed breeding using the formula for the mean 

of a truncated normal distribution. 

0 1ˆ ˆ ˆ
ja jyearsµ γ γ= +  

( )
( )

*

*

ˆlog( )

ˆ

ˆlog( )

ˆ

ˆ
exp

1

j a j

j a

j a j

a

a

a a

j a
a

µ
σ

µ
σ

µ σ φ −

−

 + 
=  

− Φ 
 

%  

c. Create the new age at first observed nesting vector 

( )1 1,..., , ,...,
c cm m ma a a a a+=% % %  

2.  Fit the GLMM with the new age at first observation vector a%  
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a. Calculate ̂α , β̂ ,  and ̂τ as those values that maximize  

( , , ; , )glmml y aα β τ %  

using with a standard routine for GLMMs that uses the Laplace or 

penalized quasi-likelihood approach (such as lmer in R).   

 

The regression calibration method also allows the inclusion of multiple random 

effects.  In the Northern Spotted Owl study, one might include the year as another 

random effect.  This would be extremely difficult to do in the MCEM methods.  The 

regression calibration method also allows one to easily fit a dispersion parameter.  

Finally, in linear regression when there is no sampling variability in the expected 

values used for replacing the imprecisely measured explanatory variables, it is 

appropriate to use the usual inference procedures that would have been used if the 

actual explanatory variables were available. In particular, inference based on 

approximate normality of estimators and with reported standard errors is justified. For 

nonlinear regression models and using estimates to estimate the conditional 

expectations, the reported standard errors are too small. Sandwich formulas for 

adjusting approximate standard errors are available for some models (see Carroll, 

Rupert, and Stefanski, 1995), but we have not pursued those here. The simulation 

study that follows shows that the desirably simple procedure, including the use of the 

reported standard errors, is likely to be a very satisfactory approach.  
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3.6 Simulation Study 

 A simulation study was used to examine the relative operating characteristics 

of these approaches: (1) maximum likelihood estimator via the MCEM algorithm for 

censored covariates, (2) the approximate MCEM estimator, (3) the regression 

calibration estimator, (4) the naïve estimator in which censored ages are replaced by 

their lower bounds (to demonstrate the unsuitability of this approach, which may seem 

tempting to wildlife biologists), and (5) the GLMM estimator using only owls with 

known ages.   

 The conditions for the simulation study were based on estimated parameters 

from the Northern Spotted Owl study.  In particular, a quadratic-in-age log-linear 

model was used as the mean of a Poisson response. Rather than specifying a 

distribution of ages at first observation, we randomly sampled owls with known ages 

from the Spotted Owl study (with replacement) and used their ages at first observation 

in the simulation.  We randomly selected a subset of simulated subjects (owls), of a 

specified percentage, to have known ages and the rest to have censored ages.  Those 

simulated subjects that were deemed to have censored ages were taken to be censored 

at age 3 (because that was the predominant lower bound for owl ages in the data set).  

We used the age parameters and the random effects distribution roughly matching 

those from the real data set to generated linear predictors and then number fledged.  

We investigated several sample sizes (total number of owls) and several values for the 

percentage of subjects with censored ages. The simulation conditions are further 

detailed in Appendix A5. 
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Table 3.1 shows descriptive statistics of estimates of estimates of 2β  from the 

6 settings and 5 fitting methods. The statistics for each condition are based on 200 

Monte Carlo samples. See the Appendix for similar tables for estimators of 0β  and 

1β . 

Table 3.1 Descriptive statistics of estimates of 2β (true value -0.0235) 

 
Sample size 50 400 
Proportion censored .10 .25 .50 .10 .25 .50 
MCEM       
mean -0.0246 -0.0227 -0.0214 -0.0225 -0.0216 -0.0199 
bias -0.0011 0.0008 0.0021 0.0010 0.0019 0.0036 
variance 7.55E-05 0.0001 5.76E-05 7.43E-06 7.58E-06 5.90E-06 
MSE 7.64E-05 0.0001 6.16E-05 8.43E-06 1.12E-05 1.87E-05 
Monte Carlo SD 0.0087 0.0082 0.0076 0.0027 0.0028 0.0024 
Mean reported SE 0.0092 0.0086 0.0083 0.0026 0.0026 0.0025 
       
Approx MCEM       
mean -0.0245 -0.0223 -0.0207 -0.0228 -0.0217 -0.0200 
bias -0.0010 0.0013 0.0028 0.0007 0.0018 0.0035 
variance 7.22E-05 0.0001 5.13E-05 7.52E-06 7.17E-06 5.37E-06 
MSE 7.29E-05 0.0001 5.89E-05 8.02E-06 1.03E-05 1.78E-05 
Monte Carlo SD 0.0085 0.0080 0.0072 0.0027 0.0027 0.0023 
Mean reported SE 0.0044 0.0041 0.0038 0.0010 0.0010 0.0010 
       
Regression Calibration       
mean -0.0251 -0.0240 -0.0241 -0.0232 -0.0232 -0.0228 
bias -0.0015 -0.0005 -0.0006 0.0003 0.0004 0.0007 
variance 7.93E-05 7.69E-05 6.91E-05 7.84E-06 8.44E-06 7.27E-06 
MSE 8.14E-05 7.67E-05 6.91E-05 7.91E-06 8.54E-06 7.70E-06 
Monte Carlo SD 0.0089 0.0088 0.0083 0.0028 0.0029 0.0027 
Mean reported SE 0.0087 0.0086 0.0090 0.0029 0.0029 0.0030 
       
Naïve Replace       
mean -0.0235 -0.0212 -0.0207 -0.0221 -0.0204 -0.0193 
bias -2.30E-05 0.0023 0.0028 0.0015 0.0031 0.0043 
variance 7.06E-05 6.37E-05 6.97E-05 7.05E-06 7.45E-06 5.76E-06 
MSE 7.03E-05 6.88E-05 7.70E-05 9.15E-06 1.72E-05 2.38E-05 
Monte Carlo SD 0.0084 0.0080 0.0083 0.0027 0.0027 0.0024 
Mean reported SE 0.0084 0.0081 0.0081 0.0028 0.0027 0.0027 
       
Known Only       
mean -0.0259 -0.0244 -0.0266 -0.0237 -0.0238 -0.0240 
bias -0.0024 -0.0009 -0.0031 -0.0002 -0.0003 -0.0005 
variance 8.48E-05 0.0001 0.0002 8.81E-06 1.04E-05 1.74E-05 
MSE 9.02E-05 0.0001 0.0002 8.83E-06 1.04E-05 1.76E-05 
Monte Carlo SD 0.0092 0.0102 0.0145 0.0030 0.0032 0.0042 
Mean reported SE 0.0092 0.0100 0.0129 0.0030 0.0034 0.0041 
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Some of the features in Table 3.1 will be highlighted and clarified for further 

emphasis.  Figures 3.3 and 3.4 show the Monte Carlo sampling distributions for the 

estimators of 2β  and 0β  respectively for the settings with a sample size of 400 and 

with 50% of the observations censored.  The vertical line represents the true value of 

parameter.    
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Figure 3.3 Monte Carlo sampling distributions for n=400 and 50% censored for the 
estimators of 2β , the age2 term, for the 5 different fitting methods. 
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In Figure 3.3 the MCEM, approximate MCEM, and the naïve replacement are 

all biased.  The known age only and the regression calibration estimates appear 

unbiased.  Notice how the regression calibration estimates are much less variable than 

the known age only estimates. 
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Figure 3.4 Monte Carlo sampling distributions for n=400 and 50% censored for the 
estimators of 0β , the intercept, for the 5 different fitting methods. 

 



 54 

The above histograms show the Monte Carlo sampling distribution for the 

estimators of 0β for the setting with a sample size of 400 and with 50% of the 

observations censored.  The MCEM and approximate MCEM show an obvious bias, 

while the naïve replacement estimates are extremely biased.  Both the regression 

calibration and the known age only estimates seem to be unbiased.  The regression 

calibration estimator has smaller MSE than the known age only estimator.  See 

Appendix A6 for the Monte Carlo sampling distributions for the other parameters and 

simulation conditions.      

 Since the estimators of the linear and quadratic terms are correlated, it helps 

somewhat to see at least one picture of the estimated regression curve. The solid line 

in Figure 3.6 shows the curve of the mean number fledged that was used in the 

simulation (the log of the mean is taken to be  -1.8070 + 0.3855 age - 0.0235 age2).     

The dashed line represents the mean MCEM fit.  The dotted line represents mean fit 

from the naïve replacement method.  Even though there appears to be some bias in the 

estimates from the MCEM algorithm, the curve is very close to the target curve.  

However, the curve from the fit obtained by replacing the censored age with the lower 

bound departs from the target curve to a greater degree.  Note how the curve based on 

the naïve replacement decreases the age at peak reproductive success by 0.80 years.  

The plot below illustrates that simply using the naïve replacement method for 

censored ages can yield biased results.   
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Figure 3.5   Curves based on the mean values of β̂  from the simulation 

 

 In evaluating these simulations, especially those based on the conditions that 

roughly match the actual data set (n=400 and censoring percentage = 50%), we are 

particularly interested in these questions: Is there substantial precision gained by 

including the owls with censored ages, does the simple regression calibration method 

achieve this gain nearly as well as the maximum likelihood estimator based on the 

MCEM algorithm, and is inference based on the standard errors and approximate 

normality of the regression calibration estimator supported by the simulation results?   

Figure 3.6 shows the MSEs for three estimators of2β : the MCEM, the regression 

calibration estimator, and GLMM estimator using the known age owls only.  When the 

sample size is 50, both the MCEM and the regression calibration estimator perform 
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much better than the estimator based on known age owls only.  However, when the 

sample size is 400, the regression calibration estimator out performs the MCEM.  This 

outperformance is due to the bias in the estimates for the MCEM. 

With 50% censoring and a sample size of 50, the MSE of the regression calibration 

estimator is 35% of the MSE of the GLMM estimator based on known owls only. 

With 50% censoring and a sample size of 400, which most closely matched the spotted 

owl data set, the regression calibration MSE is 43% of that for the GLMM estimator 

based on only known age owls. (Similar statements are true for the estimators of the 

other regression coefficients. The MSE of the regression calibration estimator of 0β  is 

37% and 40% of the MSE of the GLMM estimator with known age owls only with 

50% censoring and sample sizes of 50 and 400 respectively.  For 1β  the MSE of the 

regression calibration estimator is 35% and 43% of the MSE of the GLMM estimator 

with known age owls only.) 
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Figure 3.6 Mean Squared Error for three estimators of 2β   
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We also wish to see if the computed standard errors adequately approximate 

the standard deviations of the sampling distribution. Figure 3.7 shows the mean 

reported standard error vs. the Monte Carlo standard deviation for three estimators 

of 2β .  In all cases, it appears that the reported standard error is a good approximation.  

This seems particularly important for the regression calibration estimator, in which the 

reported standard error is the usual one obtained from the GLMM fitting procedure 

without any further adjustment. This fact, with the evidence from Figures 3.3 and 3.4 

that the sampling distribution is roughly normally-shaped, indicates no obvious 

problems with usual inferences based on approximate normality and reported standard 

errors.  
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Figure 3.7 Reported Mean SE vs. Monte Carlo SD for three estimators of 2β  
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3.7 Analysis of Spotted Owl Data 

The regression calibration method for censored covariates will now be used to 

analyze one of the study areas from the Spotted Owl example from Section 1.2.  The 

Oregon Coast Range study area is located in the central Coast Ranges of Oregon.  

There are 108 known age owls and 165 owls with censored ages.  The known age owls 

have 542 owl/year observations, while the censored owls have 839 owl/year 

observations.  

This analysis will examine two particular questions that the wildlife biologists are 

interested in gaining insight on.  First, they would like to know the age at peak 

reproductive success, after accounting for differences between years.  The biologists 

are also interested in possible declines in reproductive success after reaching peak 

performance.  The table below shows the parameter estimates and standard errors.  See 

Appendix A7 for plots and tables of estimation results for the other study areas. 

 

Table 3.2 Regression calibration estimation results for Oregon Coast Range  
 
 

 
Regression Calibration 

 All Males 
lmer Known Age Males Only 

Parameter Estimate SE Estimate SE 

0β  -1.3797 0.2680 -1.8092 0.6796 

ageβ  0.3037 0.0546 0.4824 0.0944 

2age
β  -0.0154 0.0029 -0.0269 0.0058 

1991β  -1.4978 0.3664 -15.8338 2211.3104 

1992β  -0.0947 0.2178 -15.9970 1157.3002 

1993β  -1.5129 0.3260 -0.9729 0.9513 

1994β  -0.2715 0.2193 -0.7218 0.7130 

1995β  -1.7880 0.3197 -1.7309 0.7672 



 59 

1996β  0.0568 0.2108 -0.0933 0.6490 

1997β  -1.1195 0.2507 -1.1617 0.6750 

1998β  -0.5004 0.2272 -0.3259 0.6477 

1999β  -2.0656 0.3398 -2.1913 0.7342 

2000β  -0.6539 0.2398 -0.6369 0.6564 

2001β  0.1743 0.2187 -0.0490 0.6461 

2002β  -0.9505 0.2716 -0.8955 0.6704 

2003β  -2.7693 0.4940 -2.9424 0.8631 

2004β  -0.0647 0.2315 -0.1555 0.6507 

2005β  -0.7043 0.2646 -0.9596 0.6745 

0α  1.2189 0.0879   

yearsα  -0.0175 0.0144   

uσ  0.2769  0.3388  

aσ  0.5654    

 
 

Based on the regression calibration analysis that considers all 273 owls, the age 

at peak reproductive success is estimated to be 9.86 years.  Based on the GLMM 

analysis using only the 108 known age owls, the age at peak reproductive success is 

estimated to be 8.97 years.  Both analyses suggest a decline in reproductive success 

after peak reproductive success is reached (one sided p-value for 2age
β < 0.0001 for 

both analyses).  The solid lines in the plot below show the estimated curve for the 

mean number fledged.  The regression calibration analysis using all of the owls has the 

heavier lines, while the analysis that just uses the known age owls uses the lighter 

lines.  The dashed lines show a 95% confidence bands for the mean fixed effect of 

male age.  The heavier set of lines is for the analysis that considers all owls and the 

lighter set are for known age owls only.   These confidence bands include between-
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owl variability in intercepts.  The analysis that considers all owls has a much tighter 

confidence interval, especially around the peak of the known age curve. 

The extreme negative estimates and large standard error for the years 1991 and 

1992 in the known age only analysis are due to 3 observations and 10 observations 

that were all 0.  The results of the analysis would probably not change if these years 

were removed. 
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Figure 3.8 Oregon Coast Range with GLMM model fits and 95% confidence bands 
using only 108 known-age owls (thin line) and using all 273 owls (thick line).  The 
owls with censored ages are plotted at their conditional expected ages. 
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3.8 Discussion  

While the approximate MCEM algorithm is slightly faster than the MCEM 

algorithm of chapter 2, it is still a computationally intensive method.  The number of 

iterations required for convergence (with a relative convergence criterion that 

estimates change by less than 0.5% in successive iterations) was generally around 14.  

The computational time required to generate the pseudo-random variables in the 

Metropolis step is less than the MCEM method of chapter 2 because we only need to 

generate first observed ages for the censored animals.  However, the M-step takes 

longer because we are fitting a GLMM instead of a GLM with the random effects as 

offsets.   

Both the MCEM and the approximate MCEM algorithms suffer from bias.  It 

is not clear why, but it is possible that the convergence criterion that was used is too 

large.  The EM algorithm in general can suffer from slow convergence, and the 

MCEM algorithm has the added complexity of the Monte Carlo estimate in the E-step.  

Unfortunately, the extremely large Monte Carlo sample sizes that are needed to insure 

that the Monte Carlo estimate of the E-step is “close” to the actual intractable integral 

can often cause memory failures in R.  As computing power and memory increase, it 

is likely that one would be able to use a smaller convergence criterion.  This may solve 

the bias issue in the MCEM algorithms, but more research may be needed to clarify 

exactly why these methods are biased.    

The approximate MCEM algorithm would be difficult for a biologist to 

implement without further computer programming skills.  The regression calibration 

method of Section 3.5 seems to be a practical approach for including censored age 



 62 

animals in the analysis, but without the computational hurdles of the MCEM and 

approximate MCEM algorithms.  We feel that the regression calibration method could 

be easily implemented by a researcher who has had some formal statistics training 

because this method is relatively simple extension of the methods that would be used 

if all of the ages were known.   

Our simulation study demonstrates that the regression calibration method 

performs substantially better than either using the naïve replacement method or using 

only known age animals in the analysis.  With respect to bias in the parameter 

estimates, this method performs better than the MCEM algorithm and nearly as well in 

reducing the variance of the estimates.   

 

3. 9 References  

Altwegg, R., Schaub, M., and Roulin, A.,(2007). Age-Specific Components of  
 Temporal Variation in the Barn Owl.  The American Naturalist. 169:47-61 

 
 

Angelier, F.,et al. (2007). Age-specific reproductive success in a long-lived bird:  
do older parents resist stress better?  Journal of Animal Ecology.76:1181–1191 
 
 

Austin, P.C. and Hoch J.S., 2004, Estimating Linear Regression Models in the  
Presence of Censored Independent Variable, Statistics in Medicine, 23, 411-
429 
 
 

Booth, J.G, and Hobert, J.P. (1999) Maximizing generalized linear mixed model  
likelihoods with an automated Monte Carlo EM Algorithm Journal of the  
Royal Statistical Society B. 61, 265-285 
 

Breslow, N. E. and Clayton, D. G. (1993) Approximate inference in generalized linear 
mixed models. Journal of the American Statistical Association 88, 9–25 



 63 

Coltman, D.W., Festa-Bianchet, M, Jorgenson, J. T. and Strobeck, C. (2002)  Age 
dependent sexual selection in bighorn rams. Proceeding of the Royal Society 
London B. 269, 165-172 

 
Côté , S. D., and  Festa-Bianchet, M.,  (2001) Offspring sex ratio in relation to 

maternal  age and social rank in mountain goats (Oreamnos americanus). 
Behavioral Ecology and Sociobiology. 49: 260-265 

 
 
Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likelihood from  

incomplete data via the EM algorithm. Journal of the Royal Statistical Society 
B. 39, 1-38. 
 
 

Green, D. J. (2001).The influence of age on reproductive performance in the Brown 
Thornbill, Journal of Avian Biology. 32: 6–14. 
 
 

Horton, N.J. and Laird, N.M., 1998, “Maximum Likelihood Analysis of Generalized – 
Model with Missing Covariates,” Statistical Methods in Medical Research,  
8, 37-50 

Jiming, Jiang (2007). Linear and Generalized Linear Mixed Models and Their  
Applications. Springer, New York. 

 
 
Krüger, O., 2005. Age at first breeding and fitness in goshawk Accipiter gentilis.  
 Journal of Animal Ecology 74:266–273Black 
 
 
Levine, R.A., and Casella, G. (2001).  Implementations of the Monte Carlo EM  

Algorithm. Journal of Computational and Graphical Statsitics. 10, 422-439. 
 
 
Levine, R.A., and Fan, J. (2003).  An Automated (Markov Chain) Monte Carlo EM  

Algorithm. Journal of Statistical Computation and Simulation. 74, 349-360. 
 
 
Little, R., 1992, “Regression With Missing X’s: A Review,” Journal of the American  

Statistical Association, 87, 1227-1237 
 
 

Loschl, P., (2008). Age-specific and Lifetime Reproductive Success of Known Age  
Northern Spotted Owls on Four Study Areas in Oregon and Washington., MS 
Thesis, Oregon State University  



 64 

Louis, T.A. (1982). Finding the Observed Information Matrix when Using the EM  
Algorithm. Journal of the Royal Statistical Society. Series B. 44 226-233. 
 
 

McCulloch, C.E. (1997) Maximum Likelihood Algorithms for Generalized Linear  
Mixed Models. Journal of the American Statistical Association.  92 162-170. 
 
 

McCulloch, C.E.  and Searle, S.R. (2001). Generalized, Linear, and Mixed Models.  
John Wiley and Sons, New York.    
 
 

McLachlan, G.J, and Krishnan, T. (1997). The EM Algorithm and Extensions.  
John Wiley and Sons, New York.     

  
 
Monleon, V.J., (2006). Regression Calibration and Maximum Likelihood Inference for  

Measurement Error Models, PhD Dissertation, Oregon State University. 
 
 
Newton, I., and Rothery, P., (2002) . Age-Related Trends in Different Aspects of the 
 Breeding Performance of Individual Female Eurasian Sparrowhawks The Auk 
 119(3):735–748 
 
 
Oakes, D. (1999). Direct Calculation of the Information Matrix via the EM Algorithm.  

Journal of the Royal Statistical Society. Series B. 61 479-482. 
 

 

Reid, J.M., Bignal E.M., Bignal, S. McCracken, D.I., and Monaghan, P. (2003). Age-
specific reproductive performance in red-billed choughs Pyrrhocorax 
pyrrhocorax: patterns and processes in a natural population. Journal of Animal 
Ecology. 72 (5) , 765–776 776 

 
 
Schafer, D.W. and Gilbert, E.S, (2006) Statistical Implications of Dose Uncertainties  

in Radiation Dose-Response Analyses of Epidemiological Data, Radiation 
Research, 166, 303-312. 

 
 
Schall, R. (1991) Estimation in generalized linear models with random effects.  

Biometrika 78, 719–727.  
 

 



 65 

Wolfinger, R. (1993). Laplace’s Approximation for Nonlinear Mixed Models.   
Biometrika.  80 791-795. 

 
, Ltd. 
Wu, K., and Wu, L. (2007) Generalized linear mixed models with informative  

dropouts and missing covariates. Metrika. 66, 1-18 
 
 
Zedrosser, A. et al. (2007). Genetic estimates of annual reproductive success in male 
 brown bears: the effects of body size, age, internal relatedness and population 
 density. Journal of Animal Ecology 76: 368–375. 
 
 



 66 

 
4. Conclusions 

 

 This dissertation proposes three algorithms for including censored age 

individuals in an age specific reproductive success analysis.  Special attention is given 

to a specific Northern Spotted Owl study (Loschl 2008), but the problem of censored 

age individuals is common in studies of age specific reproductive success.  Recent 

age-specific reproductive studies that excluded censored age individuals and used 

GLMMs include barn owls (Altwegg  et al. 2007), snow petrels (Angelier et al. 2007),  

brown thornbill (Green 2001), goshawk (Kruger 2005), brown bears (Zedrosser, et al. 

2007), mountain goats (Côté, Festa-Bianchet 2001), and sparrowhawks (Newton, 

Rothery 2002).   As evident in the Northern Spotted Owl study, the percentage of 

animals with unknown ages can be substantial.  

 Two of the algorithms are Monte Carlo EM algorithms that require generating 

pseudo-random numbers to calculate the intractable expectation step.  The first 

algorithm treats both the censored ages and the random effects as “missing data.”  The 

second method only treats the censored ages as “missing data.”  The pseudo-random 

number generation is accomplished via Metropolis algorithms.  Both of these methods 

are computationally intensive and require the researcher to write a significant amount 

of computer code.  In addition, the algorithms can be slow to converge and additional 

computations must be done to obtain standard errors.              

Since our goal was to develop a practical method that would be easy to 

implement and given the above issues with the MCEM algorithms, a third method was 

developed.  The regression calibration method simply replaces the censored 
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observations with their estimated expected values given appropriate covariates for 

predicting age and given the lower bound.  Then the age specific reproductive success 

analysis can proceed using the methods that would be appropriate if all of the ages 

were known.  Researchers with a working knowledge of applied statistical methods 

(like regression, ANOVA, and generalized linear models) should be able to easily 

implement this method using standard computer routines. We have found no evidence 

of any problem with using reported standard errors and approximate normality for 

inferences.  Figure 4.1 shows the estimated mean curves for the known age only 

analysis (lighter lines) and the regression calibration analysis (heavier lines).  The 

confidence interval for the regression calibration method is much tighter than the 

method that only uses known age owls.  
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Figure 4.1 Oregon Coast Range with GLMM model fits and 95% confidence bands 
using only 108 known-age owls (thin line) and using all 273 owls (thick line).   
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Chapter 3 showed the results of a simulation study to examine how 5 different 

fitting methods performed on 6 different setting.  The settings were chosen to cover a 

range of possible sample sizes and proportion of censored age individuals.  Based on 

the simulation study, it is clear that the naïve replacement method that uses the lower 

bound as the true age causes biased estimates of the regression parameters.  This bias 

increases as both the sample size increase and the proportion of censored age 

individuals increase.  For the biologists studying age specific reproductive success, 

this result should be noted and more sophisticated models should be considered when 

including censored individuals in the analysis.    

The rest of the methods that include the censored observations succeed in 

increasing the precision of the estimates.  Both of the MCEM algorithms show some 

bias in the regression estimates.  The estimates from the regression calibration method 

have slightly more variability than the MCEM estimates, but do not exhibit the bias of 

the MCEM estimates.  The regression calibration estimates are much less variable than 

the estimates that are obtained by restricting attention to known age individuals only.  

This increased precision from the regression calibration method will help researchers 

answer important biological questions. 
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A1  R Code for fitting MCEM with Censored Covariates 
 
#### MODEL ##### 
# y|x,u ~ Poisson(mu) 
# log(mu) = beta[0] + beta[1]*age + beta[2]*age^2 +  u 
# u ~ N(0,sdu) 
# where age = Z %*% age.first + years.since.first 
# where age.first is the true age at first observat ion (unknown for the censored owls) 
# log(age.first|years.of.obs) ~ N(alpha[0]+alpha[1] *years.of.obs,sda) 
 
 
# Metropolis-Hastings Generation 
 
 
 
 
#[1]"male"    "year"    "age"     "fledged" "area"    "censor" 
n  <- length(male) 
 
# PUT OWL-SPECIFIC VARIABLES IN m-VECTORS 
 
malem   <- unique(male)  # mx1 vector of unique mal e IDs 
m   <- length(malem) # 118 # number of males 
age.first.obs <- rep(0,m) # age at first observatio n or lower bound, for each male 
censorm  <- rep(0,m) # mx1 vector: 1 if age is cens ored for owl j, 0 if not 
years.of.obs  <- rep(0,m) # total years of observat ion on owl j 
number.of.obs <- rep(0,m) # number of observations on owls j; j = 1,...,m 
 
Z   <- matrix(rep(0,n*m),n,m) # Design matrix with male indicators 
 
for (j in 1:m) { 
 age.first.obs[j] <- min(age[male==malem[j]]) 
 censorm[j]   <- mean(censor[male==malem[j]]) 
 years.of.obs[j]  <- max(age[male==malem[j]])-min(a ge[male==malem[j]]) 
 number.of.obs[j] <- length(fledged[male==malem[j]] ) 
 Z[,j]   <- ifelse(male==malem[j],1,0) 
} 
 
mc <- m - sum(censorm)  # males with known ages 
m-mc    # with censored ages 
years.since.first <- age - Z %*% age.first.obs  # Y ears since first observation (nx1  

   # vector) 
 
################################################### ################################# 
 
#### METROPOLIS-HASTINGS SIMULATION FUNCTION #### 
 
### UTILITY FUNCTIONS ### 
 
# Function to generate left-truncated normals 
 
 rtnorm  <- function(mu,sd,lo) { 
 n   <- length(mu) 
 mu + sd*qnorm(runif(n,pnorm((lo-mu)/sd),1)) 
} 
 
 
# Function to generate random ages given lower boun d, from truncated lognormal 
 
acandidate <- function(mua,sda,lowest.age) { 
 # mua is mx1 vector of means for log age at first observation 
 # sda is 1x1 constant standard deviation for log a ge at first observation 
 # lowest.age is mx1 vector of lower bounds for age  
 m  <- length(mua) 
 lacandidate  <- rtnorm(mua,sda,log(lowest.age)) # simulated log ages at first  

     # obs 
 exp(lacandidate)  # simulated ages (not logged age d) at first observation 
 } 
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metropolis <- function(theta,fledged,censor,age.fir st.obs, years.since.first, R) { 
 n   <- length(fledged) 
 m   <- length(age.first.obs) 
 U  <- matrix(0,nrow=R,ncol=m) # Rxm Matrix to be f illed in with simulated  

     # random effects, u 
 A  <- matrix(0,nrow=R,ncol=m) # Rxm matrix to be f illed in with simulated  

     # ages at first obs. 
 alpha  <- theta$alpha 
 beta   <- theta$beta 
 sdu   <- theta$sdu 
 sda   <- theta$sda 
 
 # Initialize 
 critu  <- rep(0,m) # to store the acceptance crite rion for candidates for u 
 crita  <- rep(0,m) # to store the acceptance crite rion for candidates for age  

    #  at first observation 
 ones  <- matrix(rep(1,n),n,1) # nx1 vector of 1's 
 
 Y  <- matrix(rep(fledged,m),n,m)  # nxm; m copies of the response 
 Years.since <- matrix(rep(years.since.first,m),n,m ) # nxm; m copies of years  

# since first observation 
 
 mua <- alpha[1] + alpha[2]*years.of.obs[censorm==1 ] # mean of lognormal  

  # regression for censored ages 
 U[1,]  <- rnorm(m,0,sdu)   # initial simulation of  random effects 
    A[1,] <- 
c(age.first.obs[censorm==0],acandidate(mua,sda,age. first.obs[censorm==1])) 

# The first mc rows of A[r,] are the ages at first  
# observation for owls with known ages. The remaind er  
# are simulated values from the truncated lognormal   
# regression. 

 
 for (r in 2:R) { 
  # Generate candidate vectors for u and a 
  u.candidate <- rnorm(m,0,sdu) 

a.candidate <-
c(age.first.obs[censorm==0],acandidate(mua,sda,age. first.obs[censorm==1])) 

 
  ### CALCULATE DENOMINATOR OF ACCEPTANCE CRITERION VECTORS #### 
  age <- Z %*% A[r-1,] + years.since.first   nx1; a ge = "age at first  

observation" + years since first 
  fixed  <- beta[1] + beta[2]*age + beta[3]*(age^2)   # nx1; fixed  

# effects in linear 
# predictor using  
# previous  
# simulated a's 

  Fixed  <- matrix(rep(fixed,m),n,m)  # nxm; m copi es of fixed effects 
  umat  <- matrix(rep(U[r-1,],m),m,m) # mxm; m copi es of previously  

# simulated random effects 
  Eta   <- Fixed + Z %*% umat   # nxm; m copies of linear  

# predictor based on previously # 
simulated u's, a's 

  Density <- dpois(Y,exp(Eta)) # nm x 1; Poisson de nsity at the linear  
# predictor 

   Density <- matrix(Density,n,m) # nxm; m copies o f Poisson density at  
 # linear predictor; previous simulations 

  denom  <- exp(t(Density) %*% ones) # mx1; jth ele ment is the product  
# of Poisson pmfs at previously 

       # simulated values of uj and aj 
 
  ### GET ACCEPTANCE VECTOR FOR U ### 
  umat2  <- umat   # mxm; m copies of previously si mulated u's 
  diag(umat2) <- u.candidate  # mxm; Replace diagon al elements with new  
            # candidates 
  Eta <- Fixed + Z %*% umat2  # nxm 
  Density <- dpois(Y,exp(Eta))  #  nxm; jth column has Poisson pmfs with  

# all u's equal to the previously  
# simulated values, except with uj  
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# replaced by new candidate 
  numer  <- exp(t(Density) %*% ones) # mx1; jth ele ment is the product  

# of the n Poisson pmfs at  
# previously simulated values of u 
# and a, except with uj replaced  
# by new candidate 

 
critu  <- ifelse(numer<denom,numer/denom,1) # mx1; jth element is  

# acceptance probability  
# for candidate uj 

 
  ### GET ACCEPTANCE VECTOR FOR A ### 
  amat  <- matrix(rep(A[r-1,],m),m,m) # mxm; m copi es of previously  

# simulated a's (age at first  
# observation) 

  diag(amat) <- a.candidate   #mxm; Replace diagona l elements with new  
      # candidates 

  Age <- Z %*% amat + Years.since # nxm; Form ages from ages at first  
# observation plus years since first 

  Eta  <- beta[1] + beta[2]*Age + beta[3]*(Age^2) +  Z %*% umat 
  Density <- dpois(Y,exp(Eta))  #  nxm; jth column has n Poisson pmfs  

#   with all u's and a's equal to the 
      #   previously simualted values, except  

#   with aj replaced by new candidate 
numer  <- exp(t(Density) %*% ones) # mx1; jth eleme nt is the product  

# of the n Poisson pmfs at  
# previously simulated values of u 
# and a, except with aj replaced  
# by new candidate 

  crita  <- ifelse(numer<denom,numer/denom,1) # mx1 ; jth element is the 
# acceptance probability  
# for candidate aj 

 
  ### CARRY OUT ACCEPTANCE ### 
  bernu <- rbinom(m,1,critu)  # mx1; generate m Ber noullis with the  

# candidate u acceptance probabilities 
  berna <- rbinom(m,1,crita)  # mx1; generate m Ber noullis with the  

# candidate a acceptance probabilities 
U[r,] <- bernu*u.candidate + (1-bernu)*U[r-1,]  # m x1; new u is  

# either previous u 
#or new candidate 

  A[r,] <- berna*a.candidate + (1-berna)*A[r-1,] # mx1; new a is  
#either previous a 
#or new candidate 

   } 
 list(U=U,A=A)  # Return R simulated u vectors and a vectors 
} 
################################################### ################################# 
 
 
# Likelihood function used to compute importance we ights 
 
like <- function(theta) { 
 

Density1 <- dpois(fledgedvector, exp(xmat %*%theta$ beta + uvector))  # glm part  
    Density2 <-  dnorm(uvector2,0, theta$sdu)      # random effects part 
    Density3 <-   
dnorm(log(avector), theta$alpha[1]+ theta$alpha[2]* years.of.obsvector,theta$sda) 
        # age at first obs part 
    MCnum <- rep(1:R,n) 
    MCnum2 <- rep(1:R,m) 
    s1 <- tapply(Density1, INDEX=MCnum, sum)  # sum ming over the MC samples  
    s2 <- tapply(Density2, INDEX=MCnum2, sum) # sum ming over the MC samples 
    s3 <- tapply(Density3, INDEX=MCnum2, sum) # sum ming over the MC samples 
    return(s1+s2+s3)     # returning the overall su m  
 
} 
 
################################################### ########################## 
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# MCEM algorithm for censored ages 
 
 
 
time.check <-date() 
############################### 
convergence.criterion <- .005 
iter <- 1 # iteration number 
maxdif <- 1 # initial setting for max abs. value 
 
# STARTING VALUES 
beta.old <-c(-0.403156, 0.141645, -0.008767) # from  lmer with censored ages replaced  

# by expected given above threshold 
alpha.old<- c(0.553586294,  0.005887441) # from lm fit of log agefirst on yearsobsm  

   # from owls with known ages 
sda.old  <- 0.4560279 
 
sdu.old  <-  0.2268224      # from lmer with censor ed ages replaced 
 
 
 
theta.old <- list(beta=beta.old, alpha=alpha.old, s du=sdu.old, sda=sda.old) 
 
 
 
c <-3  # proportion to increase the Monte Carlo sam ple size by    
R <- 8 # starting Monte Carlo sample size 
 
 
print(c("iter", "beta0", "beta1", "beta2","alpha1",  "alpha2",  "sdu", "sda"), 
quote=F, sep="\t") 
print(round(c(0, unlist(theta.old)),3), sep="\t") 
 
 
 
# keep track of the estimates 
 
 
beta1.iter <- beta.old[1] 
beta2.iter <- beta.old[2] 
beta3.iter <- beta.old[3] 
alpha1.iter <-alpha.old[1] 
alpha2.iter <- alpha.old[2] 
sdu.iter   <- sdu.old 
sda.iter   <- sda.old 
maxdif.iter <- maxdif 
R.iter <-R 
 
 
S <- 3 # burn in for regular MCEM before switching to importance weighting 
 
 
 
############################## 
while (maxdif>convergence.criterion) { 
#if (iter==1) { 
 
      # Monte Carlo E-step 
        R0 <- R 
        R <- R0 + floor(R0/c) 
 
       # Obtain R psuedo random variables using the  Metropolis Alg 
 
       if (iter<=S) { 
                    sample <- metropolis(theta.old, fledged,censor,age.first.obs,  

     years.since.first, R=R) 
                    w <- 1 
                    imp.weight1 <- rep(1,R*n) 
                    imp.weight2 <- rep(1,R*m)} 
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 # Re-initializing theta to use importance weights  
       if (iter==S) { 
                    theta.init <- theta.old 
                    sample <- metropolis(theta.init ,fledged,censor,age.first.obs,  

     years.since.first, R=R) 
                    } 
 
 
      if (iter >S){ 
          samp.incr <-floor(R0/c) 
          samplek <- metropolis(theta.init,fledged, censor,age.first.obs,  

              years.since.first, R=samp.incr) 
          sample$U <-matrix(c(t(sample$U),t(samplek $U)), nrow=R0+samp.incr, byrow=T) 
          sample$A <-matrix(c(t(sample$A),t(samplek $A)), nrow=R0+samp.incr, byrow=T) 
              } 
 
 
 
      # replicating for the augmented data set for the n observations 
 
 

agevector <-  matrix(t(Z%*%t(sample$A)), ncol=1,  
        byrow=T)+rep(years.since.first,rep(R,n)) 
      agevector2 <- agevector^2 
      uvector <-   matrix(t(Z%*%t(sample$U)), ncol= 1, byrow=T) 
      fledgedvector <- rep(fledged,rep(R,n)) 
      intercept <- rep(1,n*R) 
      xmat <- cbind(intercept, agevector, agevector 2) # glm.fit needs the x's in  

 # matrix form 
 
      #   male      year        R 
      #   1           98        1 
      #   .           98        2 
      #   .           .         . 
      #   1           98        R 
      #   1           99        1 
      #   .           99        2 
      #   .           .         . 
      #   1           .         R 
 
 
 
      # replicating for the augmented data set for each owl 
 
 

avector <- matrix(sample$A, ncol=1, byrow=T)     # making the a matrix into an  
   # m*r vector 

      uvector2 <- matrix(sample$U, ncol=1, byrow=T)      # making the u matrix into  
  # an m*r vector 

      years.of.obsvector <-rep(years.of.obs ,rep(R, m)) 
 
 
 
      # compute the importance weights as in Levine  and Casella 
 
      if (iter >=S) {w <- (like(theta.old)/like(the ta.init)) 
                     imp.weight1 <- rep(w*R,n) 
                     imp.weight2 <- rep(w*R,m)} 
 
 
 
      # M-step 
 
      ##  using glm.fit to obtain estimates for the  generalized linear model part 
      ##  this fits the n x R observations in the a ugmented data set 
 
 
      fit1 <- glm.fit(xmat, fledgedvector, offset=u vector,  
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weights=(imp.weight1/sum(w)), family = poisson(), i ntercept = F) 
      beta.new <- fit1$coef 
 
      # Finding random effects sd 
      sdu.new  <- sqrt(sum(uvector2^2)/(m*R)) 
 
      ## fitting the model for the age of first obs ervation-- 
 
      fit2 <- lm(log(avector)~ years.of.obsvector, weights=imp.weight2/sum(w)) 
 
      alpha.new  <-fit2$coef 
      sda.new  <- summary(fit2)$sigma 
 
 
      theta.new <- list(beta=beta.new, alpha=alpha. new , sdu=sdu.new , sda=sda.new) 
 
 
      # keep track of the estimates 
 
      beta1.iter <- c(beta1.iter,beta.new[1]) 
      beta2.iter <- c(beta2.iter,beta.new[2]) 
      beta3.iter <- c(beta3.iter,beta.new[3]) 
      alpha1.iter <- c(alpha1.iter,alpha.new[1]) 
      alpha2.iter <- c(alpha2.iter,alpha.new[2]) 
      sdu.iter   <- c(sdu.iter,sdu.new) 
      sda.iter   <- c(sda.iter,sda.new) 
 
 
      # check convergence 
      maxdif <- max(abs((unlist(theta.new)-unlist(t heta.old))/unlist(theta.old))) 
 
      maxdif.iter <- c(maxdif.iter,maxdif) 
 
      # print current estimate 
 
      print(round(c(iter, unlist(theta.new),maxdif) ,3), sep="\t") 
 
      iter <- iter+1 
 
      R.iter <- c(R.iter,R) 
 
 
      beta.old <- beta.new 
      alpha.old <- alpha.new 
      sdu.old  <- sdu.new 
      sda.old  <- sda.new 
      theta.old <- theta.new 
 
 
 
 
      } 
 
time.check <- c(time.check,date()) 
 
# print mle 
mle <- theta.old 
mle 
round(unlist(mle),4) 
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################################################### ################################### 
 
# Computing Standard Errors  
 
# First Derivatives  
b0 <- (-exp(xmat %*%mle$beta + uvector)+fledgedvect or) 
b1 <- (-agevector*exp(xmat %*%mle$beta + uvector)+f ledgedvector*agevector) 
b2 <- (-agevector^2*exp(xmat %*%mle$beta + uvector) +fledgedvector*agevector^2) 
 
a0 <- (log(avector)-mle$alpha[1]-mle$alpha[2]*years .of.obsvector)/mle$sda^2 
a1 <- years.of.obsvector*(log(avector)-mle$alpha[1] -mle$alpha[2]*years.of.obsvector) 
/mle$sda^2 
 
su <- (-1/mle$sdu -uvector2^2/mle$sdu^3) 
sa <- ((-1/mle$sda)+((log(avector)-mle$alpha[1] mle $alpha[2]*years.of.obsvector )^2/ 
mle$sda^3)) 
 
 
 
# Summing up over the repeated measures to the male s   
 
male.vector <- rep(male,rep(R,n))+(rep(1:R,n)/(R+1) ) 
b00 <- tapply(b0,male.vector,sum) 
b11 <- tapply(b1,male.vector,sum) 
b22 <- tapply(b2,male.vector,sum) 
 
 
# Cacluating the approximate information matrix 
 
info <-  matrix(rep(0,49),nrow=7) 
 
for (i in 1:(m*R)){ 
 
        info <- info +c(b00[i],b11[i],b22[i], a0[i] , a1[i], su[i], 
sa[i])%*%t(c(b00[i],b11[i],b22[i], a0[i], a1[i], su [i], sa[i])) 
} 
 
approx.info <- 1/R*info 
   
   
var.cov <-solve(approx.info) 
se <- sqrt(diag(var.cov)) 
se 
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A2 MCEM Spotted Owl Analysis  
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Figure A2.1 Northern Spotted Owl Model Fits.  The darker lines are the full MCEM 
analysis and the lighter lines are the known age owls only.  The dashed lines are the 
95% confidence intervals.   
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Table A2.1 MCEM estimation results for Cle Elum 
 
 
 

 MCEM All Males lmer Known Age Males Only 
Parameter Estimate SE Estimate SE 

0β  0.1592 0.4525 0.2118 0.7419 

ageβ  0.0642 0.0246 0.2417 0.0880 

2age
β  -0.0026 0.0009 -0.0132 0.0062 

1990β  -0.1072 0.5646 -1.1714 1.0134 

1991β  -0.4952 0.5054 -0.8920 0.8327 

1992β  0.0410 0.5204 -0.2413 0.7657 

1993β  -1.8857 0.4925 19.1415 3042.1741 

1994β  0.0074 0.4808 -0.2921 0.7634 

1995β  -0.6642 0.4648 -1.1262 0.7938 

1996β  -0.0279 0.4942 -0.5873 0.7686 

1997β  -2.3662 0.6260 -19.2933 2755.8640 

1998β  -0.0672 0.4835 -0.7237 0.7715 

1999β  -0.9150 0.5114 -1.1869 0.7928 

2000β  -0.4616 0.4935 -1.2653 0.7885 

2001β  -0.3660 0.5215 -1.0528 0.7854 

2002β  -0.6304 0.5125 -1.6525 0.8534 

2003β  -0.2498 0.5065 -0.8773 0.7867 

2004β  -0.5228 0.5169 -0.8920 0.7847 

2005β  -0.5625 0.5178 -1.0588 0.7959 

0α  1.1305 0.0259   

yearsα  0.0200 0.0031   

uσ  8.0e-07 4.0e-08 0.1798  

aσ  0.6773 0.0012   
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Table A2.2 MCEM estimation results for H.J. Andrews 
  
 

 MCEM All Males lmer Known Age Males Only 
Parameter Estimate SE Estimate SE 

0β  0.4757                49.3804     -1.3088 0.8309 

ageβ  0.0347                 0.0113 0.4531 0.1069 

2age
β  -0.0009                  0.0002       -0.0254 0.0069 

1987β  -0.6842                  49.3847       -17.5988 5717.5404 

1988β  -0.6900          49.3809       -0.4866 1.0280 

1989β  -1.4987 49.3804       -0.9190 0.8886 

1990β  -1.2441                 49.3808       -0.6830 0.8155 

1991β  -1.5554                  49.3804       -2.0862 1.0065 

1992β  -0.4220                 49.3805  -0.0005 0.7421 

1993β  -17.9970                  5333987.0386      -17.7043 1565.3191 

1994β  -1.5571                  49.3804 -1.1521 0.7923 

1995β  -1.7569 49.3805       -1.6220 0.8175 

1996β  -0.6952                  49.3804       -0.3271 0.7356 

1997β  -1.6209                  49.3805       -1.3016 0.7760 

1998β  -1.3257                  49.3805       -1.0785 0.7616 

1999β  -2.0027                  49.3806       -1.0082 0.7657 

2000β  -0.9708                  49.3804       -1.0164 0.7661 

2001β  -0.8354 49.3803       -0.4137 0.7360 

2002β  -0.9515                  49.3804       -1.1963 0.7716 

2003β  -1.8307                  49.3804       -1.2249 0.7745 

2004β  -0.6150                  49.3803       -0.2838 0.7323 

2005β  -2.2662                   49.3810 -1.5017 0.8226 

0α  1.7161                  0.0084          

yearsα  -0.0065 0.0010          

uσ  0.0100                   0.0003        0.0000  

aσ  0.6898 0.0002   
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Table A2.3 MCEM estimation results for Tyee 
 
 

 MCEM All Males lmer Known Age Males Only 
Parameter Estimate SE Estimate SE 

0β  0.0540 1.0181 14.7886 717.0570 

ageβ  0.0754 0.0125 0.3497 0.0697 

2age
β  -0.0029 0.0004 -0.0221 0.0046 

1985β  -2.5912 1.4499   

1986β  -0.3203 1.0531   

1987β  -0.9651 1.0913   

1988β   -1.8897 1.1020   

1989β  -0.7526 1.0413 13.3596 717.0573 

1990β  -0.8360 1.0346 13.0984 717.0571 

1991β  -1.3267 1.0227 12.7455 717.0571 

1992β  -0.5289 1.0321 13.0840 717.0570 

1993β  -2.1139 1.0423 11.8633 717.0571 

1994β  -0.8800 1.0244 13.2773 717.0570 

1995β  -1.5128 1.0275 12.6601 717.0570 

1996β  -0.2967 1.0221 13.6158 717.0570 

1997β  -0.8693 1.0253 12.7755 717.0570 

1998β  -0.8052 1.0274 13.1168 717.0570 

1999β  -1.2281 1.0314 12.7374 717.0570 

2000β  -1.0111 1.0278 12.9589 717.0570 

2001β  -0.2148 1.0213 13.8331 717.0570 

2002β  -0.8623 1.0240 13.1580 717.0570 

2003β  -1.5779 1.0292 12.5660 717.0570 

2004β  -0.8273 1.0235 13.1943 717.0570 

2005β  -0.7746 1.0235 13.3154 717.0570 

0α  1.3175 0.0130   

yearsα  -0.0088 0.0015   

uσ  0.3144 0.0098 0.2628  

aσ  0.7109 0.0004   
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A3  R Code for fitting Approximate MCEM with Censored Covariates 
 
 
#### MODEL ##### 
# y|x,u ~ Poisson(mu)   
# log(mu) = beta[0] + beta[1]*age + beta[2]*age^2 +  u 
# u ~ N(0,sdu) 
# where age = Z %*% age.first + years.since.first 
# where age.first is the true age at first observat ion (unknown for the censored owls) 
# log(age.first|years.of.obs) ~ N(alpha[0]+alpha[1] *years.of.obs,sda) 
 
 
# loading necessary libraries  
 
library(mvtnorm) 
 
n <- length(male)   
 
# PUT OWL-SPECIFIC VARIABLES IN m-VECTORS 
 
malem  <- unique(male)  # mx1 vector of unique male  IDs 
m  <- length(malem) # 118 # number of males 
age.first.obs <- rep(0,m) # age at first observatio n or lower bound, for each male 
censorm <- rep(0,m)  # mx1 vector: 1 if age is cens ored for owl j, 0 if not 
years.of.obs  <- rep(0,m)  # total years of observa tion on owl j 
number.of.obs <- rep(0,m)  # number of observations  on owls j; j = 1,...,m 
 
Z <- matrix(rep(0,n*m),n,m) # Design matrix with ma le indicators 
 
for (j in 1:m) { 
 age.first.obs[j] <- min(age[male==malem[j]]) 
 censorm[j]   <- mean(censor[male==malem[j]]) 
 years.of.obs[j]  <- max(age[male==malem[j]])-min(a ge[male==malem[j]]) 
 number.of.obs[j] <- length(fledged[male==malem[j]] ) 
 Z[,j]   <- ifelse(male==malem[j],1,0) 
} 
 
mc <- m - sum(censorm)  # 49  # males with known ag es 
m-mc      # 69 with censored ages 
years.since.first <- age - Z %*% age.first.obs # Ye ars since first observation (nx1  

  # vector) 
 
nc1  <- length(male[censor==1])        # number of observations from censored age owls 
mc1   <- m-mc                          # number of censored age owls 
Zc1 <-Z[(n-nc1+1):n, (mc+1):m]         # the subset  of the Z matrix that deals with  

 # the censored age owls 
################################################### ################################# 
 
 
#### METROPOLIS-HASTINGS SIMULATION FUNCTION #### 
 
### UTILITY FUNCTIONS ### 
 
# Function to generate left-truncated normals 
 
 rtnorm  <- function(mu,sd,lo) { 
 n   <- length(mu) 
 mu + sd*qnorm(runif(n,pnorm((lo-mu)/sd),1)) 
} 
 
 
# Function to generate random ages given lower boun d, from truncated lognormal 
 
acandidate <- function(mua,sda,lowest.age) { 
 # mua is mx1 vector of means for log age at first observation 
 # sda is 1x1 constant standard deviation for log a ge at first observation 
 # lowest.age is mx1 vector of lower bounds for age  
 m <- length(mua) 
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 lacandidate  <- rtnorm(mua,sda,log(lowest.age)) # simulated log ages at first  
     # obs 

 exp(lacandidate) # simulated ages (not logged aged ) at first observation 
 } 
 
metropolis <- function(theta, y.adjust, censor, age .first.obs, years.since.first,  
R=1000) { 
 
 
  A <- matrix(0,nrow=R,ncol=mc1) # Rxm matrix to be  filled in with simulated ages at  

   # first obs. 
 alpha  <- theta$alpha 
 beta  <- theta$beta 
 sdu  <- theta$sdu 
 sda  <- theta$sda 
 
 
   sigma <- theta.old$sdu^2*Zc1%*%t(Zc1) + theta.ol d$sd^2*diag(nc1)   # calculating  

# the covariance  
# matrix for the  
# adjusted y-values 
# calculated using 
# the previous sd.u 
# and sd values  
# from lmer  

 
 # Initialize 
 crita  <- rep(0,mc1) # to store the acceptance cri terion for candidates for  

# age at first observation 
 
 Years.since <- matrix(rep(years.since.first[censor ==1],mc1),nc1,mc1)  

# nc1x  mc1; mc1 copies of years since  
# first observation 

 
 mua <- alpha[1] + alpha[2]*years.of.obs[censorm==1 ] # mean of lognormal  

# regression for censored ages 
 
 A[1,]  <- acandidate(mua,sda,age.first.obs[censorm ==1]) 
  #  Simulated values from the truncated lognormal regression. 
 
 for (r in 2:R) { 
 
  # Generate candidate vector for a 
  a.candidate <- acandidate(mua,sda,age.first.obs[c ensorm==1]) 
 
  ### CALCULATE DENOMINATOR OF ACCEPTANCE CRITERION VECTORS #### 
  age <- Zc1 %*% A[r-1,] + years.since.first[censor ==1]   # nc1x1;  

# age = "age at first  
# observation" + years  
# since first 
 

  fixed  <- beta[1] + beta[2]*age + beta[3]*(age^2)  # nx1; fixed  
      # effects in linear  
      # predictor using  
 # previous simulated a's 

 
 
    Density  <- rep(dmvnorm(as.vector(y.adjust[cens or==1]),fixed, sigma), mc1) 
    # multivariate normal density at the linear pre dictor 
 
  denom <- exp(Density) 
 
 
  ### GET ACCEPTANCE VECTOR FOR A ### 
   
  amat  <- matrix(rep(A[r-1,],mc1),mc1,mc1) # mc1 x  mc1 ; mc1 copies  
         # of previously simulated  

# a's (age at first observation) 
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  diag(amat)  <- a.candidate  # mc1 x mc1;  Replace  diagonal elements  
 # with new candidates 

  Age <- Zc1 %*% amat + Years.since # nc1 x mc1; Fo rm ages from ages at  
# first observation plus years since first 
 

  fixed <- beta[1] + beta[2]*Age + beta[3]*(Age^2) 
   
   

y.adjust.standard <- y.adjust[censor==1]-fixed   # dmvnorm only allows matrices  
 # for the x, not mu 

 
 

Density  <- dmvnorm(t(y.adjust.standard),rep(0,nc1) , sigma)    
  # nm x 1; multivariate normal density at the line ar predictor 

           
  numer  <- exp(Density) 
 
  crita  <- ifelse(numer<denom,numer/denom,1) # mc1  x1; jth element is  

# the acceptance  
# probability for  
# candidate aj 

 
  ### CARRY OUT ACCEPTANCE ### 
 

berna <- rbinom(mc1,1,crita) # mc1 x1; generate mc1  Bernoullis with  
# the candidate a acceptance probabilities 

 
  A[r,] <- berna*a.candidate + (1-berna)*A[r-1,]  #  mc1 x 1; new a is  

# either previous a or       
# new candidate 

   } 
 
 
 
  list(A=A)     # Return R simulated a vectors 
} 
 
################################################### ################################# 
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################################################### ################################### 
 
# Likelihood function used to compute importance we ights 
 
like <- function(theta) { 

 
# replicating the datasets for censored owls  
  

    malevector2 <- rep(male[censor==1], rep(R,nc1))  
    fledgedvector2 <-  rep(fledged[censor==1],rep(R ,nc1)) 
    malem2 <- malem[censorm==1] 
    X.mat <- cbind(rep(1,length(age.metrop)),age.me trop,age.metrop^2) 

Z.mat <- matrix(rep(0,R*nc1*mc1),R*nc1,mc1) # Desig n matrix with male  
# indicators 

    for (j in 1:mc1) { 
      Z.mat[,j] <- ifelse(malevector2==malem2[j],1, 0) 
      } 
 

# calculating the linear predictor, adjusted y, and  the multivariate normal  
# density 

      lin.pred <- X.mat%*%theta$beta+ Z.mat%*%u.old [censorm==1]  
     

      y.adjust <- matrix(lin.pred + 
(fledgedvector2exp(lin.pred))/exp(lin.pred),nrow=R,   

ncol=nc1, byrow=F) 
 

      Xbeta <- matrix(X.mat%*%theta$beta,nrow=R, nc ol=nc1, byrow=F) 
      y.adjust.standard <- y.adjust-Xbeta 
      sigma <- theta$sdu^2*Zc1%*%t(Zc1) + theta.old $sd^2*diag(nc1) 
      s1 <- dmvnorm(y.adjust.standard,rep(0,nc1) , sigma ) 
  

# calculating likelihood for the log first age part  of the model  
 
      avector2 <- as.vector(matrix(sample$A, ncol=1 , byrow=T)) 
      years.of.obsvector2 <-rep(years.of.obs[censor m==1] ,rep(R,mc1)) 
 
      Density2 <-
dnorm(log(avector2),theta$alpha[1]+theta$alpha[2]*y ears.of.obsvector2, 

theta$sda) 
 

     MCnum2 <- rep(1:R,mc1) 
 
    s2 <- tapply(Density2, INDEX=MCnum2, sum) 
 
    return(s1+s2) 
} 
 
################################################### ################################### 
# loading necessary libraries 
#install.packages("lme4", repos = "http://r-forge.r -project.org") 
 
library(MASS) 
library(nlme) 
library(Matrix) 
library(lme4) 
 
 
 
 
# approximate MCEM algorithm for censored ages 
 
 
 
############################### 
 
start.time <-date()              # time that algori thm starts to see how long until  

   # convergence 
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convergence.criterion <- 0.005   # converence crite rion 
iter <- 1                        # iteration number  
maxdif <- 1                      # initial setting for max abs. value 
c <-3                            # amount that the Monte Carlo sample size is  

   # increased by: R <-R+ floor(R/c) 
 
 
 
 
# STARTING VALUES 
 
 
beta.old <- c(-0.70412947,  0.23793109, -0.01462246 ) # from glmmPQL for owls  

 # with known ages 
alpha.old<- c(0.553586294,  0.005887441) # from lm fit of log agefirst on yearsobsm  

   # from owls with known ages 
sdu.old <-  0.2268224 
sda.old <- 0.4560279 
theta.old <- list(beta=beta.old, alpha=alpha.old, s du=sdu.old, sda=sda.old) 
 
R <- 8  # initial R value--this actual makes the in tial R = 10, since 8+floor(8/3) =10 
u.old <- rep(0,m) 
 
 
age2 <- age^2   # creating the X matrix that will b e used in calculating   
X <- cbind(rep(1,n), age, age2) # the adjusted y va lues for the approx 
 
 
print(c("iter", "beta0", "beta1", "beta2","alpha1",  "alpha2",  "sdu", "sd", "sda"), 
quote=F, sep="\t") 
print(round(c(0, unlist(theta.old)),3), sep="\t") 
 
 
# keep track of the estimates 
 
 
beta1.iter <- beta.old[1] 
beta2.iter <- beta.old[2] 
beta3.iter <- beta.old[3] 
alpha1.iter <-alpha.old[1] 
alpha2.iter <- alpha.old[2] 
sdu.iter   <- sdu.old 
sd.iter   <- sd.old 
sda.iter   <- sda.old 
maxdif.iter <- maxdif 
R.iter <- R 
 
 
 
S <- 3 # burn in for regular MCEM before switching to importance weighting 
 
############################## 
while (maxdif>convergence.criterion) { 
 
 
      # Monte Carlo E-step 
 
      # calculating the adjusted response 
 
      lin.pred <- X%*%theta.old$beta+ Z%*%u.old 
 
      y.adjust <- lin.pred + (fledged-exp(lin.pred) )/exp(lin.pred) 
 
 
      # Monte Carlo E-step 
        R0 <- R 
        R <- R0 + floor(R0/c) 
 
       # Obtain R psuedo random variables using the  Metropolis Alg 
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       if (iter<=S) { 
                    sample <- metropolis(theta.old, y.adjust,censor,age.first.obs,  

years.since.first, R=R) 
                    w <- 1 
                    imp.weight1 <- c(rep(1,n-nc1), rep(1,nc1*R)/R) 
                    imp.weight2 <- c(rep(1,mc),rep( 1,mc1*R)/R) 
                     } 
 
       if (iter==S) { 
                    theta.init <- theta.old 
                    sample <- metropolis(theta.old, y.adjust,censor,age.first.obs,  

years.since.first, R=R) 
                    } 
 
         
 
      if (iter >S){ 
          samp.incr <-floor(R0/c) 
          samplek <- metropolis(theta.old,y.adjust, censor,age.first.obs,  

years.since.first, R=samp.incr) 
          sample$A <-matrix(c(t(sample$A),t(samplek $A)), nrow=R0+samp.incr, byrow=T) 
              } 
 
 
 
      # replicating for the augmented data set for the n observations 
 
      malevector <- c(male[censor==0],rep(male[cens or==1], rep(R,nc1))) 
      age.metrop <- matrix(t(Zc1 %*%t(sample$A)), n col=1, byrow=T)+      
                    rep(years.since.first[censor==1 ],rep(R,nc1)) 
      agevector <- c(age[censor==0], age.metrop) 
      agevector2 <- agevector^2 
      fledgedvector <-  c(fledged[censor==0],rep(fl edged[censor==1],rep(R,nc1))) 
 
 
 
 
 
 
 
     # replicating for the augmented data set for e ach owl 
 
 

avector <- c(age.first.obs[censorm==0], as.vector(m atrix(sample$A, ncol=1, 
byrow=T)))     # making the a matrix into an m*r ve ctor 

      years.of.obsvector <-c(years.of.obs[censorm== 0],rep(years.of.obs[censorm==1]  
,rep(R,mc1))) 

 
 
        # compute the importance weights as in Levi ne and Casella 
 
      if (iter >=S) {w <- (like(theta.old)/like(the ta.init)) 
                     imp.weight1 <- c(rep(1,n-nc1),  rep(w,nc1)/sum(w)) 
                     imp.weight2 <- c(rep(1,mc),rep (w,mc1)/sum(w)) 
                    } 
      # M-step 
 

fit1 <-lmer(formula= fledgedvector~agevector+agevec tor2  
+(1|malevector) ,weights=imp.weight1, family=poisso n,  
start=list(malevector=matrix(sdu.old ,1,1)) ) 

 
      beta.new <- fixef(fit1)                           # esimated beta's 
      sdu.new <- sqrt(as.vector(VarCorr(fit1)$male) )    # standard devation of the 

    # random effects distribution 
 
      u.new <-as(ranef(fit1)$male[,1], "vector")        # random effects coef's, need  

# these to calculate the next          
# y-adjusted values 
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      ## fitting the model for the age of first obs ervation 
 
 
      fit2 <- lm(log(avector)~ years.of.obsvector, weights=imp.weight2  ) 
      alpha.new  <-fit2$coef                # esima ted alpha's 
 
     sda.new  <- summary(fit2)$sigma*sqrt(fit2$df.r esidual)/(sqrt(m-2))   # estimated  

# sd for the first 
# observed ages 

 
      ## Setting the new estimates 
 
      theta.new <- list(beta=beta.new, alpha=alpha. new , sdu=sdu.new, sda=sda.new) 
 
 
 
      # check convergence 
      maxdif <- max(abs((unlist(theta.new)-unlist(t heta.old))/unlist(theta.old))) 
 
 
      # print current estimate 
 
      print(round(c(iter, unlist(theta.new), maxdif ),3), sep="\t") 
 
 
      # keep track of the estimates 
 
      beta1.iter <- c(beta1.iter,beta.new[1]) 
      beta2.iter <- c(beta2.iter,beta.new[2]) 
      beta3.iter <- c(beta3.iter,beta.new[3]) 
      alpha1.iter <- c(alpha1.iter,alpha.new[1]) 
      alpha2.iter <- c(alpha2.iter,alpha.new[2]) 
      sdu.iter   <- c(sdu.iter,sdu.new) 
      sda.iter   <- c(sda.iter,sda.new) 
      R.iter <- c(R.iter,R) 
      maxdif.iter <-c(maxdif.iter,maxdif) 
 
 
 
      # replacing old estimates with the new ones 
 
      iter <- iter+1 
 
      beta.old <- beta.new 
      alpha.old <- alpha.new 
      sdu.old  <- sdu.new 
      sda.old  <- sda.new 
      u.old <- u.new 
      theta.old <- theta.new 
 
 
 
      } 
 
end.time <-date()      # obtaining the ending time to see how long until convergence 
 
# print mle 
mle <- theta.old 
mle 
round(unlist(mle),4) 
 
 
################################################### ################################### 
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# Calculating the standard errors  
 
 
# calculating the adjusted y-values 
X.mat <- cbind(rep(1,length(agevector)),agevector, agevector2) 
Z.mat <- matrix(rep(0,length(malevector)*m),length( malevector),m) # Design matrix  

# with male  
# indicators 

    for (j in 1:m) { 
      Z.mat[,j]    <- ifelse(malevector==malem[j],1 ,0) 
      } 
lin.pred <- X.mat%*%mle$beta+ Z.mat%*%u.old 
y.adjust <- lin.pred + (fledgedvector-exp(lin.pred) )/exp(lin.pred) 
Rvector <-c(rep(0,n-nc1),rep(1:R, nc1)) 
censorvector <-  c(censor[censor==0],rep(censor[cen sor==1],rep(R,nc1))) 
yearvector <-c(year[censor==0],rep(year[censor==1], rep(R,nc1))) 
d4 <- data.frame(malevector,agevector,agevector2, y .adjust,Rvector, 
censorvector,yearvector) 
 
d5 <- orderBy(~censorvector+malevector+Rvector, dat a=d4) 
attach(d5) 
 
X.mat <- cbind(rep(1,length(agevector)),agevector, agevector2) 
 
 
# Calculating first derivative information for know n age owls 
 
bmc <- matrix(rep(0,3*(mc)),3,mc) 
sumc <- rep(0,mc) 
for (j in 1:mc){ 
    nobs <- length(y.adjust[malevector==malem[j]]) 
    V.inv <- solve(mle$sdu^2*matrix(rep(1,nobs^2),n obs,nobs)+diag(nobs)) 
    X.matrix <- matrix(X.mat[malevector==malem[j]],  ncol=3) 
    y.adjust.vect <- y.adjust[malevector==malem[j]]  
 
    bmc[,j] <- t(X.matrix)%*%V.inv%*%y.adjust.vect-
t(X.matrix)%*%V.inv%*%X.matrix%*%mle$beta 
    sumc[j] <- .5*t(y.adjust.vect-
X.matrix%*%mle$beta)%*%V.inv%*%matrix(rep(1,nobs^2) ,nobs,nobs)%*%V.inv%*%(y.adjust.vec
t-X.matrix%*%mle$beta)-sum(diag(V.inv%*%matrix(rep( 1,nobs^2),nobs,nobs))) 
} 
 
 
# Calculating first derivative information for cens ored age owls 
 
bmc1 <- matrix(rep(0,3*(mc1*R)),3,(mc1*R)) 
sumc1 <- rep(0,mc1*R) 
for (j in (mc+1):m){ 
        for (r in 1:R){ 
            index <- (j-mc-1)*R+r 
            nobs <- length(y.adjust[malevector==mal em[j] & Rvector==r]) 
            V.inv <- solve(mle$sdu^2*matrix(rep(1,n obs^2),nobs,nobs)+diag(nobs)) 
            X.matrix <- matrix(X.mat[malevector==ma lem[j]& Rvector==r], ncol=3) 
            y.adjust.vect <- y.adjust[malevector==m alem[j]& Rvector==r] 
 
            bmc1[,index] <- t(X.matrix)%*%V.inv%*%y .adjust.vect-
t(X.matrix)%*%V.inv%*%X.matrix%*%mle$beta 
            sumc1[index] <- .5*t(y.adjust.vect-
X.matrix%*%mle$beta)%*%V.inv%*%matrix(rep(1,nobs^2) ,nobs,nobs)%*%V.inv%*%(y.adjust.vec
t-X.matrix%*%mle$beta)-sum(diag(V.inv%*%matrix(rep( 1,nobs^2),nobs,nobs))) 
      } 
} 
 
 
 
b0 <- c(bmc[1,], bmc1[1,]) 
b1 <- c(bmc[2,], bmc1[2,]) 
b2 <- c(bmc[3,], bmc1[3,]) 
su <- c(sumc, sumc1) 
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# Calculating first derivative information for log age at fist obs  
 
a0 <- (log(avector)-mle$alpha[1]-mle$alpha[2]*years .of.obsvector)/mle$sda^2 
a1 <- years.of.obsvector*( log(avector)-mle$alpha[1 ]-mle$alpha[2]* 
years.of.obsvector)/mle$sda^2 
sa <- ((-1/mle$sda) +((log(avector)-mle$alpha[1]- m le$alpha[2]* 
years.of.obsvector)^2/mle$sda^3)) 
 
 
# Calculating the approximate info 
info <-  matrix(rep(0,49),nrow=7) 
weight <-  c(rep(1,mc),rep(1/R,mc1*R)) 
for (i in 1:(mc+mc1*R)){ 
 
        info <- info +weight[i]*c(b0[i],b1[i],b2[i] , a0[i], a1[i], su[i], 
sa[i])%*%t(c(b0[i],b1[i],b2[i], a0[i], a1[i], su[i] , sa[i])) 
 
 
} 
 
 
var.cov <-solve(info) 
se <- sqrt(diag(var.cov)) 
se 
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A4  R Code for fitting Regression Calibration with Censored Covariates 
 
 
 
# loading necessary libraries 
library(lme4) 
 
# fitting a regression model for the log age of fir st obs for known age owls 
 
 
fit <- lm(log(age.first.obs)~ years.of.obs, subset= censorm==0  ) 
sda <- summary(fit)$sigma 
alpha <- fit$coef 
 
 
# calculating the new age based on the regression o utput and conditional  
# on the lower bound 
mu.a <- alpha[1] + alpha[2]*years.of.obs[censorm==1 ] 
 
expect.age <- mu.a+  sda*dnorm((log(age.first.obs[c ensorm==1])-mu.a)/sda)/(1-
pnorm((log(age.first.obs[censorm==1])-mu.a)/sda)) 
age.first.new <- c(age.first.obs[censorm==0], exp(e xpect.age)) 
 
 
age.new <-  Z %*% age.first.new + years.since.first  
age.new2 <-   age.new^2 
 
 
# fitting with lmer 
 
yearfactor <-as.factor(year) 
fit.replace.expected <-lmer(formula= fledged ~  age .new + age.new2+  yearfactor + 
(1|male), family=poisson) 
fit.replace.expected  
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A5  Simulation Details 
 
 

The simulation study looked at six different setting of sample size and 

proportion of censored observations.  The sample sizes used were 50 and 400 owls.  

The proportion of censored observations that were studied was 10%, 25%, and 50%.  

We used a factorial structure with a Monte Carlo sample size of 200 for each setting.  

These setting were chosen to give a range of possible situations that would be 

encountered by the biologists and to match the setting for the Northern Spotted Owl 

study.   

After randomly selecting known age owls from the Spotted Owl study, we 

randomly generated random effects from a ( )20, uN σ  distribution, with 0.3uσ = .  The 

linear predictor was then found using the values of 0 -1.8070β = , 1 0.3855β = ,  and 

2 -0.0235β = .  These values all roughly match the estimated values for the Spotted 

Owl study.  We then randomly sampled a percentage of the owls to have censored 

ages.  Again to match the Spotted Owl study, we used 3 years as the lower bound for 

the first observed age for the censored owls. 

The resulting data sets were then analyzed using (1) maximum likelihood 

estimator via the MCEM algorithm for censored covariates, (2) the approximate 

MCEM estimator, (3) the regression calibration estimator, (4) the naïve estimator in 

which censored ages are replaced by their lower bounds (to demonstrate the 

unsuitability of this approach, which may seem tempting to wildlife biologists), and 

(5) the GLMM estimator using only owls with known ages.  To avoid computational 
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difficulties resulting from large Monte Carlo sample sizes in the MCEM algorithms, 

convergence of these algorithms was either relative parameter convergence of 0.5% or 

11 total iterations.   

 The starting values for the approximate MCEM algorithm were set as the final 

estimates from the regression calibration model.  In addition, the starting values for the 

MCEM algorithm were the final estimates from the approximate MCEM algorithm. 
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A6  Simulation Results 
 

 
 
Table A6.1 Descriptive statistics of estimates of 0β (true value -1.8070) 
 

Sample size 50 400 
Proportion censored .10 .25 .50 .10 .25 .50 
MCEM       
mean -1.8276 -1.7413 -1.6524 -1.7660 -1.7077 -1.6082 
bias -0.0206 0.0657 0.1546 0.0410 0.0993 0.1988 
variance 0.2605 0.2623 0.2164 0.0321 0.0260 0.0214 
MSE 0.2598 0.2654 0.2393 0.0336 0.0357 0.0608 
Monte Carlo SD 0.5104 0.5122 0.4652 0.1791 0.1612 0.1463 
Mean reported SE 0.5327 0.5114 0.4874 0.1637 0.1612 0.1559 
       
Approx MCEM       
mean -1.8580 -1.7536 -1.6624 -1.7786 -1.7145 -1.6194 
bias -0.0510 0.0534 0.1446 0.0284 0.0925 0.1876 
variance 0.2573 0.2522 0.2002 0.0317 0.0254 0.0197 
MSE 0.2588 0.2539 0.2201 0.0324 0.0339 0.0548 
Monte Carlo SD 0.5073 0.5022 0.4474 0.1781 0.1594 0.1403 
Mean reported SE 0.2771 0.2672 0.2552 0.0787 0.0775 0.0759 
       
Regression Calibration       
mean -1.8897 -1.8489 -1.8585 -1.8053 -1.7973 -1.7905 
bias -0.0827 -0.0419 -0.0515 0.0017 0.0097 0.0165 
variance 0.2774 0.2899 0.2643 0.0329 0.0291 0.0265 
MSE 0.2830 0.2903 0.2656 0.0328 0.0291 0.0267 
Monte Carlo SD 0.5266 0.5384 0.5141 0.1815 0.1705 0.1628 
Mean reported SE 0.5204 0.5225 0.5415 0.1777 0.1807 0.1845 
       
Naïve Replace       
mean -1.7381 -1.5504 -1.3969 -1.6718 -1.4952 -1.3311 
bias 0.0689 0.2566 0.4101 0.1352 0.3118 0.4759 
variance 0.2358 0.2103 0.1728 0.0284 0.0216 0.0140 
MSE 0.2395 0.2751 0.3402 0.0465 0.1188 0.2404 
Monte Carlo SD 0.4856 0.4586 0.4157 0.1684 0.1471 0.1182 
Mean reported SE 0.4831 0.4424 0.3964 0.1655 0.1521 0.1360 
       
Known Only       
mean -1.9378 -1.8681 -1.9470 -1.8252 -1.8299 -1.8438 
bias -0.1308 -0.0611 -0.1400 -0.0182 -0.0229 -0.0368 
variance 0.3130 0.3802 0.6864 0.0374 0.0384 0.0662 
MSE 0.3288 0.3821 0.7026 0.0376 0.0388 0.0672 
Monte Carlo SD 0.5595 0.6166 0.8285 0.1933 0.1960 0.2573 
Mean reported SE 0.5486 0.5942 0.7542 0.1866 0.2053 0.2522 
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Table A6.2 Descriptive statistics of estimates of 1β  (true value 0.3855) 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample size 50 400 
Proportion censored .10 .25 .50 .10 .25 .50 
MCEM       
mean 0.4065 0.3783 0.3543 0.3711 0.3547 0.3267 
bias 0.0210 -0.0072 -0.0311 -0.0143 -0.0307 -0.0587 
variance 0.0192 0.0181 0.0154 0.0021 0.0020 0.0016 
MSE 0.0195 0.0180 0.0163 0.0023 0.0029 0.0050 
Monte Carlo SD 0.1384 0.1345 0.1240 0.0457 0.0443 0.0394 
Mean reported SE 0.1462 0.1387 0.1328 0.0435 0.0428 0.0413 
       
Approx MCEM       
mean 0.4003 0.3658 0.3390 0.3751 0.3564 0.3282 
bias 0.0149 -0.0197 -0.0465 -0.0104 -0.0290 -0.0573 
variance 0.0186 0.0172 0.0137 0.0021 0.0019 0.0014 
MSE 0.0188 0.0175 0.0158 0.0022 0.0027 0.0047 
Monte Carlo SD 0.1364 0.1312 0.1170 0.0457 0.0433 0.0374 
Mean reported SE 0.0757 0.0709 0.0664 0.0196 0.0189 0.0185 
       
Regression Calibration       
mean 0.4091 0.3932 0.3937 0.3823 0.3796 0.3752 
bias 0.0237 0.0077 0.0083 -0.0031 -0.0059 -0.0102 
variance 0.0203 0.0203 0.0184 0.0022 0.0022 0.0019 
MSE 0.0208 0.0202 0.0184 0.0022 0.0022 0.0020 
Monte Carlo SD 0.1426 0.1424 0.1357 0.0468 0.0468 0.0437 
Mean reported SE 0.1405 0.1406 0.1458 0.0474 0.0483 0.0492 
       
Naïve Replace       
mean 0.3768 0.3310 0.3057 0.3555 0.3171 0.2855 
bias -0.0086 -0.0545 -0.0797 -0.0300 -0.0683 -0.1000 
variance 0.0179 0.0160 0.0154 0.0019 0.0018 0.0013 
MSE 0.0179 0.0189 0.0216 0.0028 0.0065 0.0113 
Monte Carlo SD 0.1337 0.1265 0.1239 0.0437 0.0426 0.0356 
Mean reported SE 0.1335 0.1258 0.1199 0.0452 0.0430 0.0407 
       
Known Only       
mean 0.4234 0.4000 0.4268 0.3898 0.3904 0.3937 
bias 0.0380 0.0145 0.0414 0.0044 0.0049 0.0082 
variance 0.0223 0.0273 0.0507 0.0025 0.0027 0.0047 
MSE 0.0236 0.0273 0.0522 0.0025 0.0027 0.0047 
Monte Carlo SD 0.1492 0.1651 0.2252 0.0498 0.0519 0.0685 
Mean reported SE 0.1484 0.1611 0.2061 0.0499 0.0550 0.0676 
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Figure A6.1 Monte Carlo sampling distributions for n=50 and 10% censored for the 
estimators of 0β , the intercept, for the 5 different fitting methods. 
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Figure A6.2 Monte Carlo sampling distributions for n=50 and 10% censored for the 
estimators of 1β , the age term, for the 5 different fitting methods. 



 101 

MCEM

Coeff icients of the quadratic age term

N
um

be
r 

of
 S

im
ul

at
ed

 S
am

pl
es

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01

0
20

40
60

80

Approximate MCEM

Coeff icients of the quadratic age term

N
um

be
r 

of
 S

im
ul

at
ed

 S
am

pl
es

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01

0
20

40
60

80

Regression Calibration

Coeff icients of the quadratic age term

N
um

be
r 

of
 S

im
ul

at
ed

 S
am

pl
es

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01

0
20

40
60

80

Naïve Replacement

Coeff icients of the quadratic age term
N

um
be

r 
of

 S
im

ul
at

ed
 S

am
pl

es

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01

0
20

40
60

80

Known Age Only

Coeff icients of the quadratic age term

N
um

be
r 

of
 S

im
ul

at
ed

 S
am

pl
es

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01

0
20

40
60

80

 
Figure A6.3 Monte Carlo sampling distributions for n=50 and 10% censored for the 
estimators of 2β , the age2 term, for the 5 different fitting methods. 
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Figure A6.4 Monte Carlo sampling distributions for n=400 and 10% censored for the 
estimators of 0β , the intercept, for the 5 different fitting methods. 
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Figure A6.5 Monte Carlo sampling distributions for n=400 and 10% censored for the 
estimators of 1β , the age term, for the 5 different fitting methods. 
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Figure A6.6 Monte Carlo sampling distributions for n=400 and 10% censored for the 
estimators of 2β , the age2 term, for the 5 different fitting methods. 
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Figure A6.7 Monte Carlo sampling distributions for n=50 and 25% censored for the 
estimators of 0β , the intercept, for the 5 different fitting methods. 
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Figure A6.8 Monte Carlo sampling distributions for n=50 and 25% censored for the 
estimators of 1β , the age term, for the 5 different fitting methods. 
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Figure A6.9 Monte Carlo sampling distributions for n=50 and 25% censored for the 
estimators of 2β , the age2 term, for the 5 different fitting methods. 
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Figure A6.10 Monte Carlo sampling distributions for n=400 and 25% censored for 
the estimators of0β , the intercept, for the 5 different fitting methods. 
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Figure A6.11 Monte Carlo sampling distributions for n=400 and 25% censored for 
the estimators of1β , the age term, for the 5 different fitting methods. 
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Figure A6.12 Monte Carlo sampling distributions for n=400 and 25% censored for 
the estimators of2β , the age2 term, for the 5 different fitting methods. 
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Figure A6.13 Monte Carlo sampling distributions for n=50 and 50% censored for the 
estimators of 0β , the intercept, for the 5 different fitting methods. 



 112 

MCEM

Coeff icients of the linear age term

N
um

be
r 

of
 S

im
ul

at
ed

 S
am

pl
es

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Approximate MCEM

Coeff icients of the linear age term

N
um

be
r 

of
 S

im
ul

at
ed

 S
am

pl
es

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Regression Calibration

Coeff icients of the linear age term

N
um

be
r 

of
 S

im
ul

at
ed

 S
am

pl
es

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Naïve Replacement

Coeff icients of the linear age term
N

um
be

r 
of

 S
im

ul
at

ed
 S

am
pl

es

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Known Age Only

Coeff icients of the linear age term

N
um

be
r 

of
 S

im
ul

at
ed

 S
am

pl
es

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

 
Figure A6.14 Monte Carlo sampling distributions for n=50 and 50% censored for the 
estimators of 1β , the age term, for the 5 different fitting methods. 
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Figure A6.15 Monte Carlo sampling distributions for n=50 and 50% censored for the 
estimators of 2β , the age2 term, for the 5 different fitting methods. 
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Figure A6.16 Monte Carlo sampling distributions for n=400 and 50% censored for 
the estimators of1β , the age term, for the 5 different fitting methods. 
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A7 Regression Calibration Spotted Owl Analysis 
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Figure A7.1 Northern Spotted Owl Model Fits.  The darker lines are the regression 
calibration analysis and the lighter lines are the known age owls only.  The dashed 
lines are the 95% confidence intervals. 
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Table A7.1 Regression calibration estimation results for Cle Elum  
 
 

 
Regression Calibration 

 All Males 
lmer Known Age Males Only 

Parameter Estimate SE Estimate SE 

0β  -0.0108 0.3071 0.2118 0.7419 

ageβ  0.1445 0.0595 0.2417 0.0880 

2age
β  -0.0079 0.0039 -0.0132 0.0062 

1990β  -0.1197 0.3050 -1.1714 1.0134 

1991β  -0.5350 0.3017 -0.8920 0.8327 

1992β  -0.0175 0.2839 -0.2413 0.7657 

1993β  -1.9605 0.4110 19.1415 3042.1741 

1994β  -0.0787 0.2907 -0.2921 0.7634 

1995β  -0.7547 0.3179 -1.1262 0.7938 

1996β  -0.1180 0.2997 -0.5873 0.7686 

1997β  -2.4324 0.5664 -19.2933 2755.8640 

1998β  -0.1361 0.3007 -0.7237 0.7715 

1999β  -0.9762 0.3699 -1.1869 0.7928 

2000β  -0.5184 0.3224 -1.2653 0.7885 

2001β  -0.4226 0.3285 -1.0528 0.7854 

2002β  -0.6659 0.3660 -1.6525 0.8534 

2003β  -0.2838 0.3226 -0.8773 0.7867 

2004β  -0.5657 0.3391 -0.8920 0.7847 

2005β  -0.6424 0.3472 -1.0588 0.7959 

0α  0.5536 0.0946   

yearsα  0.0059 0.0197   

uσ  0.0000  0.1798  

aσ  0.4560    
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Table A7.2 Regression calibration estimation results for H.J. Andrews 
  
 

 
Regression Calibration 

 All Males 
lmer Known Age Males Only 

Parameter Estimate SE Estimate SE 

0β  -0.1166 0.7384 -1.3088 0.8309 

ageβ  0.1625 0.0431 0.4531 0.1069 

2age
β  -0.0077 0.0022 -0.0254 0.0069 

1987β  -0.4870 0.7656 -17.5988 5717.5404 

1988β  -0.5153 0.7265 -0.4866 1.0280 

1989β  -1.3281 0.7404 -0.9190 0.8886 

1990β  -1.1078 0.7281 -0.6830 0.8155 

1991β  -1.4362 0.7356 -2.0862 1.0065 

1992β  -0.3166 0.7144 -0.0005 0.7421 

1993β  -17.9195 841.6792 -17.7043 1565.3191 

1994β  -1.4881 0.7321 -1.1521 0.7923 

1995β  -1.6981 0.7387 -1.6220 0.8175 

1996β  -0.6398 0.7184 -0.3271 0.7356 

1997β  -1.5459 0.7341 -1.3016 0.7760 

1998β  -1.2439 0.7245 -1.0785 0.7616 

1999β  -1.9178 0.7405 -1.0082 0.7657 

2000β  -0.8792 0.7195 -1.0164 0.7661 

2001β  -0.7329 0.7171 -0.4137 0.7360 

2002β  -0.8529 0.7194 -1.1963 0.7716 

2003β  -1.7204 0.7357 -1.2249 0.7745 

2004β  -0.4953 0.7149 -0.2838 0.7323 

2005β  -2.1330 0.7569 -1.5017 0.8226 

0α  1.0930 0.0843   

yearsα  -0.0133 0.0161   

uσ  0.0000  0.0000  

aσ  0.5863    
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Table A7.3 Regression calibration estimation results for Tyee 
 
 

 
Regression Calibration 

 All Males 
lmer Known  

Age Males Only 
Parameter Estimate SE Estimate SE 

0β  -0.5562 0.6334 14.7886 717.0570 

ageβ  0.2886 0.0482 0.3497 0.0697 

2age
β  -0.0172 0.0029 -0.0221 0.0046 

1985β  -2.5997 1.1864   

1986β  -0.3834 0.6502   

1987β  -1.0214 0.7691   

1988β  -1.9481 0.7663   

1989β  -0.8210 0.6574 13.3596 717.0573 

1990β  -0.9569 0.6335 13.0984 717.0571 

1991β  -1.4705 0.6448 12.7455 717.0571 

1992β  -0.6796 0.6278 13.0840 717.0570 

1993β  -2.2900 0.6777 11.8633 717.0571 

1994β  -1.0526 0.6344 13.2773 717.0570 

1995β  -1.6917 0.6510 12.6601 717.0570 

1996β  -0.4965 0.6285 13.6158 717.0570 

1997β  -1.0455 0.6379 12.7755 717.0570 

1998β  -0.9287 0.6349 13.1168 717.0570 

1999β  -1.3666 0.6479 12.7374 717.0570 

2000β  -1.1253 0.6422 12.9589 717.0570 

2001β  -0.3041 0.6278 13.8331 717.0570 

2002β  -0.9163 0.6352 13.1580 717.0570 

2003β  -1.6057 0.6505 12.5660 717.0570 

2004β  -0.8761 0.6323 13.1943 717.0570 

2005β  -0.7855 0.6324 13.3154 717.0570 

0α  0.9340 0.0624   

yearsα  -0.0230 0.0113   

uσ  0.2862  0.2628  

aσ  0.5210    

 



 
 
 
 
 


