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Generalized Linear Mixed Models with Censored Covaates
1. INTRODUCTION

In a typical longitudinal study of age-specific reguctive success, researchers
observe many animals over the course of many yaadspbserve one or more
measures of reproductive success on each anintalyeac. The measure could be a
binary outcome for a successful mating, a coutlh@number of young produced in a
year, or a count of the number of young produceal year that survive and contribute
to the breeding population. The researchers mal Wi estimate the age profile for
mean reproductive success, to determine the aggsiatal reproductive success, to
test for a decline in reproductive success at @ges, or to examine physiological or
environmental variables that are associated wighly@eproductive success (after
accounting for the effect of age). They may wislld these examinations either
separately for males and females or jointly. Refees on reproductive success
include Clutton Brock (1988) and others.

If the measures of reproductive success are bisaryis of Bernoulli trials, or
small integer counts, it is appropriate for reskars to consider binomial or Poisson
regression models, i.e. generalized linear mod&ld/s). In longitudinal studies, a
response is measured repeatedly on each of sewenadls and different responses
from a given animal should not be considered inddpaet. A common modeling
approach for handling this lack of independencelwves the inclusion of random
effects for the different animals. Generalize@#inmixed models (GLMMs; see
McCulloch and Searle, 2001) permit the inclusioswth random effects along with

fixed effects in generalized linear models. Thispallow for departures from the



binomial and Poisson distributions with an addigiloparameter for extra-binomial or
extra-Poisson variation. GLMMs have been usedtiodying age-specific
reproductive success in barn owls (Altwegg e@07), snow petrels (Angelier et al.
2007), brown thornbills (Green 2001), goshawkau@ér 2005), brown bears
(Zedrosser, et al. 2007), mountain goats (CotéaFRsnchet 2001), and
sparrowhawks (Newton, Rothery 2002).

GLMMs offer a useful approach to these biologicalestigations. They
permit the inclusion of time-dependent and timeejmehdent explanatory variables,
detailed modeling of age effects and variance tehaslead to conclusions about
between-male and between-female variability. Farrtiore, easy-to-use computer
routines are available, such as GLIMMIX in SAS (&oénberger 2005 and
Schabenberger 2007) and Imer in R (Bates 2005 atesE2007).

In practice, researchers observe reproductive ssaoeasures on some of the
animals with known ages (because the animals hese bbserved their entire lives)
and some animals of unknown age (because theyadeies at the time of their first
observation). A common practice for investigatudrage-specific reproductive
success in this case is to use only those anim#iskwown ages. This is true in
studies of snow petrels (Angelier et al. 2007)nb@awls (Altwegg et al. 2007),
goshawks (Kruger 2005), and sparrowhawks (Newtath&y 2002). In a northern
spotted owl (Strix occidentalis caurina) investiga which motivated this work,
yearly reproductive responses were observed om#0d owls of known ages, 463
male owls of unknown ages, 463 female owls of knage, and 579 female owls of

unknown ages.



There is some information available, though, frova dwls of unknown ages,
and there may be substantially more power and sicecavailable for answering the
scientific questions of interest by incorporatingr in the analysis. In fact, the ages
are known to exceed some number, so they are ‘cigigored.” At the time that an
adult spotted owl is first observed, for examphe, biologists can conclude from its
adult characteristics that it is at least 3 yedas &urthermore, if such an owl is
observed in the reproductive success study foreHdsy then it is known to be at least
13 years old in the f0year of observation. It seems very likely thas thartial
information could be useful in the estimation oéapecific reproductive success
models.

This dissertation, therefore, is about GLMM estimatvith right censored
explanatory variables, with specific attentionhe problems inherent in studies of
age-specific reproductive success. The goalsoadedcribe the increased efficiency
that is available by incorporating animals whosesagre only known to exceed some
number of years, to describe potential biasesrésatlt by replacing unknown ages by
some fixed number, and to describe approacheslibttNEestimation that include
animals with censored ages. Particular emphadlievon the study of approaches
that are easy to use with currently available safey
1.1 Example

In a recent study on Northern Spotted Owls (Lo2€XI8) researchers are
interested in determining the age of peak reprodeictutput and other features of
age-specific reproductive success. The study stangf three areas in Oregon and

one area in Washington, collected from 1984 ta20@5. One response of interest is



the number of young fledged per year, which rariges 0 to 3 (with 3 being very

rare).
Cle Elum H.J. Andrews
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Figure 1.1 Number of fledglings versus male age the four stas. The solid lines
are lowess (locally-weighed polynomial regressimosther) curves.

Figure 1.1 shows the number fledged for the knagea-males vs. the male age
for the four study areas. There appears to be@ease in the number fledged at
early ages, with some leveling off and possiblyeardase in reproductive success as

the male age increases.



If the birds were first observed and banded agyfieds or sub-adults, then the
exact age is known. These birds were recordé€d asor 2 year olds depending on
physical characteristics. However, if the birdsevierst observed as an adult, then it
is only known that their age at first observatisrai least 3 years. At one of the study
sites, only 40% of the owl/years observed werenoiin age owls. Restricting
attention to known age owls is an easy solutiontleiinclusion of the additional owls
with censored ages—using statistical techniquesdodling missing data—may
result in important gains in efficiency and prearsin answering the scientific
guestions of interest.

1.2 Contributions of the Dissertation

In this dissertation, we propose three methodéttorg GLMMs with
censored explanatory variables. The first is arBMIGalgorithm for maximum
likelihood estimation that treats both the randdfaats and known ages as “missing
data.” The second is an approximate MCEM algorithat only treats the known
ages as “missing data” and uses a Laplace apprtrimia integrate out the random
effects. The third is a regression calibrationhodtthat replaces the censored ages
with their expected value given the lower bound posisible covariates.

Our goals are to clarify the potential efficien@jrgs and to provide techniques
for incorporating animals with censored ages inem@&LMM analysis for age-specific
reproductive success. We are particularly intetestdinding easy-to-use solutions, if
possible. Our statistical interest is in the Sgb®avl study in particular, but the same
data characteristics are found in other studiesgefspecific reproductive success. We

can imagine that there are other applications d¥iGls in which a covariate is



censored and our results would pertain to thosstiAand Hoch (2004) report a
regression problem, for example, in which the exalary variable “household
income” is obtained from a survey questionnairdighest category “greater than
$80,000.” The main effort here, though, is diredtmdards the particular problems
encountered in the study of age-specific reprogtacuccess from wild animal
populations.

Chapter 2 presents a likelihood analysis baseti@iiarkov Chain
Expectation Maximization (MCEM) Algorithm. The Eegt of the algorithm uses
Monte Carlo simulation to approximate the expee@de of the “complete data” log
likelihood and the simulation requires the usehef Metropolis-Hastings algorithm (as
in McCulloch and Searle, 2001). While the M-stephef algorithm is fairly
straightforward, the overall algorithm is intricasbow, and probably difficult for non-
statisticians to understand.

One approximation in Chapter 3 uses a Laplace appation to the complete
data log likelihood, which permits the use of eérigtGLMM modules within a
broader EM Algorithm. The E-step, however, stijuges the Metropolis-Hastings
algorithm and, therefore, does not go very fannmpdifying the more full likelihood
approach.

The regression calibration approach, which is based commonly used
technique for regression estimation in the presefexplanatory variable
measurement errors, is more intuitive and eas¢o ln a first stage of the analysis,
the user estimates the unknown parameters in apildp distribution for the

covariate that is censored on some subjects.sétand stage, a GLMM module is



used but with censored ages replaced by their asttrexpectations given that they
exceed the specified lower bound (and with unknparameters replaced by their
first-stage estimates).

A simulation study in Chapter 3 clarifies the saimgldistributions of the three
estimators and compares their characteristicsagetlof the naive estimator that
excludes animals with unknown ages and to the restimator that replaces unknown
ages by their lower bounds. There is convincinglewce of substantial gains in
precision due to including the subjects with ceadarovariates.

The simulation suggests that the regression céliorastimator performs
quite well. Given it's simplicity, it strikes us #se right approach for biologists to use.
Furthermore, it allows for more complex modelingafidom effects. In particular, the
user can formulate a model in which there are randffects due to the male parent
and to the female parent in a single model (praVvithere are enough partner changes
to make the model identifiable), and to included@m effects due to different years.
While it would be possible to include these mu#iphndom effects in the MCEM

approaches, the complexity and slowness would riteda practically unusable.

1.3 Organization of the Dissertation
The rest of the dissertation proceeds as follomsChapter 2, we propose a
Monte Carlo EM algorithm for generalized linear euxmodels with censored
covariates that treats both the random effectsl@mdensored explanatory variables
as “missing data.” This algorithm is then demaatsid on a subset of the Northern

Spotted Owl data set. Chapter 3 details the tvgeeeso-compute approximations and



a simulation study, which shows the increased pratidue to including owls with
censored ages and clarifies the operating charstoterof the three estimators that do
include these owls. Chapter 4 contains a discaossithe conclusions and possible
directions of future research. A major conclus®that the regression calibration
procedure offers an easy-to-apply approach thasuhstantially improve power and

efficiency by including those units with censoredariates.



2. Likelihood Analysis for Generalized Linear Mixed Models with Censored
Covariates

John N. Giovanini and Daniel W. Schafer
Department of Statistics,
Oregon State University,
Corvallis, OR 97331
"email: giovanin@science.oregonstate.edu
“email: schafer@science.oregonstate.edu

2.1 Abstract

This paper is about likelihood analysis of geneglilinear mixed models (GLMMS)
when some observational units have censored vafusms explanatory variable.
Special attention in given to age-specific repraisecsuccess studies from wild
animal populations when some animals have knows age some have ages that are
only known to exceed a lower bound. GLMMs pernsnhaall integer count
response—such as the number of offspring produtadseason—and address the
non-independence of repeated observations on the aaimal in different seasons
with random animal effects. A Monte Carlo ExpecatMaximization (MCEM)
algorithm is proposed for maximum likelihood an&édy3 he random effects and the
censored covariates are both treated as “missitag’d&he algorithm is demonstrated

on a recent Northern Spotted Owl dataset.
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2.2 Introduction

This work was motivated by an investigation of tastaffecting individual
reproductive success in a wild animal populatiomarticular, Figure 2.1 shows the
number of fledged spotted owls in a year versugrmatent age in that year, for
multi-year observations on 108 male northern sgattels. The solid points are the
sample means for each age and the vertical lireaproximate 95% confidence
intervals (data from Pete Loschl, personal commation; see Loschl, 2008). The
smooth curve is a nonparametric lowess fit, whrehidates an apparent increase in
mean number fledged up to a maximum of 0.7 fledgliper year at about age 9, with

a subsequent decrease.
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Figure 2.1 Number of fledglings versus male parent age frontiple-year
observations on each of 108 Northern Spotted Ovi¢sna the Oregon Coast Range;
with sample means for each age, naive 95% confeligrtervals; and a lowess
(locally-weighed polynomial regression soother)veur
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More formal investigation into patterns of age-sfieceproductive success
should account for dependence of different obsemsatfrom the same male. Figure
2.2 reproduces Figure 2.1 but includes the fit ¢g@@aeralized linear mixed model
(GLMM) that accounts for the dependence with randatercepts for the 108
different males. The solid curve is the GLMM esitmof a log-linear model with
linear and quadratic effects of age, averaged alenales. The solid curve is the
approximate maximum likelihood estimate of this GiAM The dashed lines show a
95% confidence band for the mean fixed effect ollenage. (This confidence band

includes between-owl variability in intercepts.)
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Figure 2.2Number of fledglings versus male age with GLMMféit a typical year
and an approximate 95% confidence band (Oregont@zasye study area)
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Such a GLMM is useful for investigating severakstific questions about
age-specific reproductive success: 1.What evidentteere that male reproductive
success decreases in older ages? 2. What is tha¢ adpch maximal mean
reproductive success is achieved? 3. What propodioariability in reproductive
success can be explained by between-male diffeseafter accounting for effects of
age? 4. What evidence is there that various lapesaad climate variables affect
mean number fledged, after accounting for the &ffetparent age?

When number of fledglings or some other small iategpunt is used as a
measure of reproductive success, these types sfigag (and similar questions for
females) can be addressed with GLMM analysis (M€hl & Searle 2001 and
Jiming, 2007). The measure of reproductive sucsatsken to have a Poisson (or
possibly binomial) distribution with a mean thapdads on parent age and other
explanatory variables, but with the inclusion aidam effects to account for variable
reproductive successes between males (or femalésg.has been used, for example
in studies of barn owls (Altwegg et al. 2007), sretrels (Angelier et al. 2007),
brown thornbills (Green 2001), goshawks (Kruger®00rown bears (Zedrosser, et
al. 2007), mountain goats (C6té, Festa-Bianchel R@hd sparrowhawks (Newton,
Rothery 2002).

Our interest is in the use of GLMMS for this purpaghen a substantial
number of the animals in the data set have agéstbanly known to exceed some
lower bound. The plots and fitted models in theifegabove, for example, are based
on 542 observations from 108 male owls whose agekrown exactly. Also

available are 839 additional observations from dfle owls whose exact ages on
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their first season of observation are only knowestoeed 3 years. When the
researchers first band an owl, they might conclule certainty—from adult
characteristics—that the owl is at least 3 yeadls & the following year, therefore,
they can be sure it is at least 4 years old. Afteyears of observation, the
researchers can be sure that the owl is at leagdr3 old.

It is common for researchers to exclude the animvdls unknown ages from
the statistical analysis of age-specific reprodigctiuccess. This is true in the studies
of spotted owls (Loschl, 2008), snow petrels (Argyedt al. 2007), barn owls
(Altwegg et al. 2007), goshawk (Kruger 2005), apdrsowhawks (Newton, Rothery
2002). While the common practice of excluding aasrof unknown ages isn’t likely
to induce any bias into the scientific conclusiahs, incorporation of information
from the owls with censored ages may provide ingurgains in efficiency and
power. One does need to consider the possiblehitbatge-specific reproductive
success curves are different for the known agéescensored animals. This is
especially true if the animals that are excludednfthe analysis are the older animals
that were first observed as adults at the beginofragstudy.

Notice, for example, that there is some visualdation from Figure 2.2 that
the mean number of fledglings decreases with @des. The fairly wide confidence
band at that end of the graph, though, suggestshavidence for the decrease is not
convincing. Including the additional owls with censd ages may result in more
precise model estimation and therefore more resoltid this and other scientific

guestions of interest.
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Our goals are to clarify the potential efficien@jirgs and to provide techniques
for incorporating animals with censored ages inmG&LMM analysis for age-specific
reproductive success. We are particularly intetestdinding easy-to-use solutions, if
possible.

Our focus is on the EM (expectation-maximizatioigpathm for computing
maximum likelihood estimates in the presence osmgdata (Dempster, Laird, &
Rubin 1977 and McLachlan & Thriyambakam 1997). fadirlikelihood analysis of
models for studying age-specific reproductive sascthe unavailable true ages and
the random effects are all treated as “missing.tdte E-step is accomplished via
Markov Chain Monte Carlo techniques. This algorithanallels one suggested by Wu
and Wu (2007) for GLMMs with missing data. Approxtons that lead to easier

calculations are discussed later.

2.3 Notation and Model Specification

The model of interest specifies repeated measuresach oim subjects (or
clusters) with responses that follow a generallizeshr model with random intercepts
for each subject, with time-dependent and time{pedelent explanatory variables, and
with a time-independent explanatory variable tsatansored. Note that the first
observed nesting age is a time independent, whdlettual age is not. Lat
represent the response observed for observatiaital fori = 1,...,n.In the spotted

owl example, the response is the number of yousdg#d and the “observational

unit” is an “owl year” of observation.
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Let z =(z,,..., 7, )wherez, = 1 if observational unitis associated with
subject or clustgrand O if not; fori = 1,...nandj = 1,...m. In the example, this
variable indicates the particular male associatitd @bservational unit

Leta, represent the explanatory variable that is censonesbme of the
subjects or clusters, for subject or clugtéorj = 1,...,m,and leta=(a,...,a,). In
the examplea, is the age of male oylat the time it was first observed.

Let ¢, be a censoring indicator, that takes on the valifieais observed and
takes on the value 1 if it is only known thetis greater than or equal to some known

value. Leta’; be the true age, , for those owls with known ages and the lower

bound for age at first observation otherwise.d et (a,,...,3,). Let x be a vector of
explanatory variables associated with observatiandli, which may be time-variant
or time- invariant. LeX be the matrix whose ith row ig' . Letu=(u,...,u,)

represent “random effects” associated withihelusters or subjects.

We suppose that the's are conditionally independent, given with density
f(y la,ux)= f(y|.Z_a,z y,® with meany , where
g(u) =X B+NZ aa)+ 7
wherea and 8 arep- andg-vectors of unknown parameters ag{d is a known “link

function.” In the owl example, the density is takerbe Poisson and the link function
is the logarithm. Since we will be using maximukelihood analysis, we will not be

using a dispersion parameter. Such a parametddwomplicate the analysis.
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The termh(z' ga) is of unspecified form to permit the incorporatiai
nonlinear effects of the censored explanatory Bégissuch as a quadratic effect of
age for the model displayed in Figure 2.2. Nbsg if 5 represents the number of
years since the male associated with observatiomal was first observed, then
Z' a+ s is its age associated with observational urfiine possible model, for
example, is

hz a+ sa)=a,(Z & 9+a,(iz &, F.

Suppose also that the random effects are indepeaddrdentically

distributed, and independent of the explanatorjabées:

u, ~f(ula Xir)= f(yr).
In GLMMs, it is convenient to take this distributido be normal with mean 0 and
variancer .

It is also necessary to assume some distributimoae! for the marginal

distribution ofa. Let
a, ~ f(a |w;y),
where w; is a vector of explanatory variables that wouldibeful for predictinga, . In

the owl example, the total number of years thabthbwas observed would be such

an explanatory variable. We assume thas independent ofi, and ofa,. for j#j".
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2.4 EM Algorithm Treating Random Effects and Unknown Ages as “Missing
Data”

The EM Algorithm is often used for estimation ofgaeters in GLMMs without the
additional problem of censored covariates (McCull@®97 and Booth & Hobert
1999), by treating the random effeaisas missing data. The approach here is to use
the same techniques, extended to also treat theouwnkages at first observatiam,as

missing. Letd = (a, B,y,r) denote the vector of unknown parameters. The ‘folese
data” arey and a . The “complete data” are,uanda. The complete data log
likelihood is:

1.(6:y,a) =log[f(y,u, al X;&)]

=log[f(y|u.a X;8)]+log[ f(u] a X&)]+log[ f( & X&)

=Y loglt(y, 17" u. 7 a xa 8. )+ 3 loglf (u; )] +3 loglf 2 |6, w ).

The E-step (expectation) requires the expectatidheocomplete data log likelihood
given the observed data and with unknown paramatehe expectation replaced by
their estimates afteriterations. Letd™ denote the estimate &f aftert iterations of

the EM algorithm. Then the expectation is:

Q@16°) = E{loglf(y |7 a xia.B.0)]| y X _ag’}+

n
i=1

iE{'Oglf(uj:r)]l_y, X, 8:6°) +

=
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> E{logl (3, 111l v X 46}

=1

The expectations are with respect to the distraoutf (u, a) given y, a,and

X. In general, the expectations are intractablethimy can be approximated by Monte
Carlo methods in a way that parallels the apprdacmaximum likelihood with

random effects alone (McCulloch and Searle, 20@t.9.0.3):

M=

]
pulles

QO16”)= 3> ool f(y 17 U7, 74", xa 6+

>

j=1r

M=
pollisy

1l
[y

log[ f (uf"”; )] +

j

M
M=

.ﬂ
i
pollisy

log[f (& | ¢, W ;y)]

j
whereu® = (u®”,...,if)) Jand u” is a pseudo-random variable generated from

f(uly X,a;6)anda” =(a,...., , &, ....d, ), where the firsim, elements are

known ages of first observation and where the ra'mgielementsa}”, are pseudo-

random variables generated froffa, | w;, y, X, a ;6" ).
The EM algorithm is an iterative algorithm thateath iteration, updates the
expectationgQ(8| 8" )based on current parameter estimates and then ¢esnpu

updated estimates as those values that max@{@pd®™ ). The following steps

describe the algorithm:

1. Choose starting valueg® = (a@, B,y r©), Sett = 1.

2. Repeat until convergence:
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a. Generatdr vectors(u”, a") from the conditional distribution of

(u,a)giveny, X, and a’ with unknown parameter§ in the

distribution replaced by the “current” estimaf#s’

b. Calculatea®and S as those values that maximize

log[f(y, |z U, 74, xa.8)]

1l
iy
=

1l
iy

M:
M=
plie

i
c. Calculater as the value that maximizes

=1r=1

logl f (u";7)]

s

d. Calculate)y®” as the value that maximizes

)

j=1r=1

log[ f (&" | w ;)]

po

e. SetR=R+|R/c|, for somec >0

f. Sett=t+1.
Each of the pieces (b), (c), and (d) can be acasimgd with formulas or
routines that would be appropriate in the absefcermsored explanatory variables
and random effects, but based on the augmentedeiatarresponding to the

pseudo values fofu, a) . Notice, in particular, that (b) can be accommihvith a
GLM estimation algorithm, specifying the generazéd terms as “offsets.”

The random number generation in 2a can be accdmepliwith the
Metropolis-Hastings algorithm as follows (see, daample, McCulloch and Searle,

2001, Sect. 10.3):
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1. Generateu® = (u,...,y”) with ul”generated fromf (u;;7*) and
a%=(a,....8, .42, ....d, )with &)’ generated fronf (a, |w;, g ;)™ ). Set
r=1.

2. Forkfrom 1to R + R¥):

a. Generatel = (0,...,0,) with 0; generated fromf (u;;7"™)

Generated = (a,...,8, ,3,.; -8, ) With a5’ element generated from

fla lw,a:/™)

b. Compute the acceptance criterion:

|'] f(y |z 0. 78 xa"™ gY)

P =min< 1 —=-=
I—l f(y |27 U, Z &Y, xa )

c. Generatey, a Bernoulli(p, ) random variable:
d. If v=1setu® =i anda® = &. Otherwise, set™ = u*?and
a) = gtk

3. Retain the finaR of each of these vectors as the simulated sanipies the

burn-in number.)

To speed up convergence, several authors (Levidéan, 2003 and Levine and
Casella, 2001), recommend using importance weigbtsad of drawing a new
MCMC sample at each iteration. The use of impaeaneights can greatly decrease

the convergence time because generating the psandom variables via the
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Metropolis Algorithm is computationally more intéwves than generating the
importance weights. It is recommended that a bperiod of regular Monte Carlo
EM iterations is used before switching to the imance weights. The burn-in allows
the target and the candidate distribution to beset’ and therefore helps decrease the
convergence time.

In the above algorithm, we increase the Monte Csaimple siz& using

Booth and Hobert's (1999) recommendationR#é R+| R/ c|, for somec >0. This

method is used because at early iterations, wheefctirrent” parameter estimates are
likely far from the MLE, one does not need a lasgeple size. However, as the
“current” parameter estimates get closer to the Mite needs more precision and
therefore a larger Monte Carlo sample size. lmstéaising a naive increase of the
Monte Carlo sample size, Levine and Fan (2003),Llaavihe and Casella (2001)
suggest automated algorithms that increase thedvidatlo sample size after
checking if the Monte Carlo error overwhelmed thiv &stimate. For our specialized

algorithm, we simply used the naive increase.

2.5 Computing Standard Errors
Approximate standard errors can be calculated Udicigachlan and
Krishnan’s (1997) method. This method uses omgt-firder derivatives to find the

approximate information matrix:

a0 (8, %, u”.4)|

| (é) :Zm:i%sjr (é) S (é) , WhereS, (67) = 30

‘9:@



22

The standard errors for the MLE can then be catedl by taking the square root of

the diagonal elements mfl(é) .

There are several other methods for calculatiegriformation matrix,
including calculating the observed Fisher Informatirom the observed data log-
likelihood, as well as Oakes (1999) and Louis’ (1982thod of writing the observed
data log-likelihood as functions of the completéadag-likelihood. Both of these

methods would be rather complicated in our situation

2.6 Analysis of Spotted Owl Data

The Monte Carlo EM algorithm for censored covagateGLMMs will now
be used to analyze one of the study areas fror8plo&ed Owl example from Section
1.2. The Oregon Coast Range study area is locatie icentral Coast Ranges of
Oregon. There are 108 known age owls and 165 owlsoeitkored ages. The known
age owls have 542 owl/year observations, while thearex owls have 839 owl/year
observations.

This analysis will examine two particular questiomattthe wildlife biologists
are interested in gaining insight on. First, th@dgists would like to know the age at
peak reproductive success, after accounting féerdifices between years. The
biologists are also interested in possible declinegsproductive success after reaching
peak performance.

To answer these questions, we fit a Poisson log+imealel for mean number

fledged, with linear and quadratic effects of madegpt age, with year as a factor with
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15 levels, and with random intercepts for the 278rals. The intercepts are

treated as a random sample from a normal distohutiThe age of first observed

nesting is assumed to be normally distributed damthl on the number of years that

the owl was observed.

Starting values were obtained by fitting a GLMM witte censored ages

replaced with their estimated expected value gihahthey exceed a lower bound.

(This is the “regression calibration” estimator, @rhis discussed more fully in

Chapter 3.) A table of the parameter estimatesstardtlard errors is shown below.

Table 2.1MCEM estimation results for Oregon Coast Range

MCEM All Males

Imer Known Age Males Only

Parameter Estimate SE Estimate SE

B, -0.6263 0.2315 -1.8092 0.6796
Bige 0.0776 0.0164 0.4824 0.0944
ﬁagez -0.0029 0.0005 -0.0269 0.0058
Bioo1 -1.4385 0.3206 -15.8338 2211.3104
Bioss -0.0214 0.2592 -15.9970 1157.3002
Bioos -1.3692 0.3044 -0.9729 0.9513
Bioos -0.1321 0.2601 -0.7218 0.7130
Bioos -1.6351 0.3024 -1.7309 0.7672
Bioss 0.2211 0.2482 -0.0933 0.6490
Biogr -0.9423 0.2576 -1.1617 0.6750
Bioos -0.3310 0.2439 -0.3259 0.6477
Bioss -1.8897 0.3255 -2.1913 0.7342
Boooo -0.4901 0.2617 -0.6369 0.6564
Booor 0.3157 0.2426 -0.0490 0.6461
Boooz -0.8662 0.2847 -0.8955 0.6704
Booos -2.7019 0.4643 -2.9424 0.8631
Booos -0.0407 0.2470 -0.1555 0.6507
Biooos -0.6701 0.2662 -0.9596 0.6745

a, 1.6630 0.010(¢
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Qears -0.0145 0.001
o, 0.2709 0.009 0.3388
o, 0.6304 0.000

Based on the MCEM analysis that considers all 2¥I3,ahe age at peak
reproductive success is estimated to be 13.38 y&ased on the GLMM analysis
using only the 108 known age owls, the age at pejitoductive success is estimated
to be 8.97 years. Both analyses suggest a declmeproductive success after peak

reproductive success is reached (one sided p-fﬂalu,éag »<0.0001 for both

analyses). Even though both of the analyzes stugg#scline after reaching peak
reproductive success, Figure 2.3 shows that thesisalsing all of the owls (heavier
lines) is much flatter than the analysis that jus#s the known age owls (lighter lines).
The dashed lines show a 95% confidence bands fonéam fixed effect of male age.
The heavier set of lines is for the analysis tlwaiseders all owls and the lighter set are
for known age owls only. These confidence bandsidecbetween-owl variability in
intercepts. The analysis that considers all owssahenuch tighter confidence interval,
especially around the peak of the known age cuBee Appendix A2 for plots and

tables of estimation results for the other stushaar
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Oregon Coast Range 2005
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Figure 2.3Number of owls fledged versus male parent age fol@&known-aged
owls, andGLMM model fits and approximate 95% confidence lmunsding only the
known-age owls (thin line) and using all 273 owlsdkhine) (Oregon Coast Range
study area).
2.7 Discussion

The MCEM algorithm for censored covariates canesufiom slow
convergence. Inthe models fit, the convergemoe &and number of iterations was a
function of the number of owls and the percentageeokored age owls. The number
of iterations required for convergence (with a ig&atonvergence criterion that
estimates change by less than 0.5% in successratidns) was generally around 14.
Since the algorithm uses pseudo-random varialiles;dnvergence time and the
number of iterations can vary between the same radiiglith the same starting

values. In addition the final estimates can vdighly due to the convergence criteria

being set so that the models do not take as loogriverge.
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One way to help the MCEM algorithm converge fastdpiuse “good” starting
values. Possible choices include results fronmfjtonly known age animals using an
approximate technique for GLMMs (like Imer in Rgptacing the censored ages with
their conditional expected values (given that taggeed the recorded lower bound)
and then fitting with Imer, or the final values fran approximate MCEM algorithm
(detailed in the next chapter). The final valuesf the approximate MCEM
algorithm are the best starting values, but recinieemost work to obtain. In our
experience, the results from the model with the eetsages replaced by the
expected value given that they exceed a lower baved@ufficient starting values that
are relatively easy to obtain. Obtaining “good’ttey values is also important
because the MCEM algorithm is sensitive to thetisigvalues. The standard
deviation of the random effects distribution is faameter most sensitive to the
starting value.

There is evidence of a benefit in including thoserals with censored ages.
In the spotted owl data problem, the standard éorahe coefficient of the quadratic
age term, for example, was reduced by 91% ovelfitbiat the known-age owls only.
For other regression coefficients the percentadeatson was 66% and 82%. The
simulation study in Chapter 3 shows that the MCENapeeter estimates can be
biased. This bias reduces the curvature of thespgeific reproductive success curve.
Therefore, in addition to the standard error redmcbne needs to also consider the
actual parameter estimates. Also note that iroall $tudy areas, the MCEM curve is
much flatter. This indicates that there may baesswith the method and not just a

different curve for the censored ages.
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3. Computationally Practical Analysis of Generalizd Linear Mixed Models with
Censored Covariates

John Giovanini" and Daniel W. Schafer
Department of Statistics,
Oregon State University,
Corvallis, OR 97331
email: giovanin@science.oregonstate.edu
email: schafer@science.oregonstate.edu
3.1 Abstract
This paper is about statistical methods for datdyais using generalized linear mixed
models (GLMMs) with censored covariates. Speciginion in given to the
particular problem of inference about age-specdfroductive success in wild animal
populations using some animals with known ages amgk smimals with ages only
known to exceed some lower bound. GLMMs allow for nonmal response
distributions, such as a Poisson distribution liertumber of offspring from a parent
in one year, and they account for the correlatiorepeated responses from the same
observational unit, such as the correlation ofrttwnber of offspring from the same
parent over multiple years. Maximum likelihood ass# via the EM algorithm and
Markov Chain Monte Carlo techniques was proposedhapter 2. This approach
would not be attractive for immediate use by wildbielogists, we suspect, because
of the non-trivial programming required, the slowsyeand the lack of transparency.
We propose two other methods, which also incorp@mit@als with unknown ages

but which are easier to compute. First, a MontéoM algorithm is proposed in

which censored covariates are treated as “missitaj dad a Laplace approximation
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is made to the complete data log likelihood. Thplaee approximation permits the
use of existing computing modules for GLMMs. Thasults in simpler programming
than the likelihood analysis proposed in Chapteutfalls short of being simple
enough for immediate use by most wildlife biologiSSscond, a simple “regression
calibration” method is proposed, which uses exissofjware for GLMMs but simply
replaces missing ages by estimated expectationsdroegression model and
conditional on the age exceeding the censoringeva#ltsimulation study clarifies the
degree to which these methods improve upon the camapproach of ignoring
animals with unknown ages and clarifies their opegatiharacteristics relative to

those of the maximum likelihood estimator.
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3.2Introduction

This work was motivated by an investigation of fastaffecting individual
reproductive success in a wild population of Northfepotted Owls$trix occidentalis
cauring). For example, the scatterplot in Figure 3.1 shtheshumber of fledged
spotted owls in a year versus male parent age try#sa, for multi-year observations
on 108 male Northern Spotted Owls. The solid poirdgtze sample means for each
age and the vertical lines are crude 95% confidemeevals for each age group (data
from Pete Loschl, personal communication; see Up2€98). The smooth curve is a
nonparametric lowess fit, which shows an apparenéass in mean number fledged

up to a maximum of 0.7 fledglings per year at alageé 9, with a subsequent decrease.
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Figure 3.1 Number of fledglings versus male parent age frontipialtyear
observations on each of 108 Northern Spotted Owl mialdse Oregon Coast Range,
and lowess curve.



33

More formal investigation into patterns of age-sfieceproductive success
should account for dependence of different obsematirom the same male. The
scatterplot below reproduces Figure 3.1 but includedit to a generalized linear
mixed model (GLMM) that specifies a Poisson digttibn for the integer count
response and a regression model in which the ldigeofnean count is a quadratic
function of age, and which accounts for the depecelehobservations from the same
male via random intercepts for the 108 differentasa The solid curve is the
approximate maximum likelihood estimate of this GUMThe dashed lines show a
95% confidence band for the mean fixed effect olienage. (This confidence band

includes between-owl variability in intercepts.)
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Figure 3.2Number of fledglings versus male age as in Figutesith GLMM fit
and approximate 95% confidence band.
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This type of model is useful for investigating selescientific questions about
age-specific reproductive success: 1.What evidentteere that male reproductive
success decreases in older ages? 2. What is thad adpch maximal mean
reproductive success is achieved? 3. What propootizvariability in reproductive
success can be explained by between-male diffeseafter accounting for effects of
age? 4. What evidence is there that various lapgsaad climate variables affect
mean number fledged, after accounting for the &ffetparent age?

When number of fledglings or some other small iategpunt is used as a
measure of reproductive success, these questindssi@ilar questions for females)
can be addressed with GLMM analysis (McCulloch &r&e&@001, and Jiming,
2007). The measure of reproductive success is tiikkave a Poisson (or possibly
binomial) distribution with a mean that depends arept age and other explanatory
variables, but with the inclusion of random effectaiccount for variable reproductive
successes between males (or females). Standard GhbidMiles also allow for
Poisson-like and binomial-like distributions with additional dispersion parameter.

Because GLMM modules have been added to standsistisgl software
packages only recently, some wildlife biologistsédaslied on ordinary mixed linear
model analysis (Loschl, 2008, Coltman et al, 2@0®} Reid et al 2003). Some have
used GLMMs though. This has been the case forgg®ductive success studies of
barn owls (Altwegg et al. 2007), snow petrels (Angedieal. 2007), brown thornbills

(Green 2001), goshawks (Kruger 2005), brown bears ¢3sdr, et al. 2007),
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mountain goats (Coté, Festa-Bianchet 2001), andi@phawks (Newton and Rothery
2002).

Our interest is in the use of GLMMS for this purpeden a substantial
number of the animals in the data set have agéstbanly known to exceed some
lower bound. The plots and fitted models in FigiBdsand 3.2, for example, are
based on 542 observations from 108 male owls whaosewagre known exactly. Also
available are 839 observations from 165 additiomale owls whose exact ages on
their first season of observation were only knowexoeed 3 years. (They were
known to exceed the age of three because of theit etaracteristics). In the year
after their first observation, therefore, the reskars could be sure these owls were at
least 4 years old. After 10 years of observatibay were at least 13 years old, and so
on.

It is common for researchers to exclude the aninvdls unknown ages from
the statistical analysis of age-specific reprodigciuccess. Examples include Loschl,
2008 (spotted owls); Angelier et al, 2007 (snow ps}rdlltwegg et al., 2007 (barn
owls); Kruger 2005 (goshawks); and Newton and Rott2692 (sparrowhawks).
While the common practice of excluding animals iknown ages isn't likely to
induce any bias into the scientific conclusions, iticorporation of information from
the owls with censored ages may provide importamtsgai efficiency and power.

One does need to consider the possible that thegagsfic reproductive success
curves are different for the known age vs. the cestsanimals. This is especially true
if the animals that are excluded from the analgsésthe older animals that were first

observed as adults at the beginning of a study.
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Notice, for example, that there is some visual iatlan from Figure 3.2 that
the mean number of fledglings decreases with olges.alhe fairly wide confidence
band at that end of the graph, though, suggedstshavidence for the decrease is not
convincing. Including the additional owls with cerstiages may result in more
precise model estimation and therefore more resoltid this and other scientific
guestions of interest.

Our goals are to clarify the potential efficiencyrgaand to provide techniques
for incorporating animals with censored ages ineo@.MM analysis for age-specific
reproductive success. We are particularly intetestdinding easy-to-use solutions, if
possible. Our statistical interest is in the Spo@®d study in particular, but the same
data characteristics are found in other studiesgefspecific reproductive success. We
can imagine that there are other applications d¥iGls in which a covariate is
censored and our results would pertain to thosetiaad Hoch (2004) report a
regression problem, for example, in which the exgtary variable “household
income” is obtained from a survey questionnairdighest category “greater than
$80,000.” The main effort here, though, is diredtmdards the particular problems
encountered in the study of age-specific reprostacuccess from wild animal
populations.

A full maximum likelihood estimator was proposed ihapter 2. In this paper,
we pursue simpler methods that wildlife biologistaldause immediately with
minimal extra programming. We first propose an MCEMgorithm that uses a
Laplace approximation in order to make use of egssoftware modules. While

simpler than the full likelihood approach, we wouttt nharacterize the necessary
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computations as “simple.” A “regression calibrati@pproach is also proposed,
which makes use of an existing module for GLMM ags&lyut with unknown ages
replaced by predicted values.

This paper proceeds as follows. Section 3.3 de=stitte model. Section 3.4
describes the approximate maximum likelihood meshod censored covariates in
GLMMs. Section 3.5 describes a regression calimagstimator for censored
covariates. Finally, in Section 3.6 a simulatitudy is described to investigate the

properties of several methods for fitting GLMMs wadnsored covariates.

3.3Model

We consider a model that specifies repeated measuareach om subjects
(or clusters) with responses that follow a generdlizeear model with random
intercepts for each subject, with time-dependentteme-independent explanatory
variables, and with a time-independent explanatanable that is censored. Lgt
represent the response observed for observatiaital tori = 1,...,n.In the spotted

owl example, the response is the number of yourtyéld and the “observational

unit” is an “owl year” of observation.
Let z =(7,,..., 7, )wherez, = 1 if observational unitis associated with

subject or clustgrand O if not; fori = 1,...nandj = 1,...m. In the example, this

variable indicates the particular male associatih @bservational unit
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Leta, represent the explanatory variable that is censonesbme of the
subjects or clusters, for subject or clugtéorj = 1,...,m,and leta=(a,...,a,). In
the exampleg, is the age of male oylat the time it was first observed.

Let c, be a censoring indicator, that takes on the valifieaQis observed and
takes on the value 1 if it is only known thetis greater than or equal to some known
value. Letaj*. be the true age at first observatien, for those owls with known ages

and the lower bound for age at first observatioetise. Led =(a,...,a,). Let X
be a vector of explanatory variables associated @bervational unit, which may be
time-variant or time- invariant. Le¢ be the matrix whose ith row ig' . Let
u=(u,...,u, )represent “random effects” associated withNhelusters or subjects.

We suppose that the's are conditionally independent, given with
probability density or mass function

f(y |a,ux)= f(y|.Z_a,z y,X with meany, where

g(u) =X B+NZ aa)+ 7
wherea and S arep- andg-vectors of unknown parameters a{d is a known “link

function.” In the owl example, the response distiitiuis taken to be Poisson and the
link function is the logarithm. A dispersion parderecan be added since we will be

using GLMM modules that allow a dispersion parameter
The termh(z' ga) is of unspecified form to permit the incorporatiafn

nonlinear effects of the censored explanatory Wéjasuch as a quadratic effect of
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age for the model displayed in Figure 2.2. Thelrfeethis in the owl example is

evident in the figures above. Note thagifepresents the number of years since the

male associated with observational unitas first observed, thep' a+ s is its

current age associated with observational iu@ine possible model, for example, is

h(z'a+ ssa)=a,(Z & $+a,( Lz &, F.

Suppose also that the random effects are indepeaddndentically
distributed, and independent of explanatory vaesabl

u ~f(y la Xit)= f(u;7).

In GLMMs, it is convenient to take this distributido be normal with mean 0 and
variancer .

It is also necessary to assume some distributimoalel for the marginal
distribution ofa. In the owl example, there is good reason to beltbat those
animals that are censored have larger valuegtuEn those that aren’t—because most
of the latter, presumably, were observed in thest ffear of life and then included in
the study. Let

a, ~ f(a |w:y).
where w; is a vector of explanatory variables that would beful for predictinga, . In

the owl example, the total number of years thavthlewas observed would be such

an explanatory variable. We assume thas independent ofi; and ofa;. for j#j".



40

3.4 Approximate Maximum Likelihood for GLMMs with Censo red Covariates

Even without censored explanatory variables, theihkbod for all but the
simplest GLMMs involves a multi-dimensional intelgoaer the random effects. This
integral can be high dimensional with no closed-feotution. Several of the
currently popular methods for GLMM estimation invelapproximations to the
integral or other similar modifications to the likeod.

There are several such methods that are justiiiéelently but which use
essentially the same algorithms. One method, bpl5@991), applies the link
function to the response, linearizes the regresssomy a first order Taylor’s
approximation, and then repeatedly fits linear rdir@odels to the working dependent
variables. Breslow and Clayton (1993) included @ajtg to the quasi-likelihood
function to derive the penalized quasi-likeliho®f)L). Wolfinger (1993) showed
how the Laplace approximation of the log-likelihaodhe GLMM can be used to
find estimates. All three of these methods leathéosame computational algorithm
that repeatedly fits linear mixed models to workalegpendent variables. A good
general reference on all three methods is McCullb&earle (2001). For the
problem of this paper, we wish to apply some ofstime approximation techniques in
the hopes of leading to an approximate maximumitiked analysis for GLMMs
when there are censored explanatory variables.oldth there will still be an
additional part of the likelihood that involves tbensored explanatory variables, the
approximation will permit the use of currently aadle GLMM computing modules

as part of the likelihood analysis. In particulag can make use of existing modules
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for GLMM estimation by using a Laplace approximatia the “complete data”
likelihood specification for using the EM Algorith(@empster, Laird, & Rubin 1977

and McLachlan & Krishnan 1997).
The “observed data” arg and a . The “complete data” are taken toypand
a. This differs from the setup of Chapter 2, in whibe random effects, were also

specified as part of the complete data. Here, theptete data likelihood is based on
the marginal distribution of, obtained from the specified model by integratugu.

The complete data log likelihood is:
1(6;y,8) = log| [ f (y.u.al X#)du

=log| [ f(ylu.a,X;#)f(ula X8)dy+ lod f(al XF ]

=log I|‘| fylzuza %:a,/a’.r)ﬁl f(p:f)d%i log[ (;al wy )]

The Laplace approximation is applied to the integrahe first term. We may write

the resulting approximate complete data log likedith as
.6y, 2) = (@, B.1;y.@)+ > logl f (3 | )],
=1

wherel,...(a,B,7;y,a) is the approximate log likelihood that is maxinuzey the

glmm
Wolfinger approach if all the agesarwere available. We do not need to specify this
approximation in more detail; for our purposess g&nough to know that routines to
maximize it are available. We will make use of thomgtines as part of the M-step in

an EM algorithm that treats the unknown ages asimgisiata.
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The E-step (expectation) requires the expectatidgheocomplete data log

likelihood given the observed data and with unknoarameters in the expectation

replaced by their estimates aftéterations. Letd" denote the estimate &f aftert

iterations of the EM algorithm. Then the expectais

QB16°) = E{lyn(@. B.1:y.8) |y, X, 8 £} +

Zm:E{Iog[f(aj Wy, X, a ?9“)}

=1
The expectations are with respect to the distrioutif a given y, a , andX. In

general, the expectations are intractable, but tla@ybe approximated by Monte Carlo

methods (McCulloch and Searle, 2001, Sect. 10.3):

QE169)= 3.2 lypala, .11y, 270+ D S loglf (& |w )

=R o = =R
wherea" =(a,...,8, . &, ....&, ), where the firsim elements are known ages of
first observation and where the remaining elemmfté, are pseudo-random variables
generated fromf (a, |w, ¥, X,a ;6 ).
The EM algorithm is an iterative algorithm thateath iteration, updates the
expectationsQ(8| 8" )based on current parameter estimates and then ¢esnpu

updated estimates as those values that max@{@pg®™ ). The following steps
describe the algorithm:
1. Choose starting value8® = (a@, 8,y 1), Sett = 1.

2. Repeat until convergence:
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a. Calculate the adjusted resporyse g(x)+(y-#) d() as in Schall

(1991). This is needed to generate the pseudmnanvdriables in the

Metropolis step

b. Generat® vectorsa!” from the conditional distribution od given v,

X, and a” with unknown parameter8 in the distribution replaced by the

“current” estimateg™

c. Calculatea®, g, andr® as those values that maximize

R 1 ,
Z_R glmm(auB!T;X1§( ))

r=1

d. Calculatey®” as the value that maximizes

>

r=1

\NgE

po

log[ f (& | w: ;)]

11
iy

j

e. SeR=R+| R/ c|, for somec >0

f. Sett=t+1.
Each of the pieces (c) and (d) can be accomplighigdweighted formulas or
routines that would be appropriate in the absehcemsored explanatory variables,

but based on the augmented data set corresporudihgR pseudo values foa. In

particular, piece (c) can calculated with a staddautine for GLMMs that uses the
Laplace or penalized quasi-likelihood approachl{sasimer in R).

The random number generation in 2b can be accohediwith the
Metropolis-Hastings algorithm as follows (see, daample, McCulloch and Searle,

2001 Sect. 10.3):
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1. Generatea® =(g7);....,a\") with a generated fromf (a, |w , g ;)/'™). Set
r=1.
2. Forkfrom1lto R + R*:

a. Generated=(§, ,,...,a,) with &} element generated from

fla lw,a:/™)

b. Compute the acceptance criterion:

f (ZILJ,Q, x;a(t—l) ,,B(t_l)) }

pk = min{l, f ()~/| u, a("'l), X;a,(t—l) ”B(t—l))

c. Generatey, a Bernoulli(p, ) random variable:

d. If v=1seta® = a. Otherwise, sea®™ = a*™"
3. Retain the finaR of each of these vectors as the simulated sanipies the

burn-in number.)

To speed up convergence several authors, (Levidiéan 2003) and (Levine and
Casella 2001), recommend using importance weigistead of drawing a new
MCMC sample at each iteration. The use of impaganeights can greatly decrease
the convergence time because generating the psandom variables via the
Metropolis Algorithm is computationally more intéwves than generating the
importance weights. It is recommended that a bperiod of regular Monte Carlo
EM iterations is used before switching to the imance weights. The burn-in allows
the target and the candidate distribution to beset’ and therefore helps decrease the

convergence time.
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In the above algorithm, we increase the Monte &Csaimple siz& using

Booth and Hobert's (1999) recommendationR# R+| R/ c|, for somec >0. This

method is used because at early iterations, wheefctirrent” parameter estimates are
likely far from the MLE, one does not need a lakinte Carlo sample size.

However, as the “current” parameter estimates lgsec to the MLE, one needs more
precision and therefore a larger Monte Carlo sarspke. Instead of using a naive
increase of the Monte Carlo sample size, (LevirseFean 2003) and (Levine and
Casella 2001) suggest automated algorithms the¢ase the Monte Carlo sample size
after checking if the Monte Carlo error overwhelntieel EM estimate. For our

specialized algorithm, we simply used the naiveaase.

Approximate standard errors can be calculated udicigachlan and
Krishnan’s (1997) method. This method uses omgt-forder derivatives to find the

approximate information matrix:

a0 (8,y,,x, u”,d")

| (é) :Zm:i%sjr (é) S (é) , WhereS, (67) = 30

‘9:@

The standard errors for the MLE can then be catedl by taking the square root of
the diagonal elements (bfl(é).

There are several other methods for calculatiegriformation matrix,
including calculating the observed Fisher Inforroatirom the observed data log-

likelihood and Oakes (1999) & Louis’ (1982) methafdvriting the observed data log-
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likelihood as functions of the complete data Idgehhood. Both of these methods

would be rather complicated in our situation.

3.5A Regression Calibration Estimator

While the approximate maximum likelihood estimatbSection 3.4 avoids some
of the complexity involved in the full maximum likleood estimator, the need for the
Metropolis-Hastings algorithm in the E-step voidy aotion that the approach is
simple. A second alternative, which is much moa@sparent than either of the
maximum likelihood solutions, is a regression aaliion estimator in which the
unknown ages are replaced by predicted values.

Regression calibration (Carroll, Ruppert, and Stsig 1995) is an approach
usually associated with regression estimation énpitesence of imprecisely measured
explanatory variables. The idea is popular bec#ussn be used in many different
kinds of regression models and because it is peatiy transparent. The idea is to use
the regression techniques that would have beeroppate if the explanatory
variables were available, but to replace the mgssalues by their expectations given
the observed measurement and the remaining explgnadriables. The details and
the performance of the regression calibration nekthiier depending on the degree
of nonlinearity of the regression with respecthte mismeasured explanatory variable
and the way in which the expectations are estim@ee, for example, Schafer and
Gilbert, 2006).

While the problem of interest in this paper is thmtught of as a problem of

measurement errors in explanatory variables, itbsacast that way. The measurement
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of the explanatory variabkge,if unknown, ismeasuredy the lower bound for age.
The regression calibration estimator replaces tik@mown ages by their expectations
given this measurement and the other availableaegpbry variables (including all
those variables that would be useful for predictigg).

In the measurement error terminology, the particidan of the regression
calibration estimator for the spotted owl data peabwould be described as
regression calibration with internal validation,aneng that the data for estimating the
expectation of the unknown ages given the otheabkss is a subset of the data with
which the regression of interest will be estimatd@this requires a two-stage process:
(1) Using the owls with known ages, fit a fully paretric regression model for
predicting age at first observation from other klde explanatory variables. (By fully
parametric, we mean in particular that conditiatiatribution of age, or some
transformation of age, given the other explanat@ryables is normal so that the
conditional expectation given some lower boundlmanleduced.) Using these results,
find predicted ages at first observation for thoggs whose exact ages are unknown.
(2) Fit the regression of interest using all owlsl aeplacing unknown ages at first
observation with these predicted values.

It should be noted that the predicted ages in(@gpre themselves imprecise
measurements of the explanatory variable of intesesthat the problem of
imprecisely measured explanatory variables is@tésent. The predominant form of
the imprecision, though, follows the Berkson emardel (see Carroll, Ruppert, and
Stefanski, 1995), which does not induce bias irstae way that the classical

measurement error model does. The effect of sagpliror in the estimation of the
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inserted predicted values in regression calibrat@as been examined by Monleon
(2006) and Schafer and Gilbert (2006). The effddfer depending on several
conditions of the particular data problem. Here,use a simulation study to
investigate the potential bias and other operathrgyacteristics of the regression
calibration estimator.

The following are the specific steps for regressalibration for estimating
GLMMs with censored explanatory variables:

1. Find the expected value of the censored obsensagiven that they exceed a

lower bound

a. Calculatey and g, that maximizes

> logl 1 (og(@) 1w, .7, )]

b. Using the estimates from (a), calculate the predietalue of the
censored ages at first observed breeding usinfpthrula for the mean

of a truncated normal distribution.

o, = Vo * Jryears

~ | log(a))-i,
luai +0—a§0( O, J)

109(a) )7t )

Oa

a, =exp
1-o|

c. Create the new age at first observed nesting vector

a=(a,...8, BBy

2. Fit the GLMM with the new age at first obsereatvectora
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A

a. Calculatea , B, andr as those values that maximize

lymm(@: B, T3y, 8)
using with a standard routine for GLMMs that udesitaplace or

penalized quasi-likelihood approach (such as Imd®)i

The regression calibration method also allows tickusion of multiple random
effects. In the Northern Spotted Owl study, ongithinclude the year as another
random effect. This would be extremely difficidtdo in the MCEM methods. The
regression calibration method also allows one sileét a dispersion parameter.

Finally, inlinear regression when there is no sampling variabifityhie expected
values used for replacing the imprecisely measargthnatory variables, it is
appropriate to use the usual inference procedhegsamould have been used if the
actual explanatory variables were available. Iripalar, inference based on
approximate normality of estimators and with repdrstandard errors is justified. For
nonlinear regression models and using estimatestimate the conditional
expectations, the reported standard errors arsrt@dl. Sandwich formulas for
adjusting approximate standard errors are availf@olsome models (see Carroll,
Rupert, and Stefanski, 1995), but we have not ma ¢iose here. The simulation
study that follows shows that the desirably simpigecedure, including the use of the

reported standard errors, is likely to be a vetistactory approach.
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3.6 Simulation Study

A simulation study was used to examine the relatperating characteristics
of these approaches: (1) maximum likelihood estimaita the MCEM algorithm for
censored covariates, (2) the approximate MCEM egtim (3) the regression
calibration estimator, (4) the naive estimator ok censored ages are replaced by
their lower bounds (to demonstrate the unsuitghdltthis approach, which may seem
tempting to wildlife biologists), and (5) the GLMBkstimator using only owls with
known ages.

The conditions for the simulation study were baseestimated parameters
from the Northern Spotted Owl study. In particuguadratic-in-age log-linear
model was used as the mean of a Poisson respoatberfhan specifying a
distribution of ages at first observation, we raméiosampled owls with known ages
from the Spotted Owl study (with replacement) asdditheir ages at first observation
in the simulation. We randomly selected a subBsinoulated subjects (owls), of a
specified percentage, to have known ages and shéordave censored ages. Those
simulated subjects that were deemed to have cehages were taken to be censored
at age 3 (because that was the predominant lowardofor owl ages in the data set).
We used the age parameters and the random efistribution roughly matching
those from the real data set to generated lineatigtiors and then number fledged.
We investigated several sample sizes (total nurobewls) and several values for the
percentage of subjects with censored ages. Thdationconditions are further

detailed in Appendix A5.
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Table 3.1 shows descriptive statistics of estimatesstimates of3, from the

6 settings and 5 fitting methods. The statistiecsefach condition are based on 200

Monte Carlo samples. See the Appendix for simdates for estimators gf, and

B

Table 3.1Descriptive statistics of estimates gf (true value -0.0235)

Sample size 50 400

Proportion censored .10 .25 .50 .10 .25 .50
MCEM

mean -0.0246 -0.0227 -0.0214 -0.0225 -0.0216 -®@019
bias -0.0011 0.0008 0.0021 0.0010 0.0019 0.0036
variance 7.55E-05 0.0001 5.76E-05 7.43E-06 7.58E-8@®0E-06
MSE 7.64E-05 0.0001 6.16E-05 8.43E-06 1.12E-05 B-89
Monte Carlo SD 0.0087 0.0082 0.0076 0.0027 0.0028 .002%
Mean reported SE 0.0092 0.0086 0.0083 0.0026 0.002®.0025
Approx MCEM

mean -0.0245  -0.0223  -0.0207 -0.0228 -0.0217 -@O20
bias -0.0010 0.0013 0.0028 0.0007 0.0018 0.0035
variance 7.22E-05 0.0001 5.13E-05 7.52E-06 7.17E-8&37E-06
MSE 7.29E-05 0.0001 5.89E-05 8.02E-06 1.03E-05 B-0B
Monte Carlo SD 0.0085 0.0080 0.0072 0.0027 0.0027 .002B
Mean reported SE 0.0044 0.0041 0.0038 0.0010 0.001®@.0010
Regression Calibration

mean -0.0251  -0.0240 -0.0241  -0.0232  -0.0232 -®022
bias -0.0015 -0.0005 -0.0006 0.0003 0.0004 0.0007
variance 7.93E-05 7.69E-05 6.91E-05 7.84E-06 8@&E-7.27E-06
MSE 8.14E-05 7.67E-05 6.91E-05 7.91E-06 8.54E-0670H-06
Monte Carlo SD 0.0089 0.0088 0.0083 0.0028 0.0029 .002¥Y
Mean reported SE 0.0087 0.0086 0.0090 0.0029 0.0029.0030
Naive Replace

mean -0.0235  -0.0212  -0.0207 -0.0221  -0.0204 -®0O19
bias -2.30E-05 0.0023 0.0028 0.0015 0.0031 0.0043
variance 7.06E-05 6.37E-05 6.97E-05 7.05E-06 7@6E-5.76E-06
MSE 7.03E-05 6.88E-05 7.70E-05 9.15E-06 1.72E-0538R-05
Monte Carlo SD 0.0084  0.0080  0.0083  0.0027  0.0027  0.0024
Mean reported SE 0.0084 0.0081 0.0081 0.0028 0.002D.0027
Known Only

mean -0.0259 -0.0244 -0.0266 -0.0237 -0.0238 -@024
bias -0.0024 -0.0009 -0.0031 -0.0002 -0.0003 -(®000
variance 8.48E-05 0.0001 0.0002 8.81E-06 1.04E-0574E:05
MSE 9.02E-05 0.0001 0.0002 8.83E-06 1.04E-05 10BE-
Monte Carlo SD 0.0092 0.0102 0.0145 0.0030 0.0032 .0042

Mean reported SE 0.0092 0.0100 0.0129 0.0030 0.0034€.0041
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Some of the features in Table 3.1 will be highleghtand clarified for further
emphasis. Figures 3.3 and 3.4 show the Monte Garlpling distributions for the
estimators of3, and S, respectively for the settings with a sample siiz¢0® and

with 50% of the observations censored. The vdrlilwa represents the true value of

parameter.
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Figure 3.3Monte Carlo sampling distributions far400 and50% censoredor the
estimators op,, the agéterm, for the 5 different fitting methods.
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In Figure 3.3 the MCEM, approximate MCEM, and tlaéve replacement are

all biased. The known age only and the regressadibration estimates appear

unbiased. Notice how the regression calibratidimages are much less variable than

the known age only estimates.
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Figure 3.4 Monte Carlo sampling distributions fa=400 and50% censoredor the
estimators of,, the intercept, for the 5 different fitting mettsod
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The above histograms show the Monte Carlo samplistgibution for the

estimators of,for the setting with a sample size of 400 and \&{iRo of the

observations censored. The MCEM and approximat&MGhow an obvious bias,
while the naive replacement estimates are extrebiabed. Both the regression
calibration and the known age only estimates seebe tunbiased. The regression
calibration estimator has smaller MSE than the kmage only estimator. See
Appendix A6 for the Monte Carlo sampling distritarts for the other parameters and
simulation conditions.

Since the estimators of the linear and quadratim$ are correlated, it helps
somewhat to see at least one picture of the esithragression curve. The solid line
in Figure 3.6 shows the curve of the mean numieeigid that was used in the
simulation (the log of the mean is taken to be80I0 + 0.385%ge- 0.0235ag¢€).

The dashed line represents the mean MCEM fit. didieed line represents mean fit
from the naive replacement method. Even thougte thepears to be some bias in the
estimates from the MCEM algorithm, the curve isyvapse to the target curve.
However, the curve from the fit obtained by rephacihe censored age with the lower
bound departs from the target curve to a greatgrege Note how the curve based on
the naive replacement decreases the age at paakluepive success by 0.80 years.
The plot below illustrates that simply using théveareplacement method for

censored ages can yield biased results.
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Figure 3.5 Curves based on the mean valueséofrom the simulation

In evaluating these simulations, especially tHomssed on the conditions that
roughly match the actual data set (=400 and cengpercentage = 50%), we are
particularly interested in these questions: Isdlsibstantial precision gained by
including the owls with censored ages, does th@lgimegression calibration method
achieve this gain nearly as well as the maximumlilood estimator based on the
MCEM algorithm, and is inference based on the steshérrors and approximate
normality of the regression calibration estimatgported by the simulation results?

Figure 3.6 shows the MSEs for three estimatoys,othe MCEM, the regression

calibration estimator, and GLMM estimator using kmewn age owls only. When the

sample size is 50, both the MCEM and the regressatibration estimator perform
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much better than the estimator based on known aigeanly. However, when the
sample size is 400, the regression calibratiommedtir out performs the MCEM. This
outperformance is due to the bias in the estimfatethe MCEM.

With 50% censoring and a sample size of 50, the [SEe regression calibration
estimator is 35% of the MSE of the GLMM estimataséd on known owls only.
With 50% censoring and a sample size of 400, wiiolt closely matched the spotted
owl data set, the regression calibration MSE is 48%at for the GLMM estimator
based on only known age owls. (Similar statemergdrae for the estimators of the
other regression coefficients. The MSE of the regjien calibration estimator g8, is
37% and 40% of the MSE of the GLMM estimator witiolvn age owls only with
50% censoring and sample sizes of 50 and 400 resplgc For 5, the MSE of the

regression calibration estimator is 35% and 43%efMSE of the GLMM estimator

with known age owls only.)
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Figure 3.6 Mean Squared Error for three estimatorg&f
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We also wish to see if the computed standard eadesjuately approximate
the standard deviations of the sampling distributiigure 3.7 shows the mean
reported standard error vs. the Monte Carlo stahdaviation for three estimators

of B,. In all cases, it appears that the reported stahelrror is a good approximation.

This seems particularly important for the regressalibration estimator, in which the
reported standard error is the usual one obtaireed the GLMM fitting procedure
without any further adjustment. This fact, with #nadence from Figures 3.3 and 3.4
that the sampling distribution is roughly normadlyaped, indicates no obvious

problems with usual inferences based on approximateality and reported standard

errors.
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3.7 Analysis of Spotted Owl Data

The regression calibration method for censored ates will now be used to
analyze one of the study areas from the SpottedeQanple from Section 1.2. The
Oregon Coast Range study area is located in theat€@oast Ranges of Oregon.
There are 108 known age owls and 165 owls withaeasages. The known age owls
have 542 owl/year observations, while the censoved have 839 owl/year
observations.
This analysis will examine two particular questidingt the wildlife biologists are
interested in gaining insight on. First, they wblike to know the age at peak
reproductive success, after accounting for diffeesrbetween years. The biologists
are also interested in possible declines in reprtide success after reaching peak
performance. The table below shows the paramstenates and standard errors. See

Appendix A7 for plots and tables of estimation testor the other study areas.

Table 3.2Regression calibration estimation results for @reGoast Range

Regression Calibrationlmer Known Age Males Only
All Males
Parameter Estimate SE Estimate SE
By -1.3797 0.2680 -1.8092 0.6796
Bige 0.3037 0.0546 0.4824 0.0944
ﬁagez -0.0154 0.0029 -0.0269 0.0058
Bioor -1.4978 0.3664 -15.8338 2211.3104
Biooz -0.0947 0.2178 -15.9970 1157.3002
Bioos -1.5129 0.3260 -0.9729 0.9513
Bisos -0.2715 0.2193 -0.7218 0.7130
Bioos -1.7880 0.3197 -1.7309 0.7672




181996
181997
181998
181999
182000
182001
182002
182003
182004
182005

years

g,

u

g,

a

0.0568
-1.1195
-0.5004
-2.0656
-0.6539
0.1743
-0.9505
-2.7693
-0.0647
-0.7043
1.2189
-0.0175
0.2769
0.5654

0.2108
0.2507
0.2272
0.3398
0.2398
0.2187
0.2716
0.4940
0.2315
0.2646
0.0879
0.0144

-0.0933
-1.1617
-0.3259
-2.1913
-0.6369
-0.0490
-0.8955
-2.9424
-0.1555
-0.9596

0.3388

0.6490
0.6750
0.6477
0.7342
0.6564
0.6461
0.6704
0.8631
0.6507
0.6745
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Based on the regression calibration analysis thasiders all 273 owls, the age

at peak reproductive success is estimated to liey@&s. Based on the GLMM

analysis using only the 108 known age owls, theasdgeeak reproductive success is

estimated to be 8.97 years. Both analyses sugg#stline in reproductive success

after peak reproductive success is reached (oee gievalue for,Bag »<0.0001 for

both analyses). The solid lines in the plot bethwow the estimated curve for the

mean number fledged. The regression calibrati@hyais using all of the owls has the

heavier lines, while the analysis that just useskiown age owls uses the lighter

lines. The dashed lines show a 95% confidencedtardhe mean fixed effect of

male age. The heavier set of lines is for theymmakhat considers all owls and the

lighter set are for known age owls only. Thesefidence bands include between-
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owl variability in intercepts. The analysis thaneiders all owls has a much tighter
confidence interval, especially around the peathefknown age curve.

The extreme negative estimates and large standandfer the years 1991 and
1992 in the known age only analysis are due tosgMations and 10 observations
that were all 0. The results of the analysis waarlwbably not change if these years

were removed.
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Figure 3.80regon Coast Range with GLMM model fits and 95%ficamce bands
using only 108 known-age owls (thin line) and usatig?73 owls (thick line). The
owls with censored ages are plotted at their cartdit expected ages.
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3.8 Discussion

While the approximate MCEM algorithm is slightlystar than the MCEM
algorithm of chapter 2, it is still a computatidgahtensive method. The number of
iterations required for convergence (with a reltbonvergence criterion that
estimates change by less than 0.5% in successiati@ns) was generally around 14.
The computational time required to generate thegseandom variables in the
Metropolis step is less than the MCEM method ofptéa2 because we only need to
generate first observed ages for the censored &irfowever, the M-step takes
longer because we are fitting a GLMM instead ofla/Gwith the random effects as
offsets.

Both the MCEM and the approximate MCEM algorithroffey from bias. It
is not clear why, but it is possible that the caogeace criterion that was used is too
large. The EM algorithm in general can suffer frelmw convergence, and the
MCEM algorithm has the added complexity of the Mo@arlo estimate in the E-step.
Unfortunately, the extremely large Monte Carlo sengizes that are needed to insure
that the Monte Carlo estimate of the E-step isseldo the actual intractable integral
can often cause memory failures in R. As compupioger and memory increase, it
is likely that one would be able to use a smaltarvergence criterion. This may solve
the bias issue in the MCEM algorithms, but moreaesh may be needed to clarify
exactly why these methods are biased.

The approximate MCEM algorithm would be difficuttrfa biologist to
implement without further computer programming IskilThe regression calibration

method of Section 3.5 seems to be a practical apgprtor including censored age
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animals in the analysis, but without the computeldurdles of the MCEM and
approximate MCEM algorithms. We feel that the esgion calibration method could
be easily implemented by a researcher who hasdrad formal statistics training
because this method is relatively simple extensicthe methods that would be used
if all of the ages were known.

Our simulation study demonstrates that the regvassalibration method
performs substantially better than either usingrtfiive replacement method or using
only known age animals in the analysis. With respe bias in the parameter
estimates, this method performs better than the M@kgorithm and nearly as well in

reducing the variance of the estimates.
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4. Conclusions

This dissertation proposes three algorithms foluking censored age
individuals in an age specific reproductive suc@esaysis. Special attention is given
to a specific Northern Spotted Owl study (Loschd&)) but the problem of censored
age individuals is common in studies of age specdproductive success. Recent
age-specific reproductive studies that excludedaesd age individuals and used
GLMMs include barn owls (Altwegg et al. 2007), snpetrels (Angelier et al. 2007),
brown thornbill (Green 2001), goshawk (Kruger 2Q@#bwn bears (Zedrosser, et al.
2007), mountain goats (Co6té, Festa-Bianchet 2G01),sparrowhawks (Newton,
Rothery 2002). As evident in the Northern Spoted study, the percentage of
animals with unknown ages can be substantial.

Two of the algorithms are Monte Carlo EM algoriththat require generating
pseudo-random numbers to calculate the intraceatpectation step. The first
algorithm treats both the censored ages and tliwnamrffects as “missing data.” The
second method only treats the censored ages asifigpidata.” The pseudo-random
number generation is accomplished via Metropotimaihms. Both of these methods
are computationally intensive and require the nesesa to write a significant amount
of computer code. In addition, the algorithms barslow to converge and additional
computations must be done to obtain standard errors

Since our goal was to develop a practical methathtould be easy to
implement and given the above issues with the MGHdwrithms, a third method was

developed. The regression calibration method simgplaces the censored
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observations with their estimated expected valisngappropriate covariates for
predicting age and given the lower bound. Theratiespecific reproductive success
analysis can proceed using the methods that waukbpropriate if all of the ages
were known. Researchers with a working knowledgegpplied statistical methods
(like regression, ANOVA, and generalized linear misil should be able to easily
implement this method using standard computer mestiWe have found no evidence
of any problem with using reported standard eram@ approximate normality for
inferences. Figure 4.1 shows the estimated mearestdior the known age only
analysis (lighter lines) and the regression calibreanalysis (heavier lines). The
confidence interval for the regression calibratethod is much tighter than the
method that only uses known age owls.
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Chapter 3 showed the results of a simulation stadggxamine how 5 different
fitting methods performed on 6 different settine settings were chosen to cover a
range of possible sample sizes and proportion mda@ed age individuals. Based on
the simulation study, it is clear that the naivy@laeement method that uses the lower
bound as the true age causes biased estimates i@giression parameters. This bias
increases as both the sample size increase amiapertion of censored age
individuals increase. For the biologists studyayg specific reproductive success,
this result should be noted and more sophisticatedels should be considered when
including censored individuals in the analysis.

The rest of the methods that include the censobbedreations succeed in
increasing the precision of the estimates. BotthefMCEM algorithms show some
bias in the regression estimates. The estimabes tine regression calibration method
have slightly more variability than the MCEM estii@s, but do not exhibit the bias of
the MCEM estimates. The regression calibratiomeges are much less variable than
the estimates that are obtained by restrictinghatte to known age individuals only.
This increased precision from the regression catibn method will help researchers

answer important biological questions.
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Al R Code for fitting MCEM with Censored Covariates

#iH MODEL #H###
# y|x,u ~ Poisson(mu)

# log(mu) = beta[0] + beta[1]*age + beta[2]*age”2 + u

# u ~ N(0,sdu)

# where age = Z %*% age.first + years.since.first

# where age.first is the true age at first observat ion (unknown for the censored owls)
# log(age firstlyears.of.obs) ~ N(alpha[0]+alpha[1] *years.of.obs,sda)

# Metropolis-Hastings Generation

#[1]"male” “"year" "age" “fledged" "area" "censor"
n <- length(male)

#PUT OWL-SPECIFIC VARIABLES IN m-VECTORS

malem <- unique(male) # mx1 vector of unique mal e IDs
m <- length(malem) # 118 # number of males
age.first.obs <-rep(0,m) # age at first observatio n or lower bound, for each male
censorm <- rep(0,m) # mx1 vector: 1 if age is cens ored for owl j, O if not
years.of.obs <- rep(0,m) # total years of observat ion on owl j
number.of.obs <- rep(0,m) # number of observations onowlsj;j=1,..,m
Z <- matrix(rep(0,n*m),n,m) # Design matrix with male indicators
for (jin 1:m) {
age first.obs[j] <- min(age[male==malem([j]])
censorm[j] <- mean(censor[male==malem[j]])
years.of.obs[j] <- max(age[male==malem[j]])-min(a ge[male==malem([j]])
number.of.obs[j] <- length(fledged[male==malem[j]] )
Z[,j] <- ifelse(male==malem[j],1,0)
}
mc <- m - sum(censorm) # males with known ages
m-mc # with censored ages
years.since.first <- age - Z %*% age.first.obs #Y ears since first observation (nx1
# vector)

HHAHHH R R R HHRHHH R
#### METROPOLIS-HASTINGS SIMULATION FUNCTION ####
### UTILITY FUNCTIONS ###
# Function to generate left-truncated normals
rtnorm <- function(mu,sd,lo) {

n <- length(mu)
mu + sd*gnorm(runif(n,pnorm((lo-mu)/sd),1))

}
# Function to generate random ages given lower boun d, from truncated lognormal
acandidate <- function(mua,sda,lowest.age) {

# mua is mx1 vector of means for log age at first observation

# sda is 1x1 constant standard deviation for log a ge at first observation

# lowest.age is mx1 vector of lower bounds for age

m <- length(mua)

lacandidate  <- rtnorm(mua,sda,log(lowest.age)) # simulated log ages at first
# obs

exp(lacandidate) # simulated ages (not logged age d) at first observation
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metropolis <- function(theta,fledged,censor,age.fir st.obs, years.since.first, R) {
n <- length(fledged)
m <- length(age.first.obs)
U <- matrix(0,nrow=R,ncol=m) # Rxm Matrix to be f illed in with simulated
# random effects, u
A <- matrix(0,nrow=R,ncol=m) # Rxm matrix to be f illed in with simulated

# ages at first obs.
alpha <- theta$alpha

beta <- theta$beta

sdu <- theta$sdu

sda <- theta$sda

# Initialize

critu  <- rep(0,m) # to store the acceptance crite rion for candidates for u
crita <-rep(0,m) # to store the acceptance crite rion for candidates for age

# at first observation
ones  <- matrix(rep(1,n),n,1) # nx1 vector of 1's

Y <- matrix(rep(fledged,m),n,m) # nxm; m copies of the response
Years.since <- matrix(rep(years.since.first,m),n,m ) # nxm; m copies of years
# since first observation
mua <- alpha[1] + alpha[2]*years.of.obs[censorm==1 1 # mean of lognormal
# regression for censored ages
U[1,] <-rnorm(m,0,sdu) # initial simulation of random effects
All] <-
c(age.first.obs[censorm==0],acandidate(mua,sda,age. first.obs[censorm==1]))
# The first mc rows of A[r,] are the ages at first
# observation for owls with known ages. The remaind er

# are simulated values from the truncated lognormal
# regression.

for (rin 2:R) {
# Generate candidate vectors for u and a
u.candidate <- rnorm(m,0,sdu)
a.candidate <-

c(age.first.obs[censorm==0],acandidate(mua,sda,age. first.obs[censorm==1]))
### CALCULATE DENOMINATOR OF ACCEPTANCE CRITERIONVECTORS ####
age <- Z %*% A[r-1,] + years.since.first nx1; a ge = "age at first
observation" + years since first
fixed <- beta[1] + beta[2]*age + beta[3]*(age”2) # nx1; fixed

# effects in linear
# predictor using

# previous
# simulated a's
Fixed <- matrix(rep(fixed,m),n,m) # nxm; m copi es of fixed effects
umat  <- matrix(rep(U[r-1,],m),m,m) # mxm; m copi es of previously
# simulated random effects
Eta  <- Fixed + Z %*% umat # nxm; m copies of linear

# predictor based on previously #
simulated u's, a's

Density <- dpois(Y,exp(Eta)) # nm x 1; Poisson de nsity at the linear
# predictor
Density <- matrix(Density,n,m) # nxm; m copies o f Poisson density at
# linear predictor; previous simulations
denom <- exp(t(Density) %*% ones) # mx1, jth ele ment is the product

# of Poisson pmfs at previously
# simulated values of uj and aj

### GET ACCEPTANCE VECTOR FOR U ###
umat2 <-umat # mxm; m copies of previously si mulated u's
diag(umat2) <- u.candidate # mxm; Replace diagon al elements with new
# candidates
Eta <- Fixed + Z %*% umat2  # nxm
Density <- dpois(Y,exp(Eta)) # nxm; jth column has Poisson pmfs with
# all u's equal to the previously
# simulated values, except with uj
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# replaced by new candidate
numer <- exp(t(Density) %*% ones)  # mx1; jth ele ment is the product

# of the n Poisson pmfs at

# previously simulated values of u
# and a, except with uj replaced
# by new candidate

critu  <- ifelse(numer<denom,numer/denom,1) # mx1; jth element is

### GET ACCEPTANCE VECTOR FOR A ###

# acceptance probability
# for candidate uj

amat  <- matrix(rep(A[r-1,],m),m,m) # mxm; m copi es of previously

# simulated a's (age at first
# observation)

diag(amat) <- a.candidate #mxm; Replace diagona | elements with new
# candidates
Age <- Z %*% amat + Years.since # nxm; Form ages from ages at first
# observation plus years since first
Eta <- beta[1] + beta[2]*Age + beta[3]*(Age”"2) + Z %*% umat

Density <- dpois(Y,exp(Eta)) # nxm; jth column

has n Poisson pmfs

# with all u's and a's equal to the
# previously simualted values, except
# with aj replaced by new candidate
numer <- exp(t(Density) %*% ones) # mx1; jth eleme nt is the product

# of the n Poisson pmfs at

# previously simulated values of u
# and a, except with aj replaced

# by new candidate

crita <- ifelse(numer<denom,numer/denom,1) # mx1 ; th element is the

### CARRY OUT ACCEPTANCE ###

# acceptance probability
# for candidate aj

bernu <- rbinom(m,1,critu) # mx1; generate m Ber noullis with the
# candidate u acceptance probabilities
berna <- rbinom(m,1,crita) # mx1; generate m Ber noullis with the

# candidate a acceptance probabilities

U[r,] <- bernu*u.candidate + (1-bernu)*U[r-1,]

Alr,] <- berna*a.candidate + (1-berna)*A[r-1,]

list(U=U,A=A) # Return R simulated u vectors and
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#m x1; new u is
# either previous u
#or new candidate

# mx1; new ais
#either previous a
#or new candidate
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# Likelihood function used to compute importance we
like  <-function(theta) {

Densityl <- dpois(fledgedvector, exp(xmat %*%theta$
Density2 <- dnorm(uvector2,0, theta$sdu)
Density3 <-
dnorm(log(avector), theta$alpha[1]+ theta$alpha[2]*

MCnum <- rep(1:R,n)
MCnum2 <- rep(1:R,m)

HHHHHH

ights

beta + uvector)) # glm part
# random effects part

years.of.obsvector,theta$sda)
# age at first obs part

sl <- tapply(Densityl, INDEX=MCnum, sum) # sum ming over the MC samples
s2 <- tapply(Density2, INDEX=MCnum2, sum) #sum ming over the MC samples
s3 <- tapply(Density3, INDEX=MCnum2, sum) #sum ming over the MC samples
return(s1+s2+s3) # returning the overall su m

}
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# MCEM algorithm for censored ages

time.check <-date()
BB
convergence.criterion <- .005

iter <- 1 # iteration number

maxdif <- 1 # initial setting for max abs. value

# STARTING VALUES
beta.old <-c(-0.403156, 0.141645, -0.008767) # from

1

Imer with censored ages replaced

# by expected given above threshold

alpha.old<- ¢(0.553586294, 0.005887441) # from Im

fit of log agefirst on yearsobsm

# from owls with known ages

sda.old <-0.4560279

sdu.old <- 0.2268224 # from Imer with censor

theta.old <- list(beta=beta.old, alpha=alpha.old, s

¢ <-3 # proportion to increase the Monte Carlo sam
R <- 8 # starting Monte Carlo sample size

print(c("iter", "beta0", "betal", "beta2","alphal",
quote=F, sep="\t")
print(round(c(0, unlist(theta.old)),3), sep="\t")

# keep track of the estimates

betal.iter <- beta.old[1]
beta2.iter <- beta.old[2]
beta3.iter <- beta.old[3]
alphal.iter <-alpha.old[1]
alpha2.iter <- alpha.old[2]
sdu.iter <- sdu.old
sda.iter <- sda.old
maxdif.iter <- maxdif
R.iter <-R

S <- 3 # burn in for regular MCEM before switching

while (maxdif>convergence.criterion) {
#if (iter==1) {

# Monte Carlo E-step
RO<-R
R <- RO + floor(R0/c)

# Obtain R psuedo random variables using the

if (iter<=S) {
sample <- metropolis(theta.old,
years.since.first, R=R)
w<-1
imp.weightl <- rep(1,R*n)
imp.weight2 <- rep(1,R*m)}

ed ages replaced

du=sdu.old, sda=sda.old)

ple size by

"alpha2", "sdu", "sda"),

to importance weighting

Metropolis Alg

fledged,censor,age.first.obs,



# Re-initializing theta to use importance weights
if (iter==S) {
theta.init <- theta.old
sample <- metropolis(theta.init
years.since.first, R=R)
}

if (iter >S){
samp.incr <-floor(RO0/c)
samplek <- metropolis(theta.init,fledged,
years.since.first, R=samp.incr)
sample$U <-matrix(c(t(sample$U),t(samplek
sample$A <-matrix(c(t(sample$A),t(samplek

}

# replicating for the augmented data set for

agevector <- matrix(t(Z%*%t(sample$A)), ncol=1,

byrow=T)+rep(years.since.first,rep(R,n))

agevector2 <- agevector"2

uvector <- matrix(t(Z%*%t(sample$U)), ncol=
fledgedvector <- rep(fledged,rep(R,n))
intercept <- rep(1,n*R)

xmat <- chind(intercept, agevector, agevector

# male year R
# 1 98 1
# . 98 2
# . .

# 1 98 R
# 1 99 1
# . 99 2
# . . .

# 1 . R

# replicating for the augmented data set for

avector <- matrix(sample$A, ncol=1, byrow=T) #

uvector2 <- matrix(sample$U, ncol=1, byrow=T)

years.of.obsvector <-rep(years.of.obs ,rep(R,

# compute the importance weights as in Levine
if (iter >=S) {w <- (like(theta.old)/like(the

imp.weightl <- rep(Ww*R,n)
imp.weight2 <- rep(w*R,m)}

# M-step

## using glm.fit to obtain estimates for the
## this fits the n x R observations in the a

fitl <- gIm.fit(xmat, fledgedvector, offset=u
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[fledged,censor,age.first.obs,

censor,age.first.obs,

$U)), nrow=R0+samp.incr, byrow=T)
$A)), nrow=R0+samp.incr, byrow=T)

the n observations

1, byrow=T)

2) # glm.fit needs the x's in
# matrix form

each owl

making the a matrix into an
# m*r vector
# making the u matrix into
# an m*r vector

m))

and Casella

ta.init))

generalized linear model part
ugmented data set

vector,
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weights=(imp.weight1/sum(w)), family = poisson(), i ntercept = F)

beta.new <- fit1l$coef

# Finding random effects sd
sdu.new <- sgrt(sum(uvector2"2)/(m*R))

## fitting the model for the age of first obs
fit2 <- Im(log(avector)~ years.of.obsvector,

alpha.new <-fit2$coef
sda.new <- summary(fit2)$sigma

theta.new <- list(beta=beta.new, alpha=alpha.

# keep track of the estimates

betal.iter <- c(betal.iter,beta.new[1])
beta2.iter <- c(beta2.iter,beta.new[2])
beta3.iter <- c(beta3.iter,beta.new[3])
alphal.iter <- c(alphal.iter,alpha.new[1])
alpha2.iter <- c(alphaz2.iter,alpha.new[2])
sdu.iter <- c(sdu.iter,sdu.new)

sda.iter <- c(sda.iter,sda.new)

# check convergence

maxdif <- max(abs((unlist(theta.new)-unlist(t
maxdif.iter <- c(maxdif.iter,maxdif)

# print current estimate

print(round(c(iter, unlist(theta.new),maxdif)
iter <- iter+1

R.iter <- c(R.iter,R)

beta.old <- beta.new

alpha.old <- alpha.new

sdu.old <- sdu.new

sda.old <-sda.new
theta.old <- theta.new

}

time.check <- c(time.check,date())

# print mle

mle <- theta.old
mle
round(unlist(mle),4)

ervation--

weights=imp.weight2/sum(w))

new , sdu=sdu.new , sda=sda.new)

heta.old))/unlist(theta.old)))

,3), sep="\t")
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# Computing Standard Errors

# First Derivatives

b0 <- (-exp(xmat %*%mle$beta + uvector)+fledgedvect or)

bl <- (-agevector*exp(xmat %*%mle$beta + uvector)+f ledgedvector*agevector)

b2 <- (-agevector*2*exp(xmat %*%mle$beta + uvector) +fledgedvector*agevector’2)

a0 <- (log(avector)-mle$alpha[l]-mle$alpha[2]*years .of.obsvector)/mle$sda2

al <- years.of.obsvector*(log(avector)-mle$alpha[1] -mle$alpha[2]*years.of.obsvector)
/mle$sdan2

Su <- (-1/mle$sdu -uvector2"2/mle$sdu”3)

sa <- ((-1/mle$sda)+((log(avector)-mle$alpha[1] mle $alpha[2]*years.of.obsvector )2/
mle$sda’3))

# Summing up over the repeated measures to the male S

male.vector <- rep(male,rep(R,n))+(rep(1:R,n)/(R+1) )

b00 <- tapply(b0,male.vector,sum)
b11 <- tapply(b1,male.vector,sum)
b22 <- tapply(b2,male.vector,sum)
# Cacluating the approximate information matrix
info <- matrix(rep(0,49),nrow=7)
for (i in L:(m*R)¥{
info <- info +c(b00[i],b11[i],b22[i], a0[i] , alfi], suli],
sal[i])%*%t(c(b0O[i],b11[i],b22[i], aO[i], al[i], su [i], sa[i]))
}

approx.info <- 1/R*info

var.cov <-solve(approx.info)
se <- sqrt(diag(var.cov))
se



A2 MCEM Spotted Owl Analysis
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Figure A2.1 Northern Spotted Owl Model Fits. The darker liaes the full MCEM
analysis and the lighter lines are the known agls owly. The dashed lines are the
95% confidence intervals.



Table A2.1MCEM estimation results for Cle Elum

MCEM All Males | Imer Known Age Males Only
Parameter Estimate SE Estimate SE

By 0.1592  0.4525 0.2118 0.7419
Bage 0.0642 0.0246 0.2417 0.0880
ﬁagez -0.0026  0.0009 -0.0132 0.0062
Bioso -0.1072 0.5646 -1.1714 1.0134
Bioor -0.4952 0.5054 -0.8920 0.8327
Biooz 0.0410 0.5204 -0.2413 0.7657
Bioos -1.8857 0.4925 19.1415 3042.1741
Bisos 0.0074  0.4808 -0.2921 0.7634
Bioos -0.6642 0.4648 -1.1262 0.7938
Bioos -0.0279 0.4942 -0.5873 0.7686
Biogr -2.3662 0.6260  -19.2933 2755.8640
Bioos -0.0672 0.4835 -0.7237 0.7715
Bigos -0.9150 0.5114 -1.1869 0.7928
Bioooo -0.4616 0.4935 -1.2653 0.7885
Booor -0.3660 0.5215 -1.0528 0.7854
Bz -0.6304 0.5125 -1.6525 0.8534
Bioos -0.2498 0.5065 -0.8773 0.7867
Biooa -0.5228 0.5169 -0.8920 0.7847
Bioos -0.5625 0.5178 -1.0588 0.7959
a, 1.1305 0.0259
A years 0.0200 0.0031

g, 8.0e-07 4.0e-08 0.1798

g, 0.6773 0.0012




Table A2.2 MCEM estimation results for H.J. Andrews

MCEM All Males

Imer Known Age Males Only

Parameter Estimate SE Estimate SE
B, 0.4757 49.3804 -1.3088 0.8309

Bige 0.0347 0.0113 0.4531 0.1069
ﬂagez -0.0009 0.0002 -0.0254 0.0069
Biosr -0.6842 49.3847 -17.5988 5717.5404
Bioss -0.6900 49.3809 -0.4866 1.0280
Bioso -1.4987 49.3804 -0.9190 0.8886
Bioso -1.2441 49.3808 -0.6830 0.8155
Bioor -1.5554 49.3804 -2.0862 1.0065
Bios -0.4220 49.3805 -0.0005 0.7421
Bioos -17.9970 5333987.038¢ -17.7043 1565.3191
Bisos -1.5571 49.3804 -1.1521 0.7923
Bioos -1.7569 49.3805 -1.6220 0.8175
Bioss -0.6952 49.3804 -0.3271 0.7356
Bioo7 -1.6209 49.3805 -1.3016 0.7760
Bioos -1.3257 49.3805 -1.0785 0.7616
Bios -2.0027 49.3806 -1.0082 0.7657
Biooo -0.9708 49.3804 -1.0164 0.7661
Boor -0.8354 49.3803 -0.4137 0.7360
Biooz -0.9515 49.3804 -1.1963 0.7716
Boos -1.8307 49.3804 -1.2249 0.7745
Boooa -0.6150 49.3803 -0.2838 0.7323
Booos -2.2662 49.3810 -1.5017 0.8226

a, 1.7161 0.0084
Qears -0.0065 0.0010

g, 0.0100 0.0003 0.0000

g 0.6898 0.0002

83



Table A2.3MCEM estimation results for Tyee

MCEM All Males | Imer Known Age Males Only
Parameter Estimate SE Estimate SE

B, 0.0540 1.0181 14.7886 717.0570
Bage 0.0754 0.0125 0.3497 0.0697
B -0.0029 0.0004 -0.0221 0.0046
Bioss -2.5912  1.449¢

Bioss -0.3203 1.0531

Bios: -0.9651  1.0913

Bioss -1.8897 1.102(

Bioso -0.7526 1.0413 13.3596 717.0573
Bisso -0.8360 1.0346 13.0984 717.0571
Bisor -1.3267 1.0227 12.7455 717.0571
Bios -0.5289 1.0321 13.0840 717.0570
Bioos -2.1139 1.0423 11.8633 717.0571
Bioos -0.8800 1.0244 13.2773 717.0570
Bioos -1.5128 1.0275 12.6601 717.0570
Bioss -0.2967 1.0221 13.6158 717.0570
Bioor -0.8693 1.0253 12.7755 717.0570
Bioos -0.8052 1.0274 13.1168 717.0570
Bioss -1.2281 1.0314 12.7374 717.0570
Booco -1.0111 1.0278 12.9589 717.0570
Boor -0.2148 1.0213 13.8331 717.0570
Biooz -0.8623 1.024Q0 13.1580 717.0570
Booos -1.5779 1.0292 12.5660 717.0570
Booos -0.8273 1.0235 13.1943 717.0570
Booos -0.7746 1.0235 13.3154 717.0570
a, 1.3175 0.013(
O'years -0.0088 0.0015

o, 0.3144 0.0098 0.2628

o, 0.7109  0.0004




A3 R Code for fitting Approximate MCEM with Censored Covariates

#iH# MODEL #HH###
# y|x,u ~ Poisson(mu)

# log(mu) = beta[0] + beta[1]*age + beta[2]*age”2 + u

# u ~ N(0,sdu)

# where age = Z %*% age.first + years.since.first

# where age.first is the true age at first observat ion (unknown for the censored owls)
# log(age firstlyears.of.obs) ~ N(alpha[0]+alpha[1] *years.of.obs,sda)

# loading necessary libraries
library(mvtnorm)
n <- length(male)

# PUT OWL-SPECIFIC VARIABLES IN m-VECTORS

malem <- unique(male) # mx1 vector of unique male IDs
m <- length(malem) # 118 # number of males
age.first.obs <-rep(0,m) # age at first observatio n or lower bound, for each male
censorm <- rep(0,m) # mx1 vector: 1 if age is cens ored for owl j, O if not
years.of.obs <- rep(0,m) # total years of observa tion on owl j
number.of.obs <- rep(0,m) # number of observations onowls j;j=1,..m
Z <- matrix(rep(0,n*m),n,m)  # Design matrix with ma le indicators
for (jin 1:m) {
age.first.obs]j] <- min(age[male==malem([j]])
censorm[j] <- mean(censor[male==malem[j]])
years.of.obs[j] <- max(age[male==malem[j]])-min(a ge[male==malem([j]])
number.of.obs][j] <- length(fledged[male==malem([j]]
Z[,j] <- ifelse(male==malem([j],1,0)
}
mc <- m - sum(censorm) # 49 # males with known ag es
m-mc # 69 with censored ages
years.since.first <- age - Z %*% age.first.obs # Ye ars since first observation (nx1
# vector)
ncl <-length(male[censor==1]) # number of observations from censored age owls
mcl <-m-mc # number of censored age owls
Zcl <-Z[(n-nc1+1):n, (mc+1):m] # the subset of the Z matrix that deals with

# the censored age owls
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#### METROPOLIS-HASTINGS SIMULATION FUNCTION ####
### UTILITY FUNCTIONS ###
# Function to generate left-truncated normals

rtnorm <- function(mu,sd,lo) {
n <- length(mu)
mu + sd*gnorm(runif(n,pnorm((lo-mu)/sd),1))

# Function to generate random ages given lower boun d, from truncated lognormal

acandidate <- function(mua,sda,lowest.age) {
# mua is mx1 vector of means for log age at first observation
# sda is 1x1 constant standard deviation for log a ge at first observation
# lowest.age is mx1 vector of lower bounds for age
m <- length(mua)
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lacandidate  <- rtnorm(mua,sda,log(lowest.age)) # simulated log ages at first
# obs
exp(lacandidate) # simulated ages (not logged aged ) at first observation
metropolis <- function(theta, y.adjust, censor, age first.obs, years.since.first,
R=1000) {
A <- matrix(0,nrow=R,ncol=mc1) # Rxm matrix to be filled in with simulated ages at
# first obs.

alpha <- theta$alpha
beta <-theta$beta
sdu <- theta$sdu
sda <- theta$sda

sigma <- theta.old$sdu”2*Zc1%*%t(Zc1) + theta.ol d$sd~2*diag(ncl) # calculating

# the covariance

# matrix for the

# adjusted y-values
# calculated using
# the previous sd.u
# and sd values

# from Imer
# Initialize
crita <-rep(0,mcl) # to store the acceptance cri terion for candidates for
# age at first observation
Years.since <- matrix(rep(years.since.first[censor ==1],mc1),ncl,mcl)
# nclx mcl; mcl copies of years since
# first observation
mua <- alpha[1] + alpha[2]*years.of.obs[censorm==1 ]# mean of lognormal
# regression for censored ages
A[1,] <- acandidate(mua,sda,age.first.obs[censorm ==1])
# Simulated values from the truncated lognormal regression.

for (rin 2:R) {

# Generate candidate vector for a
a.candidate <- acandidate(mua,sda,age.first.obs[c ensorm==1])

### CALCULATE DENOMINATOR OF ACCEPTANCE CRITERION VECTORS ####
age <- Zcl %*% A[r-1,] + years.since.first[censor ==1] # nclx1,;
# age = "age at first
# observation" + years
# since first

fixed <- beta[1] + beta[2]*age + beta[3]*(age”2) # nx1,; fixed
# effects in linear
# predictor using
# previous simulated a's

Density <- rep(dmvnorm(as.vector(y.adjust[cens or==1]),fixed, sigma), mc1)
# multivariate normal density at the linear pre dictor

denom <- exp(Density)

### GET ACCEPTANCE VECTOR FOR A ###

amat  <- matrix(rep(A[r-1,],mcl),mcl,mcl) # mclx mcl ; mcl copies
# of previously simulated
# a's (age at first observation)
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diag(amat) <- a.candidate # mcl x mcl; Replace diagonal elements
# with new candidates
Age <- Zc1 %*% amat + Years.since # ncl x mcl; Fo rm ages from ages at

# first observation plus years since first
fixed <- beta[l] + beta[2]*Age + beta[3]*(Age”2)

y.adjust.standard <- y.adjust[censor==1]-fixed # dmvnorm only allows matrices
# for the x, not mu

Density  <- dmvnorm(t(y.adjust.standard),rep(0,ncl) , sigma)
# nm x 1; multivariate normal density at the line ar predictor

numer <- exp(Density)

crita <- ifelse(numer<denom,numer/denom,1) # mcl x1; jth element is
# the acceptance
# probability for
# candidate aj

### CARRY OUT ACCEPTANCE ###

berna <- rbinom(mc1,1,crita) # mcl x1; generate mcl Bernoullis with
# the candidate a acceptance probabilities

A[r,] <- berna*a.candidate + (1-berna)*A[r-1,] # mcl x 1; new a is

# either previous a or
# new candidate

list(A=A) # Return R simulated a vectors

}
BHHHHH R R R BHHBHHH R
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# Likelihood function used to compute importance we

like  <-function(theta) {

# replicating the datasets for censored owls

malevector2 <- rep(male[censor==1], rep(R,ncl))
fledgedvector2 <- rep(fledged[censor==1],rep(R
malem2 <- malem[censorm==1]
X.mat <- cbind(rep(1,length(age.metrop)),age.me
Z.mat <- matrix(rep(0,R*nc1*mcl),R*ncl,mcl) # Desig
for (j in 1:mc1) {
Z.mat[,j] <- ifelse(malevector2==malem2[j],1,

# calculating the linear predictor, adjusted y, and
# density
lin.pred <- X.mat%*%theta$beta+ Z.mat%*%u.old

y.adjust <- matrix(lin.pred +
(fledgedvector2exp(lin.pred))/exp(lin.pred),nrow=R,
ncol=ncl, byrow=F)

Xbeta <- matrix(X.mat%*%theta$beta,nrow=R, nc
y.adjust.standard <- y.adjust-Xbeta
sigma <- theta$sdu”2*Zc1%*%t(Zc1) + theta.old
sl <- dmvnorm(y.adjust.standard,rep(O,ncl) ,

# calculating likelihood for the log first age part

avector2 <- as.vector(matrix(sample$A, ncol=1
years.of.obsvector2 <-rep(years.of.obs[censor

Density?2 <-
dnorm(log(avector2),theta$alpha[1]+theta$alpha[2]*y
theta$sda)
MCnum2 <- rep(1:R,mc1)
s2 <- tapply(Density2, INDEX=MCnumz2, sum)

return(s1+s2)

}

T NN N NIRRT R TR TR TR TR R T TR TN TN TN IR TN TR TR TR TR TR TR TR TR TR TN T TN TN TN TN IR IR TR TRTRTRTRTRTOTTOT]

HHHHHH A

ights

,ncl))
trop,age.metrop”2)
n matrix with male
# indicators

0)

the multivariate normal

[censorm==1]

ol=nc1, byrow=F)

$sd 2*diag(ncl)
sigma )

of the model

, byrow=T))
m==1] ,rep(R,mc1))

ears.of.obsvector2,
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# loading necessary libraries
#install.packages("Ime4", repos = "http://r-forge.r

library(MASS)
library(nime)
library(Matrix)
library(Ime4)

# approximate MCEM algorithm for censored ages

TN TN R NN TR TR TR TR TR TR TR TR T TR I NI INTN IR TN TR TRIRTRTRTTOT]
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start.time <-date() # time that algori

# convergence

HHHHHH A

-project.org")

thm starts to see how long until



convergence.criterion <- 0.005 # converence crite

iter<-1 # iteration number
maxdif <- 1 # initial setting
c<-3 # amount that the
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rion

for max abs. value
Monte Carlo sample size is

# increased by: R <-R+ floor(R/c)

# STARTING VALUES

beta.old <- ¢(-0.70412947, 0.23793109, -0.01462246

alpha.old<- ¢(0.553586294, 0.005887441) # from Im

) # from glmmPQL for owls
# with known ages
fit of log agefirst on yearsobsm

# from owls with known ages

sdu.old <- 0.2268224
sda.old <- 0.4560279
theta.old <- list(beta=beta.old, alpha=alpha.old, s

R <- 8 # initial R value--this actual makes the in
u.old <- rep(0,m)

age2 <- age™2 # creating the X matrix that will b
X <- cbhind(rep(1,n), age, age2) # the adjusted y va

print(c(“iter", "betaQ", "betal", "beta2","alphal”,
quote=F, sep="\t")
print(round(c(0, unlist(theta.old)),3), sep="\t")

# keep track of the estimates

betal.iter <- beta.old[1]
beta2.iter <- beta.old[2]
beta3.iter <- beta.old[3]
alphal.iter <-alpha.old[1]
alpha2.iter <- alpha.old[2]
sdu.iter <- sdu.old
sd.iter <-sd.old

sda.iter <- sda.old
maxdif.iter <- maxdif
R.iter<-R

S <- 3 # burn in for regular MCEM before switching
IR
while (maxdif>convergence.criterion) {
# Monte Carlo E-step
# calculating the adjusted response
lin.pred <- X%*%theta.old$beta+ Z%*%u.old
y.adjust <- lin.pred + (fledged-exp(lin.pred)
# Monte Carlo E-step
RO<-R
R <- RO + floor(R0/c)

# Obtain R psuedo random variables using the

du=sdu.old, sda=sda.old)

tial R = 10, since 8+floor(8/3) =10

e used in calculating
lues for the approx

"alpha2", "sdu", "sd", "sda"),

to importance weighting

)exp(lin.pred)

Metropolis Alg



if (iter<=S) {
sample <- metropolis(theta.old,
years.since.first, R=R)
w<-1
imp.weightl <- c(rep(1,n-ncl),
imp.weight2 <- c(rep(1,mc),rep(

if (iter==S) {
theta.init <- theta.old
sample <- metropolis(theta.old,
years.since.first, R=R)
}

if (iter >SY{
samp.incr <-floor(R0/c)
samplek <- metropolis(theta.old,y.adjust,
years.since.first, R=samp.incr)
sample$A <-matrix(c(t(sample$A),t(samplek

# replicating for the augmented data set for

malevector <- c(male[censor==0],rep(male[cens

age.metrop <- matrix(t(Zc1 %*%t(sample$A)), n
rep(years.since.firsticensor==1

agevector <- c(age[censor==0], age.metrop)

agevector2 <- agevector"2

fledgedvector <- c(fledged[censor==0],rep(fl

# replicating for the augmented data set for e

avector <- c(age.first.obs[censorm==0], as.vector(m
byrow=T))) # making the a matrix into an m*r ve
years.of.obsvector <-c(years.of.obs[censorm==
,rep(R,mc1l)))

# compute the importance weights as in Levi
if (iter >=S) {w <- (like(theta.old)/like(the
imp.weightl <- c(rep(1,n-ncl),
imp.weight2 <- c(rep(1,mc),rep

# M-step

fitl <-Imer(formula= fledgedvector~agevector+agevec
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y.adjust,censor,age.first.obs,

rep(1,nc1*R)/R)
1,mc1*R)/R)

y.adjust,censor,age.first.obs,

censor,age.first.obs,

$A)), nrow=R0O+samp.incr, byrow=T)

the n observations
or==1], rep(R,ncl)))

col=1, byrow=T)+
],rep(R,ncl))

edged[censor==1],rep(R,ncl)))

ach owl

atrix(sample$A, ncol=1,
ctor
0],rep(years.of.obs[censorm==1]

ne and Casella
ta.init))

rep(w,ncl)/sum(w))
(w,mcl)/sum(w))

tor2

+(1|malevector) ,weights=imp.weight1, family=poisso n,

start=list(malevector=matrix(sdu.old ,1,1)) )

beta.new <- fixef(fitl)
sdu.new <- sqrt(as.vector(VarCorr(fitl)$male)

u.new <-as(ranef(fitl)$male[,1], "vector")

# esimated beta's
) # standard devation of the
# random effects distribution

# random effects coef's, need
# these to calculate the next
# y-adjusted values



## fitting the model for the age of first obs ervation

fit2 <- Im(log(avector)~ years.of.obsvector, weights=imp.weight2 )
alpha.new <-fit2$coef # esima ted alpha's
sda.new <- summary(fit2)$sigma*sqrt(fit2$df.r esidual)/(sqrt(m-2)) # estimated

# sd for the first
# observed ages

## Setting the new estimates

theta.new <- list(beta=beta.new, alpha=alpha. new , sdu=sdu.new, sda=sda.new)

# check convergence
maxdif <- max(abs((unlist(theta.new)-unlist(t heta.old))/unlist(theta.old)))

# print current estimate

print(round(c(iter, unlist(theta.new), maxdif ),3), sep="\t")

# keep track of the estimates

betal.iter <- c(betal.iter,beta.new[1])
beta2.iter <- c(beta2.iter,beta.new[2])
beta3.iter <- c(beta3.iter,beta.new[3])
alphal.iter <- c(alphal.iter,alpha.new[1])
alpha2.iter <- c(alpha2.iter,alpha.new[2])
sdu.iter <- c(sdu.iter,sdu.new)

sda.iter <- c(sda.iter,sda.new)

R.iter <- c(R.iter,R)

maxdif.iter <-c(maxdif.iter,maxdif)

# replacing old estimates with the new ones
iter <- iter+1

beta.old <- beta.new
alpha.old <- alpha.new
sdu.old <- sdu.new
sda.old <- sda.new
u.old <- u.new
theta.old <- theta.new

}

end.time <-date()  # obtaining the ending time to see how long until convergence

# print mle

mle <- theta.old
mle
round(unlist(mle),4)

IR N TR R TR TR TR TR TR TR NI T R N TN TN TN TN TN TR TR TR TRTR TR TR TR TR T TN N TN TN TN TN IR TR TR TRTRTRTRTOT IO TR TR TR NN TR TR TR TR TR TR TR TR T TR I TN TN TN IR TN TR TRTRTRTRTRT BT TNTNINT]
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# Calculating the standard errors

# calculating the adjusted y-values
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X.mat <- cbind(rep(1,length(agevector)),agevector, agevector2)
Z.mat <- matrix(rep(0,length(malevector)*m),length( malevector),m) # Design matrix
# with male
# indicators
for (jin 1:m) {
Z.matl[,j] <- ifelse(malevector==malem[j],1 ,0)

lin.pred <- X.mat%*%mle$beta+ Z.mat%*%u.old
y.adjust <- lin.pred + (fledgedvector-exp(lin.pred)
Rvector <-c(rep(0,n-ncl),rep(1:R, ncl))

censorvector <- c(censor[censor==0],rep(censor[cen
yearvector <-c(year[censor==0],rep(year[censor==1],
d4 <- data.frame(malevector,agevector,agevector2, y
censorvector,yearvector)

d5 <- orderBy(~censorvector+malevector+Rvector, dat
attach(db)

X.mat <- cbind(rep(1,length(agevector)),agevector,

# Calculating first derivative information for know

bmc <- matrix(rep(0,3*(mc)),3,mc)

sumc <- rep(0,mc)

for (j in 1:mc){
nobs <- length(y.adjustmalevector==malem[j]])
V.inv <- solve(mle$sdu”2*matrix(rep(1,nobs”2),n
X.matrix <- matrix(X.mat[malevector==malem[j]],
y.adjust.vect <- y.adjustimalevector==malem([j]]

bmcl[,j] <- t(X.matrix)%*%V.inv%*%y.adjust.vect-
t(X.matrix)%*%V.inv%*%X.matrix%*%mle$beta

sumclj] <- .5*t(y.adjust.vect-
X.matrix%*%mle$beta)%*%V.inv%*%matrix(rep(1,nobs”2)
t-X.matrix%*%mle$beta)-sum(diag(V.inv%*%matrix(rep(

}

# Calculating first derivative information for cens

bmcl <- matrix(rep(0,3*(mc1*R)),3,(mc1*R))
sumcl <- rep(0,mcl*R)
for (j in (mc+1):m){
for (rin L:RY{
index <- (j-mc-1)*R+r
nobs <- length(y.adjustmalevector==mal
V.inv <- solve(mle$sdu”2*matrix(rep(1,n
X.matrix <- matrix(X.mat[malevector==ma
y.adjust.vect <- y.adjust[malevector==m

bmc1l[,index] <- t(X.matrix)%*%V.inv%*%y
t(X.matrix)%*%V.inv%*%X.matrix%*%mle$beta
sumcl[index] <- .5*t(y.adjust.vect-
X.matrix%*%mle$beta)%*%V.invy%*%matrix(rep(1,nobs”2)
t-X.matrix%*%mle$beta)-sum(diag(V.inv%*%matrix(rep(
}
}

b0 <- c(bmc[1,], bmc1[1,])
bl <- c¢(bmc[2,], bmc1[2,])
b2 <- c¢(bmc[3,], bmc1[3,])
su <- ¢(sumc, sumcl)

Yexp(lin.pred)
sor==1],rep(R,nc1)))

rep(R,ncl)))
.adjust,Rvector,

a=d4)

agevector2)

n age owls

obs,nobs)+diag(nobs))
ncol=3)

,nobs,nobs)%*%\V.inv%*%(y.adjust.vec
1,nobs”2),nobs,nobs)))

ored age owls

em[j] & Rvector==r])
0bs”2),nobs,nobs)+diag(nobs))
lem[j]& Rvector==r], ncol=3)
alem[j]& Rvector==r]

.adjust.vect-

,nobs,nobs)%*%V.inv%*%(y.adjust.vec
1,nobs”2),nobs,nobs)))



# Calculating first derivative information for log

a0 <- (log(avector)-mle$alpha[l]-mle$alpha[2]*years
al <- years.of.obsvector*( log(avector)-mle$alpha[l

years.of.obsvector)/mle$sda™2

sa <- ((-1/mle$sda) +((log(avector)-mle$alpha[1]- m

years.of.obsvector)*2/mle$sda”3))

# Calculating the approximate info

info <- matrix(rep(0,49),nrow=7)
weight <- c(rep(1,mc),rep(1/R,mc1*R))
for (i in 1:(mc+mc1*R))K

info <- info +weight[i[*c(bO[i],b1[i],b2i]
salil)%*%6t(c(bO[i], b1[i],b2[i], a0[i], a1[il, sufi]

var.cov <-solve(info)
se <- sqrt(diag(var.cov))
se
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age at fist obs

.of.obsvector)/mle$sda’2
]-mle$alpha[2]*

le$alpha[2]*

, a0[i], a1[i, su[i],
,» sali]))



A4 R Code for fitting Regression Calibration withCensored Covariates

# loading necessary libraries

library(Ime4)
# fitting a regression model for the log age of fir st obs for known age owls
fit <- Im(log(age.first.obs)~ years.of.obs, subset= censorm==0 )

sda <- summary(fit)$sigma
alpha <- fit$coef

# calculating the new age based on the regression o utput and conditional

# on the lower bound

mu.a <- alpha[1] + alpha[2]*years.of.obs[censorm==1 ]

expect.age <- mu.a+ sda*dnorm((log(age.first.obs[c ensorm==1])-mu.a)/sda)/(1-
pnorm((log(age.first.obs[censorm==1])-mu.a)/sda))

age.first.new <- c(age.first.obs[censorm==0], exp(e xpect.age))

age.new <- Z %*% age.first.new + years.since.first
age.new2 <- age.new”2

# fitting with Imer

yearfactor <-as.factor(year)

fit.replace.expected <-Imer(formula= fledged ~ age .new + age.new2+ yearfactor +
(1]male), family=poisson)

fit.replace.expected
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A5 Simulation Details

The simulation study looked at six different sejtof sample size and
proportion of censored observations. The sampkssised were 50 and 400 owls.
The proportion of censored observations that weerdiesd was 10%, 25%, and 50%.
We used a factorial structure with a Monte Carlmgia size of 200 for each setting.
These setting were chosen to give a range of gesstinations that would be
encountered by the biologists and to match théngefidr the Northern Spotted Owl
study.

After randomly selecting known age owls from thetsgd Owl study, we

randomly generated random effects frorhléo,aj) distribution, witho, =0.3. The

linear predictor was then found using the valueggp£-1.807C, S, =0.3855, and
B, =-0.023E. These values all roughly match the estimatedesfor the Spotted

Owl study. We then randomly sampled a percentagiegecowls to have censored
ages. Again to match the Spotted Owl study, wel Bsgears as the lower bound for
the first observed age for the censored owls.

The resulting data sets were then analyzed usingnékimum likelihood
estimator via the MCEM algorithm for censored caat®s, (2) the approximate
MCEM estimator, (3) the regression calibrationrestor, (4) the naive estimator in
which censored ages are replaced by their lowend®(to demonstrate the
unsuitability of this approach, which may seem tangpto wildlife biologists), and

(5) the GLMM estimator using only owls with knowges. To avoid computational
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difficulties resulting from large Monte Carlo saraizes in the MCEM algorithms,
convergence of these algorithms was either relg@arameter convergence of 0.5% or
11 total iterations.

The starting values for the approximate MCEM alhon were set as the final
estimates from the regression calibration modeladdition, the starting values for the

MCEM algorithm were the final estimates from th@@gximate MCEM algorithm.
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A6 Simulation Results

Table A6.1Descriptive statistics of estimates gf (true value -1.8070)

Sample size 50 400

Proportion censored .10 .25 .50 .10 .25 .50
MCEM

mean -1.8276 -1.7413 -1.6524 -1.7660 -1.7077 -2608
bias -0.0206 0.0657 0.1546 0.0410 0.0993 0.1988
variance 0.2605 0.2623 0.2164 0.0321 0.0260 0.0214
MSE 0.2598 0.2654 0.2393 0.0336 0.0357 0.0608
Monte Carlo SD 0.5104 0.5122 0.4652 0.1791 0.16121463
Mean reported SE 0.5327 0.5114 0.4874 0.1637 0.16021559
Approx MCEM

mean -1.8580 -1.7536 -1.6624 -1.7786 -1.7145 -14619
bias -0.0510 0.0534 0.1446 0.0284 0.0925 0.1876
variance 0.2573 0.2522 0.2002 0.0317 0.0254 0.0197
MSE 0.2588 0.2539 0.2201 0.0324 0.0339 0.0548
Monte Carlo SD 0.5073 0.5022 0.4474 0.1781 0.15941403B
Mean reported SE 0.2771 0.2672 0.2552 0.0787 0.0703759
Regression Calibration

mean -1.8897 -1.8489 -1.8585 -1.8053 -1.7973 -K790
bias -0.0827 -0.0419 -0.0515 0.0017 0.0097 0.0165
variance 0.2774 0.2899 0.2643 0.0329 0.0291 0.0265
MSE 0.2830 0.2903 0.2656 0.0328 0.0291 0.0267
Monte Carlo SD 0.5266 0.5384 0.5141 0.1815 0.1705162B
Mean reported SE 0.5204 0.5225 0.5415 0.1777 0.18071845
Naive Replace

mean -1.7381 -1.5504 -1.3969 -1.6718 -1.4952 -1331
bias 0.0689 0.2566 0.4101 0.1352 0.3118 0.4759
variance 0.2358 0.2103 0.1728 0.0284 0.0216 0.0140
MSE 0.2395 0.2751 0.3402 0.0465 0.1188 0.2404
Monte Carlo SD 0.4856 0.4586 0.4157 0.1684 0.1471 0.1182
Mean reported SE 0.4831 0.4424 0.3964 0.1655 0.15R11360
Known Only

mean -1.9378 -1.8681 -1.9470 -1.8252 -1.8299 -B843
bias -0.1308 -0.0611 -0.1400 -0.0182 -0.0229 -(B036
variance 0.3130 0.3802 0.6864 0.0374 0.0384 0.0662
MSE 0.3288 0.3821 0.7026 0.0376 0.0388 0.0672
Monte Carlo SD 0.5595 0.6166 0.8285 0.1933 0.19602573

Mean reported SE 0.5486 05942 0.7542 0.1866 0.208522
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Table A6.2 Descriptive statistics of estimates 8f (true value 0.3855)

Sample size 50 400

Proportion censored .10 .25 .50 .10 .25 .50
MCEM

mean 0.4065 0.3783 0.3543 0.3711 0.3547 0.3267
bias 0.0210 -0.0072 -0.0311 -0.0143 -0.0307 -0.0587
variance 0.0192 0.0181 0.0154 0.0021 0.0020 0.0016
MSE 0.0195 0.0180 0.0163 0.0023 0.0029 0.0050
Monte Carlo SD 0.1384 0.1345 0.1240 0.0457 0.044303%
Mean reported SE 0.1462 0.1387 0.1328 0.0435 0.0428413
Approx MCEM

mean 0.4003 0.3658 0.3390 0.3751 0.3564 0.3282
bias 0.0149 -0.0197 -0.0465 -0.0104 -0.0290 -0.0573
variance 0.0186 0.0172 0.0137 0.0021 0.0019 0.0014
MSE 0.0188 0.0175 0.0158 0.0022 0.0027 0.0047
Monte Carlo SD 0.1364 0.1312 0.1170 0.0457 0.043303™
Mean reported SE 0.0757 0.0709 0.0664 0.0196 0.01890185
Regression Calibration

mean 0.4091 0.3932 0.3937 0.3823 0.3796 0.3752
bias 0.0237 0.0077 0.0083 -0.0031 -0.0059 -0.0102
variance 0.0203 0.0203 0.0184 0.0022 0.0022 0.0019
MSE 0.0208 0.0202 0.0184 0.0022 0.0022 0.0020
Monte Carlo SD 0.1426 0.1424 0.1357 0.0468 0.0468043¥
Mean reported SE 0.1405 0.1406 0.1458 0.0474 0.0483492
Naive Replace

mean 0.3768 0.3310 0.3057 0.3555 0.3171 0.2855
bias -0.0086 -0.0545 -0.0797 -0.0300 -0.0683 -00100
variance 0.0179 0.0160 0.0154 0.0019 0.0018 0.0013
MSE 0.0179 0.0189 0.0216 0.0028 0.0065 0.0113
Monte Carlo SD 0.1337 0.1265 0.1239 0.0437 0.0426 0.0356
Mean reported SE 0.1335 0.1258 0.1199 0.0452 0.048M407
Known Only

mean 0.4234 0.4000 0.4268 0.3898 0.3904 0.3937
bias 0.0380 0.0145 0.0414 0.0044 0.0049 0.0082
variance 0.0223 0.0273 0.0507 0.0025 0.0027 0.0047
MSE 0.0236 0.0273 0.0522 0.0025 0.0027 0.0047
Monte Carlo SD 0.1492 0.1651 0.2252 0.0498 0.05190685

Mean reported SE 0.1484 0.1611 0.2061 0.0499 0.05B0676
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Figure A6.2 Monte Carlo sampling distributions far50 and10% censoredor the
estimators of3 , the age term, for the 5 different fitting methods



101

MCEM Approximate MCEM
3 3
[=% [=%
£ ]
] ]
» o » o
- ® - %
£ o £ o
5 8 g 8
£ o £ o
n ¥ n <
BT o BT o
—_ N — N
[} [}
= o -E o
5 I T T T T T T 1 3 I T T T T T T 1
-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01
Coefficients of the quadratic age term Coefficients of the quadratic age term
Regression Calibration Naive Replacement

3 3
[=5 [=5
IS IS
© ©
5 8 9 g
Q Q
g 8 g 8
> >
E o E o
n < n <
BT o 5 o
— N — N
2 2

o o
g I T T T T T T 1 § I T T T T T T 1
= -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01 < -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01

Coefficients of the quadratic age term Coefficients of the quadratic age term
Known Age Only

8
[=%
S
& o
E [es]
g 8
=}
£ 2
» v
T o
— N
[}
= o
g I T T T T T T 1
P4

-0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 0.01

Coefficients of the quadratic age term

Figure A6.3 Monte Carlo sampling distributions far50 and10% censoredor the
estimators of,, the agéterm, for the 5 different fitting methods.
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Figure A6.4 Monte Carlo sampling distributions far400 and10% censoredor the
estimators of3,, the intercept, for the 5 different fitting mettsod
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Figure A6.5Monte Carlo sampling distributions far400 and10% censoredor the
estimators of3 , the age term, for the 5 different fitting methods
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Figure A6.6 Monte Carlo sampling distributions far400and10% censoredor the
estimators of,, the agéterm, for the 5 different fitting methods.
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Figure A6.7 Monte Carlo sampling distributions fo=50 and25% censoredor the
estimators of3,, the intercept, for the 5 different fitting mettsod
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Figure A6.8 Monte Carlo sampling distributions far50 and25% censoredor the
estimators of3 , the age term, for the 5 different fitting methods
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Figure A6.9 Monte Carlo sampling distributions far50 and25% censoredor the
estimators of,, the agéterm, for the 5 different fitting methods.
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Figure A6.10Monte Carlo sampling distributions fa=400 and25% censoredor
the estimators g8,, the intercept, for the 5 different fitting metfsod
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Figure A6.11Monte Carlo sampling distributions far400 and25% censoredor
the estimators @, , the age term, for the 5 different fitting methods
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Figure A6.12Monte Carlo sampling distributions fa=400 and25% censoredor
the estimators g8, , the agéterm, for the 5 different fitting methods.
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Figure A6.13Monte Carlo sampling distributions fa=50 and50% censoredor the
estimators of3,, the intercept, for the 5 different fitting mettsod
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Figure A6.14Monte Carlo sampling distributions fa=50 and50% censoredor the
estimators of3 , the age term, for the 5 different fitting methods
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Figure A6.15Monte Carlo sampling distributions fa=50 and50% censoredor the
estimators of,, the agéterm, for the 5 different fitting methods.
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Figure A6.16 Monte Carlo sampling distributions for=400 and50% censoredor
the estimators gf,, the age term, for the 5 different fitting methods
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A7 Regression Calibration Spotted Owl Analysis
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Table A7.1Regression calibration estimation results for Ellem

RegreSAsl,IlOJaCl:easllbratlonlmer Known Age Males Only
Parameter Estimate SE Estimate SE

B, -0.0108 0.3071 0.2118 0.7419
Bage 0.1445 0.0595 0.2417 0.0880
ﬁagez -0.0079 0.0039 -0.0132 0.0062
Bioso -0.1197 0.3050 -1.1714 1.0134
Bioor -0.5350 0.3017 -0.8920 0.8327
Biooz -0.0175 0.2839 -0.2413 0.7657
Bioos -1.9605 0.4110 19.1415 3042.1741
Bisos -0.0787 0.2907 -0.2921 0.7634
Bioos -0.7547 0.3179 -1.1262 0.7938
Bioos -0.1180 0.2997 -0.5873 0.7686
Biogr -2.4324 0.5664 -19.2933 2755.8640
Bioos -0.1361 0.3007 -0.7237 0.7715
Bigoe -0.9762 0.3699 -1.1869 0.7928
Boooo -0.5184 0.3224 -1.2653 0.7885
Booor -0.4226 0.3285 -1.0528 0.7854
Boooz -0.6659 0.3660 -1.6525 0.8534
Bioos -0.2838 0.3226 -0.8773 0.7867
Booa -0.5657 0.3391 -0.8920 0.7847
Bioos -0.6424 0.3472 -1.0588 0.7959
a, 0.5536 0.0946
A years 0.0059 0.0197

g, 0.0000 0.1798

g, 0.4560
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Table A7.2Regression calibration estimation results for Arddrews

Regression Calibrationlmer Known Age Males Only
All Males
Parameter Estimate SE Estimate SE

By -0.1166 0.7384 -1.3088 0.8309
Bage 0.1625 0.0431 0.4531 0.1069
ﬁagez -0.0077 0.0022 -0.0254 0.0069
Biogs -0.4870 0.7656 -17.5988 5717.5404
Bioss -0.5153 0.7265 -0.4866 1.0280
Biose -1.3281 0.7404 -0.9190 0.8886
Bioso -1.1078 0.7281 -0.6830 0.8155
Bioor -1.4362 0.7356 -2.0862 1.0065
Biooz -0.3166 0.7144 -0.0005 0.7421
Bioos -17.9195 841.6792 -17.7043 1565.3191
Bisos -1.4881 0.7321 -1.1521 0.7923
Bioos -1.6981 0.7387 -1.6220 0.8175
Bioos -0.6398 0.7184 -0.3271 0.7356
Biogr -1.5459 0.7341 -1.3016 0.7760
Bioos -1.2439 0.7245 -1.0785 0.7616
Bigos -1.9178 0.7405 -1.0082 0.7657
Boooo -0.8792 0.7195 -1.0164 0.7661
Boor -0.7329 0.7171 -0.4137 0.7360
Boooz -0.8529 0.7194 -1.1963 0.7716
Bioos -1.7204 0.7357 -1.2249 0.7745
Booa -0.4953 0.7149 -0.2838 0.7323
Bioos -2.1330 0.7569 -1.5017 0.8226
a, 1.0930 0.0843
qyears -0.0133 0.0161

g, 0.0000 0.0000

g, 0.5863
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Table A7.3Regression calibration estimation results for Tyee

Regression Calibration  Imer Known
All Males Age Males Only
Parameter Estimate SE Estimate SE
B, -0.5562 0.6334 14.7886 717.0570
Bage 0.2886 0.0482 0.3497  0.0697
/Bagg -0.0172 0.0029 -0.0221  0.0046
Bioss -2.5997 1.1864
Bioss -0.3834 0.6502
Blos -1.0214 0.7691
Bioss -1.9481 0.7663
Bioss -0.8210 0.6574 13.3596 717.0573
Bioso -0.9569 0.6335 13.0984 717.0571
Bioo -1.4705 0.6448 12.7455 717.0571
Bigor -0.6796 0.6278 13.0840 717.0570
Bioos -2.2900 0.6777 11.8633 717.0571
Bigos -1.0526 0.6344 13.2773 717.0570
Bioos -1.6917 0.651Q 12.6601 717.0570
Bioss -0.4965 0.6285 13.6158 717.0570
Biogr -1.0455 0.6379 12.7755 717.0570
Bioos -0.9287 0.6349 13.1168 717.0570
Biggs -1.3666 0.6479 12.7374 717.0570
Boooo -1.1253 0.6422 12.9589 717.0570
Booor -0.3041 0.6278 13.8331 717.0570
Booo: -0.9163 0.6352 13.1580 717.0570
Booos -1.6057 0.6508 12.5660 717.0570
Boooa -0.8761 0.6323 13.1943 717.0570
Bioos -0.7855 0.6324 13.3154 717.0570
a, 0.9340 0.0624
Ayears -0.0230 0.0113
g, 0.2862 0.2628
g, 0.5210







