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SAMPLING BIAS IN VGP LONGITUDES 

Gary D. Egbert 

College of Oceanography, Oregon State University, Corvallis 

Abstract. I derive probability densities for virtual geomag- 
netic pole (VGP) longitudes for a general statistical model of 
local magnetic field variations. I show that even for very 
simple statistically homogeneous models of secular varia- 
tion, the distribution of VGP longitudes is peaked 90 ø away 
from the sampling longitude. Thus, when sites are distri- 
buted unevenly, a non-uniform overall distribution of VGP 
longitudes is to be expected. Analysis of the recent geomag- 
netic field indicates that this bias can be significant, particu- 
laxly when random errors in paleomagnetic data are allowed 
for. It is possible that some of the deviations from unifor- 
mity seen in recent compilations of paleomagnetic reversal 
and secular variation data are a statistical artifact resulting 
from the distortion of the VGP transformation, and the non~ 
uniformity of paleomagnetic sampling sites. 

Introduction 

Recently several groups of researchers have noted sys- 
tematic patterns in virtual geomagnetic pole (VGP) longi- 
tudes during reversals, which they have interpreted in terms 
of core-mantle dynamics [Tric et al., 1991; Clement, 1991]. 
However, the significance of these observations is in some 
dispute [Valet et al., 1992; Langeris et al., 1992]. Using the 
highest quality data from a limited number of reversals, 
Valet et al. [1992] tested the statistical significance of these 
claims, and concluded that the evidence for VGP path sys- 
tematics is not yet compelling. Subsequently, Laj etak 
[1992] have pointed out that when more sophisticated 
methods of analysis are applied to a slightly larger set of 
reversal data, the VGP systematics become statistically 
significant. 

VGPs have also been used in studies of pale0-secular vari- 
ation (PSV) data. Constable [ 1992] found that the histogram 
of VGP longitudes computed for a set of 2,244 PSV data 
from the last 5 My has two approximately antipodal peaks, 
near the longitudes which seem to be preferred for the rever- 
sal VGP paths. Here statistical tests demonstrated unequivo- 
cally that the VGP longitudes deviated significantly from a 
uniform distribution, and Constable concluded that the PSV 
data provide evidence for persistent non-zonal components 
of the geomagnetic field. In all of these statistical tests, a 
uniform distribution of VGP longitudes was taken as the null 
hypothesis. 

For both the reversal and the PSV data, sampling sites are 
very unevenly distributed. For instance, for the PSV data set 
used by Constable there are two large holes (75 o and 45 ø 
wide) in longitudinal coverage. The potential biasing of 
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VGP statistics by such uneven sampling is often mentioned 
as a potential uncertainty in these studies [e.g., Valet et al., 
1992], and some efforts have been made to allow for this 
complication [Constable, 1992]. Here I explicitly address 
the question of whether a uniform distribution of VGP longi- 
tudes should be expected in PSV or reversal data when the 
distribution of field sampling sites is non-uniform. 

Directional Densities and the VGP Transformation 

The VGP transformation is a one-to-once mapping b' ---> •v 
from the local magnetic field direction (b') to the direction 
(•) of a geocentric dipole which would cause this field. It 
has long been appreciated that the scatter of local field direc- 
tions measured in a series of lava flows is distorted (both in 
shape and magnitude) by this transformation [Cox, 1970]. 
Here I derive expressions for VGP directional densities for a 
general statistical model of variations in local field direc- 
tions. 

To set notation I begin with a formal development of the 
VGP transformation. Since all statistical models considered 
here are invariant under rotations about the Earth's axis, it 
suffices to consider observations at longitude qb =0, for a 
range of colatitudes 0o. Two fight handed Cartesian coordi- 
nate systems are considered. In the "standard coordinate 
system" •, is aligned with the rotation axis, and • points in 
the direction q)---0. The local coordinate system at the sam- 
pling site (to = r(sin0o, 0, cos0o) in the standard system) is 
obtained by rotating the standard coordinate frame an angie 
0o along the meridian q)=0 so that the •,'= •o. I will use 
primes to indicate that the components of a vector should be 
interpreted in the local coordinate system, and "hats" to 
denote unit vectors (thus • = v,•lvll). The components in the 
standard and local coordinate systems of a fixed vector are 
related via x' = Ux and x = Urx ', where 

cos0o 0 sin0o 
U= 0 1 0 . 

-sin0o 0 cos0o 

It is readily verified that the magnetic fields observed at ro 
for a dipole at the origin with moment d' are b'= Vd', where 
(with all vectors expressed in the local coordinate system) 
V = c diag[ -1, -1, 2 ]. Here c is a constant which, because 
we are ultimately interested only in directions, can be set to 
1. Thus, when expressed in the standard coordinate system, 
the VGP is 

•(b') = uTv -1 b' AIUrV -• b'11 
With this formulation VGPs are expressed in Cartesian coor- 
dinates as unit vectors which are simply related to the local 
magnetic field vectors. •In fact, with paleomagnetic data only 
the directional vector b'= b'/•]b'[[ is generally available for 
computation of the VGP. However 
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Cv(fy) = Cv(b') (2) 
so this complication is only apparent. The statistical proper- 
ties of VGPs are insensitive to when or how magnitude 
information is lost. In the following it will often be con- 
venient to apply the VGP transformation (1) directly to the 
unnormalized local fields; this is justified by (2). 

In general the magnetic field observed at •o can be written 

b' = bAo' + bsr' = dVU•, + bsv' , 

where d is a scalar giving magnitude and polarity of the 
dominant axial dipole b•D'. The remainder of the field, bsv' 
(the "secular variation"), includes both dipole wobble and 
the non-dipole fields. Our goal is to derive the statistical dis- 
tribution of VGP directions for some simple, but in fact 
fairly general statistical models for d and bsv'. 

First, ! consider the simpler case of the marginal distribu- 
tion of VGP longitudes. Let Pa be the matfix which projects 
onto the horizontal components of the VGP. Then, with the 
VGP as defined in (1), the VGP longitude q• can be 
represented in Cartesian coordinates by the unit two-vector 

,, [cosq)• Pa•(b') _ Pav(b') vL 
= LsinJ = IIPa•(b')ii IIPav(b')ll I!v,il 

In the following I refer to •L as the VGP longitude, and v• as 
the "unnormalized VGP longitude". Since 

v• = Pav(b') = PaUrV-•bsv ' , (3) 
the marginal VGP longitude distribution can depend only on 
the statistical properties of bsv', not on the model assumed 
for the axial dipole part of the field. Under mild assumptions 
concerning the random vector bsv', an exact expression for 
the probability density of •L can be given. 

First, assume that bsv' has zero mean with covariance 

E[bsv'bsv 'r] = Zsv = 
(where Z'sZv is the lower triangular part of the Cholesky 
decomposition of Zsv). Then the vector u'= Z?bsv' neces- 
sarily has an isotropic covariance, with E[u'u'r]=I . 
Assume further that the unit vectors 6'= u?llu'll have a uni- 
form distribution. This will hold when bsv' has an ellip- 
soidal density centered at the origin (i.e., when the joint den- 
sity of u' is radially symmetric). A special case which 
satisfies this condition is the Gaussian model for bsv' of Con- 
stable and Parker [ 1988]. 

The unnormalized VGP longitude vector VL given in (3) 
has 2x2 covariance matrix •L=PtlUTV-I•svV-1UpH T . 
Furthermore, ZZ v,/llZZ'v11 is uniformly distributed on 

-•A 
the unit circle, so w = vMIZ vll is a linear transformation 
of a uniformly distributed random direction. But 

w/llwll = cry, so the transformation approach outlined by 
Watson [1983, pp 109-110] can be used to compute the den- 
sity of the random longitudinal direction vector •, =•. 
From Eq. (3.6.7) of Watson, this is 

where I ZL I denotes the determinant of 
The density has a particularly simple form when 

Zsv = diag[c•xx, c• w, Cyzz]. In this case, •;L =C•yy diag[D 2 , 1] 
where D 2 = cos2•)oCYxx/(Iyy + sin200cYzz/4(Syy. By writing 
vL = (cosq•, sinq)), and simplifying (4) we find 

P•.((D) = [2/cD(D-2cos2(D + sin2(D)] -1 ß (5) 
For an isotropic local field covariance (%x=Cyyy =%•), 
PL(q)) is sharply peaked 90 ø away from the sampling site, 
with the non-uniformity greatest at low-latitudes (Figure 1). 
The plotted density is perhaps unrealistic, since the scatter in 
local field directions is not generally isotropic [Cox, 1970; 
Harrison, 1980; Merrill and McElhinny, 1983]. Nonethe- 
less, this example illustrates the central thrust of this note: 
isotropic variations in local field directions will result in 
VGP longitudes which tend to be offset 90 o from the sam- 
pling longitude. In the next section I will consider some 
more plausible statistical models of secular variation scatter. 

First I sketch a derivation of the full VGP directional den- 
sity. Even when the ultimate interest is in VGP longitudes, 
the full VGP distribution may be required. For example, this 
would be necessary to compute the distribution of the 
weighted average VGP longitude statistic MVL 
= tan-l(•vyi/•Vxi ) used by Valet et aL [1992] to average 
VGP longitudes during a reversal transition. 

We assume b' = dVU•, + bsv', where d is a fixed constant 
and bsv' is Gaussian with covariance matrix •;sv. Then the 
unnormalized VGP v(b') = d•, + uTv -• bsv' has mean d•, and 
covariance matrix Y-,v = U TV-• Esv V-• U. Let 
u = ZT'Av(b ') = dZT'A•. + e. Then the random vector e is 
Gaussian with covariance I, and the corresponding unit vec- 
tor fi = u/lluil has an angular Gaussian distribution, with 
parameters s=Z• •]Z• zll and m =llZ• zll. Watson 
[1983; sec. 3.7] shows that this distribution is well approxi- 
mated by a Fisher distribution with location parmeter •, and 
a dispersion parameter k which is a function of m. Watson 
[1983, pp 117-118] gives asymptotic forms for small and 
large m 

k(m) = 4(2•:)-'Arn m <1 k(m) - m 2 m>>l, 
and a brief table for intermediate values. 

¬^ •A" The density of the VGP • = Zv fi/' IlZi;ull can be calculated 
using a slight generalization of the transformation approach 
used above [Watson, 1983; Eq. 3.6.4]. In terms of the Fisher 

•A" density pF(fi;•,k) and fi = Z7 •/•[Z7 vii, the result is 

pu() = l Y-.I- p(u;s,k (m)) IIrZTvl1-3"2 (6) 
= k (m)exp[k (re)p] [4x sinh k (m) I Zul II•vrz•X½ll3/2] -z 

where p = rv(b')rZ7 9)-'A (,rZ7 

2.5 - 0o =0ø 2.0 

,,• 1o,..5 
.5 

.0 
-lOO o lOO 

Degrees East of Sampling Site 

Fig. 1. Normalized VGP longitude densities, for an isotropic 
distribution of local magnetic field variations. The density is 
sharply peaked 90 ø away from the sampling site. 
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Fig. 2. Densities for 2 < k "2 < 3.5 in steps of 0.25 for a site at 
30 ø latitude. 

Eq. (6) is actually quite genera/, since it can be used to 
compute the density of VGP directions for any mean and 
covariance of the local field with a Gaussian distribution. In 
fact, this distributional assumption is much stronger than 
required. The result holds (approximately) provided the 
Fisher distribution is a reasonable approximation to the 
(necessarily isotropic) scatter in fi about its mean. When 
d=0, pv(fi;•,k) reduces to a uniform density, and (6) 
reduces to 

pv(•) = [4•1• I '/• (•rZ•)•/2]-• . (7) 
Eq. (7) could be used for modeling the marginal distribution 
of VGPs during a reversal, by including random axial dipole 
variations in Zsu. 

Statistical Models for bsu' 

The example of Figure 1 demonstrated that an isotropic 
distribution for bsv' resulted in a highly non-isotropic distri- 
bution of VGPs. However, Cox [ 1970] has pointed out that 
VGPs are more nearly isotropic than local field directions. 
Furthermore, it has frequently been argued [e.g., Harrison, 
1980; Merrill and McElhinny, 1983; McFadden and 
McElhinny, 1984] that secular variation necessarily should 
lead to isotropic scatter in VGPs. This would suggest that 
the bias evident in Figure 1 may not be relevant to real 
paleomagnetic VGP distributions. 

It is instructive to consider the statistical model for the 
geomagnetic field of Constable and Parker [1988]. In this 
model bsu' is a sample from an homogeneous (i.e., rotation- 
ally invariant in a statistical sense) random process on the 
sphere. It might well be argued that this model is overly 
simplistic. However, it has the maximum conceivable sym- 
mew among all models dominated by an axial dipole, and 
thus seems a reasonable null hypothesis model when one 
seeks to demonstrate that paleomagnetic data require some 
further breakdown of symmetry. 

TABLE 1. Covariance Zsu Estimated from DGRF-85 
Bx By B z 

Bx 1.10 
By 0.31 
Bz 0.18 

0.91 

0.04 3.16 

All entries are normalized by the average horizontal field 
variance ({5xx + {5yy) = 3.97x107nT 2. 

I:: .6 
• 00=90' 

.4 - 

.2 

.0 I .... I I 
-lOO 

• 8o=O' 

2.54 

0 100 

Degrees East of Sampling Site 

Fig. 3 Densities for r 2 = 2.54 (the value suggested by the 
recent geomagnetic field, when isotropic random and sys- 
tematic errors are allowed for), for five latitudes (0 ø, 22.5 ø, 
45 ø, 67.5 ø and 90ø). 

As the gradient of a random scalar potential arising from 
internal sources, bsv' can be expanded in spherical harmon- 
ics as 

bsv'(r)=-V• • (a/r)l+ialmYlm(•). 
l=lrn=-I 

Since the covariance of the random potential is assumed 
invariant under all rotations (i.e., 
Cov[q)(rl), q)(r2)] = Cov[q)(Wrl), q)(Wr2)] for all rotations 
W) the random coefficients aim must have zero mean and 
diagonal covariance Ealmarm' =c•tt'•m=' [e.g., Yaglom, 
1961]. Furthermore, the covariance matrix of the field com- 
ponents has the form [Constable and Parker, 1988] 

Ebsv'rbsv '= 23s• = c•2n diag[!, 1, r 2] (8) 

c•2• = X; /(/+1) c• {Xz 2 = Z (/+1)2c•? r2 = c•z2/c•2• 
l---1 2 ' /=1 

By setting rt 2 = 2+2//we can write 

r 2 = Zwtz:t 2 where wt = I (l+l)c•t 2 l (l+l)c• (9) 

are weights which sum to one. Thus r 2 is the weighted 
average of •q2 = 2+2//. It follows that 2 < k -'2 _< 4 and that 
r 2 = 4 only if ts• = 0 for all 1 > ! - i.e., only if the field is 
always purely dipo!ar. Conversely, r 2 approaches 2 for 
fields which are dominated by short wavelength features. 

The density of VGP longitudes for this model is given by 
(5) with D 2 = cos20o+(r2/4)sin20o ' For r 2 = 4, or for 
0o = 0 ø or 180 ø (sampling at the pole), D = i and the den- 
sity is uniform. Otherwise k is peaked 90 ø away from the 
sampling site. The deviation from uniformity is greatest for 
small K 2 (Figure 2), and at low latitudes (Figure 3). 

r 2 can be estimated for the recent geomagnetic field using 
the DGRF models [e.g., Langel 1992]. One way to do this is 
to use the Gauss coefficients to estimate ry? and then use (9). 
For DGRF-85 this yields an estimate of r 2 = 3.30. An alter- 
native approach, which also allows a check on the form of 
the covariance matrix predicted by the homogeneous statisti- 
ca/model, is to use the DGRF models to directly compute 
the average of Zsv across the globe. The results for DGRF- 
85 (Table 1) are reasonably consistent with (8), and suggest 
a value of r 2 = 3.16. The deviations (i.e., c•xx ,• C•yy; nonzero 
off-diagonal elements) are of questionable significance, con- 
sidering that only a single realization of the field is available. 



2356 Egbert: Sampling Bias in VGP Longitudes 

For r 2 = 3.16 - 3.3 the deviation of VGP longitude density 
from uniform is _+10% or less (Figure 2). However, random 
errors in the paleomagnetic observations, which are likely to 
be more isotropic [e.g., Merrill and McElhinny, 1983], can 
increase this bias significantly. The summary of data from 
the past 5 my given by McElhinny and Merrill [ 1975; Table 
3] suggests that within-site variability increases the scatter in 
average field directions for individual lava flows by approxi- 
mately 10%. Assuming this represents isotropic measure- 
ment error, and that the covariance of the local field due to 
PSV is of the form Zsv = o•diag[1, 1, k--2], the covariance of 
the recorded fields will be approximately 
1.2xo•diag[1, 1, r•2l where r• 2 = (r2+.2)A.2 is the effec- 
tive value of r 2. For k -'2 = 3.16, re 2 = 2.80. Allowing for the 
possibility of correlated or systematic errors which do not 
affect within-site scatter (e.g., tectonic rotation or tilting, 
local magnetic anomalies, secondar• overprinting, or rock 
magnetic complications), reduces •c • further. For instance, 
assuming that these errors are comparable to those estimated 
from the within-site scatter (so that total errors increase 
between flow scatter by 20%) yields r• 2 - (r2+.4)/1.4 = 2.54. 
For this value of r 2 deviations from uniformity reach +_25% 
at low latitudes (Figure 3). 

The results given here are not really inconsistent with the 
conclusions of previous workers. Even with r 2 =2.5, the 
VGPs are indeed more nearly isotropic than local field direc- 
tions. However, as these results suggest, neither distribution 
is likely to be purely isotropic. 

Conclusions 

I have shown that even for simple spherically symmetric 
statistical models for secular variation of local magnetic 
fields, VGP longitude densities will be peaked 90 ø away 
from the sampling site. This departure from uniformity 
should be most severe at low latitudes, and when r 2 is small. 
For plausible effective values of r 2 (which allow for meas- 
urement errors) the bias can be substantial. 

A 90 ø offset from the concentration of sampling sites is 
very clear in the PSV VGP longitude histograms presented 
by Constable [1992], and was also noted by Valet et al 
[1992] in mean VGP longitudes computed during reversals. 
While it is by no means clear that this bias effect can explain 
the systematics seen in palcomagnetic VGPs, this possibility 
should be carefully considered before more exciting physical 
models are endorsed. 

The models given here make explicit predictions (e.g., 
concerning the latitudinal dependence of the bias) which 
could be tested. This might help to establish how important 
this effect is. In any event, future efforts to rigorously test 
the statistical significance of VGP systematics should prob- 
ably adopt the general approach elucidated here and begin 
from more realistic null hypothesis models of the actual 
magnetic field variations, so that they can incorporate possi- 
ble bias due to uneven sampling on the Earth's surface. 
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