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Abstract

Processes that influence habitat selection in landscapes involve the interaction of habitat composition and configuration
and are particularly important for species with complex life cycles. We assessed the relative influence of landscape spatial
processes and local habitat characteristics on patterns in the distribution and abundance of spawning steelhead
(Oncorhynchus mykiss), a threatened salmonid fish, across ,15,000 stream km in the John Day River basin, Oregon, USA. We
used hurdle regression and a multi-model information theoretic approach to identify the relative importance of covariates
representing key aspects of the steelhead life cycle (e.g., site access, spawning habitat quality, juvenile survival) at two
spatial scales: within 2-km long survey reaches (local sites) and ecological neighborhoods (5 km) surrounding the local sites.
Based on Akaike’s Information Criterion, models that included covariates describing ecological neighborhoods provided the
best description of the distribution and abundance of steelhead spawning given the data. Among these covariates, our
representation of offspring survival (growing-season-degree-days, uC) had the strongest effect size (7x) relative to other
predictors. Predictive performances of model-averaged composite and neighborhood-only models were better than a site-
only model based on both occurrence (percentage of sites correctly classified = 0.8060.03 SD, 0.7860.02 vs. 0.6260.05,
respectively) and counts (root mean square error = 3.37, 3.93 vs. 5.57, respectively). The importance of both temperature
and stream flow for steelhead spawning suggest this species may be highly sensitive to impacts of land and water uses, and
to projected climate impacts in the region and that landscape context, complementation, and connectivity will drive how
this species responds to future environments.

Citation: Falke JA, Dunham JB, Jordan CE, McNyset KM, Reeves GH (2013) Spatial Ecological Processes and Local Factors Predict the Distribution and Abundance
of Spawning by Steelhead (Oncorhynchus mykiss) across a Complex Riverscape. PLoS ONE 8(11): e79232. doi:10.1371/journal.pone.0079232

Editor: Sofia Consuegra, Aberystwyth University, United Kingdom

Received April 3, 2013; Accepted September 19, 2013; Published November 12, 2013

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: J. A. Falke and K. M. McNyset were supported by funds from the National Research Council and the American Recovery and Reinvestment Act through
the USDA Forest Service Pacific Northwest Research Laboratory. J. B. Dunham and G. H. Reeves were supported in part by a collaborative research agreement
between U.S. Geological Survey, National Climate Change and Wildlife Science Center, and USDA Forest Service. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Jeffrey.Falke@alaska.edu

¤ Current address: U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska Fairbanks, Fairbanks, Alaska, United States of
America

Introduction

Understanding habitat selection by an organism across land-

scapes represents one of the major challenges in contemporary

behavioral ecology [1]. Landscape structure influences the

behavior of organisms, which in turn generates patterns we

observe in the distribution and abundance of individuals in local

habitats [2]. Processes that influence habitat selection involve the

interaction of landscape composition and configuration (e.g., [3])

across spatial extents encompassed by landscapes, particularly for

species with specific habitat requirements and complex life cycles

[4]. Common examples include amphibians which require

complementary aquatic and terrestrial habitats to complete their

life cycles [5], and birds which require distinctive and spatially

discrete locations for feeding and breeding [6].

Although stream fish habitats are less commonly framed in the

context of spatial ecological processes, many species have complex

life histories and complementary habitat requirements [7], [8].

Spatial variability in habitat conditions across stream networks can

produce spatially-structured populations [9], [10]. For example,

recent work on Pacific salmon (Oncorhynchus spp.) in stream

networks suggests that spatial patterns in the composition and

configuration of habitat, not local habitat quality, drive patterns of

spawning habitat use by Chinook salmon (O. tshawytscha; [11]). The

challenge in considering spatial processes and their influence on

fishes in stream networks lies in: 1) identifying the ability of

individuals to move across the network relative to the distribution

of available habitats, 2) constructing testable hypotheses about

specific spatial processes at play based on the species’ dispersal

ability, habitat needs, and spatial structuring of the stream

network, and 3) quantifying local and spatial network processes

in a way that allows for testing predictions derived from their

hypothesized influences.
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The combination of unique habitat requirements for different

life stages, localized movement, and habitat selection suggests that

salmonids should be strongly influenced by two key spatial

processes: landscape complementation and neighborhood effects

[3]. Landscape complementation refers to cases where an

organism requires unique, non-substitutable, and spatially discrete

habitats to complete its life cycle. Neighborhood effects refer to the

influence of adjacent habitat conditions on an organism within a

given focal location [12]. Because local and landscape features are

inextricably linked, examining species distribution and abundance

with reference to a spatially continuous representation of the

composition and configuration of habitats within the stream

network should contribute to a better understanding of the

importance of spatial processes.

The well-known habitat requirements of salmon and trout [13]

provide an ideal setting for testing predictions about the influence

of spatial processes on species’ distributions and abundances. For

salmonids, landscape complementation is a key spatial process

involving use of a sequence of habitats through the life cycle (e.g.,

from egg to adult). Early life stages often disperse from natal

habitats to neighboring locations that may be more suitable for

growth and survival during rearing [14]. These localized

movements are likely moderated by the dispersal ability of juvenile

fishes, whose smaller body size and poor swimming ability, relative

to larger adults, may limit their range of movement (i.e., extents

ranging from 100–101 km; [15]). Intraspecific interactions (e.g.,

territoriality, dominance hierarchies) are strong during this period

and may also influence movement [16]. Later in life, (one to

several years, depending on species), juveniles can migrate long

distances (101–.103 km) to reach complementary feeding habitats

(e.g., large rivers, lakes, estuaries, or to the sea). Finally, adults

migrate to reproduce, where natal homing and localized habitat

selection ultimately determine spawning locations [17].

In this study, we developed continuous representations (i.e.,

covariates) describing processes hypothesized to influence the life

cycle of steelhead (Oncorhynchus mykiss), an anadromous (marine-

migratory) salmonid in a large river network. We tested whether

predictors measured across spatial scales could explain the

occurrence and abundance of steelhead redds (nests). The

variables we considered were based on three simple requirements

for individuals to successfully reproduce at a given location: 1)

spawning grounds must be accessible; 2) reproduction needs to be

successful; and 3) offspring must survive to continue the cycle [18].

We used geographic information systems (GIS) and count-based

regression, combined with an information theoretic approach to:

1) develop spatially continuous representations of local, neighbor-

hood, and landscape spatial ecological processes that may be

important to the entire freshwater life cycle of steelhead; 2)

evaluate the relative importance of these covariates in simulta-

neously predicting the distribution (i.e., occurrence) and abun-

dance of redds; and 3) assess the predictive ability of models

representing spatial versus local ecological processes. We evaluated

our findings in light of the importance of interactions between

complex life cycles, spatial ecological processes, and the distribu-

tion and abundance of organisms across heterogeneous land-

scapes.

Materials and Methods

Ethics Statement
Steelhead redd surveys were conducted by the Oregon

Department of Fish and Wildlife (ODFW). No specific permits

were required as surveys were strictly observational. No interac-

tions with, or handling of, animals were conducted during

sampling. Surveys were conducted on public and private lands.

Landowner permissions were obtained prior to accessing privately

owned stream reaches.

Study System
Our study area was the John Day River basin, located in eastern

Oregon, USA (Figure 1). The John Day River is the second longest

free flowing (i.e., undammed) river in the conterminous United

States, draining approximately 20,000 km2, with a stream network

comprised of over 15,000 stream km. Flow regimes vary across the

basin with snow melt in most areas generating peak flows in spring,

with base flows strongly augmented by groundwater in some

locations [19].

Natural populations of steelhead in the John Day River are

currently listed as threatened under the U.S. Endangered Species

Act (ESA) owing to population declines caused by habitat

alteration, hydropower, interactions with hatchery fish, and

overharvest [20]. Steelhead in the John Day River basin consist

of five naturally reproducing, genetically distinct spawning

populations (hereafter referred to as TRT populations in reference

to their designation by Technical Recovery Teams; [21]), which

conform approximately to 5th field hydrologic units (Figure 1;

[22]).

Field Sampling
Steelhead spawning surveys were conducted as part of ongoing

status and trend monitoring by ODFW from 2004–2010. Sites

were randomly selected using a generalized random tessellation

survey (GRTS) design [23] from a sampling frame comprised of

4,269 stream km thought to support steelhead spawning (ODFW,

unpublished data; Figure 1). The sampling frame was limited to

exclude reaches above known natural and anthropogenic barriers

to steelhead access (e.g., gradient barriers, waterfalls, culverts).

Management goals were to sample approximately 50 2-km long

sites per year. Sites were visited multiple times within the steelhead

spawning season (February-June). During each visit, redds were

visually identified from alongside the stream based on standard-

ized protocols [24], their locations flagged, and new redd

observations were recorded. Therefore, the total number of redds

observed during a season at a survey site was the sum of the

number of new redds across site visits. We assumed that sites

containing more redds were more suitable spawning locations than

those with few or no redds based upon the hypothesis that females

should select sites with environmental conditions that maximize

offspring survival. We took advantage of detailed temporal

information within the redd survey data to calculate our response

variable: the maximum number of individual steelhead redds

observed at a site across years. We felt justified in using this

approach for several reasons. First, the occurrence state of redds

(i.e., present or absent) was temporally consistent. State changes

occurred at only 4 of the 72 sites (6%) for which multi-year data

were available. Second, counts were also temporally consistent

among years at individual sites, as the average difference between

maximum and minimum counts at a site was 2.34 redds

(SD = 0.79). Last, we considered the effects of site length (km)

and the number of years a site was sampled on redd occurrence

and abundance. We found no relationship between site length and

maximum redd counts via linear regression (see Results), or

between presence and absence of redds and the number of years a

site was sampled via logistic regression (see Results).

Covariates
We used the FLoWS version 9.3 toolbox [25] for AcrGIS (ver.

9.3.1, ESRI, Redlands, CA) to create a digital hydrologic network

Spatial Ecological Processes in Stream Networks
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for the John Day River basin based on the 1:100000 scale National

Hydrography Dataset (http://nhd.usgs.gov/). Values of covariates

(described below) were attributed to stream reaches within the

network at one of two spatial grains: 1) confluence-to-confluence

stream reaches, hereafter referred to as valley segments (VS), or 2)

200-m reaches (200 M) nested within the valley segments. The

200 M reaches were pre-attributed with basic hydrologic and

geomorphic information, including elevation (m), floodplain width

(m), and drainage area (km2), which were used to calculate

covariates [26].

Covariates were applied to stream reaches at two ecologically-

meaningful spatial scales: within each 2-km long redd survey site,

and for the ‘‘neighborhood’’ of stream reaches surrounding each

site (hereafter referred to as local- and neighborhood-scales,

respectively; Figure 2). Neighborhoods were delineated along the

stream network using a recursive algorithm that measured the

instream distance (km) from the midpoint of each site to every

other 200 M reach within a pre-defined distance (A. Brookes,

Western Ecology Division, U.S. Environmental Protection Agen-

cy, unpublished data). These neighborhoods encompassed all

surrounding reaches including adjacent reaches and tributaries

(Figure 2). We used a 5-km neighborhood size as a conservative

estimate of juvenile steelhead dispersal distance [27]. We initially

considered neighborhood sizes that encompassed 5 to 30 km, but

found little difference in estimates of neighborhood characteristics

summarized at the different distances.

We calculated seven covariates to represent key processes in the

freshwater life cycle of steelhead that included: adult survival and

spawning site accessibility, characteristics of the depositional

environment, and juvenile survival. The first covariate we

developed was a representation of stream size. Steelhead typically

select spawning reaches across a broad range of mid-sized streams

[28]. We characterized stream size as mean annual flow (MA; m3/

sec) which was calculated using a variable infiltration capacity

(VIC) macroscale hydrologic model developed for the Interior

Columbia River basin [29].

Adult salmon and steelhead expend considerable energy while

migrating from the marine environment to freshwater spawning

locations and this influences adult pre-spawning survival [30]. We

estimated the amount of energetic work (WORK) required by

spawners to reach spawning sites as the distance from the site

(midpoint) to the John Day River basin outlet (km) multiplied by

Figure 1. Map of the study area in the John Day River basin, Oregon, USA. Locations of 209 steelhead redd surveys conducted within five
catchments (inset) from 2004–2010 are shown (circles). Filled circles are sites where redds were observed; redds were not observed at sites
represented by an open circle. Bold stream lines indicate stream reaches that potentially support spawning and early rearing of steelhead (Oregon
Department of Fish and Wildlife, unpublished data).
doi:10.1371/journal.pone.0079232.g001
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the elevation (m) at the site. In the context of migration, distance

represents travel time, and elevation is a surrogate for the average

flow velocities encountered en route [31].

Locally, steelhead require suitably sized gravels for successful

spawning [32]. However, at the neighborhood-scale the presence

of suitable substrate may be correlated with habitat features (e.g.,

cover, pool depth, food resources) that influence the abundance

and survival of offspring. As a result, females may choose spawning

sites based not only on gravel size in the immediate area, but also

on habitat potential for juvenile rearing within close proximity

(Figure 2). In other words, if habitat in the surrounding

neighborhood is of high quality a site may support more spawning

than expected based only on local conditions. To address this

hypothesis, we calculated median grain size (D50) based on

methods developed by [33] (see Methods S1 for detailed methods

of the D50 calculations). For our local-scale substrate metric

(D50SITE), we calculated the proportion of reaches within a site

that had an estimated D50 within the 25th and 75th percentile of

substrate sizes used by steelhead (range 10–48 mm; [32]).

We also hypothesized that substrate characteristics within

neighborhoods could influence selection of spawning locations

(Figure 2). For our neighborhood metric, we calculated an index

Figure 2. Conceptual model of hypothesized effects of landscape complementation on the occurrence of steelhead redds in stream
networks. Likelihood of steelhead redd occurrence is indicated by black ( = high likelihood) or white ( = low likelihood) fill inside of the focal reach
located within the center of each network. The likelihood of steelhead redd occurrence is hypothesized to increase when habitats utilized by juveniles
(points) are abundant and located closer (along the stream network) to spawning reaches. Grey shading shows that the probability of juvenile
movement exponentially declines with increasing stream distance from their natal reach (i.e., dispersal kernel).
doi:10.1371/journal.pone.0079232.g002

Spatial Ecological Processes in Stream Networks
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that weighted reaches based on their distance from the survey

reach and their D50, using the sum of an exponential decay

function:

D50NEB~
X

j=1
(

1

dij

)D50j|100 ð1Þ

where D50j is 1 if D50 in reach j is between 10 and 48 mm, and 0

if not, and d is the distance between the midpoint of the survey

reach i and the downstream end of reach j. In all cases D50 for

reaches where redds were surveyed was excluded from neighbor-

hood estimates.

Scouring flows are a significant source of mortality of eggs and

fry through redd scour [34], and downstream displacement [35],

respectively. As a result, females should avoid spawning at sites

with a greater frequency of spring high flows that lead to a higher

likelihood of scouring. We calculated a metric representing the

frequency of high flows from Feb 1 to June 30 (S95) based on VIC

model estimates [29]. Based on the results of the redd survey data,

this period is arguably when redds are most susceptible to scour

and fry are most likely to be displaced by high flows. The S95 was

a count of the number of days that flows were in the top 5% within

the Feb 1 to Jun 30 period.

Water temperature has strong influences on growth and survival

of juvenile steelhead [36], and water temperature variability is an

important component of aquatic habitat in the John Day River

basin [37], [38]. We characterized the thermal regime for all valley

segments in the John Day River basin by cumulative growing season

degree days (sum of mean daily water temperatures (uC) from Jun 1

to Sep 31; GSDD). Mean daily water temperatures were estimated

continuously across the John Day River basin using a riverscape

temperature model (K. McNyset unpublished manuscript; see Methods

S2 for detailed methods of the GSDD calculations). Preliminary

analyses suggested that various temperature metrics at local- and

neighborhood-scales (e.g., GSDD, mean summer temperature, etc.)

were highly correlated (Pearson’s r.0.9), so to avoid issues with

multicollinearity we included only GSDD in our models. The

GSDD were estimated for each VS (i.e., 1–10 km scale), thus we

considered it to be a neighborhood-scale predictor.

Finally, we included a categorical predictor (TRT) to identify

the sub-population within which each site was located to explore

among-population differences in patterns of redd abundance, and

to account for residual spatial variation at larger (e.g.,.neighbor-

hood) scales.

Data Analysis
We used the ‘‘pscl’’ library in Program R to develop count-based

regression models to predict the occurrence and the maximum

number of redds at a site as a function of covariates measured at local

and neighborhood scales. Specifically, we used a hurdle count

regression model, which is a two-component model with a truncated

count component for positive counts and a hurdle component that

models the zero counts [39], [40]. The concept underlying the

hurdle model is that a binomial probability model governs the binary

outcome of whether a count variable has a zero or a positive value. If

the value is positive, the ‘‘hurdle is crossed,’’ and the conditional

distribution of the positive values is governed by a zero-truncated

count model. This model structure allowed us to simultaneously

model the probability of occurrence and the abundance of redds,

and thereby investigate processes that lead to presence and absence

of redds, and the number of redds observed at a spawning survey

site. The binomial (occurrence) component was modeled using the

binomial distribution with a logit link and the count (abundance)

component with a negative binomial distribution with logit link.

We assessed the potential for multicollinearity among covariates

using the variance inflation factor (VIF) statistic. Covariates with a

VIF.10 were removed from analyses [41]. Covariates were log or

arcsine-square root transformed as needed to meet normality

assumptions of linear models. We also checked for problems

associated with influential outliers by visually examining standard-

ized residuals and for spatial dependency in model residuals (i.e.,

autocorrelation) using an empirical variogram (Figure S3; [42]).

We constructed a set of candidate models to represent

biologically relevant combinations of processes measured at the

local and neighborhood scales. Our candidate model set was

formulated to represent alternative hypothesized effects of these

processes on redd abundance, occurrence, or both (Table 1). We

also considered a global model that included all terms. We then used

an information-theoretic approach to find the most parsimonious

set of independent variables to estimate the probability of

occurrence and the maximum count of redds at a survey site [43].

We used Akaike’s information-criterion (AIC) to select the best

approximating models by comparing candidate models. The AIC

values were adjusted for small sample size (AICc), and Akaike

weights (wi) were calculated. The model with the lowest AICc and

the highest wi was considered the best model. To account for model

uncertainty, we used model averaging to calculate parameter

estimates and variances from models in the confidence model set

(wi.0.05), and made inferences using this composite model.

Model Diagnostics
We evaluated the predictive ability of the occurrence and

abundance components of our hurdle model separately to evaluate

their suitability for management applications (e.g., survey design

optimization, prioritizing habitat restoration). For the occurrence

component, we used the ‘‘PresenceAbsence’’ library in Program R

to calculate the percentage of sites correctly classified (PCC;

cutoff = 0.5) and area under the curve (AUC) statistics. Standard

deviations were computed for each metric. As insufficient data were

available for an independent evaluation dataset and subsequent

cross-validation analysis, we used the ‘‘0.632+’’ bootstrap evaluation

method [44], [45] to assess the predictive accuracy of our abundance

model. This bootstrapping method uses an optimism estimate to

adjust model evaluation statistics and provides a nearly unbiased

estimate of the external predictive performance of the model. We

used a range of evaluation statistics to assess different aspects of the

abundance model predictive performance. Bootstrap estimates were

calculated on observed vs. predicted redd counts using Pearson’s (r)

and Spearman’s rank (r) correlations, average error, and the root

mean square error (RMSE). The average optimism was calculated

for each statistic across 200 replicate bootstraps.

Results

Two-hundred and nine sites (Figure 1) were surveyed for

steelhead redds across the seven year period (2004–2010). Of the

4,269 stream km within the sampling frame, 411 km (10%) were

sampled at least once. Maximum redd counts at a site ranged from

0 to 17 redds (mean = 2.09, SE = 0.25; Figure S4), with redds

being observed at 96 of the 209 sites (46%). On average, redd

densities along these 2-km stream reaches were low. At the

majority of sites where redds were observed, maximum counts

were less than 10 redds (87%), and about half of occupied sites

contained only 1 or 2 redds (47%). We found no relationship

between sampling effort (site length and number of years a site was

sampled) on either presence and absence of redds using multiple

logistic regression (F = 1.54, P = 0.479) or maximum counts (.0)

based on negative binomial count regression (F = 2.18, P = 0.827).

Spatial Ecological Processes in Stream Networks
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As such, we did not account for these terms in our hurdle models.

The model that included only neighborhood-scale covariates had

the lowest AICc and the highest wi. Considerable model

uncertainty existed as the site-only model and models that

included the TRT covariate had wi values.0.05 (Table 2).

However, models representing only a single aspect of the steelhead

life-cycle, and the global model that included all terms, had

essentially no support (wi ,,0.05).

Occurrence of Redds
Results of the composite (i.e., model-averaged) model indicated

that the probability of steelhead redd occurrence increased with: 1)

stream size; 2) the proportion of suitable D50 within a site; 3) the

amount of suitable D50 in close proximity to a site; and 4) growing

season degree-days (Figure 3,Table 3). For a given proportion of

suitable D50 within a site, the probability of redd occurrence more

than doubled when availability of suitable D50 was greater in the

surrounding neighborhood (Figure 4). Following model-averaging

WORK was not significantly different than zero (i.e., confidence

limits overlapped zero).

Abundance of Redds
The maximum number of redds at a site was predicted to be

higher at sites with warmer thermal regimes (e.g., more GSDD),

and lower at sites with more days of scouring flows (S95). At a

given value of S95, expected redd counts varied across sub-basins

even with GSDD held constant. For example, sites in the Lower

Mainstem sub-basin close to the Columbia River were predicted to

contain twice as many redds relative to sites in the North Fork sub-

basin. Visual examination of the empirical semi-variogram (see

Supplementary Materials) based on composite model residuals

versus in-stream distance (km) indicated that the spatial pattern of

the composite model residuals was not different from a random

spatial pattern.

Model Performance
Predictive performance of both the occurrence and abundance

components of the composite model were generally better than the

performance of either the non-averaged neighborhood- or site-

only models (Table 4). The composite model PCC was 18% higher

than the site-only model, but just 2% higher than the neighbor-

hood-only model. The AUC statistic also was highest for the

composite model, but differences among models were low. Redd

abundance component evaluation statistics derived from bootstrap

analysis indicated that the composite and neighborhood-only

models performed best. Correlations between observed and

predicted values for both Pearson’s and Spearman’s rank statistics

were highest, and average model error was lowest, for the

neighborhood-only model. Root mean square error was lowest for

the neighborhood model (Table 4). Overall, the site-only model

performed poorly in comparison to models that included

neighborhood scale predictors.

Discussion

Our results emphasize the importance of spatial ecological

processes that can drive habitat selection and ultimately patterns of

presence and abundance at broad extents. More specifically, we

found that selection of spawning locations by steelhead across a

complex riverscape was strongly associated with habitats thought

to provide complementary support to different life stages.

Table 1. Candidate hurdle count regression models used to estimate occurrence and abundance of steelhead redds in the John
Day River basin, Oregon.

Model1 Scale2 Hypothesis

MAa+WORKa+S95b+GSDDa,b+ D50SITE
a+ D50NEB

a+TRTb Mixture Global model

MAa+WORKa+S95b+GSDDa,b+ D50SITE
a+ D50NEB

a Mixture Global model without TRT

WORKa+GSDDa,b+ D50NEB
a+TRTb Neighborhood Neighborhood+TRT

MAa+ S95b+D50SITE
a+TRTb Site Site+TRT

WORKa+GSDDa,b+ D50NEB
a Neighborhood Neighborhood-only

MAa+ S95b+D50SITE
a Site Site-only

MAa+WORKa+TRTb Mixture Adult Survival/Access+TRT

S95b+ D50SITE
a+ D50NEB

a+TRTb Mixture Depositional Environment+TRT

GSDDa,b+TRTb Mixture Juvenile Survival+TRT

MAa+WORKa Mixture Adult Survival/Access only

S95b+ D50SITE
a+ D50NEB

a Site Depositional Environment only

GSDDa,b Neighborhood Juvenile Survival only

1Covariates were applied to the occurrence (a) and/or abundance (b) model components.
2Models were formulated to address hypotheses at two scales (Site and Neighborhood) and in combinations (Mixture).
doi:10.1371/journal.pone.0079232.t001

Table 2. Model selection metrics for hurdle count regression
models fit to occurrence and abundance data for steelhead
redds at 209 sites in the John Day River basin, Oregon.

Model1 K2 L-L AICc DAICc wi

Neighborhood-only 7 2538.70 1091.5 0 0.413

Site-only 6 2539.90 1091.9 0.4 0.347

Neighborhood+TRT 11 2536.01 1094.2 2.7 0.110

Site+Hatchery 10 2537.87 1095.9 4.4 0.047

Global model without TRT 10 2537.87 1095.9 4.4 0.047

Global model 12 2540.76 1105.7 14.2 ,0.001

1Model results are ranked by AICc from best to worst, and Akaike weights
(wi,).0.05 are also shown.
2K is the number of estimated parameters, L-L is the log-likelihood, and DAICc is
the difference in AICc relative to the best model (see [41] for details).
doi:10.1371/journal.pone.0079232.t002

Spatial Ecological Processes in Stream Networks
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Figure 3. Probability of occurrence (line, left y-axis) and abundance of steelhead redds (bars, right y-axis) as a function of
cumulative degree days (GSDD; 6C) estimated from a hurdle count regression model. Horizontal thickness of bars indicates the
approximate range of degree days predicted for a given count estimate.
doi:10.1371/journal.pone.0079232.g003

Table 3. Standardized model-averaged parameter estimates, unconditional SE values, and 95% confidence limits (CLs) for
covariates predicting the occurrence (binomial model) and abundance (count model) of steelhead redds in the John Day River
basin, Oregon.

Covariate Parameter estimate SE Lower 95% CL Upper 95% CL

Occurrence model1 Intercept 22.848 1.100 24.993 20.703

MA 0.216 0.014 0.189 0.243

D50SITE 0.243 0.019 0.207 0.280

D50NEB 0.279 0.016 0.248 0.309

GSDD 0.694 0.048 0.600 0.787

WORK 20.004 0.007 20.018 0.010

Abundance model1,2 Intercept 0.240 0.021 0.198 0.282

GSDD 0.683 0.063 0.560 0.806

S95 20.047 0.006 20.058 20.036

TRTMF 0.014 0.086 20.154 0.183

TRTNF 20.130 0.023 20.174 20.085

TRTSF 0.000 0.061 20.118 0.118

TRTUM 0.029 0.094 20.154 0.212

Log(h)3 20.276 0.356 20.970 0.419

1Results are based on the top five hurdle count regression models, which were responsible for 96% of the collective model weight (see Table 2).
2Levels for the TRT covariate are Lower Mainstem = Intercept, Middle Fork = TRTMF, North Fork = TRTNF, South Fork = TRTSF, and Upper Mainstem = TRTUM.
3Log(h) is the dispersion parameter.
doi:10.1371/journal.pone.0079232.t003
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Furthermore, habitat characteristics at both local and neighbor-

hood extents were important in predicting the distribution and

abundance of steelhead redds across a diverse riverscape.

Landscape complementation is not often explicitly treated when

modeling presence or abundance of a species [46]. We found two

benefits to a more explicit treatment of complementation: a better

understanding of spatial processes that influence a species, and

improved prediction of species presence or abundance. In the case

of steelhead, patterns we observed may be explained by both

complementation and connectivity. Complementation was ad-

dressed specifically in our model by including metrics describing

the quality of rearing and spawning locations near focal sites.

Connectivity was implicitly factored into our predictive models by

including a variable to account for the cost of travel to spawning

locations as well as connectivity to reaches within a neighborhood.

In other words, the synergistic effect of complementation and

connectivity proved to be a powerful predictor of spawning

locations and abundance of redds constructed by steelhead.

Landscape supplementation was not explicitly addressed in this

study though it could also be important in predicting steelhead

spawning locations and redd counts. Landscape supplementation

is a mechanism by which organisms supplement resource

acquisition by making use of identical resources located in nearby

patches [3]. For example, a recent analysis of passerine birds

showed that abundance was higher in natural locations where

agriculturally-modified habitats provided supplementary feeding

opportunities [6]. We suspect that landscape supplementation is

likely to be important for steelhead as well, for analogous reasons.

Landscape supplementation may provide redundancy in avail-

Figure 4. Probability of steelhead redd occurrence as a function of the proportion of a spawning survey site with suitable spawning
substrates (D50SITE), in two neighborhood types : 1) Good has high amounts of suitable substrate in nearby reaches; and 2) Poor
has low amounts. Estimates are from a hurdle count regression model. Dashed lines are 95% confidence intervals.
doi:10.1371/journal.pone.0079232.g004

Table 4. Model prediction diagnostics for three hurdle
regression models predicting the occurrence (binomial) and
abundance (count) of steelhead redds in the John Day River
basin, Oregon.

Occurrence1 Abundance2

Model PCC AUC r r AVEerror RMSE

Composite 0.8060.03 0.9060.02 0.79 0.74 1.17 3.37

Neighborhood-
only

0.7860.02 0.8760.03 0.82 0.80 0.94 3.93

Site-only 0.6260.05 0.8160.04 0.66 0.62 2.44 5.57

1For the occurrence component, percent correctly classified (PCC; cutoff = 0.5)
and area under the curve (AUC) statistics with standard deviations are
presented.
2For the abundance component, the results of a ‘‘0.632+’’ bootstrap evaluation
of Pearson’s r, Spearman’s r, average error (AVEerror), and root mean square
error (RMSE) of observed versus predicted redd counts are shown.
doi:10.1371/journal.pone.0079232.t004
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ability of key habitat requirements, thereby promoting persistence

of steelhead in the face of environmental changes such as seasonal

variability in flows and temperatures or episodes of major habitat

rearrangements from catastrophic disturbances [47]. In practice it

can be challenging to precisely describe and model a specific

landscape process (e.g., complementation vs. neighborhood effects)

that is clear and distinctive in concept ( [3], [48]; Figure 2).

Regardless, a more explicit consideration of spatial ecological

processes clearly improves our understanding of how species

presence and abundance is expressed across broad extents.

The importance of spatial landscape processes to stream fishes

has rarely been considered explicitly (but see [49–51]) despite

being widely acknowledged [7], [10], [52]. Two explanations may

account for this apparent discord. Spatial ecological processes are:

1) well-known, but not expressed within the rubrics of aquatic

landscape ecology and 2) viewed inconsistently with respect to

their relation to ecological scale (e.g., neighborhoods vs.

metapopulations). However, there is little question that spatial

landscape processes are implicitly acknowledged for stream fishes.

For example, [53] found that the distance among spawning and

rearing habitats was a fundamental factor explaining recruitment

and population size of fishes in the Danube River. Moreover, the

literature includes numerous references to distinctive life stages of

stream fishes and their ecological requirements (e.g., [8]).

However, more often than not these life stages and their

requirements are studied in isolation, and thus connections among

them (i.e., landscape complementation; see above discussion) are

not clear (but see [10]). On the other hand, the importance of

habitat connectivity is well-acknowledged and is the focus of

intensive study (see review by [54]). Arguably, combining

approaches to develop a more explicit treatment of connectivity

should improve our understanding of stream fish ecology as

evidenced by the results herein.

Predicting the distribution and abundance of organisms across

complex landscapes is challenging as it requires accurately and

precisely capturing habitat heterogeneity at scales that are relevant

to the life history of the organism in question [55–57]. Past

approaches to modeling effects of landscape configuration and

composition on salmon and trout have relied on a patch-based

approach [9], [11], [58], but relative to species in these studies, O.

mykiss (i.e., steelhead and rainbow trout) is a habitat generalist that

can occupy a wide range of habitat conditions [59]. The broad

extent we addressed certainly encompassed multiple local popu-

lations of steelhead, but the boundaries delineating these

populations were far from clear. Thus, we adopted an approach

based on the concept of ecological neighborhoods that were

delineated by the presumed movement behavior of steelhead.

Unlike a patch-based approach, which is often focused on the

importance of habitat size and connectivity, our neighborhoods

were constant in size, but variable in their composition and

connectivity. Whereas we were unable to evaluate the importance

of neighborhood size or extent, we found that simply accounting

for neighborhood effects dramatically improved our ability to

predict presence and abundance of a generalist species. Given that

many stream fishes are generalists [8] and that stream networks

represent continuous gradients rather than discrete boundaries

[60], [61], the concept of ecological neighborhoods seems widely

applicable.

Implications
Based on our rationale, what are some general guidelines for

predicting the distribution and abundance of organisms with

complex life cycles across large, heterogeneous landscapes? First,

when spatial processes such as landscape complementation and

neighborhood effects may be influential, an attempt should be

made to measure covariates continuously, thus allowing the

ecology of the organism to dictate the scale of the response. In an

analysis such as the one we have proposed, failure to account for

the habitat matrix may lead to biased estimates of population

spatial structure [5], [62], [63]. Second, predictors should

represent (spatial and behavioral) processes that are of primary

importance in determining habitat suitability, not only at specific

life stages but across the life cycle of an organism. These measures

should incorporate knowledge of how individuals disperse across

the landscape, select habitat in which to reproduce, and

successfully produce offspring that survive to promote population

persistence [64]. For our steelhead example we focused on access

to spawning habitats, suitability of spawning gravels and the

likelihood of disturbance of redds, and availability of conditions

that subsequently support growth of offspring (i.e., thermal

regime). We considered these factors to be of primary importance

to persistence of steelhead in freshwater. Third, our results suggest

that the effects of local habitat conditions should not be ignored.

Although models that included local effects did not perform as well

in a predictive sense as those that included neighborhood-scale

measurements, we could not rule out their importance based upon

model selection. We suggest that accounting for both neighbor-

hood and local conditions are important, as based on the VIF

analysis local habitat and neighborhood conditions were not good

predictors of one another. Future work predicting steelhead

spawning distributions could better characterize local-scale condi-

tions by linking specific locations of redds (e.g., GPS coordinates)

to individual reaches, thus providing information regarding the

spatial arrangement (e.g., clumped vs. dispersed) of suitable

reaches within a site. Estimates of substrate suitability at finer

scales (e.g., channel units: pools, riffles, runs) might also improve

predictive models that incorporate local-scale processes. Unfortu-

nately, continuous mapping of geomorphic controls at very fine

spatial grains remains difficult, although new technologies hold

promise (e.g., LiDAR; [65]). Last, use of empirical data collected

under a spatially balanced survey design, and statistical method-

ology that allows for the evaluation of alternative hypotheses are

critical for an unbiased view of the influence of spatial ecological

processes on the distribution and abundance of organisms in

complex landscapes.

This study has numerous implications for evaluating and

managing future climate impacts on steelhead. Changes in thermal

and flow regimes are anticipated with regional climate warming

[66]. We found that water temperature and stream flows most

strongly influenced the distribution and abundance of steelhead

redds. Climate change effects on the distribution of O. mykiss have

only considered the resident form (i.e., non-anadromous rainbow

trout) which appear to be the most resilient trout species with

respect to climate change [19]. Whereas O. mykiss as a species may

be resilient in the face of climate change, implications of climate

change for life histories is another question. Expression of a

resident (rainbow trout) or migratory (steelhead) pathway has been

linked to thermal regime [67] and stream size [28], both of which

were important in our models predicting the distribution and

abundance of steelhead redds. More work is needed to better

understand controls on migratory life history expression in this

species, but climate-linked changes in life history expression seem

quite plausible (see also [68]). Accordingly, the response of this

species to changing climates will require an understanding of not

only how climate affects stream flows and temperatures in both

local and landscape contexts, but also how these factors may

change the species itself.

Spatial Ecological Processes in Stream Networks

PLOS ONE | www.plosone.org 9 November 2013 | Volume 8 | Issue 11 | e79232



In an applied context, the results of this work are generally

relevant for species with complementary habitat needs, and have

specific implications for conservation of steelhead, which is

threatened across much of its range [20]. It is clear that presence

and abundance of spawning locations were strongly tied to spatial

landscape processes, namely connectivity, landscape complemen-

tation, and neighborhood effects. Quantifying these processes was

possible using a combination of previously derived measures (e.g.,

VIC model output: MA, S95) and those generated by us (e.g.,

D50, WORK). The importance of these processes provides a

fundamentally different view of why steelhead use specific

locations for spawning. In essence, suitable characteristics of sites

are a necessary but often insufficient condition for the persistence

of steelhead populations. Accordingly, restoration of stream

habitats can benefit from this broader perspective [69], [70]. For

example, restoration of a specific site for a specific life stage may

fail if steelhead are less likely to use the location due to limited

connectivity, lack of complementary habitats for other life stages,

or unsuitable neighborhood characteristics. In other words, the site

itself is only one of several factors that will influence the outcome

of a given restoration effort. Currently, there are many active

efforts aimed at site-based restoration of salmon and trout habitat,

but whether or not these efforts have resulted in positive biological

responses is unclear. A major contributing factor is lack of suitable

monitoring of these local efforts [71], but failure to consider spatial

landscape processes is also a strong possibility [72]. Whereas active

restoration at sites can produce short-term results, passive attempts

to manage land and water uses at broader extents may be more

successful in restoring natural landscape processes and fish

populations over the longer term. Such an approach may be

particularly important in the John Day River basin where recovery

from widespread impacts of historical human activities will require

decades [73].
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