Habitat-fisheries interactions and destructive fishing

Eirik Mikkelsen, Norut Northern Research Institute Claire Armstrong, UiT-The Arctic University of Norway

Photos: IMR Norway

Fisheries depend on the state of habitats

 Botsford et al 1997 Science, Lindholm et al 2001 CB, Seitz et al 2014 IJMS...

Some fishing practises harm habitat

 Rodwell et al 2003 CJFAS, Jørgensen et al 2015 IJMS, Auster 1998 CB, Kaiser et al 2002 F&F...

Some HFI bioeconomy studies /reviews..

 Knowler 2002 JoBE, Barbier 200 EE, Foley et al 2012 IJoE, Kahui et al 2016 LE

WWW.norut.no

TROMSØ | NARVIK | ALTA

Types of habitat-fisheries interactions

Biophysical

- Growth rate of fish stock
- Carrying capacity

Bioeconomic

- Unit costs of fishing / catchability of fish stock
- Price of fish

(Based on Foley et al 2012 IJoE)

NORTHERN RESEARCH INSTITUTE VERS ROY

Basic model

- Gordon-Schaefer biomass-based fisheries economic model with growth depending on habitat (biophysical model)
- Fishing is habitat-destructive or not
- Fisheries manager maximises profits by setting effort
- We consider steady state fishing effort, harvest, fish stock, habitat stock, profits

WWW.norut.no TROMSØ | NARVIK | ALTA

NOTUL NORTHERN RESEARCH INSTITUTE

Questions

- 1. How does the habitat-interaction *basically* influence the fishery?
- 2. What if destructive fishing gear is *inadvertently* introduced?
- 3. How should destructive fishing gear be managed?
- 4. Criteria for real cost-efficiency improvements with destructive fishing gear and habitat-interactions?
- 5. Cost of ignorance / value of knowledge about habitat-interactions and destructivity of fishing?

www.norut.no tromsø|narvik|alta

Basic model

Fish stock:

•
$$\dot{x} = rx\left(1 - \frac{x}{K}\right) + \beta xy - q_i E_i x$$

i=2 → Destructive fishing

- Habitat stock:
 - $\dot{y} = gy\left(1 \frac{y}{p}\right) \left(\gamma E_2 y\right)$
- Profits:

Habitat-destruction of fishing effort of «fleet 2»

Habitat-fisheries

interaction

•
$$\pi = px(q_i E_i) - c_i E_i$$

i.e. a Biophysical interaction, affecting fish stock growth NOT Bioeconomic affecting unit costs, catchability or price) TROMSØ | NARVIK | A TA

How does the habitat-interaction basically influence the fishery?

- The fish stock's effective intrinsic growth rate and carrying capacity are adjusted
- «Effective r» $\rightarrow r(1 + \frac{\beta y}{r})$

B = interaction parameter y= habitat stock

• «Effective K» $\rightarrow K(1 + \frac{\beta y}{r})$

 Higher effort, harvest, fish stock, profits compared to «standard model» even for a non-destructive fishing fleet

What if a destructive fishing fleet is *inadvertently* introduced?

- Manager sets effort unaware of this
- Destroy habitat → reduces fish stock (growth)
 - Steady state habitat: $R\left(1 \frac{\gamma r}{2gq_2}\left(1 + \frac{\beta R}{r} \frac{c_2}{pq_2K}\right)\right)$
 - Steady state fish stock is lower the stronger the interaction/ destructivity is.
- If unit cost c and catchability q same as nondestructive fleet:
- Lower steady state fish stock, habitat stock, profits and harvest than with non-destructive fleet

How should a destructive fishing fleet be managed?

 Set fishing effort considering habitat-interaction and destructivity:

•
$$E_2 = \frac{r}{2q_2\left(1 + \frac{R\beta\gamma}{q_2g}\right)} \left(1 + \frac{\beta R}{r} - \frac{c_2}{pq_2K}\right)$$

«Reduction-factor»

Reduction should be larger with larger..

- Habitat size R
- Interaction term *β*
- Destructivity γ

..and with lower habitat intrinsic growth rate *g*

- For same c and q values as non-destructive fleet:
 - Steady state habitat larger than when ignorant, but not pristine
 - Steady state fish stock same as with non-destructive fleet
 - Harvest and profits reduced (by same factor as effort)

WWW.norut.no

TROMSØ | NARVIK | ALTA

Criteria for real cost-efficiency improvements with destructive fishing gear and habitat-interactions?

UIT / DE NORWAY

- Classic / simple cost-efficiency measure:
 - $\frac{q_2}{c_2} > \frac{q_1}{c_1}$ But this ignores habitatinteraction and destructivity!
- Profit-change with destructive fishing:

•
$$\frac{rpK}{4\left(1+\frac{R\beta\gamma}{q_2g}\right)}\left(1+\frac{\beta R}{r}-\frac{c_2}{pq_2K}\right)^2-\frac{rpK}{4}\left(1+\frac{\beta R}{r}-\frac{c_1}{pq_1K}\right)^2>0$$

- Let:
 - $\bullet \quad \frac{q_2}{c_2} = \frac{\alpha \, q_1}{\mu \, c_1}$
 - If $\alpha/\mu > 1$, increased cost-efficiency in oversimplified measure

Criteria for real cost-efficiency improvements with destructive fishing gear and habitat-interactions? (2)

Criteria for cost-efficiency improvement:

$$\bullet \frac{R\beta\gamma}{g} < \alpha q_1 \left[\frac{\left(1 + \frac{\beta R}{r} - \frac{\mu c_1}{p\alpha q_1 K}\right)^2}{\left(1 + \frac{\beta R}{r} - \frac{c_1}{pq_1 K}\right)^2} - 1 \right]$$

- Can't totally separate relevant parameters
- Can use for numerical calculations
- But see that: Less likely fulfilled if large habitat, strong interaction, strong destructivity, low habitat intrinsic growth rate

www.norut.no

Numerical illustration cost-improvement Cod in Barents Sea

UIT / THE ARCTIC UNIVERSIT

- Habitat-interaction of «2 %» and destructivity of «0.1 %» means crude cost-efficiency increase must be +25 % for actual efficiency increase
- Data: Kahui et al 2016: Land Economics. Bioeconomic Analysis of Habitat-fishery connections: Fishing on Cold-Water Coral Reefs. + guesstimates

Cost of ignorance / value of knowledge about habitat-interactions and destructivity of fishing?

• ...= Profit-difference optimally vs ignorantly managed destructive fishing fleet:

•
$$\Delta \pi = \frac{1}{\left(1 + \frac{R\beta\gamma}{q_2 g}\right)} \left[\left(\frac{R\beta\gamma}{q_2 g}\right)^2 \frac{rpK}{4} \left(1 + \frac{\beta R}{r} - \frac{c_2}{pq_2 K}\right)^2 \right]$$
 (per period)

- Increases with increasing destructivity γ, and with falling habitat growth rate g.
 - For interaction parameter β and habitat carrying capacity R, it depends...

www.norut.no

TROMSØ | NARVIK | ALTA

Numerical illustration cost of ignorance Cod in Barents Sea

UIT / THE ARCTIC UNIVERSIT

Habitat: R=1

g=0.2

- = Annual loss of 540 Mill NOK ~ 63.5 Mill. US\$
- NPV at 5% discount rate: 11.3 Bill NOK ~ 1.33 Bill US\$
- Data: Kahui et al 2016: Land Economics. Bioeconomic Analysis of Habitat-fishery connections: Fishing on Cold-Water Coral Reefs. + guesstimates

Summing up

- A Gordon-Schaefer type model with positive habitat-fisheries interaction
- Measure real cost-effefficiency differences of destructive vs non-destructive fishing
- Cost of ignorance / Value of knowledge
- Non-use/existence values of habitat not considered

www.norut.no

TROMSØ | NARVIK | ALTA

Thank you!

Questions?

Eirik.mikkelsen@norut.no

www.norut.no

Financing from the Norwegian Research Council gratefully acknowledged!

WWW.norut.no TROMSØ|NARVIK|ALTA