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EVELOPMENT OF A DISCRETE-EVENT, OBJECT-ORIENTED  
FRAMEWORK FOR NETWORK-CENTRIC SIMULATION MODELING USING  

JAVA 

CHAPTER 1. INTRODUCITON 

The primary objective of this research is to develop a network-centric simulation 

modeling framework that can be used to build simulation models through the use of 

Internet-based resources. An Object-Oriented Programming (OOP) approach was used to 

build a Java-based modeling framework focused on modeling a semiconductor 

fabrication system. 

This research topic was chosen to further develop a new area of simulation called 

"Web-based simulation," to disseminate the benefits of simulation modeling, to further 

extend the functionality of Internet technologies, and to further develop the author's skills 

in simulation modeling, OOP and Internet application development. 

A review of the literature indicated that much has been done in the area of 

simulation using OOP. OOP has proven to be a superior simulation methodology over 

traditional structural methodologies. One problem that has arisen is that the existing 

OOP models are available only to users of a specific programming language or 

simulation software platform. This research, however, concentrates on creating 

simulation models that are platform independent. In other words, the simulation model is 

available to virtually all users, regardless of their computer's hardware, software, 

configuration or location. 
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This research is an initial step in what may be a new network-centric modeling 

methodology, where simulation models are created using software objects that are 

physically located in many different sites across the Internet. Once the ability to create 

and run a relatively simple model using a network-centric approach has been established, 

the next step may be a simulation environment that not only lets a user interactively build 

models but also allows concurrent model development between a group of users, 

independent of their location, operating system, or computer architecture. 

1.1 Statement of the Problem 

Increasingly complex software applications continue to overload computer users. 

The area of simulation software is no different. As more sophisticated simulation studies 

are performed, more complex software systems are being developed to handle model 

requirements. 

If a user wants to run a simulation model, the simulation software must first be 

installed and configured before the first simulation run can take place. With all of the 

possible computer configurations (hardware, operating system and software applications), 

the configuration and maintenance of simulation software becomes a significant task. 

Not only is the user tasked with complex configuration and maintenance of the local 

computing environment, but the simulation software developer must maintain multiple 

versions of software for each specific computer architecture. 
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In addition, the building of simulation models has traditionally been a "desktop-

centric" task. In other words, the simulation models are created on a single computer at a 

specific geographic location, where the simulation software has been installed and 

configured. Once the model has been completed it can, of course, be distributed by 

media such as floppy diskettes or computer tape, or even more recently, transferred across 

the Internet via FTP or a similar method. However, there exists no method for 

concurrently developing model components in different locations, linking them together, 

and executing the simulation components as a cohesive model. 

New technologies are currently being developed that could greatly reduce or even 

eliminate the need for users to specially configure their computers in order to run 

applications. This new technology will allow any user with an Internet-connected 

computer and a standard Web browser to load and run software applications, without 

considering the architecture or configuration of their computer. In addition, the software 

written for Web browser applications could be composed of objects or modules that don't 

physically exist on the user's computer, but rather on multiple locations across the 

Internet. This is the basis of the network-centric computing model. 

When the concept of network-centric computing is applied specifically to 

simulation software, there are many benefits to the idea that a simulation model and the 

resulting output information could be available to virtually anyone in the world, instantly 

and on demand. Not only can the simulation analyst benefit from the output of a 

simulation run, but many others, perhaps with better knowledge of the current model 

input parameters, could initialize, run and view the simulation results. This may assist in 
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providing critical data for decision making. Additionally, with the concept of network-

centric computing, a simulation model might be a collection of simulation objects that are 

physically located anywhere on the Internet, and are merely requested and delivered when 

the simulation model is executed. 

The system model selected for this research is based on a semiconductor 

fabrication system. This environment was selected for severalreasons. First, 

semiconductor fabrication is a complex environment that is difficult to model with many 

existing simulation environments and there appears to be a need for better simulation 

tools in this area. Second, the author is interested in developing an expertise in the area 

of semiconductor fabrication simulation modeling Third, the close proximity of Oregon 

State University to Portland's "Silicon Forest" is an ideal opportunity to develop 

academia-industry research relationships. 

The purpose of this research is to develop a methodology for running a network-

centric simulation model over the Internet. The development of a prototype environment 

will provide the author with the ability to demonstrate the functionality of this concept 

and lay the groundwork for further development of a platform-independent, network-

centric simulation environment. 
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1.2 Background of Study 

1.2.1 Simulation 

A simulation model is an abstract, logical, mathematical model of a real system 

which, when utilized, can create an artificial history of that system. Simulation is 

especially valuable when asking "what-if' questions about a system, where it is either too 

expensive or impossible to physically implement the changes necessary to answer the 

questions. Often, because of the repetitive and complex calculations, the use of a 

computer becomes invaluable in the execution of a simulation model. The main goal of 

simulation, then, is the development of a model that represents a real system such that 

experiments performed on the model yield results that would be, theoretically, exactly the 

same as performing the experiments on the actual system. 

1.2.2 Review of Simulation Tools 

There is a wide range of software used to exploit the computer as a tool in 

simulation modeling. The intention of this section is to give a brief history of simulation 

software, to introduce categories of software, and give a brief explanation of some of the 

most common software tools used in simulation modeling. 
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1.2.2.1 Evolution of simulation software. 

In the early days of simulation, it was up to the simulation analyst to program 

every single calculation in a model. This was done in a general purpose programming 

language. This gave the simulationist great flexibility in the systems that could be 

modeled, but was very programming intensive. Often, the focus of the model was the 

coding of the program, and not the analysis of the system. However, with the 

development of more sophisticated simulation software, many of the standard functions 

are pre-programmed, leaving the simulation analyst to concentrate more on simulation, 

and less on program coding. The cost of this "ease of use" however, is a loss in 

flexibility. If a model can not be described in terms of the simulation software, then the 

simulationist has two choices. He/she can make some assumptions to transform the 

system into a form that could be modeled within the boundaries of the simulation 

software, or manipulate or "trick" the software into accurately representing the physical 

system. So, after several decades of specializing simulation software, recently the trend 

has been back towards the use of general purpose programming languages, using a 

recently developed programming paradigm called Object-Oriented Programming. 

Since the start of its development in the 1950s, simulation software, just as all 

other computer technologies, has gone through many changes. Simulation programming 

that used to take an expert FORTRAN programmer, has now become a simulation 

application with a standard graphical user interface (GUI), that allows a simulation 

analyst with competent computer skills to generate large, complex simulations. 
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Simulation software can be categorized as one of the following: 

General Purpose Programming Language 

Special Purpose Simulation Language 

Simulators 

1.2.2.2 General Purpose Programming Languages (GPPLs) 

In the 1950's, when simulation began to develop into a technique for modeling 

systems, there was no software specifically designed for the simulation of systems. 

Therefore, simulation analysts used what was available, which was simply, programming 

languages. 

There exists a dichotomy of the use of GPPLs for simulation. In support of using 

GPPLs, they are extremely flexible in the varied systems and detail that a proficient 

modeler can represent. Additionally, using a GPPL for simulation, it is likely that the 

language is used by many people, has the ability to execute on many different types of 

computers, and is probably already available on most computer installations. If one were 

to write a simulation program in FORTRAN, for instance, many other modelers would be 

able to read the program code and compile the code to run on their computer. So with 

general programming languages, programs have the potential of being highly 

distributable. 

However, a disadvantage of using a general purpose programming language is the 

fact that the coding of the model becomes a very large task and requires the modeler to be 
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an accomplished programmer in the GPPL. Every aspect of the simulation model must 

be programmed. For instance, what if it was necessary within a model to generate a 

Poisson-distributed random variable? If a GPPL were being used to build the model, it 

would be necessary to create a subprogram that specifically generates a Poisson-

distributed random variable. As will be discussed shortly, this is not the case with special 

purpose simulation languages. 

Historically, some of the general purpose programming languages that have been 

used for simulation are: 

FORTRAN 

ALGOL 

PL/1 

C 

SIMULA 

LISP 

BASIC 

In short any GPPL can be used as a coding environment to crate a simulation 

model. 

1.2.2.3 Special Purpose Simulation Languages (SPSLs) 

The next step in the evolution of simulation software, after the use of general 

purpose languages, was the creation of special purpose simulation languages. These 
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programming languages are designed specifically with the objective of simulating 

systems. They still require coding (programming) of the model, however many common 

simulation functions were added to the base language to speed model generation. 

As an example of how SPSLs can help speed the creation of the model, consider 

the example from general purpose languages mentioned above. It was necessary in 

FORTRAN to write a subprogram to generate a Poisson random arrival. Special purpose 

languages come with this subroutine already integrated into the language. Therefore, 

when you want to write the code to generate a Poisson distributed random number, with a 

mean of 5 arrivals/hr., it may be as easy as: 

Poisson(5) 

By reusing the routines within the SPSL, obviously much time and effort can be saved 

and model generation becomes a less programming intensive task. 

Although these languages made it easier and faster foran analyst to generate a 

model, the flexibility of modeling diverse and complex systems became restricted. With 

SPSLs, it was still possible to ask "what-if' questions about a system, as long as the 

questions were within the abilities of the SPSL. 

Another problem with SPSLs was that simulationists still had to be competent 

programmers. According to Ball and Love (1994): 

Lengthy training is required to develop the skills required to both build and use a 
model based on a simulation language. A recent survey suggested that more 
emphasis was needed on the development of application methodologies and on 
improvements in education and training of potential users. An alternative view 
might be that existing simulation systems are too difficult to use and that efforts 
should be directed to improving usability. Here the term "ease of use" describes 
how well the simulation system matches the manufacturing or industrial 
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engineers' concept of the manufacturing system as well as the ease with which 
models can be created using the software. 
The time required to build a model using a simulation language occupies a 

significant part of the total project duration. In particular, the stage of expression and 

conception of the logic is lengthy. The time taken is affected by the need to 

conceptualize the model logic (such as the sequence in which an operator runs a series of 

machines or the splitting of a batch across a number of machines) as well as the need to 

convert the logic into program code. However elegant the language, this approach 

remains constrained by the time required to develop the model logic. The model build 

time has a direct impact on the modeling system's utility in the design process. If the 

time required to evaluate a design using modeling equals or exceeds the time allocated to 

carry out the overall design task, then the model created can only be used to check the 

resulting design, not as an integral part of the design process. Hence the benefits of using 

simulation as part of the design process would be reduced. 

Although the advantages of SPSLs were improved ease of use and faster model 

generation, there are some disadvantages associated with SPSLs. These languages are 

limited in the type and sophistication of real systems that they can be used to represent. 

Initially, these languages were very simplistic, and could model only the most basic 

systems. As they developed, however, they became more and more powerful. In terms 

of flexibility and their ability to model unique systems, special purpose languages may be 

less attractive than general purpose languages. 

Many special purpose languages have been developed, yet only a few have gained 

widespread acceptance. Several of the most common languages are: 



11 

GPSS The General Purpose Simulation System (GPSS) was initially created 

early in the 1960's specifically to model discrete systems. This language was attractive 

in that it provides many common simulation functions internally, so the modeler can 

create models faster. A disadvantage was that GPSS was very limited in what it could 

model. It has evolved over the years to become much more flexible, however it still has 

modeling limitations. 

GASP The General Activity Simulation Program (GASP) also started in the 

1960's, and was further developed into GASP IV. GASP was a large collection of 

FORTRAN subroutines that were specifically designed for use in simulation models. 

GASP greatly eases the simulation of a system using FORTRAN. While GASP is now 

obsolete, it was an important step in the evolution of simulation software, as it led to the 

development of more advanced languages, specifically SLAM. 

SIMSCRIPT Simscript was first developed by the RAND Corporation in the 

1960's. It has evolved into the current version, Simscript 11.5, and is still available 

commercially. It was unique in that it approaches a general purpose programming 

language, but includes very powerful simulation-specific functions. Simscript is a 

"natural language" simulation environment, where the simulation programs can be read in 

a sentence-like manner. Simscript is important because it took simulation languages to 

the next step of user-friendliness, and allowed a simulation analyst to concentrate less on 

programming, and more on the simulation study. 

SLAM SLAM (Simulation Language for Alternative Modeling) is a high-level, 

FORTRAN-based special purpose simulation language. Its development started in the 
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1970s and its successor is still available commercially. Where it started as a language 

very similar to GPSS, it has continually developed and improved. 

One distinct advantage of SLAM over other special purpose languages is the 

ability to model very complex or unique systems using FORTRAN. SLAM has the 

ability to pass information to and receive information from FORTRAN functions and 

subroutines, allowing the simulation analyst to call on the flexibility of a general purpose 

programming language when the requirements of the model demand it. While this adds 

flexibility to modeling, it also adds complexity and reduces ease of use. 

One of the unique characteristics and a major advantage of SLAM is its use of a 

graphical interface to build models. SLAM provides a set of building blocks that allows 

an analyst to graphically represent a system as a "network." SLAM then translates the 

picture of the system into SLAM code that can be executed. This concept relieves the 

analyst even more of the task of coding a simulation model. 

SIMAN SIMAN is a powerful, SPSL for modeling discrete, continuous and 

combined systems. Discrete-change systems can be modeled by using either a process-

interaction or event scheduling orientation. Continuous-change systems are modeled 

with algebraic, difference, or differential equations. A combination of these orientations 

can be used to model combined discrete-continuous models. SIMAN is still 

commercially available and has evolved into a high level simulator called Arena. 
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1.2.2.4 Simulators 

Simulators were the next generation of simulation software that once again, 

further removed the modeler from the task of programming simulation models. These are 

simulation applications that allow a modeler to build models often without writing a 

single line of programming code. Through the user interface, it is possible to construct 

models by selecting icons and using menus to enter data without having to be concerned 

with a programming language or conception of programming logic. (Ball and Love, 

1994) 

The development of simulators was an improvement and natural evolution of 

SPSLs. In fact, developing a GUI for an existing SPSL created most of the commercially 

available simulators. While these simulators may appear to overcome many of the 

problems and restrictions associated with SPSLs, the fact remains that the flexibility and 

amount of detail in a model is restricted by the finite definition of the SPSL. 

Additionally, Ball and Love point out a new problem. It seems with such an easy to use 

simulation model creation environment, aesthetically pleasing simulation models, with 

moving graphics, and real-time statistics output, just about anyone can create a simulation 

model, regardless of their system simulation expertise. 

Several of the widely available commercial simulators are: 

Arena 

AutoMod 

ManSim 
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Pro Model 

Slam System 

Taylor II 

Witness 

Even though simulators make it easy to create and run colorful, graphical models, 

the use of simulators still requires skill and ingenuity to represent the true behavior of a 

physical system. While simulators offer a number of advantages over other simulation 

tools (such as ease of use and less time to build models), they may be limited in the areas 

in which they have the potential to be applied. Limitations come as a result of limited-

range functionally and difficulty in extension of the existing software. 

1.2.3 The Return to General Purpose Programming Languages 

Recently, simulation software research has come full circle, and currently, newer 

general purpose programming languages have been used to create simulation models. 

The difference this time, however, is the application of a new programming approach 

called Object-Oriented Programming, and new and more powerful languages to 

implement the OOP approach. The advantages of the new approach are the increased 

flexibility of using a general purpose programming language, manageability of the 

complexity of the system being modeled, and the ease of use of OOP languages when 

compared to the traditional general purpose programming languages. 

Several of the commercially available and common OOP languages: 
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C++ 

SmallTallc 

Obj ective-C 

Object - Pascal 

CLOS 

In the next section, a brief introduction to OOP is presented. 

1.2.4 Object-Oriented Programming 

"Object-oriented programming is a revolutionary idea, totally unlike anything that 
has come before in programming." (Budd, 1996) 

Perhaps the most fundamental concept of object-oriented programming is best 

described by Floyd, (1989) 

"Our world is filled with objects, so it seems only natural to describe and solve 
problems in terms of objects as well. This idea is the basis for object-oriented 
programming." 

Although the object-oriented paradigm is a relatively new, popular concept in 

software engineering, the idea of programming based on objects was first developed in 

SIMULA, which is a simulation extension to the Algol -60 language. (Ozden, 1991). 

Historically, most programmers have been educated mainly in the procedural 

paradigm. This would include the use of such languages as C, Pascal or FORTRAN. 

These languages share a common approach to solving a problem, differing only in their 

syntax.(Eldredge, 1990) Other less common programming paradigms would be the logic 
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programming paradigm, and the functional programming paradigm. (Budd, 1996) 

However, tools or design techniques have supported few of these paradigms. 

A programming paradigm is literally defined as "an example or model" (Budd, 

1996), but practically, provides the system designer with techniques that guide problem 

solution. Recently, there has been an interest in utilizing some of the alternatives to the 

procedural paradigm to facilitate the solution of certain types of problems. For example, 

the rule-based paradigm has been widely used in the development of expert systems. The 

access-oriented paradigm has proven to be a useful approach for building user interfaces. 

The object-oriented paradigm has also received intense attention recently as being useful 

in the pursuit of a variety of problem solutions. (Eldredge, 1990) 

A major difference between the procedural paradigm and the 00 paradigm is the 

focus of the programmer as the model is developed. In a procedural approach, the focus 

would be on an overall command loop which would be decomposed into subtasks as the 

model was developed. Data structures such as queues would be introduced as needed to 

support the overall algorithm. Using the 00 paradigm, the main focus is on the 

description of objects and their behavior. Each object is defined abstractly in terms of a 

class. A class corresponds roughly to a type definition for a complex data type that 

includes fields for functions as well as fields for data. The actual objects in a problem 

solution are then represented as instances of these abstract classes. The instances are 

implemented as objects, which are independent regions of memory. In addition to 

identifying objects, the OOP paradigm also identifies relationships between these objects. 

These relationships help define the structure of the application design. 
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The OOP paradigm enables the decomposition of a software system into logical 

components that are represented as objects. Each object is a collection of data and 

procedures. The data represents the status of the object, and the procedures represent the 

behavior of the object. Theoretically, only the procedures owned by an object can access 

and change the value of its data. These features provide a convenient paradigm to 

develop models that closely resemble their real-world counterparts. An object-oriented 

program is executed through the exchange of messages that alter an object's status. The 

message-passing paradigm differs from a subroutine mechanism in that it allows a much 

greater degree of discretion concerning the interpretation of a message by the receiver. 

(Chang, 1994) 

1.2.4.1 Components of Object-Oriented Programming 

Since OOP is a relatively new area in software development, it is appropriate to 

present an introduction to the major concepts that make up the OOP paradigm. The 

concepts introduced in this section are the defining components of OOP, and they are 

common between all OOP languages. 

Objects and Classes The principle idea of OOP is that everything is an object: 

variables, data structures, procedures, etc. An object is defined by the data areas it 

contains and the methods that manipulate its data areas. Objects that are created from the 

same definition are grouped together in a class. A class defines the data which is 

contained within the object, the manner in which the data is stored, the visibility of the 
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data to other objects, and the procedures which may perform operations on the data 

(Beaumariage, 1990). The actual object, conceptually in the computer's memory, is 

called an "instance" of class. 

OOP languages contain five key concepts which result in making systems 

understandable, modifiable, and reusable (Beaumariage, 1990, Budd, 1996). These five 

concepts are: inheritance, encapsulation, message passing, binding, and polymorphism. 

Inheritance is the ability to extend existing classes to create specialized structures. 

This is the basis of software reuse. All class definitions are part of a single hierarchical 

tree that defines the relationships between all objects in an class structure. At the base of 

the tree is the class definition of object, from which all subclass definitions inherit 

properties. From each of the subclasses, again, subclasses can be defined, inheriting 

properties from its superclass. 

There are two important relationships between classes and subclasses. The IS-A 

relationship is the most important relationship in 00 system design. It is the relationship 

that allows the programmer to use an existing class definition as the basis for a new 

definition. The IS-A relationship is a subclassing relation. This relation is implemented 

by an inheritance mechanism in 00 languages. The inheritance mechanism is used to 

include the definition of a previously defined class(es) as the basis for a newly defined 

class that is a specialization of the existing class(es). An inheritance hierarchy results 

from successive uses of this specialization principle.(Eldrege, 1990) The inheritance 

hierarchy makes the definition of new classes more economical if they can be defined as 

specializations of existing classes. The new classes contain the existing code from the 
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older classes plus new specialized code. The deeper in the hierarchy, the more 

functionality is inherited by the new class. 

A second structuring relationship in 00 is the HAS-A relationship. Often as a 

new class is defined, its internal representation is defined in terms of instances of other 

existing classes. A class definition can be built by grouping non-related classes into a 

single class (Budd, 1996). The HAS-A relationship is also a very necessary component 

of OOP, as it allows great flexibility in object definition. 

Encapsulation is the ability to combine data and the procedures that operate on 

that data into a single structure, then protect and hide this internals of this structure from 

other objects directly accessing and changing the data.. This means that an object's data 

and methods are enclosed within a tight boundary, one which cannot be broken by other 

objects.(Beaumariage, 1990) This protection of internal data structures is also known as 

information hiding (Budd, 1996). Therefore, an object's internal data areas, which are 

possibly very critical, cannot be modified directly by some external object, but only by 

the procedures explicitly defined by the object's methods. In other words, if you want an 

object to change its state, encapsulation prevents you from changing it yourself, but 

provides a mechanism to tell the object to change its own state. This ideal is a crucial 

concept in the verification of 00 programs. 

Message passing is the mechanism that makes encapsulation possible. It is the 

way in which all objects communicate with each other. Because an object's internal state 

may be very important, and it is not desired that any outside entity modify that state 

directly, the way to change the state is to pass a message to the object, in effect telling it 



20 

to change its state by way of one of its methods. Message passing is somewhat analogous 

to procedure calling in traditional programming languages (Beaumariage, 1990). 

Binding refers to the process in which a procedure and the data on which it is to 

operate are related. Most procedural languages use early binding, in which binding is 

determined by the programmer and is performed when the code is written/complied. 

Declaring variables to be integer, real, logical, etc., is an example of the type of early 

binding done in traditional programming. Dynamic or late binding delays the binding 

process until the program is actually running When an object receives a message, the 

00 language searches the object's class to find the method to perform. This use of late 

binding gives OOP a great deal of flexibility in several ways. First, it is possible for the 

data type of a variable to change during runtime (see polymorphism below). Another 

consideration is that different classes can have the same named methods with different 

code found in each object. Finally, many of the variables defined in the OOP 

environment can be independent of the data they actually contain at a particular instance 

during the runtime of the program (Beaumariage, 1990). 

Polymorphism is the concept that a variable can hold different types of objects 

over the life of an executing program. By sending a single message to an object, the type 

of the object dictates how the message is interpreted and the request carried out. In other 

words, polymorphism is the ability to send the same message to different objects, with 

the result being that the object will respond in the intended manner (Budd, 1996). 

These five concepts benefit OOP in several ways. First, understandability is 

achieved by grouping data and behavior into intuitive objects that represent real world 
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objects. An OOP object is the implementation of one complete concept and is, therefore, 

easier to understand. Second, modifiability is achieved because an object has all of the 

data and procedures associated with it tightly grouped together in one structure. When it 

becomes necessary to change the data or behaviors of an object, ideally, a programmer 

needs to only change the class definition of that specific object (Beaumariage, 1990). 

Third, reusability of code is achieved by the utilizing the IS-A relationship and the HAS-

A relationship. With OOP, programmers no longer build entire programs from raw 

material, the bare statements and expressions of a programming language. Instead, they 

produce reusable software components by assembling components designed by other 

programmers. Brad Cox (1990) termed these reusable software objects "Software-IC's", 

as they resemble integrated silicon chips that can be "plugged" into many different circuit 

boards. They are an independent, fully operational component of the overall system. 

This is the true power of software development using the OOP paradigm. 

1.2.5 Discrete-Event Simulation and Object Oriented Programming 

Discrete-event simulation (DES) is a modeling methodology where state changes 

in the physical system are represented by a series of discrete events (Pritsker, 1986). A 

DES model assumes the system being simulated changes state only at discrete points in 

simulation time. The simulation model jumps from one state to another upon the 

occurrence of an event (Chang, 1994). 
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OOP is almost an exact match as a tool to develop DES models. Several obvious 

similarities exist between OOP and DES. Therefore, OOP has been used as a basis to 

develop many DES models. In support, Budd (1996) states: 

OOP allows a programmer to create a universe of well-behaved objects that 
courteously ask each other to carry out their various desires. This view of 
programming as creating a "universe" is in many ways similar to discrete-event 
simulation. In a discrete-event simulation, the user creates computer models of 
the various elements of the simulation, describes how they will interact with one 
another, and sets them moving. This is almost identical to the average object-
oriented program, in which the user describes what the various entities within the 
universe of the program are, and how they will interact with one another, and 
finally sets them in motion. Thus, in object-oriented programming, we have the 
view that computation is simulation. 

Further, Rosenberg (1992) states: 

Objects (in OOP) are a uniform programming element for computing and saving 
state. This makes them ideal for simulation problems where it is necessary to 
represent collections of things that interact. 

There are special purpose simulation languages based on the object-oriented 

programming approach. For example, the SIMULA language is such a language and it 

was developed over twenty years ago. However, it has not gained widespread use for 

commercial simulations. This perhaps is due at least in part to the fact that it is an 

ALGOL based language and in many instances requires the writing of ALGOL 

subroutines in order to simulate a complete system. 

One recently developed language based on the object-oriented approach was the 

SMALLTALK language (Goldberg, 1984). This language has evolr'ed from artificial 



23 

intelligence applications. Although it may offer more promise than SIMULA of being 

widely used as a simulation language, it has not gained widespread use for commercial 

simulations. 

The OOP language used for this research is Java, which is a new OOP language in 

its infancy. This is an exciting time, as Java has been said to have "taken the best of all 

OOP languages, and eliminated the worst" (Semich, 1996). The software development 

industry is in a frantic state to develop programs and new technologies that are related to 

the Java language. One purpose of this research is to explore the use of Java for 

implementing discrete-event simulations. Because Java is so new, very little research has 

been done in the area of discrete-event simulation using Java as the OOP language. 

1.3 Literature Review 

1.3.1 OOP Frameworks for Discrete-Event Simulation 

A framework is a collection of 00 class definitions that work closely with each 

other, and together, provide a reusable environment for a general category of problems. 

Many of the commercially available frameworks are designed for the creation of 

graphical user interfaces, or GUI applications (Budd, 1996). But the usefulness of 

frameworks is not limited to GUI design. Indeed, DES frameworks have been developed 

for a wide range of simulation applications. 
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One of the original and most extensive 00 frameworks in the area of DES for 

manufacturing environments was BLOCS/M (Glassey and Adiga, 1990). Although the 

original research for BLOCS/M was started with a non-OOP language, C, the authors 

soon discovered that the 00 approach was the path to follow, and the development 

language was switched to Objective-C, an OOP language. The objective of BLOCS/M 

was not to develop yet another general purpose simulation language for specific 

manufacturing systems, but rather to develop a framework for many diverse types of 

manufacturing. Coincidentally, the first systems they attempted to model were 

semiconductor fabrication systems, just as in this research. 

There were two significant goals of Glassey and Adiga's work. First, to provide 

the necessary tools to make it easy to assemble simulation models customized for 

individual research questions. This tool would provide the ability to represent a system in 

a desired amount of detail. Often in research, the most difficult task is to be able to ask 

the correct questions. Sometimes, these questions are simple, but very abstract. It was 

thought that this framework could provide the means to ask these simple, but abstract 

questions. 

The second goal was to make the classes in the framework easily modifiable and 

extensible. In this goal was the desire to make the framework a "starting point", where 

very detailed models could be developed by adding functionality to the existing classes 

by the use of inheritance. 

The authors state that they achieved both of these goals. However, with regard to 

the first goal of making it easy to assemble simulation models, they state that it is 
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necessary to become proficient in the Objective-C programming language before a model 

can be built using their framework. 

Another research project developed a similar framework for DES using the C++ 

OOP language (Eldredge et al. 1990). They found that the 00 approach was very 

compatible with simulation methodologies, and allows for a simulation model to be 

written with a focus on the description of the problem rather than algorithms for solving 

the problem. 

Yet another study (Beaumariage, 1990) developed a manufacturing simulation 

framework using the OOP language SMALLTALK. This was a very complete prototype 

environment that found the OOP approach to simulation modeling to be feasible and 

significantly beneficial. 

However, the use of object-oriented programming is not likely to gain widespread 

use for simulation unless the language used is widely available and is familiar to a large 

number of simulation developers. Consequently, it appears that simulation through C++ 

is more likely to be successful in this regard than are other alternatives such as SIMULA 

and SMALLTALK. Each of these suffers from limited availability and a more restricted 

user base. 

1.3.2 Simulation of Semiconductor Fabrication Systems 

Semiconductor fabrication is a very complex manufacturing environment (Hood, 

et al. 1989) After the blank silicon wafers have been manufactured, they undergo a 
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personalization process that transforms the wafer into usable integrated circuits. This 

process involves hundreds of processing steps at tens of tool groups performing intricate 

processes one or more times on the wafers in a predefined flow. Each workstation and 

individual tool has unique characteristics including process rates, batch sizes, process 

yields and reliability distributions. Each process step has unique characteristics such as 

tolerance in sub-micron units, critical defect density, uniformity, etc. Both product mix 

and customer demands drive setup and machine configuration to process different 

technologies on individual tools. 

These characteristics result in a complex manufacturing environment with a high 

degree of variability. Variability causes many problems in manufacturing in general, 

including higher rework, lower yields, larger queues, reduced throughputs and longer 

turnaround times. This variability impacts the semiconductor fabrication function by 

hindering wafer movement, processing and storage.(Miller, 1994) 

There are several characteristics that are common between many varied 

manufacturing environments, but are of particular importance in semiconductor 

fabrication systems. They are: 

1. Raw Processing Time (RPT) or intrinsic processing time. This would be 

the time it would take a single wafer to be completely processed if it didn't 

have to wait at any of the tools. This is a constant dependent upon the 

specific product type and processing characteristics. 

2.	 Product Turn Around Time (TAT) or cycle time. This is the actual time 

that elapses between when a wafer enters the system, until it has 
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completed processing. It will, of course, be longer than the RPT, as the 

wafer will be competing for finite resources within the system. One 

manufacturing objective would be to minimize TAT. 

3.	 Throughput. This is the number of wafers per time unit coming off the 

line. A manufacturing objective would be to maximize throughput. 

4. Work In Process (WIP) or Line Loading. This is the total number of 

wafers in the system at any given of time. A manufacturing objective 

would be to minimize WIP without affecting throughput. 

While the definitions of these characteristics are straight forward, their interaction 

is very complex. The objective is to maximize the throughput of wafers and minimize 

the wafer's TAT while minimizing WIP. However, in an environment as variable and 

complex as a semiconductor fabrication system, operating procedures become very, very 

important to optimizing the system's operation. So, other than trial and error, how would 

successful operating procedures be developed? 

Miller (1994) identifies several reasons why semiconductor fabrication systems 

are attractive candidates for simulation modeling. They are: 

1.	 State-of-the art fabricators cost hundreds of millions of dollars to build, 

equip and staff. Fabricators must maximize the use of resources to 

achieve competitive unit costs and profitable levels of output. 

2.	 Product TAT is a critical success factor in semiconductor manufacturing. 

TAT has a major impact on process control capabilities, yield rates, 

product contamination levels, and product costs. TAT is a key 
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measurement in virtually every semiconductor fabrication and must be 

managed successfully. 

3. Given the importance of the relationship between throughput, TAT and 

WIP, it is necessary to develop operating procedures that will optimize ) 

these key characteristics simultaneously, while meeting other performance 

targets, including cost objectives, inventory levels, delivery commitments, 

process yields, and labor efficiency. 

Since simulation provides an effective and powerful approach for capturing and 

analyzing complex manufacturing systems, semiconductor fabrication systems are an 

ideal candidate for simulation modeling. In fact, simulation may be the only practical 

technique available which is capable of evaluating different operating procedures for a 

specific semiconductor line (Miller, 1994). 

13.3 Java and the Internet 

Recently, the number of people accessing the Internet has grown exponentially. 

With this growth has come many new technological developments. First, of course, is the 

Web. Here, a Web browser, such as Netscape Navigator or Microsoft Internet Explorer is 

used to view documents posted on the Internet, written in the Hypertext Markup 

Language (HTML). These documents are more commonly known as "Web pages." The 

Web has proven to be an excellent media for the distribution of static textual and 
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graphical information to anyone in the world with a Web browser and a connection to the 

Internet. 

More recently, in the drive to make the Internet more useful, newer technologies 

have been developed. One of those technologies is the use of the Java language to create 

programs that execute both across the Internet and inside the environment of a Web 

browser. 

The hype surrounding the Java language gives the casual observer the impression 

that it is only suitable for writing small, graphical animation programs called "applets," 

that execute only within the environment of a Web browser. The explosion of such 

applets on the Web may support the notion that Java is not a serious language. In fact, 

Java is a powerful, well-designed OOP language that is an excellent platform for 

developing complex, object-oriented applications (Buss, 1996). 

It is important to understand that Java was not developed specifically for use on 

the Internet and Web. It is a fully functional, stand alone programming language, 

developed by Sun Microsystems (Semich 1996). What gives Java the ability to interact 

with a Web browser is what is called the Java Virtual Machine (VM). The VM is a Java 

interpreter built into the code of a Web browser. Therefore, any browser that is said to be 

"Java-compatible" (i.e. Netscape Navigator, Microsoft Internet Explorer), has the 

capability to execute Java programs. 

There are two revolutionary concepts that are associated with the Java VM. First, 

this makes Java a computer-platform independent language A software developer has to 

code a program only once. Then, all computers that can run a Java-enabled Web browser 
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(virtually all computers) can execute the Java program, without the need to recompile 

code for the specific hardware, as is the case with many programming languages (Deitz, 

1996). In other words, the same Java code can run on a PC, a Macintosh, a UNIX 

workstation or an IBM mainframe. 

Second, the distribution and configuration of Java programs that run inside of a 

Web browser is greatly simplified. To run an applet, a connection to the Web server with 

the Java program code must be made, then, automatically and on the fly, the program is 

downloaded into the computer's local memory, where it is available for execution. When 

a new version of the software is distributed, the installation and configuration of the 

program is transparent to the user. This virtually eliminates the maintenance function of 

software installation and de-installation, and makes the software instantly available to 

anyone, anywhere with an Internet connection. 

Because Java is such a new language, it needs maturing and the development of 

an infrastructure in the form of tools, frameworks, class libraries, and compilers. These 

are fast becoming available, and more robust and extensive support is on the way. One 

goal of this research will be to add functionality to the Java and simulation communities 

through the development of object classes and a simulation framework for use in 

simulating semiconductor fabrication systems. 
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1.3.4 Web-Based Simulation 

Web-based simulation is so new, that it is not yet an existing field in simulation, 

but rather an idea which represents an interest on the part of simulationists to exploit Web 

technology (Fishwick, 1996). The research that has been published on Web-based 

simulation are prototype frameworks that allow analysts to create models, then post the 

models on a Web servers that deliver the Java-based applet to a requesting browser. Two 

research papers on this topic were published in 1996. 

First, Miller, Nair, Mang and Zhao (1996) developed "JSIM" at the University of 

Georgia. This is an 00 software framework for creating Java simulation models using 

the process-based world view. They address the following seven key concepts in their 

work: 

Simulation using graph theory. The underlying concept in the design of the JSIM 

library is graph theory. This is the idea that simulation models can be represented as a 

graph of nodes connected by a single edge. They state the benefits are the use of proven 

algorithms to test for deadlock and suitability of design for the model, and it provides an 

easy method for reuse when the models can be thought of as subgraphs. 

Query Driven Simulation. This concept is based on the authors' previous work of 

storing simulation results in a database. This is done primarily because simulation results 

are generated at a large computational cost, and the results are worth saving. Then, when 

a user queries a simulation system based on QDS, the system first looks in the database 

for the results. If they exist, they are instantly reported. Otherwise, the model is 
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executed, and the results are returned. They state the benefits of this approach are 

reduced computational costs. 

The Graphical Designer. The graphical designer is used to graphically build 

models. This removes the modeler from having to write any Java code. The graphical 

designer uses the Abstract Windows Tookit (AWT). (The AWT is the standard Java 

package used to create graphical user interfaces. It is included as part of the basic Java 

language.) While they state this is a key component of the framework, they don't discuss 

its implementation or use it in the paper's example. A graphical modeling building 

interface is definitely a beneficial aspect of a modeling framework. However, in JSIM, it 

seems that the GUI severely limits the flexibility of the environment, and may not be 

worth the effort applied to get such basic functionality. They list the graphical designer 

as part of their continuing efforts. 

The JSIM structure. The JSIM class hierarchy is shown in Figure 1.1. They 

establish three Java packages. (A Java package is a method of organizing similar classes 

into a group.) First, the queue package is used for entity storage, the future event list, and 

simulation clock management. Second, the statistic package is used for the collection of 

statistics on the model. Third, the process package defines the possible functions that 

entities in the system can undergo. This is the method that implements the graph theory 

of simulation presented above. 
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Figure 1.1: JSIM Class Hierarchy Diagram 

Real-time and Virtual-time Simulations. One capability of the JSIM environment 

is the ability to run the model in a real-time mode, where graphical representations of 

entities move on the screen from node to node. They also describe the virtual-time mode, 

where the animation is turned off, and the simulation model is executed much faster. 

This allows the model builder to visually validate the model in real-time, then turn 

animation off for the lengthy, computation-intensive simulation runs. 

Simulation of a Bank. As an example of the JSIM framework, the authors 

describe the necessary coding to build a simulation model of a bank. They don't use the 

graphical designer, but rather write the Java code using the JSIM framework. 

Conclusions and Future Work. They believe that Web-based simulation will 

become an important technology in the future. The areas they list for future work are: 

the graphical designer, batching and unbatching of entities, and more complex routing of 

entities. 

While JSIM helps the simulation and Java communities by providing another 

support tool, the following concepts, in the author's opinion, may not be widely 

applicable: 
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1.	 Simulation as an application of graph theory. While graph theory is an 

exceptional conceptual approach for some problems, (especially for 

computer scientists) it may limit the type of systems that can be modeled. 

For instance, in semiconductor fabrication systems, the muting of entities 

is a very complex function. Wafers have high process re-entrant 

behaviors, different routings dependent upon product type, and rework and 

defect characteristics. Graph theory may not be the correct approach for 

many simulation applications. 

2.	 Simulation using the Query Driven Simulation (QDS) approach. No two 

systems are exactly identical, so no two simulation models of the 

respective systems should, theoretically, be identical. Therefore, it is not 

clear why the storing of simulation runs into a sophisticated database 

would aid the simulation analyst. This approach seems to add complexity 

to an area where considerable efforts to reduce complexity are constantly 

employed. 

In addition to not embracing the above two concepts, this research will attempt to 

exploit the network-awareness of the Java language. Also, no graphical environment will 

be developed, as it may limit the functionality of the framework. 

Another research effort in the area of simulation frameworks using Java is by 

Buss and Stork (1996). Their framework is called "Simkit," and is a very generalized 

environment that is intended to be extended for particular simulation applications. They 

state their goal was to provide simulation tools for the analyst and researcher that: 
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are accessible to analysts without professional programming skills. 

are reliable enough for moderately sized projects. 

are capable enough for real problems. 

are conducive to rapid development of exploratory models. 

are low cost in money, programmer time and resources. 

promote code sharing and reuse. 

promote model sharing and reuse. 

allow for exploration of advanced simulation concepts, such as distributed 

simulation and remote entities. 

This research implemented the OOP concept of software reuse to the extreme. 

Several public domain Java packages were used as part of the Simkit package structure. 

(See Figure 1.2) 

Collections SimIdt 92d 
(pubic domain) (public domain) 

ast 
(Java UMW) 

Figure 1.2: The Simkit Package Structure 

Simkit consists of three Java packages. Utilities such as data structures, random 

variant generation, and statistics collection are implemented in the util package. Event-

driven simulation is facilitated by the javasim package. Graphical User Interface 
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elements are implemented using the awt package, which is part of the basic Java 

language, available from Sun Microsystems. Additionally, two independently developed, 

public domain Java packages were utilized in the Simkit structure. The collections 

package is used for most data structures used in the Simkit framework. Charting 

capabilities are provided by the g2d (Graphics, 2-dimensional) package, and facilitate 

statistics display. 

As an example of Simkit's implementation, an M/M/n queue model is presented 

in the paper. 

The presentation of the Simkit environment is very limited and merely outlines 

the framework's package structure, without giving much detail on the implementation or 

class hierarchy. Therefore, it is difficult to evaluate the effectiveness of Simkit as a 

framework. 

The concept of Web-based simulation presents at least two new benefits for 

creation, distribution and execution of simulation models (Buss, 1996): 

1.	 Simulation models can be created and posted to a Web server so any user with 

a Java-enabled browser can execute the model. Since Navigator and Internet 

Explorer are the de facto standard for Web browsers, and are Java-enabled, the 

models will be widely available for use. 

2. With the model instantly accessible anywhere in the world, a valid model may 

be of use to more users than in the past. 
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While the two benefits presented above are considerable, the purpose of this 

research is to explore the feasibility of developing a standard for network-centric 

simulation modeling using the Internet-based technologies introduced in this chapter. 

1.3.5 Network-Centric Computing 

The most common computer applications today are founded on the desktop-

centric model of computing. In other words, the programs are developed with a specific 

computer architecture in mind (i.e. Windows on a PC, Macintosh or a UNIX-based 

workstation). In most cases, the software must be developed specifically for the intended 

platform. Often, "ports" from one architecture to another are cumbersome. 

The Web and the Internet provide the basis for a technology that is changing the 

desktop-centric model. What is emerging is a network - centric model where platform 

independent standards like HTML and Java allow applications to be written once using 

these standards, and made available to any Web browser, without worrying about 

operating systems or platforms. At the same time, the users accessing these applications 

need not worry about the type of server supplying the applications or even what language 

the software is written in. This is possible, because they know that it must follow the 

standards, or be deemed useless by the rest of the Internet community (Flynn and Clarke 

1996). 
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1.3.6 Network-Centric Simulation Modeling 

Imagine you are tasked with upgrading your semiconductor manufacturing 

system. One of the decisions you are struggling with is the decision to buy a new quartz 

deposit machine or keep the one you currently own. The vendor of the new machine 

promises that the new machine will significantly improve the performance of your line, 

but how can you verify his claim? 

What if you had developed a simulation model of your existing fab? This model 

was developed using a standard 00 modeling framework, and each of the objects in the 

model representing the machines were developed not by your company, but rather by the 

machine vendors themselves. So you, as the simulation analyst, modify your model with 

the intention of testing the new machine's performance. 

You edit your model and change the URL of the quartz deposit machine to point 

to the vendor's Web server, which contains the Java class that represents the quartz 

deposit machine (i.e. http: / /xyz. company .com /machines/quartzdep.class). You now run 

the model, utilizing the vendor-supplied simulation object, and the simulation results 

infer that, yes, the new machine does improve the performance of the fab. You can now 

make the decision to purchase the new machine with more confidence than merely the 

vendor's sales pitch. 

This type of modeling could be possible for three reasons. First, because the 

simulation model was developed following an 00 simulation standard. Second, the 

vendor has developed the machine simulation class according to the same standard. And 
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third, the model has the ability to pull its components from many different sources across 

the Internet. This is an example of what could be referred to as "network-centric 

simulation modeling." 

1.3.7 Conclusion 

This chapter has introduced and reviewed current and past research in several 

areas of simulation modeling. Specifically, six major concepts have been addressed: 

1. Object-Oriented Programming 

2. Object-Oriented Discrete-Event Simulation 

3. Simulation Frameworks 

4. Semiconductor Fabrication Simulation 

5. Internet-Based Technologies 

6. Network-Centric Simulation Modeling 

All six of these concepts are applied in this research to develop a discrete-event 

framework for network-centric simulation modeling. In the next section, the goals, 

objectives and assumptions of this research are presented. 

1.4 Research Goals, Objectives and Assumptions 

The primary goals of this research are to: 

1. Develop a prototype OOP framework for the implementation of network-

centric simulation modeling, using a discrete-event simulation approach. 
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2.	 Propose a standard for OOP network-centric simulation modeling. 

3.	 Utilize the framework to develop a network-centric simulation model of a 

typical semiconductor fabrication system. 

4. Identify the direction of future research. 

To achieve these goals, the following objectives are proposed: 

1.	 Determine the simulation framework specification. 

2. Determine the simulation model requirements. Because of the unique 

characteristics of semiconductor fabrication systems, the model structure 

and requirements must be defined. This includes determination of the 

model domain, modeling detail, and characteristics of the system. 

3.	 Object class implementation. Once the general structures of the model 

requirements are determined, the definition and creation of the necessary 

classes can be undertaken. This allows objects such as machine types, 

transportation methods and statistics collection to be determined and 

implemented. 

4. Development of a standard for network-centric simulation modeling. A 

detailed specification for the network-centric simulation modeling 

approach is created. This serves as a standard for simulation analysts to 

create network-centric simulation objects to be used in network-based 

simulations. 

5. Model development. Once the components of the simulation model are in 

place, then they can be assembled into a functional simulation model. 
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This involves interfacing the simulation objects into the framework, with 

the result being a running model. 

6. Identification of future research opportunities. 

The principal assumption made in this research is that through the development of 

this single, specialized model and its innovative method of network-centric modeling, 

that the proposed concepts will lay the groundwork for a more generally applied 

simulation modeling methodology, and a robust standardization of the approach. 
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CHAPTER 2. RESEARCH PLAN AND PROCEDURES 

To achieve the goals and objectives presented in the previous chapter, the research 

was performed in the four chronologically ordered phases: Environment Specification, 

Environment Implementation, Standard Development and Environment Application. The 

specific details of these four phases are presented in the next section. 

2.1 Phase 1 - Environment Specification 

Specification of a Network-Centric Object-Oriented Simulation 

Environment. In this phase, the conceptual and functional specification for a network-

centric simulation environment was developed. First, the functionality needed to 

incorporate network-based simulation objects at runtime of the simulation model was 

identified. Second, the appropriate environment characteristics needed to accurately 

model a semiconductor fabrication system was documented. Finally, the interface for 

network-based simulation objects was identified. This leads to the development of the 

standard for network-centric simulation. The deliverable of this phase was a documented 

understanding of the functionality of the environment. 

2.2 Phase 2 - Environment Implementation 

Implementation of a Network-Centric Object-Oriented Simulation 

Environment. In this phase, the specification presented in the previous section was 
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implemented using the Java object-oriented programming language. At the completion 

of this phase, there was a functional software program capable of running a 

semiconductor fabrication system model using network-based simulation objects. 

2.3 Phase 3 - Standard Development 

Development of a Standard for Network-Centric Simulation. In this phase, 

the interface between the remote, network-based simulation objects and the simulation 

environment was documented. One of the design goals of the environment was to make 

the software easy to use. In order to have easy to use software, it is necessary to have 

complete and detailed documentation of the software. This documentation was created 

with a discrete-event, Java savvy analyst as the intended audience. However, no 

knowledge or prior experience with the Network-Centric Simulation Object System 

(NCSOS) simulation environment was assumed. The end result of this phase was a 

documented standard that allows an independent simulation analyst to implement an 

Internet-based simulation object. 

2.4 Phase 4 - Application to a Target System 

Application of the NCSOS Environment to a Target System. In this phase, the 

environment was used to create a simulation model of a target semiconductor fabrication 

system. This model was created by using a combination of both local and network-based 

simulation objects. Multiple network-based objects was created with the intent of 
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evaluating the difference in their behavior within the simulated system. The end result of 

this phase was a simulation model capable of executing simulation runs utilizing 

network-based simulation objects. 
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CHAPTER 3. ENVIRONMENT SPECIFICATION 

Software development can be broadly categorized into two distinct functions; 

specification and implementation. This chapter presents the detailed specification for a 

network-centric, object-oriented, discrete-event simulation environment that is later used 

to model a semiconductor fabrication system. There are two unique concepts in this 

research that differ from most standard simulation environment research. First, this 

environment is intended to be "network-aware." This means that the simulation model 

does not consist of only locally stored software, but rather objects that may physically 

exist on a variety of computers all over the world. Second, this environment is not 

intended to be a "general-purpose" simulation environment, but rather a domain-specific 

environment, used to specifically model semiconductor fabrication systems. The 

reasoning behind this concept is that if a domain-specific environment can be 

successfully developed, then the knowledge gained in this research can be applied to later 

development of a general-purpose environment. This chapter presents the detailed 

specification of four specific areas in the following sections. Finally, the design goals of 

the simulation environment are identified. 

3.1 Discrete-Event Simulation Environment Specification 

Simulation Engine. The specification for a discrete-event simulation 

environment is relatively straightforward. If the state of a system under investigation 
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changes only upon the occurrence of one or more specific events, then the system can be 

said to follow the discrete-event paradigm. Therefore, a simulation model of such a 

system must have the ability to process and schedule events that change the system state. 

This is the basis for discrete-event simulation software. 

The software developed in this research has at its center, a "discrete-event 

engine." Events that occur are scheduled in a Future Events List (FEL). The FEL 

chronologically orders the events according to their activation time. The FEL needs to be 

a robust structure that prevents logic errors such as out-of-order events, or the scheduling 

of events before the current simulation time. For example, it is not valid to schedule an 

event in the past. 

The simulation is executed by processing these discrete-events, one by one, until 

there are no more events in the FEL, or the simulation run length is reached. Because 

each event is associated with an event time, the current simulation time is equal to the 

time stamp of each event. Of course, many events might occur at the same instance 

relative to the current simulation time, however, this is of no consequence. The state of 

the simulation model is changed at each event, and the current simulation time is 

increased according to the time stamp of each event. 

The processing of each event is handled independently of the "simulation engine." 

The discrete-event software doesn't "care" what the event is, it just knows to trigger the 

event on the appropriate receiver at the appropriate simulated time. 
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Entity Representation. Traditionally, entities are created, flow through a 

simulated system, are queried for statistical properties, and are terminated or exit the 

system. This simulation environment is no different. 

Physical Object Representation. Simulation software needs to have the 

functionality to represent physical objects such as machines, workcenters, transportation 

equipment, workers, etc. Since this environment generally focuses on manufacturing 

systems, the major physical representation is workstations. Entities flow from 

workstation to workstation. At each workstation, the entities consume resources and are 

manipulated by the processes at the workstation. This follows traditional simulation 

software design. 

Statistics Collection. One of the main objectives of simulation modeling is to 

measure the performance of the simulated system. Therefore, the environment must 

provide functionality to collect and display statistics of interest. This simulation 

environment provides for the collection of several "types" of statistics. 

First, the system must have the ability to collect and report entity-based statistics. 

These measures are specific to the individual entities, such as time in system, etc. 

Second, the system must have the ability to collect and report system statistics. 

These measures are related to the overall performance of the system, instead of individual 

entities. These statistics collected for the system include measures such as work in 

process, cycle time, and throughput. 

Since validation of a specific model is not the objective of this research, only a 

basic statistics collection functionality is created. Then, when further development of the 
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environment is undertaken, a more complete and robust statistic functionality will be 

created. 

User Interface. The user interface for this environment is simple, yet complete. 

Basic functionality requires a way to start, stop, pause, resume, reset and quit the 

execution of a model. Additionally, a trace display must be created to help in the 

verification and validation of a model. Other GUI objects are created to provide for the 

network-related functionality in the form of entry fields, the ability to disable the trace, 

and the ability to set the delay between each event. The current simulation time and the 

simulation run length are displayed in the user interface. 

3.2 Network-Centric Simulation Specification 

The idea behind network-centric simulation is the concept that simulation models 

can be built by assembling independent simulation components into a cohesive model 

that can accurately represent a physical system. 

In order to test this innovative modeling methodology, the simulation 

environment must have the functionality to import a software object that represents a 

physical workstation. The name and behavior of this workstation object is not be known 

until model runtime, when the name and URL of the workstation object are entered. The 

simulation environment will attempt to connect, over the Internet, to the workstation 

object definition. If this can successfully be accomplished, the model definition is 
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complete, and the simulation model can execute. If the location of the workstation object 

is invalid, or the object itself is invalid, the run terminates with an error. 

This modeling methodology allows for a truly independent, object-oriented 

approach, where the software representation of a workstation is abstractly similar to the 

physical workstation. In other words, a simulation model is built in a similar fashion to 

the physical system; the objects are selected from a list of possible candidates, and 

logically connected to form a system. 

3.3 Semiconductor Wafer Fabrication System Model Specification 

The theoretical semiconductor fabrication system modeled in this research is 

graphically represented in Figure 3.1. It consists of seven workstations, each performing 

a different process to the wafer as it passes from workstation to workstation. 

I 
Apply Expose Develop 

-41222111=0" 
Arrival 

Location Test Exit 
Bake Deposit Etch 

FIGURE 3.1: Target Semiconductor Fabrication System 
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The main characteristic that semiconductor fabrication systems display that is 

different from many other manufacturing systems is the complex routing that entities 

follow as they flow through the system. The number of sequence steps can easily reach 

into the hundreds, and the sequence itself can vary greatly from one wafer type to the 

next. Typically, there is a high product mix of wafers that are processed in a particular 

system. While the physical wafers appear to be of similar dimension, their routing 

through the system can vary greatly. It is this complex, re-entrant route through the 

system that has traditionally been difficult to model. 

This simulation environment attempts to solve this problem by including routing 

information into the entity itself. This appears to be an intuitive location to store such 

entity-specific information. Each entity is of a certain type, and it has the ability to keep 

track of its state in the processing sequence. When a step in the process has been 

completed, the environment merely "asks" the entity which workstation is next in its 

processing sequence (Beaumariage, 1990). This eliminates the need to create and 

maintain separate routing and status information about each entity as it processes through 

the system. 

Additionally, entities store and update entity-specific statistics. Again, this makes 

intuitive sense, and eliminates the need to create additional structures to store, track and 

report statistics for each entity. 
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3.4 Network-Centric Simulation Standard Specification 

If the functionality of the network-centric simulation environment is to be useful 

to anyone other than the author, there must be documentation, or a standard, which allows 

other simulation analysts to independently create objects that represent workstations and 

function within the environment. 

Specifically, this standard describes the interface "rules" that must be followed if 

an independently created object is going to interact with the base simulation environment. 

It describes the basic, default behavior of a workstation, the legal communication 

protocol between the workstation and the simulation engine, and such details as how to 

report statistics. Additionally, there are some strict limitations of the functionality of a 

workstation object during this initial study of the feasibility of network-centric 

simulation. These limitations are included in the documentation of the standard. 

3.5 Design Goals 

The following five design goals were pursued throughout the implementation of 

the specifications discussed above. 

1.	 Ease of use. An intentional effort was extended to make the entire system 

as easy to use as possible. A simulation environment is of little use if the 

author is the only person with the understanding of the software to use it in 

practice. 



52 

2.	 Create simple objects. Each object definition in the framework is as 

simple as possible and implements only a small number of significant 

behaviors. There was an effort to use more simple objects instead of 

fewer, more complex objects. 

3.	 Incorporate direct abstraction into objects. Object-oriented programming 

has excellent data abstraction capabilities. Whenever possible, abstraction 

into the simulation objects that represent physical objects was emphasized. 

4.	 Create a framework that is easy to modify and extend. Object-oriented 

programming promotes these concepts. Whenever possible, code was 

created that is extendable and easily modified. 

5.	 Create independent objects. Because this is a network-centric 

environment, it was of prime importance that the software objects that 

represent physical objects be developed with independence in mind. 

These remote objects will be created, tested and stored in a remote, 

isolated location, so their design should allow for data and behavioral 

encapsulation. 
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CHAPTER 4. ENVIRONMENT IMPLEMENTATION 

The second distinct function of software development, after specification, is the 

implementation of the specification. In this chapter, details about the implementation of 

the environment are presented. First, an overall description of the structures and objects 

that were used to implement the environment are presented. This describes the general 

object-oriented structure and major components of the environment. Second, the 

implementation of the semiconductor fabrication model is presented. This section 

emphasizes the use of the environment's classes to model the specific system that was 

previously described. 

Java was the programming language used for implementation of this environment. 

It was selected for its ease of use and its network programming capabilities. Java is 

quickly gaining worldwide popularity and new Java technologies and functionalities 

surface almost weekly. The Java-specific syntax is not emphasized in this chapter, but 

can be located in Appendix A. 

In this section, the specific names of classes that have been implemented into the 

environment have a bold and italic typeface. For example, SimEvent is the actual name 

of a class that was implemented in the environment. Also, each class definition in the 

environment has an associated CRC (Component, Responsibility, Collaborators) card. 

The CRC card is common practice among software developers, as it graphically 

represents and documents the definition, behavior, and communication protocols of each 

software component (Budd, 1996). 
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4.1 General Structure 

4.1.1 The Environment Class Structure 

The environment execution class diagram is shown in Figure 4.1. These are the 

significant classes that make up the NCSOS environment. In the following sections, this 

structure is broken down into the logical sub-structures that present a description of the 

classes in detail. 

SimApplication 
(User Interface) 

\ 
SimMast.r RemoteWorkstationEntity SimEvent Creator(Simulation Manger) (A Java Interface) 

, 
SiniModel 

EntityStatisticalData SysteniStatistics (Simulation Model RemoteLoador ClassSaver  
Definition)  

Workstation  
Local Workstation  

ArrivalLocation DopartureLocation 
(Start of Model) (End of Model) 

Figure 4.1: The NCSOS Execution Diagram 
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4.1.2 The Discrete-Event Simulation Substructure 

The discrete-event simulation class hierarchy of the environment is given in 

Figure 4.2. This substructure implements the discrete-event simulation functionality of 

the entire environment. Each class definition is a subclass of the Java Object class. (All 

classes in Java are a subclass of Object.) SimMaster is the manager of the simulation, 

and coordinates and controls the execution of the discrete events. SimEvent represents 

the discrete events themselves. Entity implements the concept of physical parts moving 

through the system by visiting locations such as workstations, inspection areas, etc. 

EntityStatisticalData is a logical collection of statistical data and behaviors that is related 

to a specific entity. Finally, SystemStatistics is the object that maintains and manages 

statistics related to the entire system. 

IIobject 

Figure 4.2: The Discrete-Event Simulation Class Hierarchy 

The SimMaster class is at the heart of the simulation engine. It is responsible for 

management of the entire simulation run. It manages the FEL by scheduling and 

processing events, keeps the current simulation time, and coordinates most of the 
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communication between objects that are not directly linked. Its CRC card is presented in 

Figure 4.3. 

Sim Master - Manager of Simulation 

Responsibilities Collaborators 

'Initialize the Sim Model 
'Start the simulation 
'Keep simulation time 
'Create/Initialize System Statistics 
'Schedule Sim Events into the FEL 
'Remove Sim Events from the FEL and 

send the Sim Events to the workstations 
'Coordinate communication between the 

Sim Model and the User Interface 

Sim Application 
Sim Model 
'Workstations 
Sim Events 
'Entities 

Figure 4.3: The Sint Master CRC Card. 

Sim Event is the environment's representation of an event that changes the state of 

the simulated system. Each instance of SimEvent has four instance variables that fully 

define the event's intended purpose. Each SimEvent has a time stamp, an entity, a 

receiver and a name. The time stamp is the simulation time that the event will occur. 

The entity variable holds the instance of Entity that is related to this event. (The entity is 

an optional variable for the SimEvent, as some events are not directly related to an 

instance of Entity.) The receiver in this environment is the Workstation that will actually 
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process the event. Finally, the name variable holds the type of event that will be 

processed at the receiver. This is a dynamically, late bound variable that is only 

determined during the execution of the model. The CRC card for SimEvent is shown in 

Figure 4.4. 

SimEvent - Simulation Discrete Event 

Responsibilities Collaborators 

'Represent state-altering 'Entities 
events in the simulation environment 'Workstations 

'Maintain the event's time, entity, S imMaster 
workstation and name 

Figure 4.4: The SimEvent CRC Card. 

Entity is the environment's representation of objects that flow through the system. 

Because of the characteristics of the intended use of the environment, the entities are 

moderately complex objects, with many variables. Each entity has a unique identification 

number, a representation of its route through the system, its processing time at each step, 

and contains an object that holds statistical data (see EntityStatisticalData class). The 
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entity also keeps track of its current step in the routing sequence. The Entity CRC card is 

given in Figure 4.5. 

Entity - Simulation Entity 

Responsibilities Collaborators 

"Maintain entity state SimMaster 
'Maintain entity id SimEvent 
'Maintain entity routing 'Workstation 
'Maintain entity processing times EntityStatistical-
Create EntitiyStatisticalData object Data 

Figure 4.5: The Entity CRC Card. 

The EntityStatisticalData class contains all of the statistical data and methods to 

efficiently manage an entity's statistics. This data and behavior could have easily been 

included with the Entity class. However, good object-oriented design encourages simple 

and concise object classes. This led to the separation of statistical data from the entity 

itself. The CRC card for the EntityStatisticalData is shown in Figure 4.6. 
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EntityStatisticalData - Entity-related statistical data 

Responsibilities Collaborators 
Maintain entity-related statistical Entity 
data 

Figure 4.6: The EntityStatisticalData CRC Card. 

System Statistics is the class that collects, maintains and reports the measures of 

performance that are defined. It is intended to be the manager of statistical information 

for the system. Its CRC card is shown in Figure 4.7. 



60 

System Statistics - Manager of system-related simulation statistics 

Responsibilities Collaborators 

Maintain system statistics 
Update system statistics 

SimMaster 
Workstations 

Report system statistics 

Figure 4.7: The SystemStatistics CRC Card. 

4.13 The Simulation Model Substructure 

The Simulation Model substructure is shown in Figure 4.8. The SimModel is the 

class where the layout of the model is defined. This layout would include instances of 

locally defined workstations that are known before the model is compiled. The 

Workstation class defines the default behavior common to all workstations. The 

ArrivalLocation and DepartureLocation are essentially the entity "source" and "sink" 

respectively. It can be seen that these are specialized workstations, and therefore are 

subclasses of the Workstation class. The Remote Workstation interface provides the 

functionality to dynamically create and include workstations into the simulation model 

that are not known at compile time, but are entered at runtime of the model. Each of 

these classes and CRC cards are presented in more detail below. 
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Object 

Sim Model Wodcstation Remote Workstation 
(Simulatica Model Definition) (Local Workstations) (Interface) 

Arrival Locaton Departure Location 
(Start of Model) (End of Model) 

Figure 4.8: The Simulation Model Substructure Class Hierarchy 

The SimModel class defines the configuration of the simulation model layout. 

This is where the workstations would be incorporated into the simulation model by 

defining instance variables. The modeler would also create place holder variables to 

allow a Remote Workstation to be created at model runtime. During execution of the 

model, the network substructure would be used to locate and create the 

Remote Workstation objects. The CRC card for the SimModel can be seen in Figure 4.9. 
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Sim Model - Definition of the simulation model 

Responsibilities Collaborators 
Allow the models to define the system SimMaster 
Initiate the RemoteWorkstation loading Workstations 
sequence Entities 

Figure 4.9: The SintModel CRC Card. 

The Workstation class is a very critical component in the environment. It defines 

the default behavior for all workstations. Whenever a new type of workstation is defined, 

it will be a subclass of the parent Workstation class. This is true for both locally and 

remotely defined workstation objects. Much of the communication that each specialized 

workstation has with the environment is implemented through the Workstation class. For 

instance, the parent Workstation class always handles all of the scheduling of SimEvents 

by individual workstations. The CRC card for the Workstation class is presented in 

Figure 4.10. 
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Workstation - Default workstation behavior and definition 

Responsibilities Collaborators 

ShnMasterProvide a default behavior 
SimModelfor all workstation objects  
Entities  
Events  

Figure 4.10. The Workstation CRC Card. 

The Remote Workstation is not a class definition, but an interface. In Java, an 

interface allows for an object to promise that it will implement certain behaviors, without 

exposing exactly how this behavior will be implemented. This functionality allows for a 

remote object to be dynamically imported into the model at runtime. Therefore, each 

remote workstation object must implement the Remote Workstation interface. The CRC 

card for the RemoteWorkstation interface is shown in Figure 4.11. 
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RemoteWorkstation Interface - Behavior of remote workstations 

Responsibilities Collaborators 
Defme the guaranteed behavior Any Remote-
of a Remote Workstation object Workstation 

SimModel 
ClassLoader 

Figure 4.11: The Remote Workstation Interface CRC Card. 

4.1.4 The Network Substructure 

The network substructure is responsible for the creation and initialization of the 

remote workstation object at runtime of the model. These events only take place at the 

very beginning of a simulation run. In essence, the simulation model is incomplete until 

the network substructure can find the remote object on the Internet, download its 

definition, and create an instance of the object. ClassSaver is the class that is responsible 

for locating and downloading the Remote Workstation class definition. Then, the 

RemoteLoader will create an instance of this object, and insert it into the simulation 

model. At this point, the simulation model is complete, and execution of the simulation 

run can begin. The network substructure can be seen in Figure 4.12. 
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Object 

1 

ClassSaver Remote Loader 

Figure 4.12: The Network Substructure Class Hierarchy. 

The Class Saver has the responsibility of locating and downloading the remote 

workstation definition from the Internet. This is a relatively simple procedure, and causes 

the simulation run to abort if the user-defined object can not be located and downloaded. 

The CRC card for the ClassSaver is shown in Figure 4.13. 
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Class Saver - Download the RemoteWorkstation object 

Responsibilities	 Collaborators 
SimModelLocate the RemoteWorkstation 
SimMasterobject on the Internet 
Any Remote-'Download the Remote Workstation 

Workstationobject from the Internet 
objectSave the RemoteWorkstation object 

to the local file system 

Figure 4.13: The Class Saver CRC Card. 

The RemoteClassLoader has the responsibility of creating and initializing an 

instance of a remote workstation. The CRC card for the RemoteClassLoader is seen in 

Figure 4.14. 
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RemoteClassLoader - Creates an instance of a RemoteWorkstation 

Responsibilities Collaborators 
'Creates and initializes an instance SimModel 
of a RemoteWorkstation Any Remote-

Workstation 

Figure 4.14: The RemoteClassLoader CRC Card. 

4.1.5 The User Interface Substructure 

The SimApplication class is the sole user interface definition. It defines how the 

user interface appears, and how it responds to input from the user. It also handles all of 

the output from the simulation model to the screen. Most of its interaction with the 

simulation environment is accomplished through the SimMaster class. The CRC card for 

the SimApplication is found in Figure 4.15. 
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SimApplication - The Graphical User Interface 

Responsibilities Collaborators 
'Initialize the SimMaster The User 
'Handle the user inputs "SimMaster 
'Display outputs from the simulation 

Figure 4.15: The SimApplication CRC Card. 

4.2 Model Implementation 

The Model implementation is intentionally very straightforward. There are five 

phases to the implementation of a semiconductor fabrication system model within this 

simulation environment. 

4.2.1 Phase 1- Define Behavior of All Local Workstations 

A graphical representation of this system can is found in Figure 3.1. The first 

phase in the implementation of the semiconductor fabrication system model was to 

identify and define the structure and behavior of each specific workstation, except for the 
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"Expose" workstation (see section 4.2.4 below). A new class definition was created for 

each of the following six: Apply, Develop, Bake, Deposit, Etch and Test. The Java class 

definition files are located in Appendix B. 

In each of these class definitions, the class Workstation was subclassed to get the 

common behavior of all workstations in the environment. Then, the powerful abstraction 

capabilities of object-oriented programming were used to define the unique behavior of 

the workstations. 

4.2.2 Phase 2 - Define Model Layout 

In the second phase, the layout of the model was defined in the SimModel class 

definition file. An instance variable was created for each of the six specific workstation 

objects defined in phase 1. Also, a variable type of Remote Workstation was created to 

hold the instance of Expose workstation that will not be known until it is imported into 

the model at runtime. This ability to create a variable with an unknown type is one of the 

innovative characteristics of this environment, and a very powerful tool in object-oriented 

programming When the model is initiated at runtime, an instance of each of the local 

workstations will be created and loaded into their corresponding instance variable in the 

SimModel object. Additionally, the network substructure of the environment will locate 

the Expose Remote Workstation on the Internet, create an instance and load it into the 

SimModel's instance variable of the Remote Workstation type. This will complete the 

model, and it will be ready to execute the run. 
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4.2.3 Phase 3 - Define Behavior of Entities 

The third phase of model implementation was the definition of the structure and 

behavior of the entities that represent wafers passing through a fabrication system. The 

class definition file of the Entity class can be found in Appendix A. As defined in the 

model specification in chapter 3, the wafer entities needed to define and maintain a 

significant amount of data and behavior. Therefore, the entity was defined with a 

sequence of workstations it must visit, with the corresponding processing time at each of 

these sequence steps. The entity had to also maintain its current stage in the processing 

sequence, so that when processing was complete at a specific workstation, the entity 

could route itself to the next workstation in its processing sequence. 

Additionally, statistics collection of entity-related data was incorporated into the 

class EntityStadslicalData, which was defined to collect appropriate measures of 

performance for wafers in this system. 

After phase 3 is complete, the model is completely defined and ready to execute, 

except for the behavior of the unknown Expose workstation. This final component of the 

model will not be known until the simulation application is started, and the remote 

workstation object is identified in the user interface. 

4.2.4 Phase 4 - Define Remote Expose Workstation Behavior 

The Expose workstation was not implemented as a local workstation, but rather an 

Internet-based Remote Workstation. Because this function was intended to be 

implemented by an independent simulation analyst, a specific document was created for 
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just this purpose. Because of the document's length, it has been included as a separate 

chapter (see chapter 5). 

4.2.5 Phase 5 - Identify URI, of Remote Workstation 

The final phase of model implementation could not be completed until runtime of 

the model. Prior to this phase, an independent analyst must have implemented the 

creation of a remote workstation object. With the assumption that a valid remote 

workstation object existed, the URL and name of the remote workstation object was 

entered into the user interface. At this point, the model was now completely defined, 

including an instance of the previously unknown remote workstation object. The 

simulation model was now ready to run. 
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CHAPTER 5. NCSOS STANDARD 

5.1 Introduction 

This chapter includes the documented standard for network-centric simulation 

using the NCSOS environment. The objective of the document is to allow simulation 

analysts to independently create remote workstation objects in an isolated environment. 

The premise of the document is that if the analyst will adhere to the standard, then remote 

workstation objects will seamlessly interact with the Simulation Module, allowing a 

model to execute. The document was originally created in HTML, and posted on a Web 

server, allowing for easy and rapid distribution to simulation analysts. The following 

section presents the standard, formatted for use in this context. 

5.2 Network-Centric Simulation using the NCSOS Environment 

This document introduces the NCSOS simulation environment, and explains how 

to independently create objects that will interact with the Simulation Module when a 

model is executed. 

5.2.1 Introduction to the NCSOS Environment 

The NCSOS is a prototype discrete-event simulation environment that will allow 

a simulation modeler to build simulation models using a combination of local and remote 
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Internet-aware software. It was written in the Java object-oriented programming 

language, using Sun Microsystems's JDK, version 1.1. 

The "Simulation Module" (see Figure 5.1) is used to run a simulation model. The 

modeler will fully define a simulation model, except for one or more workstations. Then, 

at runtime of the model, the names and URL's of the missing workstation objects will be 

entered. The workstation objects will then be loaded over the Internet and will interact 

with the simulation environment as if the workstation objects were part of the original 

environment definition. One design emphasis for this environment was the 

standardization of the interface between the remote object and the Simulation Module. 
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NCSOS Siatdation Module 

"Expose" Workstatiok Object lExposeWorkstation  

L.catiea (URL); ftp://istesupport.le.orst.edu/WCSOS/  

Current Statistics:  

2Q WO' (Units) Run Length (Hours): 100 

00 Cycle Time (Hours) 

0.0 Throughput (11altsfflour) 

r Trace Off Eveat Delay (wag) 500 Correat Si antlatiOR Time: 0.1 

Successfully Loaded: ExposeWorkstation  
Frott:ftp://imesupport.ie.orst.edu/NCSOS/  
Push the 7Ptesuite" Button to continue.  

Starting Sisulation:  
0.0 Entity: 1 arrive on Arrival Location  
0.0 Entity: 1 depart on Arrival Location  
0.0 Entity: 1 arrive on Apply Workstation  
0.0 load on Apply Workstation  
0.1 Entity: 2 arrive on Arrival Location  
0.1 Entity: 2 depart on Arrival Location  
0.1 Entity: 2 arrive on Apply Workstation  

Start Resume Reset I QuitPlus° 

Figure 5.1: Simulation Module User Interface 

A simulation analyst (different from the modeler) creates and tests simulation 

objects in an isolated environment. The analyst will define the name and behavior of a 

workstation simulation object according to the characteristics of the workstation that is 

being modeled. Then, this object can be posted on the Internet, and interact with the 

Simulation Module during a simulation run. 

This document is intended for the simulation analyst that will independently 

create a remote workstation object who will interact with the "Simulation Module." It 

describes how the environment is structured, and the interface to the simulation 

ftp://istesupport.le.orst.edu/WCSOS
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environment. In order to use this document, the independent simulation analyst will need 

to: 

1. Read the rest of this document 

2. Download and install the JDK, version 1.1 (or later) from Sun 

Microsystems. 

3. Download and install the NCSOS software. 

5.2.2 Potential Usefulness 

In a fully developed environment, an analyst could build a simulation model that 

consists of a base simulation framework and a collection of network-aware simulation 

objects that resemble such physical objects as workstations, entities, transportation 

equipment, warehouses and inspection stations. The modeler would be able to "assemble" 

the model by selecting a combination of pre-defined simulation objects that each simulate 

the behavior of the actual equipment they represent. 

One advantage to this modeling approach is the ability to build a simulation 

model using one or more simulation objects developed by independent vendors, which 

simulate the performance and behavior of their company's equipment. For example, 

consider the following simplified semiconductor fabrication system (Figure 5.2). 
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/ 
Apply 

Arrival  
Location  

Bake 

Figure 5.2: Semiconductor Fabrication System. 

Suppose in this system, that both vendor A and vendor B offer an "Expose" 

workstation. Also imagine that both of these vendors have developed a simulation object, 

using the NCSOS, that resembles the behavior and characteristics of their respective 

machines. A system analyst may want to decide which vendor's machine will work best 

in a production system. 

First, a set of simulation runs is performed using vendor A's object and the 

appropriate measures of performance are recorded. Next a set of simulations runs is 

performed replacing vendor A's simulation object with vendor B's object. This scenario 

should give some insight on which machine would be more beneficial to the system. 

5.2.3 Prototype Environment 

The objective of this prototype environment was to determine if the methodology 

of network-centric simulation was feasible. In order to achieve this objective, a discrete-
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event simulation environment was built using the object-oriented programming language, 

Java. 

Part of the functionality of this framework is the ability to dynamically load, at 

runtime, software objects from resources located at a URL on the Internet 

In this simulation environment, a simplified model of a semiconductor fabrication 

system was built. The model was defined, except for the name and behavior of the 

"Expose" workstation. The simulation model will not run until an instance of a valid 

software object representing an Expose workstation can be created. 

5.2.4 Objective 

The objective of using this standard is to "build" a simulation object that 

simulates the behavior of an "Expose" workstation. Once this class definition has been 

compiled and tested by the analyst, the object will be posted on an ftp server. The 

independent analyst will send the author the URL of the workstation object. Then, the 

NCSOS Simulation Module will be started, the URL and name of the "Expose" 

workstation object will be entered, and the model will attempt to execute. 

This document includes a description of the interface that the "Expose" 

workstation must use to communicate with the Simulation Module. By following the 

"rules" of the interface, interaction of a remote "Expose" workstation object with the 

Simulation Module is possible. 
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5.2.5 Qualifications of Simulation Analyst 

There has been a specific attempt to keep the requirements for an independent 

analyst to a minimum. In order to develop a workstation that will interact with the 

Simulation Module, the analyst must have: 

1. A basic understanding of how discrete-event simulation software 

functions. This includes such concepts as the event calendar, scheduling 

events on the event calendar, and processing events as the simulated time 

is advanced. It is not necessary to know "how" to perform these functions, 

just an understanding of the concepts. 

2. An intermediate level of competency using the Java language. This would 

include basic OOP programming concepts such as: inheritance, message 

passing syntax, and the ability to maintain the state of a software object 

using instance variables. 

5.2.6 More About the Simulation Module 

The Simulation Module is the part of the environment that has the ability to 

dynamically load objects over the Internet and run simulation models. The independent 

analyst will download a simplified version of the Simulation Module to help in the 

development and testing of the "Expose" workstation object. 
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Events that change the system's state are the driving force in discrete-event 

simulation. In the NCSOS environment, there is a class called "Sim Event" that represents 

events in the simulation. Each event consists of: 

1. The time of the event. 
2. Optionally, the entity associated with the event. 
3. The workstation on which the event occurs. 
4. The name of the event that occurs. 

These events are stored in a future events list, that sort the events in chronological 

order, and process the events one by one, as the simulation time is advanced. The 

simulation manager or "SimMaster" manages the future events list by scheduling events 

into the list, and sending the events to the appropriate objects when the appropriate 

simulation time occurs. 

The SimMaster also manages all of the other simulation- related activities, 

delegating tasks to the appropriate objects. A simplified relationship between the major 

simulation objects can be seen in Figure 5.3. 

SimMaster 

User Future Events Modd System Entity  
Interface List Definition Statistics Source  

Arrive Apply "Expose" Develop etc.-
Workstation Workstation Workstation Workstation 

(not defined) 

Figure 5.3: Simulation Module Major Object Relationships of NCSOS 
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Once the model has been defined, it is compiled. Of course, at compile time, the 

name or behavior of the "Expose" workstation is not known. This object will be created at 

Simulation Module runtime. 

5.2.7 The Target System 

Once again, the objective of an independent analyst is to create a Java object (a 

Java class) that can seamlessly interact with the Simulation Module when the modeler 

executes a simulation run. The imported object will simulate the behavior of an "Expose" 

workstation in a semiconductor fabrication system. 

A semiconductor wafer manufacturing process was selected to model because it 

has been, traditionally, a difficult process to accurately model. The entities (wafers) have 

a complex and diverse routing through the process and include many re-entrant 

behaviors. 

5.2.8 Expose Workstation Behavior 

If the analyst is not familiar with the characteristics of an "Expose" workstation, 

don't worry, this is a theoretical system; there are no wrong answers. The analyst is 

encouraged to read the examples and to use his/her imagination to simulate what an 

"Expose" workstation might do. 

The exposure process in semiconductor manufacturing is very similar to exposure 

of photography paper on an enlarger. The UV light-sensitive photoresist is applied to the 
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surface of the wafer in the "Apply" workstation. Then, in the "Expose" workstation a 

"mask" is put on top of the wafer and the wafer is exposed to UV light for some period of 

time. Afterwards, the wafer is passed to the "Develop" workstation for further processing. 

5.2.9 The Discrete-Event Simulation Scenario 

Hopefully, the analyst is familiar with the concept of discrete-event simulation. 

As simulation time is incremented in the model, events are scheduled in the future events 

list, and at each "event time," the event at the front of the list is "processed." For instance, 

if the next event to be processed is an "arrive" event on the Expose workstation, then 

dialog between the SimMaster and the Expose Workstation might be something like this: 

SimMaster: "Hey, Expose, here is wafer #3342. It just arrived at your front door." 

Expose Workstation: "Ok, thanks Please schedule a "load" event immediately. 

SimMaster: "Hey, Expose Workstation, if you can, load a wafer.  
Expose Workstation: "Ok, thanks I've loaded wafer #3342. Please schedule an  
"unload" event for this wafer in 5 minutes.  

So this communication continues event after event. Typically, each time a 

workstation receives an event, it does some processing, then schedules at least one event 

with the SimMaster. This is how the simulation continues. 

The NCSOS environment is no different than many standard environments. Every 

time a workstation receives an event, it processes the event, and schedules at least one 
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more event. The simulation continues until there are no more events, or until the 

simulation run time has been reached. 

5.2.10 Class Structure 

The hierarchy of the classes that the analyst must be aware of is given in Figure 5.4. 

Entity SimMaster Workstation 

"ExposeWoricstation" 
implements 

RemoteWorkstation 

Figure 5.4: Important Environment Interface Classes. 

5.2.10.1 The SimMaster Class 

The SimMaster class is responsible for managing the simulation, scheduling 

events, and sending each workstation a message when an event occurs at that 

workstation. Most of this communication is hidden from the analyst, but when an event is 

scheduled, the SimMaster class will eventually schedule the event by creating a new 

instance of SimEvent, and inserting it into the future event list. 

The messages that are useful: 
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1. SimMaster.getSimTimeO A static method that returns a "float" that is 

the current simulation time. 

2. SimMaster.printEvent(String s) A static method that allows you to 

send a string to the trace display in the user interface. Each event will 

automatically be output to the trace display, but if you want to display 

something additional, just send a string to SimMaster.printEventO. 

5.2.10.2 The Workstation Class 

The Workstation class is the superclass (or parent) of all specific workstation 

classes. A specific instance of Workstation is never created. Rather, the Workstation 

class is used as a basis of the structure and behavior of all specific workstation classes. 

The analyst must "extend" the Workstation class when defining the "Expose" 

class (The workstation name can be any valid class name). Most of the communication 

that the specific workstation does with the simulation environment is accomplished by 

using the Workstation parent class. 

Important methods for the Workstation Class: 

1.	 arrive(Entity ent) If a child workstation does not define an "arrive" 

method, the workstation will just schedule a "depart" event from this 

workstation immediately. 

2.	 depart(Entity ent) If a child workstation does not define a "depart" 

method, the workstation will schedule an "arrive" event to the NEXT 
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workstation immediately. (The next workstation is obtained from the 

entity itself.) It is suggested that the analyst not define a "depart" method, 

and just let the Workstation class take care of moving the entity to the next 

workstation. 

3. scheduleEvent(Float dt, Entity ent, String method)	 Schedules an 

event using the parameters that are sent. So, when the analyst wants to 

schedule an event from the "Expose" workstation, a message is sent to the 

super object with the appropriate parameters. 

"dt" is the delay of the event. This would be the "delta time" in the  

future that the event will occur.  

"ent" is the Entity that is associated with the event.  

"method" is the name of the next event.  

4.	 scheduleEvent(Float dt, String method) This is another form of the 

scheduleEventO method. It is for events that don't have a related Entity. 

Schedules an event using the parameters that are sent. 

5.	 reportFinalStatisticsO This method is called at the very end of the 

simulation run. Any statistical reports that are to be displayed as part of 

the output of the run should be entered in this method. See the examples 

for more info. 

Of course, the definition of the Workstation class is more complex than these few 

methods. However, it is not necessary to understand, or even be aware of the 
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implementation details to use the functionality of the Workstation class. This is an 

excellent example of OOP "encapsulation" at work. The Java code for the Workstation 

class is located in Appendix A. 

5.2.10.3 The Entity Class 

The entity class represents the wafers flowing through the system. The entities are 

actually complex objects, as they keep track of their own statistics, they know their 

routing through the system and their processing time at each step. Most events are 

associated with an entity, so whenever an Entity-related event is processed or scheduled, 

the entity should be included in the message. 

Useful methods for the Entity Class: 

1.	 getProcessingTimeO Returns a "float" that is the processing time for 

this entity at this step in the processing sequence. You may choose to use 

this processing time, or determine your own when scheduling future 

events. 

2. getIdo Returns an "int" that is the unique ID of this entity. 

5.2.11 Environment Restrictions 

This simulation environment is a prototype, and is limited in it functionality and 

usefulness to model systems outside of the domain considered in this research. 

Accordingly, there are several significant restrictions that need to be mentioned. 
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The "Expose" workstation is limited in the external objects it can interact with. The 

analyst can not define other workstation "support" classes at this time. Everything the 

"Expose" workstation does must be done internally, or with the use of 

1. The Interface objects mentioned above. 

2. All standard Java classes from the JDK 1.1. 

3. All classes from the Java Generic Library (jgl) package. These are public 

domain "support" classes that are included when downloading the NCSOS 

software. For detailed information on these useful classes, see 

http://www.objectspace.com. 

5.2.12 Expose Workstation Example 

Probably the easiest way to get a feeling of how the interface to the Simulation 

Module works is by studying an example of the code for an "Expose" workstation. In this 

example, there is a simple one-server workstation. When an entity enters, the "arrive" 

method puts it into a queue, and schedules a "load" event. Then a method, "load" is 

defined that looks to see if the server is available. If it is, then the entity is loaded on the 

server, and an "unload" event is scheduled in the future. When the "unload" event occurs, 

the server is freed, and a "depart" event is scheduled. These are the events that occur on 

this workstation for each entity that arrives to this workstation. 

Of particular importance is the fact that the analyst can create any event that is 

desired. There could be an event called "someStrangeEventO" that no other object in the 

http:http://www.objectspace.com
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environment "knows" about. The analyst must just ensure that when the "Expose" 

workstation receives such a method, it "knows" how to deal with it. 

The Java code for the ExposeWorkstation class is found in Figure 5.5 and 

Appendix C. 

import jgl.DList; // a linked-list from the Java Generic Library  

// the name of the class is upto the analyst.  
// it is mandatory to extend Workstation and implement RemoteWorkstation  
class ExposeWorkstation extends Workstation implements RemoteWorkstation  

// Data fields of this class  
private float processingTime; //processing delay  
private int servers; // number of servers in this workstation  
private DList queue; // a double linked-list from the jgl package  

// could use somethink like an Array also.  
float inUse; //status of server  
float startService; //start of service  

//Constructor  
ExposeWorkstation()  

// init the Workstation object  
super();  
// give this a name  
workstationName = "Remote Expose Workstation";  
// number of servers in this workstation  
servers = 1;  
// create a queue to store entity waiting for processing  
queue = new DList();  
// status variable  
inUse = 0;  
// time marker  
startService = 0;  

// Overrides the arrive method in the Workstation class.  
//Needed if any processing is going to be done at this workstation.  
public void arrive(Entity ent)  

// put entity into queue  
queue.pushBack(ent);  
// schedule a load event in "0" time delay  
super.scheduleEvent(0,"load");  

// Define a "load" event.  
// the parameter Object is a dummy. must be used if the event  
// is not Entity-related.  
public void load(Object obj) (  

if (servers == 0)  
SimMaster.printEvent( "Expose Server Not Available: Put into Queue.");  
return;  

if (queue.isEmpty()) {  

SimNaster.printEvent("Nothing in Expose Queue.");  
return;  

Figure 5.5: (Continued) 
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// Otherwise, load the entity  
// decrement the servers avaiable.  
servers--;  
// mark start time  
startService SimMaster.getSimTime();  
// get the first entity in queue  
Entity ent (Entity)queue.popFront();  
SimMaster.printEvent("Successfully loaded Entity: #"+ent.getId());  
// get the processing time from the entity  
float dt ent.getProcessingTime();  
// schedule the unload event  
super.scheduleEvent(dt,ent,"unload");  

// define the "unload" event  
// notice this is an "entity-related" method.  
// the related entity is the parameter  
public void unload(Entity ent)  

// increment the servers available.  
servers++;  
inUse inUse + (SimMaster.getSimTime() - startService);  
// check the queue, non-entity related  
super.scheduleEvent(0,"load");  
//schedule a depart event immediately, entity related  
super.scheduleEvent(0,ent,"depart");  

} 

// No need to define the "depart" event here. Just let the super object  
// take care of sending the entity to the next workstation.  

public void reportFinalStatistics() { // called at the end of the run  
super. makeStatisticsWindow (workstationName +" Final Statistics");// (mandatory  

line)  
//report the collected stets in the following lines.  
super.printStat("The server Utilization was: "+inUse/SimMaster.getSimTime());  
super.printStat("The current Number in Queue was:"+queue.size());  

Figure 5.5: ExposeWorkstation Example Java Code. 

5.2.13 Interface Rules 

The "rules" of the interface are summarized below: 

1. The "Expose" workstation must extend Workstation and implement (a Java 

keyword) RemoteWorkstation. This guarantees a basic behavior by 

Workstation class and allows the Simulation Module to dynamically create 

an instance of an object that implements the RemoteWorkstation interface. 

The name of the class can be any valid Java class name 
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2.	 If any processing is to be done, the super Workstation class method 

"arrive()" must be overridden. This "intercepts" the entity, and allows the 

analyst to manipulate the entity as it passes through the workstation. 

3.	 Typically, at each event, at least one succeeding event must be scheduled 

by asking the super Workstation object to schedule an event. If no future 

event is scheduled, the current process will come to a halt. For example, if 

a "load" event occurs, but no "unload" event is scheduled, the entity will 

continue to occupy the workstation indefinitely. An event is scheduled by 

sending the super object a method scheduleEventO. 

4. The analyst can implement any new event that is desired. This is 

accomplished by defining a new method in the class (someNewEvento, 

for example). The method has no return value and must take either Entity 

or Object as its parameter. If it is an Entity related event, such as "unload", 

where the event is directly related to a specific entity, then the event 

should use Entity as the parameter. Otherwise, if the event is not related to 

a specific entity, then the parameter should just be a dummy Object. This 

is undesired, but a current limitation of Java. It would be more accurate for 

a parameter-free method, but this was not possible with the current release 

of Java. 

5. The analyst will schedule the newly created events in any order, at any 

time delay. It is imperative that if an event is scheduled, then it can be 

handled by the "Expose" workstation. If an event arrives to the "Expose" 
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workstation that is not defined, an error will occur and the simulation will 

terminate. 

6. The analyst can implement as many different internal events as desired. 

7. The last event at the "Expose" workstation should be to schedule a depart 

event. This will allow the super Workstation object to pass the entity to the 

next workstation. This is accomplished by scheduling a "depart" event. 

The syntax would be: super.scheduleEvent(0, ent, "depart"). This would 

be the last call in the processing of an entity at this workstation. 

8. The "Expose" workstation must implement the "reportFinalStatisicso 

method. See the example for the syntax. The analyst is free to keep any 

statistics that are desired. This would be accomplished by defining 

instance variables and recording the desired statistics as the simulation run 

progresses. For example, this may be server utilization, number of entities 

processed, time entities spend in queue or in service, etc. At the end of the 

simulation run, the Simulation Module will send the reportFinalStatisticso 

message. At this time, the statistics that are to be reported should be 

composed into a String and sent to the super object with the message 

super.printStat(String). The super Workstation object will create a window 

with the corresponding information. One statistic should be sent for each 

printStato call. There is no need to worry about formatting, as the 

Workstation will take care of it. 



91 

5.2.14 Downloading Necessary Software 

In order to build a workstation object, the independent analyst must do the 

following: 

1. Download and install the Java JDK, version 1.1 or higher. Available from: 

http://javasun.com/products/j dk/1 . 1 / 

2. Download and install the NCSOS Software. Available from: 

http://colvin.ie.orst.eduincsos/install/ 

5.2.15 Installing and Using Necessary Software 

Before the NCSOS software can be used, the analyst must have installed the JDK 

version 1.1 or later. 

**WARNING:** All the development of the NCSOS software was done on the 

Windows NT operating system. Nothing has been compiled or tested on the UNIX 

operating system. (Java byte code claims to be "Platform-Independent," but it has not 

been verified for this project). 

The downloaded file (ncsos.exe) is a self-extracting file. It should be extracted 

into a working directory ( "c:\ncsos \" for example). 

The software included is: 

*.class - The class files needed to compile the "Expose" workstation file 

that will be created. 

http://colvin.ie.orst.eduincsos/install
http://javasun.com/products/j
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\src\*java - The Java code used to compile the .class files. These files 

should not be needed for object development, but the code as been 

included for inspection if the analyst desires. This includes the example 

ExposeWorkstation java file. 

\jgl\ directory - The Java Generic Library package. Useful classes for 

queues, etc. See more information from http://www.objectspace.com/ 

The analyst will create the "Expose" workstation java file. It should be located in 

the "ncsos" directory. To compile the file, the command would be: 

C:\ncsos\>javac ExposeWorkstation.java 

This is following standard procedure for using the Java JDK 1.1. Of course, the 

name of the java file can be any valid Java class name. 

Once the file has been compiled, the .class file needs to be posted on an ftp server. 

The location of the file should be accessible for an "anonymous" ftp connection. 

5.2.16 Testing Object Behavior 

A simplified version of the Simulation Module has been included with this 

software. To start the Simulation Module, at the command prompt, type: 

C:\ncsos\>java SimApplication 

This Java application will send one Entity through the "Expose" workstation, 

every 0.5 hours. The entity has a processing time of 1 hour on the workstation, so entities 

http:http://www.objectspace.com
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arrive twice as fast as they exit. Each event will echo to the screen as it is processed. This 

should help the analyst test the object. 

When running the Simulation Module, enter the class name of the object (For 

example, "ExposeWorkstation"), and the ftp URL (For example, 

"ftp://imesupport.ie.orst.edu/ncsos/"). When these are valid, the Simulation Module can 

be run. 

5.2.17 Posting Objects in the Public Domain 

Once the object has been compiled, tested and posted on an ftp server, alert the 

intended modeler with the name and location of the object. The full version of the 

Simulation Module (using the entire model) can then be run using this representation of 

an "Expose" workstation. 

5.2.18 A Final Word From the Author 

This is a prototype simulation environment. It has been designed for use in the 

very specific domain that is described in this research. The use of this environment 

outside of this narrow domain has not been tested, and unforeseen conflicts may be 

encountered. The objective of this research was to determine if this methodology of 

"Network-Centric Simulation Modeling" is feasible and worth more effort. There has 

been a deliberate intent to keep this system as simple as possible during this "first try". 

ftp://imesupport.ie.orst.edu/ncsos
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If you have any suggestions, feedback, advice or input please don't hesitate to 

contact the author. 
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CHAPTER 6. ENVIRONMENT APPLICATION 

6.1 Introduction 

In this chapter, the simulation environment is applied to a target semiconductor 

fabrication system. The purpose of this task is to show how the environment can be 

applied, and how its network-centric functionality can use resources on the Internet. 

First, the general model specification is presented, followed by a brief description 

of a semiconductor fabrication system. Next, the specific behaviors of two different 

Expose workstations are introduced. These workstations are then implemented as the 

network-centric objects that will be used by the environment to perform an example of 

network-centric simulation modeling. Finally, the results from the simulation runs are 

presented. 

6.2 General Model Specification 

There are three basic object locations where the specific model parameters are 

defined. It is the combination of these three components that create the unique simulation 

model of the system under investigation. 

First, the SimModel object defines specific workstation objects, workstation 

layout and identifies the workstations that will report statistics at the end of the 

simulation run. For a detailed description of the SimModel class definition, see section 

6.4. 
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Second, the specific workstation objects define the processing operations that are 

unique to each workstation. In the NCSOS environment, each workstation acts as an 

independent location that receives wafers, performs processing on the wafers, and 

releases wafers to the next workstation. In the current implementation of NCSOS, all 

workstations are locally defined objects except for the single remote workstation. 

However, because the remote workstations are created according to the NCSOS standard, 

they will seamlessly interact with the simulation environment in much the same way as 

the locally defined workstations. See Appendix B for the locally defined workstation 

class definitions and Appendix C for an example of a remote workstation class definition. 

Finally, the Entity object defines the routing, specific workstation processing 

times and statistic collection for the wafers that flow through the system. One of the 

powerful aspects of the NCSOS environment is the ability for the wafers to "know" their 

processing times, workstation muting and current step in the processing sequence. This 

facilitates the creation of multiple wafer types that contain unique processing times and 

routing sequences. See Appendix A for the class definition of the Entity object. 

6.3 Description of Target System 

Once again, the system under consideration is a simplified semiconductor 

fabrication system. For a more detailed description of the system, see chapters 1, 3, and 

4. 
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Wafers enter the system, and are processed on workstations in a predefined 

sequence. This sequence does not necessarily follow a linear flow, but may be varied 

greatly depending upon the wafer's specifications. One unique characteristic is the 

reentrant flow; wafers may visit the same workstation many times. Two of the primary 

measures of performance for such a system would be the wafer throughput and cycle 

time. 

In the application considered here, the emphasis is placed on the behavior and 

performance of the Expose workstation. Therefore, the primary focus of this example 

will center on the modeling of the Expose workstation. 

The following list of assumptions were applied to the system for this model: 

1.	 Line loading (WIP) will be set to 20 units. Only when a wafer exits the 

system, will another be introduced into the system. 

2. All workstations except the Expose workstation will have the following 

characteristics:  

No load/unload delay  

3.	 Processing time at each workstation will be a uniformly distributed 

random variable between 2 and 3 hours. 

4.	 Simulation run length will be 10,000 hours. 

5. No transient state will be observed. 
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6.4 Description of Expose Workstations 

Recall from chapter 4 that the function of the Expose workstation is to expose UV 

light onto the surface of a semiconductor that has had a photoresist material applied to its 

surface. 

In this model, two different Expose workstation designs were considered. First, a 

single-server workstation was modeled, followed by a dual-server configuration. The 

primary question that was asked for this model was: Does one workstation configuration 

perform better than the other in this system? 

The single-server workstation was created with the following specifications: 

1. Name: ExposeS1000 
2. Number of Servers: 1 

3. Processing Time: Dependent on Wafer. 
4. Load Time: Uniformly Distributed, 10 - 20 Minutes. 
5. Unload Time: Uniformly Distributed, 10 - 20 Minutes. 

The dual-server workstation was created with the following specifications: 

1. Name: ExposeS2000 
2. Number of Servers: 2 
6. Processing Time: Dependent on Wafer. 
3. Load Time: Uniformly Distributed, 30 - 40 Minutes. 
4. Unload Time: Uniformly Distributed, 40 - 60 Minutes. 

The workstation objects representing these machine specifications were 

implemented using the documented standard presented in chapter 5. The result of this 

implementation was two software objects (Java class files) that represent the respective 
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workstation design. For the Java code used to implement these workstations, see 

Appendices D and E. 

6.5 Simulation Model and Execution 

Once the software objects representing the workstations were compiled, they were 

placed on an ftp server with public access from the Internet. These objects were now 

accessible to the public domain, including the NCSOS environment, regardless of the 

location of the computer on which any of the software was located. 

The simulation model was defined in the SimModel class, which was presented in 

chapter 4. A more detailed description of the model is presented here. For a full listing 

of the Java source code for SimModel, see Appendix A. 

To create a simulation model using the NCSOS framework, there were three 

distinct steps. First, the instance variables were declared. Second, the model constructor 

was created. Finally, it was determined which workstations will collect statistics over the 

simulation runs. 

Declare Instance Variables. In this step, a variable for each of the workstations 

was declared. The name of the variable can be any valid Java variable name. The Java 

modifier for each variable is "private," as this restricts any unwanted modification by 

external objects. In addition to a variable for each of the workstations, several other 

necessary variables were defined. These were the arrival location, terminate location, the 
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system statistics variable, and the workstation layout variable. The instance variable 

definition for the semiconductor fabrication system is seen in Figure 6.1. 

// Workstation Variable Declaration  
private ArrivalLocation arrival;  
private ApplyWorkstation workstationl;  
private RemoteWorkstation workstation2;  
private DevelopWorkstation workstation3;  
private BakeWorkstation workstation4;  
private DepositWorkstation workstation5;  
private EtchWorkstation workstation6;  
private TestWorkstation workstation7;  
private TerminationLocation terminate;  

// Other Needed Declarations  
private SystemStatistics systemStatistics;  
private DList workstationLayout;  

Figure 6.1: Workstation Variable Declaration. 

Create Model Constructor. The next step was to create a new instance of each 

workstation and assign it to its corresponding variable. This was done in the constructor 

of the SimModel class, which is executed upon creation of the SimModel object. Also in 

this step, each workstation was assigned a location in the workstation layout. This 

facilitates the routing of the entities through the system. Figure 6.2 presents the Java 

code used to accomplish these tasks. 

SimModel() ( // Constructor  
//needed objects  
workstationLayout - new jgl.DList(); // the list of Workstation Objects, in order  
// add arrival Location  
arrival- new ArrivalLocation(); // interarrival time  
// define local workstations, must be in order.  
workstationl - new ApplyWorkstation();  
//define the remote workstation  
workstation2 - (RemoteWorkstation)RemoteLoader.loadWorkstation();  

Figure 6.2: (Continued) 
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if (workstation2 == null)  
SimMaster.printEvent( "Did NOT Successfully Load Workstation\n");  
SimNaster.printEvent("Please push \"Reset\" and enter  
a valid Name and URL\n");  

) else (SimNaster.printEvent("Successfully Loaded Workstation \n ");}  
//then the rest of the local workstations  
workstation3 = new DevelopWorkstation();  
workstation4 - new BakeWorkstation();  
workstation5 - new DepositWorkstation();  
workstation6 - new EtchWorkstation();  
workstation? = new TestWorkstation();  
// Finally Add Terminate Location  
terminate - new TerminationLocation();  
// Build workstationLayout  
workstationLayout.pushBack(arrival);//put ws in list  
workstationLayout.pushBack(workstation1);//put ws in list  
workstationLayout.pushBack(workstation2);//put ws in list  
workstationLayout.pushBack(workstation3)://put ws in list  
workstationLayout.pushBack(workstation4);//put ws in list  
workstationLayout.pushBack(workstation5);//put ws in list  
workstationLayout.pushBack(workstation6);//put ws in list  
workstationLayout.pushBack(workstation7)://put ws in list  
workstationLayout.pushBack(terminate);//put ws in list  

Figure 6.2: Simulation Model Constructor. 

Identify Workstations to Collect Statistics. Finally, it was specified on which 

of the workstations statistics would be collected. It may be that there is no need to collect 

statistics on one or several workstations in the model. Therefore, for each of the 

workstations where statistics are desired, a specific message must be sent requesting that 

the statistical information be reported at the end of the simulation run. This was a very 

straightforward task as Figure 6.3 indicates. 

// Final Statistics  
public void reportFinalStatistics() (  

workstationl.reportFinalStatistics();  
workstation2. reportFinalStatistics();  
workstation3. reportFinalStatistics();  
workstation4. reportFinalStatistics();  
workstation5. reportFinalStatistics();  
workstation6. reportFinalStatistics();  
workstation7.reportFinalStatistics();}  

Figure 6.3: Collection of Statistical Workstation Data. 
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Finally, with the model fully defined, a series of 5 simulation runs was performed 

for each of the workstation objects presented above. This entailed starting the NCSOS 

Simulation Environment, specifying the Expose workstation name and URL, and entering 

the simulation run length. 

6.6 Results 

The results from the simulation runs appear in Table 6.1. 

Table 6.1. Simulation Run Results. 

Model S1000 Model S2000 
Measure of Performance Run Ave. Ave. 

Cycle Time (Hours)	 1 59.5790 50.3879 
2 59.4141 50.4172 
3 59.5520 50.4583 
4 59.5331 50.2802 
5 59.5668 50.3849 

Ave	 59.5290 50.3857 

Throughput (Hours) 1 0.3348 0.3959 
2 0.3357 0.3958 
3 0.3349 0.3954 
4 0.3350 0.3969 
5 0.3348 0.3960 

Ave 0.3350 0.3960 

Server 1 Server 2 
Server Utilization	 1 0.9997 0.7839 0.8501 

2 0.9995 0.7825 0.8351 
3 0.9994 0.7872 0.8302 
4 0.9996 0.7858 0.8497 
5 0.9996 0.7911 0.8500 

Ave	 0.9996 0.7861 0.8430 
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The results from this simulation model indicate there is a statistically significant 

improvement in cycle time and throughput using the S2000 workstation configuration 

over the S1000 workstation. See Appendix F for the hypothesis test results. 

Additionally, to validate the NCSOS environment, a simulation model was 

constructed using Pro Model. The Pro Model simulation model duplicated the NCSOS 

model using the single server Expose workstation configuration. Of course, ProModel 

does not employ a network-centric approach. However this task was done to validate the 

measures of performance obtained from the NCSOS simulation runs. There was no 

statistical difference in the results obtained from both environments. See Appendix G for 

a comparison of the ProModel and NCSOS results. 

6.7 Conclusions 

This chapter has documented an example of how the NCSOS environment can be 

used to simulate a system using a network-centric methodology. While this was not a 

particularly complex or sophisticated example, it shows the potential power of the 

network-centric approach. The true power, however, will not be realized until this 

prototype has been developed into a more robust and complete simulation environment. 

Future research opportunities using the network-centric approach are discussed in the 

next chapter. 
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CHAPTER 7. FUTURE RESEARCH 

7.1 Introduction 

This research has documented the NCSOS environment from conception, to a 

functional prototype with a documented standard. It must be realized that the 

environment is just that; a prototype. The modeler is severely limited in the systems that 

can be modeled, and the detail that can be incorporated into a model. However, this 

research has opened the door to a new methodology for the simulation of systems: the 

network-centric paradigm. 

This chapter presents eight specific areas that have been identified as worthwhile 

developments and enhancements to the NCSOS environment. Some of the areas are 

relatively straightforward and have been accomplished in other environments. The 

remaining areas are still undeveloped by any known simulation software. The following 

nine sections present possible future research regarding network-centric simulation. 

7.2 Increased Functionality and Robustness of Workstation Objects 

In the current environment, the remote workstations are limited in the actions that 

can be simulated. For instance, there is no functionality for periodic, unplanned failure. 

The remote workstations are also constrained to use only specified external objects. They 

are not free to implement support classes that would increase their functionality and allow 
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the analyst to more accurately abstract a physical system. The environment would benefit 

if a more flexible standard for remote workstations were to be implemented. 

7.3 Develop New Network-Centric Objects 

In the current environment, only objects that represent workstations are 

implemented as network-centric. An intuitive development would be to develop other 

network-centric objects. These would include such objects as entities, transportation 

equipment, manual operators, and informational and logic objects. The challenge to 

implementing such objects as network-centric is their need to be independent and 

encapsulated, so that they may be developed according to the standard in a remote 

environment. However, with such a system, the simulationist could become an 

"assembler" of simulation models rather than a "creator." 

7.4 Improved Statistics Module and Output Reporting 

The existing environment has a basic subsystem for collecting specifically defined 

statistics. Clearly, to become a useful environment capable of asking complex "what-if' 

questions, a more complete statistics collection module is needed. In addition to the 

collection of measures of performance, a system for statistics reporting is needed to make 

the output data from a simulation run effortless. 
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7.5 Facilitate Model Building Capabilities 

While a substantial effort was made in the existing environment to make model 

building modular and intuitive, it is still a very cryptic and programming-intensive task. 

Much could be done to improve this area of the environment, including the evaluation of 

a method to eliminate the need to compile the model. An even more extreme 

enhancement would be to create a graphical model building capability. This would 

facilitate user-friendly model building capabilities. 

7.6 Develop Model Input Data Module 

In the existing environment, there is no central collection of model input data. It 

is distributed over several class definitions, and is cumbersome to implement changes in 

the input to a simulation model. There is a need to develop a subsystem to define and 

store the model input data in an intuitive, concise structure. 

7.7 Develop Random Variable Generation Module 

This is a very straightforward enhancement. Many other simulation environments 

have very sophisticated random number modules that can accommodate many random 

variable distributions. This enhancement would be time consuming, but would also add 

important functionality to the environment. 
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7.8 Increase Efficiency and Execution Speed of Model 

Even with the relatively small size and sophistication level of the existing 

environment, the execution speed of the model is noticeably slow. Some of this can be 

attributed to the infancy of the Java language. It is anticipated that new Java-related 

technologies will increase the efficiency of large Java applications, but some efficiency 

improvements are possible in the coding of the existing environment by using less 

sophisticated data structures and user interface components. 

7.9 Convert the Application to a Web "Applet" 

The current capabilities of Java did not allow "applets" the functionality needed to 

implement this simulation environment. However, as Java evolves, it is expected that the 

functionality of Java will increase, especially in the area of larger and more robust 

"applets." The task of adding this functionality to the environment is anticipated to be a 

relatively straightforward undertaking. 

7.10 Develop Graphical Runtime Capabilities 

Graphical simulation environments are especially useful when trying to sell 

simulation recommendations to non-simulationists. There are times, however, that a 

graphical interface can assist the modeler in validation and verification of a model. This 



108 

would be a very time consuming enhancement, perhaps best accomplished by an 

experienced graphical programmer. 

7.11 Summary 

In conclusion, this prototype is a functional, yet limited simulation environment 

that incorporates the innovative network-centric methodology. This chapter has outlined 

nine of the further research opportunities to enhance and improve the functionality of the 

existing prototype environment. 
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CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 

The primary goal of this research was to investigate the concept of network-

centric simulation. To achieve this goal, four distinct research objectives were 

established (see Chapter 1). This chapter first discusses the conclusions from this 

research in the context of these objectives. Finally, this chapter summarizes the final 

recommendations of this research. 

8.1 Summary of Research Objectives 

8.1.1 Specification 

The first objective of the research was to develop the specifications for the 

project. The first specification developed was for the discrete-event simulation 

environment. This closely followed a specification for a typical discrete-event simulation 

"engine." The second specification was related directly to the concept of network-centric 

simulation. Here, the concepts were developed to use the Internet as a resource when 

building simulation models. This specification reflected an object-oriented approach of 

using independent, encapsulated objects to represent simulation components. The third 

specification defined the requirements for the system to be modeled. The target system 

selected for this research was a semiconductor fabrication system. The requirements for 

this system were defined, reflecting the domain-specific characteristics of these complex 
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systems. Fourth, the specification for a documented standard was developed. In order 

for a network-centric environment to be of any use, simulation analysts must be able to 

use the standard to develop simulation objects in a independent, isolated environment. 

The standard documentation allows for distributed use of the environment. Finally, five 

design goals were identified for the implementation of the simulation environment. 

8.1.2 Implementation 

The second objective of the research was to implement the specification. The 

object-oriented programming language, Java, was selected as the implementation 

language because of its ease of use and network-programming capabilities. First, a class 

hierarchy was developed methodically and structurally to meet the discrete-event 

simulation specifications. Next, the basic functionality of importing remote objects was 

completed, then, a more sophisticated environment was developed to include user 

interface components and statistics collection. Finally, the model specifications were met 

using the network-centric simulation framework to implement the target system model. 

8.13 Standard Development 

The third objective was to gather and organize the interface of the environment 

into a documented standard that a simulation analyst could use to independently develop 

remote simulation objects. This documentation included a description of the 

environment, a description of important interface object behavior, a sample remote object 
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definition and a standard for implementing remote objects. This document and the 

accompanying software were posted on a public domain Web page for easy and rapid 

distribution to simulation analysts. 

8.1.4 Environment Application 

Finally, the environment was applied to a target system. The purpose of this task 

was to show how the environment can be used to model a system using remote, network-

based objects representing semiconductor wafer-processing workstations. Two 

specifications for Expose workstation behavior were created, then implemented according 

to the NCSOS Standard documentation. The objects were placed on the Internet, and 

simulation runs were executed using these objects to represent the Expose workstation in 

the semiconductor simulation model. 

8.2 Final Recommendations 

There are three final recommendations drawn from this research. 

1. The advantages of object-oriented simulation software continue to far 

outweigh the disadvantages. While some ease of use is compromised by a 

non-graphical or non-scripting interface, the flexibility and ability to ask 

very abstract "what-if' questions is worth the extra effort. 

2. The network-centric computing model is quickly becoming feasible with 

the emergence of Internet technologies and tools such as Java. The near 
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future will bring a variety of computer applications that are no longer 

restricted to a desktop-centric environment. These new generation 

applications will integrate and incorporate a variety of resources and 

services that are located on the Internet. 

3. The combination of object-oriented programming and network-centric 

computing can be combined into a feasible network-centric simulation 

methodology. This method of simulating systems would allow a common 

ground between simulationists of similar systems to share and incorporate 

Internet-based simulation objects. 
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APPENDIX A: Java Environment Class Definitions 

ArrivalLocation.java 

import java.lang.reflect.Method;  

class ArrivalLocation extends Workstation // Entry Point  

// Data fields of this class  
private float dt - 0; //used to schedule events  
private int servers; // number of servers in this workstation  

//Constructor  
public ArrivalLocation()  

super();  
workstationName - new String( "Arrival Location");  

1  

// Methods  
public void arrive(Entity ent) { // just schedule arrival to first workstaion  

// set any stets that are needed  
ent.setCreationTime(SimMaster.getSimTime());  
SimMaster.updateMIP(1); // increate the WIP  
// let Workstation do the rest  
super.arrive(ent);  

1  
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ClassSaver.iava 

import java.net.*;  
import java.io.*;  

class ClassSaver I  

private static String codebase = null;  
private static String fileName = null;  
private static byte[] data = null;  

public ClassSaver(){  

public static void saveRemoteClass(String className,String cb) (  

fileName = className + ".class";  
codebase = cb;  
String thisURL = codebase+fileName;  
data = null;  

// load the data  
try  
System.out.println("Connecting to URL: " + thisURL);  
URLConnection u = new URL(thisURL).openConnection();  
DatalnputStream in = new DataInputStream(u.getInputStream());  
data = new byte[u.getContentLength()];  
in.read(data);  
in.close();  

// save the data  
File target = new File(fileName);  
if (target.exists()) (target.delete();)  
FileOutputStream out = new FileOutputStream(target);  
out.write(data);  
out.close();  
System.out.println("Finished Creating file: " + fileName);  

)	 catch (I0Exception e) (  

SimMester.printEvent("Did NOT Successfully Load: "+thisURL+"\n");  
SimMaster.printEvent( "Please push \"Reset\R and check the Name and URL again\n");  
System.out.println("Caught I0Exception trying to read URL: " + thisURL);  

http:java.net
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Creatorjava 

import java.lang.reflect.Method;  

class Creator { // creates and schedules new entities  

// data fields  
private float dt;  
private Entity newEntity;  
private Workstation arrivalLocation;  
private SimMaster simMaster;  

Creator(SimMaster sm) { //Constructor  
simMaster = am;  
arrivalLocation = sm.getArrivalLocation();  

}  

public void newEntity() (  

newEntityIn((float)0);  

public void newEntityIn(float time) (  

dt = time;  
newEntity = new Entity();  
// schedule arrival to ArrivalLocation in dt  
Class[] args = new Class[1];  
args[0] = newEntity.getClass();  
Method stag = null;  
try (  

msg = arrivalLocation.getClass().getMethod( "arrive"fargs);  
catch (NoSuchMethodException e)  
System.out.println("From Creator: Caught  

NoSuchMethodException"+e.getMessage());  

simMaster.scheduleEvent(new SimEvent(dt,newEntityfarrivalLocation,meg));  
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Entity.java 

import jgl.DList;  
import jgl.DListIterator;  

class Entity {  

// Data fields of this class  
private static int idCounter = 1; // the unique id of this entity  
private int id;  
private DList sequence; //sequence of entity through fab, with pt  
private SequenceStepinfo currentStep = null;  
private DListlterator i;  
private Workstation nextWorkstation;  
private EntityStatistics stats;  
// Constructor  
Entity() (  

id = idCounter;  
stats = new EntityStatistics();  
sequence = new jgl.DList();  
// set the routing of the entity  
sequence.pushBack(new SequenceStepInfo(SimMaster.workstationAtPosition(0),0));  
sequence.pushBack(new  

SequenceStepInfo(SimMaster.workstationAtPosition(1),(float)(2 + Math.random())));  
sequence.pushBack(new  

SequenceStepInfo(SimMaster.workstationAtPosition(2),(float)(2 + Math.random())));  
sequence.pushBack(new  

SequenceStepInfo(SimMaster.workstationAtPosition(3),(float)(2 + Math.random())));  
sequence.pushBack(new  

SequenceStepInfo(SimMaster.workstationAtPosition(4),(float)(2 + Math.random())));  
sequence.pushBack(new  

SequenceStepInfo(SimMaster.workstationAtPosition(5),(float)(2 + Math.random())));  
sequence.pushBack(new  

SequenceStepInfo(SimMaster.workstationAtPosition(6),(float)(2 + Math.random())));  
sequence.pushBack(new  

SequenceStepInfo(SimMaster.workstationAtPosition(7),(float)(2 + Math.random())));  
sequence.pushBack(new SequenceStepInfo(SimMaster.workstationAtPosition(8),0));  
i = sequence.begin(); // an iterator at the first item  
currentStep = (SequenceStepInfo)i.get(); // the SequenceStepinfo about this step  
idCounter++;  

1  

// Methods  
public float getProcessingTime() (return currentStep.getProcessingTime();)  
public Workstation getNextWorkstation() (  

i.advance();  
if (i.atEnd()) (  

SimMaster.printEvent("Nothing in Entity Routing List\n");  

// sequence.  
currentStep = (SequenceStepInfo)i.get();  
return currentStep.getWorkstation();  

)  

public int getld() (return id;)  
public static void reset() {idCounter = 1;)  
//Statistical Methods  
public void recordMyStatistics() (stats.recordMyStatistics();)  
// Set-Time Methods  
// Creation  
public void setCreationTime(float t) ( stats.setCreationTime(t);}  
// Queue  
public void setQueueEntryTime(float t) {stats.setQueueEntryTime(t);}  
public void setQueueExitTime(float t) (stats.setQueueExitTime(t);)  
// Server  
public void setServerEntryTime(float t) (stats.setServerEntryTime(t);)  
public void setServerExitTime(float t) (stats.setServerExitTime(t);)  

}  
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EntityStatisticsjava 

class EntityStatistics {  

// Data fields of this class  
private float creationTime;  
private float terminationTime;  
// Queue-specific Fields  
private float queueEntryTime;  
private float queueExitTime;  
private float specificQueueWaitingTime;  
private float totalAccumulatedQueueWatingTime;  
// Server-specific Fields  
private float serverEntryTime;  
private float serverExitTime;  
private float specificServerProcessingTime;  
// Workstation-specific Fields  
private float specificWorkstationEntryTime;  
private float specificWorkstationExitTime;  
private float specificWorkstationDurationTime;  
// System-specific Fields  
private float timeInSystem;  

EntityStatistics() { //Constructor  
creationTime = SimMaster.getSimTime();  

}  

// Set-Time Methods  
// Creation  
public void setCreationTime(float t) { creationTime = t;}  
// Queue  
public void setQueueEntryTime(float t) (queueEntryTime = t;)  
public void setQueueExitTime(float t) {  

queueExitTime = t;  
calculateTotalAccumulatedQueueNatingTime();  

}  

// Server  
public void setServerEntryTime(float t) (serverEntryTime = t;}  
public void setServerExitTime(float t) (  

serverExitTime = t;  
calculateSpecificServerProcessingTime();  

)  

// Duration Methods  
// Queue  
public void calculateTotalAccumulatedQueueWatingTime() (  

totalAccumulatedQueueWatingTime = queueEntryTime - queueExitTime +  
totalAccumulatedQueueWatingTime;  

)  

public void calculateSpecificQueueNaitingTime() {  

specificQueueNaitingTime = queueEntryTime - queueExitTime;  
}  

// Server  
public void calculateSpecificServerProcessingTime() (  

specificServerProcessingTime = serverEntryTime - serverExitTime;  
)  

// Report Stats Upon Exit From the System  
public void recordMyStatistics() (  

timeInSystem = SimMaster.getSimTime() - creationTime;  
// get a ref to the SystemStatistics  
SystemStatistics ss = SimMaster.getSystemStatisticsObject();  
// send as many statis as needed  
ss.recordMyStatistics(timeInSystem);  

1 
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RemoteLoaderjava 

class RemoteLoader (  
private static String className;  
private static RemoteWorkstation thisWorkstation;  

public RemoteLoader() f)  

public static void setClassName(String a)  f  

className - s;  

public static RemoteWorkstation loadWorkstation()  f  
//define the remote workstation  
try {  

thisWorkstation - (RemoteWorkstation)Class.forName(className).newInstance(); 
) catch (ClassNotFoundException e) 

System.out.println( "Caught ClassNotFoundException: " + e.getMessage()); 
SimMaster.printEvent( " \nCould Not load n+className+a.\n\n"); 
thisWorkstation - null; 
return thisWorkstation; 
catch (InstantiationException e) f 

System.out.println("Caught InstantiationException: " + e.getMessage()); 
) catch (IllegalAccessException e) f 

System.out.println("Caught IllegalAccessException: " + e.getMessage());  

return thisWorkstation;  
}  
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RemoteWorkstation.java 

/**  

* The remote interface is needed to create a Class and an instance of  
* an object that is not know at runtime. Each remote workstation object must  
* extend the Workstation Class and implement the RemoteWorkstation Interface.  
*@see Workstation  
*/  

public interface RemoteWorkstation{  
/**  

* Returns the string that identifies a remote workstation.  
* @return The desired String  
*/  

public String getWorkstationName();  
/**  

* Triggers the reporting of the workstation's statistics at the end of  
* a run.  
*/  

public void reportFinalStatistics();  
}  
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SequenceStepinfo.java 

class SequenceStepinfo  
// Data Fields  
private Workstation workstation;  
private float processingTime;  

// Constructor  
public SequenceStepinfo(Workstation wks,float pt)  

workstation wks;  
processingTime - pt;  

public float getProcessingTime() (return processingTime;}  
public Workstation getWorkstation() (return workstation;}  

}  
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SimApplication.java 

import java.awt.*;  

public class SimApplication extends Frame  

// Data fields of this class  
private SimMaster simMaster = null;  
private String name;  
private String codebase;  
private int eventDelayValue;  
private float runLength;  
private Font font;  
private Font sysfont;  

public SimApplication()  I  

font = new Font("Serif",Font.BOLD,12);  
sysfont = new Font("Monospaced",Font.BOLD,12);  
//ffINIT CONTROLS  
setLayouT(null);  
addNotify();  
setSize(getInsets().1eft + getInsets().right + 588, getInsets().top +  

getInsets().bottom + 495);  
eventDisplay -new TextArea(13,54);  
eventDisplay.setFont(sysfont);  
add(eventDisplay);  
eventDisplay.setBounds(getInsets().1eft + 7,getInsets().top + 208,448,221);  
buttonl=new Button("Start");  
buttonl.setFont(font):  
add(button1);  
buttonl.setBounds(getInsets().1eft + 5,getInsets().top + 442,91,26);  
button2=new Button("Pause");  
button2.setFont(font);  
add(button2);  
button2.setBounds(getInsets().1eft + 124,getInsets().top + 442,91,26);  
button3-new Button("Resume");  
button3.setFont(font);  
add(button3);  
button3.setBounds(getInsets().1eft + 243,getInsets().top + 442,91,26);  
button4=new Button("Quit");  
button4.setFont(font);  
add(button4);  
button4.setBounds(getInsets().1eft + 481,getInsets().top + 442,91,26);  
Color c = new Color(192,192,192);  
labell -new Label("\"Expose\" Workstation Object:");  
labell.setFont(font);  
labell.setBackground(c);  
add(labell);  
labell.setBounds(getInsets().1eft + 7,getInsets().top + 13,175,20);  
labe12new Label("Location (URL):");  
labe12.setFont(font);  
labe12.setBackground(c);  
add(label2);  
labe12.setBounds(getInsets().1eft + 7,getInsets().top + 45,112,20);  
label3=new Label("Current Statistics:");  
labe13.setFont(font);  
label3.setBackground(c);  
add(label3);  
labe13.setBounds(getInsets().1eft + 7,getInsets().top + 78,126,13);  
wipDisplay -new TextField(10);  
wipDisplay.setFont(sysfont);  
add(wipDisplay);  
wipDisplay.setBounds(getInsets().1eft + 7,getInsets().top + 98,84,19);  
cycleTimeDisplay -new TextField(10);  
cycleTimeDisplay.setFont(sysfont);  
add(cycleTimeDisplay);  
cycleTimeDisplay.setBounds(getInsets().1eft + 7,getInsets().top + 124,84,19);  
throughputDisplay -new TextField(10);  
throughputDisplay.setFont(sysfont);  
add(throughputDisplay);  
throughputDisplay.setBounds(getInsets().1eft + 7,getInsets().top + 150,84,19);  
label5 -new Label( "WIP (Units)");  
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label5.setFont(font);  
labe15.setBackground(c);  
add(label5);  
label5.setBounds(getlnsets() left + 98,getInsets().top + 98,126,19);  
label6 -new Label("Cycle Time (Hours)");  
labe16.setFont(font);  
labe16.setBackground(c);  
add(label6);  
labe16.setBounds(getInsets().left + 98,getlnsets().top + 124,126,19);  
labe17new Label("Throughput (Units/Hour)");  
labe17.setFont(font);  
labe17.setBackground(c);  
add(label7);  
labe17.setBounds(getInsets().1eft + 98,getInsets().top + 150,154,19);  
labelenew Label("Current Simulation Time:");  
labe18.setFont(font);  
labe18.setBackground(c);  
add(label8);  
labele.setBounds(getInsets().1eft + 336,getInsets().top + 182,140,20);  
simTimeDisplay -new TextField(10);  
simTimeDisplay.setFont(font);  
add(simTimeDisplay);  
simTimeDisplay.set8ounds(getInsets().1eft + 490,getInsets().top + 182,84,20);  
nameFieldnew TextField(43);  
nameField.setFont(sysfont);  
add(nameField);  
nameField.setBounds(getInsets().1eft + 203,getInsets().top + 7,357,26);  
codebaseField=new TextField(43);  
codebaseField.setFont(sysfont);  
add(codebaseField);  
codebaseField.setBounds(getInsets().1eft + 203,getInsets().top + 39,357,26);  
button5..new Button("Reset");  
button5.setFont(font);  
add(button5);  
button5.setBounds(getInsets().1eft + 362,getInsets().top + 442,91,26);  
checkl-new Checkbox("Trace Off");  
checkl.setFont(font);  
checkl.setBackground(c);  
add(checkl);  
checkl.setBounds(getInsets().1eft + 7,getInsets().top + 182,77,19);  
eventDelay -new TextField(7);  
eventDelay.setFont(font);  
add(eventDelay);  
eventDelay.set8ounds(getInsets().1eft + 233,getInsets().top + 182,63,20);  
label4new Label("Event Delay (ms) ");  
label4.setFont(font);  
labe14.setBackground(c);  
add(label4);  
labe14.setBounds(getInsets().1eft + 121,getInsets().top + 182,112,13);  
runLengthField=new TextField(10);  
runLengthField.setFont(font);  
add(runLengthField);  
runLengthField.setBounds(getInsets().1eft + 490,getInsets().top + 91,84,20);  
labe19..new Label("Run Length (Hours):");  
labe19.setFont(font);  
labe19.setBackground(c);  
add(label9);  
labe19.setBounds(getInsets().1eft + 350,getInsets().top + 91,115,20);  
//))  

// Other inits  
nameField.setText("ExposeS1000");  
codebaseField.setText("ftp://imesupport.ie.orst.edu/NCSOS/");  
eventDelay.setText("500");  
runLengthField.setText("10000");  

public boolean processEvent(Event evt) (  

if (evt.idEvent.NINDOW_DESTROY) System.exit(0);  
return super.handleEvent(evt);  

public boolean action(Event evt, Object arg) {  

1 
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if (arg.equals("Start")) (  

if (simMaster == null)  
prestart();  
simMaster - new SimMaster(this,runLength);  
simMaster.start();  

1  

if (arg.equals("Pause"))  
if ( simMaster != null)  

simMaster.suspend();  
1  

if (arg.equals("Resume")) {  

if (simMaster != null) (  

simMaster.resume();  

)  

if (arg.equals("Reset"))  
if (simMaster != null) (  

reset();  

)  

if (arg.equals( "Quit "))  
System. exit (0) ;  

)  

else return super.action(evt,arg);  
return true;  

private void prestart()  
name = nameField.getText();  
codebase = codebaseField.getText();  
runLength = Float.value0f(runLengthField.getText()).floatValue();  
ClassSaver.saveRemoteClass(name,codebase);  
RemoteLoader.setClassName(name);  

// printEvent("Successfully Loaded: "+name+"\nFrom:"+codebase+"\n");  

public int getDelay()  
if (checkl.getState()) {  

eventDelayValue = 0;  
return eventDelayValue;  

)  

eventDelayValue = Integer.value0f(eventDelay.getText()).intValue();  
if (eventDelayValue <= 0) eventDelayValue = 500;)  
return eventDelayValue;  

public static void printSimTime(String s)  
simTimeDisplay.setText(s);  

public static void updateScreenStatistics(String wip,String tp,String ct) (  

wipDisplay.setText(wip);  
throughputDisplay.setText(tp);  
cycleTimeDisplay.setText(ct);  

1  

public void printEvent(String s) {  

if (!checkl.getState()) {  

eventDisplay.append(s);  
if (eventDisplay.getText().1ength() > 10000) (  

eventDisplay.replaceRanger",0,(eventDisplay.getText().1ength()/2));  

) 

public void printError(String s) (  

eventDisplay.append(s);  
simMaster.suspend();  

1  

public static void main(String(J args)  
Frame f - new SimApplication();  
f.setTitle("NCSOS Simulation Module");  
f.setSize(600,530);  
Color c = new Color(192,192,192);  
f.setBackground(c);  
f.show();  
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private void reset()  
simMaster.suspend();  
simMaster.reset();  
simMaster.stop();  
simMaster null;  
eventDisplay.replaceRange("",0,(eventDisplay.getText().1ength()));  
wipDisplay.setText("0");  
throughputDisplay.setText("0");  
cycleTimeDisplay.setText("0");  
simTimeDisplay.setText("0");  
eventDelay.setText("500");  
checkl.setState(false);  

//((DECLARE CONTROLS  
static TextArea eventDisplay;  
Button buttonl;  
Button button2;  
Button button3;  
Button button4;  
Label labell;  
Label label2;  
Label label3;  
static TextField wipDisplay;  
static TextField cycleTimeDisplay;  
static TextField throughputDisplay;  
Label label5;  
Label label6;  
Label label7;  
Label label8;  
static TextField simTimeDisplay;  
static TextField nameField;  
static TextField codebaseField;  
Button button5;  
Checkbox checkl;  
TextField eventDelay;  
Label label4;  
TextField runLengthField;  
Label label9;  
/ /}}  
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SimEventjava 

import java.lang.reflect.Method;  

class SimEvent { // the base Simulation Event  

// Data fields of this class  
private float time; // delta time the event is int he future  
private Entity eventEntity; //the entity the event is assoc. with  
protected Workstation eventWorkstation;  
protected String eventMethodName;  
protected Method eventMethod;  

//Constructor 1  
public SimEvent(float t, Entity ent, Workstation ws, Method msg) (  

time = t;  
eventEntity = ent;  
eventWorkstation = ws;  
eventMethod = msg;  
eventMethodName = toString(msg);  

)  

//Constructor 2 - no entity  
public SimEvent(float t, Workstation ws, Method msg)  

time = t;  
// eventEntity = null;  

eventWorkstation = ws;  
eventMethod = msg;  
eventMethodName = toString(msg);  

) 

// Methods  
public Method getEventMethod()  

return eventMethod;  
)  

public Workstation getEventWorkstation() {  

return eventWorkstation;  
}  

public Entity getEventEntity() {  

return eventEntity;  

public float getEventTime()  I  
return time;  

1  

public void setEventTime(float absTime) {  

time = absTime;  
} 

public String getEventMethodName()  I  
return eventMethodName;  

1  

public String getEventWorkstationName() (return  
eventWorkstation.getWorkstationName();)  

public int getEventEntityId() (  

return eventEntity.getId();  
)  

private String toString(Method msg) (  

String str = msg.toString();  
int s = str.indexOf( ". ");  
int e = str.index0f("(");  
str = str.substring(s+1,e);  
return str;  
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SimMaster.iava 

import jgl. *;  
import java.lang.reflect.Method;  
/**  

* The "Simulation Manager." Coordinates and delegates the simulation  
* environment.  
* @author Kurt Colvin  
*/  

public class SimMaster extends Thread {	 // the manager of the simulation  
// Data fields of this class  
private static SimApplication ui; // ref back to the SimApplication  
private static float simTime; // the simulation clock  
private static jgl.DList fel; //the future events lists  
private static SimModel fab; // the semiconductor fab. model  
private static Creator entityCreator;  
private static int delay = 100;//delay between events  
private static SystemStatistics systemStatistics;  
private float runLength; //length of simulation run 
/**  

* Initializes the thread, creates a reference back to the  
* User Interface, creates the Future Events List, creates the  
* simulation model, creates the entity creator, and sets the SimTime  
* to zero.  
* @param sa The reference back to the SimApplication (User Interface).  
*/  

public SimMaster(SimApplication sa, float rl) { // Constructor  
super(); // init the thread  
ui = sa;  
fel = new jgl.DList(); // create the fel  
fab = new SimModel(); // create the model  
systemStatistics = new SystemStatistics(); // create the SystemStats  
entityCreator = new Creator(this); // The entity creator for the whole model  
simTime = 0; //set simTime to zero  
runLength = rl;  

/**  

* The main loop for the simulation run. Will execute until  
* the run length has been reached, or there are no more events  
* in the future events list  
*/  

public void run() { //Run the Thread  
ui.printEvent("Push the \"Resume\" Button to continue.\n");  
this.suspend();  
printEvent("Starting Simulation:");  
for(int i=1;i<20;i++) {  

newEntityIn((float)0);// start sim with a few entities  

// while(!fel.isEmpty()) {  

while(simTime < runLength) (  

delay = ui.getDelay();  
if (fel.isEmpty()) (  

printEvent(new String("Nothing in fel \n"));  

SimEvent nextEvent = (SimEvent)fel.popFront(); //get the next event  
printEvent(nextEvent);  
simTime = nextEvent.getEventTime(); // set the simTime  
SimApplication.printSimTime(String.value0f(simTime)); // print the simTime to  

the appliation  
Workstation eventWorkstation = (Workstation)nextEvent.getEventWorkstation();  

// get the WS  
Object[] args = new Object[1];  
args[0] = nextEvent.getEventEntity();  
if (args[0] == null) (args[0] = new Object();)  
Method eventMethod = null;  
try ( eventMethod = nextEvent.getEventMethod();)  
catch (NullPointerException e) (  

System.out.println("From SimMaster: Caught NullPointerExcpetion:  
"+e.getMessage());  

// System.out.println( "From SimMaster:Calling:  
"+eventMethod+^("+eventWorkstation+w,"+args[0]+")");  

try {  
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eventMethod.invoke(eventWorkstation,args);  

catch (NullPointerException e) (  

System.out.println("from invoke+e.getMessage());  
) catch (IllegalAccessException e)  

System.out.println("From SimMaster: Caught IllegalAccessException:  
"+e.getMessage());  

} catch (IllegalArgumentException e) (  

System.out.println("From SimMaster: Caught IllegalArgumentException:  
n+e.getMessage());  

) catch (java.lang.reflect.InvocationTargetException e) {  

System.out.println("From SimMaster: Caught InvocationTargetException:  
"+e.getMessage());  

// System.out.println("Return from invoke");  
try {  

// Thread.yield();  
Thread.sleep(delay);  

catch (java.lang.InterruptedException e) {}  

1  

ui.printEvent( " \nEnd of Simulation");  
fab.reportFinalStatistics();  

/**  

* Schedules the events in the correct order into the future event list.  
* param newEvent The new event to be scheduled. 
*/  

public static void scheduleEvent(SimEvent newEvent) { //insert the event into fel  
newEvent.setEventTime(simTime + newEvent.getEventTime()) ;//convert to abs time  
// if fel is empty, just add the event to the front  
if (fel.isEmpty()) {  

fel.pushBack(newEvent);  
return;  

)  

// Do some error checking to make sure we don't schedule an event in the past  
SimEvent firstEvent = (SimEvent)fel.front();  
if (newEvent.getEventTime() < simTime) (  

String error = new String("Can't schedule an Event in the Past! \n");  
SimMaster.printError(error);  
return;  

)  

// iterate through the fel until the time of the newEvent is less than or equal to  
// the currentEvent. When this is true, we're in the right spot, so insert the  
// event into that location.  
DListlterator i = fel.begin();  
while (i.hasMoreElements()) {  

SimEvent currentEvent = (SimEvent)i.get();  
if (newEvent.getEventTime() <= currentEvent.getEventTime()) {  

fel.insert(i,newEvent); // insert here.  
return;  

i.advance(); // otherwise advance iterator.  
)  

// if you get here, EventTime is more than all others, so add to end  
fel.pushBack(newEvent);  

/**  

* Asks the SystemStatistics object to return the SystemStatistics object  
*/  

public static SystemStatistics getSystemStatisticsObject() (return systemStatistics;} 
/**  

* Asks the SimModel object to return a workstation at a certain location.  
*/  

public static Workstation workstationAtPosition(int n)  I  

return fab.workStationAtPosition(n);  
1  

/**  

* Returns the current Simulation Time.  
*/  

public static float getSimTime() (return simTime;}  
/**  

* Creates a String from an event, and passes it to the User Interface  
* Wparam evt The SimEvent to be printed.  
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*/  

public static void printEvent(SimEvent evt) { // time, entity,method, workstation  
int id;  
try id = evt.getEventEntityId();  

catch (NullPointerException e) {  

id = 0;  
}  

if (id == 0) (  

ui.printEvent(""+evt.getEventTime()+" "+evt.getEventMethodName()+" on "  
+evt.getEventworkstationName()+"\n");  

else (  
ui.printEvent(""+evt.getEventTime()+" Entity: "+evt.getEventEntityId0+  

" "+evt.getEventMethodName()+" on  
"+evt.getEventWorkstationName()+"\n");  

/**  

* Just passes a string onto the User Interface  
*@param s The String to be forwarded. 
*/  

public static void printEvent(String s) {ui.printEvent("\t"+s+"\n");}  
/**  

* Passes a String onto the User Interface. The execution will be halted as a result  
* of some error occurring.  
*@param error The string to be forwarded. 
*/  

public static void printError(String error) (ui.printError(error);)  
/**  

* Passes on 3 strings to the User Interface.  
*@param wip The NIP value.  
*@param tp The Throughput value.  
*@param ct The Cycle Time Value. 
*/  

public static void updateScreenStatistics(String wip,String tp,String ct)  
ui.updateScreenStatistics(wip,tp,ct);  

}  

/**  

* Passes a request for a newly created Entity to the entityCreator object.  
*@param dt The delay before the new entity will be scheduled for arrival to the  

system. 
*/  

public static void newEntityIn(float dt) (entityCreator.newEntityIn(dt);)  
public static void newEntity() (entityCreator.newEntity();)  
/**  

* Passes a request to the SimModel object to get a reference to a workstation  
* at a certain location.  
*@return The workstation at the index.  
*/  
public Workstation getArrivalLocation(){  

return fab.getArrivalLocation();  
}  

/**  

* Sends the updateWlP request to the SystemStatistics Object. 
*/  

public static void updateWlP(int i)  
systemStatistics.updateWIP(i);  

)  

public float getWIP()  
return systemStatistics.getWIP();  

)  

/**  

* Resets the application so a new run can be performed.  
*1  

public static void reset() ( //used to clear all variables  
Entity.reset();  
simTime = 0;  
fab = null;  
fel = null;  
entityCreator = null;  

) 
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SimModeLjava 

import jgl.DList;  
class SimModel ( // the Model representing the Fab  

// Data fields of this class  
private ArrivalLocation arrival;  
private ApplyWorkstation workstationl;  
private RemoteWorkstation workstation2;  
private DevelopWorkstation workstation3;  
private BakeWorkstation workstation4;  
private DepositWorkstation workstation5;  
private EtchWorkstation workstation6;  
private TestWorkstation workstation7;  
private TerminationLocation terminate;  

private SystemStatistics systemStatistics;  
private DList workstationLayout;  

SimModel() { // Constructor  
//needed objects  
workstationLayout = new jgl.DList(); // the list of Workstation Objects, in order  
// add arrival Location  
arrival= new ArrivalLocation(); // interarrival time  
// define local workstations, must be in order.  
workstationl = new ApplyWorkstation();  
//define the remote workstation  
workstation2 = (RemoteWorkstation)RemoteLoader.loadWorkstation();  
if (workstation2 == null)  

SimMaster.printEvent("Did NOT Successfully Load Workstation\n ");  
SimMaster.printEvent("Please push \"Reset\" and enter a valid Name and  

URL\n");  
) else (SimMaster.printEvent("Successfully Loaded Workstation\n");)  
//then the rest of the local workstations  
workstation3 = new DevelopWorkstation();  
workstation4 = new BakeWorkstation();  
workstation5 = new DepositWorkstation();  
workstation6 = new EtchWorkstation();  
workstation7 = new TestWorkstation();  

// Finally Add Terminate Location  
terminate = new TerminationLocation();  
// Build workstationLayout  
workstationLayout.pushBack(arrival);//put ws in list  
workstationLayout .pushBack(workstationl); / /put ws in list  
workstationLayout.pushBack(workstation2);//put ws in list  
workstationLayout.pushBack(workstation3);//put ws in list  
workstationLayout .pushBack(workstation4); / /put ws in list  
workstationLayout.pushBack(workstation5);//put ws in list  
workstationLayout.pushBack(workstation6)://put ws in list  
workstationLayout.pushBack(workstation7)://put ws in list  

workstationLayout.pushBack(terminate);//put ws in list  
1  

I public void scheduleEvent(SimEvent evt)  
SimMaster.scheduleEvent(evt);  

// Workstation methods  
public Workstation getArrivalLocation() (return arrival;}  
public Workstation workStationAtPosition(int n)  

return (Workstation)workstationLayout.at(n);  

// Final Statistics  
public void reportFinalStatistics()  

workstation). reportFinalStatistics();  
workstation2. reportFinalStatistics();  
workstation3. reportFinalStatistics();  
workstation4. reportFinalStatistics();  
workstation5. reportFinalStatistics();  
workstation6.reportFinalStatistics();  
workstation7.reportFinalStatistics();)1  
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SystemStatisticsjava 

class SystemStatistics I // keeps track of system stats  

// Observation Based Statictics  
// Time in System/Cycle Time vaiables  
private float averageTimeInSystem = 0;  
private float cumulativeTimeInSystem = 0;  
private int numberOfEntitiesExited = 0;  
private float sum0fTimeInSystemDeviationsSquared = 0;  
private float timeInSystemNin = 0;  
private float timeInSystemMax = 0;  
// Throughput Variables  
private float averageThroughput = 0;  
private float currentThroughput = 0;  
private float cumulativeThroughput = 0;  
private float sumOfThroughputDeviationsSquared = 0;  
private float throughputMin = 0;  
private float throughputMax = 0;  
// Time-Based Statistics  
// WIP  
private float currentWlP = 0;  
private float tLast = 0; // Time of Last observation  
private float averageWlP = 0;  
private float cumulativeWIP = 0;  
private float sumOfWlPDeviationsSquared = 0;  
private float WIPMax - 0;  
private float WIPMin = 0;  
// Other Variables  
SystemStatistics() { // Constructor  

// Methods  
public void updateStatistics()  

String wp = new String( "" +currentWlP + " ");  
String tp = new String(""+averageThroughput+"");  
String ct = new String ( " " +averageTimelnSystem + " ");  
SimMaster.updateScreenStatistics(wp,tp,ct);  

public void recordMyStatistics(float tis) {  

numberOfEntitiesExited++;  
// Cycle Time  
cumulativeTimelnSystem = cumulativeTimelnSystem + tis;  
averageTimelnSystem = cumulativeTimelnSystem / numberOfEntitiesExited;  

double tisdiff = averageTimelnSystem - tis;  
sum0fTimeInSystemDeviationsSquared (float)Math.pow(tisdiff,2) +  

sumOfTimelnSystemDeviationsSquared;  
timelnSystemMin = Math.min(tis,timeInSystemNin);  
timelnSystemMax = Math.max(tis,timeInSystemMax);  
// Throughput  
averageThroughput = numberOfEntitiesExited/SimMaster.getSimTime();  

/* currentThroughput = numberOfEntitiesExited/SimMaster.getSimTime();  
cumulativeThroughput = currentThroughput + cumulativeThroughput;  
averageThroughput = cumulativeThroughput/numberOfEntitiesExited;  

double tpdiff = averageThroughput - currentThroughput;  
sumOfThroughputDeviationsSquared = (float)Math.pow(tpdiff,2) +  

sumOfThroughputDeviationsSquared;  
throughputMin = Math.min(currentThroughput,throughputMin);  
throughputMax = Math.max(currentThroughput,throughputMax);  

// Update the screen  
updateStatistics();  

//Time-Based WIP  
public void updateWlP(int n) ( // adds or subtracts WIP  

currentWlP = currentWlP + n;  
float dt = SimMaster.getSimTime() - tLast;  
cumulativeWlP = (currentWlP *,dt) + cumulativeW/P;  
averageWlP = cumulativeWIP/SimMaster.getSimTime();  

double WlPdiff = averageWlP - currentWlP;  
sumOMPDeviationsSquared = (float)Math.pow(WIPdiff,2) +  

sumOMIPDeviationsSquared;  
WIPMin = Math.min(currentWIP,WIPMin);  
WIPMax = Math.max(currentWIP,WIPMax);  
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tLast SimMaster.getSimTime(),  
updateStatistics():  

public float getWIP()  I  
return currentWlP;  
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TerminationLocationjava 

class TerminationLocation extends Workstation ( // Exit Point  

// Data fields of this class  
private float dt = 0; //used to schedule events  
private int servers; // number of servers in this workstation  

//Constructor  
TerminationLocation() {  

super();  
workstationName = new String("Termination Location ");  

// Methods  
public void arrive(Entity ent) (  

// create the next entity  
SimMaster.newEntity(); // create next entity  
// Collect stats  
SimMaster.printEvent("Entity "+ent.getId()+" Collecting Statistics");  
ent.recordMyStatistics():  
SimMaster.updateWIP(-1);  
super.arrive(ent);  

public void depart(Entity ent) (  

//Entity exits the System  
SimMaster.printEvent("Entity "+ent.getId()+" Exited the System");  

) 
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Workstation Java 

import java.awt.*;  
import java.lang.reflect.Method;  
/**  

* The Abstract Workstation Class.  
* Defines the basic behavior of a workstation.  
*  

* @author Kurt Colvin  
* @see RemoteWorkstation  
*/  

public class Workstation 
/**  

* The String that describes the workstation.&nbsp  
* Assigned when an instance of a subclass is created. 
*/  

protected String workstationName; // name of workstation  
/**  

* An array of Class Objects. Used for internal method calls 
*/  

protected Class() args; // an array of classes 
/**  

* An array of Class Objects. Used for internal method calls 
*/  

protected Class() nullargs; // an array of classes 
/**  

* A java.lang.reflect.Method Object. Used for internal method calls  
* @see java.lang.reflect.Method  
*/  

protected Method msg; 
/**  

* A java.awt.TextArea to write statistics to  
*  

* @see java.awt.TextArea 
*/  

private TextArea out; //state output 
/**  

* The constructor for the Workstation class.  
* Gets called when a subclass is created.  
* Basically sets up the internal data fields for  
* method processing.  
* 1  

public Workstation() // Constructor  
// java.lang.reflect related stuff  
args = new Class[1];  
nullargs = new Class[1];  
try (  

args[0] = Class.forName("Entity");  
nullargs[0] = Class.forName("java.lang.Object");  

) catch (ClaasNotFoundException e) 1)  

workstationName = null; // will be assigned in each subclass  

/**  

* An arrive method that will be called if the subclass  
* does not define its own "arrive" method. This method  
* schedules an "depart" event in 0 time.  
* @param ent the Entity that is associated with the "arrive event." 
*/  

public void arrive(Entity ent)  
float dt = 0;  
try (  

nag = this.getClass().getMethod("depart",args);  
) catch (NoSuchMethodException e) (  

System.out.println("From Workstation:arrive() NoSuchMethodException:  
"+e.getMessage());  

SimMaster.scheduleEvent(new SimEvent(dt,ent,this,msg));  

/**  

* A depart method that will be called if the subclass  
* does not define its own "depart" method. This method  
* schedules an "arrive" event on the next workstation in in 0 time.  
*  
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* @param ent the Entity that is associated with the "arrive event." 
*/  

public void depart(Entity ent) (  

float dt = 0;  
Workstation nextWorkstation = ent.getNextWorkstation();  
try (  

msg = nextWorkstation.getClass().getMethod("arrive",args);  
catch (NoSuchMethodException e)  I  
System.out.println("From Workstation: depart() NoSuchMethodException:  

"+e.getMessage());  
1  

SimMaster.scheduleEvent(new SimEvent(dt,ent,nextWorkstation,msg));  

/**  

* Attempts to schedule the event on the future events list. The subclasses  
* will pass the parameters for an event to this method, and this method  
* will create a new event (from the parameters) and pass the event to the  
* SimMaster object.  
*  

* @param dt The duration of time the event will be scheduled in the future  
* @param ent The Entity associated with the event.  
* @param method The String name of the type of event to be scheduled.  
*/  

protected void scheduleEvent(float dt, Entity ent, String method)  
try  

msg = this.getClass().getMethod(method,args);  
catch (NoSuchMethodException e)  
System.out.println("From Workstation: scheduleEventl() NoSuchMethodException:  

"+e.getMessage());  

SimMaster.scheduleEvent(new SimEvent(dt,ent,this,msg));  
1  

// schedule an event that is not associated with an entity 
/**  

* Attempts to schedule the event on the future events list. The subclasses  
* will pass the parameters for an event to this method, and this method  
* will create a new event (from the parameters) and pass the event to the  
* SimMaster object.  
*  

* @param dt The duration of time the event will be scheduled in the future  
* @param method The String name of the type of event to be scheduled. 
*/  

protected void scheduleEvent(float dt,String method)  
try I  

msg = this.getClass().getMethod(method,nullargs);  
catch (NoSuchMethodException e)  
System.out.println("From Workstation: scheduleEvent2() NoSuchMethodException:  

"+e.getMessage());  

1 1  

SimMaster.scheduleEvent(new SimEvent(dt,this,msg));  

/**  

* A simple method to return the String that describes the Workstation.  
*  

* @return The desired String.  
*/  

public String getWorkstationName() (return workstationName;) 
/**  

* Prints a string to the Statistics Window  
*  

* @param s The String to print.  
*/  

protected void printStat(String s)  
out.append(s+"\n");  

/**  

* Creates a Frame to output statistics.  
*  

* @param s The Name of the Frame.  
*/  

protected void makeStatisticsWindow(String s) {  

Frame f = new Frame(s);  
f.setLocation(400,200);  
f.setSize(500,200);  
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f.setResizable(false);  
out new TextArea(5,54);  
f.add(out);  
out.setBounds(f.getInseta().1eft,f.getInsets().top ,490,190);  
f.show();  
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APPENDIX B: Java Local Workstation Class Definitions 

ApplyWorkstationjava 

import jgl.DList;  

class ApplyWorkstation extends Workstation ( // First workstation  

// Data fields  
private float processingTime; //processing delay  
private int servers; // number of servers in this workstation  
private DList queue; // a FIFO queue  
float inUse; //status of server  
float startService; //start of service  
//Constructor  
ApplyWorkstation() (  

super();  
workstationName = new String("Apply Workstation");  
servers = 1;  
queue = new DList();  
inUse = 0;  
startService 0;  

)  

public void arrive(Entity ent)  
queue.pushBack(ent); // put entity into queue  
super.scheduleEvent(0,"load");  

)  

public void load(Object obj) ( // dummy object  
if (servers == 0)  

SimMaster.printEvent("Server Not Available: Put into Queue.");  
return;  

)  

if (queue.isEmpty()) {  

SiMMaster.printEvent("Nothing in Queue.");  
return;  

}  

// Otherwise, load the entity  
servers--;  
startService = SimMaster.getSimTime();  
Entity ent = (Entity)queue.popFront(); // get the first entity in queue  
float dt = ent.getProcessingTime();  
super.scheduleEvent(dt,ent,"unload");  

public void unload(Entity ent)  
servers++;  
inUse = inUse + (SimMaster.getSimTime() - startService);  
super.scheduleEvent(0,"load"); // check the queue  
super.scheduleEvent(0,ent,"depart");  

)  

public void reportFinalStatistics() (  

super.makeStatisticsWindow("Apply Workstation Final Statistics");  
super.printStat("The server Utilization was: "+inUse/SimMaster.getSimTime());  
super.printStat("The current Number in Queue was:"+queue.size());  

} 
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1 

BakeWorkstation.java 

import jgl.DList;  

class BakeWorkstation extends Workstation { // First workstation  

// Data fields  
private float processingTime; //processing delay  
private int servers; // number of servers in this workstation  
private DList queue; // a FIFO queue  
float inUse; //status of server  
float startService; //start of service  
//Constructor  
Bake Workstation() (  

super();  
workstationName - new String("Bake Workstation");  
servers = 1;  
queue = new DList();  
inUse = 0;  
startService = 0;  

public void arrive(Entity ent) (  

queue.pushBack(ent); // put entity into queue  
super.scheduleEvent(0,"load");  

public void load(Object obj) { // dummy object  
if (servers == 0) {  

SimMaster.printEvent("Server Not Available: Put into Queue.");  
return;  

1  

if (queue.isEmpty()) {  

SimMaster.printEvent("Nothing in Queue.");  
return;  

}  

// Otherwise, load the entity  
servers--;  
startService = SimMaster.getSimTime();  
Entity ent = (Entity)queue.popFront(); // get the first entity in queue  
float dt = ent.getProcessingTime();  
super.scheduleEvent(dt,ent,"unload");  

public void unload(Entity ent)  
servers++;  
inUse = inUse + (SimMaster.getSimTime() - startService);  
super.scheduleEvent(0,"load"); // check the queue  
super.scheduleEvent(0,ent,"depart");  

public void reportFinalStatistics() {  

super.makeStatisticsWindow("Bake Workstation Final Statistics");  
super.printStat("The server Utilization was: "+inUse/SimMaster.getSimTime());  
super.printStat("The current Number in Queue was:"+queue.size());  

}  
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DepositWorkstation.java 

import jgl.DList;  

class DepositWorkstation extends Workstation // First workstation  

// Data fields  
private float processingTime; //processing delay  
private int servers; // number of servers in this workstation  
private DList queue; // a FIFO queue  
float inUse; //status of server  
float startService; //start of service  
//Constructor  
DepositWorkstation() (  

super();  
workstationName = new String("Deposit Workstation");  
servers = 1;  
queue = new DList();  
inUse = 0;  
startService = 0;  

public void arrive(Entity ent)  
queue.pushBack(ent); // put entity into queue  
super.scheduleEvent(0,"load");  

1  

public void load(Object obj) { // dummy object  
if (servers == 0) {  

SimMaster.printEvent("Server Not Available: Put into Queue.");  
return;  

if (queue.isEmpty()) {  

Sinedaster.printEvent("Nothing in Queue.");  
return;  

}  

// Otherwise, load the entity  
servers--;  
startService = SimNaster.getSimTime();  
Entity ent = (Entity)queue.popFront(); // get the first entity in queue  
float dt = ent.getProcessingTime();  
super.scheduleEvent(dt,ent,"unload");  

}  

public void unload(Entity ent) (  

servers++;  
inUse = inUse + (SimMaster.getSimTime() - startService);  
super.scheduleEvent(0,"load"); // check the queue  
super.scheduleEvent(0,ent,"depart");  

public void reportFinalStatistics()  
super.makeStatisticsWindow( "Deposit Workstation Final Statistics");  
super.printStat("The server Utilization was: "+inUse/SimNester.getsimTime());  
super.printStat("The current Number in Queue was:"+queue.size());  

1 
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DevelopWorkstationjava 

import jgl.DList;  

class DevelopWorkstation extends Workstation {  

// Data fields of this class  
private float processingTime; //processing delay  
private int servers; // number of servers in this workstation  
private DList queue; // a FIFO queue  
float inUse; //status of server  
float startService; //start of service  
//Constructor  
DevelopWorkstation() {  

super();  
workstationName = new String("Develop Workstation");  
servers = 1;  
queue = new DList();  
inUse = 0;  
startService = 0;  

1  

public void arrive(Entity ent) (  

queue.pushBack(ent); // put entity into queue  
super.scheduleEvent(0,"load");  

1  

public void load(Object obj) { // dummy object  
if (servers == 0) (  

SimMaster.printEvent( "Develop Server Not Available: Put into Queue.");  
return;  

if (queue.isEmpty()) {  

SimMaster.printEvent( "Nothing in Develop Queue.");  
return;  

// Otherwise, load the entity  
servers--;  
startService = SimNaster.getSimTime();  
Entity ent = (Entity)queue.popFront(); // get the first entity in queue  
float dt = ent.getProcessingTime();  
super.scheduleEvent(dt,ent,"unload");  

)  

public void unload(Entity ent) {  

servers++;  
inUse = inUse + (SimNaster.getSimTime() - startService);  
super.scheduleEvent(0,"load"); // check the queue  
super.scheduleEvent(0,ent,"depart");  

)  

public void reportFinalStatistics() (  

super.makeStatisticsWindow(workstationName+" Final Statistics");  
super.printStat("The server Utilization was: "+inUse/SimNaster.getSimTime());  
super.printStat("The current Number in Queue was:"+queue.size());  

}  



144 
EtchWorkstation.java 

import jgl.DList;  

class EtchWorkstation extends Workstation ( // First workstation  

// Data fields  
private float processingTime; //processing delay  
private int servers; // number of servers in this workstation  
private DList queue; // a FIFO queue  
float inUse; //status of server  
float startService; //start of service  
//Constructor  
EtchWorkstation()  I  

super();  
workstationName = new String("Etch Workstation");  
servers = 1;  
queue = new DList();  
inUse = 0;  
startService = 0;  

public void arrive(Entity ent)  
queue.pushliack(ent); // put entity into queue  
super.scheduleEvent(0,"load");  

1  

public void load(Object obj) ( // dummy object  
if (servers == 0)  

SimMaster.printEvent("Server Not Available: Put into Queue.");  
return;  

1  

if (queue.isEmpty())  
SimMaster.printEvent("Nothing in Queue.");  
return;  

// Otherwise, load the entity  
servers--;  
startService = SimMaster.getSimTime();  
Entity ent = (Entity)queue.popFront(); // get the first entity in queue  
float dt = ent.getProcessingTime();  
super.scheduleEvent(dt,ent,"unload");  

public void unload(Entity ent)  
servers++;  
inUse = inUse + (SimMaster.getSimTime() - startService);  
super.scheduleEvent(0,"load"); // check the queue  
super.scheduleEvent(0,ent,"depart");  

public void reportFinalStatistics() {  

super.makeStatisticsWindow("Etch Workstation Final Statistics");  
super.printStat("The server Utilization was: "+inUse/SisaMaster.getSimTime());  
super.printStat("The current Number in Queue was:"+queue.size());  

1  

} 
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TestWorkstation Java 

import jgl.DList;  

class TestWorkstation extends Workstation { // First workstation  

// Data fields  
private float processingTime; //processing delay  
private int servers; // number of servers in this workstation  
private DList queue; // a FIFO queue  
float inUse; //status of server  
float startService; //start of service  
//Constructor  
TestWorkstation() {  

super();  
workstationName - new String("Test Workstation");  
servers - 1;  
queue - new DList();  
inUse - 0;  
startService - 0;  

public void arrive(Entity ent) (  

queue.pushBack(ent); // put entity into queue  
super.scheduleEvent(0,"load");  

public void load(Object obj) ( // dummy object  
if (servers == 0) (  

SimMaster.printEvent("Server Not Available: Put into Queue.");  
return;  

)  

if (queue.isEmpty()) {  

SimMaster.printEvent("Nothing in Queue.");  
return;  

}  

// Otherwise, load the entity  
servers--;  
startService - SimMaster.getSimTime();  
Entity ent - (Entity)queue.popFront(); // get the first entity in queue  
float dt - ent.getProcessingTime();  
super.scheduleEvent(dt,ent,"unload");  

)  

public void unload(Entity ent)  
servers++;  
inUse = inUse + (SimMaster.getSimTime() - startService);  
super.scheduleEvent(0,"load"); // check the queue  
super.scheduleEvent(0,ent,"depart");  

)  

I public void reportFinalStatistics()  
super.makeStatisticsWindow("Test Workstation Final Statistics");  
super.printStat("The server Utilization was: "+inuse/SimMaster.getSimTime());  
super.printStat("The current Number in Queue was:"+queue.size());  

) 
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APPENDIX C: Java Expose Workstation Class Definition 

ExposeWorkstation.java 

import jgl.DList; // a linked-list from the Java Generic Library  

// the name of the class is upto the analyst.  
// it is mandatory to extend Workstation and implement RemoteWorkstation  
class ExposeWorkstation extends Workstation implements RemoteWorkstation (  

// Data fields of this class  
private float processingTime; //processing delay  
private int servers; // number of servers in this workstation  
private DList queue; // a double linked-list from the jgl package  

// could use somethink like an Array also.  
float inUse; //status of server  
float startService; //start of service  

//Constructor  
ExposeWorkstation() {  

// init the Workstation object  
super();  
// give this a name  
workstationName = "Remote Expose Workstation";  
// number of servers in this workstation  
servers = 1;  
// create a queue to store entity waiting for processing  
queue = new DList();  
// status variable  
inUse = 0;  
// time marker  
startService = 0;  

)  

// Overrides the arrive method in the Workstation class.  
//Needed if any processing is going to be done at this workstation.  
public void arrive(Entity ent) (  

// put entity into queue  
queue.pushBack(ent);  
// schedule a load event in "0" time delay  
super.scheduleEvent(0,"load");  

)  

// Define a "load" event.  
// the parameter Object is a dummy. must be used if the event  
// is not Entity-related.  
public void load(Object obj) (  

if (servers == 0) (  

SimMaster.printEvent( "Expose Server Not Available: Put into Queue. ");  
return;  

)  

if (queue.isEmpty()) (  

SimNaster.printEvent("Nothing in Expose Queue. ");  
return;  

)  

// Otherwise, load the entity  
// decrement the servers avaiable.  
servers--;  
// mark start time  
startService - SimNaster.getSimTime();  
// get the first entity in queue  
Entity ent - (Entity)queue.popFront();  
Simblaster.printEvent("Successfully loaded Entity: 41"+ent.getId());  
// get the processing time from the entity  
float dt - ent.getProcessingTime();  
// schedule the unload event  
super.scheduleEvent(dt,ent,"unload");  

)  

// define the "unload" event  
// notice this is an "entity-related" method.  
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// the related entity is the parameter  
public void unload(Entity ent) (  

// increment the servers available.  
servers++;  
inUse - inUse + (SimMaster.getSimTime() - startService);  
// check the queue, non-entity related  
super.scheduleEvent(0,"load");  
//schedule a depart event immediately, entity related  
super.scheduleEvent(0,ent,"depart");  

1  

// No need to define the "depart" event here. Just let the super object  
// take care of sending the entity to the next workstation.  

public void reportFinalStatistics() { // called at the end of the run  
super.makeStatisticsWindow(workstationName+" Final Statistics");// (mandatory  

line)  
//report the collected stets in the following lines.  
super.printStat("The server Utilization was: "+inUse/SimNaster.getSimTime());  
super.printStat("The current Number in Queue was:"+queue.size());  
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APPENDIX D: Java ExposeS1000 Class Definition 

ExposeS1000.java 

import jgl.DList; // a linked-list from the Java Generic Library  

// the name of the class is upto the analyst.  
// it is mandatory to extend Workstation and implement RemoteWorkstation  
class ExposeS1000 extends Workstation implements RemoteNorkstation  

// Data fields of this class  
private float processingTime; //processing delay  
private int servers; // number of servers in this workstation  
private DList queue; // a double linked-list from the jgl package  

// could use somethink like an Array also.  
private float inuse; //utilization stat  
private boolean busy; //status variable  
private float startService; //start of service  
private Entity wafer; // wafer that the server is currently working on  

//Constructor  
ExposeS1000() (  

// init the Workstation object  
super();  
// give this a name  
workstationName - "Remote Expose S1000";  
// number of servers in this workstation  
servers = 1;  
// create a queue to store entity waiting for processing  
queue - new DList();  
// util stat  
inuse - 0;  
// status variable  
busy - false;  
// time marker  
startService = 0;  
// wafer that the server is currently working on  
wafer - null;  
// schedule first breakdown  
float dt - (float) (100 * Math.random());  
super.scheduleEvent(dt,"failure");  

// Overrides the arrive method in the Workstation class.  
//Needed if any processing is going to be done at this workstation.  
public void arrive(Entity ent)  

// put entity into queue  
queue.pushBack(ent);  
// schedule a load event in "0" time delay  
super.scheduleEvent(0,"tryToLoad");  

// Define a "TryToLoad" event.  
// the parameter Object is a dummy. must be used if the event  
// is not Entity-related.  
public void tryToLoad(Object obj)  

if (servers == 0)  
SimMaster.printEvent( "S1000 Server Not Available: Put into Queue.");  
return;  

if (queue.isEmpty())  I  
SimMaster.printEvent("Nothing in 51000 Queue.");  
return;  

// Otherwise, schedule a "load"  
// decrement the servers avaiable.  
servers--;  
busy - true;  
// mark start time  
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startService = SimMaster.getSimTime();  
// get the first entity in queue  
Entity ent = (Entity)queue.popFront();  
wafer = ent; // set the wafer currently being served  
SimMaster.printEvent("Will process Wafer: I) "+ent.getId());  
// load time is uniform(.16,.33) hours  
float dt = (float)(.16 + .16 * Math.random());  
// schedule the load event  
super.scheduleEvent(dt,ent,"load");  

// define the load event  
public void load(Entity ent)  1  

SimMaster.printEvent("S1000 Loaded Wafer: I "+ent.getId());  
// get the processing time from the entity  
float dt = ent.getProcessingTime();  
// schedule the unload event  
super.scheduleEvent(dt,ent,"unload");  

// define the "unload" event  
// notice this is an "entity-related" method.  
// the related entity is the parameter  
public void unload(Entity ent)  

SimMaster.printEvent("S1000 UnLoaded Wafer: I "+ent.getId());  
// increment the servers available.  
servers++;  
busy = false;  
wafer = null; //set the current wafer back to null  
inUse = inUse + (SimMaster.getSimTime() - startService);  
// check the queue, non-entity related  
super.scheduleEvent(0,"tryToLoad");  
// unload time is uniform(.16,.33) hours  
float dt = (float)(.16 + .16 * Math.random());  
super.scheduleEvent(dt,ent,"depart");  

// No need to define the "depart" event here. Just let the super object  
// take care of sending the entity to the next workstation.  

// unscheduled break down  
public void failure(Object obj)  

SimMaster.printEvent("Server Failure Ocurred on S1000");  
// SimMaster.printError("Push \"Resume\" to continue");  

// current entity get destroyed  
if (busy)  

// queue.pushFront(wafer);  
busy = false;  
SimMaster.printEvent("Wafer: "+wafer.getId()+"was destroyed");  
inUse = inUse + (SiMMaster.getSimTime() - startService);  

) else  
SimMaster.printEvent("Server was idle");  

// take the server out of service  
servers - 0;  
// schedule the returnToService time  
float dt = (float)(1 + Math.random());  

// System.out.println(dt);  
super.scheduleEvent(dt,"returnToService");  

// fixed and returned to service  
public void returnToService(Object obj) (  

SimMaster.printEvent("Server returned to service on S1000");  
//  SimMaster.printError("Push \"Resume\" to continue");  

servers - 1;  
super.scheduleEvent(0,"tryToLoad");  
// schedule next failure  
float dt = (float) (100 * Math.random());  

// System.out.println(dt);  
super.scheduleEvent(dt,"failure");  

public void reportFinalStatistics() ( // called at the end of the run  
super.makeStatisticsWindow(workstationName+" Final Statistics");// (mandatory  

line)  
//report the collected state in the following lines.  
super.printStat("The server Utilization was: "+inUse/SimMaster.getSimTime());  

http:float)(.16
http:uniform(.16,.33
http:float)(.16
http:uniform(.16,.33
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super.printStat( "The current Number in Queue wae:"+queue.eize()); 

) 
1 
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APPENDIX E: Java ExposeS2000 Class Definition 

ExposeS2000.java 

import jgl.DList; // a linked-list from the Java Generic Library  

// the name of the class is upto the analyst.  
// it is mandatory to extend Workstation and implement RemoteWorkstation  
class ExposeS2000 extends Workstation implements RemoteWorkstation  

// Data fields of this class  
private float processingTime; //processing delay  
private int servers; // number of servers in this workstation  
private DList queue; // a double linked-list from the jgl package  

// could use somethink like an Array also.  
private float inUsel; //utilization stat  
private boolean busyl; //status variable  
private float inUse2; //utilization stat  
private boolean busy2; //status variable  

private float startServicel; //start of service  
private Entity waferl; // wafer that the server is currently working on  
private float startService2; //start of service  
private Entity wafer2; // wafer that the server is currently working on  

//Constructor  
ExposeS2000()  

// init the Workstation object  
super();  
// give this a name  
workstationName "Remote Expose S2000";  
// number of servers in this workstation  
servers 2;  
// create a queue to store entity waiting for processing  
queue new DList();  
// util stat  
inUsel - 0;  
inUse2 - 0;  
// status variable  
busyl *. false;  
busy2 *. false;  
// time marker  
startServicel 0;  
startService2 0;  
// wafer that the server is currently working on  
waferl null;  
wafer2 null;  
// schedule first breakdown  
float dt (float) (60 * Math.randam());  
super.scheduleEvent(dt,"failurel");  
dt (float) (60 * Math.randam());  
super.scheduleEvent(dt,"failure2");  

// Overrides the arrive method in the Workstation class.  
//Needed if any processing is going to be done at this workstation.  
public void arrive(Entity ent) (  

// put entity into queue  
queue.puehBack(ent);  
// schedule a load event in "0" time delay  
super.scheduleEvent(0,"tryToLoad");  

// Define a "TryToLoad" event.  
// the parameter Object is a dummy. must be used if the event  
// is not Entity-related.  
public void tryToLoad(Object obj)  f  

if (servers == 0) {  

SimMaster.printEvent("S2000 Server Not Available: Put into Queue.");  
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return;  

)  

if (queue.isEmpty())  
SimMaster.printEvent("Nothing in 52000 Queue.");  
return;  

)  

// Otherwise, schedule a "load"  
// decrement the servers avaiable.  
servers--;  
// get the entity  
Entity ent - (Entity)queue.popFront();  
// set the busy boolean  
if(busyl) ( // going to use server 2  

busy2 -true;  
startService2 - SimMaster.getSimTime();  
wafer2 = ent; // set the wafer currently being served  
SimMaster.printEvent("Will process Wafer: # "+ent.getId()+" on Server 2");  

)  

else ( //going to usre server 1  
busyl -true;  
startServicel - SimMaster.getSimTime();  
waferl - ent; // set the wafer currently being served  
SimMaster.printEvent("Will process Wafer: # "+ent.getId()+" on Server 1");  

)  

// load time is uniform(.5,.66) hours  
float dt - (float)(.5 + .16 * Math.random());  
// schedule the load event  
super.scheduleEvent(dt,ent,"load");  

// define the load event  
public void load(Entity ent)  

SimMaster.printEvent("S2000 Loaded Wafer: # "+ent.getId());  
// get the processing time from the entity  
float dt - ent.getProcessingTime();  
// schedule the unload event  
super.scheduleEvent(dt,ent,"unload");  

1  

// define the "unload" event  
public void unload(Entity ent)  

// figure out which server this event is on  
if(ent == waferl)( //then we are working with server 1  

SimMaster.printEvent("S2000 UnLoaded Wafer: # "+ent.getId()+" from Server 1");  
// increment the servers available.  
servers++;  
busyl - false;  
waferl - null; //set the current wafer back to null  
inUsel - inUsel + (SimMaster.getSimTime() - startServicel);  

}else { // we are working with server 2  
SimMaster.printEvent("S2000 UnLoaded Wafer: # "+ent.getId()+" from Server 2");  
// increment the servers available.  
servers++;  
busy2 - false;  
wafer2 - null; //set the current wafer back to null  
inUse2 - inUse2 + (SimMaster.getSimTime() - startService2);  

)  

// check the queue, non-entity related  
super.scheduleEvent(0,"tryToLoad");  
// unload time is uniform(.66,1.0) hours  
float dt - (float)(.66 + .33 * Math.random());  
super.scheduleEvent(dt,ent,"depart");  

// No need to define the "depart" event here. Just let the super object  
// take care of sending the entity to the next workstation.  

// unscheduled break down on Server 1  
public void failurel(Object obj)  

SimMaster.printEvent("Server 1 Failure on S2000"); 
I SiMMaster.printError("Push \"Resume\" to continue"); 

// current entity get destroyed 
if (busyl) ( 

busyl - false;  
SimMaster.printEvent("Wafer: # "+waferl.getId()+"was destroyed");  
inUsel - inUsel + (SimMaster.getSimTime() - startServicel);  

http:float)(.66
http:uniform(.5,.66
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//  

line  
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) else  

SimMaster.printEvent("Server was idle");  
servers--;  

// schedule the returnToService time  
float dt (float)(1 + Math.randam());  
super.scheduleEvent(dt,"returnToService1");  

// unscheduled break down on Server  
public void failure2(Object obj) (  

SimMaster.printEvent("Server 2 Failure on S2000");  
SimMaster.printError("Push \"Resume\" to continue");  

// current entity get destroyed  
if (busy2)  

busy2 false;  
SimMaster.printEvent("Wafer: i "+wafer2.getId()+"was destroyed");  
inUse2 inUse2 + (SimMaster.getSimTime() - startService2);  

1 else  
SimMaster.printEvent("Server was idle");  
servers--;  

// schedule the returnToService time  
float dt (float)(1 + Math.randam());  
super.scheduleEvent(dt,"returnToService2");  

1  

// fixed and returned to service  
public void returnToServicel(Object obj)  

SimMaster.printEvent("Server 1 was returned to service on 52000");  
SimMaster.printError("Push \"Resume\" to continue");  

servers++;  
super.scheduleEvent(0,"tryToLoad");  
// schedule next failure  
float dt (float) (60 * Math.random());  
System. out.println(dt);  

super.scheduleEvent(dt,"failurel");  
1  

public void returnToService2(Object obj)  
SimMaster.printEvent("Server 2 was returned to service on S2000");  

SimMaster.printError("Push \"Resume\" to continue");  
servers++;  
super.scheduleEvent(0,"tryToLoad");  
// schedule next failure  
float dt - (float) (60 * Math.randam());  

System.out.println(dt);  
super.scheduleEvent(dt,"failure2");  

public void reportFinalStatistics() ( // called at the end of the run  
super.makeStatisticsWindow(workstationName+" Final Statistics");// (mandatory  

//report the collected stets in the following lines.  
super.printStat("The server 1 Utilization was: "+inUsel/SimMaster.getSimTime());  
super.printStat("The server 2 Utilization was: "+inUse2/SimMaster.getSimTime());  
super.printStat("The current Number in Queue was:"+gueue.size());  
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APPENDIX F: S1000 vs. S2000 Hypothesis Test 

Cycle Time Hypothesis Test Sample Size =5 

S1000 Average Cycle Time (x) 59.52900 
S1000 Average Cycle Time Sample Variance 0.00445 

S2000 Average Cycle Time (y) 50.38570 
S2000 Average Cycle Time Sample Variance 0.00434 

Pooled Estimator of the Common Variance 0.004395 

t critical value for alpha = .01 t(.01,8) = 2.896 

HO: The average cycle times are equal: x - y = 0 

Hl: The S1000 cycle time is greater than the S2000 cycle time: x - y > 0 

Test statistic for the test t = 218.11 

Result 
Since t > t(.1,8), the null hypothesis can be rejected with alpha = .01.  

The S2000 average cycle time is significantly less than the average cycle time  
of the S1000.  
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Throughput Hypothesis Test Sample Size =5 

81000 Average Throughput (x) 0.3350 
81000 Average Throughput Sample Variance 0.0004 

S2000 Average Throughput (y) 0.3960 
52000 Average Throughput Sample Variance 0.0006 

Pooled Estimator of the Common Variance 0.0005 

t critical value for alpha = .01 t(.01,8) = 2.896 

HO: The average throughputs are equal: x - y = 0 

H1: The S2000 cycle time is greater than the S1000 cycle time: y - x > 0 

Test statistic for the test t = 4.3140 

Result: 
Since t > t(.1,8), the null hypothesis can be rejected with alpha = .01. 

The S2000 average throughput time is significantly greater than 
the average throughput time of the 81000. 



156 
APPENDIX G: Pro Model vs. NCSOS Hypothesis Test 

Pro Model vs. NCSOS Sample Size =5 Single Server 

Cycle Time 

NCSOS Average Cycle Time (x) 59.52900 
NCSOS Average Cycle Time Sample Variance 0.00445 

Pro Model Average Cycle Time (y) 59.41740 
Pro Model Average Cycle Time Sample Variance 0.12860 

Pooled Estimator of the Common Variance 0.06653 

t critical value for alpha = .01 t(.01,8) = 2.896 

HO: The average cycle times are equal: x - y = 0 

H1: The NCSOS cycle time is greater than the Pro Model cycle time: x - y > 0 

Test statistic for the test t = 0.6842 

Result: 
Since t < t(.1,8), the null hypothesis can NOT be rejected with alpha = .01.  

The NCSOS average cycle time is NOT significantly greater than the Pro Model  
average cycle time.  
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Pro Model vs. NCSOS Sample Size =5 Single Server 

Throughput 

NCSOS Average Throughput (x) 0.3350 
NCSOS Average Throughput Sample Variance 0.0004 

Pro Model Average Throughput (y) 0.3324 
Pro Model Average Throughput Sample Variance 0.0006 

Pooled Estimator of the Common Variance 0.0005 

t critical value for alpha = .01 t(.01,8) = 2.896 

HO: The average throughput times are equal: x - y = 0 

H1: The NCSOS cycle time is greater than the Pro Model cycle time: x - y > 0 

Test statistic for the test t = 0.1838 

Result 
Since t < t(.1,8), the null hypothesis can NOT be rejected with alpha = .01. 

The NCSOS average throughput is NOT significantly greater than the ProModel 
average throughput 




