AN ABSTRACT OF THE THESIS OF

Christoph Wiese for the degree of Master of Science in Industrial

Engineering presented on June 9, 1987.

Title:_ Simulation of Mechanized Log Harvesting Systems

Redacted for Privacy
~ Eldon Olsen '

Abstract approved:

The focus of this research is to develop a personal computer based
simulation model of the mechanized logging process, from felling until the
log arrives at the sawmill. The SLAM II simulation language is used for
modeling, and the main emphasis is on the overall performance of this
system, and the interaction between the individual components.

The main approach will be, to break the logging process down into
its components. Each component can then be analyzed and modeled to form
a modular system. By giving the components/modules of a specific opera-
tion, these modules will then be arranged in the desired order by the
simulation processor., Thus, the variations of a system can be explored and
evaluated in their performance for different machine configurations. The
possible machine configurations for a particular environment can be tested
and compared.

A front-end interface for simulation inputs and outputs is developed.

The input interface facilitates the user in entering input parameters to the

model without the need to learn the simulation language. The output inter-

face produces easy to understand and readable outputs.

Simulation of Mechanized Log Harvesting Systems
by
Christoph Wiese

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

Completed June 9, 1987

Commencement June 1988

APPROVED:
_Redacted for Privacy

Associate Professor of Industrial Engineering in charge of major

-Redacted for Privacy

Head of Department' of Industrial Engineering

Redacted for Privacy

[

Dean of !G’raduate School

Date thesis is presented June 9, 1987

Typed by Christoph Wiese for Christoph Wiese

ACKNOWLEDGEMENTS

During the course of this study many individuals helped me by the
completion of this project. I would like to use this opportunity to express
my thanks to all these people. Special thanks are due to:

Dr. Eldon Olsen, my major professor, for his counsel, guidance,
and his patiences.

Don Schuh, Research assistant in the Department of Forest Engi-
neering at Oregon State University for the countless hours of his time
during the initialization phase of the project.

My family at home and Petra, who supported and encouraged me de-

spite the distance between us and waited so patiently for my returning.

This work is dedicated to my father, Hermann F. Wiese

II.

IV,

TABLE OF CONTENTS

Page
INTRODUCTION. ..t ttirirrereiirieseeeississasarnnsnsrsrsesssssssssresesnsens 1
OBJECTIVE ooooreivieeeercererrereereeeriencsanasesasasensesesnsransnnsanens 4
PROBLEM ANALYSISuiiiiiiiiiiiiiiiiiieiitiacnarescnsnsescesesansasesrere 5
A. LITERATURE REVIEW....cuiuiereieieerenerrrciececeessnanraracasranare 5
B. SIMULATION....cicieiiiririeierssseseresssssssesessssssssssssssssasesenserans 9
C. PROCESS DESCRIPTIONcvvrteteeireceseieseriaenenreccrcensens 10
MODELING APPROACH.......cciiiiiittieieccaanenrerececasacosesesscases 20
A. PROGRAMMING LANGUAGE ...ttt vvnnansannes 20
B. THE SIMULATION MODEL.....cccovuetueririiniinierieireanraneanans 22
1. GENERAL REMARKS......ccotririrecrereicriiericererinenees 22
2. THE SLAM NETWORK....cccotiiuieiinenierencrcrsensaaensans 24
3. MODELING INVENTORIES....ccottieirieeeenrnrneeensennsens 27
4. MODELING MACHINES......ootririreetieiieiirerireeneeenenes 30

5. PROCESS #1, FELLINGcccoccvuretereenreceseansnsenanens
6. PROCESSES #2 - #10, NORMAL PROCESSES........ 36
7. PROCESS #11, SORTING....ccoovtririeieiireeneneneneennnn 37
8. PROCESS #12, CHIPPINGceviiiriirereerieescsssnnnsnns 39
9. PROCESS #13, FINAL TRANSPORTc.evvveveeennne.. 42
10. LOADING DEVICES....cutireeeeieirirrerirsrusnracncerossasenns 44
FRONT-END DESIGNcoeititirrrniiirresreriesesesencrseeenrssnsssssssnss 46
A INPUT FRONT-END....cctitiiiiiiiiiiiniiererneneerercrcessocnsassnssncs 46
DEFINING A NEW HARVESTING MODEL................ 47
a) PHASE ONE, GENERAL PARAMETERS............. 48
b) PHASE TWO, MATERIAL FLOW 49
c) PHASE THREE, MATERIAL DISTRIBUTIONS...50
d) PHASE FOUR, PROCESS PARAMETERS........... 51
e) PHASE FIVE, NUMBER OF MACHINES............. 54
f) PHASE SIX, MACHINE PARAMETERS............... 55
PHASE SEVEN, MACHINE BREAKDOWNS.........56
2. RINT A HARVESTING MODELcccovieivininirennnnnen. 57
3. EDITING AN EXISTING HARVESTING MODEL....... 58
B. OQUTPUT FRONT-END....cuuirittiiietinreaereerranassescsesensans 60
1. SIMULATING A HARVESTING SYSTEM................. 60
2. SIMULATION RESULTS...ccuireietrrerirrernerresersrensnns 61
a) PROCESS STATISTICS...covereiieeiienvnineeienrane 62
b) MACHINE STATISTICS...cuovrereieiiiteceeeeeeane. 66
¢) LOADER STATISTICS....ccoovvveerererirenrenrennnnnn. 67

d) COMPLETE HARVESTING SYSTEM
STATISTICS..con it 70

VII.

TABLE OF CONTENTS

(continued)
Page
RESULTS i iiititiitessssssssassesesescsssssssnsnssnsasasensasnsnen 73
A, EXAMPLE RUNS......ccciciiiiiiiiiiiniriririrerisnssseresesesnrersrensrnses 73
B. RUNTIME AND HARDWARE CONSIDERATIONS......c........ 77
C. MODELING CONSIDERATIONS......cccviirrerererenacresasasensans

D. STATISTICAL ANALYSIS OF SIMULATION RESULTS.. 79
CONCLUSIONS AND SUGGESTIONS FOR FUTURE

RESEARCH .oeeiiiiiiiniirininnirinri it sie i 81
A, CONCLUSIONS.......cceuiraniiiieiinereenrrreescsessriirensscssssssonss 81
B. SUGGESTIONS FOR FUTURE RESEARCH..................... 81
BIBLIOGRAPHYoimririirirricre vttt et e 83
APPENDICES........cccoiiiiiiiiiiiiriiitric i nns ssaaa e 87
APPENDIX A....oorairiiic e 87
APPENDIX B.....coviiiiiiiiiimiiiiiiiiiiiiininicinicsnisssini s 134
APPENDIX Ci....covviriiiiiiiiiiiiinitiinii s srnicsnsssenns 172
APPENDIX D....cccouviiiiiimiuriniicininiiiiiieniereesnianarnssssssssases 210

APPENDIX E....ccorvniiiiricccrticree e e nanes 282

.2

"y
1]

[y

o & ow B P

LIST OF FIGURES

Page
HARVEST SYSTEM FLOWCHARTc.oouvireenresrrinrseesneens 12
HARVEST SYSTEM WORK ELEMENTS...........oooneeienceereneneens 13
HARVEST SYSTEM WORK ELEMENTS..........ooeiurerereernreenees 14
TIMBER PRODUCTScovvueueienerareereessssssnssosssesesessssansssssnases 17
HARVEST SYSTEMS TECHNOLOGIESvveveevererimreresenne 18

HARVEST SYSTEM TECHNOLOGIES.........ccccceiimirirnininenenn. 19
INVENTORY BUFFER CONFIGURATION.....cccvcmiiirriiiens 29

Table

o T B N % R S

LIST OF TABLES

Page
Simulation TeSULLS ...ceeurrrrerersrenmrsrrrsnrrrmrsssrensireorsresreresrsnceseranes 75
L0715 73 o 1T O PP 77
Contents of ATRIBUTES....cccvviveerirmmirinmsirrniriniiienrenirinerennes 123
Contents of XX(i) variables.......cceveeverrververennsessnsrensrnssnvenssnsons 124
ARRAY deSCTiPHON cvuvverrerreerersesrersersrarsrsrnrirsrorsarssnrsrsransessransss 127
Machines & Processes......cceevrrercrrneriarireresereisinnieincireneranernnnes 130

SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS

. INTRODUCTION

In the Pacific-Northwest we can observe a significant change in the
environment in which a logging operation typically takes place. The main
reasons for these changes are the increased proportion of merchantable
second growth forest and an increased public awareness concerning forest
issues.

In the western region of the United States, we have typically had a
low level of mechanization. Now, however, a wave of mechanization of
the logging process is taking place because of the increased operation in
second growth forest:

In the past when stems were large, the logger had very little lati-

tude on how the trees were handled and processed. Consequently,

trees were felled and bucked at the stump, forwarded to the landing

as log lengths, loaded on trailers and hauled to the mill.

However, with smaller stems the opportunities for handling and

processing are much greater. By combining material handling

phases and/or processing material at the landing or stump, there are

far l)nore variables in the "Harvesting Cost Equation” (Carson,
1984).

For nearly every step of the logging process, material handling
systems and automatic processors have been developed. A great variety of
devices have been constructed and adapted to the logging environment.
Thus, a great number of specialized machines exist. The development and
investment costs for these machines have exploded with the increase of
their complexity. On the other side, the recession in the past few years

has hit the forest products industry, mostly because of the close relation-

ship between the construction industry and the forest products industry.
This had, of course, significant influence on the logging industry as the
supplier of raw material to the forest products industry. Demand and

profits went down considerably.

The social environment in which a logging operation takes place has
changed:

The public has become more concerned with conservation, wilder-

ness, recreation areas and aesthetics. This concern has the effect

of placing rigid restrictions on the timber cutting practices. Fur-
ther restrictions are placed on the timber cutting practices by gov-

ernmental practices (Anonymous, 1971).

These changes in the economical and social environment have cre-
ated a number of problems for both the manufacturer of logging equipment
and the logging companies. In the case of the machine manufacturer, some
of the problems are:

- What systems should be developed to meet public concern and
the needs of the loggers ?

- What is the economical performance of a proposed system?

- What is the utilization of the machines?

- How can a harvesting system be adapted to a specific envi-
ronment?

- Where can I improve my harvesting system?

The logging operator is concerned about questions like:

- Which harvesting system should I use for which environ-
ment?

- What is the expected performance of the system in terms of
economics, utilization, material flow, capacities?

- How can | improve my system?

- What machines should I buy for my logging environment?

- What machines should I buy for my logging environment?
- What is the best mix of equipment (type and number) and
labor for a given logging site?

Thus, it can clearly be seen that there is need for a tool to analyze
and optimize the timber harvesting process. Generally, this involves math-
ematical modeling of one sort or another. However, in complex systems,
the mathematics can be extremely difficult to apply. Simulation is one
tool to analyze more complex systems since this method is often easier to
apply than pure analytical methods, and hence can be employed by many
more individuals. Therefore, we will employ simulation to develop such

an analytical tool.

II. OBJECTIVE

The main goals of this thesis will be:

1) Definition of a model of the harvesting process suitable for an-
alyzing a broad range of harvesting configurations.

2) Development of a general simulation processor with the follow-
ing abilities:

- Capable of running in an IBM-PC or compatible computer
hardware environment.

- The user shouid be able to define, on-line in an interactive
session, the specific machine configuration and environment
of a timber harvesting process.

- The program should verify the given system and parameters.

~ Qutput of the desired results in an easy to analyze and read-
able form.

~ Since the environment and machine configurations change for
every application, the model should be built in a modular

fashion, and be easy to use.

IIl. PROBLEM ANALYSIS

A. LITERATURE REVIEW

There have been many attempts in simulating (modeling) the timber
harvest process. In their state-of-the-art report Goulett, Iff and Sirois
(Goulett, Iff, Sirois; 1979) classify these attempts into two general
classes:

1) Tree-to-Mill models:

The entire process from felling until the log arrives at the
sawmill is modeled.

2) Phase models:

A certain phase/part of the process is modeled. Most work

so far has been done in this second class. Models for spe-

cific phases have been developed, like

- Simulation of the operation of a log landing for a Heli-Stat
airship in old growth timber stands (Gerstkemper, 1982).

- Simulation of a helicopter yarding system (Ledoux, 1975).

- Loading and hauling subsystems of a logging system
(Johnson, 1970).

- Simulation of a Rubber-Tired Feller-Buncher (Winsauer,
Bradley, Dennis; 1982).

- Harvesting machines for mechanized thinning (Newnham,
Sjunnesson; 1969).

- Simulation of a timberyard (Lohman, Lehnhausen; 1983).

- Mechanized felling in dense softwood plantations (Winsauer,
1984).

These are only a few models from the great existing number of
simulation approaches for a single or a few phases of the logging process.
However, in the first class Goulett, Iff and Sirois only identify eight
models, which are concerned about the whole process. These approaches
have different features and capabilities:

- The Auburn pulpwood harvesting system simulator (Bussel,
Hool, Leppet, Harmon; 1969).

Simulates eight shortwood and six tree length harvesting
configurations.

- The forest harvesting simulation model (Killham, 1975).
Capable of addressing variability in individual operations, but
doesn’t collect statistical data for these estimates.

- Full-Tree chipping and transportation simulator (Bare, Jayen,
Anholt; 1976).

Designed to simulate harvesting, in-woods full-tree chipping
and transport to the mill.

- Georgia Tech model (Stark, 1975).

Is one of the earliest attempts in simulating forest harvest-
ing systems.

- Harvesting System Simulator (O’Hearn, Stuart, Walbridge;
1976).

The most complex model found, capable of modeling many

machine configurations in great detail.

- Residues for Power (Bradley, Biltonen, Winsauer; 1976).

A more general material handling model that can be used to
simulate timber harvesting and transportation systems.

- Simulation applied to logging systems (Johnson, 1976).
General model that is adaptable to a variety of logging con-
figurations.

- Timber harvesting and transportation simulator (Martin,
1976).

Simulates the standard harvesting configurations.

All these models examine the timber harvest process, with great va-
riety in both, function and detail. They are considered to be the first
generation of timber harvesting simulators and are about ten years old.
However, presently many of these models are obsolete. The assumptions
and configurations used are no longer relevant, due to the mechanization
wave. The environment has changed significantly, which isn’t reflected in
these models. Thus, today there exists a need for a new approach in
simulating the timber harvesting process.

D. B. Webster (Webster, 1984) suggested the following approach

for a simulation project. He divides the approach into three phases, with

certain activities:
1) Initialization Phase:
- Problem definition
- Definition of objectives and criteria
- System definition
The most important and difficult step in a simulation prob-

lem is to define the simulation. The following questions

should be asked:

a) What are the questions to be answered by the model?
b) What are the performance variables of interest?
¢} What output is required?
d)} Are only mean values required, or is a distribution for-
mat needed?
2) Modeling Phase:
Phase one has been successfully performed; the problem envi-
ronment has been well defined. Tasks now required are:
- Model formulation
- Data preparation
~ Selection of programming language
- Model development
- Coding of the model
- Model verification, and
- Model validation
3) Implementation Phase:
This last phase determines whether or not all previous effort
has been in vain. Tasks which must be accomplished include:
- Strategic planning
- Tactical planning
- Experimentation
- Analysis of result
- Decision or indications obtained by the model
- Follow up studies
This thesis will deal only with phase one and two of this approach,

because of the size and the complexity of the topic.

B. SIMULATION

Simulation is one of the most widely used techniques in operations
research and management science. The recent advances in computer
hardware and software makes this tool even more accessible for the
decision-maker and researcher.

Simulation is an excellent analytical tool to view and examine com-
plex systems. It makes it possible to explore systems in their totality as
well as in great detail. However, simulation has one drawback, it is not
an analytical optimizing technique. Still, this can be overcome by simulat-
ing the desired system several times, each time with a different set of
parameter values. With the help of sensitivity analysis a projection can
then be made to approximate the desired optimization or minimization ob-
jective. Simulation is quite often employed to analyze what-if scenarios
of complex systems, where it is too costly or simply not possible to run a
real-time experiment. As was demonstrated in the Literature Review,
simulation techniques have been successfully employed to analyze the vari-
ous aspects of the timber harvesting process.

In most simulations, time is the major independent variable. Other
variables included in the simulation are functions of time and are the de-
pendent variables (Pritsker, Pedgen; 1984).

Simulation models of systems can be classified generally into three
classes: discrete, continuous or combined discrete-continuous models.

In a discrete simulation the dependent variables change discretely at
specified points in simulated time. These points are referred to as event

times. Depending on whether the discrete changes in the dependent

10

variable can occur at any point in time or only at specified points, the
independent time variable may be either continuous or discrete.

In a continuous simulation the dependent variables may change con-
tinuously over simulated time. The system may be either continuous or
discrete in time. This is depending on whether the values of the depen-
dent variables are described as differential equations for any given point
in simulated time, or if with certain events the change in value is mod-
eled.

In the combination of discrete and continuous models the dependent
variables may change discretely, continuously, or continuously with discrete
jumps super imposed. The time variable may be continuous or discrete.

The timber harvesting process can be modeled with all three ap-
proaches depending on the simulation language used. However, by using a
simulation language which is capable of employing all three techniques, the
greatest possible flexibility can be maintained. Thus, it is the responsi-

bility of the modeler to choose the appropriate technique and language.
C. PROCESS DESCRIPTION

The timber harvesting process can be broken down into seven major
sub-processes (Kellogg, July 1986):

1) Felling

2) Bunching

3) Processing at stump

4) Primary Transport

5) Processing at landing or central site

6) Secondary Transport

7) Loading

11

Figure 1 (Kellogg, July 1986) shows a flow chart of the harvesting
system. Figure 2 (Sessions, 1985) shows the same system, only this time
in terms of the work elements. The main work elements of the timber
harvesting process are:

- Felling

= Delimbing
- Measuring
- Bucking

- Topping

- Bunching
- Forwarding/Skidding/Yarding
- Loading

- Sorting

- Debarking
- Chipping
- Hauling

HARVEST SYSTEM FLOW CHART

I
| LOADING

TRANSPORT

SECONDARY

R —

LIVHOMOTd WHLSAS LSHAMVH :T 21n3rg

cl

€£f . 030 Skid
g
> s,
‘;?/ 4J’q
4 "
$F Logd.“rehaul Unload

EB"" +

1<y %
5eol 3%

glljl'\ll

Te M1ll

Nodes 0DQQ Field Operations

Nodeg 100 - 199 Landing Operations
Nodes 201 - 299 Transfer Yard Operations
Nodes 300 - 399 Mill Yard Operations

SLNIWATE MYOM WHLSAS LSHAYVH :eg 2andrg

€1

14

HARVEST SYSTEM WORK ELEMENTS

Figure 2b

15

For a good discussion and explanation of these terms see Simmons,
1979.

Both figures demonstrate the complexity of the timber harvesting
process. Due to the mechanization machines can combine several work-
elements or even sub-processes into one machine. Logging is a serial op-
eration; that is, certain steps must be performed in a given order so the
objective may be achieved. However, the order of these steps varies
from system to system (Conway, 1976). Moreover, work elements like
delimbing and bucking can happen at nearly every stage of the harvesting
process. Therefore, in different harvesting systems, different types of
products can flow through at the same stage.

There can be restrictions on the inventory buffers before each pro-
cess. Those inventory limits can be a minimum size of inventory required
to operate a certain machine (ex. Chipper) or a maximum inventory allow-
able (ex. space constrains in the woods). There may be a startup level to
each of those cases, after the minimum or a maximum inventory level has
been reached. Also an initial startup-inventory level can apply for a
work-element or stage.

Some work-elements require a preliminary loading action. This
loading action can be provided by the machine itself (ex. self-loading
truck) or by a loading device (ex. Log-Loader). It is possible for work
elements on different stages to share the same loading device.

The logger or researcher has to match desired product mix with
available technology and required performance criteria (Garland, 1986).
Figure 3 (Garland, 1986) shows possible products emerging from the
harvesting process. In the case of technology, we have to consider equip-

ment, systems, techniques, and the labor force. Figure 4 (Garland, 1986)

16

and 5 (Garland, 1986) give an overview for possible technology used for
felling, yarding, loading, hauling and field processing. Some of the per-
formance criteria are timber size capability, production potential, cost of
production, topography limits, road access requirements, availability and
environmental limitations.

A simulation model capable of accommodating all the constraints and

desired properties has to be very general and broadly designed.

Figure 3: TIMBER PRODUCTS

PRODUCTS
I 1
SOF TWOQDS HARDWOODS RESIDUES
1 | |
|
I) 1 1)|
CHIPS
TREES LOGS FLAxE§ CHUNKS
|
LIMES
ATTACHED DELIMBED
——
| A |
SHORY LONG

LOGS LOGS

Figure 4: HARVEST SYSTEMS TECHNOLOGIES

FELLING TECHNOLOGY

I i
LARGE SMALL
TIMAER T IMBER
r..._J.........1 I
I 1
DI RECT [ONAL sLOPES SLOPES
COMYENT1OMAL
FELLING < 30% 2 0%
i T T T I I 1
TREE FELLER TREE-TO-TREE { | wyDRAULIC | | cLIMBING
MANUAL |] orocessons | | FoAwaROERS FELLING EXCAVATORS] | Bacxwoes || MAMUAL
_ I_I_L e——
lauﬁ!ns] [IAHS] l lHEAﬁi]
YARDING TECHNOLOGY
—_—
GROUND BASED |tAlL! ‘ AERIAL
[I 1 [——
wx100inG | | Low-crouno MELIGSTAT
ANIRAL | | acHiNES PRESSURE satioon | | weLicorrer | 1 {3CIBRIRT,
o e
{ I 1
- RUNMNING
SINGLE SPANS MULTI=SPANS SKTLINES
LOADIMG TECHNOLOGY
f T I ———1_
YARDING & FRONT-END NEEL -BOOM - LHIP 1 CHIHK
LoADING LOADERS LOADERS SELF-LOADERS LOADERS ' LoaDeas ,
I 1
T el e
CABL (HYDRAULIC)

CADLE HYDRAULIC

18

Figure 5: HARVEST SYSTEM TECHNOLOGIES

IELD PROCESS ING TECHNULOGY
LANDING OR w0ODS ¥ARD

[T _T_ Y R U
DELIMAING & r -r ar r !
BUCKING CHIPPERS | CHUNKERS || BAILERS || SHREDOERS 1 DENSIFIERS |
T L e I e | e |
l . . L_l—l
1 ~ r-Lo
ranuaL || ofLimmers [, L78 ooe |1 moBTLE 1] PoRTABLE
| S |
T
OvERMEAD || TRAY
XNLF KniFe || FLAIL
—
MaBELE | lrourAuLEI
----L -
' conrureu:zen'
----- —
HAULING TECHNOLOGY
- 1 T 1 - - -1
Loss TREES CHIPS CHUNKS '25’;,’:;';:52 :
| LATERALS
| | 1
SELF- SHORT
LOADERS LOGGERS CONVENTIONAL
H T 1 1
TAUCK

OVERS[2E SINGLES DOVALES

TRAINS

20

IV. MODELING APPROACH

A. PROGRAMMING LANGUAGE

The simulation model for the timber harvesting process was devel-
oped using SLAM (Simulation Language for Alternative Modeling) network
modeling. SLAM is an event-oriented or a process-oriented simulation
language and was developed by Pedgen and Pritsker (see Pritsker, Pedgen;
1984). In SLAM a discrete change system can be modeled within an event
orientation, process orientation or both. Continuous change systems can be
modeled using either differential or difference equations. Combined
discrete-continuous change systems can be modeled by combining the event
and/or process orientation with the continuous orientation. In addition,
SLAM incorporates a number of features that correspond to the activity
scanning orientation.

SLAM as the simulation language was chosen because of a number
of reasons:

1) SLAM is available for an IBM-PC environment.

2) SLAM unifies all three modeling approaches within one simula-
tion language; moreover, all three approaches can be combined
within the same simulation model.

3) SLAM is based on FORTRAN, thus, easy to learn and usable on
a great variety of computers. It is possible to port the devel-

oped programs and simulation models with a minimum effort

21

to other computing hardware, even to mainframes if the need
arises (Lilegdon, O'Reilly; 1986).

4) A SLAM language package was available through the Department

of Forest Engineering at Oregon State University.

In the process orientation in SLAM, a modeler combines a set of
standard symbols, called nodes and branches, into an interconnected net-
work structure which represents the system of interest pictorially. After
the network model of the system has been developed, it is translated into
an equivalent of SLAM program statements for execution on the computer
(Law, Kelton; 1982). In the event orientation and continuous orientation of
SLAM, the modeler defines as FORTRAN subroutines the events, potential
changes to the system when an event occurs, and the differential or dif-
ference equations which describe the dynamic behavior of the system.
These subroutines are then linked to the SLAM Execution Processor,
which performs the actual simulation. SLAM also provides the modeler
with a set of subroutines, which can be employed in the custom FORTRAN
coding. These pre-written subroutines provide an interface to the SLAM
network, and ease the task of statistical data collection. It is not the
scope of this Thesis to provide the reader with a working knowledge of
the SLAM simulation language (for a complete and thorough discussion of
SLAM as a simulation language see Pritsker and Pedgen, 1984; Lilegdon
and O’Reilly, 1986; and O'Reilly, 1984). To understand completely the
programming done in this research, a good knowledge of FORTRAN is
also mandatory (for references of the FORTRAN computer language see
Etter, 1984; and the Microsoft FORTRAN Compiler Manuals, Microsoft
1985).

22

The simulation model was programmed in SLAM II for the IBM-PC,
available from Pritsker & Associates Inc., West Lafayette,Indiana and the
Microsoft FORTRAN Compiler Version 3.31 from Microsoft Corporation,
Redmond, Washington. The programs created will run under MS-DOS
(Microsoft Disk Operating System) Version 2.11 and higher.

B. THE SIMULATION MODEL

1. GENERAL REMARKS

The simulation model consists of three major parts. First the
SLAM Network model, second the FORTRAN written subroutines, which
accompanies the network and contains routines to initiate the simulation
process, statistical data sampling functions, routines to assign values to
variables and the output user-interface. The third part is the user inter-
face for inputting, editing and printing the simulation parameters of the
harvesting system. This user interface is also written in FORTRAN,
which produces files that can be read by the SLAM simulation language.
Therefore, it is possible to specify harvesting systems in advance, store
them on mass storage media like floppy disks or hard disks and retrieve
them whenever desired. The user-interfaces are described in more detail
in their respective section.

The LOGGING SIMULATOR (LOGSIM) can be viewed as a gen-
eral framework model of the log harvesting process. The user defines
the desired harvesting system as a set of parameters. This set of pa-
rameters can be viewed as a customized model by itself and will be re-
ferred to as the harvesting model throughout this text. After the harvest-
ing system has been specified with the input program, a customized SLAM

Execution Processor has to be executed. This program will perform the

23

actual simulation and gives a detailed simulation results output in readable
form at the end of the run.

LOGSIM is capable of simulating a harvesting system from the
felling operation until the log arrives at the sawmill or timberyard. The
harvesting of one timber stand at a time can be modeled. The model con-
sists of thirteen processes, which can be arranged in nearly any desired
order. However, the model always starts out from process #1 and must
end with either Process #12, #13, or both. Process #11 has the ability to
divert the material flow into two branches, therefore, making it possible
to simulate sorting operations or systems with two primary products like
pulpwood and sawlogs. Each of the processes can employ different types
of machines that have to be specified. In total, the simulation model can
handle up to 9 machines within the system. The properties and capabili-
ties of those thirteen processes are discussed in more detail in the fol-
lowing sections.

In order to simulate the flow of different materials through the
harvesting system, the user can specify up to four material frequency
distributions with up to ten frequency classes. An example is that it is
possible to distinguish between whole trees, bucked logs, pulpwood pieces
and sawlogs within the model and investigate the influence of piece sizes.
By specifying different material frequency distributions for each simula-
tion run, the performance of a given harvesting system configuration can
be evaluated.

The model is capable of investigating the properties and influence
of inventory buffers throughout the harvesting system. Optionally, the

user can also model machine breakdown through the use of cumulative

24

frequency distributions which describe time between machine breakdowns
and repair times.

Times are generally described in decimal format throughout the
simulation. An example is that 1.0 hrs is equal to one hour, 0.5 hrs are
30 minutes and 0.1 hrs are 6 minutes.

In the following sections we will describe the workings of the sim-

ulation network and FORTRAN programs.

2. THE SLAM NETWORK

The SLAM network consists of three subnetworks. The first is
used to initialize the simulation, the second to model machine breakdowns
and the third to model the actual harvesting process. The third network
is the main logic to simulate the harvesting process. It consists of sev-
eral subroutines, one for altering resource capacities, one for modeling
time delays, one for each process and several help routines for controlling
the simulation.

The model uses approximately 13800 words out of 16000 available
reserved by the SLAM processor to define a network. Thus, 2200 Words
still can be used for further modeling or increasing the number of ma-
chines the model is capable to handle if necessary. The relatively small
size of the model was achieved by indexing processes and variables and
using FORTRAN written user functions, thus, replacing SLAM code with
FORTRAN statements which are not accounted for in the space reserved
by the SLAM processor for the network description. Therefore, it is
possible to build models which use up to 640 X on the IBM~PC even if the
SLAM processor only occupies 320 K of memory. The current version of

the LOGSIM requires approximately 420 K available memory to run, thus,

25

leaving an additional 220 K free for further programing of FORTRAN
user functions.

In most simulation models an entity that "flows" through the net-
work represents a material unit, a customer, or a work piece. In the
SLAM Network of the LOGSIM, however, an entity within the network
represents a machine rather than a tree or cubic foot of wood. Each ma-
chine entity has seven ATTRIBUTES attached to it describing various pa-
rameters that are used to control the flow of the entity through the model
(see Appendix A. 2).

The network model employs the concept of resources to indicate if
a given machine is active and available and to control the simulation. In
Appendix A. 1, an output of the SLAM Network is given along with several
tables to describe which variables carry which values.

The ARRAY function available in SLAM II was heavily employed in
the modeling process. These ARRAY functions and the XX(i) variables
contain the parameters that describe the harvesting model and are also
used to control the simulation. For a description of what the XX(i) vari-
ables represent, see Appendix A. 3 . For the description of the ARRAY
variables, see Appendix A. 4.

For a description of the initialization of the simulation model and
the use of FORTRAN user functions see Appendix A. 6.

When starting a processing cycle the entity seizes a machine (see
also section IV.B.4), checks if a loader is required for this process and
if so also seizes a loader (see likewise section IV.B.10). Then, the en-
tity is routed to the main processing subroutine. There the actual load
size of this run is determined according to the specified distribution for

this process and the load size capacity of the machine. This is done by a

26

FORTRAN written user function (for a listing of the FORTRAN user
functions see Appendix B). It should be noted that each time a FORTRAN
user function is called the variable XX(5) should be indexed with the num-
ber describing which user function ought to be performed. This is done
to overcome a flaw in the SLAM Processor, that does not transfer this
number correctly when using the USERF(IFN) function. The model then
performs several inventory calculations and checks, tests if the process is
ended, e.g. if this is the last load, and then models the loading function if
one is required. After this the actual machine processing, e.g. the time
delays because of machine action, are accomplished (see also section
IV.B.4). The model proceeds then with calculating the new inventories,
checking inventory levels, adding machine hours and collecting statistics on
the inventories. The resource machine is freed and the gates of the cur-
rent and following process are pushed open to enable continuation of the
simulation. Finally, the entity is routed back to the process where it
originated and the whole cycle begins again.

When the initial startup level for a process is reached, the assigned
machines are activated by altering their respective resource capacities.
The statistics for the process are initialized and the model then begins
processing available inventory in the above described manner. Also entities
are placed into the machine breakdown network if the modeling of ma-
chine breakdowns is desired. The machine breakdown network is a rela-
tively simple matter, In a FORTRAN user function, the model assigns
two values to the machine entity, one for the time between failures and
the other for the repair time. These values are set according to the fre-
quency distributions specified in the harvesting model. The entity is then

delayed for the assigned time between failures. After this time has

27

passed, the machine is seized and made unavailable for normal processing.
The repair time is lapsed after which the seized machine resource is re-
leased, thus making it available to resume normal operation. The cycle is
then started again by assigning the next pair of time values to the entity.
When a process is finished, the respective machine entities in the machine
breakdown network are disposed, freeing the SLAM processor of these
entities.

If the ending condition of a process is reached, the model sets a
flag accordingly to indicate this fact, calls a user function to calculate the
final statistics, and gives an output of these statistics. Statistics are
given in the sequence of completed processes. When the complete har-
vesting system is finished, the output user function is called one more
time and the statistics for the whole system are compiled and given out
(see section V.B.2). The end of simulation message is then displayed and

the SLAM processor exits to the DOS prompt.

3. MODELING INVENTORIES

For modeling material buffers throughout the system and their re-
strictions and capabilities, the modeler is given several tools to analyze
this harvesting system component. He can describe the inventory levels of
the material input buffers of Processes 2 to 13 if desired. Since Process
1 feeds directly from the stand, there are no restrictions on the input
buffer of this process. The description of inventory sizes is done by
specifying the minimum size of the inventory required for this process or
the maximum size the buffer/inventory can bear. Also a startup level
which has to be reached after the inventory minimum or maximum has

been triggered can be specified. Lastly the modeler can set an inventory

28

level for the initial startup of the process, thus, describing starting condi-
tions. Throughout the model the input buffer of one process is the output

buffer of the previous process (see Figure 6).

Figure 6: INVENTORY BUFFER CONFIGURATION

STAND
v

FROCE3S #!
(FELLING?

OUTRUT
: :
LOGGED TREES |

PROCESS 2
(SKIDDING)

f
CUTPUT

FROCESS #3
TBUCKING?

|
GUTRUT

l

BUCKED LQOGS

FROCESS #1173
{SEC. TRANSFORT

FPRUCESSING

INFEZED BUFFER

PROCESSING

INFEED BUFFER

FRGCESSING

30

During the simulation the model automatically checks the inventories
of the active processes each time an inventory transaction is performed.
If the minimum inventory level is reached, the machines of the current
pro-cess are deactivated. If the maximum level is reached, the machines
of the previous process are deactivated. Accordingly, the respective pro-
cesses are reactivated when the startup limits are reached. When a pro-
cess is deactivated, the machines currently engaged in a processing action
still will finish their immediate job, not simply be preempted and stopped.
This is done by altering the available resources allocated to the respective
machine types. The model will collect statistics of inventory downtimes
throughout the simulation and will show them in the simulation results.

Throughout the simulation a set of flags are set to indicate the in-
ventory state {maximum reached, minimum reached etc.). These flags can
be easily accessed and used to control the simulation if the model should
be extended (ARRAY lines 15, 19, 20).

Also, the model keeps track of the inventories in transit, meaning
that the inventory amount involved currently in processing activities. This
is done to prevent premature ending of processes, that can occur if the
previous process has an inventory of zero in its input buffer, but the ma-
chine carrying the last load is still engaged in processing. Therefore, in-
ventory is still on its way to be processed by the next process. By
checking the inventory in transit the program assures that no premature

ending of processes can occur.

4. MODELING MACHINES

The simulation model can simulate up to 42 different types of ma-

chines. These machine types are divided between the thirteen process

31

(see Appendix A. 5). For each of these 42 machine classes, the modeler
can specify a different set of parameter values through the input user-in-
terface. This set of parameters describe the machine capacity, processing
times, machine breakdowns, costs and how many machines of each type
are available (see section V.A.l1.).

A total of approximately 90 machines can be handled by the model at
any given point in time during the simulation. Since the model places for
each machine one entity in the processing network and one additional entity
in the machine breakdown network , it is possible to simulate up to 180
machines simultaneously if the modeling of machine breakdowns is omit-
ted. Another route to increase the possible number of machines is to use
the free space of approximately 2200 words in the network description to
increase the number of entities preset with the LIMITS statement at the
beginning of the network. This would yield another 200 entities or 100
additional machines.

In the following paragraphs, we will describe how the model han-
dles different aspects of the simulation of machine actions. However, the
machine types representing loading actions are handled somewhat differ-
ently than normal machines and are, therefore, described in more detail in
section IV.B.10.

In order to model time delays due to machine actions, the model
gives the user two principal choices: the first is to use the built-in routine
to model time delays; the second is to write a FORTRAN user function
and link it to the SLAM Execution Processor. As stated before, times are
defined in a decimal format, where 1.0 hrs equals one hour.

To use FORTRAN user functions for modeling more complicated
time delays requires a throughout understanding of FORTRAN, SLAM and

32

the simulation model. A much easier way is to employ the built-in capa-
bilities of the model by using the first modeling option. For each ma-
chine, the user has the choice to specify three different types of time de-
lays. The values for these delays are specified in the input user-
interface when the parameters for the respective machine are set.

The first type of built-in time delay is the time required per tree.
When the model sets the load size for each machine run according to the
specified distribution and machine capacity, the number of trees for the
particular run is also stored in an attribute of the machine entity. The
model then simply multiples the number of trees in the run times the time
required per tree and delays the entity accordingly. Examples for this
type of time delay are time required to fell a tree, average time to set a
choker for a skyline, and time for chipping a tree.

The second type of time delay is the time per load. This is a con-
stant time required by the process for each load. Examples for this type
of delay are the average time a skidder operator needs to hook-up a skid
load, time to load a self-loading truck, and time to prepare a truck for a
hauling action.

The third built-in time delay models hauling times. The user
specifies how much time one way of the haul requires. During the simu-
lation the model will then delay the required time, adds the transported
load to the inventory of the next process and performs the required inven-
tory checks. Thus, the transported inventory is made available for the
next process after a one way haul. The model will delay the entity a
second time, simulating the haul back. Only then the resource attached to

the entity is released and made accessible for the next processing cycle.

33

Examples for this type of time delay are easy to find: transporting logs to
the sawmill, average skidding times and so on.

With the help of these three build-in time modeling alternatives, the
user should be able to simulate a vast array of machines and processes.
For additional examples of processing-time modeling see section VL.A. Ex-
ample runs.

The SLAM network of LOGSIM already incorporates an interface
for FORTRAN user functions, making it easy to use them if necessary.
The user simply indicates that he wishes to use user functions to simulate
the time delays for a certain process. This is done in the input user-
interface when the parameters for the considered process are set. He
then writes the required user function in which he assigns values to the
machines used in this process. Since each machine entity carries the ma-
chine type and process number as an attribute value (see Appendix A. 2),
it is quite simple to route the entities accordingly and distinguish between
the different machine types used within the same process. The user
function has to be appended to the already existing user functions (see Ap-
pendix B. 4). The addition has then to be indicated right at the beginning
of the subroutine USERF, where the program jumps to the desired pro-
gram label according to the value of XX(5). The values 1 to 99 are al-
ready reserved to indicate the jump address. The subroutine USERF has
then to be recompiled and linked to the SLAM Execution Processor. When
the simulation model is executed, the model checks automatically if the
machine entity belongs to a process for which time delays are modeled
with the help of a FORTRAN user function. The entity is then routed ac-
cordingly. Thus, the user is not required to alter the SLAM network to

incorporate user functions for time delays. To ease the task of modeling

constant time delays per load and hauling times, the program still will
perform those time delays if specified for a certain machine, even if a
FORTRAN user functions is used. Only the variable time per load is
skipped by the network when using the user function option to model time
delays. Therefore the input user-interface will still prompt the user for
values for these time parameters.

At the beginning of the main processing routine, the actual load size
of the current machine run is determined according to the specified distri-
bution for this process and the load size capacity of the machine. As
stated before, this is done by a FORTRAN written user function (see Ap-
pendix B. 4). In this user function, the model first determines if there is
actually enough inventory for a full load according to the capacity of the
machine. If there is not enough inventory available, the entity is routed
back to the main processing routine and is sent to a waiting loop where
the previously seized resources are released and the entity delayed ac-
cording to the value of the "time delay parameter”. This "time delay pa-
rameter" describes the time intervals that the model checks if inventory
for processing is available. This parameter is set in the input user-
interface right at the beginning when a new process is defined (see sec-
tion V.A.1.a). From the above we see that the model will perform an
actual processing activity only when a full load according to the machine
capacity is available.

In the next step the user function performs a loop in which trees
are generated according to the specified distribution. A uniform dis-
tributed random number between 0 and 100 is fetched from the SLAM pro-
cessor. The program then looks up the matching percentage class of the

material distribution for this number, sets the tree volume accordingly and

35

adds this volume to the load size. The tree count for the load is raised
by one and the loop repeated until the maximum load size is reached.
Therefore, the actual load size will vary throughout the simulation as in
reality where the next tree is simply too big to add to the load even
through some capacity is still available. The entity is then routed back to
the main processing routine in the network.

However, one special case is when the user wants to model the
processing of one tree or work piece at a time as in a manual felling
process using chainsaws or the debarking with a transportable rotary de-
barker. In this case, the user specifies a machine capacity of 99,999.0
cubic feet (cuft) when asked to set the load size for a given machine type
in the input user-interface. The program then fetches the values for only
one tree according to the specified distribution in the above described man-
ner and proceeds.

Another special case is if a process is completed and the current
entity represents the last run where only a rest inventory has to be pro-
cessed, not yielding a full load size. The program detects this and as-
signs the remaining inventory as a load. It determines the number of
trees and load size as described and flushes the rest inventory that does
not yield the volume of a tree on top of the load, adding one additional
tree to the load size. If the processing of a single tree was specified and
the rest of the inventory is smaller than the volume of the largest tree
possible, the load size is set to the remainder and one tree is processed
additionally. Therefore, the model processes mathematically exact all in-
ventory, leaving no remainders in the input buffers of the processes used.

Throughout the simulation, the model keeps track of the actual

hours a machine is really active and accumulates those productive machine

36

hours. Later these figures are used to determine machine utilizations and

costs. The results are shown in the simulation results (see section

V.B.2.).

5. PROCESS #1, FELLING

The first process the simulation model starts with is Process #l.
This process will mostly model a felling operation in a harvesting system.
However, it also could stand for any other work element if the partial
modeling of a harvesting system is desired. For example, it could repre-
sent a primary transportation function if the simulation of a previously
logged site is wanted. Another alternative is that the modeler could use
the first process to simulate the first three work-elements of a harvest-
ing system only describing the outgoing stream of inventory and modeling
the following processes in greater detail. To provide the greatest possible
flexibility, the user is also allowed to model a loading action by requesting
the use of a loader when setting the parameters for this process in a har-
vesting model,

Up to four different machine types can be specified for this pro-
cess to simulate machine activities (see Appendix A. 5) by setting machine
types 1 to 4 active. This is done in the input user-interface where the
modeler will be asked how many machines of each type he wants to em-
ploy. By setting this parameter greater than zero, the modeler activates

the respective machine.

6. PROCESSES #2 - #10, NORMAL PROCESSES
Processes #2 to #10 are thought to be used to model the bulk of
the work elements of a harvesting operation. They can stand for skid-

ding, delimbing, bucking or a swinging process. The processes can be

37

arranged in any desired order. For each of these processes, the modeler
is able to use up to three different machine types with different machine
capabilities and costs, see Appendix C. 2.

The behavior of the model when simulating such a process is de-

scribed in IV.B.2..

7. PROCESS #11, SORTING

This process provides the modeler with the means to simulate the
dividing of the material flow through the model into two separate
branches. This makes it possible to simulate harvesting systems where
two primary products like pulpwood and sawlogs are produced, which re-
quire different processing after the products have been sorted out.

Process #11 can be activated through the input user-interface. The
modeler will be asked for the numbers of the following processes for
each route, which can be any of the others, except of course Process #l.
In both routes there is no limit on how many processes follow subse-
quently. The only restriction is that each branch ends either with Process
#12 or Process #13. Later in the input user-interface the modeler speci-
fies how much of the incoming materials stream is directed to each route
by stating the desired percentages. As with any other process, minimum
and maximum inventory sizes can also be specified, thus, completely mod-
eling a sorting deck.

To simulate the sorting process, the user can optionally activate a
loading device for this process by modeling the machine actions required
for a sorting process. If Process #l1 represents a log deck from which

the following processes draw their input inventory, the use of a loader

33

simply may be omitted. It is possible to simulate the partition of the ma-
terial flow with or without time delay.

The model checks every time interval according to the value of the
time delay parameter if new inventory has arrived at the input buffer of
the process. It then calculates how much of the incoming inventory goes
to each path in confirmation to the specified percentages for the individual
routes. Internally, the model keeps track of how much inventory in the
current input buffer belongs to each route changing the amounts dynami-
cally throughout the simulation. The program then determines how much
inventory it can route through the two different material flow paths,
checking the current inventories of the following processes, and setting the
amount to be routed through each path according to the inventory limits im-
posed on the following processes. The calculated amount is then trans-
ferred, with or without time delay, to the new input inventories calculated,
and the cycle is started again.

Since the model always calculates the exact amount of inventory it
can allocate through the different paths according to the maximum size of
the following inventories, the subsequent input buffers will never be over-
loaded. The modeler should keep this in mind when analyzing the perfor-
mance of a specific harvesting model in regard of the buffer sizes. If
for subsequent processes the maximum inventory sizes are too small di-
mensioned, it will be reflected in the statistics of Process #11. They
will cause either inventory downtime because the inventory is too high or
an uncharacteristic high average inventory level/maximum inventory.

Process #11 is also a good example of how to incorporate a full
processing function into the model without using the main processing rou-

tine. This process is a complete self-contained network within the third

39

network, only using commonly accessible subroutines to check for inven-
tory statuses and the end of the process. It is an example of how to
write network submodels to simulate special machines or processes where
the normal network does not provide sufficient modeling support. It also
demonstrates the flexibility and capacity for expansions of the existing
simulation model, thus, making it easy for the researcher or user to cus-

tomize the existing framework to analyze more complex systems,

8. PROCESS #12, CHIPPING

Process 12 was modeled with the simulation of chipping operations
in mind. As stated before, the in-woods processing of stems has in-
creased rapidly with the growing share of second-growth forests in log-
ging operations, thus, making this process a very important one.

The machine configuration modeled in this process is as followed:
one main machine type, which requires a second machine type for machine
actions. The second machine type may or may not require a third machine
type when beginning processing itself. The real world machine configura-
tion that was the model for this process is a chipper, the main machine
type, which blows the chips into a chip van or chip trailer, the second ma-
chine type. To allow modeling of configurations where a chip trailer and
towing truck combination is used, the third machine type has been intro-
duced. In this case, the trailer is represented with the second machine
type while the towing unit is modeled with the third type.

When defining Process #12 in the input user-interface, the primary
or main machine type (machine type 37, see Appendix A. 5) is automati-
cally set active making one machine available. The user is asked how

many primary transporting devices he wants to employ, specifying the

40

number of machines in the second machine type (machine type 39). He
then has to specify how many secondary transporting devices he wants to
use, the third machine type (machine type 40). The primary transporting
device stands for the chip trailer, the secondary transporting device for
the towing truck. If no towing truck is used, e.g. the chip van is one unit
including towing device, the user simply sets the number of secondary
transporting devices equal zero, thus not using this option. All machine
parameters concerning the time delay caused by transporting action will be
requested from the input user-interface when specifying the parameters
for the primary transporting device, machine type 37. The model allows
the user to specify different cost values for the primary and secondary
transporting devices, that would make it possible to obtain fairly exact re-
sults on the cost structure of a given transporting system. A typical
working cycle of process #12 is described in the next paragraph.

When starting a work cycle, the model seizes the main machine and
a primary transporting device. If no primary transporting device is avail-
able, the entity is routed to the waiting loop and delayed until a primary
device is serviceable. It then checks if a loading action is required and if
so also seizes a loading device. The batchsize of the primary machine is
then determined with the FORTRAN user function provided in the usual
manner. The program performs the necessary inventory calculations,
models the loading action if requested and continues with the machine ac-
tions of the main machine. After these time delays, the processed inven-
tory is added internally to a buffer that represents the amount of material
in the primary transportation device and the cycle for the main machine is
started again. Therefore it is possible to specify different machine ca-

pacities for the main machine and the transportation devices. When the

41

buffer for the transporter exceeds the amount specified as the capacity of
the primary transporting device, an entity representing this device is re-
leased modeling the transporting action. The buffer is set to zero and a
flag is set, that a new primary transportation device is to be seized by the
entity representing the main machine. The model will seize a new pri-
mary transportation device only when the current one is fully loaded. The
transportation entity then checks if a secondary transporting device is nec-
essary. If a secondary device is necessary, it is seized and the process
continues with the modeling of the time delays caused by transporting.
The required inventory calculations are performed, the haul back is simu-
lated, and the seized primary and secondary transporting devices are re-
leased making them available.

Since the model allows the user to specify the capacity of the main
machine independent from the primary loading device, it is possible to
model the processing of a single tree {(machine capacity 99,999.0), little
chunks representing a material input buffer at the chipper itself or a
whole trailer load at once. However, when modeling little chunks, care
should be taken that the capacity of the primary loading device is a multi-
ple of these chunks or the chunk-size is set accordingly. Since the model
only checks if the inventory in the primary loading device has reached a
certain level and then advances the loading device, an error is introduced
when adding the last chunk which might lead to a significant overloading.
This results in an increase of transporting capacity which is actually not
available. Generally when not using the single tree option at the main ma-
chine, we recommend that when the processing of whole trailer loads is
modeled the capacity of the primary transporting device is set to its nomi-

nal capacity minus the largest possible tree size according to the used

42

distribution. When the processing of little chunks was modeled, we rec-
ommend a primary transporting device capacity of nominal capacity minus
half a chunk size. This will reduce possible errors and we feel that the
resulting error is negligible.

If the user wants to model a harvesting system where the material
stream is divided into two branches but does not want to simulate a chip-
ping process, he can use process #12 as a finishing function by setting the
processing times for machine #37 (the chipper) to zero, thus causing no
time delay. The capacity of machine #37 should be set equal to the ca-
pacity of the transportation device used. The capacity of the primary
transportation device, machine #39, should be set to the same amount mi-
nus the greatest possible tree size according to the material distribution
used. By doing so, the model will behave just like the normal transporting

function as described in the next section.

9. PROCESS #13, FINAL. TRANSPORT

Process #13 models the transportation of the logs to the sawmill.
It has the same structure of the transporting procedure as Process #12.
The modeler can use a primary transporting device and an optionally sec-
ondary one. The primary device represents either a log truck including
the towing unit or a log trailer while the secondary transporting device
represents the towing unit in the later case. Machine type 41 represents
the primary transporting device, machine type 42 the secondary one (see
Appendix A. 5). As usual the user can model the loading of the trans-
portation unit with a loading function.

The above described machine configuration is very flexible. The

user can model transportation systems which for example can consist of

43

four log trailers and two towing units. Each of these machine types can
have a different cost structure, which is normally the case, thus, a good
cost analysis is possible. Normal transportation configurations where
trailer and towing truck are one unit can be simulated as well by simply
omitting the secondary transporting device.

When starting a working cycle, the model behaves in the usual man-
ner. It seizes a primary transportation device, checks if a loading func-
tion is required and if so seizes also a loading device. It then determines
the load size of the current run, performs the inventory calculations and
continues with the load function if one is required. The program then
seizes the secondary transporting device, if one was activated, and delays
the entity according to the specified times. The machine statistics are up-
dated and the seized machine released, then the cycle starts over again.

Process #13 is, along with Process #12, the process that should
stand at the end of the modeled harvesting configuration. The reason for
this is to properly enable the simulation model to detect the end of the
harvesting process. However, by simply labeling this process and its ma-
chines accordingly, the analyst is able to model any other function if de-
sired. The only limitation in this case is that only one machine type can
be used. If this limits the modeling process, the analyst uses one of the
normal processes to model the desired function and specifies a simple
transporting function with no time delays and no costs, a dummy process.
The produced simulation statistics will show results without any signifi-

cant influence of this dummy process.

10. LOADING DEVICES

For each of the thirteen processes, the analyst is able to model the
use of a loading device to feed the main machine with material. The ac-
tivating of these loading devices is done in the input user-interface when
the processes are specified in more detail. The user is asked which
loader type he wants to use for a process. He can activate one loader
type per process and has the choice between five machine types, machine
type 32 to 36 (see Appendix A. 5). It is possible that the different pro-
cesses share the same loading device type throughout the simulation, which
is quite common in real-world operations. Right after the specification of
the processes, the user is asked to input how many machines of each acti-
vated loader types are available. Later the characteristics of the loader
types are set when the parameters of all machines are entered.

The user can specify machine capacities, delay times, machine costs
and machine breakdown distributions for the loading machines just as for
any other machine. However, the model handles loading actions a little bit
differently than normal machine actions. Instead of determining for each
run of the loader the batchsize and the number of trees processed like the
main machine with the FORTRAN user function, the model uses the batch-
size numbers of the main machine. It simply divides the load size of the
main machine by the capacity of the loader, thus calculating the number of
runs needed to load the main machine. The program multiplies this num-
ber with the specified time per load. It then adds this to the time for one
way hauling and the time per tree times the number of trees. Thus, the
entire processing time needed to load the main machine is calculated. [t

then delays the entity of the main machine accordingly, records the

45

machine time for the loading device and continues the normal processing
cycle.

When executing a loading function, the simulation model uses the
entity of the main machine to control the flow of the loader through the
model. Therefore, for each loader, only one entity is created in the net-
work, which is needed for the machine breakdown network. If the sim-
ulation of breakdowns is omitted, no entity representing a loader exists
within the network during a simulation run.

Since loaders can be shared throughout the simulation by different
processes, statistics compiled for loading actions are based on the entire
simulated harvesting time (see also V.B.2., output front end). Thus, the
statistics for the scheduled hours and the given utilizations have the whole
harvesting time as basis. This also means that loaders are not included in
the statistics of the processes where they have been used. At the end of
the simulation the, output front-end compiles separate statistics for the
loading devices and shows them in the simulation report as a separate
topic (see V.B.2.c). If a loader type is only used by one process, the
user can recalculate the statistics accordingly by hand if desired, since all

necessary numbers are given in the output report,

V. FRONT-END DESIGN

The Front-ends or user-interfaces provided with the model where
developed to ease the task of modeling for the analyst. They should en-
able analysts with no prior knowledge of SLAM as a simulation language
to use the developed model of the harvesting process as an analyzing tool.
However, a knowledge of the principles of simulation should be a prereq-
uisite when using any kind of simulation as a management tool.

The user-interfaces are divided into two major parts, the input
front-end and the output front-end. The input front-end is used to enter
the different parameters of a harvesting configuration into the model,
while the output front-end calculates the statistics during the simulation
and presents the results in the simulation report. In the following section,

these two user interfaces are presented.

A. INPUT FRONT-END

The input front-end, written using the Microsoft FORTRAN com-
piler version 3.31, requires approximately 200 K bytes of available memory
to run on the IBM-PC. The program is invoked at the DOS prompt by
typing "FRONTEND.EXE". It consists of three parts:

1) A module to define a new harvesting model.

2) A module to edit an existing harvesting model.

3) A module to print out an existing harvesting model for docu-

mentation purposes.

47

The program is completely menu-driven and the user is prompted
for each input. When the program is started, a greeting message is dis-
played along with the main menu from where the user can access the dif-
ferent modules. A listing of an example session with the input user-
interface is given in Appendix C. 2 - C. 4. A figure describing the file
structure of the FORTRAN programs is also given in Appendix D. 1.

1. DEFINING A NEW HARVESTING MODEL
The module to define a new harvesting model is carried out by
choosing the menu option 1 in the main menu of the LOGSIM input user-
interface. After choosing this option the program shows the opening
screen of this program module and verifies that the user wants to continue
with the defining of a harvesting model. If not, the program jumps back
to the main menu so the user can choose another option. The input of a
harvesting system is structured into seven phases:
PHASE 1:
Specification of the general harvesting parameters like file-
name of the model, amount to be harvested and value of the
time delay parameter.
PHASE 2:
Definition of the material flow through the harvesting sys-
tem.
PHASE 3:
Entering of the material frequency distributions used.
PHASE 4:
Specification of the process parameters like optional name

of process,inventory levels, material distribution used etc.

PHASE 5:
Input of how many machines per machine type are used.
PHASE 6:
Definition of the machine parameters like processing times,
capacity and costs.
PHASE 7:
Specification of the machine breakdown distributions.

At the start of each phase an introduction screen is given which
tells the user what he has to enter next. Default values are given at the
input prompt in square brackets throughout the program. To use them the
modeler needs only to press the ENTER key.

Besides the entering of the necessary values for the simulation pa-
rameters, the user also can enter optional labels and descriptions for ma-
chines and processes. This information is used later on in the simulation
results and the harvesting system description to make those outputs more
readable and easier to understand.

a) PHASE ONE, GENERAL PARAMETERS

In phase one the user inputs first a filename under which the model
yet to be entered will be stored. This filename should follow the DOS
conventions for filenames and be a unique name to identify a harvesting
system according to any scheme you choose. Normally the naming of a
file consists of two parts: a filename and a filename extension. The
filename and its extension are separated by a period. A filename can be
from 1 to 8 characters long. The filename extension is optional, but rec-
ommended, and can be from 1 to 3 characters in length.

The next item to be entered is the amount of wood to be harvested.

This number can have a range from 1 to 9,999,998 cuft with no decimal

49

digits. Care should be taken to enter the decimal point when entering this
number.

The third and last item to specify is the value of the time delay
parameter. This number describes which time interval the model will use
to check the inventory buffers of the activated processes if enough inven-
tory is available to process a machine run. The time delay parameter can
have a range from 0.0001 to 999.0 decimal hours. However, if the value
was chosen either too big or too small the model will obviously produce
either unreliable simulation results or needs an excessive amount of com-
puter runtime. We recommend 0.1 hrs, which equals 6 real time minutes,
or 0.01 hrs, equal 36 real time seconds, as values if the modeler is not
sure about the real time value of this parameter.

b) PHASE TWO, MATERIAL FLOW

Phase two defines the material that flows through the model, e.g.
the sequence of processes. The program will ask in sequence for the in-
coming origin and the outgoing destination of the material stream for each
of the thirteen processes. If a process is not used, simply press ENTER
on both questions and the process will not be activated. For Process #11,
sorting, the program will ask for the outgoing destination route 1 and the
outgoing destination route 2 to divert the material stream into two
branches.

After the user has given all the information, a table of these num-
bers will be displayed so the modeler can check if they are correct. At
the bottom of the table a message is displayed prompting the user to indi-
cate if all values are correct. If answered negative, the program jumps
back to the beginning of Phase two and starts again. If answered posi-

tive, the model performs a check if all numbers match logically. When

50

the program finds the table not correct it displays an error message indi-
cating where it found the first mismatch and returns to the beginning of
Phase two after the ENTER key has been pressed.

¢) PHASE THREE, MATERIAL DISTRIBUTIONS

The third phase is used to specify the material frequency distribu-
tions to describe the trees, logs and pulpwood pieces which are handled by
the machines. Up to four frequency distributions, each with up to ten fre-
quency classes can be specified.

These distributions are based on the volume in cubic feet of the re-
spective product. However, the modeler can use any other measurement
units or any other parameter suitable to describe the material. Care
should be taken to describe the machine capacities in the same units since
these distributions are later used to determine the number of pieces in a
load and the actual load size per machine run.

The program starts out with the usual introduction screen. It then
asks for an optional name for the first distribution, which can be up to 20
characters long. For each of the ten possible frequency classes the cu-
mulative relative frequency and the volume in cubic feet are then re-
quested. Cumulative relative frequency distribution means that the fre-
quency percentages for the different classes build an increasing sequence,
ending with 100.00 %. Throughout the entering process the program
checks that each frequency number is larger than the previous one and that
the last class specified ends with the value 100.00. The range for these
numbers are from 0.01 % to 100.00 %. The range for the values of the
volumes is 00000.01 to 99,999.99 cubic feet. Care should be taken when
compiling the frequency distributions so that the lowest class represents

the smallest piece size with the following classes specifying the piece size

51

in increasing order. When the program encounters a class with 100.00 %
cumulative frequency or the tenth class is entered, it stops prompting for
new values and a table of the just entered distribution is displayed. The
user is given the option to accept the entered values or to start over again.
If the distribution is accepted and no errors are found, the input cycle for
the next distribution is started.

To omit any of the four distributions, the modeler simply presses
ENTER when the name of the distribution is asked and also ENTER for
the first cumulative relative frequency and the first volume information.
However, at least one frequency distribution with one valid frequency
class has to be specified. The program will issue an error message if
this is not the case and returns at the beginning of Phase three.

d) PHASE FOUR, PROCESS PARAMETERS

In Phase four the processes activated with Phase one are defined in
more detail, After a process has been defined, the user as usual gets a
table of the just entered values and the option to accept them or to enter
them over again.

For each of the active processes, the program automatically asks
for values of the following parameters.

The first parameter to enter is an optional label for the process,
again up to 20 characters long.

The second prompt asks the user to name the material frequency
distribution he wants to use to model this process. An integer number
from 1 to 4 can be entered, which represents the distribution number.
The program then checks if the specified distribution was set active dur-

ing Phase 3 and if not, issues an error message with the request to enter

52

the distribution number again. QOtherwise, the value will be accepted and
the program continues.

The third parameter is the startup inventory level. This is the in-
ventory level needed for the first initial start of a process. It can have a
range from 000000.1 to 999,999.9 cubic feet. The program will check that
this number is less than the total amount to be harvested. However, when
dividing the material stream into two branches care should be taken that
the values for this parameter can be achieved during the simulation ac-
cording to the specified percentages. The user interface uses a default
value of 1.0 cuft for the initial startup-inventory when ENTER is pressed.
The initial startup-level is also used by the program to determine the point
in time when the process actually started (see also V.B.2.a)). To get
meaningful simulation results we therefore recommend that the user sets
this parameter to at least the largest load size of the machine types used
in the respective process. Otherwise the program will start the process
despite the fact that not enough inventory for a machine run is available.

Next, the minimum infeed inventory level has to be entered. This
parameter defines the level of inventory to be maintained in the input
buffer throughout the simulation. A range from 000000.0 to 999,999.9 can
be specified while the default value is 0.0. The default means that all in-
ventory can be used for processing.

The fifth parameter sets the inventory level to start up again if the
minimum inventory level has been reached. Numbers from 000000.0 to
999,999.9 are accepted, with a default value of 0.0 . The program cross
checks that the entered value is equal or greater than the minimum level

specified previously and will report an error if this is not the case.

53

Next the maximum size of the inventory buffer has to be specified
with a number range of 000000.1 to 999,999.9. The default is 999,999.9,
which represents an unlimited size of the buffer. The program checks
automatically that the maximum is greater than the minimum inventory
level and greater than the startup level for the inventory minimum. When
specifying this parameter, care should be taken to set this number at least
as large as the largest capacity of the machines employed in this process,
to ensure that enough inventory for a machine run is available.

The seventh parameter to be entered is the startup level to which
the inventory of the current process has to drop after the maximum in-
ventory has been reached so that the previous process can be reactivated.
Again the range for the values is 000000.1 to 999,999.9 with a default of
999,999.9. Checks are performed to insure that the entered value is at
least greater then the minimum inventory level and less than the maximum
level.

The eighth prompt asks the user to indicate if he wants to employ
a loading function for the modeling of the process. By entering the num-
ber of the respective loader type, an integer between 32 and 36, the re-
quired loader is set active. When no loading function is necessary, the
user simply should press ENTER to use the default of 0 which indicates
that no loader is used.

The last parameter requested by the program to describe a process
is if the modeler wants to use his own FORTRAN user functions to model
the time delays machine actions require or use the built-in modeling func-
tions. The default is 0, which means the built-in functions are used. If

the user enters a value of 1, the simulation model will use FORTRAN

user functions supplied by the user during the simulation to model this
process.

e) PHASE FIVE, NUMBER OF MACHINES

The fifth phase defines, for each of the processes, which machine
types will be used and how many machines of each machine type will be
available throughout the simulation.

However, if any processes were defined in the previous phase that
use a loading function, the program first will prompt to specify how many
machines for each activated loader type are available. It will accept inte-
ger values from 0 to 80). If an activated loader type is set to 0, the pro-
gram will display an error message and prompts again for the number of
machines available. As usual the user will be presented with a table of
the entered values with the option to re-enter them if desired.

The input interface will then continue in sequence of the activated
processes to prompt the user for each of the available machine types per
process and how many machines he wants to employ during the simulation
run. The prompts will already show the machine type number according
to Appendix A. 5.

If process #11 was activated the program will ask the user to
specify the percent of the incoming material stream that goes to route 1
and how much goes to route 2. It will accept values between (.01 and
99.99 percent and checks that the sum of both percentages equals 100.00 %.

When process #12 is utilized, the user is prompted to indicate how
many primary and secondary transporting devices he wants to use. The
chipper, machine type 37, is automatically activated by the program and set

to 1 available machine.

55

For process #13, final transportation, the interface again prompts
for the number of primary and secondary transporting devices.

The program checks that for each of the utilized processes at least
one active machine exists. In case of process #12 and #13 it verifies that
at least one primary transportation unit is available. After each process
the user can inspect on screen the values just entered and is given oppor-
tunity to change them.

f) PHASE SIX, MACHINE PARAMETERS

In this phase the actual specification of the machine types takes
place. Again the program will ask the user in sequence of the machine
types for several parameter values. After one machine type has been de-
clared, the entered values are displayed so that the user can reenter them
if desired.

First the modeler can input an optional name for the machine type,
up to 20 characters long. The second prompt asks for the average pro-
cessing time per tree, which can obtain a value from 000.0000 to 999.999.
The default is 0. Then the fixed constant time per load is requested,
which can have the same range as the average processing time and has
also the same default. The forth prompt asks the fixed constant time of
one way hauling.

The fifth parameter defines the capacity of the respective machine
type. The allowable range for this number is (0000.01 to 99,999.99 cubic
feet; the default is 1.0 cuft. However, care should be taken that this
value is at least as large as the largest tree volume value specified in the
material frequency distribution used for the process to which the machine
type belongs. If the analyst wants to model a machine which only pro-

cesses one tree at a time such as certain types of delimbing and debarking

56

machines, he simply has to enter a machine capacity of 99,999 cubic feet.
The simulation model will then behave accordingly during run time and
only assign one tree per machine cycle with a volume from the material
frequency distribution.

The next two parameters are concerned with the cost structure of
the machine. The first one sets the fixed cost per scheduled hour, the
second one the variable cost per machine hour. These values are later
during the simulation run used to compile cost related statistics. For an
explanation of what a scheduled hour and a machine hour means please see
chapter V.B.2., the output front end design. All the terms related to the
simulation results are described there. The input range for both cost pa-
rameters is 00000.00 to 99,999.99 with a default of 0.0. Therefore, when
using the default option, no cost statistics are produced by the simulation
model.

g) PHASE SEVEN, MACHINE BREAKDOWNS

The seventh phase completes the description of the machine types by
specifying the breakdown behavior of the machine type. The analyst has
to enter one frequency distribution for the times between failures and one
for the repair times, If the modeling of machine breakdowns is not de-
sired, it can be omitted by using the default values of 0 for the first fre-
quency class of the frequency distribution for times between failures.
The program will then skip the entering of repair times for this machine
and will display a message that this particular distribution is not used. As
usual, the program displays after each machine the entered values to give
the user the opportunity to make changes. The conventions to enter the
frequency distributions for the machine breakdowns are just like the ones

for the material frequency distributions, and may be read in section

57

V.A.l.c) if desired. The times between failures and repair times have a
range from 00000.01 to 99,999.99 and should be entered in the usual deci-
mal time format. The program performs checks to ensure that the values
are entered properly and will prompt the user with a message if a fault
is detected.

After Phase 7 has been completed the program asks the user if the
just defined harvesting model should be saved or not. To use the har-
vesting model for simulation purposes with the developed SLAM network it

must be saved! The model uses the filename entered in Phase 1 to write

the file to the default mass storage media. Before doing so it will check
if a file with the same filename exists. When this is the case it prompts
the user to enter a new filename for the harvesting model. After the
program has stored the model successfully, it displays a message that it
has done so and will return to the main menu after the user presses the
ENTER key. By choosing the appropriate modules the user can then either
edit or print the harvesting model.

2. PRINT A HARVESTING MODEL

By choosing the menu option 2 at the main menu prompt the user
can route any previously defined harvesting model to a printer. The pro-
gram will prompt the analyst if he wants to continue and if so asks for
the filename of the harvesting model to be retrieved. The model will
check if the file is in the current directory and will load it. If no file
under the specified filename is found an error message is displayed and
the user prompted for a substitute filename., When the model has been

successfully fetched, a message is displayed accordingly.

58

The user is given the choice either to display the harvesting model
on screen or to route the output to a printer. Example outputs can be seen
in Appendix E. 2, E. 5, E. 8, and E. 11. An example of the dialog be-
tween user and computer is given in Appendix C. 3.

These printouts can be used to document the harvesting models and
will show the entered data in an easy to understand and well organized
manner.

After the program has produced the desired output it returns back
directly to the main menu to allow the user the continuation of the pro-

gram.

3. EDITING AN EXISTING HARVESTING MODEL

The last module in the input user-interface can be used to modify
an existing harvesting model. It is invoked by entering the number 3 at
the input prompt of the main menu. After the desired file has been re-
trieved, a menu with seven choices is displayed from which the user can
edit all harvesting system parameters. The only exception is that the ma-
terial flow, the process configuration, can't be modified. If a different
process configuration is desired a new harvesting model has to be entered.
An example run of this front-end module is given in Appendix C. 5.

When the user has made his choice from the modify menu the pro-
gram will first prompt for the identification number of the desired ma-
chine, process or distribution. For the material distributions and pro-
cesses, it will indicate which of them are currently activated to give some
assistance to the user. If the user enters a zero at the prompt, that is

the default, the program jumps back to the modify menu.

59

After the identification number has been entered, the user-interface
displays the current values on screen in tabular form and asks if the user
actually wishes to continue with the editing process, thus, entering new
values. If the modeler does not want to continue, the program jumps back
to the previous menu so that the next identification number can be entered.
This is the default set by the program.

If the user continues, the program will prompt him for the new pa-
rameter values. The same value ranges, defaults, and restrictions apply
for each of the new parameters as described earlier in the section V.A.l.,
definition of a new harvesting model. The program will perform the re-
quired cross checks to prevent mistakes and will display error messages
if it detects one.

After the values have been entered an updated table of the values is
displayed so the user can check his work. Again he is asked if he wants
to continue editing, thus, changing the values. If not, the program jumps
back to the input prompt for the identification number as explained previ-
ously.

When the user is done with the editing, the modified harvesting
system must be saved. This is done by choosing option 6 in the modify
menu. The program will asked if it should save the file. When an-
swered positively, it checks if a file with the same filename already ex-
ists. If this is the case the program will display an error message. The
user is prompted to indicate if he wishes either to enter a new filename
or to overwrite the old file. When a new filename is entered, the same
check is performed again. If no matching filename is found the edited

harvesting model is saved under the new filename, otherwise the user is

60

prompted again with the error message. When choosing the overwrite op-
tion, the values of the old file will be unrecoverably lost.

When the analyst wants to add a loading function to a process, he
first has to check if the desired loader type is activated, e.g. a positive
number of machines have been specified for this machine type previously.
If this is not the case the user can set this machine type active by choos-
ing the menu option 4 and enter a number greater then zero if prompted
for the initial number of machines. He then should enter the other ma-
chine parameters and a machine breakdown frequency distribution if de-
sired. This applies also for the activation of all other machine types. If
the deactivation of a machine type is wanted, the initial number of ma-
chines has to be set to zero, therefore, making them unavailable. Simula-

tion results will only be generated for activated machines in activated pro-

cesses.
B. OUTPUT FRONT-END

1. SIMULATING A HARVESTING SYSTEM

The output front-end was developed to provide the user with easy to
read output of the simulation results. It is integrated into the FORTRAN
user functions that builds in conjunction with the initialization subroutines a
customized SLAM Execution Processor that performs the actual simulation
of a harvesting system.

This customized SLLAM Execution Processor is invoked from the

DOS prompt by entering LOGSIM.EXE. The program will then be loaded

and executed. For an example session with the customized execution pro-
cessor see Appendix C. 1. The SLAM Processor will ask first for the
filename of the network model, which is HARVEST.TRA. After that the

61

user is prompted for the filename of the harvesting system he wants to
simulate and to which output device the simulation results should be routed.
Simulation results can be routed either to the screen only or to the screen
and the attached line printer. Then the number of simulation runs to be
performed has to be entered.

The preset maximum number of simulation runs is 10, the default

used by the program is only 1 run. Between each of the simulation rums,
the SLAM Processor clears all statistical arrays and variables, initializes
the internal filing system and, therefore, re-initialized the whole simula-
tion system. Only the seeds for the random number streams are not re-
initialized to provide different starting seeds for each simulation run.
The complete harvesting system model is read in again and the next rum is
performed. Therefore, the program will perform multiple runs of a har-
vesting model but does not require any actions by the user between runs to
re-start the simulation.

During the simulation, the program displays the current simulation
run, the total amount harvested so far, the current real time and the sim-
ulated time. This is done to provide the user with some means of control
for models which require excessive simulation time.

When done with the simulation, the customized SLAM processor will
return to the DOS prompt, from there the user can continue his computing

session in the usual manner.

2. SIMULATION RESULTS
When the program detects the end of a process during the simula-
tion, it will calculate the simulation statistics for this process and present

them. Therefore, the simulation results are given in the order of finished

62

processes. At the end of each simulation run when the complete harvest-
ing system is done, the statistics for loading functions and a summary
statistic for all processes are compiled and presented.
Generally, the simulation result output can be divided into the fol-
lowing sections:
- A header, describing which harvesting model was used.
Computer time, computer date, and the number of the cur-
rent simulation run to identify the output.
~ The simulation results for a process. These results con-
sists of two parts. The first one is concerned with the
performance of the process overall, incorporating all active
machine types for this process except loading devices. The
second one is
- The results for each of the activated machine types for a
process.
- The performance of the loader devices, if any were acti-
vated.
- The complete harvesting system statistics
In the following sections we will define what each of the compiled
numbers means and for what it stands for.
a) PROCESS STATISTICS
For each process, the customized SLAM processor produces the
following statistical numbers. Note, however, that these numbers do not
include any loading devices the process may have used. Since a loading
device can be shared by multiple processes throughout the harvesting sys-

tem, the program will compile statistics for loaders separate.

63

If process #11 was used in the simulated harvesting configuration,

the program will compile process statistics for this process just as if it

were for a normal process. However, no statistics for the sum of

scheduled hours, the sum of machine breakdown hours , and the machine

utilizations are given since the employed loader type could be used by other

processes as well.

Time begin of Process. [1]
This is the time recorded by the model when the initial
startup inventory level has been reached (see also V.A.1.d)).
Time end of Process. [2]
Time the process is finished and all machines employed in
this process have finished their tasks.
Duration of process. [3]
The calculated amount of time a process was active:

[3] = [2] - [1]
Time inventory too low. [4]
Cumulated time the input inventory buffer of the respective
process was below the specified inventory minimum.
Time inventory too high. [5]
Cumulated time the input inventory buffer of the respective
process was above the specified inventory maximum.
% Inventory downtime. [6]
This number represents the portion of inventory downtime in
relation to the duration of the process in percent.

[6] = ((C [4] + [5)) = [3]) *» 100

- Total # of machines. [7]

The sum of all machines employed for processing in this

Process.

3
(71 = ¥ [22]1

- Sum scheduled hours. [8]
The total sum of machine hours scheduled for this process
(except loading machines).
(8] = [7] * [3]
- Sum machine breakdown hours. [9]
Total sum of machine breakdown hours recorded for all

machines types involved with this process.

3
(91 = % [24]4

- Sum productive hours. [10]
Is the sum of all recorded time delays caused by processing

actions for all machines used by this process.

J
(1e] = 51‘ (2515

- % Net utilization machines. [11]
The portion of time machines were really processing in re-
lation to the sum of scheduled hours.
(11] = ([12] = [8]) * 100
- % Gross utilization machines. [12]
The same as [11], only including machine breakdown hours.
This number was included because often machine breakdown

is a parameter that cannot be influenced in the real world.

65

This number represents the portion of time machines are
generally "busy" doing something.
(121 = (([12]1 + [9]1) + [8]) * 100
- Average inventory. [13]
The average inventory level of the input buffer of the re-
spective process for the simulated time, calculated by the

normal formula for statistics based on observations.

n
L Xp
i=1

(13] = X, = m

- Maximum inventory. [14]
The observed maximum value for the input buffer of the
process.

- Minimum inventory. [15]
The observed minimum value for the input buffer of the
process.

- Standard deviation inventory. [16]
Standard deviation of the observed inventory buffer values.

[16] = 8, = (M + (n*(n-1))
where M =n * P x2 - (p x)2

- Number of observations inventory. [17]
The number of observations made during the simulation run
for the size of the inventory buffer of the respective pro-
cess.

- Sum units processed. [18]
How much material has been processed by the machines of

this process.

66

- Sum cost of process. [19]

The sum of fixed and variable costs of all machines em-

ployed by the process.

J
[(19] = 11}([26]3 * [22]y)

- Cost per unit. [20]
The cost to process one unit through this process.
(28] = [19] + [18]
- Cost per scheduled hour. [21]
The cost per scheduled hour for the machine configuration
of this process.
[(21] = [19] + [8]
b) MACHINE STATISTICS
For each machine type employed by a process the program calcu-
lates statistics upon this machine type and will show them after the sum-
mary statistics for the process. These statistics are as followed:
- Total # of machines. [22]
The number of machines set active for this machine type.
- Sum scheduled hours. [23]
The sum of scheduled machine hours for this machine type.
[23] = [22] * [3]
- Sum machine breakdown hours. [24]
The accumulated machine breakdown hours for this machine
type.
- Sum productive hours. [25]
The accumulated machine hours where the machines actually

processed material.

67

- Cost per machine. [26]
The cost share for one machine of this machine type on the
total process costs.
(26) = ([23); * Crixed i) +
([25]1 * Cyariable i)
- Cost per scheduled hour. [27]
Actual cost of one machine of this machine type for one
scheduled hour.
[27] = [26] + [23]
- % Net utilization machine. {28]
The percentage of time machines of this machine type were
processing inventory in relation to the sum of scheduled
hours.
[28] = ([25] = [23]) * 100
- % Gross utilization machine. [29]
The same as [28] only including machine breakdown hours.
This number represents the portion of time machines of this
machine type have been generally "busy".
[29] = (([25] + [24]) = [23]) * 100
¢) LOADER STATISTICS
Statistics for the loading functions are generally the same as de-
scribed in V.B.2.a) and V.B.2.b). The only difference is that for formu-
las incorporating time the complete harvesting time for the simulated sys-
tem is used [49].
Statistics for the complete loading process are:
- Total # of machines. [30]

Sum of all activated machines used by all loader types.

J
[321= ¥ [40];

- Sum scheduled hours. [31]
Sum of all accumulated machine hours scheduled for loading
functions.

[31] = [39] * [58]
- Sum machine breakdown hours. [32]

Cumulated machine breakdown hours of all loading devices.

3
[32]= ¥ [42]4

~ Sum productive hours. [33]

Sum of all productive hours of loaders.

J
[331= ¥ [43]3

- % Net utilization machines. [34]
The percentage of time the loaders were actually engaged in
loading actions.

[34] = ([33] + [31]) * 100

- % Gross utilization machines. [35]

The same as [34] only including machine breakdown hours
as active time.
[35]1 = (C [32] + [33]) + [31]) * 100

- Sum units processed. [36]

Sum of material processed by loaders.

- Sum cost of process. [37]

Sum cost of loading functions.

clude:

The

- Cost

69

J
[37]= {' [44]y * [40];)

per unit. [38]

Cost of loading for one processed material unit.

- Cost

[38] = [37] + [36]
per scheduled hour. [39]

Cost of loading actions per scheduled hour.

[39] = [37] + [31]

statistics compiled for the individual loader machine types in-

- Total # of machines. [40]

The
- Sum
The

- Sum
The

type.

- Sum
The

number of machines set active for this machine type.
scheduled hours. [41]

sum of scheduled machine hours for this machine type.
[41] = [40] * [58]

machine breakdown hours. [42]

accumulated machine breakdown hours for this machine

productive hours. [43]

accumulated machine hours where the machine was ac-

tually processing material.

- Cost
The

per machine. [44]

cost share for one machine of this machine type on the

total loading costs.

(44) = ([41]y * Cpixed 1) +

([43]i * Cvariable i)

70

- Cost per scheduled hour. [45]
Actual cost of one machine of this machine type for one
scheduled hour.
[45] = [44] + [41]
- % Net utilization machine. {46]
The portion of time machines of this machine type were
processing material in relation to the sum of scheduled
hours.
[46] = ([43] + [41]) * 100
- % Gross utilization machine. [47]
The same as [46] only including machine breakdown hours.
This number represents the percentage of time machines of
this machine type have been generally "busy".
[(47] = (([42] + [43]) + [41]) * 100
d) COMPLETE HARVESTING SYSTEM STATISTICS
The statistics compiled for the complete simulated harvesting sys-
tem give an overview of the overall performance of the modeled harvest-
ing configuration. It is the last item in the simulation results output. The
statistics for the complete harvesting configuration include:
- Computer time start simulation. [48]
The real-time date and time when the computer started with
the simulation of the current run.
- Computer time end simulation. [49]
The real-time date and time when the computer ended the
simulation of the current simulation run, The figures [48]

and [49] were included in the output to give the analyst the

71

opportunity to time the use of computing equipment. These
figures can be used later for fee calculations if desired.

- Begin of harvesting. [51]
Simulated time when the harvesting process began.

- Total # of machines. [52]
Sum of all machines in all machine types used for the har-
vesting model, includes loaders.

j=13
[52] = % (71y + [30]

- Sum scheduled hours. [53]

Sum of all scheduled machine hours for all activated ma-

chine types.

i=42
(53] = §_, [231; + [31]

- Sum machine breakdown hours. [54]
Cumulated machine breakdown hours for all activated ma-
chine types.
j=42
[54] = {!:1 (2413 + [32]
- Sum productive hours. [55]
Total sum of time spent actually processing material.

j=42
[55] = ¥ (251; + [33]

- % Net utilization machines. [56]
The share of productive hours on scheduled hours in per-

cent. This figure represents the overall efficiency of the

72

simulated harvesting configuration.
[56]1 = ([55] + [53]) * 100
- % Gross utilization machines. [57]
The same as [56] only including machine breakdown hours.
[57] = (C [54] + [55]) + [53]) * 100
End of harvesting. [58]

Total simulated time it took to complete the whole harvest-
ing process for the specified harvesting configuration.

- Sum of units harvested. [59]
Total amount of material processed.

- Sum cost of system. [60]
Total cost for the specified harvesting model including
loading actions.

j=13
[60] = £_ "[19]; + [37]

- Sum cost per unit. [61]
Cost of one unit material after it has been processed
through the whole harvesting system. This number is only
correct if process #11, the sort, is not used.
[61] = [60] + [59]
- Cost per system hour. [62]
Cost of one hour for the simulated harvesting system con-
figuration.
[62] = [60] + [58]
With the provided simulation results, the modeler should be able to
thoroughly analyze the performance and cost structure of any desired har-

vesting configuration.

73

VI. RESULTS

A. EXAMPLE RUNS

To verify the correct functioning of the simulation model extensive
test runs have been performed. In these test runs the behavior of the
modules and mechanisms employed to control the simulation was examined
by using test data that simulated the different situations possible in a har-
vesting system. The results of the test runs were then compared with
manual calculations.

Also four complete harvesting systems (stump-to-mill) were simu-
lated. The production and cost information used were provided by Don
Schuh, Research Assistant, Department of Forest Engineering, Oregon
State University. Each of these four harvesting systems uses a different
machine configuration with different capabilities. The systems are out-
lined briefly below:

1) Traditional manual sawlog operation:

Manual felling, delimbing, and bucking. Cable skidder for
primary transport. Self-loading highway log truck for sec-
ondary transport.

2) Contemporary mechanized sawlog operation:

Felling by swing-boom feller-buncher. Primary transportation
by grapple skidder. Delimbing and bucking with a Hahn Har-
vester. Swing-boom loader for decking and loading and a
highway log truck for secondary transport.

74

3) Potential mechanized sawlog system:
Felling and primary transport by TJ Clambunk Skidder with
sawhead. Delimbing and bucking done by a grapple processor.
Swing-boom loader for loading and a highway log truck for
secondary transportation.
4) Mechanized pulpwood/sawlog operation:
Felling with swing-boom feller-buncher. Primary transport
with T] Clambunk Skidder. Swing-boom log loader for load-
ing and a set-out tractor-trailer combination for swinging to
the central site. Here the material stream is divided into the
two products. The chip processing is done with a multistem
delimber-debarker machine feeding into a Morbark Model 22
chipper. The chips are blown directly into a chip trailer that
needs a separate towing truck for the haul to the mill.
The sawlogs are directly hauled to the mill by a tractor-
trailer combination. The delimber-debarker and the log trailer
both use the same swing-boom log-loader for loading actions.
All four harvesting models were used to harvest the same amount
of wood for comparison reasons. In Appendix E the printouts for the dif-
ferent harvesting model configurations and the simulation results for each
harvesting system are given. To ease the task of entering the required
information with the input user-interface we recommend that the user may
draw a schematic flowchart of the harvesting configuration. Examples of
how such a flowchart may look like can be seen in Appendix E. 1, E. 4,
E. 7, and E. 10. These flowcharts give an immediate overview of the

processing configuration.

Table 1 summarizes the simulation results.

ual sawlog operation used the most time to finishing the harvesting pro-

cess.

Table 1: Simulation results

75

As expected, the man-

Parameter System 1 System 2 System 3 System &4

buration bhrs 3116.75 196.12 259.15 175.61
4 Net. Utlliz. 74.61 63.65 47.76 68.97
% Gross Utiliz. 84 .99 69._44 57.16 71.22
Cost of system 335893.4¢ 83799.98 78288.74 119127.59
Cost/unit 1.31 .33 .31 .47
Cost/system.hr. 197.77 426.82 392.96 679.38
Runtime hrs. 1.13 .41 . 36 .66

The systems 1 to 3 can be compared together, while system 4 has

to be examined separate because it uses different material distributions

due to the two products in the system.

From table 1, we can see that system 1, as expected, needs the
most time to accomplish the task with a duration of 3116.75 decimal
hours. The clear winner is configuration three in terms of costs.

ever, if the shortest duration of the harvesting process is desired

How-

to free

machines for the next task, then system 2 represents an alternative with a

slightly higher cost per unit of 2 cents.

performance of these harvesting systems in regard to a given stand and

logging environment.

We could also examine each harvesting system on its own and see

where we can improve.

Under this view, we compare the

For example, system 3 has a net utilization of

only 47.76 %. By examining the simulation results of system 2, (see Ap-

pendix E. 9), we see that the gross utilization in process #2, skidding,

was only 39.43 %. This suggests that instead of two Grapple-skidders

only one is probably required to do the job.

In process #13, final trans-

76

port, we discover that from 195.29 hrs this process was active the inven-
tory buffer overflow existed for 73.04 hrs. An increase of the buffer
size would yield an increase in utilization for the preceding process # 3,
delimbing & bucking. When increasing the utilization of process #3, the
utilization of its predecessor, process #2 skidding, will also increase
since the inventory overflow condition set for process #3 will not be
reached so often. In this harvesting configuration the inventory limit im-
posed on process #13 creates a serious bottleneck for all the preceding
processes. Thus, by examining the results for a given harvesting configu-
ration, we could focus on variables like inventory downtimes, machine uti-
lizations, and machine breakdown hours. These suggestions could then be
implemented and tested by simulating the modified harvesting model. By
using the simulation model in this way the optimization of a given har-
vesting system can be attempted, where the optimization goals could be
costs, machine utilizations, or duration of the logging operation.

Also the impact of environmental issues could be tested, for exam-
ple, restriction on landing sizes, travel-speed limits for machines due to
soil conditions, in-woods limitations on inventory buffers, and the required
use of a specific machine configuration to prevent damage to the environ-
ment. The impact of those restrictions on the cost structure and machine
utilization could be analyzed and different machine configurations can be
tested to find the best solution.

The fourth harvesting model demonstrates a system with multiple
products. As described above, the system performance and behavior of the
chosen harvesting configuration can be examined. However, this system
also analyzes the cost structure for a given product. Since the model

shows the cost per unit for each of the activated processes, the analyst

77

can determine the actual cost per unit for each of the end products, chips
and sawlogs. By simply adding the appropriate values of the processes
used by each product, the individual cost per unit chips and per unit sawlog
can be determined (see Table 2). Chips have a cost of approximately 52
cents per unit, sawlogs approximately 45 cents. By setting the costs in

relation to the expected selling prices an estimate of the profits can be

made.

Table 2: Cost per unit

Cost per unit chips:

Process Cost per unit

#1 Felling 9.0551

#2 Skidding ?.0604

#3 Swinging 0.0291

#11 Sorting 2.0000

#4 Delimbing & Debarking 9.0681

#12 Chipping & Transport 0.2390
Loading actions P.0680

Sum cost per unit $ ©0.5197

B. RUNTIME AND HARDWARE CONSIDERATIONS

The model was created to be used with a hard disk as mass stor-
age medium. 3Since the programs are too large to fit on one floppy disk,
excessive disk swapping is necessary, making the handling of the simula-
tion system on a floppy disk based system inconvenient.

We also recommend the that the system used for simulation should
be equipped with a Math co-processor for floating point arithmetic such as
the INTEL 8087/80287. Besides an execution speed gain of two to three
times the coprocessor will improve the mathematical accuracy of the sim-

ulation. The SLAM simulation processor uses a FORTRAN data format

78

of REAL*4 for most variables. This format has advantages in terms of
memory requirements but has a poor performance for floating point arith-
metic in terms of accuracy if no Math co-processor is used.

The examples where all computed on an IBM-AT compatible com-
puter system equipped with a 10 Mhz, no wait state motherboard and an 8
Mhz 80287 Math co-processor unit. This system runs approximately 4 to 7
times faster than a plain IBM-PC. Therefore, at least an AT size ma-
chine is recommended for the simulation.

When simulating a larger harvesting system that requires multiple
simulation runs the task of averaging all those numbers for all the given
simulation results can be quite tedious. By redirecting the simulation out-
put to a Disk file (start the simulation with
LOGSIM.EXE>FILENAME.DOC) these results can later be imported to a

Spreadsheet program like LOTUS 1-2-3 that could be used to ease this
task.

C. MODELING CONSIDERATIONS

The potential user of the LOGSIM system should be aware that the
produced simulation results are only as accurate as the entered simulation
parameters. The task of collecting the required data for the simulation
might be difficult. The performance parameters for machines such as
processing times and machine breakdowns might require extensive time
studies to establish. The mathematical relationships are needed between
machine actions and environmental parameters. These include the influ-
ence of stand parameters and terrain conditions on the productivity of a
given machine. Extensive research has been done to establish some of

these mathematical relationships (for examples see McMoreland, 1977;

79

O’Hearn, 1977; Powell, December 1981; Powell, July 1981; and Stuart et
al, 1981), but there is still much to be done.

The variables that influence the machine productivity for a given
machine have to be specified. The modeler or analyst should then decide
which ones are essential for the modeling of a given harvesting configura-
tion and which level of accuracy is desired. Then the actual values for
these parameters should be developed and incorporated into the harvesting
model.

It is the responsibility of the modeler to judge if the built-in func-
tions of the model are sufficient or if FORTRAN written user functions

have to be employed.
D. STATISTICAL ANALYSIS OF SIMULATION RESULTS

Another aspect of simulation, the statistical analysis of simulation
results, should also be considered by the modeler. Simulation represents a
tool to generate, collect, and analyze statistical data for a given system.
Therefore simulation is a statistical experiment that should be planned
carefully. The analyst should be aware what the variables of interest are
and plan accordingly.

There are two types of simulations with regard to analysis of the

output data. A terminating simulation is one for which the desired mea-

sures of system performance are defined relative to the interval of simu-
lated time. Examples for this type of simulation are the time it takes to
harvest a given stand with a given machine configuration, and the complete

costs to harvest a given stand. A steady-state simulation is one that de-

fines the measures of performance as limits as the length of the simula-

tion goes to infinity. Examples are the cost per unit or the average in-
ventory size of a given process.

The terminating simulation type requires multiple simulation runs to
achieve a statistically acceptable number of observations or sample size.
These samples should then be averaged to obtain representative simulation
results. By calculating the confidence intervals for the desired simulation
results the user can determine if additional runs are necessary to achieve
the desired level of statistical confidence.

When the variable of interest are of the steady-state type, the user
has to set the amount to be harvested large enough to reach the steady
state condition. Again, by calculating the appropriate confidence intervals
it can be determined if the length of the performed simulation run was
large enough. For an excellent discussion of the statistical techniques used
to perform these analysis see Law and Kelton, 1982. When the perfor-
mance of different harvesting configurations under the same stand condi-
tions are analyzed, statistical tests like the T-test should be employed to
test the hypothesizes in question.

Therefore, a preliminary analysis before each simulation project
should be done. This analysis should determine if the expected simulation
results and the benefits of using simulation as an analytical tool will out-
weigh the considerable efforts of preparing the required data for the sim-
ulation. Also by taking into account the variable type, the appropriate
sampling method (multiple runs or one single run) should be chosen to in-

sure the statistical validity.

81

VII. CONCLUSIONS AND SUGGESTIONS
FOR FUTURE RESEARCH

A. CONCLUSIONS

The simulation model for log harvesting represents a general solu-
tion for modeling any kind of production process that has to deal with re-
strictions on inventory sizes between processes. By simply labeling the
processes accordingly, nearly any kind of operation that has the same
structure can be modeled. We feel, that with the incorporation of FOR-
TRAN user functions, the modeler should be able to handle the modeling of
operations with a minimum of new programming.

Currently computers build around the advanced 80386 processing unit
have been introduced with speeds up to 20 Mhz. With the increased avail-
ability of such computers and multitasking operating systems, simulation

and numerical analysis will be even more practical.
B. SUGGESTIONS FOR FUTURE RESEARCH

Future research could be done mainly in two areas. The first is to
concentrate on the model itself and enhance it in various ways. The
model could be enlarged to simulate multiple harvesting sites accessing the
same processes or sharing equipment. Instead of using the distribution ap-
proach for modeling, userfunctions could be developed to build a spacial
model of the stand and the harvesting area to better investigate environ-

mental influences. The simulation output could be enhanced to make it

82

more readable and to include additional information. The input user-
interface could be improved to make the entering of data easier. The
build-in time handling functions for processing times also can be improved
by including processing times based on statistical distributions and pro-
cessing times based on the tree volume.

The second type of research would be to undertake time studies of
the various machines used in the timber harvesting process. This re-
search is needed to find the variables of interest that influence the per-

formance of the system.

BIBLIOGRAPHY

Anonymous; 1971
National timber supply is in the public eye.
Forest Industry Journal 98(4):11

Bare, D.B.; B.A. Jayen; B.F. Anholt; 1976

83

A simulation based approach for evaluating logging residual handling

systems.
USDA Forest Service Report PNW-45;
Portland, Oregon

Bradley, D.P.; R.E. Biltonen; S.A. Winsauer; 1976
A simulation model for full-tree chippirf\? and trucking.
USDA Forest Service, Research Paper NC-129;
St. Paul, Minnesota

Bussel, W.H.; J.N. Hool; A.M. Leppet; G.R. Harmon; 1969
Pulpwood harvesting systems analysis.
Report to the Southern Executive Association, Auburn University;
Auburn, Alabama

Carson, Barry; March 1984;
Evaluation of six short rotation harvesting systems.
PH.D.-Thesis, University of Washington;
Seattle, Washington

Conway, Steve; 1976
Logging Practices: Principles of Timber Harvesting Systems.
Miller Freeman Publications, Inc.;
San Francisco, California

Etter, D.M.; 1984
PROBLEM SOLVING with Structured FORTRAN 77.
The Benhamin/Cummings Publishing Company, Inc.
Menlo Park, California

Garland, John J.; Spring 1986
Seminar for mechanized harvesting operations.
Forest Engineering Institute,
Oregon State University;
Corvallis, Oregon

84

Gerstkemper, John C.; 1982
A simulation of the operation of a log landing for a Heli-Stat Air-
ship in old growth timber.
Research paper, Oregon State University,
Dep. of Forestry; June 1982

Goulett, Daniel v.; Ronald H. Iff; Donald L. Sirois; 1979
Tree-to-mill forest harvesting simulation models: Where are we?
Forest Products Journal: 50-55; October 1979

Johnson, L.R.; 1970
Simulation of the loading and hauling subsystems of a logging sys-
tem.
MS-Thesis, Montana State University;
Bozeman, Montana

Johnson, L.R.; 1976
SAPLOS: Documentation and use,
Report to USFS Northwestern Forest Experiment Station, Morgan-
town W.- Virginia;
University of Idaho, Moscow, Idaho

Kellogg, Loren D.; July 1986
Center for wood utilization research, mechanized harvesting of
small timber: Study plan, years 2-5.
Department of Forest Engineering,
Oregon State University;
Corvallis, Oregon

Killham, J.R.; 1975
The development of a forest harvesting simulation model.
MS-Thesis, Auburn University;
Auburn, Alabama

Law, Averill M.; W, David Kelton; 1982
Simulation Modeling and Analysis.
McGraw-Hill Book Company, Inc.
New York, N.Y.

Ledoux, Chris B.; 1975
Simulation of a helicopter yarding system in old growth timber
stands.
MS-Thesis, Oregon State University;
Corvallis, Oregon

Lilegdon, William R.; Jean J. O’Reilly, 1986
SLAM II PC Version User’s Manual.
Pritsker & Associates, Inc.;

West Lafayette, Indiana

85

Lohman, H.; Lehnhausen, H.; 1983

Systemanalyse eines Holzhofes durch die Simulation des Materi-
alflusses.

Forstarchiv 54(6):221-228;

Goettingen, W.-Germany

Martin, A.J.; 1976
A user’s guide for THATS.
USDA Northeastern Forest Experiment Station;
Princeton, W.-Virginia

McMoreland, B.A.; 1977
Evaluation of Volvo VM 971 Clam Bunk Skidder.
FERIC Tech. Report

Microsoft Corporation, 1985
Microsoft FORTRAN Compiler, User’s Guide.
Microsoft Corporation,
Redmond, Washington

Microsoft Corporation, 1985
Microsoft FORTRAN Compiler, Reference Manual.
Microsoft Corporation,
Redmond, Washington

Newnham, R.M.; S. Sjunnesson; 1969
A FORTRAN program to simulate harvesting machines for mecha-
nized thinning.
Forest management research and service Institute, Report FMR-X-23
Ottawa, Ontario Canada

O’Hearn, S.E.; B.W. Stuart; T.A. Walbridge; 1976
Using computer simulation for comparing performance criteria be-
tween harvesting systems.

1976 Winter Meeting, American Society for Agricultural Engineers,
Paper No. 76-1567

O’Hearn, S.E; 1977
Economic and productivity comparisons between full tree chipping
and conventional harvesting systems on a variety of stand types.
M.S. thesis, Virginia Polytechnical Institute and State University;
Blacksburg, Virginia

O’Reillg, ‘{ﬁlan J.; 1984
L Il Quick Reference Manual.
Pritsker & Associates, Inc.;

West Lafayette, Indiana

Powell, L.H.; December 1981

Interior limbing, bucking, and processing study - evaluation of Hahn
Tree-lenlgth Delimber.

For.Eng.Res.Inst. of Canada;

Tech. Note No. TN-51

86

Powell, L.H.; July 1981
Interior limbing, bucking, and processing study - evaluation of
Barko 450 Loader.
For.Eng.Res.Inst. of Canada;
Tech. Note No. TN-46

Pritsker, A.Alan B., Claude Dennis Pedgen; 1984
Introduction to simulation and SLAM II.
2 nd edition, Halsted Press, a Division of
Il]ohn Wiley & Sons, INC.;
ew York, NY

Sessions, John; 1985;
Class notes FE 365,
Department of Forest Engineering;
Oregon State University;
Corvallis, Oregon

Simmons, Fred C.; 1979
Handbook for Eastern Timber Harvesting.
U.S. Dep. of Agriculture, Forest Service,
Northeastern Area, State & Private Forestry,
Broomall, Pennsylvania

Stark, J.I.; 1975;
A simulation model for the common pulpwood harvesting systems of
the southern pine region.

MS-Thesis, Dep. of Ind. Eng., Georgia Tech Inst. of Technology;
Atlanta, Georgia

Stuart, W.B.; J.V. Perumpral; T.A. Walbridge;
S. Shartle; 1981
Pine plantation data for future equipment design.
Am.Soc. of Agric.Eng. Transactions Vol.24 No.3

Webster, D.B.; 1984
Guidelines for the development of simulation models.
Paper presented at the conference COFE/IUFRO;
SAF Publication No. 84-13:81-86
Orono, Maine

Winsauer, S.A.; Bradley, P. Dennis; 1982
A program and documentation for simulation of rubber-tired feller-
buncher.
Research Paper NC-212, U.S. Dep. of Agriculture,
Forest Service, N. Cen. Forest Exp. Station,
St. Paul, Minnesota

Winsauer, Sharon A.; 1984
Simulation of mechanized felling in dense softwood plantations.
Paper presented at the conference COFE/IUFRO;
SAF Publication No. 84-13:175-180
Orono, Maine

APPENDICES

o g R woN

87

APPENDIX A

TABLE OF CONTENTS:

Listing, SLAM NetworkK .i.couuiiniiiiiiiiiiiciieeercesnssasesesansenones 88
Table 3: Contents of ATRIBUTES...........coeovvrneiiiieeen.. 123
Table 4: Contents of XX(i) variablescocvvevereereienrerenenrannn. 124
Table 5: ARRAY description....cc..eveeneienivennieeieneeanesieaeenrannns 127
Table 6: Machines & Processesccccccvvvveeeeereceereennrienrnnnne. 130

Initialization Of the NetworK .ovciiriiiiieiieiiiiiniiirateneenresonnnsnes 132

APPENDIX A

1. Listing, SLAM Network

3 N 22 I N T TP S H MNP0 0 D - I S MMM 3

i OREGON STATE UNIVERSITY
i JUNE 1986

R

j» > LOGS M<K

Hal SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS

¥ DESIGNED BY : CHRISTCPH WIESE
i MASTERS CANDIDATE, DEP. OF INDUSTRIAL
Hhd ENGINEERING, OREGON STATE UNIVERSITY

i DESIGNED FOR: DEPARTMENT OF FOREST ENGINEERING
i OREGON STATE UNIVERSITY

o SUPERVISION : DR. ELDON OLSEN
H ASSQCIATE PROFESSCR, DEP. OF INDUSTRIAL
H ENGINEERING, OREGON STATE UNIVERSITY

*

;n**n*nnuwumuummmmnmmu

ol SLAM I1 NETWORK: HARVEST.TRA

H 31-MAY-87 18:55

*

§ 03020 2030 20 30 30 36 3030 30 W08 BB T DD DEIE 3303030 3030 6T I S

H SYSTEM STATEMENTS:

GEN,CHRISTOPH WIESE,MECH.LOG HARVEST SINM,5/31/1987,18,Y,N,Y,Y,N;

INITIALIZE,®,99999.8;
LIMITS,63,7,208;

iMONTR, TRACE, 15.75,50, 11, TNOW,1,2,53,4,5,6,7,-1,-2,-3,-4,-5,-7,-38,-31 ,-48;

ARRAY(1,42)/8.68;

; AVERAGE PROGESSING TIME PER UNIT
BRRAY(2,42)/0.P0;

; FIXED GONSTANT PROCESSING TIME PER LOAD

89

ARRAY(3,42)/0.00;

: FIXED CONSTANT TIME FOR ONE WAY HAULING
ARRAY(4,13)/0.00;

; WHIGH LOADER TO USE IF TRANSPORT FUNGTION DESIRED @=NONE
ARRAY(5,13)/0.90.,0,0,0,9,0,0,0,2,0.9,0,8;

; ARE WE DEALING WITH @=TREES 1=LOGS 2=SAMLOGS 3=PULPLOGS
ARRAY (6,42)/0.80;

; # OF INITIALLY AVAILABLE RESOURCES

ARRAY(?,18)/0.80;

; SORTING PARAMETERS

ARRAY(8,42)/0.80;

; THRESHHOLD LEVEL FOR INDIVIDUAL BATCHES FOR THE MACHINES
ARRAY(9,42)/8.80;

: KHAT TO MODEL AT EACH PROCESS @=AVERAGE 1=USERF
ARRAY(19,42)/9.99;

; ACCUMULATED MACHINE HOURS

ARRAY(11,13)/0.08;

;i ACCUMULATED INVENTORY DOWNTIME HOURS, INFEED
ARRAY{12,13)/0.08;

;i ACCUMULATED INVENTORY DOWNTIME HOURS, OUTFEED
ARRAY(13.2)/08.00;

; ARRAY LINE FOR GHIPPING PARAMETERS

ARRAY(14,2)/0.00;

;i ARRAY LINE FOR FTRAPO PARAMETERS

ARRAY (15, 14)/0.00;

: FLAG PROCESS IS UP & RUNNING @<NOT STARTED 1=UP 2=ENDED 3=ENDED+STATS
ARRAY(16,13)/0.08;

: START TIME FOR PROCESS & CALC. SCHEDULED HOURS
ARRAY(17,13)/0.08;

; START TIME INVENTORY DOWNTIME

ARRAY(18, 42)/0.09;

; CUMULATED MACHINE BREAKDOMN TIMES OF MACHINES
ARRAY(19,13)/0.09;

; FLAG PROCESS ALTERED BECAUSE OF INFEED INVENTORY @=NQ 1=YES
ARRAY(28,13)/9.00;

; FLAG PROCESS ALTERED BECAUSE OF OUTFEED INVENTORY B=MO 1=YES
ARRAY(21,42)/0.00;

; FIXED COSTS (MACHINE = OPERATOR) PER SCHEDULED HOUR
ARRAY(22,42)/9.09;

; VARIABLE COSTS PER MAGHINE HOUR

ARRAY(23,13)/0.089;

; INDEXES WHERE GOES THE INVENTORY TO

ARRAY(24,13)/9.99;

; INDEXES WHERE COMES THE INVENTORY FROM

ARRAY(25,6)/0.980;

; ARRAY FOR STATISTICAL VALUES AT END OF PROCESS
ARRAY(26,13)/0.08;

; INVENTORY IN TRANSIT

i EQUIVALENCE STATMENTS

TO INDEXING THE BEGINNING OF XX-VARIABLES BLOCKS

EQUIVALENCE/15,LEVEL1;
EQUIVALENCE/27,LEVEL2;
EQUIVALENCE/39, LEVEL3;
EQUIVALENCE/S1,LEVEL4;
EQUIVALENCE/63, LEVELS;
EQUIVALENCE/75 ,LEVELé;
EQIIVALENCE/@7 ,LEVEL7;

; TINMST FOR COLLECTING

HOW MANY CU FT HAVE BEEN PROCESSED

INFEED INVENTORY

STOPPING LEVEL INFEED INVENTORY TOO LOW
STOPPING LEVEL OUTFEED INVENTORY TOO HIGH
STARTUP INVENTORY INFEED

STARTUP INVENTORY OUTFEED

STARTUP INVENTORY LEVEL FOR PROCESS

STATISTICS ABOUT INVENTORY

STAT, 2, INV_PROCESS 2;
STAT,3,INV.PROCESS 3;
STAT, 4, INV.PROCESS 4;
STAT,5, INV.PROCESS 5;
STAT,6,INV.PROCESS 6;
STAT,7,INV.PROCESS 7;
STAT, 8, INV.PROCESS 8;
STAT,9, INV.PROCESS 9;
STAT, 19, INV.PROCESS18;
STAT, 11, INV.DISTRIUBTION
STAT, 12, INV. GHIPPING;
STAT, 13, INV.FTRAPO;
NETHORK ;

*

H RESOURCES USED:

w4 we

RESCURCE/FELLER1(8),208,1;
RESOURCE/FELLER2(8),20,2;
RESOURCE/FELLER3(8),28,3;
RESQURCE/FELLER4 (8),20,4;
RESOQURCE/PROC.1.1(8),20,5;
RESOURCE/PROC.1.2(D),28,6;
RESQURCE/PROC.1.3(@),20,7;
RESQURCE/PROC.2.1(8),20,8;
RESOURCE/PROC.2.2(8),20,9;

RESOURCE/PROC.2
RESOURCE/PROC. 3
RESOURCE/PRCC. 3

.3(@),28,18;
L1(8),28,11;
.2(@),20,12;

!

RESOURCE/PROC. 3.3(8) ,26,15;
RESOURCE/PROC. 4. 1(8) 20, 14;
RESOURCE/PROC. 4. 2(8) ,26,15;
RESOURGE/PROC. 4.3(8) , 20, 16;
RESOURCE/PROC.5.1(8),20,17;
RESOURCE/PROC.5.2(H) ,28,18;
RESOURCE/PROC.5.3(8),20,19;
RESOURCE/PROC. 6. 1(8) , 20, 26;
RESOURCE/PROC.6.2(8),28,21;
RESOURCE/PROC. 6.3(8),20,22;
RESOURCE/PROC. 7.1(8),20,23;
RESOURCE/PROC. 7.2(8) , 20, 24;
RESOURGE/PROC.7.3(8),28,25;
RESOURCE/PROC.8.1(8) , 20, 26;
RESOURCE/PROC. 8.2(8),28,27;
RESOURCE/PROC.B.3 (@) 20,28 ;
RESOURCE/PROC.9. 1(8),28,29;
RESOURCE/PROC.9.2(8),20,39;
RESOURCE/PROC.9.3(8),24,31;
RESQURCE/LOADER1{8),26,32;

RESOURCE/LOADER2(2) ,20,33;

RESOURCE/LOADER3 () 2, 34;

RESOURCE/LOADER4{#} ,20,35;

RESOURGE/LOADERS{H) , 20, 36;

RESOURCE/CHIPPER1 (@) ,28, 37;
RESOURCE/ CHIPPER2(8) , 28,38 ;
RESOURCE/CHIPTRA1 (@), 28 ,39;
RESOURCE/CHIPTRAZ(8) , 28, 48;
RESOURCE/FTRAPO1(8) ,20,41;

RESOURCE/FTRAPOZ(@),20,42;

GATES USED:

7 SITE 1:

GATE/1,GATE! ,CLOSE, 51;
GATE/2,GATE2, CLOSE, 52;
GATE/3,GATES , CLOSE, 53;
GATE/4 , GATE# , CLOSE, 54;
GATE/S, GATES , CLOSE, 55;
GATE/6, GATE6 , CLOSE, 56;
GATE/7,GATE?, CLOSE, 57;
GATE/8, GATES, CLOSE, 58;
GATE/S, GATE9, CLOSE,59;

92

GATE/1d,GATE1d, CLOSE, 64;
GATE/11,GATE11,CLOSE,61;
GATE/12,GATE12,CLOSE, 62;
GATE/13.GATE13,CLOSE.63;

* *
s% NETWORK TO START-UP THE SIMULATION *
. »

H
§ FE O HEHEHEHE S HESHEEHEHHESHHCHEHHEHEHHEHHEHHHHEHHHH

; CREATING INITIALIZATION ENTITY AND READING VALUES FROM FILE

CREATE,,,,1,1; CREATE ONE ENTITY FOR START
GOON, 1;

ACT, ,X(1).EQ.8,SENE NO SIMULATION AT ALL
ACT;

ASSIGN,TI=ARRAY(4,11),1; INDEXING LOADER FOR DISTRIB
ACT,,I11.EQ.8,5Y0;

ACT;

ASSIGN,ARRAY(4,9)«ARRAY(8,11); STORE BATCHSIZE OF THIS LOADER

; PLACING LOAD ENTITIES INTO THE NETWORK

1

sYd ASSIGN,XX{3)=0;
sY1 ASSIGN, XX {3)=XX(3)+1,1; PROCESS COUNTER
GOON,1;

ACT, XN(3).EQ.1,8Y2;

ACT, ,XN(3).GT.1,.AND.XX(3).LE. 14,5Y3;
ACT, ,XN(3).EQ.11,8Y1;

ACT, ,XX(3).EQ.12,574;

ACT, . XN(3).EQ.13.8Y5;

ACT, ,XX(3) .GT.13,5Y16;

93

ST

sYiz

Syz

SY3

SY4

sYS

ASSIGN,XX(2)=8,1;
ACT, . XX(1).EQ.8,8Y1;
ACT;

ASSIGN,XX(2)=XX(2)+1; COUNTER
GOON, 2;
ACT,,XX(2).LT.XX(1),5Y12;
ACT,,X(5).EQ.1,FELL;
ACT, ,X0((3).EQ.2,PRO1;
ACT, ,XX{3).EQ.5,PRO2;
ACT, ,XX(3).EQ.4,PRO3;
ACT, ,X0((3) .EQ.5,PRO4;
ACT, . XX(3).EQ.6,PROS;
ACT, ,XX(3) .EQ.7,PROE;
ACT, ,XX(3).EQ.8,PRO?;
ACT, ,XX(3).EQ.9,PROB;
ACT, ,XX{3) .EQ.18,PR0O9;
ACT, ,XX(3).EQ.12,CHIP;
ACT, . XX(3).EQ.13,FTRA;
ACT,,,SY1;

ASSIGN, XX(1)=ARRAY (6, 1)+ARRAY(6,2)+ARRAY (6,3) +ARRAY(6,4);
ACT,,,SY11;

ASSIGN, IT=XX(3)#3-1;

ASSIGN, XX(1)=ARRAY (6,11}, 11=II+1;

ASSIGN,J0C(1 Y=XX (1) +ARRAY{6,IT), [T=11+1;

ASSTGN, XX(1)=XX{1)+ARRAY(6,I1};
ACT,,,SY11;

ASSIGN,XX(1)=1;
ACT,,,SY11;

ASSIGN,XX(1)=RRRAY(6,41};
ACT,,,8Y11;

; BRING UP FELLER RESOURCES TO INITIATE THE PROCESS

ALTER,FELLER1,ARRAY(6,1);
ALTER,FELLERZ ,ARRAY (6,2} ;
ALTER,FELLER3 ,ARRAY(6,3);
ALTER,FELLER4 ,ARRAY (6,4);
ALTER,LOADER1,ARRAY (6,52);
ALTER,LOADERZ, ARRAY (6,33);
ALTER,LOADER3,ARRAY(6,34);
ALTER,LOADER4 , ARRAY(6,35);

94

ALTER,LOADERS , ARRAY(6,36);

ASSIGN,ARRAY(15,1)=1;
OPEN, GATE1;

ASSIGN,ATRIB(2)=1,ATRIB(3)=4,ATRIB(5)=1,2; INIT MACH.BREAKDCWN
ACT,, ,SY13;

ACT;

ASSIGN,ATRIB(2)=32,ATRIB(3)=36 ATRIE(5)=14,2; INIT MACH.SREAKDOWN
ACT,,,SY13;

ACT;

DEST TERMINATE; END INITIALIZATION SIMULATION

§ HEHHOHEHERHEOHEHE: SECOND NETWORK I E

¥ *
;* NETWOHK TO SIMULATE MACHINE BREAKDOWN *
- »*

3 FEIEPEIEIIE I S S HERHEIE NI S ASHENEIE NI SIS 06 I 000 T 00 2

i PLACING ENTITIES INTO MACHINE BREAKDOWN NETWORK

SY13 ASSIGN, XX(3)=ATRIB(2)-1;

Sr4 ASSIGN, XO{(3)=)X(3)+1,1;
ACT, ,XX(3).GT.ATRIB(3) ,DEST;
ACT;

ASSIGN,XXH(2)=8;
ASSIGN,XX({1)=ARRAY(6,XX(3}),1;
ACT, ,XX(1).EQ.@,5Y14;

ACT;

5Y15 ASSIGN, XX (2)=XX{2)+1,ATRIB(1)=XX(3);

GOON, 2;
ACT, , XX(2).LT.XX{1},5Y15;
ACT,,,SY28;

ACT,, ,5Y14;

96

;i MAIN RCUTINE TO MODEL MACHINE BREAKDOWN

;i ATRIB(1)=MACHINE #, ATRIB(2)-TIME BETWEEN FAILIURES, ATRIB(3)=REPAIR TIME,

syan GOON, 1; BEGIN MAIN ROUTINE
ASSIGN,XX(5)=118; INDEXING USERFUNCTION
ASSIGN, ATRIB(2)=USERF(118); ASSIGNING TIME BETWEEN FAILIURES
ASSIGN,XX(5)=111; INDEXING USERFUNCTION
ASSIGN,ATRIB(3)~=USERF(111),1; ASSIGNING REPAIR TIME

ACT, ,ATRIB(2).EQ.8,DEST; NO BREAKDOWN OF THIS MACHINE
ACT, ,ARRAY(15,ATRIB(5)).GT.1,DEST; END OF PROCESS

ACT;

GOON, 1;

AGT,ATRIB(2); TIME BETWEEN FATLURE

GOON, 1;

ACT, ,ARRAY(15,ATRIB(5)) .GT.1,DEST; END OF PROCESS

ACT;

SY24 AWAIT(ATRIB(1)=1,58) ,ATRIB(1)/1; MACHINE FAILURE,SEIZE MACHINE
ACT,ATRIB(3); REPAIR TIME
ASSIGN,ARRAY(18,ATRIB(1))=ARRAY(18,ATRIB(1) }+ATRIB(3); ADD DOWNTIME
FREE ,ATRIB(1)/1,1; FREE RESOURCE, REPAIR OVER

ACT, ,ATRIB(5) .EQ. 14,5Y2¢;
ACT;
OPEN,ATRIB{5),1;
ACT,,,S5Y28; CONTINUE BREAKDOWN CYCLE

i
H
H
i

{3 HOHOBHEHEHEOUHEOHE THTRD NETHORK 06HE00 0060 3006 146830020

¥ »
i* MAIN NETWORK TO SIMULATE THE FELLING OPERATION *®
3.3 *

]

3 T UG TSN MNP I NI IR0 D 063U 06 S MM
i
P

; ROUTINE FOR ALTERING PROCESS RESOURCES BECAUSE OF INVENTORY/END

AL GOON, 1; GO TO INDEXING WHICH RESOURCES TO ALTER
ACT, ,ATRTB(5} .EQ.1, IN1;
ACT, ,ATRIB(5).GT.1.AND ATRIB(S).LE.18, IN2;
ACT, ,ATRIB(5).EQ.11,DEST;
ACT, ,ATRIB(5}.EQ.12,IN3;
ACT, ,ATRIB(5).EQ.13, IN4;
ACT, , ,DEST;

IN1

IN2

IN3

INd

IND

AL2

ASSIGN,ATRIB(2)=1,ATRIB(3)=4;
ACT,,,INB;

97

FELLING

ASSIGN,ATRIB(2)=ATRIB(5)%3-1,ATRIB(3)=ATRIE(2)+2; PROCESSES

ACT, ,,INB;

ASSIGN,ATRIB(2)=37,ATRIB(3)=37;
ACT, ,, INB;

ASSIGN,ATRIB(2)=41,ATRIB(3)=41;
ACT, ., IN;

GOON, 1;
ACT, ,ATRIB(1).EQ.1,AL1;
ACT, ,ATRIB(1).EQ.2,AL2;

ASSIGN, XX(1)=-1;
ASSIGN,JO((1)=XX(1)#ARRAY(6,ATRIB(2));
ALTER,ATRIB(2},XX(1);
ASSIGN,ATRIB(2)=ATRIB(2)+1,1;

ACT, ,ATRIB(2).LE.ATRIB(3) ,AL1;

ACT;

CLOSE ,ATRIB(5);
TERMINATE;

ASSIGN, IT=ATRIB(2),XX(1)=ARRAY(6,11);
ALTER,ATRIB(2),X0(1);
ASSIGN,ATRIB(2)=ATRIB{2)+1,1;

ACT, ,ATRIB(2).LE.ATRIB(3) ,AL2;

ACT;

OPEN,ATRIB(5);
TERMINATE;

;i ROUTINE FOR PROCESSING

G012

GOON, 1;
ASSIGN, XX(5)=181

CHIPPING

FINAL TRARSPORT

GO TO DESIRED ALTERING:
DECREASE RECURCES
MAKE RESOURCE AGAIN AVAILABLE

SET XX(1) NEGATIVE
INDEXING HOH MANY RESC.AVAIL.
DECREASE AVAILABLE RESOURCES

CLOSE GATE OF PROCESS

MAKE RESOURCES BACK AVAILABLE

OPEN GATE OF PROCESS

ACT ,USERF(2); SET BATCHSIZE & TREES

GOON,1;
ACT, ,ATRIB(5) .EQ.1,G011;
ACT;

G0N

G012

AS2q

G013

G014

G5

Go16

98

GOON, 1;

ACT, ,ATRIB(2) .EQ.8,NAIT;

ACT;

ASSIGN, IT=LEVEL2+ATRIB({5), XX(11)=XX(II)-ATRIB(2),1; CALC.INFEED INVEN.
ASSIGN, XX(5)=183; INDEXING USERF

ACT ,USERF(183); COLCT STATS

ASSIGN,ARRAY(26,ATRIB(5))=ARRAY(26 ,ATRIB(5))+ATRIB(2); INV. IN TRANSIT
ASSIGN, TT=LEVEL1+ATRIB(5) , XX(11)=XX(I1)+ATRIB(2),1; SUM.PROCESSED
GOON, 2;

ACT, ,.END; TEST CURRENT PROCESS END
ACT;

GOON, 1; TEST IF LAST ENTITY OF PROCES
ACT, ,ARRAY(15,ATRIB(5)).LT.2,6012;

ACT;

ASSIGN, ATRIB(7)=1; MARK LAST ENTITY

GOON, 1; RERQUTE IF FELLING ENTITIY
ACT, .ATRIB(5) .EQ.1,AS28;
ACT;

GOON, 2:
ACT,,, INLO; TEST INFEED INVENTORY CURRENT PROC.TOO LOW
ACT;

GOON, 2;
ACT, , ,OUTH; TEST QUTFEED INVENTORY PREVIOUS PROC.NORMAL?
ACT;

ASSIGN, ATRIB(4)=TNOW, 1;
ACT, .ARRAY (4,ATRIB(5)).GT.0,LOAD; DIVERT IF LOAD FGTN
ACT;

GOON, 1;
ACT, ,ATRIB(5) .EQ.13.AND.ARRAY(6,42).GT.0,AHSd; SELZE TRACTOR FTRAPO
ACT;

GOON, 1;
ACT, ,ARRAY (9 ATRIB(5)).EQ.B,G015; MODELLING CONSTANT TIMES
ACT, ,ARRAY(9,ATRIB(5)).EQ.1,G016; MODELLING WITH USERFUNCTIONS

ASSIGN,ATRIB(3)=ATRIE(3)*ARRAY(1,ATRIB{1}); CALGC VARIABLE PROCESS TIME
ACT ATRIB{3);

GOON, 1;

ACT,, ,GO1T;

ASSIGN, XX(5)=ATRIB(1);
ACT ,USERF(3);

G017

G018

G021

Go19

G029

GOON, 1:

ACT,ARRAY(2,ATRIB(1)); 1ST CONSTANT TIME FACTOR
GOON, 1;

ACT , ARRAY(3 ,ATRIE(1)); Z2ND CONSTATNT TIME FACTOR
GOON, 1;

ACT, ,ATRIB(5).GE.12,G018; REROUTE IF FTRAPO/CHIPPING
ACT;
ASSIGN, XX (1)=ARRAY(23,ATRIB(5)); INDEXING KEXT PROCESS
ASSIGN, I I=LEVEL24XX (1) , XX(I1)=XX(I1)+ATRIB(2); INV.CALC.INFEED NEXT
ASSIGN, XX(5)=184; INDEXING USERF
ACT,USERF(184); COLCT STATS

ASSIGN, ARRAY (26 ,ATRIB(5))=ARRAY (26, ATRIB(5))-ATRIB(2); INV. IN TRANSIT

GCON, 2;

ACT, ,,OUTH; TEST QUTFEED INVENTORY TOO HIGH
ACT;
GOON, 2;

ACT,,,INN; TEST INFEED INVENTORY NORMAL?
ACT;
GOON, 1;
ACT,ARRAY(3 ,ATRIB{1)}; 2ND CONSTANT TIME FACTOR
ASSIGN,ATRIB({4)=~TNOW-ATRIB(4); CALCULATE MACHINE HOURS
ASSIGN ,ARRAY(18,ATRIB(1))=ARRAY{ 18 ,ATRIB(1) }+ATRIB(4); ADD MACHINE HRS
FREE,ATRIB(1)/1,1; FREE RESCURCE

ACT, ,ATRIB{5).EQ.13,FTST; REROQUTE IF FTRAPO

ACT:

OPEN,ATRIB(5),1; OPEN GATE CURRENT PROCESS

ACT, ,ATRIB(5).EQ. 12,G063; RERQUTE IF CHIPPING

ACT, ,ATRIB{7)_EQ.1,STAT; GOTO STATS IF LAST ENTITY

ACT;

GOON, 1;

ACT, ,ATRIB(5) .EQ.12.AND.ATRIB(7).EQ.1,G065; LAST ENTITY CHIPPING
ACT, ,ATRIB(5).EQ.15,FTRA; REROUTE IF FTRAPD

ACT;

ASSIGN,ATRIB(1)=ARRAY(23,ATRIB(5)); INDEXING NEXT PROCESS
OPEN,ATRIB(1),1; OPEN GATE NEXT PROCESS
FOON, 1;

ACT, ,ATRIB(5).EQ.1,FELL;

ACT, ,ATRIB(5}.EQ. 2,PRO1;

ACT, ,ATRIB(5).EQ.3 PROZ;

ACT, ,ATRIB(5).EQ.4,PRO3;

ACT, ,ATRIB(5).EQ.5,PRO4;

ACT, ,ATRIB(5).EQ.6,PRO5;

ACT, ,ATRIB(5).EQ.7,PRO6;

ACT, ,ATRIB(5).EQ.8,PRO7;

ACT, ,ATRIB(5).EQ.9,PRO8;

ACT, ,ATRIB(5).EQ.18,PROY;
ACT, ,ATRIB(5) .EQ.12,CHIP;
ACT, ,ATRIB(5).EQ.13,FTRA;

100

; ROUTINE, TESTING INFEED CURRENT PROCESS INVENTORY TOO LOW

INLO

ASSIGN, I1=ATRIB(5)+LEVELZ , XX{1)=XX(II);
ASSIGN, IT=ATRIB(S)+LEVELE , XX(2)=XX(1I);
ASSIGN, II=ARRAY(24,ATRIB(5)),1;
ACT, ,XX(1).GE.XX(2),DEST;
ACT, ,ARRAY(15,11).GE.2 ,DEST;
ACT, ,ARRAY(15,ATRIB(5)).GE.2,DEST;
ACT, ,ARRAY (28, ATRIB(5)}.GT.#,DEST;
ACT, ,ARRAY(19,ATRIB(5)}.GT.8,DEST;
ACT;

ASSIGN,ARRAY (17, ATRIB(5))=TNON;
ASSIGN, ARRAY(19,ATRIB(5))=1;
ASSIGN,ATRIB(1)=1,1;

ACT, , ,AL;:

ACTUAL INFEED INV.CURRENT PRO
STOPPING LEVEL MIN.INFEED INV
INDEXING PREVIOUS PROCESS
INVENTORY TEST

PREVIOUS PROCESS ENDED
CURRENT PROCESS ENDED
QUTFEED ALREADY DOWN

FLUX ARCUND LIMIT

STORE TIME

SET FLAG

SET FLAG DECREASING RESOURCES
GOTO ALTERING

; ROUTINE, TEST INFEED INVENTORY MEXT PROCESS BACK TO NORMAL

INN
INN1

ASSIGN,ATRIB(6)=ARRAY(25, ATRIB(5));
ASSIGN, IT=ATRIB(&)+LEVEL2, XX(1)=XX(II):
ASSIGN, II=ATRIB(&)+LEVELS ,XX{2)=XX(II};
ASSIGN,II=ATRIB(6),1;

ACT, ,ARRAY(15,11).EQ.A,DEST;

ACT, XX(1)_LT.XX(2) ,DEST;

ACT, ,ARRAY(19,11).EQ.8,DEST;

ACT, ,ARRAY(28,I1).GT.Q,DEST;

ACT;

ASSIGN,XX(1)=TNON-ARRAY(17,11};

INDEXING NEXT PROCESS
INFEED INV.NEXT PROCESS
STARTUP INV.LEVEL

INDEXING NEXT PROCESS

NEXT PROCESS NOT UP YET
INVENTORY TEST MEXT PROCESS
FLUX ARQUND LIMIT

QUTFEED ALREADY DOWN N.P.

CALC.DOWNTIHE

ASSIGN,ARRAY(19,11)=8 ,ARRAY (11, I1)=ARRAY(11,11)+XX(1);ADD DOWNTIME

ASSIGN,ATRIB(S)=I1,ATRIB(1)=2;
OPEN,ATRIB(5);
ACT,, ,AL;

SET FLAG INCREASING RESOURCES
OPEN GATE MEXT PROCESS
GOTO ALTERING RESOURCES

101

; ROUTINE. TEST QUTFEED INVENTORY CURRENT PROCESS IS TOD HIGH

; (QUTFEED INVENTCRY CURRENT PROGCESS = INFEED INVENTORY NEXT PROCESS)

OUTH

ASSIGN, IT=LEVEL2+ARRAY (25, ATRIB(5)), XX{1)=XX(1I); INFEED INV.NEXT PROC

ASSIGN, IT=LEVEL4+ARRAY (25 ,ATRIB(5)),XX(2)=XX(1I),1; MAX.INV.NEXT PROC

ASSIGN, IT=ARRAY (25 ,ATRIB(5)),1;
ACT, ,ARRAY(15,11).EQ.B,DEST;
ACT, ,XX{1).LE.XX(2) ,DEST;
ACT, ,ARRAY(15 ,ATRIB(5)).GE.2,DEST;
ACT, ,ARRAY (19 ,ATRIB(5)) .GT.8,DEST;
ACT, ,ARRAY(28 ATRIB(5)) .GT.A DEST;
ACT;

ASSIGN ARRAY(17,11)=TNOW;
ASSIGN ,ATRIB(1)=1,ARRAY (28 ,ATRIB(5))=1;
ACT,, ,AL;

INDEXING NEXT PROCESS
NEXT PROC.NCT UP YET
INVENTORY TEST MNEXT PROC.
CURRENT PROCESS ENDED
INFEED ALREADY DOWN

FLUX AROUND LIMIT

STORE TIME
SET FLAG DECREASE RESOURCES

; ROUTINE, TEST QUTFEED INVENTORY PREVIQUS PROCESS BACK TO NORMAL

i (INFEED INVENTORY CURRENT PROCESS = QUTFEED INVENTORY PREVIOUS PROCESS)

QUTN

ASSIGN, I1=LEVEL2+ATRIB(S) , XX{1)=XX(II); INV.CURRENT PROCESS

ASSIGN, IT-LEVELG+ATRIB(5) ,XX(2)=XX(11); STARTUP LEVEL MAX.INV.

ASSIGN. IT=ARRAY (24 ,ATRIB(5]),1;
ACT, XX(1).GT.XX(2) ,DEST;
ACT, ,ARRAY(15,11).GE.2,DEST;
ACT, ,ARRAY (28,11).NE.1,DEST;
ACT, ,ARRAY(19,11).GT.#,DEST;
ACT;

-

ASSIGN, XX(1)=TNOW-ARRAY (17, ,ATRIB(5));

ASSIGN,ARRAY(12 ,ATRIB(5))=ARRAY (12, ATRIB(5))+XX(1);

ASSIGN,ARRAY(28,11)=8,ATRIB(5)=11;
ASSIGN, ATRIB(1)=2;
OPEN,ATRIB(5);

ACT,, ,AL;

i ROUTINE, TEST END OF PROCESS

INDEXING PREVIOUS PROCESS
INVENTORY TEST MAX.INV.
PREV.PROCESS ALREADY ENDED
FLUX AROUND LIMIT

INFEED INV.DOWN PREV.PROCESS

CALC.DOWNTIME

ADD DOWNTIME

SET FLAG,SET PROCESS

SET FLAG INCREASING RESOURCES
OPEN GATE PREVIOUS PROCESS
GOTO ALTERING RESOURCES

END

EFELL

E2

E3

E4

ES

GOON, 1;
ACT, ,ATRIB(5).EQ.1,EFELL;
ACT;

ASSIGN, IT=LEVELZ+ATRIB(5),XX(1)=XX(I]);
ASSIGN, II=ARRAY(24 ATRIB(5)),1;

ACT, ,XX(1).GT.#.891,DEST;

ACT, ,ARRAY{15,11).LT.2,DEST;

ACT, ,ARRAY(26,11).GT.0.991,DEST;

ACT;

ASSTGN,ARRAY{15,ATRIB(5))=2, ATRIB(T)~1;
ACT, , . SEND;

ASSIGN, I I=LEVEL1+1

GOON, 1;
ACT, ,XH(II) .LT.XX(4),DEST;
ACT;

ASSIGN, ARRAY(15,1)=2,ATRIB(T)=1;

ASSIGN,ATRIB(1)=1,2;
ACT,, ,AL;
ACT;

GOON, 1;

ACT, ATRIB(5).EQ.11,E4;
ACT, ,ATRIB(5).EQ.12,E2;
ACT, ,ATRIB(5).EQ.13,E3;
ACT;

TEST IF FELLING

INVENTORY CURRENT PROCESS
INDEXING PREVIOQUS PROCESS
TEST INVENTORY CURRENT PROGESS
TEST PREVICUS PROCESS FINISH
TEST TNVENTORY IN TRANSIT

SET FLAG PROCESS FINISHED
GOTO RESOURCE ADJUSTMENT

TEST IF ALL TREES HARVESTED

SET FLAG PROCESS FINISHED

SET FLAG DECREASING RESCURCE

TESTING IF DISTRIBUTION
TESTING IF CHIPPING
TESTING IF FTRAPO

ASSIGN, [T=ARRAY(23,ATRIB(5)),ATRIB(S)=1I,ATRIB(1)=2,1; INDEX NEXT PROC

ACT,, .E5i

ASSIGN, XX(8)=2;
ACT,, ,DEST;
ASSIGN,XXK(9)=2;
ACT,, .DEST;

SET FLAG CHIPPING ENDED

SET FLAG FTRAPO ENDED

ASSIGN,11=ARRAY(7,5) ,ATRIB(5)=I1,ATRIB(1)=2,2; INDEXING ROUTE 1

ACT, , .E5;
ACT;
ASSIGN, IT=ARRAY(7,6) ,ATRIB(S)=I1;
GOON, 1;
ACT, ,ARRAY (20 ,ATRIB(5)).EQ.1,DEST;
ACT, ARRAY{19,ATRIB(5)).EQ.1,E6;
ACT,, ,DEST;

INDEXING ROUTE 2

NEXT PROCESS DOWN QUTFEED
NEXT PROCESS DOMN INFEED
DESTROY IF DONE

102

E6

E7

103

ASSIGN,ARRAY(19,ATRIB(5))=8,2; SET FLAG PROCESS UP INFEED
ACT,, \AL; BRING BACK NEXT PROCESS
ACT, ATRIB(5}.EQ.11,E7; CONTINUE IF DISTRIBUTION
ACT,,,DEST; OTHERMISE DESTROY

OPEN.GATE11; OPEN GATE FOR DISTRIBUTION
ACT,,,DEST; DESTROY IF DONE

; ROUTINE TO CALCULATE THE REQUIRED STATISTICS

STAT

ASSIGN, XX(5)=128;

ACT ,USERF (128} ; OUTPUT STATS TO PRINTER
ASSIGN,ARRAY(15 ,ATRIB(5))=3,1; SET FLAG PROC.COMPLETLY ENDED
ASSIGN, ARRAY(26 ATRIB(5))=f,1; SET INV.IN TRANSIT #
ACT,,,G019; RETURN TO MAIN PROCESSING

; ROUTINE: MODELLING LOADING FUNCTION

LOAD

GO

GO32

GO33

GOON,1;
ACT, ,ARRAY(9,ATRIB(5)).EQ.8,G031;
ACT, ,ARRAY(9 ,ATRIE(5)).EQ.1,6032;

ASSIGN,XX(6)=ARRAY(1,ATRIB(6))*ATRIB(3); CALC VARIABLE PROCESSING TIME
ACT XX(6);
GOON,1;

ACT, ,.GO33;

ASSIGN,XM(5)=ATRIB(6);
ACT,USERF (4);

GOON, 1;

ASSIGN,XX(1)=ATRIB(2)/ARRAY{8 ATRIB(6)); CALC.HOW MANY LOADS

ASSIGN, XX(6)=X(1)*ARRAY(2 ,ATRIB(6)); GALC.1ST CONST.TIME FACTOR
ASSIGN,JO((6)=XX(6)+X(1)*ARRAY (3, ATRIB(6)); CALC.2ND CONST TIME

ACT , XX(6); 1ST+2ND CONSTANT TIME FACTOR

GOON, 2;

ACT, , ,GO34;

ACT, ,ATRIB(5).LT.18.OR.ATRIB(5).GE.12,GO13;RETURN TO MAIN PROCESSING
ACT,.,DEST;

G034 GOON, 1;
ASSIGN.X(1)=ATRIB(2)/ARRAY(8 ,ATRIB(6)); CALC.HOW MANY LOADS
ASSIGN, XX (1)=XX(1)*ARRAY(3,ATRIB(6); GALC.2ND CONST.TIME FACTOR
ACT, XX(1); 2ND CONSTANT TIME FACTOR
ASSIGN,ATRIB(4)=TNOW-ATRIB(4); MACH. TIME;
ASSIGN,ARRAY (18 ,ATRIB{6))=ARRAY(108,ATRIB(6))+ATRIB(4); ADD.MACH.TIME
FREE,ATRIB(6}/1,1;
ACT, , ,DEST;

i ROUTINE: TEST END OF SIMULATION

SEN1 ASSIGN, [1=ARRAY(24,ATRIB(5)),ATRIB(1)=28, 1; INDEXING PREVIOUS PROCESS
ACT, ,ARRAY(15,11).NE.3,HAI; TESTING IF PREV.PROC.ENDED
ACT;

SEN2 GOON, 1;
ACT, ,ARRAY(15,13).GT.@,BOTH;

ACT, ,.SENS;

¥

SENZ ASSIGN, II=ARRAY (24 ATRIB(5)),ATRIB(1})=21,1; INDEX PREV. PROCESS
ACT, ,ARRAY(15,11).NE.3,WAI; TESTING IF PREV.PROC.ENDED
ACT;

SEN4 GOON, 1;
ACT, ,ARRAY(15,12) .GT.8,B0TH;
ACT, , , SEN5;

BOTH ACCUMULATE,Z2,1,LAST,1;
SENS ASSIGN,ATRIB(1)=22,1;

ASSIGN,ARRAY(15,14)=3;
ACT, ,NRUSE(32).GT.8,WAI1; TEST IF ALL LOADERS ARE SHUT
ACT, ,NRUSE(33) .GT.B,WAIY; DOWN FOR STATS

ACT, ,NRUSE(34).GT.#,WAIl;
ACT, NRUSE(35).GT.8,HAI;
ACT, NRUSE(36) _GT.#,WAILl;
ACT;

ASSIGN,ATRIB(5)=14,)0((5)=128; INCEXING FOR STATS
ACT ,USERF(128);
SENG TERMINATE, 1; DEFINITIVE END OF SIMULATION

;i ROUTINE: WAITING LOOPS

WAIT

WADS

WAIR

WATS

WALT

FREE,ATRIB(1)/1,1;
ACT, ATRIB(6) .EQ.4,WARD;
ACT;

FREE,ATRIB(6)/1,1;

GOON, 1;
ACT . ,ATRIB(5) .EQ.12.WAI3;
ACT;

GOON, 1;
ACT XX(18);
GOON, 1;
ACT, , ,G020;

FREE,CHIPTRA1/1,1;
ASSIGN,ARRAY(13,2)=1;
ACT,, JMAI®;

GOON, 1;

ACT, XX(18);

GOON,1;
ACT, . ATRIB(1) .EQ.28,5EN1;
ACT, .ATRIB(1).EQ.21,SEN3;
ACT, ,ATRIB(1) .EQ.22,SEN5;

; BEGINN OF FELLING PROCESS, SITE 1

WAITING LOOP IF NO INFEED INV

NO LOADER USED

FREE LOADER

IS AVAILABLE

RETURN TO MAIN PROCESS ROUT.

FREE CHIPTRA IF GHIP PROCESS
RESET FLAG SEIZE PRIME TRAPO

WAITING LOOP IF END OF SIMU,
PROCESS IS NOT FINISHED

; ROUTINE OT ASSIGN AVAILABLE FELLER

FELL

ASSIGN,ATRIB(5)=1,ATRIB{6)=ARRAY(4,1),1;

ACT, ,NNRSG(1).GT.f,MA1;
ACT, ,NNRSC(2) .GT.8 MA2;
ACT, ,NNRSC(3).GT.d,MA3;
ACT, NNRSC(4).GT.0,MA4;
ACT,,,CL1;

105

CL1
Al

MAZ

MAZ

A1

F3

CLOSE, GATE! ;
AWAIT(51},GATEY;
ACT, ., ,FELL;

ASSIGN,ATRIB(1)=1;
ACT,, AW1;

ASSIGN,ATRIB(1)=2;
ACT, ., ,ANY;

ASSIGN,ATRIB(1)=5;
ACT, , AM1;

ASSIGN,ATRIB(1)=4;
ACT, , , AHT;

AWAIT(ATRIB(1)=1,58) ATRIB(1),1;
ACT, ,ATRIB(6).EQ.H,PROC;
ACT;

AUAIT(ATRIB(6)=1,50) ,ATRIB(6); SEIZE LOADER
ACT,, ,PROC;

; BEGIN OF SECOND PROCESS

i ROUTINE TO ASSIGN AVAILABLE RESOURCES AND GO TO PROCESSING

PRO1

MAS
MAG

MA7

ASSIGN, ATRIB(S)=2,ATRIB(6)=ARRAY(4,2),1;
ACT, ,NNRSC(5) .GT. @, MAS;
ACT, ,NNRSC(6).GT.&,MAG;
ACT, ,NMRSC(7).GT.8,MA7;
ACT,,,CL2;

CLOSE,GATE2;
AURIT(52) ,GATE2;
ACT, , ,PROY;

ASSIGN,ATRIB{1)=5;
ACT, , , AW2;

ASSIGN,ATRIB{1)=6;
ACT, , ,AN2Z;

ASSIGN,ATRIB(1)~7;
ACT, , ,ANZ;

106

ANZ

AWAIT(ATRIB(1)=1,508} ,ATRIB(1),1;
ACT, ,ATRIB(6).EQ.8,PROC;
ACT;

AWAIT(ATRIB(6}~1,58} ,ATRIB(6); SEIZE LOADER
ACT,, ,PROC;

; SECOND PROCESS: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT,XX(29) ,XP ,XX(89),,1;
ACT, ,ARRAY(15,2).GT.8,DEST;
ACT;

ASSIGN,ATRIB(1)=2,ATRIB(S}»2,ATRIB(2)=5,ATRIB(3)=7;
ASSIGN,ARRAY(15,2)=1,ARRAY(16,2)=TNOM, 2;

ACT,, ,AL;

ACT,, ,SY13;

i BEGIN OF THIRD PROCESS

; ROUTINE TO ASSIGN AVAILABLE RESOURCES AND GO TC PROCESSING

MRS

HA1E

ASSIGN,ATRIB(S)«3,ATRIB(6)=ARRAY(4,3),1;
ACT, ,NNRSC(8).GT.9,MAS;
ACT, ,NNRSG(9) .GT.8,MA9;
ACT, ,NNRSC(19} .GT.9, MA1;
ACT,,,CL3;

CLOSE, GATES ;
AHAIT(53),GATES;
ACT, , .PROZ;

ASSIGN,ATRIB(1)8;
ACT, , ,AW3;

ASSIGN,ATRIB(1)=9;
ACT,, ,AN3;
ASSIGN,ATRIB{1)=18;
ACT, , , AN3;

107

108

AW ARAIT(ATRIB(1)=1,58) ,ATRIE(1),1;
ACT, ,ATRIB(6).EQ.8,PROC;
ACT;

AHAIT{ATRIB(6)=1,50) ATRIB(6); SEIZE LOADER
ACT,,,PROC;

; THIRD PROCESS: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT, XX (38),XP,XX(98}, ,1;
ACT. ,ARRAY(15,3).GT.8,DEST;
ACT;

ASSIGN,ATRIB(1)=2,ATRIB(5)=3,ATRIB{2)=8,ATRIB(3)=18;
ASSIGN,ARRAY(15,3)=1,ARRAY(16,3)=TNONM, 2;

ACT,, ,AL;

ACT,, ,5Y13;

; BEGIN OF FORTH PROCESS

; ROUTINE TO ASSIGN AVAILABLE RESQURCES AND GO TO PROCESSING

PRO3 ASSIGN,ATRIB(5)=4,ATRIB(6)=ARRAY(4,4) ,1;
ACT, ,NNRSC{11).GT.A,MA11;
ACT, .NNRSC{12).GT.A,MM12;
ACT, ,NNRSC(13).GT.A, MM 3;
ACT,, ,CL4;

CL4 CLOSE,GATE4 ;
AWAIT(54) ,GATES;
ACT,, ,PRO3;

MAT1 ASSIGN,ATRIB(1)=11;
ACT, , , AW4;
MAT2 ASSIGN ATRIB(1)=12;
ACT,, , Al4;
MMI3 ASSIGN,ATRIB(1)=13;
ACT, , , AW4;
AW4 AWAIT(ATRIB(1)=1,58) ATRIB(1)},1;
ACT, ,ATRIB(6).EQ.8,PROC;
ACT;

AWAIT(ATRIB(6)=1,58),ATRIB(6); SEIZE LOADER
ACT, , ,PROC;

; FORTH PROCESS: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT, XX(31) ,XP,XX(91),,1;
ACT, ,ARRAY(15,4).GT.8,DEST;
ACT;

ASSIGN,ATRIB(1)=2,ATRIB(5)=~4,ATRIB(2)=11,ATRIB(3)=13;
ASSIGN, ARRAY(15,4)=1,ARRAY(16, 4)=~TNOH, 2;

ACT,, ,AL;

ACT, ., SY13;

; BEGIN OF FIFTH PROCESS

i ROUTINE TO ASSIGN AVAILABLE RESOURCES AND GO TO PROCESSING

PRO4 ASSIGN,ATRIB(5)=5,ATRIB(6)=ARRAY(4,5),1;
ACT, ,NNRSC(14).GT.B,MA14;
ACT, ,NNRSC(15) .GT. 8, MA15;
ACT, ,NNRSG(16} .GT. B, HA16;
ACT,, ,CL5;

109

AWS

CLOSE, GATES;
AMRIT(55) ,GATES:
ACT, , ,PRO4;

ASSIGN,ATRIB(1)=14;
ACT,, ,AH5;
ASSIGM,ATRIB(1)=15;
ACT, , ,ANS5;
ASSIGN,ATRIB(1)=16;
ACT, , ,AW5;

AWAIT(ATRIB(1)=1,58) ,ATRIB(1),1;
ACT, ,ATRIE(6).EQ.8,PROC;
ACT;

AWAIT{ATRIB(6)=1,58) ,ATRIB(6); SEIZE LOADER
ACT,, ,PROC;

; FITH PROCESS: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT, XX(32) ,XP,XX{92),,1;
ACT, ,ARRAY(15,5) .GT.A,DEST;
ACT;

ASSIGN,ATRIB(1)=2,ATRIB(5)=5,ATRIB(2)=14,ATRIB(3)=16;
ASSIGN,ARRAY(15,5)=1,ARRAY(16,5)=TNOK,2;

ACT,, ,AL;

ACT,,,ST13;

110

111

; BEGIN OF SIXT PROCESS

i ROUTINE TO ASSIGN AVAILABLE RESOURCES AND GO TO PROCESSING

PROS ASSIGN,ATRIB(5)=6,ATRIB(6)=ARRAY(4,6),1:
ACT, ,NNRSC{17) .GT.8,MA17;
ACT, NNRSC(18).GT. 8, MA18;
ACT, NNRSC(19).GT.4,MA19;
ACT,, ,CLé;

CL6 CLOSE,GATES;
AWAIT(56) ,GATEG;
ACT, , ,PROS;

MA1? ASSIGN,ATRIB(1)=17;
ACT,, AH6;

MA18 ASSIGN,ATRIB(1)=18;
ACT,, , AW6;

MA19 ASSIGN,ATRIB{1}=19;
ACT, , W6,

ALé AWAIT(ATRIB(1)=1,5@) ,ATRIB{1),1;
ACT, ,ATRIB(6).EQ.B,PROC:
ACT;

AMAIT(ATRIB(6)=1,5@) ATRIB(6); SEIZE LOADER
ACT, , ,PROC;

; SIXT PROCESS: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT, XX{33) ,XP , XX(93}, ,1;
ACT, ,ARRAY(15,6).GT.@,DEST;
ACT;

ASSIGN,ATRIB(1)=2,ATRIB(5)=6,ATRIB(2)=17,ATRIB(3)=19;
ASSIGN, ARRAY(15,6)=1 ARRAT(16,6)=TNOM, 2;

ACT,, ,AL;

ACT,,,SY13;

; BEGIN OF SEVENTH PROCESS

; ROUTINE TO ASSIGN AVAILABLE RESOURCES AND GO TO PROGESSING

PROG

MAZA

MAZ21

HA22

A7

ASSIGN,ATRIB(5)=7,ATRIB(6)=ARRAY(4,7),1;
ACT, ,NNRSC(20) .GT.B,MA28;

ACT, ,NNRSC(21).GT.0,MA21;

ACT, ,NNRSC(22) .GT. 9. MA22;

AcT,, ,CL7;

CLOSE,GATE7;
AWAIT(57),GATE?;
ACT, . ,PROG;

ASSIGN,ATRIB(1)=28;
ACT,, ,AN7;
ASSIGN,ATRIB(1)=21;
ACT,, ,AN7;
ASSIGN,ATRIB(1)=22;
ACT, , ANT;

AWAIT(ATRIB(1)=1,58) ,ATRIB(1),1;
ACT, ,ATRIB(6).EQ.#,PROC;
ACT;

AWAIT(ATRIB(6)=1,52) ,ATRIB(6); SEIZE LOADER
ACT,,,PROC;

i SEVENTH PROCESS: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT, XX{34) ,XP,XX(%4),,1;
ACT, ,ARRAY(15,7) .GT.8,DEST;
ACT;

112

ASSIGN,ATRIB(1)=2,ATRIB(5)=7 ATRIB(2)=20,ATRIB(3)=22;
ASSIGN, ARRAY(15,7)=1,ARRAY (16, 7)=TNOM, 2;

ACT...AL;

ACT,, .SY13;

; BEGIN OF EIGTH PROGESS

7 ROUTINE TO ASSIGN AVAILABLE RESOURCES AND GO TO PROGESSING

MA23

MA24

ASSIGN,ATRIB(S)=8, ATRIB(6)=ARRAY (4,8) ,1;
ACT, NNRSC(23).GT.8,MA23;
ACT, ,NNRSC(24).GT.8,MA24;
ACT, NNRSC(25) .GT. 8 MAZS ;
ACT,..CL8;

CLOSE, GATES;
ARAIT(58),GATES;
ACT, ., PROT;

ASSIGN,ATRIB(1)=23;
ACT, , ,AWE;
ASSIGN,RTRIB(1)=24;
ACT, .. AWE;

ASSIGN,ATRIB(1)=25;
ACT,, ,ANS;

AWAIT(ATRIB(1)=1,58) .ATRIB(1),1;
ACT, ,ATRIB(6) .EQ.D,PROC;
ACT;

AMAIT(ATRIB(6)=1,58) ,ATRIB(6); SEIZE LOADER
ACT, . .PROCG;

113

; EIGTH PROCESS: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT, XX(35) ,XP ,X(95),,1;
ACT, ,ARRAY(15,8).GT.8,DEST;
ACT;

ASSIGN,ATRIB(1)=2,ATRIB(5)=8,ATRIB(2)=23, ATRIB(3}=25;
ASSIGN,ARRAY{15,6)=8, ARRAY(16,8)=THOK, 2;

ACT,, ,AL;

ACT,, ,SY13;

; BEGIN OF NINETH PROCESS

; ROUTINE TO ASSIGN AVAILABLE RESOURCES AND GO TO PROCESSING

PROB

MA26

MA27

MA28

AN9

ASSIGN,ATRIB(5)=9,ATRIB(6)=ARRAY(4,9),1;
ACT, ,NNRSC(26) .GT. 8, MA26;
ACT, ,NNRSG(27) . GT. 8, MAZT;
ACT, ,NNRSC(28).GT.8,MA28;
ACT, ,,CL9;

CLOSE ,GATEY;
ARAIT(59),GATES;
ACT, , .PROB;

ASSIGN,ATRIB(1)=26;
ACT,, ,AH9;

ASSIGN, ATRIB(1)=27;
ACT,, ,AH9;

ASSIGN, ATRIB(1)=28;
ACT,, ,AW9;

AWAIT(ATRIB(1)=1,58) ,ATRIB(1),1;
ACT, ,ATRIE(6) .EQ.@,PROC;
ACT;

AWAIT(ATRIB(6)=1,58) ,ATRIB(A); SEIZE LOADER
ACT, , ,PROC;

114

; NINETH PROCESS: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT , XX{36) ,XP ,XX(96),,1;
ACT, ,ARRAY(15,9).GT.8,DEST;
ACT;

ASSIGN ,ATRIB(1)=2,ATRIB(5)=9,ATRIE(2)=26,ATRIB(3)=28;
ASSIGN, ARRAY(15,9)=1,ARRAY(16,9)=TNON,2;

ACT, . AL;

ACT,, ,5Y13;

i+ BEGIN OF TENTH PROCESS

; ROUTINE TO ASSIGN AVAILABLE RESOURCES AND GO TO PROCESSING

PROY

cLig

MA29
MAZ

MAS1

AN1D

ASSIGN,ATRIB(5)=18,ATRIB(6)=ARRAY (4, 16),1;
ACT, NNRSC(29) .GT.8,HA29;

ACT, ,NNRSG(3@) .GT.@,MA3S;

ACT, ,NNRSC(31).GT.0,HA51;

ACT,, ,CL18;

CLOSE,GATEd;
ANAIT(68),GATED;
ACT,, ,PRO9;

ASSIGN,ATRIB(1)=29;
ACT, , AHTH;

ASSIGN,ATRIB(1)=38;
ACT,, , AN18;
ASSIGN.ATRIB(1)=31;
ACT, , , AN18;

AWNAIT(ATRIB(1)=1,58) ATRIB(1),1;
ACT, ,ATRIB(6) .EQ.8,PROC;
ACT;

115

116

AWAIT(ATRIB(G6)=1,50) ,ATRIB(&); SETZE LOADER
ACT,, ,PROG;

; TENTH PROCESS: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT, XX(37),XP,XX(97),,1;
ACT, ,ARRAY(15,18).GT.®#,DEST;
ACT;

ASSIGN,ATRIB(1)=2,ATRIB(5)=10, ATRIB(2)=29 ,ATRIB(3)=31;
ASSIGN,ARRAY(15,18)=1,ARRAY (16, 18)»TNOW 2

ACT,, ,AL;

ACT,,,SY13;

lBEIGIN OF DISTRIBUTION FUNCTTON

SORT ASSIGN,ATRIB(5)=11,1;

ACT, .ATRIB(1) .EQ. 1,E047; PROCESS ENDED,LAST ENTITY
ACT;
' ASSIGN,XX(5)=185; INDEXING USERF
ACT ,USERF(183) ; COLECT INV.STATS
' ASSIGN, XX(5)=138; INDEXING USERF
ACT ,USERF(138) ; CALC INVENTORY
' GOON, 1;
ACT, ,ARRAY(15,11).NE. 1,S0R1; PROCESS NOT UP YET
ACT, ARRAY(19,11}.EQ. 1.SOR1: INFEED TOO LOW
ACT, . ATRIB(2) .EQ.d,S0R1 ; NOTHING TO MOVE

ACT;

AS47

AS48

GO46

AS49

117

ASSIGN,ATRIB(1)=ARRAY{4,11),ARRAY(26,11)=ARRAY(26,11)+ATRIB(2),1;

ACT, . ATRIB(1).EQ.0, AS48;
ACT;

AWAIT(ATRIB(1)=1,58) ,ATRIB(1),1;

ASSIGN, XN(5)=183;
ACT,USERF(183);

GOON, 2;
ACT,, ,END;
ACT;

GOON,1;
ACT, ,ARRAY(15,11) .LT.2,6046;
ACT;

ASSIGN,ATRIB(1)=1;

GOON, 2;
ACT,,,INLO;
ACT;

GOON, 2;
ACT,, ,OUTN;
ACT;

GOON, 1;
ACT, ARRAY(4,11).EQ.8,G044;
ACT;

ASSIGN,ATRIB(4)=TNOW,1;
ACT, ,ARRAY(9,11).EQ.8,AS49;
ACT, ,ARRAY(9,11) .EQ.1,G042;

TEST IF LOADER USED,NO=JUMP
YES=CONT INUE
SEIZE LOADER

INDEXING USERFUNCTION
COLCT INV,STATS

TEST PROCESS ENDED

INDEXING LAST ENTITY

TEST INFEED INV.CURRENT PROC

TEST OUTFEED INV.PREVICUS P.

TEST IF LOADER IS USED
NO LOADER,JUMP TO MEXT STEP
CONTINUE

MARK BEGIN PROCESSING
MODELLING AVERAGE
MODELLING USERF

ASSIGN, II=ARRAY(4,11),XX(6)=ARRAY({1, 11 }*ATRIB(3};CALC VAR.PROGC.TIME

ACT,XX(6);
GOON, 1;
ACT,,,G043;

GOON, 15
ACT,USERF(11);

ASSIGN, II=ARRAY(4,11);

INDEXING LOADER

ASSIGN,XX(1)=ATRIB(2)/ARRAY(8,1I); CALC F OF RUNS

ASSIGN,XX{6)=XX{1)*ARRAY(2,II};
ASSIGN, XX(6)=XX(6)+XX(1)#ARRAY (3,11},

ACT, XH(6);

1ST CONSTANT TIME/RUN
2ND CONSTANT TIME

SOR%

ASSIGN, II1=ARRAY(7,5)+LEVEL2, XX (11)=XX(11)+ATRIB(6); INVENTORIES INFEED
ASSIGN, I1=ARRAY(7,6)+LEVELZ,XX(IT)«XX (II)+ATRIB(7);NEXT PROCESSES
ASSIGN,ARRAY(26,11)=ARRAY(26,11)-ATRIB(2),XX(5)=185, 1; USRFATRANSITINV

ACT ,USERF (185);
ASSIGN,XX(5)=186;
ACT ,USERF (106} ;
ASSIGN,ATRIB(6)=ARRAY(7,5),2;
ACT, ., INNY;
ACT;

ASSIGN,ATRIB(6)=ARRAY(7,6),2;
ACT,,,INNY;
ACT;

GOON, 1;
ACT, ,ARRAY (4,11).EQ.9,G045;
ACT;

COLCT STATS INV.NEXT PROC
INDEXING USERF

COLCT STATS TINV.NEXT PROC
INDEXING ROUTE 1

TEST INFEED INV.NEXT PROCI

INDEXING ROUTE 2
TEST INFEED INV.NEXT PROC2

TEST TF LOADER USED
NO LOADER USED,JUMP STEP
CONTINUE

ASSIGN,TI=ARRAY(4,11),XX{1)=ATRIB(2)/ARRAY(8,11); INDEXING LOADER

ASSIGN, XX(1)=XX(1)*ARRAY(3,11);

ACT, XX(1);

ASSIGN,ATRIB(4)=TNCH-ATRIB(4);

ASSIGN, I1=ARRAY(4,11);

CALCULATE 2ND CONST.TIME
2ND CONSTANT TIME

CALC MACHINE TIME
INDEXING LOADER

ASSIGN,ARRAY(18,11)=ARRAY(18,11))+ATRIB(4);SUM MACHINE TIME
ASSTGN,ARRAY(7,18)~ARRAY(7, 18)+ATRIB(4); SUM MACH.TIME PROCESS

ASSIGN, ATRIB(3)=11;
FREE,ATRIB(3)/1;

ASSIGN, TT=LEVEL1+11;

ASSIGN, XX{II)=XX(II)+ARRAY(7,1D);

INDEXING LOADER USED
FREE LOADER

INDEXING XX-VAR
SUM PROCESSED

ASSIGN,ATRIB(2)=ARRAY{7,5) ,ATRIB(3)«ARRAY(7,6); INDEXING NEXT PROCS

OPEN,ATRIB(2);
OPEN,ATRIB(3);
ACT, ,,SORT;

ASSIGN,ARRAY(15,11)=3;
ASSIGN, XX(5)=128;
ACT,USERF (128) ;
GOON,1;

ACT, , ,DEST;

GOON, 1;
ACT, XX (18) ;
GOON, 1;
ACT,, ,SORT;

OPEN GATE NEXT PROCESS A1
OPEN GATE NEXT PROCESS #2
GOTO BEGIN SORT/DISTRIBUTION

MARK PROCESS REALLY ENDED
INDEXING USERFUNCTION
PRINT OUT STATS

THIS IS A NAITING LOOP FOR
DISTRIBUTION. EVERY XX(18}
WE CHECK IF WE CAN MAKE A
DISTRIBUTION

118

119

; DISTRIBUTION/SORTING: DETECT,STARTUP-INVENTORY LEVEL REACHED

DETECT, XX(38),XP,XX(98),,1;
ACT, ,ARRAY(15,11).GT.®&, DEST; FLUY ARGUND LIMIT
ACT;

ASSIGN,ARRAY(15,11)=1,ARRAY(16,11)=TNOW; SET VARIABLES
OPEN,GATE11,1; OPEN GATE
ACT, , ,SORT; BEGIN SORTING

; BEGIN OF CHIPPING OPERATION

cL62

AN

AlG1

ASSIGN,ATRIB(5)=12,ATRIB(6)=ARRAY(4,12),1;
ACT, ,NNRSC(37).GT.2.AND.ARRAY(13,2) _EQ.1_AND.NNRSC(39).GT.0,AN6d;
ACT, ,NNRSC(37).GT.A.AND.ARRAY(13,2) .EQ. A, AN61;
ACT;

CLOSE,GATE12;
AMAIT(62),GATE12;
ACT, , ,CHIP;

AHRIT(39) ,CHIPTRA1, 1; SEIZE TRANSPORT UNIT
ASSIGN,ARRAY(13,2)=0; SET FLAG PRIME TRAPO SEIZED
ASSIGN,ATRIB({1)=37; SET ATRIB

AHRIT(37) ,ATRIB(1),1; SEIZE CHIPPER

ACT, ,ATRIB(6).EQ.8,PROC;

ACT;

AMAIT(ATRIB(6}=1,58) ATRIB{6);
ACT, , PROC;

ASSIGN,ARRAY(18,39)=ARRAY(18,39)+ATRIB(4) ,2; ADD MACH_HRS_PRIME TRAPO
ACT, , ,GO67; FIRST CONTINUE, THEN GOTO
ACT, , ,CHIP; CHIPPING

ASSIGN,ARRAY(13,1)=ARRAY(13,1)+ATRIB(2),1;ADD TO INV.TRAILER
ACT, ,ATRIB{7?).EQ.1,G068; CONTINUE IF LAST ENTITY
ACT. ,ARRAY(13,1).LT.ARRAY(8,39),DEST; TRAILER NOT FULL YET
ACT; START ACTUAL SHIPPING

FRéd

Go64

GOB5

ASSIGN,ATRIB(4)~=TNOW,ARRAY(13,2)=1,1; SET FLAGS & TEST COMBI
ASSIGN,ATRIB(2)=ARRAY(13,1),ARRAY(13,1)=8,1; SET AMOUNT HAULED

ACT, ,ARRAY(6,40) .LE.0,FRE; TRACTOR COMBINATION B=NO
ACT;

AWAIT(48) ,CHIPTRA2/1; SEIZE TRAKTOR
ASSIGN,ATRIB(6)=TNOM; STORE TRACTOR TIME
ACT,ARRAY(2,39); 1.CONSTANT TIME
GOON, 1;

ACT,ARRAY(3,39); 2.CONSTANT TIME
GOON,1;

ACT,ARRAY(3,39); 2.CONSTANT TIME
FREE,CHIPTRAY/1,1; FREE TRAILER;

ASSIGN,XX(1)sTNOW-ATRIB(4),1; CALC.MACH.HRS.CHIPTRA1
ASSIGN, ARRAY(18,39)=ARRAY(18,39)+XX(1),1;ADD MACH.HRS

ACT, ,ARRAY(6,48) .LE.9,G064; TEST COMBINATION

ACT;
ASSIGN,ATRIB(6)~TNCH-ATRIB(6), ARRAY (18, 48)=ARRAY (18, 48)+ATR1B(6) ; ADD
FREE,CHIPTRA2/1,1; FREE TRAKTOR HRS
GOON, 1;

ACT, ,ATRIB(7).EQ.1,STAT; LAST ENTI1TY,GOTO STATS

ACT;
OPEN,GATE12;
ASSIGN, XX(5)=131,XX(15)=XX(15)+ATRIB(2); SUM SYSTEM HARVESTED

ACT ,USERF(131); DISPLAY AMOUNT HARVESTED
GOON, 1;

ACT, , ,DEST;

GOON, 1;

ACT, ,ATRIB(7).EQ.1,SENY; LAST ENTITY,GOTO END SIMU
ACT, , ,DEST;

i CHIPPING: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT, XX(39),XP,XX(99),,1;
ACT. ,RRRAY(15,12) .GT.A,DEST;
ACT;

ASSIGN,ATRIB(1)=2,ATRIB(5)=12,ATRIB(2)*37,ATRIB(3)=44;
ASSIGN ,ARRAY(15,12)=1,ARRAY(16,12)=TNOW, ARRAY(13,2)=1;
ALTER,CHIPTRAY, ARRAY (6,33} ;

ALTER,CHIPTRAZ2 ,ARRAY(6,48) ;

OPEN, GATE12,2;

ACT,..AL;

ACT,, . S5713;

120

; BEGIN OF FINAL TRANSPORT

CL13
A3

AWT3

A4

AlS@

FTST

ASSIGN,ATRIB(1)=41 ATRIB(5)=13,ATRIB(6)=ARRAY(4,13),1;

ACT, ,ATRIB(7).EQ.1,SEN3; LAST ENTITY

ACT, NNRSC(41).GT.8,AN3; RESQURCE CAN BE SEIZED
ACT;

CLOSE, GATE13;
AMAIT(63),GATE3;
ACT, , FTRA;

AWAIT(41),FTRAPO1,1;
ACT, ,ATRIB(6).EQ.8,PROC;
ACT;

AWAIT(ATRIB(6)=1,58) ,ATRIB(6},1;

ACT, , ,PROC;

AHAIT(42) ,FTRAPOZ,1;
ASSIGN, ATRIB(6)=TNOW;
ACT, ,,G014;

ASSIGN, XX(15)=XA(15)+ATRIB(2) ,XX(5)=131,1; CALC,AMOUNT HARVESTED

ACT USERF(131}; DISPLAY AMOUNT HARVESTED
GOON, 1;
ACT, ,ARRAY(6,42).EQ.8,G021; NO FTRAPOZ,RETURN MAIN ROUT.
ACT;
ASSIGN,ATRIB(6)=TNOW-ATRIB(S); CALC.MACH.TIME FTRAPOZ
ASSIGN, ARRAY (18, 42)=ARRAY (18,42)+ATRIB(6);ADD MACHINE TIME FTRAPOZ
FREE ,FTRAPOZ2/1,1; FREE FTRAPOZ

ACT, ,,GO21; RETURN TO MAIN ROUTINE

121

122

; FINAL TRANSPORT: DETECT, STARTUP-TNVENTORY LEVEL REACHED

DETECT, XX(48) ,XP, XX(188),,1;
ACT, ,ARRAY(15,13) .GT.®,DEST;
ACT;

ASSIGN,ATRIB(1)=2,ATRIB(5)=13 ,ATRIB(2) =41, ATRIB(3)=42;
ALTER,FTRAPOZ,ARRAY (6,42);
ASSIGN, ARRAY{1%,13)=1 ARRAY(16,13)«TNOH, 2;

ACT, , ,AL;

ACT,,,ST13;

END;

FIN;

123

APPENDIX A

2. Table 3: Contents of ATTRIBUTES

Attribute 1 = # of resource used

Attribute 2 = Load volume of current run

Attribute 3 = # of logs in current run & calculated processing time per
tree

Attribute 4 = TNOW

Attribute 5 = # of current Process

Attribute 6 = # of loading resource used

Attribute 7 = Flag last entity

124

APPENDIX A

3. Table 4: Contents of XX(i) variables

HEEERER

e s J R < J e o Qs e J s g o [<l s i) - [l ol o B <l o Y o Y o Y <l < B <l o Y o Y B < < B o Y o Y Y < o I < Y < <

(1
(2)
(3
(4
(5)
(6)
(7

(8)
(9N
(1)
(11)
(12)
(13)
(14
(1%)
(16}
an
(1)
a9
(2
21
(22)
(23)
(24)
(25)
(26)
(2n
(28)
(29)
(38)
(31)
(32)
(33)
(34)
(35)
(36)
(37
(38)
(39)
(48)
(41)
(42)
(43)
(44)
(45)
(46)
47
{48)

¥Y-VARIABLES

HELP VARIABLE FOR CALCULATIONS

HELP VARIABLE FOR CALCULATIONS

HELP VARIABLE FOR CALCULATIONS

HON MANY CU FT TO BE HARVESTED
INDEXING FORTAN USERFUNCTIONS
PROCESSING TIME FOR LOADING FUNCTION
INVENTORY MARK FOR CALCULATING INVENTORY
INCREASE DISTRIBUTION FTCT

FLAG FINAL TRAPO ENDED

FLAG CHIPPING PROCESS ENDED

TIME DELAY PARAMETER

SUM CU FT PROCESSED PROCESS 1

SUN QU FT PROCESSED PROCESS 2
SUM QU FT PROCESSED PROCESS 3
SUM QU FT PROCESSED PROCESS 4
SUM CU FT PROCESSED PROCESS 5
SUM CU FT PROCESSED PROCESS 6
SUM QU FT PROCESSED PROCESS 7
SUM QU FT PROCESSED PROCESS 8
SUM QU FT PROCESSED PROCESS 9
SUM CU FT PROCESSED PROCESS 18
SUM CU FT PROCESSED SORTING

SUM CU FT PROCESSED CHIPPING

SUM QU FT PROCESSED FINAL TRANSPORT
INVENTORY PROCESS 2

INVENTORY PROCESS 3

INVENTORY PROCESS 4

INVENTORY PROCESS 5

INVENTORY PROCESS 6

INVENTORY PROCESS 7

INVENTORY PROCESS 8

INVENTORY PROCESS 9

INVENTORY PROCESS 18

INVENTORY SORTING

INVENTORY CHIPPING

INVENTORY FINAL TRANSPCRT
MINIMUM INVENTORY LEVEL PROCESS 2
MINIHUM INVENTORY LEVEL PROCESS 3
MININUM INVENTORY LEVEL PROCESS 4
MINIMUM INVENTORY LEVEL PROCESS 5
MINIMUM INVENTORY LEVEL PROCESS 6
MINIMUM INVENTORY LEVEL PROCESS 7
MINIMUM INVENTORY LEVEL PROCESS 8
HINIMUM INVENTORY LEVEL PROCESS S

125

126

XX (49) = MINIMM [NVENTORY LEVEL PROCESS 18
XX (58) = MINIMUM TNVENTORY LEVEL SORTING
X (51) = MINIMUM INVENTORY LEVEL CHIPPING
XX (52) = MINIMUN INVENTORY LEVEL FINAL TRANSPORT

(53) = HAXTMUM INVENTORY LEVEL PROCESS 2

(54) = HAXIMM INVENTORY LEVEL PROCESS 3

(55) = NAXIMUM INVENTORY LEVEL PROCESS 4

(56) = MAXIMIR INVENTORY LEVEL PROCESS 5

(57) = MAXIMIM INVENTORY LEVEL PROCESS 6

(58) = MAXIMM INVENTORY LEVEL PROCESS 7

(59) = MAXIMUM INVENTORY LEVEL PROCESS 8

(68) = MAXIMUM INVENTORY LEVEL PROCESS 9

(61) = MAXIMUM INVENTORY LEVEL PROCESS 18

(62) = MAXIMUM INVENTORY LEVEL SORTING

(63) = MAXINUM INVENTORY LEVEL CHIPPING

(64) = MAXIMUM INVENTORY LEVEL FINAL TRANSPORT

(65) = STARTUP-INVENTORY LEVEL MINIMUM PROCESS 2

(66) = STARTUP-INVENTORY LEVEL MINIMUM PROCESS 3

(67) = STARTUP-INVENTORY LEVEL MINIMUM PROCESS 4

(68) = STARTUP-INVENTORY LEVEL MINIMUM PROCESS 5

(69) = STARTUP-INVENTORY LEVEL MINIMUM PROCESS 6

(78) = STARTUP-INVENTORY LEVEL MINIMUM PROCESS 7

(71) = STARTUP-INVENTORY LEVEL MINIMUM PROCESS 8

(72) = STARTUP-INVENTORY LEVEL MINIMUM PROCESS 9

(73) = STARTUP-INVENTORY LEVEL MINIMUM PROCESS 14

(74) = STARTUP-INVENTORY LEVEL MINIMUM SORTING

(75) = STARTUP-INVENTORY LEVEL MINIMUM CHIPPING
STARTUP-INVENTORY LEVEL MINIMUM FINAL TRANSPORT
(77) = STARTUP-INVENTORY LEVEL MAXIMUM PROCESS 2
(78) = STARTUP-INVENTORY LEVEL MAXIMUM PROCESS 3
(79) = STARTUP- INVENTCRY LEVEL MAXIMUM PROCESS 4
(88) = STARTUP-INVENTORY LEVEL MAXIMUM PROCESS 5
(81) = STARTUP-INVENTORY LEVEL MAXIMUM PROCESS 6
(82) = STARTUP-INVENTORY LEVEL MAXIMUM PROCESS 7
(83) = STARTUP-INVENTORY LEVEL MAXIMUM PROCESS 8
(84) = STARTUP-INVENTORY LEVEL MAXIMUM PROCESS 9
{85) = STARTUP-INVENTORY LEVEL MAXIMUM PROCESS 18
(86) = STARTUP-INVENTORY LEVEL MAXIMUM SORTING
(87) = STARTUP-INVENTORY LEVEL MAXIMUM CHIPPING
(88) = STARTUP-INVENTORY LEVEL MAXIMUM FINAL TRANSPORT
(89) = STARTUP-INVENTCRY LEVEL FOR PROCESS 2
(98) = STARTUP-INVENTORY LEVEL FOR PROCESS 3
(91) = STARTUP-INVENTORY LEVEL FOR PROCESS
(92) = STARTUP-INVENTORY LEVEL FOR PROCESS
(93) = STARTUP-INVENTORY LEVEL FOR PROCESS
(94) = STARTUP-INVENTORY LEVEL FOR PROCESS
(95) = STARTUP-INVENTORY LEVEL FOR PROCESS
(96) = STARTUP-INVENTORY LEVEL FOR PROCESS
{97) = STARTUP-INVENTORY LEVEL FOR PROCESS
(98) = STARTUP-INVENTORY LEVEL FOR SORTING
(99) = STARTUP-INVENTORY LEVEL FOR CHIPPING
(188)= STARTUP-INVENTORY LEVEL FOR FINAL TRANSPORT

WD M~ Oh W

Q- J e~ Q -l g s~ N - N QR <Rl e Rl -l ol ol ol Bl ol ol i ol ol ol ol G S Y S Y Sl <)
]
=

127

APPENDIX A

4, Table 5: ARRAY description

ARRAY
row #

OCHdODAEF NN

16
17
18
19
29
21
22
23
24
25
26

ARRAY DESCRIPTION

Description

Average process. time per tree [/ mochine types
Constant time per lood / mochine type

Constaont time per one way houl / machine type
of looder to use [process

of moteriol distribution / process

of mochines / maochine type

Used for process #11, sorting (see next poge)
machine lood capocity / mochine type

Time deloys / process; @=build in, 1=USERF
Cumuloted productive machine hrs / machine type
Cum. inventory downtime hrs minimum / process
Cum. Inv. downtime hrs moximum / process

Used for process #12, chipping

Flog process is octivoted B=no, 1=yes, 2= ended
5= ended & staotistics / process

Start time process / process

Start invent. downtime (temp.buffer) / process
Cum. mochine breakdown hrs / mochine type

Flog process down becouse of minimum inv.

Flog process down becouse of maximum inv,

Fixed costs per scheduled hr. / mochine type
variaoble cost per productlive hr. [/ mochine type
of the proceeding process [process

of the preceeding process / process

Cum. stotlstics for complete system stots
Inventory in tronsit / process

128

ARRAY line 7, Process #11, sorting

ARRAY
line 7
column Description
1 Sum route 1
2 Sum route 2
3 Percentage route 1
4 Percentage route 2
5 Proceeding process #, route 1
6 Proceeding process #, route 2
7 Internal inventory, route 1
8 Internal inventory, route 2
g
19 Sum to move, temp. buffer
11
12
13 Flag inventory too high, route 1
14 Flag inventory too high, route 2
15 How much goes route 1, temp. buffer
16 How much goes route 2, temp. buffer
17
18 Sum productive machine hrs., loader for sorting

129

130

APPENDIX A

5. Table 6: Machines & Processes

131

MACHINES & PROCESSES

Maochine
type Process #
1 1, Felling
2 1, Felling
3 1, Felling
4 1, Felling
5 2
6 2
7 2
8 3
9 3
18 3
11 4
12 4
13 4
14 5
15 5
16 5
17 6
18 6
1¢ 6
29 7
21 7
22 7
23 8
24 8
25 8
26 "]
27 "]
28 9
29 14
3@ 19
31 19
32 Looder
33 Loader
34 Loader
35 Loader
36 Loader
37 12, Chipper type 1
38 12, Chipper type 2
39 12, Primary transportotion device
49 12, Secondary transportotion device
41 13, Primary traonsportotion device
42 13, Secondary tronsportotion device

132

APPENDIX A

6. Initialization of the Network

133

INITIALIZATION OF THE NETWORK

At the beginning of each simulation run, the SLAM processor calls
the FORTRAN written function INTLC.FOR (see Appendix B Listing 2). The
User 1s prompted for the filename of the harvesting model creoted
previously with the input front-end and that he wonts to simulote (see
olso section Y.B., output front-end). The file is then read into o
varioble orray called USERARR within the COMMON Block USER3 (see
Appendix B, Listing 1), thot is identical to the locol ARRAY block
within the 3LAM network. Caore should be taken, if any odditionol FORTRAN
inserts are mode, to mointoin the given COMMON Block and variable
declarations given in Appendix B, Listing 1 (see olso 0'Reilly, 1984;
Page 3-2 and 3-3). The values stored in USERARR are then copied to the
ARRAY within the SLAM network ond the XX{1) variables thaot contoin the
inventory informotion ore initiclized. For o description of the XX({1)
varioble content, see Appendix A, Listing 3; ond for the ARRAY variables
see Appendix A, Listing 4.

The model then performs some odditional initiolizotions, places
the mochine entitiles in their respective subnetworks ond starts the
first process by releasing the maochine entities ploced into the AWAIT-

node ottoched to this process.

Wb

134

APPENDIX B

TABLE OF CONTENTS:

Listing, COMMON BIOCK ..c.cuivuernirnerinrereniranenernercssesresreneacessssnens 135
Listing, INTCL.FOR ..coovuerieiieniiieiiirereiornencnessrnesesnsssssensssssensnsenas 137
Listing, INITREAD.FOReeiririeieiiieinii et ee e en s en e eenenae 144

Listing, USERF.FORccciiiiriiiirii e, 150

135

APPENDIX B

1. Listing, COMMON Block

136

G

G DEFINE COMMON BLOCK VARIABLE NAMES FOR ALL PROGRAMS:
¢
¢

COMMON/SCOM1/ATRIB(188) ,DD(182}, DDL(188 , DTNOW, I T ,1fFA. MSTOP , NCLNR
1 ,NCRDR, NPRNT, NNRUN, NNSET, NTAPE, S5{188) , SSL(188) , TNEXT,, TNCH , XX 124)
COMMON/USER1/DISARR(8, 18) , HCHARR (42,4, 18) ,XXLEVEL(?) ,OUTFLAG
COMMON/USER2/MCHNANES {52) , PROCNANES(24 , DI STRIBNAMES (4) , F ILENAME
1,STSTR, SDSTR, ETSTR, EDSTR
COMMON/USER3/USERARR (26 ,42) , SIMRUN

C

C DEFINE COMMON VARIAELE TYPES FOR ALL PROGRANS:

C -

c

REAL*4 ATRIE,DD,DDL,DTNON

INTEGER#2 I1,HFA,MSTOP,NCLNR ,NPRNT,NNRUN ,NNSET, NTAPE
RERL#4 SS,SSL,TNEXT, TNOW, XX

REAL*4 DISARR,MCHARR

REAL*4 USERARR,SIMRUN

INTEGER*2 XXLEVEL,OUTFLAG

CHARACTER®2# MCHNAMES , PROCKAMES , DISTRIBNAMES ,F ILENAME
CHARACTER*1@ STSTR,SDSTR,ETSTR,EDSTR

137

APPENDIX B

2. Listing, INTCL.FOR

(PN HEHIETH T 3 TS DD I -0 0 006 I HHEIE 36 M-I M I M

o]
Cn
o]
o]
o]
o]
o]
o]
C»
o]
o]
C»
o0}
o]
o]
o]
c»
o]
o]
o]
o]
C»

QREGON STATE UNIVERSITY
JUNE 1986

> LOGSIMNKL
SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS
DESIGNED BY : CHRISTOPH WIESE

MASTERS CANDIDATE, DEP. OF INDUSTRIAL

ENGINEERING, OREGON STATE UNIVERSITY
DESIGNED FOR: DEPARTMENT OF FOREST ENGINEERING

OREGON STATE UNIVERSITY

SUPERVISION : DR, ELDON OLSEN
ASSOCIATE PROFESSOR, DEP. OF INDUSTRIAL
ENGINEERING, OREGON STATE UNIVERSITY

X X X X X ¥ X X X 3z =

(G D DI 0 D00 DEUETE DI SNSRI M JE V00 D00 08 D U000 0000 0000 3N D

(0]
o]
(0]
c»
o]

FORTRAN USERFUNCTIONS: INICL.FOR (INITIALIZE SINULATION)

31-MAY-87 18:55

(CUEPE I D SHIE TN DA U000 S5 BTNV DD O 0 00 DT 00 00 I S I

(2]

O a3 a0

$INCLUDE: "PRCTL.FOR'

O OO0 000

INTERFAGE TC DOS-SERVICES:

INTERFAGE TO SUBROUTINE TIME (N,STR)
CHARACTER®18 STR [NEAR,REFERENCE]
INTEGER#2 N [VALUE]

END

INTERFACE TO SUBROUTINE DATE (N,STR)
CHARACTER®1® STR (NEAR,REFERENCE]
INTEGER#2 N [VALUE]

END

138

c

C PROGRAM DECLARATION:

C

c
SUBROUTINE INTLC

C

C

C COMMON BLOCK :

o J

c

$INCLUDE: 'VARBLOCK.DOG'

c

C

C DEFINE LOCAL VARIABLES, NAMES & TYPE:

c

C
INTEGER=4 IANSWER,INDEX1,INDEX2, INDEX3,INDEX4 , INDEXS
INTEGER*4 INDEX6,INDEX7, INDEXS, INDEXS , IFN
CHARACTER#*28 CHRANSWER
CHARACTER#1@ TSTR
REAL F1NUM,F2NUM,F3NUM ,F4NUM,F5NUM, FANUM, F7NUM
LOGICAL*4 FILESTATUS

c

c

C BEGIN PROCESSING:

[2 PR e

c

c

C CHECK WHICH SIMULATION RUN IS CURRENT:

c

c

c
IF (NNRUN.GT.1) GOTO 158

C

C

c

C OPENING SCREEN:

C _______________

HRITE(*,58}
98 FORMAT (/77177771171 117 7111771111177,

1K, * S50 MIEIIE SIS I SIS IE SHEIHE I I HOEIHHE ORI |/ .

1 LY, P SEE AN 63 I I 1 G OO /|
2 18X,'s '/,
3 10, '* MWLOGSTIH <L ®/,
4 10X, MECHANIZED LOG HARVESTING SIMULATCR */,
5 18X,'s SIMULATION MODULE w/,
[

7

1717)

139

140

¢
¢
189 WRITE(%,181)
191 FORMAT(5X,
1! BEGIN OF SIMULATION'/5X,
2 /15X,
3'THIS FUNCTION READS A PREVIOSLY DEFINED MODEL INTO THE SLAM-'/S5X,
4'NETWORK AND SIMULATES IT. ',///}
WRITE(H, ' (7X,A\)') 'DO YOU WISH TO CONTINUE (Y/N) ? [(¥Y}—-> '
READ (%,'(A1)') GHRANSWER
IF (CHRANSWER.EQ.'N') THEN

(1)=p
WRITE(*,182)
182 FORMAT(///18X' 1111t BYE-BYE, SEE YOU AGAIN ttttt'/
1 1ax' P>LOGS I MLKL/N
sm "
ELSE
CONTINUE
ENDIF
c
¢
158 CALL INITREAD
¢
¢

DO 428 INDEX1=1,3,1
DO 418 INDEX2=1,42,1
F1NUM=USERARR { INDEX 1, INDEX2)
CALL PUTARY(INDEX1, INDEXZ, F1NUM)
41 CONT INUE
429 CONTINUE
DO 448 INDEX1=4,5,1
DO 438 INDEX2=1,13,1
F1NUN=USERARR INDEX?, [NDEX2)
CALL PUTARY(INDEX!, INDEX2,F1NUN)
43p CONTINUE
449 CONTINUE
DO 458 INDEX1=1,42,1
FINUM=USERARR (6., INDEX!)
GALL PUTARY(%,INDEX1,F1NUM}
458 CONTINUE
DO 468 INDEX1=1,18,1
FINUM=USERARR {7, INDEX1)
CALL PUTARY{7, INDEX1,F1NUIM)
468 CONT INUE
DO 488 INDEX1=8,18,1
DO 478 INDEX2-1,42,1
FINUM=USERARR(INDEX1, [NDEX2)
CALL PUTARY(INDEX1, INDEX2, F1NUM)
470 CONTINUE

488

482
483

484
485

486
487

488

499
491

499
598

518
528

524

526

CONTINUE

DO 483 INDEX1=11,12,1

D0 482 INDEX2=1,13,1
FANUM=USERARR (INDEX1 , INDEX2)
CALL PUTARY({INDEX1,INDEX2,F1NUM)
CONT INUE

CONTINUE

DO 485 INDEX1=13,14,1

DO 484 INDEX2=1,2,1
FANUM=USERARR { IKDEX1, INDEX2)
CALL PUTARY(INDEX1,INDEX2,F1NUM)
CONTINUE

CONTINUE

DO 487 INDEX1=15,17,1

DO 486 INDEX2=1,13,1
FINUM=USERARR(INDEX1, INDEX2)
CALL PUTARY (INDEX1,INDEX2,F INUM)
CONTINUE

CONTINUE

DO 488 INDEXZ=1,42,1
FANUM=USERARR (18 , INDEX2)

CALL PUTARY(18.INDEXZ,F1NUM)

CONTINUE

DO 491 INDEX1=19,28,1

DO 499 INDEX2=1,13,1
F1NUM=USERARR { INDEX1 , INDEX2)
CALL PUTARY (INDEX1, INDEX2 ,F 1NUM)
CONTINUE

CONTINUE

DO 549 INDEX1=21,22,1

DO 499 INDEX2=1,42,1
FINUM=USERARR(INDEX1 , INDEX2)
CALL PUTARY(INDEX1, INDEX2 ,F1NUM)
CONTINUE

CONTINUE

DO 520 INDEX1=23,24.1

DO 518 INDEX2=1,13,1
FINUN=USERARR(INDEX1, INDEX2)
CALL PUTARY(INDEX!, INDEX2,F 1NUN)
FZNUM=GETARY { INDEX1 , INDEX2)
CONTINUE

CONTINUE

DO 524 INDEX2=1,6,1
FINUM=USERARR(25 , INDEX2)
CALL PUTARY(25, INDEX2,F1NUM)

CONTINUE

DO 526 INDEX1-1,13,1
FANUN=USERARR (26 , INDEX2)
GALL PUTARY(26, INDEXZ,F1NUN)

CONTINUE

141

142

IF(NNRUN.GT. 1) GOTO 1828

¢
c
HRITE(*,538)
530 FORMAT(///, 10X " SINULATION RESULTS SHOULD BE ROUTED TO:',/,
1 X’ SCREEN « 1"/,
2 1’ SCREEN & PRINTER -2/,
3 18X PLEASE ENTER CHOICE ----- > ")

535 READ(*®,' (BN,I2)’)IANSWER
IF (IANSHER.LT.1.0R.IANSHER.GT.2) THEN

WRITE(*,548)
549 FORMAT(/.18X." 111 CANNOT BE t1t'/,
1 10X, 'PLEASE ENTER AGAIN --——- » '\
GOTO 535
ELSE
OUTFLAG=TANSHER
ENDIF
¢
C
WRITE(*,541)
541 FORMAT(//.18X"HOH MANY SIMULATION RUNS DO YOU NANT?',/,
1 18X* THE PRESET HAXIMUM IS 18.'./,
2 18X’ ENTER NUMBER OF RUNS 1l-—-> " \)

544 READ(*,'(BN,I2)')IANSHER
IF (IANSWER.LT.D.OR.IANSWER.GT.18) THEN

WRITE(*, 545)
545 FORMAT(/,18X,"'t1t CANNOT BE 111*/,
1 19X, *PLEASE ENTER AGAIN [l—--> .\
GOTO 535
ELSEIF (IANSWER.EQ.A) THEN
SIMRUN-1.8
ELSE
SIMRUN=IANSHER
ENDIF
¢
¢
¢
WRITE(*,558)
550 FORMAT(///, 10X, 'PLEASE HIT D>RETURNC TO START THE SIMULATION'/
1 108X, 'y
READ(#*,’ (12)") IANSHER
¢
¢
¢
C
¢
C DATTIN.FOR program - To access the date and time:
C
¢
C CALL DATE AND TIME (NOTE THAT THE STRING LENGTH IS PASSED
€ AS THE FIRST ARGUMENT)

143

c

1888 CALL DATE (18,TSTR)
SDSTR=TSTR
CALL TIME (1€,TSTR)
STSTR=TSTR
HRITE (*,#%) 'TIME=*,STSTR
WRITE (*,%) 'DATE=',SDSTR

c

c
XX(1)=1

c

c

c

9998 RETURN

END

APPENDIX B

3. Listing, INITREAD.FOR

144

Cw »
C» OREGON STATE UNIVERSITY "
C» JUNE 1986 "
ol "
Cw % LOGSTHK L]
Cw *
Ccw STMULATION OF MECHANIZED LOG HARVESTING SYSTEMS *
Cw »*
C» "
Cw DESIGNED BY : CHRISTOPH WIESE *
Cw MASTERS CANDIDATE, DEP. OF INDUSTRIAL L]
Cw ENGINEERING, OREGON STATE UNIVERSITY L
cw "
Cw DESIGNED FOR: DEPARTMENT OF FOREST ENGINEERING L
Cw OREGON STATE UNIVERSITY L)
o] "
Cw "

Cw SUPERVISION : DR. ELDON OLSEN
Cw ASSOCIATE PROFESSOR, DEP. OF INDUSTRIAL
C* ENGINEERING, OREGON STATE UNIVERSITY

»
L]
»
»*

B R N NI O 0 S

C» FORTRAN USERFUNCTIONS: INITREAD.FOR (READ IN VARJABLES} »

o] »
Cw 31-MAY-B87 18:55 "
C» "

G TS DO 00003026 302026 3 I 016 EJE 0 MHEJE JHE MM HEIEIHEI I FHHE IR

O a0 a0

$INCLUDE: 'PRCTL.FOR'

C

C PROGRAM DECLARATION:
¢
c

SUBROUTINE INITREAD
c
C COMMON BLOCK :
[—
c
$INCLUDE: 'VARBLOCK . DOC'
c
C DEFINE LOCAL VARIABLES, NAMES & TYPE:
C =s=
C

INTEGER™4 IANSWER, INDEX1,INDEX2, INDEX3, INDEX4 , INDEX5
INTEGER®4 INDEX6, INDEX7, INDEX8, INDEX9

145

I

CHARACTER*2@ CHRANSHER
REAL F1ANSWER,F2ANSWER,F3ANSWER
LOGICAL®4 FILESTATUS

FUNCTION INITREAD.FOR, READ-IN THE SIMULATION MODEL AND INITIALIZE ALL VARS

NITIALIZATION OF ALL VARIABLES

O oo o0 o0 o0o0ob

O =
m

12
114

116
118

128
122
124

126

128

138

DO 113 INDEX1=1,10@,1
XX (INDEX1)=@.28
CONTINLE

DO 114, TNDEX1~1,26,1
DO 112, TNDEX2=1,42,1
USERARR{ INDEX1, TNDEX2)=8 . 80
CONTINUE
CONTINUE

DO 118 TNDEX1=1,8,1

DO 116 INDEX2=1,18,1
DISARR(INDEX1, INDEXZ)=9.008

CONTINUE

CONTINUE

DO 124 IMDEX1=1,42,1
DO 122 INDEX2=1,4,1
DO 128 INDEX3=1,18,1
MCHARR (INDEX1, INDEX2 , TNDEXZ)= . 24
CONTINUE
CONTINUE
CONTINUE

DO 126 INDEX%=1,52,1
HCHNAMES{ INDEX1)=" *
CONTINUE

DO 128 INDEX1=1,28,1
PROCNAMES (INDEX1)=' '
CONT INUE

DO 138 INDEX1=1,4,1
DISTRIBNAMES(INDEX1)=" *
CONT INUE

146

147

CHECK WHICH CURRENT SIMULATION RUN

QO a0

IF (NNRUN.GT.1} GOTC 2078

RETRIVE THE MODEL FROM DISK DRIVE AND READ VARIABLE VALUES

200 WRITE(®,282)
202 FORMAT(///,7X'FILENAME OF WODEL TO BE RETRIEVED? --——- > ')
READ(+, ' (Az8) ')FILENAME

204 INQUIRE(FILE=FILENANE,EXIST~-FILESTATUS)
IF(.NOT.FILESTATUS} THEN

WRITE(*,206)FILENAME
206 FORMAT(/,7X*111t FILE: 'A* DOES NOT EXISTS ttitt'/)
WRITE(*,’(7X,A,\)")"INPUT NEW FILENAME = ==-ma 3
HEAD(%, ' (A20)°)FILENAME
GOTO 204
ELSE
CONTINUE
ENDIF
c
c
KRITE(*,207)
207 FORMAT(//18X," 11! PLEASE WAIT A MOMENT 1e*)
c
c
2078 OPEN(198,FILE=FILENAME, STATUS="0LD’)
REWIND 18
c
c
READ(18,*(F8.1)*) XX(1)
READ(18,' (F8.13") X(2)
READ(18,'(F8.1)*) XX(3)
READ(18,'{F8.8)") XX(4)
READ(1,*(F8.1)"} X(5)
READ(1,'(F8.1)") 10i(6)
READ{18,"(F8.1})") XX(T)
READ(18,"(F8.1}") XX(8)
READ(14, '(F8.1)*) 0%
READ(18,7(F8.4)") XX(18)
c

DO 219 INDEX1=11,180.1
READ{10,288) XX(INDEX1)
208 FORMAT(F8.1)
219 CONTINUE

148

DO 213 INDEX1+1,3,1
DO 212 INDEX2=1,42,1
READ(14,211) USERARR(INDEX1,INDEX2)
n FORMAT(FB.4)

212 CONTINUE
213 CONTINUE
c

DO 2139 INDEX1=4,26,1
DO 2128 TNDEX2=1,42.1
READ{ 18,2118} USERARR(INDEX!,INDEX2)
FARI' FORMAT(F8.2)
2128 CONTINUE
2138 CONTINUE

DO 222 INDEX1=1,8,1
DO 228 INDEX2=1,19,1
READ(18,219) DISARR(INDEX1, INDEX2)
219 FORMAT(FB.2)

228 CONTINUE
222 CONTINUE
c

D0 238 INDEX1=1,42,1

DO 228 INDEXZ=1,4,1

DO 226 INDEX3=1,19,1

READ(19,224) MCHARR{INDEX1, INDEX2, INDEX3)

224 FORMAT(F®,2)
226 CONTINUE
228 CONTINUE
238 CONTINUE

DO 234 INDEX1=1,52,1
READ(18,232) MCHNAMES{INDEX1)
232 FORMAT(A)
234 CONTINUE

DO 238 INDEX11,28,1
READ(19,236) PROCNAMES{INDEX1)
236 FORMAT (A)
238 CONTINUE

DO 242 INDEX1=1,4,1

READ(1#,248) DISTRIBNAMES(INDEX1)
240 FORMAT(A)
242 CONTINUE

REWIND 18
CLOSE(14, STATUS="KEEP")

149

WRITE(*,30H)
380 FORMAT(//,10%,
1*1tt MODEL HAS BEEN SUCCESSFULLY RETRIEVED 11t*)

9998 RETURN

150

APPENDIX B

4. Listing, USERF.FOR

G 00 0 DI S B M 0 3 F DI 0 S D D0 D0 0 00 3030 3-I0 3 6 DS MRS

(.3
(%]
(¥]
[]
C*
c
C*
C*
Cw
C*
C*
c»
(¥]
9]
[l
o]
C*
C*
C*
Cw
[]
(%]

OREGON STATE UNIVERSITY
JUNE 1986

X LOGSIMKKL
SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS
DESIGNED BY : CHRISTOPH WIESE

MASTERS CANDIDATE, DEP. OF INDUSTRIAL

ENGINEERING, OREGON STATE UNIVERSITY
DESIGNED FOR: DEPARTMENT OF FOREST ENGINEERING

OREGON STATE UNIVERSITY

SUPERVISION : DR. ELDON OLSEN
ASSOCIATE PROFESSCR, DEP. OF INDUSTRIAL
ENGINEERING, OREGON STATE UNIVERSITY

x Xk X %X X X = X X

*

(G D OS98I0 06 A D606 308 - D006 30006 308 308 00 3000 00 3030 30006 3000 D06 0000 ML L 3 0 3

(]
(]
(]
C*
(o]

FORTRAN USERFUNCTICNS: USERF.FOR

31-MAY-87 18:55

DU 0 DD E DT W IEDE - S E NI T - E N JE S M SN THEHESHEIEEHE

O O O O aag 0

C COMPILER DIRECTIVES:

C 2zzezsnzsnansumsEE=x

c

$INCLUDE: "PRCTL.FOR®

c
c

C INTERFACE TO DOS SERVICES:

c
€

INTERFACE TO SUBROUTINE TIME (N,STR)
CHARACTER*18 STR [NEAR,REFERENCE]
INTEGER*2 N L[VALUE]

END

INTERFACE TO SUBROUTINE DATE (N,STR)
CHARACTER#1@ STR [NEAR,REFERENCE]

151

INTEGER*2 N [VALUE]
END

c

c

C PROGRAM DECLARATION:

c

REAL FINUM,F2NUM, FSNUM ,FANUN, FSNUM, F SNUM, F7NUM, FeMUM, FINUN
REAL F1BNUM,F11NUR, F12NUM, F 1 5NUM ,F 14NUN, F15NUM, F 16KUM, F 1 7NUN
REAL F18NUM,F19NUM, F2ZBNUM, F21NUN, F22ZNUN, F23NUM, F24NUN , F 25NUM

c

c
FUNCTION USERF (IFN)

C

C COMMON BLOCK :

C =mzmszzwazzmxw

c

$INCLUDE : *VARBLOCK . DOC*

c

C DEFINE LOCAL VARIABLES, NAMES & TYPE:

C

c
INTEGER*4 IANSKER,INDEX1,INDEX2, INDEX3, INDEX4, INDEXS
INTEGER#4 INDEXS, INDEX?, INDEXS,INDEX9, IFN,MARKE
CHARACTER®#28 CHRANSWER
CHARACTER™1@ TSTR
LOGICAL®#4 FILESTATUS

c

C BEGIN PROCESSING:

i —
c

IF{XX(5).EQ.181) THEN
GOTO 1288

ELSEIF (XX(5).EQ.193)
GOTO 5888

ELSEIF (XX(5).EQ.184)
GOTO 5188

ELSEIF (XX(5).EQ.185)
GOTO S2dd

ELSEIF (X{(5).EQ.126)
GOTO 5388

ELSEIF (¥X(5).EQ.118)
GOTO 2888

ELSEIF (XX(5).EQ.111)
GOTO 2808

ELSEIF (XX(5).EQ.128)
GOTO 4Ad8

ELSEIF (XX(5).EQ.138)
GOTO 7884

ELSEIF (X(5).EQ.131)
GOTO 7588

ELSE
WRITE(*,28) IFN,XX(5}

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

THEN

152

20 FORMAT(® 1tt1tert USERFUNCTION *IS* IS NOT DEFINED ttitr*,/
1 ' XX(5)="Fa.3,/,
4 ' PRESS RETURN TO CONTINUE')
USERF=@
GOTO 5998
ENDIF

¢
c
¢
c
C USERF(18%), ASSIGN TREE/LOG/PAPER/PULP DISTRIBUTION PARAMETERS
¢
¢
¢

1808 USERF=8

C

C GENERAL PROCEDURES
INDEX9=ATRIB(5)

INDEX =8

TESTING & SET FLAG IF PREVIOUS PROCESS ENDED:

OO0

IF(ATRIB(5).NE.1) THEN
INDEX2=GETARY(24, INDEX9)
INDEX3=GETARY (15, INDEX2)
FINUM=GETARY(26, INDEX2}
IF(INDEXS.LT.2) THEN
INDEX 1=

ELSEIF (INDEX3.GE.2.AND.F1NUN.GT.®.081) THEN
INDEX1=8

ELSE
INDEX1=1

ENDIF

ELSE
INDEX 1=8

ENDIF

¢ TESTING IF INVENTCRY IS AVAILABLE:

IF(INDEX9.NE.1) THEN
INDEX3=XXLEVEL(2)+ATRIB(S)
FANUM=XX(INDEX3)

ELSE
INDEX3=XXLEVEL(1)+ATRIB(5)
FINUM=XX{4)-XX(INDEX3)

ENDIF

IF (FINUM.LE.B) THEN
ATRIB(2)=A
ATRIB(3)=8

153

RETURN
ELSE

CONTINUE
ENDIF

C GET BATCHSIZE & ROUTE ACCORDINGLY
INDEX6=ATRIB(1)
FZNUM=GETARY (8, INDEX6)
IF (F2NUN .EQ. 99999)THEN
GOTO 1308
ELSE
CONT INUE
ENDIF

SET BATCHSIZE FOR A NORMAL CAPACITY

30 0O a0

TESTING IF BATCHSIZE GREATER INVENTORY:
[F(ATRIB(5).EQ.11) THEN
F2NUM=GETARY (7, 16)
ENDIF
FINUN=F 1 KUM-F 2NUM
IF (ATRIB(5).EQ.1.AND.F3NUM.LT.E) THEN
FANUN=F INUN
INDEX7=1
ELSEIF (F3NUM.LT.8.AND.INDEX1.EQ.1}THEN
F4NUM=F 1NUN
INDEX7=1
ELSEIF (F3NUM.GE.B)THEN
FANUN=F2NUM
ELSE
ATRIB(2)=8
ATRIB(3) =8
RETURN
ENDIF

¢ INDEXING THE DISARR-COLUMS ACCORDING TO DISTRIBUTION SPECIFIED:
1825 INDEX1=GETARY (5, INDEX9)
IF (INDEX1.EQ.1) THEN
INDEX2=1
INDEX3=2
ELSETF (INDEX1.EQ.2) THEN
INDEX2=3
INDEX3=4
ELSEIF (INDEX1.EQ.3) THEN
INDEX2+5
INDEX3=6
ELSEIF {INDEX?.EQ.4) THEN
INDEX2=7
INDEX3=8

154

GO A a0 aaa0aoaf

1854

1188

1208

ELSE
CONTINUE
ENDIF

SET INITIAL VALUES:
ATRIB(3)=8
ATRIB(2)=d

FoNUM=8

FENUM=8

INDEX4=8

LOOP TO CREATE BATCHSIZE:

FENUM=CURRENT BATCH SIZE CALCULATED
FS5NUN=TESTING VALUE SUM CUFT
FANUM=BATCHSIZE

F3NUM=SANPLE

F2NUM=UPPERBOUND

FANUM=LOWERBOUND

INDEX4=NUMBER OF TREES

F3NUM=UNFRN(S.8, 120.8,6)
F1NUM=8

DO 1188 INDEX8=1,18,1
FENUM=DISARR(INDEX2, INDEX8)

TF (F3NUM.GE.F1NUM.AND,F3NUM.LE.F2NUN) THEN
FSNUM=FSNUM+DISARR (INDEX3, INDEX8)
INCEX4=INDEX4-+1
GOTO 1298

ELSE
FANUM=F 2NUX
ENDIF
CONTINUE

IF (FSNUM.LE.F4NUM) THEN
FENUM=FSNUM
GOTO 1859

ELSEIF (F5NUM.GT.F4NUM) THEN
ATRIB(2)=FENUN
ATRIB(3)=INDEX4-1

ELSE
CONTINUE

ENDIF

FANUM=F4NUM-FENUM

IF (ATRIB(5).EQ.11) THEN
CONTINUE

ELSEIF {FINUM.GT.B.AND.INDEX7.EQ.1) THEN
ATRIB(2)=F4NUM
ATRIB(3)=ATRIB(3)+1

155

(]

ELSE
GONTINUE
ENDIF

SET BATCHSIZE FOR CAPACITY=99999. SINGLE TREE

[+ I > T T T I T T I

1308

QOO aaaoOOn

1358

INDEXING THE DISARR-COLUMS ACCORDING TO DISTRIBUTION SPECIFIED:

INDEX5=INDEX1
INDEX1=GETARY {3, INDEXS)
IF (INDEX1.EQ.1) THEN
INDEX2+1
INDEX3=2
ELSEIF (INDEX1.EQ.2) THEN
INDEX2=3
INDEX3=4
ELSEIF (INDEX1.EQ.3) THEN
INDEX2+5
INDEX3=§
ELSEIF (INDEX1.EQ.4) THEN
INDEX2=7
INDEX3=8
ELSE
CONTINUE
ENDIF

SET INITIAL VALUES:
ATRIB(3)=8
ATRIB(2)=4

FoNUN=8

FENUM=8

LOOP TO CREATE BATCHSIZE:

FSNUM=CACLULATED BATCHSIZE
F3NUM=SAMPLE
FZNUN=UPPERBOUND
F1NtM=LOWERBOUND

FANUM-UNFRM(2.8,180.08.6)
F1NUM=£

156

157

DO 1498 INDEX8=1,18,1

F2NUM=D1SARR (INDEX2, INDEX8}

IF (F3NUM,GE.F1NUM.AND.F3NUM.LE.F2NUM) THEN
F5NUM=DISARR(INDEX3, INDEX8)
GOTO 1458

ELSE
FiNUM=F2NUM

ENDIF

1488 CONTINUE

c TESTING IF BATCHSIZE GREATER INVENTORY:
1450 IF(INDEX9.NE.1) THEN
INDEX3=XXLEVEL(2)+ATRIB(5)
FINUN=XX (INDEX3)
ELSE
INDEX3=XXLEVEL{ 1) +ATRIB(5)
FANUM=XX(4)-XX(INDEX3)
ENDIF

F3NUM=F |NUM-F5NUN
IF (ATRIB(5).EQ.1.AND.F3NUM.LT.8) THEN
ATRIB(2}=FINUM
ATRIB(3)=1
ELSEIF (F3NUM.LT.2.AND.INDEX5.EQ. 1)THEN
ATRIB{2)=FINUM
ATRIB{3)=1
ELSEIF (F3NUM.GE.8)THEN
ATRIB(2)=FSNUM
ATRIB(3)=1
ELSE
ATRIB(2)=@
ATRIB(3)=@
ENDIF

OO0 a0

MACHINE EREAKDOWN, ASSIGNMENT OF THE PARAMETERS

€33 €Y YO0

2988 INDEXS=ATRIB(1)
IF (MCHARR(INDEX9,1,1).EQ.8) THEN
USERF=@
RETURN
ENDIF

c
IF (XX(5).EQ.118) THEN
INDEX8=2
INDEX7=1
ELSEIF (XX(5).EQ.111) THEN
INDEX8=4
INDEX7=3
ELSE
CONTINUE
ENDIF
c
c
2950 F3NUM=UNFRM(D.9,108.8,6)
FINUN=D
C
DO 2198 INDEX1=1,18,1
F2NUN=MCHARR { INDEX9, INDEX?, INDEX1)
IF (F3NUM.GE.F1NUM.AND.F3NUM.LE.F2NUM) THEN
FSNUNM=MCHARR (INDEX9, INDEX8 , INDEX1)
GOTO 2280
ELSE
FINUN=F 2NN
ENDIF
2188 CONTINUE
c
2289 USERF=F5NUN
RETURN
C
c
C
C USERFUNCTION TO DISPLAY/PRINTOUT THE SIMULATION RESULTS
C ==
C
C OPEN THE APPROPRIATE OUTPUT DEVICES:
C
c
c
4972 USERF=9
c
IF (ATRIB(5).EQ.\.AND.QUTFLAG.GT.1) OPEN{15,FILE='LPT1')
c
C
IF (ATRIB(5).EQ.1) THEN
HRITE(x,4358)F ILENAME
IF (OUTFLAG.GT.1) WRITE(15,4058)FILENAME
4958 FORMAT(////
T T, P FRREII RN NI 200000 DI RIS 00 30T 0O 30 SEOE B 0 00 R O RN
2 18x,'% "y,
318X, ' WrLOGSIM L w/,
4 X, '+ SIMULATION RESULTS w/,
5 19X, '* w/,
6 10X, 36T B D00 O 6 3 D06 0T 006 000 MO0 00 0000 OHE R TG R 0 e Y S
7 //2X'SIMULATION MODEL USED: ' A,/ 2" #xusuensasnssthsusssxn’ /)

158

CALL DATE {18,TSTR)

WRITE(*,*) * DATE= ’,TSTR

IF (OUTFLAG.GT.1) WRITE(15,%) ' COMPUTER DATE: *,TSTR
CALL TIME (18,TSTR)

WRITE(*,*) * TIME= ' TSTR

IF (QUTFLAG.GT.1) WRITE(15,%) ' COMPUTER TIME: ’ TSTR

WRITE(*,4852)MNRUN, S IMRUN
{F(OUTFLAG.GT. 1)WRITE(15,4852)NNRUN, STMRUN
4852 FORMAT(' SIMULATION RUN '12' OF 'F3.8)

c
ELSEIF (ATRIB(5).EQ.14) THEN
GOTO 4588
ELSE
CONTINUE
ENDIF
¢
¢
INDEX9=ATRIB(S)
c
¢

WRITE(*,4198) INDEX9, PROCNAMES (INDEX9)
IF (OQUTFLAG.GT.1) WRITE(15,4'28)INDEX9,PROCNAMES (INDEXS)
4108 TFORMAT(/////,VEX, PROCESS NO.'I12' : ' A/,

1 10X, '=ansansanasnanal //)

c
¢
¢
FINUMGETARY (16, INDEX9)
F2NUM=TNCH
F 3NUM=F 2NUN-F 1NUM
FENUM=GETARY (11, INDEX9)
F7NUM=GETARY (12, INDEX9)
FBNUM=((FENUN+F TNUM) /F 3NUM)1 8@
¢

IF (INDEXS.EQ.1) THEN
INDEX1=USERARR (&, 1)+USERARR(6& , 2)+USERARR(6,3)+USERARR(6,4)
FINUM=GETARY (18, 1) +GETARY (18, 2)+GETARY (18, 3)+GETARY (18, 4)
F25NUM=GETARY(18,1)

F24NUM=GETART(18, 2)

F23NUM=GETARY (18, 3)

F22NUM=GETARY(18, 4)

FSNUM=F 25NUM-+F 24NUM+ F23NUM+F 22NUN

F16NUM=GETARY (18, 1)#USERARR(22, 1)+
GETARY (18, 2)*USERARR(22,2)+
GETARY(18,3) *USERARR(22,3)+
GETARY(18,4)*USERARR(22,4)+
USERARR(6, 1)*F SNUMUSERARR (21, 1)+
USERARR(6,2)#F 3NUM=JSERARR (21, 2)+
USERARR(6 ,3) *F3NUM*USERARR (21, 3)+
USERARR(6, 4)*F SNUM=USERARR (21,4)

PR - R Y L

159

160

F11NUM=8
F12NUM=8
F13Mn=g
F14NUM=0
F15NUM=8
ELSETF(INDEX9.GE.2.AND. INDEX9.LE.18) THEN
INDEXS5=INDEX9*3-1
INDEX6=INDEX5+1
INDEX7=INDEX5+2
INDEX1=USERARR(6, INDEX5) +USERARR (6 , INDEX6)+USERARR (6, INDEXT)
FINUM=GETARY (18 , IRDEXS }+GETARY(18, INDEX6) +GETARY (18, INDEX7)
FSNUM=GETARY (18, INDEX5)+GETARY (1@, INDEX6)+GETARY (18, INDEX7)
F16NUM=GETARY (18, INDEXS)#USERARR (22, INDEX5) +
GETARY (18, INDEX6) *USERARR(22, INDEX6)+
GETARY (18, INDEX7) *USERARR(22 , INDEX7)+
USERARH (6, INDEXS) *F3NUM®USERARR (21, INDEX5)+
USERARR(6, INDEX6) *F SNUMSUSERARR (21, INDEX6)+
USERARR(6 , INDEX7) #FSNUM=USERARR (21, INDEX?)
F11NUM=CCAVG(INDEX9)
F12NUM=CCHAX (INDEX9)
F13NUM=CCMIN(INDEX9)
F14NUM=CCSTD(INDEX9)
F15NUM=CCNUM(INDEX9)
ELSEIF(INDEX9.EQ.11) THEN
INDEX4=USERARR(4,11)
IF(INDEX4.GT.8) THEN
INDEX1=1
FONUM=GETARY(7,18)
F16NUM=FINUMAUSERARR (21, INDEX4)+FINUM*USERARR (22, INDEX4)
F17NUM=F 16NUN/F 19NUN
ELSE
INDEX1=8
F5NUM=8
F16NUM=3
F17NUN=8
ENDIF
F4NUM=8
FINUM=8
F18NUM=0
F2@NUM=8
F18NUN=2
INDEX8=XXLEVEL (1)+INDEX9
F19NUM=XX (INDEX8)
F11NUM=CCAVG (INDEX9)
F12NUM=CCMAX (INDEX9)
F13NUM=CCHIN(INDEX)
F14NUM=CCSTD(INDEXS)
F15NUM=CCNUM{ INDEX9)
GOTD 4185

Mo) -

161

ELSEIF(INDEX9.EQ.12) THEN
INDEX1=USERARR (6, 37)+USERARR{ 6, 39 }+USERARR(6 , 49)
FONUM=GETARY (18, 57) +GETARY(18, 39)+GETARY (18, 48)
FSNUMGETARY (18, 57)+GETARY (16, 33)+GETARY (19,40)
F16NUN=GETARY (19, 37)#USERARR(22, 37)+
GETARY (10,39) *USERARR(22, 59)+
GETARY (10,40 *USERARR (22, 48)+
USERARR(6 , 37)#F3NUM*USERARR (21, 37)+
USERARR(6,39)#FSNUNMUSERARR(21,39)+
USERARR (6 , 48)»FSNUM*USERARR (21 , 4)

F11NUM=CCAVG(INDEX9)

F12NUM=CCMAX (INDEX9)

FASNUM=CCHIN(INDEXS)

F14NUN=CCSTD(INDEX3)

F15NU=CONUM(TNDEX3)

ELSEIF (INDEX9.EQ.13) THEM
INDEX 1 =USERARR(6,41)+USERARR(6,42)

FINUM=GETARY (18,41)+GETARY(18,42)
FSNUM=GETARY (18,41)+GETARY(18 ,42)
F16NUM=GETARY (18, 41)*USERARR (22,41)+

1 GETARY (18, 42) "USERARR (22, 42)+

2 USERARR(6 , 41)#F3NUM#USERARR(21 ,41)+

3 USERARR (6 , 42)#F3NUN*USERARR(21,42)

F1$NUM=CCAVG (INDEX9)
F12NUM=CCMAX (INDEX9)
F13NUM=CCMIN(INDEX9)
F14NUM=CCSTD(INDEXS)
F15NUM=CONUM(INDEXS)
ELSE
CONTINUE
ENDIF

[V, QI PV N

F4NUM=INDEX 1 #F3NUM

F1ONUM= (FSNUN/F4NLM) #1008

F2BNUM=((FINUM+FSNUN) /F4NLM) #1280
INDEX8=XXLEVEL(1)+INDEX9
F19NUM=XCX(INDEX®)
F17RUM=F 1 6NUN/F 1 9NUN

F18NUM=F 16NUN/F 4NUM

USERARR(25 ,1)=USERARR(25, 1)+F4NUM
USERARR(25 ,2)=USERARR (25, 2)+FINUN
USERARR(25,3)=USERARR(25 ,3)+F5NUM
USERARR(25 ,4)=USERARR(25, 4)+F 16NUN

4185 WRITE(*, 4110)F 1NUM,F11NUM, F2NUM, F12NUM, F3NLM, F 1 3KUM, F6NUM , F 1 4NUM
IF{QUTFLAG.GT. 1) WRITE(15,411@)FINUM,F11NUN,F2ZNUM,Ft2NUM,F3NLM,
1 FI3NM, F6NUM, F14NUM

4118 FORMAT(2X,'TIME BEGIN OF PROCESS :',E13.7,

1 2X, "AVERAGE INVENTCRY 1*,E15.7,/,
2 2X,’TIME END OF PROCESS ', E13.7,
3 2X, "HAXTHUM INVENTORY ' E13.9,/,
4 2X, DURATION OF PROCESS ', E13.7,

4150

5 2X, "MINIMUM INVENTORY YL E13.7./,
6 2X,"TIME INVENTORY TOO LOW :*,E13.7,
7 2X, 'STD. BEV. INVENTORY * E13.7)

WRITE(*, 4158)F7NUM, F15NUM, FANUM, F19NUM, INDEX1, F16NUM, FANUN, F 1 7NUM
IF(QUTFLAG.GT.1) WRITE(15,4158)F7NUM,F15NKUM,F8NUM, F19NUM, INDEX1,
1 F16NUM, FANUM, F17NUM

FORMAT(2X, 'TIME INVENTORY TOO HIGH :*,E13.7,

1 2X,'# OF OBSERVATIONS INV. ;' ,E13.7./,
2 2X,'% INVENTORY DOWNTIME :*,E13.7,

3 2X, *SUM UNITS PROCESSED *,E13.7,/,
4 2X,'"TOTAL # OF MACHINES ', I3,

5 2X,'SUM COST OF PROCESS ' E3.7,/,
6 2X, "SUM SCHEDULED HOURS :*,E13.7,
7 2X, 'COST PER UNIT LE13.T)

HRITE(%*,42080)FINUM, F18NUM, FSNUM, F1ANUM, F2ONUN
IF(QUTFLAG.GT. 1) WRITE(15,4238)FINUM, F18NUM,FSNUM , F 18NUN, F 20NN

4200 FORMAT(2X, *SUN MACH .BREAKDOWN HOURS:',E13.7,

2X,'COST PER SGHEDULED HOUR :*,E13.7./,
2%, 'SUM PRODUCTIVE HOURS :',E13.7,/,
2X,'% NET UTILIZATION MACH. :'.E13.7./,
2X,'% GROSS UTILIZATION MAGH:'.E13.7,//)

4 W -

IF(INDEX9.EQ.1.) THEN
INDEX4=1
INDEX3=4
ELSEIF(INDEX9.GT.1.AND. INDEX9.LE.18) THEN
INDEX4=INDEX9#3-1
INDEX3=INDEX#3+1
ELSEIF(INDEX9.EQ.11) THEN
INDEX4 =8
INDEX3=8
GOTD 4455
ELSEIF(INDEX9.EQ.12) THEM
INDEX4=37
INDEX3=42
ELSEIF(INDEX9.EQ.13) THEN
INDEX4=41
INDEX3=42
ELSE
CONTINUE
ENDIF

DO 4458 INDEX2=INDEX4, INDEX3,1
INDEX1=USERARR(&, INDEX2)
IF(INDEX1.EQ.8)GOTO 4445
FANUN=F3NUM*INDEX1
FINUM=GETARY (18, INDEX2)
FSNUM=GETARY (18, INDEX2)
F1aNUN= (FSNUM/FANUHR) * 109
F2BNUM=((FSNUM+FINUM) /FANUM) #1489
F16NUM=F5NUM*USERARR (22, INDEX2) +F4 NUM*USERARR (21, INDEX2)
F18NUMwF 16NUN/F4ANUN

162

4308

435¢

4558

F16NUM=F 16NUM/ TNDEX1
RRITE(*,4388) INDEX2 . MCHNAMES (INDEX2) , INDEX1, F16HUM, FANUM, F 18NUN,
1 FONUM, F 1ENUM
IF(OUTFLAG. GT. 1)WRITE(15 ,4388) INDEX2 , MCHNAMES (TNDEX2) , INDEX1,
1 F16NUM, FANUM , F 18NUM, FSNUM, F 1ENUN
FORMAT(//,2X,"'MACHINE TYPE 'I2' : ',A./,

2X,"TOTAL # OF MACHINES ', 113,
2X,’COST PER MACHINE ' E13.7,/,
2X,'SUM SCHEDULED HOURS :',E15.7,
2X,’COST PER SCHEDULED HOUR :',E13.7,/
2X,'SUR MAGH.BREAKDOWN HOURS:' ,E13.7,
2X,'% NET UTILIZATION MACH. :',E13.7}

WRITE(*, 4358)FSNUM, F20NUM

IF({OUTFLAG.GT.1) WRITE(15.4358)F5NUM, F2BNUM

FORMAT(

1 2X,'suM PRODUCTIVE HOURS 1", E13.7,

2 2X,'% GROSS UTTLIZATION MACH:'.E15.7)

CONTINUE
CONTINUE

- AN WD -

INDEX1=USERARR(6,32) +USERARR (6, 33) HISERARR (6,34) +USERARR(6,35)
1 +USERARR(6,36)

IF (INDEX?.EQ.8)GOTO 4908

WRITE (%,4558)

IF (OUTFLAG.CT.1) WRITE(15,4558)

FORMAT(/////,18%, *LOADING DEVICES'/,

1 1), ' wnnmnnnsnnmnnus', //)

INDEX1=USERARR(6,32)+USERARR{6,33)+USERARR (6,34)+USERARR(6,35)

1 +USERARR(6,36)

F4NUM=TNOK#* INDEX1

FSNUM=GETARY (181,32)+GETARY(18, 33)+GETARY { 181,34) +GETARY(18, 35)

1 +GETARY(18,36)

FINUN=GETARY (18,32)+GETARY(18,33)+GETARY (18, 34)+GETARY(18,35)

1 +GETARY(18,36)

FABNUM~(FSNUM/F4NUM) = 180

F2BNUM=((FINUM+FSNUN)/F4NUN) 108

FISNUM=XN(4)

F16NUM=GETARY(18,32) *USERARR{ 22,32)+GETARY (18, 33) *USERARR(22,33)+
GETARY (18, 34)#USERARR(22, 34) +GETARY(18,35) *USERARR(22,35) +
GETARY(18,36)*USERARR(22,36)+
USERARR(6,32)*F3NUMXUSERARR(21,32)+
USERARR{ 6,33)#F3NUMRUSERARR(21,33)+
USERARR(6, 34) *F3NUMMUSERARR (21,34)+
USERARR(6, 35)#F3NUM=USERARR (21,35)+
USERARR(6, 36)#F SNUMUSERARR{ 21,36)

= A e W =

163

F17KUM=F t6NUN/F 19NUM
F 18NUM=F 1 6NUM,/ TNOW

WRITE(#,4688) INDEX1, F19NUN, FANUM, FA6NUM , FINUM, F17NUM, FSNUM, F18NUM
IF{OUTFLAG.GT.1) WRITE(15,4608) INDEX1,F19NUM,F4NUM, F 16NUM FINUM,

1

F 17NN, FSNUN, F 18NUM

4609 FORMAT(2X, 'TOTAL £ OF MACHINES tR) B

4708

4752

4799

=~ v 1 e N N —

2X,'SUM OF UNITS HARVESTED :',E15.7,/,
2X, "SUM SCHEDULED HOURS ', E13.7,
2X,'SUM COST LOADER DEVICES :',E13.7,/,
2X, 'SUM MACH.BREAKDOWN HOURS:',E13.7,
2X,'COST PER INIT 4 E18.7,/,
2X, 'SUM PRODUCT IVE HOURS ', E13.7,
2X, 'COST PER SCHEDULED HOUR :',E13.7)

NRITE(*,4658)F 18NUM, FZONUM
IF(OUTFLAG.GT. 1) WRITE(15,4650)F 1BNUM, F 20NUM
4650 FORMAT(2X,'S§ NET UTILIZATION MACH. :',E13.7,/,

1

2X,'% GROSS UTILIZATION MACH:',E13.7,/)

USERARR (25, 1)=USERARR(25, 1)+F4NUM
USERARR(25, 2)=USERARR(25, 2)+FINUM
USERARR (25,3 }=USERARR(25 , 3)+F5NUM
USERARR(25, 4 =USERARR{25, 4)+F16NUN

INDEX4=32
INDEX3=36

DO 4098 INDEX2-INDEX4, INDEX3 1

ER I - R R L A

INDEX1=USERARR(6, INDEX2)

IF (INDEX1.EQ.B)GOTO 4798

FANUM~TNOMW» INDEX1

FINUM=GETARY (18, INDEX2)

FSNUM=GETARY(18, INDEX2)

F1ENUM=({FSNUN/FANUM) #1028

F28NUM~ ((FSNUM+FINUM) /F4NUM)* 128

F16NUM=FSNUM*USERARR (22 , INDEX2) +FANUMSUSERARR(21, INDEX2)

F 1 8NUN=F 1 6NUM/F 4NUM

F16NUN=F 16NUM/ INDEX1

WRITE(*, 4788) INDEX2, MCHNAMES { INDEX2) , INDEX1, F 16NUM, FANUM, F 18NUN,
FINUM, F18NUN

IF(QUTFLAG. GT. 1)WRITE(15, 4788) INDEX2 ,MCHNAMES (INDEX2), INDEX1,
F16NUM, FANUM F 18NUM, FINUM, F 1 BNUM

FORMAT(//,2X, "MACHINE TYPE '12" : ',A,/,

X, - 72
2Y,"TOTAL # OF MACHINES o', 113,
2X,"COST PER MACHINE L E13.T./,
2X,'SUM SCHEDULED HOURS :',E13.7,

2X,'00ST PER SCHEDULED HOWR :',E13.7,/
2X, ' SUM MACH.BREAKDOWN HOURS:' E13.7,
2X,'% NET UTILIZATION MACH. :*,E13.7)
URITE(*, 4758)FSNUM, F2ANUM
IF(OUTFLAG.GT. 1) WRITE(15,4758)FSHUM, F2ENUM
FORMAT(2X, 'SUM PRODUCTIVE HOURS :',E13.7,
2X,'% GROSS UTILIZATION MACH:',E13.7)
CONT INUE

164

4843 CONTINUE

(=1 = I = T = I]

4908 WRITE (*,4918)
IF (QUTFLAG.GT.1) WRITE(15,491d)
4918 FORMAT(/////,18X," COMPLETE HARVESTING SYSTEM STATISTICS'/,
1 18%, * ' ' 10

CALL DATE (14,TSTR)
EDSTR=TSTR
CALL TIME {14,TSTR)
ETSTR=TSTR
WRITE(%*,4928) SDSTR,STSTR,EDSTR,ETSTR
IF (OUTFLAG.GT.1) WRITE(15,4928) SDSTR,STSTR,EDSTR,ETSTR
4920 FORMAT(2X,'GOMPUTER TIME START SIMULATION DATE: °,A,
1 3X,'TIME: "A,/,
2 2X, 'COMPUTER TIME END STMULATION DATE: '.A,
3 3X,'TIME: 'A,/)
WRITE(*,4921)NNRUN, S IMRUN
IF {OUTFLAG.GT. 1)HRITE (15,4921)NNRUN, STHRUN
4921 FORMAT(' SIMULATION RUN ‘12" OF 'F3.8)
[
F1NUN=-#
F2NUM=TNON
INDEX1=8
DO 4938 INDEX8=1,42,1
INDEX1~INDEX 1+USERARR{5, INDEX8)
4938 CONTINUE
F4NUM=USERARR(25, 1)
FINUM=USERARR(25,2)
FONUM~USERARR({25,3)
F1ENUN=(FSNUM/F4NUN) %198
F2aNUM= ((FSHUM+FINUN) /FANUN %128
FA1ONUM=XZ(4)
F16NUM=USERARR (25 ,4)
F17NUM=F 16NUM,/F 19NUX

F18NUM=F 16NUM/F2NUI
c
WRITE(*, 4935 JF 1NUM, F2NUN
IF (OUTFLAG.GT.1) WRITE(15,4935)FINUM, F2NUM
4955 FORMAT({2X,'BEGIN OF HARVESTING 1, B13.9,
1 2X, 'END QF HARVESTING ', E15.7)
WRITE(*,494@) INDEX1,F19NUM,F4NUM, F16NUN, FINUM, F17NUN, FSNUN, F18NUN
IF(OUTFLAG.GT.1) WRITE{15,4948) INDEX1,F19NUM,F4NUM, F15NUN, FINUN,
1 F17NUM, FONUN, F18NUM
4948 FORMAT(2X,'TOTAL # OF MACHINES =t 3,
1 2X,'SUM OF UNITS HARVESTED :*,E13.7./,
2 2K, 'SUM SCHEDULED HOURS 17,E13.7,
3 2X,'suM COST QF SYSTEM ' E13.7,/,
4 2X, 'SUM MACH.BREAKDOWN HOURS:*,E13.7,

165

5 2X,"COST PER UNIT :*,E15.7./,
& 2%, 'SUM PRODUCTIVE HOURS ' E13.7,
7 2X,"COST PER SYSTEM HOUR *L,E13.T)

WRITE(*,4958)F10NUM, F28NUM, NNRUN, STMRUN
IF(OUTFLAG.GT.1) WRITE(15,4950)F 18NUM, F2BNUM, NNRUN , S IMRUN
4953 FORMAT(2X,'% NET UTILIZATION MACH. :',E13.7./,

1 2X,'% GROSS UTILIZATION MACH:'.E\3.7./////,
2 ! END OF RUN #'12' OF 'F3.0,
3 ' 17/8)

IF (OUTFLAG.GT. 1)CLOSE(15)

c

c

c

ce

c

c

c

c
IF (NNRUN.EQ.SIMRUN) THEN

sttt
ELSE
CONTINUE

ENDIF

c

c

c

c
RETURN

c

c

c

C USERFUNCTION TO RECORD OBSERVATIONS ON THE INVENTORIES

c

c

c

5880 USERF=d)
IF (ATRIB(5).EQ.1) RETURN

INDEX1=ATRIB(5)

INDEX 2=XXLEVEL (2)+ATRIB(5)
CALL COLCT(XX(INDEXZ), INDEX1)
RETURN

5180 USERF=B
INDEX3=ATRIB(5)
INDEX1=GETARY (23, INDEX3)
INDEX2=XXLEVEL (2)+INDEX1
CALL COLCT(XX(INDEX2),INDEX1)
RETURN

166

167

5208 USERF=@
INDEX1=USERARR(7,5)
INDEX2~XXLEVEL (2)+INDEX1
CALL COLCT(XX(INDEX2), INDEX1)
RETURN

5388 USERF=d
INDEX1=USERARR(7,6)
INDEX2=XXLEVEL(2) +INDEX1
CALL COLCT (X((INDEX2) ,INDEX1)
RETURN

USERFUNCTION 168: CALUCALTE INVENTORY TO MOVE ROUTE ! & ROUTE 2 DISTRIBUTION

P83 USERF=@

CALCULATE THE CURRENT INVENTORY

OO0 NNOOO0O0000 O

INDEX1=XXLEVEL(2)+t1
FANUM=XX (INDEX1)-XX(T)
WX(7)=XX(INDEX1)
IF (FINUM.GT.8) THEN
F2NUM=F INUN*USERARR(7,3)/108
F3NUM=GETARY (7,7)+F2NUM
CALL PUTARY(7,7,F3NUM)
FANUM=F INUN*USERARR(7,4)/ 108
FSNUM=GETARY (7, 8)+F4NUM
CALL PUTARY(7,8,FSNUM)
ELSE
CONTIMUE
ENDIF

CALCULATING THE INVENTORY TO MOVE RQUTE 1

OO0

INDEX1=USERARR(7,5)
INDEX2=USERARR(7,5)+XXLEVEL(2)
F1NUM=XX{({ INDEX2)
INDEX3=USERARR(7,5)+XXLEVEL(4)
F2NUM=X0({ INDEX3)
F3NUM=F2NUM-F INUM
FANUM=GETARY(7,7)

g OO

OO oo aaah

IF(FANUN.GT.F2NUM) THEN
USERARR(7,15)=8

ELSEIF (F3NUM,GT.FANUM) THEN
USERARR(7,15)=F4NUM

ELSE
USERARR(7, 15)=F 3NUM

ENDIF

CALCULATING THE INVENTORY TO MOVE ROUTE 2

INDEX 1=USERARR(7,6)
INDEX2=USERARR(7, 6)+XXLEVEL(2)
FINUM=XX(INDEX2)
INDEX3=USERARR(7, 6)+XXLEVEL(4)
F2NUM=XX{ INDEX3)

FINUM=F 2NUM-F 1NUM
FANUM=GETARY(7,8)

IF(FINUM.GT.F2NUM) THEN
USERARR(7,16)=8

ELSEIF (F3NUM.GT.F4NUM) THEN
USERARR(7, 16)=F4NUM

ELSE
USERARR(7, 16)=F3NUM

ENDIF

CALCULATE SUM TO MOVE

TEST IF PREVIOUS PROCESS ENDED

INDEX2=USERARR(24,11)
INDEX3=GETARY (15, INDEX2)
FANUM=GETARY {26, INDEX2)
IF (INDEX3.LT.2) THEN
INDEX4=2
ELSEIF (INDEX3.GE.2.AND.FINUM.GT.P.281) THEN
INDEX4=g
ELSE
INDEX4=1
ENDIF

F1NUM=USERARR(7,15)
F2NUM=USERARR(7,16)

FINUM=F tNUM+F 2NUM

INDEX1=USERARR(4,11)

IF (INDEX1 .GT. @)F4NUM~USERARR (&, INDEX1)

Qo aoaa

IF(F3NUM.EQ.4) THEN
ATRIB(2)=d
ATRIB(6)=8
ATRIB(7)=8
CALL PUTARY(7,18,8)
CALL PUTARY(7,15.8)
CALL PUTARY(7,16,8)
ELSEIF (INDEX1.GT.H.AND.F4NUN.GT. F3NUN. AND . INDEX4 . EQ. #)THEN
ATRIB(2)=8
ATRIB(6)=0
ATRIB(7)~#
CALL PUTARY(7,14,8)
CALL PUTARY(7,15,8)
CALL PUTARY(7,16,8)
ELSE
ATRIB(2)=F3NM
ATRIB(&)=F 1NUM
ATRIB(7)=F2NUN
CALL PUTARY(7,18,F3NUM)
CALL PUTARY(7,15,FINLM)
CALL PUTARY(7,16,F2NUR)
F15NUN=GETARY(7,7)
F16NUM=GETARY(7,R)
F15NUM=F 155UM-F 1NUN
F16NUM=F 16NUN-F 2NUM
CALL FUTARY(7,7,F15NUN)
CALL PUTARY(7,8,F165UN)
INDEX1 =XXLEVEL(2)+11
XX (INDEX1)=XX(INDEX1)-F3NUM
XX{7)=XX{ INDEX1)
ENDIF

INDEX1=USERARR (4, 11)
IF (INDEX).EQ.M) THEN
RETURN
ELSE
CONTINUE
ENDIF

SET AMOUNT OF TREES ACCORDING TO DESIRED DISTRIBUTION

F4ANUN=F3NUN
FZANM=F3NUN

169

170

c INDEXING THE DISARR-COLUMS ACCORDING TO DISTRIBUTION SPECIFIED:
7825 INDEX1=GETARY(5,11)
IF (INDEX1.EQ.1) THEN
INDE¥X2=1
INDEX3=2
ELSEIF (INDEX1.EQ.2) THEN
INDEX2=3
INDEXG=4
ELSEIF (INDEX1.EQ.3) THEN
INDEX2=5
INDEX3=6
ELSEIF (INDEX1.EQ.4) THEN
INDEX2=7
INDEX3=8
ELSE
CONTINUE
ENDIF

¢ SET INITIAL VALUES:
ATRIB(3) =@
ATRIB(2)=#
FSNUM=2
F6NUM=2
INDEX4~8

LOOP TO CREATE BATGHSIZE:

F6NUM~CURRENT BATCH SIZE CALCULATED
FSNUM=TESTING VALUE SUM CUFT
FANUN=BATCHSIZE

FNUM=SAMPLE

F2RUM=UPPERBOUND

FINUM=LOWERBOUND

INDEX4=NUMBER OF TREES

aaaaaaaaaaaad

7658 FINUM=UNFRM(B.0,188.8,6)
F1NUM=2

DO 7188 INDEXB=1,18,1

FZNUM=DISARR(INDEX2, INDEX8)

IF (F3NUM.GE.F 1NUM. AND.F3NUM_LE.F2NUM) THEN
FSNUM=FSNUM+DISARR(INDEX3, INDEX8)
INDEX4~1NDEX4+1
GOTO 7208

ELSE
FINUM=F2NUM
ENDIF
7168 CONTINUE
[
7288 1IF (FSNUM.LE.F4NUM) THEN
FENUM=FSNUM
GOTO 7@58

171

ELSE
ATRIB{2)=F28NUN
ATRIB(3)=INDEX4-1

ENDIF

cy O

USER FUNCTION TO DISPLAY THE AMOUNT HARVESTED

OO0 a0onoo00o0rx

7588 USERF=@
CALL TIME (18,TSTR}
WRITE(*, 75 18)NNRUN, XX{15), TSTR, TNGH

7518 FORMAT(2X,' RUN £'I12,' AMOUNT HARVESTED:'E13.7' TIME:'A,
1 ' TNOM:'E13.7)

(2]

0O o0 an

9998 RETURN

END

il

172

APPENDIX C

TABLE OF CONTENTS:

Example session, LOGSIMccvvvirvmrerrnverrnsrsrnrisssrnsssensssessnsesssnes 173
Example session, FRONTEND.FOR, Readin....cccccuvveeuireenincnnininnennns 179
Example session, FRONTEND.FOR, Printout...c.cccovvviveierinenennnnnn. 198

Example session, FRONTEND.FOR, Modify «.cvvuvuiiiiniiiieniienennenen. 201

173

APPENDIX C

1. Example session, LOGSIM

174

SLAN I1
Version 3.0
This software is proprietary to and a trade secret of Pritsker
& Associates, INC. Access to and use of the software is granted
under the terms and conditions of the software license agreement
between Pritsker & Associates, INC., and licensee.
The terms and conditions of the agreement shall be strictly
enforced. Any violations of the agreement may vold licensees
right to use the software.
Pritsker & Associates, INC.

P.0. Box 2413

West Lafayette, IN 479586

Enter file name of translated model :HARVEST.TRA

T DE 26 T D 0 D B U DT 06 2600 36 26 3D ST 000 S D60 06 0 T 3

* L
* WrLOGS I M<K L]
* MECHANIZED LOG HARVESTING SIMULATOR %
L] SIMULATION MODULE *

G JEIHE I I 36 S 6 R 36 S S 2 0006 3 S S M

BEGIN OF SIMULATION

THIS FUNCTION READS A PREVIOSLY DEFINED MODEL INTO THE SLAN-
NETWORK AND SIMULATES IT.

DO YOU WISH TO CONTINUE (Y/N) ? {Y]----- > Y

175

FILENAME OF MODEL TO BE RETRIEVED? -----> PTEST14.MOD

tt PLEASE WAIT A MOMENT 1"t

11t MODEL HAS BEEN SUCCESSFULLY RETRIEVED 1t}

SIMULATION RESULTS SHOULD BE ROUTED TO:

SCREEN =1
SCREEN & PRINTER =2
PLEASE ENTER CHOICE -----> 1

HOW MANY SIMULATION RUNS DO YOU WANT?
THE PRESET HAXIMUM IS 1.
ENTER NUMBER OF RUNS [(1]-=-=>1

PLEASE HIT D>RETURN< TO START THE SIMULATION

TIME=22:28:44
DATE=p6-@1-87

*#INTERMEDIATE RESULTS»»

RUN 7 1 AMOUNT HARVESTED:
RUN # 1 AMOUNT HARVESTED:
RUN 7 1 AMOUNT HARVESTED:
RUN 7 1 AMOUNT HARVESTED:
RUN # 1 AMOUNT HARVESTED:
RUN # 1 AMOUNT HARVESTED:
RUN # 1 AMOUNT HARVESTED:
RUN 7 1 AMOUNT HARVESTED:
RUN # 1 AMOUNT HARVESTED:
RUN # 1 AMOUNT HARVESTED:
RUN # 1 AMOUNT HRRVESTED:
RUN # 1 AMOUNT HARVESTED:
RUN # 1 AMOUNT HARVESTED:
RUN # 1 AMOUNT HARVESTED:

. 1808BPBE+8Y TIME:22:28:44
.2A0BBBAE+H1 TIME:22:28:44
.38028REE+E] TIME:22:28:45
.480000BE+B1 TIME:22:28:45
SO0BB0E+S1 TIME:22:28:45
.6002PBPE+A1 TIME:22:28:45
. TEAPPPOE+E1 TIME:22:28:45
.BOPOREAE+E1 TIME:22:28:45
.9820089E+@) TIME:22:28:46
.1822P2PE+E2 TIME:22:28:46
.11888PAE+B2 TIME:22:28:46
. 1208080E+@2 TIME:22:28:46
. 138088PE+#2 TIME:22:28:46
.14008PRE+I2 TIME:22:28:46

TNCM:

PPN S SNBSS T3 50 DGR B0 DT 853 34 DR300 B D D0 - D

" WrLOGS TN L
* SIMULATION RESULTS

OB DD DR -0 S - - S T 3PP - D

SIMULATION MODEL USED: PTEST18.MOD

3600 S PE DD

DATE= B6-81-87
TIME= 22:28:52
SIMULATION RUN 1 OF 1.

PROCESS MO. 1 : fel

TIME BEGIN OF PROCESS
TIME END OF PROCESS
DURATION OF PROCESS
TIME INVENTORY TOO LOW
TIME INVENTORY TOO HIGH :
% INVENTORY DOWNTIME
TOTAL # OF MACHINES
SUM SCHEDULED HOURS
SUM MACH.BREAKDOWN HOURS:

ling

.B0PA3eAE+BE
S08A0EUE+a2
: . OPBEBPPE+E2
: . BPAEAUAE+28
.00 BBRE+8D
1 .PB0edneE+aa

1

+ .50P8008E+82
. B0g8BgE+88

AVERAGE INVENTORY
HAXIMUM INVENTORY
MINIMUM INVENTORY
STD.DEV. INVENTORY
F OF OBSERVATIONS

INV.

SUM UNITS PROCESSED
SUM cOST OF PROCESS

COST PER UNIT

+ 20080088E+21

1 J@0e080E+D1

4 BABPABE+H1

s .588PBBEE+E1

60BBABPE+A1
. 7080880E +81
. 808P0BPE+D
. 9BE2PEBE+E1
. 1082PPOE+A2
. 118828IE+82
. 1288800E+82
. 1580088E+82

: . 14P88PEE+B2
: L 15PE80EE+E2

1 .B0PE0EPE+DE
1 .BPP8sEPE+ad
1 .ABdABdeE+aa
: .DBPesasE+aa
: .D20BaRBE+aD

.5800PPEE+E2
: .PODRPBRE+DD
: .B0PPPPPE+AB

COST PER SCHEDULED HOUR : .A0PAAPAE+88

176

177

SUM PRODUCTIVE HOURS : JSOPRAPBE+E2
£ NET UTILIZATION MACH. : .1B080£E+85
% GROSS UTILIZATION MACH: .1808000E+@3

MACHINE TYPE 1

TOTAL # OF MACHINES : 1 QOST PER MACHINE : . BafedRBE+DE
SUM SCHEDVLED HOURS : .SEPBE@NE+A2 COST PER SCHEDULED HOUR : .pPad@0ggE+2d
SUM MAGH.BREAKDOWN HOURS: .@PPEERE+@@ % NET UTILIZATION MAGH. : .1090880E+3
SUM PRODUCTIVE HOURS : .SPOAPAPE+P2 % CGROSS UTILIZATION MACH: .1898288E+8>

RUN # 1 AMOUNT HARVESTED: .490009PE+82 TIME:22:28:52 TNOW:. .500000PE+@2
RUN # 1 AMOUNT HARVESTED: .S@PEESEE+@2 TIME:22:28:52 TNOW: .5128030E+02

PROCESS NO.15 : ftrapo

TIME BEGIN OF PROCESS : .1BP0@EE+d! AVERAGE INVENTORY : .500EPIBE+DD
TIME END OF PROCESS + .S10000BE+B2 MAXIMUM INVENTORY : . 1808088E+21
DURATION QF PROCESS : SEE@BAPE+#2 MINIMUM INVENTORY : .APRBPBIE+ER
TIME INVENTORY TOO LOW : .P@PAB@IE+@® STD.DEV.INVENTORY : .5025183E+08
TINE INVENTORY TOO HIGH : .E@@ABABE+SS # OF OBSERVATIONS INV. : .18P8080E+2>
% INVENTORY DONNTIME : .BEPAABE+dA SUM UNITS PROCESSED ¢ 5O890R0E+D2
TOTAL # OF MACHINES E 1 SUM COST OF PROCESS : .0PPEDAAE+2P
SUM SCHEDULED HOURS : .500AAPE+@2 COST PER UNIT : .BEBPdR0E+2E
SUM MACH.BREAKDOWN HOURS: .p@g@@dBE+«p@ COST PER SCHETWLED HOUR : .P28adSaE+dd
SUM PRODUCTIVE HOURS : SE0UBEEE«DB2

% NET UTILIZATION MACH. : .10008BBE+8>
£ GROSS UTILIZATION MACH: .1B882080E+83

MACHINE TYPE 41 : truck

TOTAL # OF MACHINES H 1 COST PER MACHINE : Be0dBOAE+E0
SUM SCHEDULED HOURS : .S@PEEPEE+g2 COST PER SCHEDULED HOUR : .0@@@@02E+28
SUM MACH.BREAKDOWN HOURS: .08P@8Q@E+@0 % NET UTILIZATION MACH. : .190Pd@dE+D>
SUM PRODUCTIVE HOURS : .5ORPPPPE+BZ % GROSS UTILIZATION MACH: .1908089E+83

GOMPLETE HARVESTING SYSTEM STATISTICS

COMPUTER TIME START SIMULATION DATE: 96-81-87
COMPUTER TIME END SIMULATION DATE: #5-@81-87

SIMULATION RUN 1 OF 1.
BEGIN OF HARVESTING
TOTAL # OF NACHINES
SuM SCHEDULED HOURS
SUM NACH.BREAKDOMN HOURS:
SUM PRODUCTIVE HOURS
% NET UTILIZATION MACH. :
% GROSS UTILIZATION MACH:

TIME: 22:28:44
TIME: 22:28:52

.20PPAAPE+AA END OF HARVESTING

2 SUM OF UNITS HARVESTED

END OF RUN 7 1 OF

1.

.10890P0E+83 SUM COST OF SYSTEM
.09PPpaRE+AA COST PER UNIT
.18000@EE+P> COST PER SYSTEM HOUR
. 18020REE+83
. 1829030E+03

.5188080E+82
.5080002E+82
. BABBEBAE+ED
: . BENPAREE+E0
: . BRge0gaE+DR

178

179

APPENDIX C

2. Example session, FRONTEND.FOR, Readin

*

* PLOGSTH KL *
* INPUT USER-TNTERFACE *
*

HAIN-MENU

DEFINING A MODEL -1
PRINT OUT A MODEL =2
EDIT A MODEL -3
EXIT THE PROGRAM -9
ENTER CHOICE PLEASE =~ ====--- > 1

SUBROUTINE READIN

THIS IS THE SUBROUTINE TO DEFINE THE SIMULATION MODEL, LATER
USED BY THE SLAM PROCESSOR. THE FOLLOWING DATA IS NECCESSARY
TO DEFINE A HARVESTING MODEL:

HARVESTING CONFIGURATION, GENERAL PARAMETERS
DISTRIBUTTON DATA OF THE TREES/LOGS/PULPLOGS/SAWLOGS
MAXTMUM/MINIMUM DATA OF MATERIAL BUFFERS PER PROCESS
- HOW MANY MACHINES USED PER PROCESS

MACHINE DATA: TIMES, BREAKDOMN FREQUENCIES, COSTS ETC

DEFAULT VALUES WTLL BE GIVEN TN SQUARE BRAKETS [1. IF YOU
WANT TO USE THEM, HIT SPACE BAR AND PRESS RETURN.

DO YOU WISH TO CONTINUE (Y/N) ? [¥]--—-> Y

181

FIRST PHASE

SPEGIFICATION OF GENERAL SYSTEM PARAMETERS

WHAT 1S THE FILENAME OF THE MODEL? --->TEST.MOD
HOW MANY CU_FT SHOULD BE HARVESTED? --->20080.

VALUE OF THE TIME DELAY PARAMETER? --->.M1

SECOND PHASE

PP EE T Y

WE NOW ARE GOING TO DEFINE THE MATERIAL FLOW THROUGH
THE HARVESTING SYSTEM. FOR EACH PROCESS PLEASE STATE
THE PROCESS FROM WHICH THE INCOMING MATERIALS STREAM
ORIGINATES AND THE DESTINATION OF THE OUTGOING MATERIAL
STREAM. A VALUE OF B FOR BOTH QUESTIONS MEANS THAT THE
PROCESS IS NOT USED.

{PLEASE HIT RETURN TQ CONTINUE)}

PROCESS 1:

QUTGOING DESTINATION? -—-—->2

PROCESS 2
INCOMING ORIGIN? -1
OQUTGOING DESINATION? --->13

PROCESS 3:

INCOMING ORIGIN?
QUTGOING DESINATION?

PROCESS 4:

INCOMING ORIGIN?
OUTGOING DESINATION?

PROCESS 5:

INCOMING ORIGIN?
OUTGOING DESINATION?

PROCESS 6:

INCOMING ORIGIN?
OUTGOING DESINATION?

PROCESS 7:

INCOMING ORIGIN?
OUTGOING DESINATION?

PROCESS 8:

INCOMING ORIGIN?
OUTGOING DESINATION?

PROCESS 9:

INCOMING ORIGIN?
OUTGOING DESINATION?

PROCESS 18:

INCOMING ORIGIN?
OUTGOING DESINATION?

PROCESS 11:

INCOMING ORIGIN?

OUTGOING DESINATION, ROUTE 1 ?
QUTGOING DESINATION, ROUTE 2 ?

-->
-—>

--->
-—->

--->
-->

-
-

--->
-—->

-—>
-—->

-
-->

-
-

-->

-
-—>

182

PROCESS 12:
INCOMING ORIGIN? -—>
PROCESS 13:
INCOMING ORIGIN? -==32

PROCESS # IN ORIGIN OQUT DESTINATION

1 2.

2 1. 13,

3

4

5

(]

7

8

9

18

"

12

13 2

IS THIS CORRECT? (Y/N) [Y}----- >

THIRD PHASE

NOW WE DEFINE THE CUMULATIVE FREQUENCY DISTRIBUTLIONS

USED TO DESCRIBE TREES, LOGS ETC..

YOU CAN SPECIFY UP TO FOUR DIFFERENT FREQUENCY DISTRIBUTIONS,
WITH 19 FREQUENCY CLASSES EACH. YOU HAVE TO SPECIFY AT LEAST
OME CLASS IN ONE DISTRIBUTION.

111 DONT FORGET THE DECIMAL POINT FOR INPUT 11!

(PLEASE HIT RETURN TO CONTINUE)

183

FREQUENCY DISTRIBUTION NO. 1:

NAME OF TH1S DISTRIBUTION ? --——-- > WHOLE TREES

CLASS 1: CUM.REL.FREQENCY? [8]--->11.6
CLASS 1: VOLUME CU.FT? [8]--->4.4

CLASS 2: CUM.REL.FREQENCY? [81--->29.7
CLASS 2: VOLWME CU.FT? [8]--->9.4

CLASS 3: CUM.REL.FREQENCY? [8]--->58.4
CLASS 3: VOLWME CU.FT? [a]--->18.

CLASS 4: CUM.REL.FREQENCY? [8]--->69.9
CLASS 4: VOLUME CU.FT? [(8]--->28.3

CLASS 5: CUM.REL.FREQENCY? [8]-—>84.4
CLASS 5: VOLUME CU.FT? [d8]1--->48.9

CLASS 6: CUM.REL.FREQENCY? [8]---293.
CLASS 6: VOLUME CU.FT? [8]-—->54.6

CLASS 7: CUM_REL.FREQENCY? [81--->97.7
CLASS 7: VOLUME CQU.FT? [8]--->78.2

CLASS 8: CUM.REL.FREQENCY? [B]-—2>1d88.
CLASS 8: VOLUME CU.FT? [81--->92.1

DISTRIBUTION NO. 1 : WHOLE TREES

CLASS CUM.REL.FREQ.% CU.FT
1 11.68 4.49
2 29.78 9.48
3 50,46 18.08
4 69.9 28.38
5 84.49 44.94
6 93.90 54.6d
7 97.78 78.20
8 189. 80 92.18

DISTRIBUTION OK (Y/N) 7 [Y]---->Y

FREQUENCY DISTRIBUTION NO. 2:

NAME OF THIS DISTRIBUTION ? —--->

CLASS 1: CUM.REL.FREQENCY? [@]--—>
CLASS 1: VOLUME CU.FT? (8)-—->

DISTRIBUTION NO. 2 :

CLASS CUM.REL.FREQ.% QU.FT

s DISTRIBUTION NOT USED sesemuan

DISTRIBUTION OK {Y/N) ? [Y)---->V

FREQUENCY DISTRIBUTION NO. 3:

NAME OF THIS DISTRIBUTION ? ----- >

CLASS 1: CUM.REL.FREQENCY? [@)--->
CLASS 1: VOLUME CU.FT? ey--->

DISTRIBUTION NO. 3 :

CLASS CUM.REL .FREQ.X CU.FT

wosoeten DISTRIBUTION NOT USED e

185

DISTRIBUTION OK (Y/N) 7 [Y]-——-3Y

FREQUENCY DISTRIBUTION NO. 4:

NAME OF THIS DISTRIBUTION ? ---—- >

CLASS 1: CUM.REL.FREQENCY? [@]--->
CLASS 1: VOLUME CU.FT? [al--->

DISTRIBUTION NO. 4 :

CLASS CUM.REL.FREQ.% QU.FT

wwwnkat DISTRIBUTION NOT USED satwawns

DISTRIBUTION OK (Y/W) ? [Y1--—>Y

FORTH PHASE

IN THIS PHASE WE WILL DESCRIBE THE PROCESSES USED A LITTLE
BIT MORE IN DETAIL. YOU WILL BE ASKED FOR :

- AN OPTIONAL NAME FOR THE PROCESS
THE DISTRIBUTION TO BE USED FOR THIS PROCESS
STARTUP-INVENTORY LEVEL FOR THE PROCESS
MINIMUM INPUT BUFFER SIZE
STARTUP-INV. LEVEL AFTER MINIMUM HAS BEEN REACHED
MAXIMUM INPUT BUFFER SIZE
STARTUP-INV. LEVEL AFTER MAXIMUM HAS BEEN REACHED

PLEASE REMEMBER: THE INPUT BUFFER OF A PROCESS IS THE OUT-

PUT BUFFER OF HIS PREVIOUS PROCESS. THE MINIMUM BUFFER SIZE
EFFECTS THE CURRENT PROCESS, THE MAXIMUM EFFECTS THE PREVIOUS
ONE.

187

t1t DONT FORGET THE DECIMAL POINT FOR INPUT 11t

(PLEASE HIT RETURN TO CONTINUE)

PROCESSS NO. §

NAME OF PROCESS? —----- > FELLING

NDO. OF DISTRIBUTION TO USE? @ ---—-- 31

WHAT LOADER DO YOU WANT TO USE (32-36) ? [8)-----)
TIME DELAYS HANDELD BY

BUILD-IN MODEL=f OR USERFUNCTION=1 7 [8)--—--- >

PROCESS MO. 1: FELLING

DISTRIBUTION USED: 1
STARTUP INVENTORY:
MINIMUM INVENTORY:
STARTUP MINIMUM
HAXTIMUM INVENTORY:
STARTUP MAXIMUM

LOADER TYPE USED : NONE
TIMNE DELAYS BY : BUILD-IN FUNCTIONS

s nEE®

INPUT DATA OK (Y/N)? [Yl---->Y

PROCESS NO. 2

NAME OF PROCESS? -———- > SKIDDING

NO. OF DISTRIBUTION TO USE? = --—--- > 1
STARTUP-INVENTORY LEVEL? [1)----- >

MINNIMUM INFEED INVENTORY LEVEL? [al-—->
STARTUP-INV.LEVEL AFTER MINIMUM? [4]----- >

MAXIMUM INFEED INV. LEVEL? [999999.91—— >
STARTUP-INV.LEVEL AFTER MAXINUM? [999999.91-->

WHAT LOADER DO YOU WANT TC USE (32-36) 7 [#3-—- >
TIME DELAYS HANDELD BY

BUILD-IN MODEL=# OR USERFUNCTION=1 ? [g1----- >

PROCESS NO. 2: SKIDDING

DISTRIBUTION USED: 1

STARTUP INVENTORY: 1808.9

MINIMUM INVENTORY: .a

STARTUP MINIMUM .8

MAXIMUM INVENTORY: 999999.9

STARTUP MAXIMUM : 999999.9

LOADER TYPE USED : NONE

TIME DELAYS BY : BUILD-IN FUNCTIONS

INPUT DATA OK (Y/N)? [Y1---->Y

PROCESS NO.13

NAME OF PROCESS? =--=-- > FINAL TRANSFORT

NO. OF DISTRIBUTION TQ USE? —===>1
STARTUP-INVENTORY LEVEL? (]-—-- > 2098.

MINNIMUM INFEED INVENTORY LEVEL? (ay-----> 1328,
STARTUP-INV.LEVEL AFTER MINIMM? [81-—---> 1324.
MAXIMUM INFEED INV. LEVEL? (999999.9)-—-- > 5008.
STARTUP-INV.LEVEL AFTER MAXIMUM? [999999.91--> 52@4.

WHAT LOADER DO YOU WANT TO USE (32-36) ? 18]-----
TIME DELAYS HANDELD BY
BUILD-IN MODEL=3@ OR USERFUNGTION=1 ? [g1----—-

PROCESS NO,13: FINAL TRANSPORT

DISTRIBUTION USED: 1
STARTUP INVENTORY: 2088.0
MININUM INVENTORY: 1328.9

STARTUP MINIMUM : 1328.8
MAXIMUM INVENTCRY: 5000.9
STARTUP MAXIMUM : 5£08.8

LOADER TYPE USED : NONE
TIME DELAYS BY : BUILD-IN FUNCTIONS

189

INPUT DATA OK (Y/N)? [Y]---->Y

FIFTH PHASE

WE NOW SPECIFY THE RESOURCES E.G. MACHINES WE WANT TO USE IN
EACH PROCESS. FOR EACH ACTIVE PROCESS THE PROGRAM WILL GIVE
A CHOICE OF DIFFERENT MACHINE TYPES. YOU WILL HAVE TO SPECIFY
THE INITIAL NUMBER OF MACHINES FOR EACH TYPE. MULTIPLE TYPES
OF MACHINES WITH DIFFERENT INITIAL NUMBERS OF MACHINES PER
PROCESS ARE POSSIBLE.

HOWEVER, IF YOU HAVE SPECIFIED ANY PROCESSES USING LOADERS
THE PROGRAM WILL PROMPT YOU FIRST TO ENTER HOW MANY

MACHINES FOR EACH LOADER TYPE USED YOU WANT TO EMPLOY.

THE MAXIMUM NUMEER OF MACHINES WHICH THE NETWORK WILL
HANDEL IS APPROXIMATLY 9@ MACHINES IN TOTAL.

(PLEASE HIT RETURN TC CONTINUE)

PROCESS NG, 1: FELLING

MACHINE TYPE 1: INITIAL # OF MACHINES ? [al----- > 2
MACHINE TYPE 2: INITIAL # OF MACHINES ? [a]--—-- >
MACHINE TYPE 3: INITIAL # OF MACHINES ? (al----- >
MACHINE TYPE 4: INITIAL # OF MACHINES ? (al---— >

PROCESS NO. 1 : FELLING

MACHINE TYPE 1, # OF INITIAL MACHINES : 2.
MACHINE TYPE 2, # OF INITIAL MACHINES : 8.

MACHINE TYPE 3, # OF INITIAL MACHINES : @,
MACHINE TYPE 4, # OF INITIAL MACHINES : 4.

INPUT DATA OK (Y/N)? Y]---->¥

PROCESS NO. 2: SKIDDING

MACHINE TYPE 5: INITIAL # OF MACHINES ? (a1----- 1
MACHINE TYPE 6: INITIAL # OF MACHINES ? a]----- >
MACHINE TYPE 7: INITIAL # OF MACHINES ? a1----->

PROCESS NO. 2 : SKIDDING

MACHINE TYPE 5, 7 OF INITIAL MACHINES : 1.
MACHINE TYPE 6, # OF INITIAL MACHINES : @.
MACHINE TYPE 7, # OF INITIAL MACHINES : @.

INPUT DATA OK (Y/N)? Y1----»y

PROCESS NO.13: FINAL TRANSPORT

FOR THIS PROCESS YOU CAN SPECIFY A PRIMARY AND A SECONDARY
TRANSPORTING DEVICE.

HOW MANY PRIMARY TRANSPORTERS DO YOU WANT TO USE? =---- »1
HOW MANY SECONDARY TRANSPORTERS DO YOU WANT TO USE 7 ([@]1--—— > B

PROCESS NO. 13 : FINAL TRANSPORT

NUMBER OF PRIMARY TRANSP.DEVICES USED ¢ 1.
NUMBER OF SECONDARY TRANSP.DEVICES USED : 8.

190

INPUT DATA OK (Y/N)? [Yl-—->Y

SIATH PHASE

HERE WE SPECIFY ALL THE PARAMETERS RELATED TO THE MACHINE
TYPES YOU HAVE SET ACTIVE EARLIER:

- NAME OF MACHINE

- AVERAGE PROCESSING TIME PER TREE

- FIXED CONSTANT TIME PER LOAD

- FIXED CONSTANT TIME PER ONE WAY HAUL

- MACHINE CAPACITY IN CU.FT.

- FIAED COST PER SCHEDULED HOUR

- VARIABLE COST PER MACHINE HOUR

(PLEASE HIT RETURN TO CONTINUE}

PROCESS NO. 1: FELLING

B o o T

MACHINE TYPE 1 :

NAME OF MACHINE TYPE? @ =------ > CAT 227 FELLER-BUNCH
AVERAGE PROCESSING TIME / TREE? [@]---—- >

FIXED CONSTANT TIME / LOAD? (a]---—- > .4

FIXED CONST. TIME / ONE WAY HAUL? (@]------ >

MACHINE CAPACITY IN QU.FT? (1]-—-- > 82.56

FIXED COST / SCHETULED HOUR [(d]-——-> 41.99

VARIABLE COST/ MACHINE HOUR [(@]-——-> 41.35

PROCESS NO. 1 : FELLING

MACHINE TYPE 1

NAME OF MACHINE TYPE : CAT 227 FELLER-BUNCH
AVERAGE PROCESSING TIME / TREE : -808a

FIXED CONSTANT TIME / LOAD : 8480

FIXED CONST. TIME / ONE WAY HAUL : .2doa

MACHINE CAPACITY IN CU.FT : 82.56

FIXED COST / SCHEDULED HOUR : $1.99

VARIABLE COST/ MACHINE HOUR : 41.35

19

192

INPUT DATA OK (Y/N)? [Yl-——>Y

PROCESS NO. 2: SKIDDING

MACHINE TYPE 5 :

NAME OF MACHINE TYPFE? = =====- > CAT 528 GRAB-SKIDDER
AVERAGE PROCESSING TIME / TREE? [B]------ >

FIXED CONSTANT TIME / LOAD? (a)-—-—--- > 1

FIXED CONST. TIME / ONE WAY HAUL? [9)---—-->

MACHINE CAPACITY IN CU.FT? [(1)=---~- > 228.

FIXED COST / SCHEDULED HOUR)------ > 36.72

VARIABLE COST/ MACHINE HOUR [#)-——-—> 22.

PROCESS NO. 2 : SKIDDING

ANEEEEEE SN

MACHINE TYPE 5

NAME OF MACHINE TYPE : CAT 528 GRAB-SKIDDER
AVERAGE PROCESSING TIME / TREE : . 6980

FIXED CONSTANT TIME / LOAD : .1008

FIXED CONST. TIME / ONE WAY HAUL : N i)

MACHINE CAPACITY IN CU.FT : 2%.44

FIXED COST / SCHEDULED HOUR : 36.72

VARIABLE COST/ MACHINE HOUR : é2.99

INPUT DATA OK (Y/N)? [Y1--—-->¢

PROCESS NO.13: FINAL TRANSPORT

MACHINE TYPE 41 :

NAME OF MACHINE TYPE? ------ > L0G TRUCK
AVERAGE PROCESSING TIME / TREE? [#]------>

FIXED CONSTANT TIME / LOAD? {a]------ > .5
FIXED CONST. TIME / ONE WAY HAUL? {8]----—--> 1.
MACHINE CAPACITY IN CU.FT? [1)----—-- > 1312,
FIXED COST / SCHEDULED HOUR [a)-—--—-——- > 15.04
VARIABLE COST/ MACHINE HOUR [8)------ > 36.48

PROCESS NO. 13 : FINAL TRANSPORT

MACHINE TYPE 41

NAME OF MACHINE TYPE ¢ LOG TRUCK
AVERAGE PROCESSING TIME / TREE : .B8gg
FIXED CONSTANT TINE / LOAD : 5800
FIXED CONST. TIME / ONE WAY HAUL : 1.8008
MACHINE CAPACITY IN CU.FT t 1512.88
FIXED COST / SCHEDULED HOUR H 15.04
VARIABLE COST/ MACHINE HOUR : 36.48

INPUT DATA OK (Y/N)? [Y]---—>Y

SEVENTH PHASE

IN THIS LAST PHASE YOU ARE ABLE TO SPECIFY THE MACHINE
BREAKDOWN PARAMETERS FOR EACH ACTIVE MACHINE. IN ORDER
TO DO SO YOU WILL HAVE TO INPUT THE CUMULATIVE FREQUENCY
DISTRIBUTION FOR THE TIME BETWEEN FAILURES AND THE
ACTUAL REPAIR TIME. EACH OF THESE TWO DISTRIBUTIONS CAN
HAVE UP TO TEN CLASSES.

11t DONT FORGET THE DECIMAL POINT FOR INPUT 1!t

(PLEASE HIT RETURN TO CONTINUE)

193

MACHINE TYPE

EEEEEEEEEEEEEEEEM

FREQUENCY DISTRIBUTION FOR TIMES BETWEEN FAILURES:

1 ¢ CAT 227 FELLER-BUNCH

CLASS 1: CUM.REL.FREQENCY? (8)-—-- >28

CLASS 1: TIME BETWEEN FAILURES? [8]----- 6.

CLASS 2: GUM.REL.FREQENCY? [@]-—--->48.
CLASS 2: TIME BETWEEN FAILURES? [8])----->12.
CLASS 3: CUM.REL.FREQENCY? (8)-—--->68.
CLASS 3: TIME BETWEEN FAILURES? [@]----- »20

CLASS 4: CUM.REL.FREQENCY? [a)----—- >88

CLASS #4: TIME BETHWEEN FAILURES? [@]----->3&

CLASS 5: CUM.REL.FREQENCY? (9)----- 108
CLASS 5: TIME BETWEEN FAILURES? [@)--—->84.
MACHINE TYPE 1 : CAT 227 FELLER-BUNCH

FREQUENCT DISTRIBUTION FOR MACHINE REPAIR TIMES:

CLASS
CLASS

CLASS
CLASS

CLASS
CLASS

CLASS
CLASS

CLASS
CLASS

1: CUM.REL.FREQENCY?
1: REPAIR TIME?

2: CUM_REL.FREQENCY?
2: REPAIR TIME?

3: CUM.REL.FREQENCY?
3: REPAIR TIME?

By

+ CUM.REL.FREQENCY?
4: REPAIR TIME?

5: CUM.REL.FREQENCY?
5: REFAIR TIME?

(81----->58
(8)----->.5
(81--——-->7a.
(21-—-->1.
(0]----->68
[a)----->2.
[8)---—->90.
[8)----->5
[8]-—->188.

(g]----->1d.

194

FREQUENCY DISTRIBUTIONS MACHINE TYPE 1 : CAT 227 FELLER-BUNCH

CLASS CUM FREQ.X TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME
1 26.08 6.08 58.00 .58
2 48.89 12.88 .80 1.08
3 60.08 20.08 84.0d 2.8
4 88. 02 36.08 90.09 5.08
5 108. 08 64.08 198.00 18.89
DISTRIBUTION OK (Y/N) ? [Y]--—>Y
MACHINE TYPE 5 : CAT 528 GRAB-SKIDDER
FREQUENCY DISTRIBUTION FOR TIMES BETWEEN FAILURES:
CLASS 1: CUM.REL.FREQENCY? (8]----- >
CLASS 1: TIME BETWEEN FAILURES? [@]----- >
FREQUENCY DISTRIBUTIONS MACHINE TYPE 5 : CAT 528 GRAB-SKIDDER
CLASS CUM FREQ.X TIME BETW.FAILURE CUM.FREQ.X REPAIR TIME

wemwun DISTRIBUTION NOT USED swmstwaeni

DISTRIBUTION OK {Y/N) ? [Y]--—>Y

195

MACHINE TYPE 41 : LOG TRUCK

FREQUENCY DISTRIBUTION FOR TIMES BETWEEN FAILURES:

CLASS 1: CUM.REL.FREQEMCY? (al---—-—- >
CLASS 1: TIME BETMEEN FAILURES? [B]----- >

FREQUENCY DISTRIBUTIONS MACHINE TYPE 41 : LOG TRUCK

CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.%

REPAIR TIME

s DISTRIBUTION NOT USED wstseaions

DISTRIBUTION OK (Y/N) ? (Y]---->Y

END OF SUBROUTINE READIN

YOU HAVE NOW DEFINED A MODEL FOR THE MECHANIZED LOG
HARVESTING SIMULATOR, BO YOU WANT TC SAVE THIS MCDEL ON
DISK? IF YOU DONT DO SO ALL YOUR HORK HWILL BE LOST 1t

SAVE MODEL CON DISK Y/N 7 {Yl--—-- b

11!t MODEL HAS BEEN SAVED 1t}
PRESS RETURN TO CONTINUE

196

197

I 5SS I SIS
* »
* MMPLOGS T ML »
* INPUT USER-INTERFACE »
»

*

NI S NP DG S SN D -

BMAIN-BRENU

DEFINING A MODEL -1
PRINT OUT A MODEL =2
EDIT A MODEL -3
EXIT THE PROGRAN -

ENTER CHOICE PLEASE ~ —------ >

198

APPENDIX C

3. Example session, FRONTEND.FOR, Printout

JEIHFEIIEINIE I IR TN I I B JE S S-S M

L] L]
* rLOGSIH KL "
" INPUT USER-INTERFACE *
L] []

SN SENREIE NI SHNEIE I SN D DD S B SR RHHEIHEHHOHOOHE

MAIN-MENU

DEFINING A MODEL -1
PRINT OUT A MODEL =2
EDIT A MODEL -3
EXIT THE PROGRAM =0
ENTER CHOICE PLEASE ~ -----— >3

SUBROUTINE PRINT

WITH THIS SUBROUTINE YOU CAN PRINTOUT THE DATA OF A
SIMULATION MODEL PREVIOUSLY DEFINED WITH SUBROUTINE
READIN.

DO YOU WISH TO CONTINUE (Y/N) ? [Y]-—=-=> Y

FILENAME OF MODEL TO BE RETRIEVED? -—--- > TEST1.MOD

Tt PLEASE WAIT A MOMENT (234

ttt MODEL HAS BEEN SUCCESSFULLY RETRIEVED 1ttt

QUTPUT SHOULD BE ROUTED TO:

SCREEN =1
SCREEN & PRINTER =2

PLEASE ENTER CHOICE -----> 1

200

>»>> FOR EXAMPLE QUTPUTS SEE APPENDIX E <«

?

WILOGS I ML
INPUT USER-INTERFACE

* X X X
X % % X%

l

MAIN-MNENU

DEFINING A MODEL =1
PRINT QUT A MODEL =2
EDIT A MODEL =3
EXIT THE PROGRAM =f

ENTER CHOICE PLEASE =~ ------- >0

APPENDIX C

4, Example session, FRONTEND.FOR, Modify

20

202

MM>LOGST ALK
INPUT USER- INTERFACE

x x
x X X X

FNEDENNEDE NN MR D DI B I 0HE 000 D006 D66 D 00 0 0 300 DA DS

HAIN-MENU

DEFINING A MODEL -1
PRINT OUT A MODEL -2
EDIT A MODEL -3
EXIT THE PROGRAM =
ENTER GHOICE PLEASE =~ --————- >3

SUBROUTINE MODIFY

THIS SUBROUTINE ALLOWS YOU TO MODIFY THE DATA OF A
SIMULATION MODEL PREVIQUSLY DEFINED WITH SUBROUTINE
READIN.

DO YOU WISH TO CONTINUE (Y/N) ? [Y]-——- > ¥

FILENAME OF MODEL TO BE RETRIEVED? --—-—-- > TEST1.MOD

1t PLEASE WAIT A MOMENT 1t

1! MODEL HAS BEEN SUCCESSFULLY RETRIEVED 11}

SUBRROUTINE MODIFY CHOICES:

EL T

EDIT SYSTEM PARAMETERS =1
EDIT MATERIAL FREQUENCY DISTRIBUTIONS = 2
EDIT PROCESS PARANETERS =3
EDIT MACHINE PARAMETERS =4
EDIT MACHINE DISTRIBUTIONS =5
SAVE MODIFYIED MODEL =6
RETURN TO MAIN MENY =8

PLEASE ENTER CHOICE = ----- >

EDITING SYSTEM PARAMETERS:

NAME OF SIMULATION MODEL : TEST1.MOD
1 = AMOUNT TO BE HARVESTED (CU.FT.) : 25644
2 = TIME DELAY PARAMETER : .piae

A = RETURN TO MODIFY MENU

PLEASE ENTER CHOICE -—--=>1

HOW MANY CU.FT SHOULD BE HARVESTED? --->23450.

EDITING SYSTEM PARAMETERS:

NAME OF SIMULATION MODEL : TEST1.MOD
1 = AMOUNT TO BE HARVESTED (CU.FT.) : 23458.
2 = TIME DELAY PARAMETER : 8188

= RETURN TO MODIFY MENU

PLEASE ENTER CHOICE ----> @

SUBRROUTINE MODIFY CHOICES:

EDIT SYSTEM PARAMETERS 1
EDIT MATERIAL FREQUENCY DISTRIBUTIONS = 2
EDIT PROCESS PARAMETERS =3

203

EDIT MACHINE PARAMETERS -4

EDIT MACHINE DISTRIBUTIONS =5
SAVE MOBIFYIED MODEL =6
RETURN TO MAIN MENU -8

PLEASE ENTER CHOICE = -——- >3

EDITING PROCESS PARAMETERS:

t = PROCESS NO. 1 :FELLING

2 = PROCESS NO. 2 :SKIDDING
13 = PROCESS NO.13 ;FINAL TRANSPORT
B = RETURN TO MODIFY MENU

PLEASE ENTER CHOICE ~--—> 2

PROCESS NO. 2: SKIDDING

INCOMING ORIGIN : PROCESS NO. . FELLING
OUTGOING DESTINATION : PROCESS NO.13. FINAL TRANSPORT
DISTRIBUTION USED : 1. WHOLE TREES
STARTUP-INVENTCRY LEVEL : &nd. @

MINIMUM INVENTORY LEVEL : 220.9

STARTUP LEVEL MINIMUM 226.4

MAXIMUM INVENTORY LEVEL : 1628.9

STARTUP LEVEL MAXIMUM : 1600.8

LOARDER USEP : NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

CONTINUE EDITING? Y/N (N]-—-> Y

EDITING PROCESS NO. 2

NAME OF PROCESS? ————- > SKIPDING
NO. OF DISTRIBUTION TO USE?P -———- > 1
STARTUP-INVENTORY LEVEL? [1}-——-- > 1084,

MINNIMUM INFEED TNVENTORY LEVEL? [A}—-- > 226.
STARTUP-INV.LEVEL AFTER MINIMUM?Z (8)--——- > 228.
MAXTMUM INFEER INV. LEVEL? (999999.9]--——-- > 804,
STARTUP-INV.LEVEL AFTER MAXIMUM? (999999.91--> 804.

WHAT LOADER DO YOU WANT TO USE (32-36) ?
BUILD-IN MODEL=# OR USERFUNCTION=1 7

PROCESS NO. 2: SKIDDING

INCOMING ORIGIN

OQUTGOING DESTINATION
DISTRIBUTION USED
STARTUP-INVENTORY LEVEL :
MINIMUM INVENTORY LEVEL :
STARTUP LEVEL MININUM
MAXIMUM INVENTORY LEVEL :
STARTUP LEVEL MAXIMUM
LOADER USED :
TIME DELAYS HANDELED BY :

CONTINUE EDITING? Y/N [N]

EDITING PROCESS PARAMETERS:

PROCESS NO. 1.
PROCESS NO.13.

1.
1880.8
229.8
228.9
i1
8en.a
NONE

FELLING
FINAL TRANSPORT
WHOLE TREES

STANDARD BUILD-IN FUNCTIONS

-—--> KN

1 = PROCESS NO. 1 :FELLING

2 = PROCESS NO. 2 :SKIDDING
13 = PROCESS NO.13 :FINAL TRANSPORT
f# = RETURN TO MODIFY MENU

PLEASE ENTER CHOICE ----> 8

SUBRROUTINE MODIFY CHOICES:

EDIT SYSTEM PARAMETERS

EDIT MATERIAL FREQUENCY DISTRIBUTIONS =

EDIT PROCESS PARAMETERS
EDIT MACHINE PARAMETERS
EDIT MACHINE DISTRIBUTIONS
SAVE MODIFYIED MODEL
RETURN TO MAIN MENU

|m oo W WD -

205

PLEASE ENTER CHOICE -——> 4

EDITING MACHINE PARAMETERS:

PLEASE ENTER THE NUMBER OF THE MACHINE YOU
WANT TO EDIT. IF THE MACHINE HAS NOT BEEN
SET ACTIVE PREVIOUSLY YOU CAN ACTIVATE

IT NOW BY SPECIFYING THE INITIAL NUMBER OF
MACHINES GREATER THAN 0.

1-42 = MACHINE NUMBER

= RETURN TO MODIFY MENU

PLEASE ENTER CHOICE ----> 5

PROCESS NO. 2: SKIDDING

MACHINE TYPE 5: CGAT 528 GRAB-SKIDDER

INITIAL NUMBER OF MACHINES : 2.
AVERAGE PROCESSING TIME / TREE : .agas
FIXED CONSTANT TIME / LOAD : .Bedd
FIYED CONST. TIME / ONE WAY HAUL 2008
MACHINE CAPACITY IN CU.FT : 29.44
FIXED COST / SCHEDULED HOUR : 36.72
VARIABLE COST/ MACHINE HOUR : 22.00

CONTINUE EDITING? Y/N [N]---=> Y

MACHINE TYPE 5 :

NAME OF MACHINE TYPE? = ---—- > CAT 528 GRAB-SKIDDER
INITIAL NUMBER OF MACHINES ? @ ---—--- > 2

AVERAGE PROCESSING TIME / TREE? [@]---—-> .095

FIXED CONSTANT TIME / LOAD? [(#]-=-=-=- >

FIXED CONST. TIME / ONE WAY HAUL? [B]-——--- >

HMACHINE CAPAGITY IN CU.FT? [11—-—--> 29.44

FIXED COST / SCHEDULED HOUR [#]------ > 36.72

VARIABLE COST/ MACHINE HOUR (@]-m=mm- > 28.52

MACHINE NO. 2: SKIDDING

MACHINE TYPE 5: CAT 528 GRAB-SKIDDER

INITIAL NUMBER OF MACHINES : 2.
AVERAGE PROCESSING TIME / TREE : Nl
FIXED CONSTANT TIME / LOAD : .095¢
FIXED CONST. TIME / ONE WAY HAUL : .e0e8
MACHINE CAPACITY IN QU.FT : 29.44
FIXED COST / SCHEDULED HOUR : 36.72
VARIABLE COST/ MACHINE HOUR : 28.52

CONTINUE EDITING? Y/N [N]----> N

EDITING MACHINE PARAMETERS:

PLEASE ENTER THE NUMBER OF THE MACHINE YOU
WANT TO EDIT. IF THE MACHINE HAS NOT BEEN

SET ACTIVE PREVIQUSLY YOU CAN ACTIVATE

IT NOW BY SPECIFYING THE INITIAL NUMBER OF
MACHINES GREATER THAN 8.

1-42 = MACHINE NUMBER

8 = RETURN TO MODIFY MENU

PLEASE ENTER GHOICE --—> 8

SUBRROUTINE MODIFY CHOICES:

EDIT SYSTEM PARAMETERS =1
EDIT MATERIAL FREQUENCY DISTRIBUTIONS = 2
EDIT PROCESS PARAMETERS =3
EDIT MACHINE PARAMETERS -4
EDIT MACHINE DISTRIBUTIONS =5
SAVE MODIFYIED MODEL =6
RETURN TO MAIN MENU =d

PLEASE ENTER CHOICE = ----- > 8

207

END OF SUBROUTINE MODIFY

YOU HAVE TO SAVE THE EDITED MCDEL ON DISK,
OTHERWISE ALL YOUR WORK WILL BE LOST 1!

SAVE MODEL ON DISK Y/N ? [Y]------ > Y
tt1t FILE: TEST1.MOD ALREADY EXISTS ttit
OVERWRITE OLD FILE? [(N]--—--- > Y

111t MODEL HAS BEEN SAVED 1tt!
PRESS RETURN TO CONTINUE

SUBRROUTINE MODIFY CHOICES:

EDIT SYSTEM PARAMETERS =1
EDIT MATERIAL FREQUENCY DISTRIBUTIONS = 2
EDIT PROCESS PARAMETERS =3
EDIT MACHINE PARAMETERS =4
EDIT MACHINE DISTRIBUTIONS =5
SAVE MODIFYIED MODEL =6
RETURN TO MAIN MENU =8

PLEASE ENTER CHOICE ----- > 8

U300 30 06 30 0 D UE T 06 30 D0 06 D6 00 D 0 060D D D06 30D 0 D B 06 06 20003008 06 36

* WrLOGS TN L
* INPUT USER-INTERFACE

»*

-

FENNE D600 3000 000 -0 300 3D 06 -0 06 06 06 06 06 00 0 06 06 06 -0 30D G D00 0406

208

HMAIN-MNENU

DEFINING A MODEL
PRINT OUT A MODEL
EDIT A MODEL
EXIT THE PROGRAM

PLEASE ENTER CHOICE

-8

E W o

AN O A

210

APPENDIX D

TABLE OF CONTENTS:

Figure, FORTRAN filestructur FRONTEND.EXEcccccvvvvvineannnn.n. 211
Listing, FRONTEND. FOR ..cuuiiiii ettt easeenennes 212
Listing, READIN.FORc.ccoiiiiiiiiiii e eeaen 215
Listing, PRINTOUT.FOR ...ttt et erre e 245

Listing, MODIFY.FOR ..ccuitiiriiiiiii it e ee e b smen s e aene 258

APPENDIX D

1. Figure, FORTRAN filestructure FRONTEND.EXE

‘ FRUNTEMD. FUE J

o
l LI ETREALL FOR
o

¥
[ERREEY I M il

GE e eI T Tun PRolMTgIlT
CFLLE 3

i MO TNT . F Ok } 1 MO TR . F ok

211

ARSI B Aol

212

APPENDIX D

2. Listing, FRONTEND.FOR

MM I 5 5 R HHEHHEHEHOOHE DO O IO
[%] »
Cn OREGON STATE UNIVERSITY *
Cx JUNE 1986 *
c* »
C* »> LOGS I N« »
Cc* »
O SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS »
[%] »
o] »
o] DESIGNED BY : CHRISTOPH WIESE *»
Cx MASTERS CANDIDATE, DEP. OF INDUSTRIAL *
C* ENGINEERING. OREGON STATE UNIVERSITY *
C»]
C» DESIGNED FOR: DEPARTMENT OF FOREST ENGINEERING -
= OREGON STATE UNIVERSITY *
[%] L]
cn »
c= SUPERVISION : DR. ELDON OLSEN *
Cx ASSOCIATE PROFESSOR, DEP. OF INDUSTRIAL *
[oL] ENGINEERING, OREGON STATE UNIVERSITY *
o »
c* "
M6 06 M SIS IHEIHEIHEIEIHEHEHEIHHEHEHEBHEHHEHOBHEEHEH
C»]
C* MAIN PROGRAM OF THE CUTOMIZED SLAM II PROCESSOR: LOGSIM.EXE *
G "
(o] F1-MAY-87 18:55 L]
C% »
MG S G I IIEN 3 ST IHE I IIEIE I JEIHEIEN I JHIEIESHIEN M 2 JHHETE 0 3 26 JIEIEN I HHEIEIEE -
C

C

C

C METACOMMANDS :

(sessssssssssx

C

$INCLUDE: *PRCTL.FOR®

c

C PROGRAM DECLARATION:
¢ a=
c

PROGRAMM HARVEST
C
¥
[
C COMMON BLOCK:
(=tamumzassnmm
¥
$INCLUDE: * VARBLOCK. DOC'
C
[

213

C INITIALIZE SYSTEM PARAMETERS:

C ana N

C
NCRDR=5
NPRNT=2
NTAPE=?
XXLEVEL{1)=15
XXLEVEL(2)=27
XXLEVEL(3)=39
XXLEVEL(4)=51
XXLEVEL(5)=63
XXLEVEL(6)=75
XXLEVEL(7)=87

¥

c

C CALL SLAM SIMULATION PROCESSOR

C ma=

c

¥
CALL SLAM

¥

c

C

C FORMAL END OF PROGRAM

C

C

c

C
STOP * *

9998 END

214

215

APPENDIX D

3. Listing, READIN.FOR

(G000 00 30 A SIS HEIEIHE IS IO IO IHEHEE

C=
Cu
o
(o]
(%]
o]
(]
(%]
o]
(%]
(]
(]
(]
(o]
v
(o]
(o]
[ol.]
(o]
o]
v
(o]

OREGON STATE UNIVERSITY
JUNE 1985

2 LOGS I MK
SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS
DESIGNED BY : CHRISTOPH WIESE

MASTERS CANDIDATE, DEP. OF INDUSTRIAL

ENGINEERING, OREGON STATE UNIVERSITY
DESIGNED FOR: DEPARTMENT OF FOREST ENGINEERING

OREGON STATE UNIVERSITY

SUPERVISION : DR. ELDON OLSEN
ASSOCIATE PROFESSOR, DEP. OF INDUSTRIAL
ENGINEERING, GREGON STATE UNIVERSITY

»*

»*

»*

»*

»*

(5 06 D6 TG I JF -6 MHEEIEIEDE D6 JHIETEHRTE 3 DT S0 3 I I3 3

(o]
Cu
Cn
c»
c»

FORTRAN INPUT USER-INTERFACE: READIN.FDR

J1-MAY-87 18:55

-
L
*
»

»*

(0 0 D D30 - D DG 00 I 0 M I S SR

O O g aa

$INCLUDE: 'PRCTL.FOR'

C

C PROGRAM DECLARATION:

C smczzmaxm=mmzm=mm ===

C

SUEROUTINE READIN
C
C COMMON BLOCK :
(T — [—
c
$INCLUDE: ' VARBLOCK . DOC”
c

C DEFINE LOCAL VARIABLES, NAMES & TYPE:

C

c

216

217

INTEGER*4 IANSWER,INDEX?, INDEX2, INDEX3, INDEX4, INDEXS
INTEGER®4 INDEX6, INDEX?, INDEX@, INDEX9
CHARACTER#20 CHRANSHWER, CHR 1ANSWER
REAL F1ANSWER, F2ANSHER,F3ANSWER ,F4ANSUER, FSANSWER , F6ANSHER
REAL F7ANSWER,FBANSWER,FIANSWER, F1OANSWER . F 11ANSHER , F 1 2ANSHER
LOGICAL%4 FILESTATUS

C

C BEGIN PROCESSING:

[T T T T ——

¢

C OPENING SCREEN:

WRITE(%,168)

198 FORMAT('1°////5X,
1 SUBROUTINE READIN'/5X,
2' ssssnssnsanmassan’//5Y,
3'THIS IS THE SUBROUTINE TO DEFINE THE SIMULATION MODEL, LATER'/5X,
4'(SED BY THE SLAM PROCESSOR. THE FOLLOWING DATA 1S NECCESSARY'/5X,
5'TO DEFINE A HARVESTING MODEL:'//5X,

6' - HARVESTING CONFIGURATION, GENERAL PARAMETERS'/5X,
7' - DISTRIBUTION DATA OF THE TREES/LOGS/PULPLOGS/SAWLOGS')
WRITE(#,181)

181 FORMAT(5X,
1 - MAXIMUM/NINIMUM DATA OF MATERIAL BUFFERS PER PROCESS'/5X,
2' - HOM MANY MACHINES USED PER PROCESS'/S5X,
3' - MACHINE DATA: TIMES, BREAKDOWN FREQUENCIES. COSTS ETC'///5X,
4'DEFAULT VALUES WILL BE GIVEN IN SQUARE BRAKETS [3. IF YOU'/5X,
5'WANT TO USE THEM, HIT SPACE BAR AND PRESS RETURN.'////5X)
WRITE(*,*(A\)*) * DO YOU WISH TO CONTINUE (Y/N) ? [Y3----- >
READ (*,*(BZ,A1)") CHRANSHER
IF (CHRANSWER.EQ.'N') THEN
GOTO 9998
ELSE
CONTINUE
ENDIF

INITIALIZATION OF ALL VARIABLES

OO O0O0O0aOa0a0n

DO 118 INDEX1=1,129,1
¥X(INDEX1)=8
11@ CONTINUE

DO 114 INDEX1=1,26,1
DO 112 INDEX2=1,42,1
USERARR{ INDEX1, INDEX2) =8
112 CONTINUE
114 CONTINUE

218

DO 118 INDEX1=1,8,1
DO 116 INDEX2=1,18,1
DISARR(INDEX1, INDEX2)=#
116 CONTINUE
118 CONTINUE

DO 124 INDEX1=1,42,1
DO 122 INDEX2=1,4.1
DO 128 INDEX3=1,18,1
MCHARR(INDEX1, INDEX2, INDEX3) =0

128 CONTINUE
122 GONTINUE
124 CONTINUE
C
DO 126 INDEX1=1,52,1
MCHNAMES INDEX1)=* *
126 CONTINUE
C
DO 128 INDEX1=1,24,1
PROCNAMES (INDEX1)=" *
128 CONTINUE
c
DO 138 INDEX1+1,4,1
DISTRIBNAMES (INDEX1)=" *
138 CONTINUE
C
C
c
c
C BEGIN OF DEFINING THE MODEL
o waue
C
C HARVESTING CONFIGURATION AND GENERAL PARAMETERS:
C
C

WRITE(*, 10088)
1008 FORMAT (" \"// 77717 0TE LRI LT TR ETTTi el iiriis,
1 28X' FIRST PHASE’,/,
2 20" senmnnan=nas’ //,
3' SPECIFICATION OF GENERAL SYSTEM PARAMETERS'/)
c
¢
1818 WRITE(*,’'(//,A,\)")" WHAT IS THE FILENAME OF THE MODEL? --->'
READ{*,* (A29)")FILENAME
IF(FILENAME .EQ." ') THEN
WRITE (*,'(/,A)*)" 1!t CANNOT BE, PLEASE TRY AGAIN !t!’
GOTO 1618
ENDIF

1828

1838

c
C
1768
M

-) a0 O

208

219

WRITE(*,"(//,A/\)")" HOW MANY CU.FT SHOULD BE HARVESTED? -—3>'
READ(#,*(F8.8) ')F1ANSHER

IF (F1ANSHER.EQ.#) THEN

WRITE (*,'(/,A)")* t1! CANNOT BE, PLEASE TRY AGAIN !t'
GOTO 1928

ELSEIF (F1ANSHER.GE.9999998) THEN

WRITE (*,’(/,A)")" 1%t CANNOT BE, PLEASE TRY AGAIN !t1’
GOTO 1828

ELSE

XX(4)=F1ANSWER

ENDIF

WRITE(*,*(//,A,\)")' VALUE OF THE TIME DELAY PARAMETER? --->'
READ(=, ' (F8.4)" YF1ANSWER

1F{F1ANSWER.EQ.®) THEN

WRITE (=,'(/,A)")" 111 CANNOT BE, PLEASE TRY AGAIN !t1I’
GOTO 1838

ELSEIF (F1ANSWER.GE.999.0R.F1ANSHER.LT.8.8881) THEN

WRITE (*,'(/,A)")" 111 CANNOT BE, PLEASE TRY AGAIN t11'
GOTO 1858

ELSE

XX 18)=F 1ANSHER

ENDIF

WRITE(*,1118)

FORMAT(/ /777717777777 77 7700117171111, 288,

1'SECOND PHASE' /19X’ m=nnznznnznzn'///,

2' WE NON ARE GOING TO DEFINE THE MATERIAL FLOW THROUGH'/,

3* THE HMARVESTING SYSTEM. FOR EACH PROCESS PLEASE STATE'/,

4' THE PROGESS FROM WHICH THE INCOMING MATERIALS STREAM'/,

5' ORIGINATES AND THE DESTINATION OF THE OUTGOING MATERIAL'/,
6' STREAM. A VALUE OF @ FOR BOTH QUESTIONS MEANS THAT THE'/,
7' PROCESS IS NOT USED.'//)

WRITE(*, ' (A\N)') ° (PLEASE HIT RETURN TQ CONTINUE)®
READ (#,*(BZ,I6)") IANSUER

WRITE(R, " (/7777777777770 7 1770717777 7¢10)")

DO 1358 INDEX1=1,13,1

IF(INDEX1.EQ.1)THEN
WRITE(*,"(A)"}" PROCESS 1:'
HRITE(#,' (A}')’ =mmwummmant
WRITE(*,'(A\)")" OUTGOING DESTINATION? --->*
READ(#,* (BN,F8.8) ' JF1ANSHER
IF(F1ANSHER. LE.1.OR.F1ANSHER.GT. 13,)THEN
HRITE(#,'(/,A,/)")" 1t QUT CANNOT BE, PLEASE TRY AGAIN 11'
GOTO 1289
ELSE

1218

1220

1238

1248

1258

126@

1278

220

USERARR(23,1)=F 1ANSWER
USERARR(24.1)+d
ENDIF

ELSEIF(INDEX1.GE.2.AND. INDEX1.LE. 18) THEN

WRITE(#, 1218) INDEX)

FORMAT(//,' PROCESS ',12,':",/,' -—————--- s
WRITE(®, ' (A\)')" INCOMING ORIGIN? -—=>1
READ(#,*(BN,F8.8)") FiANSWER

RRITE{®,' (A\)') ' OUTGOING DESINATION? --—>'

READ(*,'{BN,F8.8)"') F2ANSHER
IF(F1ANSWER.LT.®.0R.F1ANSHER.GT. 11.0R.F1ANSKER .EQ. INDEX1)THEN
WRITE(*,1228)
FORMAT(/,' 1t IN CANNOT BE, PLEASE TRY AGAIN t!'/)
GOTO 1200
ELSEIF (F2ANSWER.LT.#.OR.F2ANSHER .GT. 13.0R.F2ANSKER.EQ. INDEX1}
THEN
WRITE(*,1238)
FORMAT(/,' !t OUT CANNOT BE, PLEASE TRY AGAIN t!'/)
GOTO Y208
ELSE
USERARR(23, INDEX1)=F 2ANSHER
USERARR(24, INDEX1)=F1ANSHER
ENDIF

ELSEIF(INDEX4.EQ. 11)THEN
WRITE(», 1243} INDEX!

FORMAT(//," PROCESS ',12,':',/," =menmm=mnm "
WRITE(*," (A\)* 3" INCONING ORIGIN? -yt

HEAD(®,' (BN,F&8.8)') F1ANSHER

WRITE(®,’(A\)') ' CUTGOING DESINATION, ROUTE % ? --->'
READ(#,’ (BN,F8.8)') FZANSHER

KRITE(®, '{A\)") ' OUTGOING DESINATION, ROUTE 2 7 ---)'

READ(», ' (EN,F8.8)') F3ANSWER
IF (FAANSHER.LT.®.0R.F1ANSWER.GT. 41.0R. FINSHER.EQ. INDEX1) THEN
WRITE(*,1258)
FORMAT(/,' 1! IN CANMOT BE, PLEASE TRY AGAIN tt'/)
GOTO 1208
ELSEIF (F2ANSWER.LT.@.0R.F2ANSWER.GT.13.0R.F2ANSHER .EQ. INDEX1)
THEN
HRITE (®, 1268}
FORMAT(/,' 1! OUT 1 CANNOT BE, PLEASE TRY AGAIN !1°/)
GOTO 1208
ELSEIF(FSANSWER.LT.A_OR.FJANSRER.GT.13.0R.F3ANSWER .EQ. INDEX1)
THEN
WRITE(*,1278)
FORMAT(/," 11 OUT 2 CANNOT BE, PLEASE TRY AGAIN t!'/)
GOTO 7284
ELSE
USERARR(24, INDEX1 }=F YANSWER
USERARR(7,5) =F 2ANSHER
USERARR(7,6)=F3ANSWER
ENDIF

221

ELSETF{INDEX1.EQ.12)THEN
WRITE(*, 1288) INDEX1
1280 FORMAT(//,' PROCESS *,12,':',/,' —-===-=-—- "W
WRITE(*,'(A\)')" INCOMING ORIGIN? ===>!
READ(»,'(BN,F8.9)"') F1ANSKER
IF(F1ANSWER.LT..0R.F1ANSHER.GT. 11.0R.F1ANSHER. EQ. INDEX3) THEN
WRITE(*, 1298)
1250 FORMAT(/," 1t IN GANNOT BE, PLEASE TRY AGRIN 1t'/)
GOTO 12988
ELSE
USERARR{ 24, INDEX1)=F 1ANSWER
USERARR(23, INDEX1) =8
ENDIF

ELSE
WRITE(*,1388) INDEX1
1308 FORMAT(//,' PROCESS ',I12,':*,/,' -====-m--- W)
WRITE(*, "(A\)')' INCOMING ORIGIN? -
READ{*,' (BN,FB.8)') F1ANSKER
IF(F1ANSWER .LT.®.OR.F1ANSNER.GT. 11.0R. F1ANSKER.EQ. INDEX1)THEN
HRITE(»,131@)
1310 FORMAT(/,' t! IN CANNOT BE, PLEASE TRY AGAIN !!'/)
GOTO 1288
ELSE
USERARR (24, INDEX1)=F 1ANSHER
USERARR (23, INDEX1)=0
ENDIF
ENDIF
CONTINUE
c
1358 CONTINUE
c
C
WRITE(», 1480}
t400 FORMAT(/////////,' PROCESS # IN ORIGIN OUT DESTINATION'/,
1 ")

DO 1588 INDEX1=1,13,1

IF(USERARR(23, INDEX1) . EQ.8. AND. USERARR(24 , INDEX1) .EQ. 8) THEN
MRITE(*, ' (4X, 12)" yINDEX
GOTO 1458
ENDIF
IF(INDEX1.EQ.1) THEN
WRITE (%, 1419)INDEX1,USERARR (23, INDEX1)
1418 FORMAT (4%,12,25X,F3.0)
ELSEIF (INDEX1.GE. 2, AND. INDEX1.LE. 18) THEN
RRITE (*,1428) INDEX1,USERARR (24 ,INDEX1} ,USERARR(23, INDEX1)
1420 FORMAT (4X,12,18X,F3.8,18%,F3.0)
ELSEIF (INDEX1.EQ.11) THEN
WRITE (*,1430) INDEX! USERARR(24, INDEX 1}, USERARR(7,5),
1 USERARR(7,6)

1434

1440

1458

1588

1550

1

1

FORMAT (4%,12,18%,F3.8,18X,F3.0,2X,F35.8)
ELSE
WRITE (#,1442) [NDEX1,USERARR(24, INDEX1)
FORMAT (4X,12,18Y,F3.8)
ENDIF
CONTINUE
CONTINUE

WRITE (*,1558)
FORMAT(/," IS THIS CORRECT? (Y/N) [1)----- AN |
READ (*,"(A1)")CHRANSHER
IF (CHRANSNER _EQ. "N') THEN
GOTD 1188
ELSE
CONTINUE
ENDIF

DO 1618 INDEX1=1,13,1

IF(INDEX1.EQ.1) THEN
INDEX2=USERARR(23,1}
IF (USERARR (24, INDEX2) .NE. INDEX1) GOTO 1658
ELSEIF{ INDEX1.GE.2.AND. INDEX1.LE. 18) THEN
IF(USERARR(23, INDEX1).EQ.8.AND.USERARR(24, INDEX1) .EQ.8)GOTO 1688
INDEX 2=USERARR(23, INDEX1)
IF(USERARR (24, INDEX2) .NE. INDEX1) GOTO 1658
INDEX2=USERARR (24, INDEX1)
IF(INDEX2.EQ.11) GOTO 1688
IF(USERARR(2%, INDEX2) .NE. INDEX1) GOTO 1658
ELSEIF(INDEX1.EQ.11) THEN
IF({USERARR (24, INDEX1).EQ.2.AND.USERARR(7,5) .EQ.8.AND.
USERARR(7,6).EQ.8) GOTO 1682
INDEX2=USERARR(7,5)
IF (USERARR(24, INEX2) .NE . INDEX1) GOTO 1658
INDEX2=USERARR(7,6)
IF(USERARR (24, INDEX2) .NE . INDEX1) GOTO 1658
ELSEIF(INDEX1.EQ.12) THEN
IF(USERARR(23,INDEX1).EQ. . AND.USERARR (24, INDEX1) .EQ.B)GOTO 1688
INDEX2=USERARR (24 , INDEX1)
IF{ INDEX2.EQ.11) GOTO 1é@@
IF (USERARR (23, INDEX2) .NE. INDEX1) GOTO 1658
ELSEIF { INDEX1.EQ.13) THEN
INDEX2=USERARR (24, INDEX1)
IF(USERARR(253, INDEX1) .EQ.8 .AND.USERARR(24, INDEX1) .EQ.@)GOTO 1688
IF(INDEX2.EQ.11) GOTO 1688
IF(USERARR(23, INDEX2) .NE. INDEX1) GOTO 1658
ELSETF (USERARR(23,12) .EQ.D.AND. USERARR (24,12) .EQ.8 . AND.
USERARR(23,13) .EQ.@.AND.USERARR(24,13) .EQ.®) THEN
GOTO 1658
ELSE
CONTINUE
ENDIF

1688
1618

c
c
1658
1668

CONTINUE
CONTIMJE

GOTC 2008

WRITE(*, 1668} INDEX!

FORMAT(//,
1" t11t LOGICAL ERROR IN PROCESS NO.'I2’ 1"t/
2' 111t PLEASE ENTER FROM THE BEGINNING ttit’///)
WRITE(*, " (A\)*) * (PLEASE HIT RETURN TO CONTINUE)'
READ {(%,*{BZ,16)"') IANSWER

GOTO 1188

DISTRIBUTION DATA OF THE TREES/LOGS/PULPLOGS/SAWLOGS

Qoo o

2p88
ama

(2] Oaa

WRITE{*,2018)

FORMAT /7777 E7PEFEPEEFEEFELEEFETI T, 2BY,
1'THIRD PHASE'/208)'=asusnnnsun’//,
2' NOW WE DEFINE THE CUMULATIVE FREQUENCY DISTRIBUTIONS '/,
3' USED TC DESCRIBE TREES, LOGS ETC..'/,
4' YOU CAN SPECIFY UP TO FOUR DIFFERENT FREQUENCY DISTRIBUTIONS,'/,
5" WITH 19 FREQUENCY CLASSES EACH. YOU HAVE TO SPECIFY AT LEAST'/,
6' ONE CLASS IN ONE DISTRIBUTION.'/,
7' t1t DONT FORGET THE DECIMAL POINT FOR INPUT #11'.//)
WRITE(*,'(A\)") ' (PLEASE HIT RETURN TO CONTINUE)}'
READ (*,"(BN,16)') IANSKER

DO 2308 INDEX1=1,4 .1

IF (INDEX1.EQ. 1) THEN
INDEX8=1
INDEX9=2
ELSEIF (INDEX1.EQ.2)THEN
INDEX8=3
INDEX9=4
ELSEIF{INDEXt.EQ.3) THEN
INDEX8=5
INDEX9=6
ELSEIF(INDEX1.EQ.4)THEN
INDEX8+7
INDEX9=8
ELSE
CONTINUE
ENDIF

223

2108
21

2120

c

2138
2148
2150

2168

217d
C
216a
c

c
c

2200

WY WD —

WRITE(#, 2118} INDEX1

FORMRTC/ AAEEPEEEELEEFEFEL L EEEEEEEEEREREEEE Y
' FREQUENCY DISTRIBUTION NO.'12,':'/,

L] ’,

WRITE(*,2128)

FORMAT(/," NAME OF THIS DISTRIBUTION ? ----- > N
READ(=, " (A)*) CHRANSKER
DISTRIBNAMES (INDEX1)=CHRANSHER

DO 2178 INDEX2=1,18,1
WRITE{®,2158) INDEX2
FORMAT(/,' CLASS ',I2,': CUM.REL.FREQENCY? ([@]--->"\)
READ(#,* (BN,FB.2) ")F1ANSKER
WRITE(®,2168) INDEX2
FORMAT{(* CLASS ',I2,': VOLUME CU.FT? [al--->*)
READ(#,* (BN,F8.2) ")F2ANSHER
IF(INDEX2.EQ.1.AND.F1ANSHER .EQ.8) THEN
GOTO 2180
ELSEIF(FZANSHER.LE . @) THEN
WRITE(*,'(/,A)")" 1t CANNOT BE, PLEASE TRY AGAIN 1!’
GOTO 2148
ELSEIF (FIANSHER. GT. 189) THEN
WRITE{®,"(/,A}")" t! CANNOT BE, PLEASE TRY AGAIN 1t°’
GOTO 2148
ELSEIF(INDEX2.GT.1.AND.F1ANSHER .LE . F3ANSWER) THEN
WRITE{®,'(/,A}"}* tt CANNOT BE. PLEASE TRY AGAIN 1t'
GOTC 2140
ELSEIF(INDEX2.EQ. 18.AND.F1ANSWER .NE. 188) THEN
WRITE(*,'(/,A)*)" tt CANNOT BE. PLEASE TRY AGAIN !t°
GOTO 2148
ELSE
F3ANSHER=F \ANSHER
DISARR(INDEX8, INDEX2) =F 1ANSWER
DISARR(INDEX9, INDEX2)=F 2ANSWER
IF(FtANSWER . EQ. 188 GOTO 2188
ENDIF
CONTINUE

CONTINUE

WRITE{, 228) INDEX1,DISTRIBNAMES (INDEX1)
FGRHAT(//.
18%, *DISTRIBUTION NO.*,
12' : A/,
10%,* Y
*CLASS CUM.REL.FREQ.% CU.FTY/,
' - ")
IF{DISARR{ INDEXS, 1) .EQ.@)THEN

WRITE(®,"(/,3X,A))" wnunnnn DISTRIBUTION NOT USED Wwsuusu
ELSE

224

225

DO 225@ INDEX2=1,18,1
IF(DISARR{ INDEXB., INDEX2) .EQ.2)G0TO 2234
WRITE(*,2210) INDEX2, DISARR(INDEXS, INDEX2) ,

1 DISARRR(INDEX9, INDEX2)
rr3l.) FORMAT(4X.12.19X,F8.2.10X.F8.2)
2258 CONT INUE

ENDIF

WRITE(#,"(//,A,\)")" DISTRIBUTION OK (Y/N) ? [Y]--—>’
READ(™, ' (A1) ")CHRANSHER
IF{CHRANSHER .EQ. *N*)THEN
DO 2248 INDEX2=1,18,1
DISARR(INDEX8, INDEX2) =8
DISARR(INDEX9, INDEX2)=#

2240 CONTINUE
GATO 2199
ENDIF
c
c
2300 CONTINUE
c
c
c
c

IF{DISARR(1,1).EQ.P.AND.DISARR(>,1) .EQ.#.AND.DISARR{S, 1) .EQ.@
1.AND.DISARR(7,1).EQ.8) THEN
WRITE (*,2358)
2350 FORMAT(////,

1t YOU DID NOT SPECIFY ANY DISTRIBUTION 1/,

2 ' 111y THIS IS NOT ALLOWED, ENTER FROM THE BEGINNING tti1*///)
WRITE(#*,"(A\)") ! (PLEASE HIT RETURN TO CONTINUE)*
READ (*,'(BZ,16)') IANSWER
GOTO 2289

ELSE
CONT INUE

ENDIF

DESCRIPTION OF THE PROCESSES USED

OOOO0 O 0O a0

3308 WRITE(=,381@)

3018 FORMATC/ /7777110000000 001010011010110017 28K,
1'FORTH PHASE® /20X’ =snsmmmmzux’//,
2' IN THIS PHASE WE WILL DESCRIBE THE PROCESSES USED A LITTLE'/,
3' BIT MORE IN DETAIL, YOU WILL BE ASKED FOR :*/,

4! - AN OPTIONAL NAME FOR THE PROCESS'/,
5* - THE DISTRIBUTION TO BE USED FOR THIS PROCESS'/,
6 - STARTUP-INVENTORY LEVEL FOR THE PRQCESS'/,

T - MINIMUM INPUT BUFFER SIZE")

226

WRITE(*, 3828)

3020 FORMAT(
1 - STARTUP-INV. LEVEL AFTER MINIMUM HAS BEEN REACHED'/,
2' ~ MAXIMUM INPUT BUFFER SIZE'/,
» - STARTUP-INV. LEVEL AFTER MAXIMUM HAS BEEN REACHMED'//,

4' PLEASE REMEMBER: THE INPUT BUFFER OF A PROCESS IS THE OUT-'/,
5' PUT BUFFER OF HIS PREVIQUS PROCESS. THE MINIMUM BUFFER SIZE')
WRITE(*, 3030)

3839 FORMAT(' ',
1* EFFECTS THE CURRENT PROCESS, THE MAXIMUM EFFECTS THE PREVIOUS'/,
2' ONE."//,
3! ttt DONT FORGET THE DECIMAL POINT FOR INPUT f1t',//)
HRITE(®,*(A\)*") ° (PLEASE HIT RETURN TO CONTINUE)®
READ (,'(BZ,16)') IANSHER

F1ANSHER=#
F2ANSWER=2
F3ANSWER=P
FAANSHER=#
F5ANSWER=8
F6ANSWER=#
F7ANSHER=§

—
=
=

DO 3508 INDEX1=1,13,1

-
m
v

1F{USERARR{23, INDEX1) .EQ. @, AND.USERARR (24, INDEX1) .EQ.#) GOTO 3490

QWOOWOOO

HRITE(*,3118) INDEX)

3018 FORMAT(////7//7474777174744777747" PROCESS NO.'12./' ——----------- ")
WRITE(®,"(A,\)")}' NAME OF PROCESS? ————- >
READ(*,' (A20) ') CHRANSHER

3128 WRITE(*,'(A,\)’)' NO. OF DISTRIBUTION TO USE? = --——- 1
READ{*," (12")IANSKER
INDEX2+ | ANSHER*2
INDEX2= INDEX2-1
IF{ IANSHER.LT.1.0R. IANSWER.GT,4)THEN
HRITE(*,3138)
3130 FORMAT(/,’ !t CANMOT BE, PLEASE TRY AGAIN 11t*)
GOTO 3128
ELSEIF (DISARR(INDEX2,1).EQ.8.) THEN
WRITE(¥,3135)
3135 FORMAT(/,' 111 DISTRIBUTION NOT ACTIVE, PLEASE TRY AGAIN 11!')
GOTO 3128
ELSE
INDEX9= IANSHER
ENDIF

IF(INDEX1.EQ. 1) GOTO 3268

3149

5158

5160

3178

5189

3198

5208

3218

3228

5234

WRITE(*,"(A,\)")" STARTUP-INVENTCRY LEVEL?
READ(#,'(F8.1)')F1ANSWER
IF{F1ANSHER.LT.#.OR.F1ANSKER.GE.XX(4)) THEN
WRITE(*,3158)
FORMAT(/,"' 1!t CANNOT BE, PLEASE TRY AGAIN f!t')
GOTO 5148
ELSEIF (F1ANSHER .EQ.9) THEN
F1ANSWER=1
ELSE
CONT INUE
ENDIF

WRITE(®,*(A,%\)")' MINNIMUM INFEED INVENTCRY LEVEL?
READ(*,*(FB.1)" JF2ANSWER
IF(F2ANSWER.LT.9.OR.F2ANSWER . GT.F1ANSKER) THEN
WRITE(*,3178)
FORMAT(/,’ t1! CANNOT BE, PLEASE TRY AGAIN ttt*)
GOTO 3168
ELSE
CONT INUE
ENDIF

WRITE{*,*(A,\)")' STARTUP-INV.LEVEL AFTER MINIMUM?
READ{»,*(F8.1)"' JF3ANSWER
IF(F3ANSWER,LT,8.0R,F2ANSWER . GT .FSANSHER) THEN
WRITE(*,3198)
FORMAT(/,"' t!t CANNOT BE, PLEASE TRY AGAIN tt1*)
GOTO 3188
ELSE
CONTINUE
ENDIF

[1]-—-> *
[8]-----> *
(8)-----> *

WRITE(*,'{A,\)"}" MAXIMUM INFEED INV. LEVEL? (999999.91----- > !

READ(#, *(F8.1)" YF4ANSHER
IF (F4ANSWER.LT.#) THEN
WRITE(», 3218}
FORMAT(/," 11! CANNOT BE, PLEASE TRY AGAIN 1Itt')
GOTO 5288
ELSEIF(F4ANSWER.GT.®.AND.F3ANSHER.GE.F4ANSKER) THEN
WRITE(®,3228)
FORMAT(/,* tt! CANNOT BE, PLEASE TRY AGAIN tt!')
GOTO 3208
ELSEIF (F4ANSWER.EQ.2) THEN
F4ANSWER=999999.9
ELSE
CONTINUE
ENDIF

WRITE(®,’(A,\)")" STARTUP-INV.LEVEL AFTER MAXINUM? [999999.91--> °

READ(#,* (F8.1)*)FSANSHER
IF (FSANSHER.LT.#.0R.FSANSWER. GT .F4ANSWER) THEN
WRITE(*,3248)

227

228

324 FORMAT(/,* 11t CANNCT BE, PLEASE TRY AGAIN 11!')
GOTO 3238
ELSETF (F5ANSWER.GT.8.AND. FSANSWER .LT.F2ANSWER) THEN
WRITE(*,5258)
3258 FORMAT(/,’ ft! CANNOT BE, PLEASE TRY AGAIN 1!1t')
GOTO 3238
ELSEIF (F5ANSKER.EQ.8)THEN
FSANSWER=999999.9
ELSE
CONTINUE
ENDIF

3268 WRITE(*,3278)
5270 FORMAT(’ WHAT LOADER DO YOU WANT TO USE (32-36) ? [B)--w-- >
T "'\
READ(*,*{12)')INDEXS
IF (INDEXS.EQ.H.OR.INDEX8.GE.32.AND.INDEX8,LE.36) THEN
CONTINUE
ELSE
WRITE(*,3288)
3280 FORMAT{/,' tt! CANNOT BE, PLEASE TRY AGAIN t1!')
GOTO 3268
ENDIF
c
3290 WRITE(*,3388)
33008 FORMAT(' TIME DELAYS HANDELD BY',/
1 * BUILD-IN MODEL= OR USERFUNCTICN=1 ? [#1----- >
2 AN
READ{*,'(12}')INDEX?
IF(INDEX7.GT.1.0R. INDEX7.LT.8) THEN
WRITE(*,3318)
33510 FORMAT(/,' ttt CANNOT BE, PLEASE TRY AGAIN 111"}
GOTO 3290
ELSE
CONTINUE
ENDIF

o o O a

WRITE(*,3488) INDEX1, CHRANSHER , INDEX%, F 1ANSHER , FZANSWER , F3ANSUER,,
1 FAANSHER, FSANSHER
3406 FORMAT(/Z /7717117 10078707017,
' PROCESS NO.'I12,’: 'A,/' ----—--m--e- 4
' DISTRIBUTION USED: 'I2,/
* STARTUP INVENTCRY: *,F8.1,/
MINIMUN INVENTORY: *.F8.1,/
' STARTUP MINIMUM : *,F8.1,/
' MAXIMUM INVENTORY: *.F8.1,/
' STARTUP MAXINUM : ',F8.1,)
IF(INDEX8.EQ.B)THEN
WRITE(*,"(A)}'}" LOADER TYPE USED : NONE’
ELSE

~ oW W N =

3410

WRITE(*,3418) INDEXB
FORMAT(® LOADER TYPE USED : ',12,)

ENDIF
IF(INDEX7.EQ.®)THEN

WRITE(*,'(A}")" TIME DELAYS BY : BUILD-IN FUNCTIONS®

ELSE

WRITE(*,'(A)')" TIME DELAYS BY : FORTRAN-USERFUNCTION®

ENDIF

WRITE(*,"(//,A,\}")" INPUT DATA OK (Y/N)? [Y]-=-=>'
READ(*," (A1) ')CHR1ANSNER

TF{CHR1ANSKER.EQ. "N' JTHEN

GOTD 3185

ELSE

PROCNAMES (TNDEX 1 }=CHRANSWER
USERARR(S , TNDEX1)=TNDEX?
INDEX2=XXLEVEL (7)+INDEX1
XX(INDEX2)=F1ANSHER
INDEX2=XXLEVEL (3)+ INDEX!
XX (INDEX2)=F2ANSKER
INDEX2#*XXLEVEL(5)+INDEX1
XX ({ INDEX2) =F 3ANSHER
INDEX2=XXLEVEL (4} +INDEX1
XX(INDEX2)=F 4ANSWER
INDEX2=XXLEVEL (&) +INDEX1
AX(INDEX2)=FSANSKER
USERARR(4, INDEX?)=INDEX8
USERARR(S, INDEX 1)=INDEX?

ENDIF

c

3498 CONTINUE

C

3508 CONTINUE

c
c

SPECIFYING THE RESOURCES USED

2Nz Rz Kz Nx]

5838 WRITE(=,5818}

S8 FORMAT(// /771777707701 HEETEET 7777 AT 20K,
1'FIFTH PHASE!/28X' #azunzznxns=’//

20
%
41
5
6:
7

WE NOW SPECIFY THE RESOURCES E:G. MAGHINES WE WANT TO USE IN'/,

EACH PROCESS. FOR EACH ACTIVE PROCESS THE PROGRAM WILL GIVE'/,

A CHOICE OF DIFFERENT MACHINE TYPES. YOU WILL HAVE TO SPECIFY'/,
THE INITIAL NUMBER OF MACHINES FOR EACH TYPE. MULTIPLE TYPES'/,

OF MACHINES WITH DIFFERENT INITIAL NUMBERS OF MACHINES PER '/,
PROCESS ARE POSSIBLE.')

WRITE(%,5028)
5628 FORMAT(

1

HOWEVER, TF YOU HAVE SPECIFIED ANY PROCESSES USING LOADERS'/,

229

2* THE PROGRAM WILL PROMPT YOU FIRST TO ENTER HOM MANY'/,

3' MACHINES FOR EACH LOADER TYPE USED YOU WANT TO EMPLOY.'//,

4’ THE MAXINUM NUMBER OF MACHINES NHICH THE NETWORK WILL'/,

5° HANDEL IS APPROXIMATLY 58 MACHINES IN TOTAL.'///)
WRITE(*,"(A\)") ° (PLEASE HIT RETURN TO CONTINUE)*
READ (*,'(BZ,I6)') IANSHWER

SPECIFYING THE NUMBER QF LOADER USED:

O 0O a0 aa0n

4o00

4M1a
c

41p8

4118

INDEX1=8
INDEX2=8
INDEX3=8
INDEX4=8
INDEX5=8
DO 4818 INDEX?=1,13,1
IF (USERARR(4.INDEX7).EQ.32) THEN
INDEX1=1
ELSEIF (USERARR(4,INDEX?).EQ.33) THEN
INDEX2~1
ELSEIF (USERARR(4, INDEX?).EQ.34) THEN
INDEX3=1
ELSEIF (USERARR(4,INDEX7).EQ.35) THEN
INDEX4=1
ELSEIF (USERARR(4,INDEX7).EQ.36) THEN
INDEX5=1
ELSE
CONTINUE
ENDIF
CONTINUE

IF (INDEX?.EQ.8.AND.INDEX2.EQ.2.AND. INDEX3.EQ.2. AND.
1 INDEX4.EQ.@.AND.INDEXS.EQ.@) GOTO 498g
WRITE(*,4198)

FORMAT (/777777001 E0E0EEETTETEY,

' YOU HAVE TO SPECIFY THE NUMBER OF LOADERS',

2' YOU WANT TO USE :*/,

3 g

4)

DO 4158 INDEX7=32,36,1
IF(INDEX?7 .EQ.32.AND. INDEX1.EQ.8) GOTO 4148
IF(INDEX?.EQ.35.AND, INDEX2.EQ.8) GOTO 4149
1F(INDEX7.EQ.34 . AND. INDEX3.EQ.8) GOTQ 4148
IF(INDEX7.EQ.35.AND. INDEX4 .EQ.8) GUTO 4148

TF(INDEX7.EQ.36.AND. INDEX5 (EQ.@) GOTO 4148
WRITE(*,4128) INDEX7

230

4128 FORMAT(* HOM MANY LOADERS TYPE *,12,* DO YOU WANT TO USE ?*,
1 e > PN
READ(*,*(12)")IANSHER
INDEX8~JANSHER
IF (1ANSHER.LE.#) THEN
WRITE(*,4138)

4138 FORMAT(/," 11 CANNCT BE, PLEASE TRY AGAIN tit")
GOTO 4118
ELSE
USERARR(6 , INDEX7)=1ANSHER
ENDIF
4148 CONTINUE
4150 CONTINUE
¢
c

WRITE(*,4208)
4208 FORMAT(/ /7771080007110 1001101 10E 111 AEET
1 * LOADING DEVICES: *./,

2 - /)
c
WRITE(*,4218)USERARR(6,32) , USERARR(6,33) ,USERARR(6,34),
1 USERARR(6,35) ,USERARR(6,36)
4218 FORMAT(' NUMBER OF LOADERS TYPE 32 USED : 'F3.8,/
1 * NUMBER OF LOADERS TYPE 33 USED : 'F3.8,/
2 * NUMBER OF LOADERS TYPE 34 USED s 'F3.0./
3 * NUMBER OF LOADERS TYPE 35 USED : 'F3.0,/
4 * NUMBER OF LOADERS TYPE 36 USED : 'F3.0)
WRITE(*, ' (//, A\ INPUT DATA OK {Y/N)? [Y]--==>*
READ(*,* (A1)* JCHRANSWER
IF (CHRANSWER .EQ. *N* }GOTO 4288
H
4928 CONTINUE
¢
¢
c
cc
c
INDEX9=8
DO 5998 INDEX1=1,13,1
H

S850 IF (USERARR(23, INDEX1) .EQ. 8. AND.USERARR (24, INDEX1) .EQ.8)GOTO 5898
c

IF {INDEX1.EQ.1) THEN

5108 WRITE {*,5118)INDEX1,PROCNAMES { INDEX1)
5118 FORMAT(/ /7747 7474¢7777777777743X,"PROCESS NO."12.": ".A,/
1 3, P '
2 * THERE ARE FOUR (4) DIFFERENT MACHINE TYPES POSSIBLE:',/)
DO 5158 INDEX2=1,4,1
5128 WRITE (%*,5138) INDEX2
5138 FORMAT(' MACHINE TYPE ’,12,": INITIAL # OF MACHINES ?*

LR 1) ety >N\
READ(*,*(12)")IANSHER

231

232

IF(TANSWER.LT.#.0R. IANSWER.GT.88) THEN
WRITE(»,5148)
5148 FORMAT(/,"' 1ttt CANNOT BE, PLEASE TRY AGAIN 1it')
GOTO 5128
ELSE
USERARR{ 6 , INDEX2) = ANSHER
INDEXS«INDEXS+IANSWER
ENDIF
5158 CONTIMJE
IF(USERARR(&,1).EQ.8.AND USERARR(6.2) .EQ.0.AND . USERARR(6,3) .EQ.
1 B.AND.USERARR(6,4).EQ.0) THEN
WRITE (»,5168)

5168 FORMAT(//,' 111! YOU HAVE NOT ACTIVATED ANY MACHINE ',
1 *IN PROCESS 1 ft1t°,/
2 ' 1111 15X' THIS CANNOT BE, PLEASE TRY AGAIN"15X'ttt!’./)
GaTO 5188
ENDIF
C

ELSEIF (INDEX1.GE.2.AND.INDEX1.LE.18) THEN
5208 WRITE (*,5218) INDEX1, PROCNAMES (INDEX1)
5218 FORMAT(// /77777007 070F7FE7F77F7 3K, "PROCESS NO."12,": *,A,/

2 ' THERE ARE THREE (3) DIFFERENT MACHINE TYPES POSSIBLE:',/)
DO 5258 INDEX2=1,3,1
INDEX5=INDEX1#5-2+INDEX2
5220 WRITE(=,5238) INDEXZ
5234 FORMAT(' MACHINE TYPE ',12,': INITIAL # OF MACHINES 7*
1 ' [8)—-- >N\
READ(#,* (12) ") IANSKER
INDEX8=INDEX 9+ IANSHER
IF (TANSWER.LT.%.0OR. INDEX8.GT.88) THEN
WRITE(»,5248)

5248 FORMAT(/,' ttt CANNOT BE, PLEASE TRY AGAIN 1tt1')
GOTO 5228
ELSE
USERARR(6, INDEX3)=1ANSHER
INDEX9= INDEXS+IANSHER
ENDIF

5258 CONTINUE
INDEX4=INDEX 1#3-1
INDEX5=INDEX1%3
INDEX6=INDEX 1 #3+1
IF(USERARR(6, INDEX4) .EQ.@.AND.USERARR(6, INDEX5) .EQ.B . AND.
1 USERARR{6,INDEX6).EQ.A) THEN
WRITE {*,5268) INDEX1

5268 FORMAT(//,' 1111 YOU HAVE NOT ACTIVATED ANY MACHINE ',
1 *IN PROCESS ',I2," 1t1t1',/
2 * t111°15% THIS CANNOT BE, PLEASE TRY AGAIN"1SX"titt’,/)
GOTO 5299
ENDIF
c

ELSEIF (INDEX1.EQ.1%) THEN
5308 WRITE (%,5318)INDEX1,PROCNAMES(INDEX1)

233

5310 FORMAT(////7/77700707477¢(7777717,3K,"PROCESS NO.'12,": ' A,/

' FOR THIS PROCESS YOU HAVE TO SPECIFY HOW MUCH OF THE'/
' INCOMING INVENTORY WILL BE ROUTED TO THE TWC FOLLOWING'/
* PROCESSES®,/)
5324 WRITE(*,5330)
5330 FORMAT(' HOM MUCH INVENTORY IN % GOES ROUTE 1 7 %&%.%%----- 2t
LAY
READ(*,’ (F6.2)")F1ANSWER
HRITE(*,5348)
5349 FORMAT(' HOW MUCH INVENTORY IN % GOES ROUTE 2 ? X%K.%%-——- >
T '\
READ(#,* (F&.2)*)F2ZANSWER
F3ANSWER=F1ANSHER+F 2ANSWER
IF (F3ANSWER.NE.18d) THEN
WRITE(%,5358)
5358 FORMAT(/,' ttt CANNOT BE, PLEASE TRY AGAIN 11t')
GOTO 5320
ELSE
USERARR(?, 3) =F 1ANSHER
USERARR(7,4)=F 2ARSWER
ENDIF

- W =

ELSEIF (INDEX1.EQ.12) THEN
5408 WRITE (*,5419) INDEX1,PROCNAMES(INDEX1)
5419 FORMATC/ /74744747400 0470774744777,3K,"PROCESS NO.'12,': ',A./

* FOR THIS PROCESS YOU CAN SPECIFY A PRIMARY TRANSPORTAION',/
* DEVICE AND A SCONDARY ONE.’,/
* THE MACHINE WHICH REQUIRES THESE TRANSPORTATION DEVICES',/
* (EX.: CHIPPER) IS AUTOMATICALLY INVOKED.'/)
5428 WRITE(*,5430)
5438 FORMAT(' HOW MANY PRIMARY TRANSPORTERS DO YOU WANT TO USE 7'
L > LA)
READ(*, ' (12) ') [ANSHER
INDEX8=INDEX+ IANSHER
IF (IANSWER.EQ.®.0R.INDEX8.GT.8) THEN
HRITE(*,5448)

MWW B e

5449 FORMAT(/,' 1ttt CANNCT BE, PLEASE TRY AGAIN tit')
GOTO 5428
ELSE
INDEX9=INDEX9+IANSKER

USERARR(6,39)=1ANSKER
USERARR(6,37)=1
ENDIF
5450 WRITE(*,5468)
5460 FORMAT(' HOW MANY SECONDARY TRANSPORTERS DO YOU WANT TO USE ?'
1 (8]----- N\
READ(*, ' (12)") IANSNER
INDEX8=INDEX9+IANSHER
IF (INDEX8.GT.88) THEN
WRITE(*,5478)

5470 FORMAT(/,* 11 CANNQT BE, PLEASE TRY AGAIN 1tt*)
GOTO 5458
ELSE
INDEX9=INDEX9+IANSHER
USERARR(6, 48) = ANSWER
ENDIF

ELSE
5508 WRITE (*,5510) INDEX,PROCKAMES { INDEX1)
5514 FORMRT(// /774777777 7072720740 47477 3K, "PROCESS NO.'12,': *,A,/
I A T
2 ' FOR THIS PROCESS YOU CAN SPECIFY A PRIMARY AND A SECONDARY'./
3 * TRANSPORTING DEVICE.’,/)
5520 WRITE(*,5538)
5538 FORMAT(* HOW MANY PRIMARY TRANSPORTERS DO YOU WANT TO USE',
1o w3)
READ(*," (12)*) IANSKER
INDEX8=INDEX3+ 1 ANSKER
IF (IANSER.EQ.B.OR. INDEX8.GT.88) THEN
NRITE(*,5548)
5548 FORMAT(/,® 11 CANNOT BE, PLEASE TRY AGAIN 111')
GOTO 5528
ELSE
INDEX9=INDEX9+ IANSHER
USERARR(6 , 41)=TANSWER
ENDIF
5558 WRITE(¥,5569)
5568 FORMAT(® HOW MANY SEGONDARY TRANSPORTERS DO YOU MANT TO USE',
102 (81—t)
READ(*, * (12)*) IANSER
INDEX&=INDEX9+IANSWER
IF (INDEX8.GT.8H) THEN
NRITE(*,5578)
5578 FORMAT(/,* 111 CANNOT BE, PLEASE TRY AGAIN 111")
GOTO 5558
ELSE
INDEX9=INDEX9+ IANSHER
USERARR(6,42)=1 ANSKER
ENDIF

ENDIF

0O a0

WRITE(*,5688) INDEX1 , PROGNAMES (INDEX1)

S688 FORMAT(//// 111111 HIIIIIIIINL 1400110001
17 PROGESS NO. °I2' : "A,/
2% —mmememmenaee-)

IF {INDEX1.EQ.1) THEN
DO 5620 INDEXZ=1,4,1
NRITE(*,5618) INDEX2, USERARR (6, INDEX2)

234

5618 FORMAT(' MACHINE TYPE 'I2°, # OF INITIAL MACHINES : ’,F3.0)
5620 CONTINUE
¢
ELSEIF (INDEX!.GE.Z2.AND.INDEX1.LE.18) THEN
DO 5648 INDEX2=1,%,1
INDEX3»INDEX 1#3-2+INDEX2
KRITE (*,5638) INDEX3 , USERARR (6, INDEX3
5638 FORMAT(* MACHINE TYPE '12’, # OF INITIAL MACHINES : ',F3.0)
5649 CONTINUE
¢
ELSEIF (INDEX1.EQ.11) THEN
WRITE(*,5658 YUSERARR(7,3) ,USERARR(7,4)
5658 FORMAT(' % OF INVENTORY GOING ROUTE 1 : 'F6.2' ®'/
1 ' % OF INVENTORY GOING ROUTE 2 ; 'F6.2" ')
¢
ELSETF (INDEX1.EQ.12) THEN
WRITE(*,5668)USERARR(6,39) ,USERARR(6,4d)
5660 FORMAT(' NUMBER OF PRIMARY TRANSP. DEVICES USED : 'F3.4,/
1 * NUMBER OF SECONDARY TRANSP. DEVICES USED : 'F3.8)
c
ELSEIF (INDEX1.EQ.13) THEN
WRITE(*,5678 YUSERARR(6,41) ,USERARR(6,42)
5678 FORMAT(' NUMBER OF PRIMARY TRANSP.DEVICES USED : 'F3.0,/
1 ' NUMBER OF SECONDARY TRANSP.DEVICES USED : 'F3.8)
c
ELSE
CONTINUE
ENDIF
WRITE(*,'(//,A,\)}")" INPUT DATA OK (Y/N)? [Yl---->"
READ(#," (A1) ') CHRANSKER
IF{CHRANSKER.EQ. 'N"' }GOTO 5858
¢
5800 CONTIMJE
¢
c
5899 CONTINUE
5988 CONTINUE
c
c
c
¢
¢
C SPECIFYING THE MACHINE PARAMETERS
c
¢

6888 WRITE(», 6818}
6818 FORMAT(/////1 117717117 00010117107111747 28K,
1'SIXTH PHASE'/28) ' =enxazaxuxal //
2' HERE WE SPECIFY ALL THE PARAMETERS RELATED TO THE MACHINE '/,
3’ TYPES YOU HAVE SET ACTIVE EARLIER:',/,
4' - NAME OF MACHINE',/,

235

5* - AVERAGE PROCESSING TIME PER TREE',/,
6' ~ FIXED CONSTANT TIME PER LOAD',/,
7' - FIXED CONSTANT TIME PER ONE WAY HAUL'}
WRITE(*,6828)
6828 FORMAT(
1" - MACHINE CAPACITY IN GU.FT.”,/,
2' - FIXED COST PER SCHEDGLED HOUR',/,
3' - VARIABLE COST PER MAGHINE HOUR'.//)
WRITE(®,* (A\}*) * (PLEASE HIT RETURN TO CONTINUE)*
READ (*,’(BZ,16)")} IANSWER

G
¢
G
C
DO 6589 INDEX4=1.42.1
1F (USERARR(6,INDEX4) .EQ.8) GOTD 6498
c
IF (INDEX4.GE.1.AND.INDEX4.LE.4) THEN
INDEX1=1
ELSEIF (INDEX4.GE.5.AND.INDEX4.LE.7) THEN
INDEX1=2
ELSEIF (INDEX4.GE.B8.AND.INDEX4.LE.1d) THEN
INDEX1=3
ELSEIF (INDEX4.GE.1t.AND.INDEX4.LE.13) THEN
INDEX 1=4
ELSEIF (INDEX4.GE.14.AND.INDEX4.LE.16) THEN
INDEX1=5
ELSEIF (INDEX4.GE.17.AND.INDEX4.LE.19) THEN
INDEX1=6
ELSEIF (INDEX4.GE.2@.AND.INDEX4.LE.22) THEN
INDEX1=7
ELSEIF (INDEX4.GE.23.AND.INDEX4.LE.2%) THEN
INDEX1=8
ELSEIF (INDEX4.GE.26.AND.INDEX4.LE.28) THEN
INDEX1=9
ELSEIF (INDEX4.GE.29.AND.INDEX4.LE.31) THEN
INDEX1=19
ELSEIF (INDEX4.GE.32.AND.INDEX4.LE.36) THEN
INDEX1=14
ELSEIF (INDEX4.GE.37.AND.INDEX4.LE.43) THEN
INDEX1=12
ELSEIF (INDEX4.GE.41.AND.INDEX4.LE.42) THEN
INDEX1=13
ELSE
CONTINUE
ENDIF
c

6188 IF (INDEX!.NE.14) THEN
WRITE (*,6%19) INDEX1,PROCNAMES (INDEX1)
6119 FORMAT(/ /7717111 EELELEEELEEEEE Y,
1 ' PROCESS NO.'I2.": '.A./

2 ! =mmeammzammaaat?)}

236

6120

6160

6174

6180

6198

6208

237

ELSE

HRITE (#,6120)

FORMAT /777 1E7 7771718777711 1E1 71T

' MACHINE PARAMETERS FOR THE LOADING DEVICE :',/

' ")
ENDIF

WRITE(*,6168) INDEX4
FORMAT(//,' MACHINE TYPE 'I2' :',/," -—-—-—--—-—-- ')
WRITE(*,"'(A,\)")" NAME OF MACHINE TYPE? = = ===——- >
READ{*,* (A28) *) CHRANSHER
MCHNAMES { INDEX4) =CHRANSHER
IF{ INDEX4 .EQ.48.0R. INDEX4.EQ.42) GOTO 6229
IF(INDEX4.EQ.39) GOTO 6188
WRITE(*,*(A,\)")' AVERAGE PROCESSING TIME / TREE? [#}-———- >
READ(#,'(F8.4) ')F1ANSHER
IF (F1ANSWER.LT.#) THEN
WRITE(*,*(/,A)")" 1ttt CANNOT BE, PLEASE TRY AGAIN 1tt*
GOTO 6170
ELSE
USERARR(T, [NDEX4) =F 1ANSWER
ENDIF
WRITE(*,'(A,\)')* FIXED CONSTANT TIME / LOAD? [8)---mm- > !
READ(#, ' (F8.4) ')F1ANSHER
IF (F1ANSWER.LT.@) THEN
WRITE(*,"(/,A)")" t{t CANNOT BE, PLEASE TRY AGAIN tit'
GOTO 6188
ELSE
USERARR(2, INDEX4)=F tANSUER
ENDIF
WRITE(#,'(A,\)')* FIXED CONST. TIME / ONE WAY HAUL? [8)------ > !
READ(*,* (F8.4)")F1ANSHER
IF (F1ANSWER.LT.@) THEN
WRITE(#,"'(/,A)*)" t!t CANNOT BE, PLEASE TRY AGAIN tit'
GOTC 6198
ELSE
USERARR(5, [NDEX4) =F 1ANSWER
ENDIF
WRITE(*,'(A,\)")' MACHINE CAPACITY IN CU.FT? (-
READ(*, ' (F8.2)" }F1ANSHER
IF (F1ANSWER.LT.#) THEN
WRITE(*,'(/,A)*)" t!t CANNOT BE, PLEASE TRY AGAIN tit'
GOTO 6289
ELSEIF (F1ANSWER.GT.99999) THEN
WRITE(*,"'(/,A)')" 11t CANNOT BE, PLEASE TRY AGAIN ttt'
GOTO 6288
ELSEIF(F1ANSWER.EQ.8) THEN
USERARR (8, INDEX4)=1
ELSE
USERARR (8, INDEX4) =F 1ANSWER
ENDIF

6220

6230

6248

6250

6260

6270

6280
6285
6290

6399
6340
6319
&2

6330

[+ IS I & I >]

WRITE(*,'(A,\)')" FIXED COST / SCHEDULED HOUR? [a}------ >
READ(*, *(F8.2) ')F1ANSHER
IF (F1ANSWER.LT.#) THEN
WRITE(*,*(/,A)*)* 1t CANNOT BE, PLEASE TRY AGAIN ttt*
GOTO 6220
ELSE
USERARR(2%, INDEX4) =F 1ANSHER
ENDIF
WRITE(*,'(A,\)')" VARIABLE COST/ MACHINE HOUR? (8)------ >!
READ(, ' (F8.2)")F 1ANSWER
IF (FIANSWER.LT.3) THEN
WRITE(*,'(/,A)")" ttt CANNOT BE, PLEASE TRY AGAIN !tt!
GOTD 6238
ELSE
USERARR (22, INDEX4)=F 1ANSWER
ENDIF

IF (INDEX1.NE.14) THEN
WRITE (*,6248) INDEX1, PROCNAMES(INDEX1)
FORMRTC// /7470187707777 77777777," PROCESS NO. '12," : ",A,/
ELSE
WRITE (»,6258)
FORMAT(/////77747471/71//4747///," LOADING DEVICE ',/
N
ENDIF
WRITE(*,6268) INDEX4
FORMAT(.' MAGHINE TYPE '12./,

T

WRITE(*, 6278) MCHNAMES (INDEX4)

FORMAT(' NAME OF MACHINE TYPE 2 A
IF(INDEX4.EQ. 48.0R. INDEX4,EQ. 42)GOTO 6318

IF (INDEX4.EQ.39) GOTO 6285
WRITE(*,6288)USERARR(1, INDEX4)

FORMAT(" AVERAGE PROCESSING TIME / TREE ' F8.4)
WRITE(*,6298)USERARR(2, INDEX4)

FORMAT(* FIXED CONSTANT TIME / LOAD : ', Fg.4)
WRITE(*, 6308) USERARR (3, INDEX4)

FORMAT(' FIXED CONST. TIME / ONE WAY HAUL : ', Fg.4)
RRITE(#,6348)USERARR (8, INDEX4)

FORMAT(* MACHINE CAPAGITY IN GU.FT : ', Fa.2)
WRITE(», 6320)USERARR(21, INDEX4)

FORMAT(* FIXED COST / SCHEDULED HOUR : ', F8.2)
WRITE (#,6338)USERARR(22, INDEX4)

FORMAT(* VARIABLE GOST/ MACHINE HOUR : ', F8.2)
WRITE(®,'(// A, \)")}! INPUT DATA OK {Y/N)? {Y)---=>'

READ(*, ' {A1) ')CHRANSHER
1F (CHRANSWER.EQ. 'N")GOTO 6108

238

6498
6588

239

CONTINUE
CONT INUE

DEFINING THE MACHINE BREAKDOWN PARAMETERS

QO OO0 a0 O aOa0n

808
020

7048

7858

7860

7880

Kl
7120

7148

WRITE(%,7828)

FORMATL/ /711111001 0EELEELIEE L1171 1Y 28X,

1*SEVENTH PHASE’/28)'samssnsanansanas’//,

2' IN THIS LAST PHASE YOU ARE ABLE TO SPECIFY THE MACHINE '/,
3" BREAKDOWN PARANETERS FOR EACH ACTIVE MACHINE. IN ORDER',/,
4' TO DO SO YOU WILL HAVE TO INPUT THE CUMULATIVE FREQUENCY’,/,
5' DISTRIBUTION FOR THE TIME BETWEEN FARILURES AND THE './,

6' ACTUAL REPAIR TIME, EACH OF THESE TWO DISTRIBUTIONS CAN ',/,
7" HAVE UP TO TEN CLASSES.')

WRITE(=,784E)

FORMAT(
1 t1t DONT FORGET THE DECIMAL POINT FOR INPUT 11Y*,///}
WRITE{*, ' (A\}") ' (PLEASE HIT RETURN TO CONTINUE)'

RERD (*,'(BZ,16)") IANSHWER

DO 7588 INDEX1=1,42,1
IF (USERARR(6,INDEX!).EQ.8) GOTO 7498
F3ANSWER=#

WRITE(*,7868) INDEX1,MGHNAMES (INDEX1)
FORMATC/ /7741777001 1811771471 711101111,
1 ' MACHINE TYPE *,12," : *,A,/
2’ sssssscsusssssa=a’ //,
3 ' FREQUENCY DISTRIBUTION FoR TIMES BETWEEN FAILURES:'/,
4 ')
0 72BHINDEX2=1,18,1
WRITE(*,7128) INDEX2
FORMAT(/," CLASS ',12,": CUM.REL.FREQENCY? [a}----- >N\
READ(®,* (BN,F8.2) ")F1ANSHER
WRITE(*,7148) INDEX2
FORMAT(" GLASS ’,12,': TIME BETWEEN FAILURES? [B]----- "N\
READ{*,*(BN,F8.2)")F2ANSWER
IF(INDEX2.EQ. 1. AND.F 1ANSWER.EQ. B) THEN
GOTO 7498
ELSEIF (F2ANSWER.LE.#) THEN
WRITE(®,"(/,A)')" 1t CANNOT BE, PLEASE TRY AGAIN 1t1®
GOTO 7180
ELSEIF(F1ANSKER .GT. 1808) THEN
WRITE(*,"(/,A)')" t! CANNOT BE, PLEASE TRY AGAIN !t'
GOTO 7188

ELSEIF(INDEX2.GT.1.AND.F tANSWER. LE . F3ANSWER) THEN
WRITE(®,'¢/,A)")' ! CANNOT BE, PLEASE TRY AGAIN 1!t'
GOTO 7188
ELSEIF({INDEXZ.EQ. 18.AND. F1ANSWER . NE. 188) THEN
WRITE(*,"(/,A)")" 1t CANNOT BE, PLEASE TRY AGAIN tt°
GOTO 7188
ELSE
F3ANSWER=F 1ANSWER
MCHARR(INDEX1, ¥, INDEXZ) =F1ANSWER
MCHARR(INDEX1,2, INDEX2) =F2ANSKER
IF(F1ANSHER.EQ. 108)GOTO 7218
ENDIF
7198 CONTINUE
7280 CONTINUE

7218 F3ANSWER=¢
WRITE(#,7228) INDEX1, MCHNAMES (INDEX1)
7228 FORMAT(////,
1 ' MACHINE TYPE 'I2' : 'A,/

2! '/
3 ' FREQUENCY DISTRIBUTION FOR MACHINE REPAIR TIMES:'/,
4 '
7240 DO 7480 INDEX2=1,14,1
7268 WRITE(%,7288) INDEX2
72808 FORMAT(/,' CLASS ',12,': CUM.REL.FREQENCY? {B)=====>"\)

READ(w ' (BN,F8.2) ")F1ANSHER
WRITE(», 7308) INDEX2
7308 FORMAT(® CLASS *,12,': REPAIR TIME? {8]----->"\)

READ(w,*(EN,F8.2) ")F2ANSHER
IF(INDEX2.EQ.1.AND.F1ANSKER _EQ._@) THEN
WRITE(*,’(/,A)")" 1t CANNOT BE, PLEASE TRY AGAIN 1!’
GQTO 7264
ELSEIF (F2ANSHER.LE.) THEN
WRITE(®,’(/,A)")" t! CANNOT BE, PLEASE TRY AGAIN !’
GOTC 7268
ELSEIF(FtANSWER.GT. t#8)THEN
WRITE(®,"(/,A)')}" 1! CANNOT BE, PLEASE TRY AGAIN ft'
GOTQ 7268
ELSEIF(INDEX2.GT.¥ .AND.F1ANSWER . LE. F3ANSWER) THEN
WRITE(*,"(/,A)")" 1t CANNOT BE, PLEASE TRY AGAIN ¢’
GATO 7268
ELSEIF(INDEX2.EQ. 18.AND.F1ANSKER . NE . 188) THEN
RWRITE(®,"(/,A}")" t! CANNOT BE, PLEASE TRY AGAIN !t°
GOTO 7268
ELSE
F3ANSWER=F tANSWER
MCHARR(INDEX1 %, INDEX2) =F1ANSHER
NCHARR{ INDEX1,4, INDEX2) ~F2ANSWER
IF(F1ANSWER .EQ.189)GOTO 7438
ENDIF

7398 CONTINUE

528
7540

7568

LEX

7580

M
7688

6
7602

CONTINUE

CONTINUE

1F (USERARR(6,INDEX1).EQ.2) GOTO 7798
WRITE(#,7548) INDEX) ,MCHNAMES (INDEX1)
FORMRT (/S /71T EETEITET LA AT AT Y

* FREQUENCY DISTRIBUTIONS MAGHINE TYPE '12’ : 'A,/,
! i
' CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.%",

! REPAIR TIME'/,

IF{MCHARR({ INDEX1,1,1).EQ. 8.)THEN

WRITE(®,"(//,28%,A) ") sweeen DISTRIBUTION NOT USED axetmeonet

ELSE
DO 7688 INDEX2=1,18,1
IF (MCHARR({ INCEX1,1, INDEX2) .EQ.@.AND.
MCHARR(INDEX1,3,INDEX2).EQ.@) THEN
GOTO 7598
ELSEIF (MCHARR(INDEX1,1,INDEX2).GT.0.AND.
MCHARR(INDEX1, 3, INDEX2).EQ.8) THEN
RRITE(#,7568) INDEX2,MCHARR(INDEX1, 1, INDEX2) ,
MCHARR (INDEX1,2, INDEX2)
FORMAT(4X,12,18X,F8.2,10X,F8.2)
ELSEIF (MCHARR(INDEX1,1,INDEX2).EQ.@.AND.
MCHARR(INDEX1,3, INDEX2) .GT.8) THEN
WRITE(#,7578) INDEX2 ,MCHARR(INDEX1,3, INDEX2),
MCHARR(INDEX1,4, INDEX2)
FORMAT(4X, 12, 10X, 8X, 18X, 8X, 19X.F8.2,18X,F8.2)
ELSE
WRITE(*,7588) INDEX2, MCHARR{ INDEX1,1, INDEX2},
MCHARR(INDEX1,2, INDEX2) ,MCHARR(INDEX1, 3, INDEX2) ,
MCHARR(INDEX1,4, INDEX2)
FORMAT(4X,I12,18X,F8.2,108X,F8.2,10X,F8.2,18X,F8.2)
ENDIF
CONTINUE
CONTINUE
ENDIF
WRITE(*,'(//,A,\}*)" DISTRIBUTION OK (Y/N) ? [Y]----3'
READ(*, " (A1) ")CHRANSWER
IF {CHRANSWER.EQ. 'N' YTHEN
DO 7682 INDEX2=1,4,1
DO 7681 INDEX3=1,18,1
MCHARR { INDEX1, INDEX2 , INDEX3) =@
CONTIMUE
CONT INUE
GOTO 7858
ENDIF

241

242

77949 CONTINUE

c

€

c

7588 CONTINUE
€

c

c

€

€ SAVING MODEL ON DISK
c

€

c

8088 WRITE(*,8802)
BBAZ FORMAT(/////11 AT A1 111071777, 20K,
1'END OF SUBROUTINE READIN'/28X
2! Y,
3' YOU HAVE NOW DEFINED A MODEL FOR THE MECHANIZED LOG '/,
4' HARVESTING SIMULATOR. DO YOU WANT TO SAVE THIS MODEL ON'/,
5' DISK? IF YOU DONT DO 50 ALL YOUR WORK WILL BE LOST t1'//)

c
864 WRITE(*,’(/A\)")" SAVE MODEL ON DISK Y/N 7 [Y}-—-- >
READ(®, " (A1)"* YCHRANSHER
C
IF (CHRANSKER.EQ.'N') THEN
WRITE(®,*(/,A,\}*)" ARE YOU REALY SURE Y/N 7 [N]--—-- » !
READ(*, ' (A1) ' JCHRANSHER
IF (CHRANSWER.EQ.'Y') THEN
GOTO 9998
ELSE
GOTO epa4
ENDIF
ELSE
CONT INUE
ENDIF
c

BA1@ INQUIRE(F ILE=F ILENAME,EXIST=FILESTATUS)
IF(.NOT.FILESTATUS) THEN
OPEN(18 ,FILE=FILENAME, STATUS="NEN")
ELSE
WRITE(*,8022)F ILENAME
@A22 FORMAT(/,' 1111 FILE: A’ ALREADY EXISTS t111*/
1 ' OVERWRITE OLD FILE? [N]-==-~ > v\
READ(*, " (A1) ")CHRANSWR
IF(CHRANSKWER.EQ. 'Y’ YTHEN
OPEN(18,FILE=FILENAME, STATUS="0LD")
REWIND 18
ELSE
WRITE(*,'(A\)')" INPUT NEW FILENAME FOR MODEL: = -=—-- e I
READ(»,* (A28 * JFILENAME
GOTO 8818
ENDIF
ENDIF

8824
8az3

8924
8A26
8@28

8@33
8a34
8835

[+~ I]

8848
842
844

8p46
8848
8850
8a52

WRITE(18, ' (F8.1)")
WRITE(1d,'(F8.1)")
WRITE(1d,'(FB.1)")
KRITE(14,’ (F8.8) ")
WRITE(18,"(F8.1}")
WRITE{18,’(F8.1)")
RRITE(18,'(F8.1)")
KRITE{18,"'(F8.1)")
KRITE{18,'{F8.1)")
WRITE(18,’ (F8.4)")

XxX(1)
XX(2)
XX(3)
e
x(s)
()
{7
xX(8)
o9
x|

DO 8B23 INDEX1=11,188,1

WRITE{18,8828) XX{INDEX1)

FORMAT(F8.1)
CONTINUE

DO 8828 INDEX1=1,3,1
DO 8826 INDEX2-1,42,1

WRITE(18,8024) USERARR(INDEX1,INDEX2)

FORMAT(F8.4)
CONT INUE
CONT INUE

DO 8435 INDEX1=4,26,1
DO 8834 INDEX2=1,4Z,1

RRITE(18,8853) USERARR(INDEX1,INDEX2)

FORMAT(F8.2)
CONTINUE
CONTINUE

DO 8844 INDEX1=1,8,

1

DO 8842 INDEX2=1,18,1

WRITE(19,8048) DISARR(INDEX1,INDEX2)

FORMAT(F8.2)
CONTINUE
CONTINUE

DO 8@52 INDEX1=1,42,1

DO 8858 INDEX2=~1.4,

1

DO 8@48 INDEX3=1,18,1

KRITE(18,8846) MCHARR(INDEX?,INDEX2, INDEX3)

FORMAT(F8.2)
CONTINUE
CONTINUE
CONTINUE

243

DO 8A56 INDEX1=1,52,1
WRITE(18,8054) MCHNAMES (INDEX1)
8054 FORMAT(A)
8056 CONTINUE

DO 8@68 INDEX1=1,20,1
WRITE(1@,8058) PROCNAMES(INDEX1)
8a58 FORMAT (A}
8068 CONTINUE

DO 8A64 INDEX1=1,4,1
WRITE(18,8062) DISTRIBNAMES{INDEX1)
8062 FORMAT(A)

8064 CONTINUE

¢
REHIND 18
CLOSE{ 10, STATUS="KEEP*)
WRITE(%,8066)

8066 FORMAT(///,28%,°1t)t MODEL HAS BEEN SAVED
120X, " PRESS RETURN TO CONTINUE'\}
READ(™,"* (12)*)IANSHER

C

C

¢

C END OF SUBROUTINE:

[s=szaszsszsszsxsnssz

¢
9998 RETURN
END

teeer/,

244

APPENDIX D

4. Listing, PRINTOUT.FOR

245

(G IER WIS SNSRI M MM - D 0 B B S48

[]
(]
(o]
(]
(1]
(1]
cw
(o]
(o]
(]
(o]
(1]
o]
(1]
(1]
C»
cn
(o]
c
o)
c*
c»

OREGON STATE UNIVERSITY

JUNE 1986

> LOGS 1ML

SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS

DESIGNED BY :

DESIGNED FOR:

SUPERVISION :

CHRISTOPH WIESE
MASTERS CANDIDATE, DEP. OF INDUSTRIAL
ENGINEERING, OREGON STATE UNIVERSITY

DEPARTMENT OF FOREST ENGINEERING
OREGON STATE UNIVERSITY

DR. ELDON OLSEN
ASSOCIATE PROFESSOR, DEP. OF INDUSTRIAL
ENGINEERING, OREGON STATE UNIVERSITY

x X X X

=

Cﬂ“lﬂmﬂm"“l..“*““.m“mm

(o]
(o]
Cn
Cn
(o]

FORTRAN INPUT USR-INTERFACE: MODELPRINT.FOR

31-MAY-87 18:55

*
»*
»
»*

(U008 10 3E I SIS0 2 N1 D6 T I S0 T S JE I NIHE S 3 M

GO Ooa 0

SINCLUDE: ' PRCTL.FOR®

C

C PROGRAM DECLARATION:

c

¢

c

¢ COMMON BLOCK :

o ——

c

SUBROUTINE MODELPRINT

$INCLUDE: "VARBLOCK. DOC"*

c

C DEFINE LOCAL VARIABLES, NAMES & TYPE:

C
C

246

INTEGER*4 [ANSWER, INDEX1,INDEX2, INDEX3, INDEX4, INDEXS
INTEGER*4 INDEX6, INDEX?, INDEXS, INDEX9
CHARACTER®2# CHRANSKER
REAL F1ANSHER,F2ANSHER, F3ANSHER
LOGICAL*4 FILESTATUS
c
G BEGIN PROCESSING:

o

¢
€ OPENING SCREEN:
C _______________
¢

WRITE(*, 188)
108 FORMAT(V' /1117 0HHHAEL LI E A 11171 15K,

1 SUBROUTINE PRINT'/5X,

2 =mzmmzmsssssazas’//5Y,

3'WITH THIS SUBROUTINE YOU CAN PRINTOUT THE DATA OF A '/5i,

4'SIMULATION MODEL PREVIOUSLY DEFINED WITH SUBROUTINE '/5X,

S'READIN. *,///)

WRITE(,* (7X,A\}') 'DO YOU WISH TO CONTINUE (Y/N) ? [Y]-----

READ (*,*(BZ,AY)") CHRANSHWER

IF (CHRANSKWER.EQ.'N') THEN

GOTO 9998
ELSE
CONTINUE

ENDIF
c
¢
¢

€ INITIALIZATION OF ALL VARIABLES AN READIN THE FILE
¢
c
c

CALL INITREAD

WRITE(*,244)
244 FORMAT(///.

1 7X,*OUTPUT SHOULD BE ROUTED TO:*'//

2 7X," SCREEN =1/

3 7X,’ SCREEN % PRINTER =2/

4 7{.'PLEASE ENTER CHOICE ----- >N
245 READ(,'(I2)")CUTFLAG

IF (QUTFLAG.LT.1.0R.QUTFLAG.GT.2) THEN

WRITE(*,247)
247 FORMAT(/7X,'t!t CANNOT BE, PLEASE ENTER AGRIN f1t*./
1 ‘PLEASE ENTER CHOICE ----- >\
GOTO 245
ELSEIF (OUTFLAG.EQ.1) THEN
CONTINUE
ELSE

OPEN(11,FILE="LPT1")
WRITE(*,258)

247

250 FORMAT(//7X,
1 'ALIGN PAPER IN PRINTER, THEN PRESS RETURN TO CONTINUE'\)
READ(#, ' (I2) ") IANSWER
ENDIF

BEGIN OF PRINTING THE MODEL

OO0 00

¢

C PRINTING GENERAL PARAMETERS AND MACHINE CONFIGURATION

c IF (ATRIB(5).EQ.1) THEN
HRITE(*,298)
IF (OUTFLAG.GT.1) WRITE(15,298)

292 FORMAT(//,

1 VX, IO IO OO HHEHE IO P /|
2 18X, '» ./,
3 18X, ' »wrLOGS I M<K w/
4 19X, '# HARVESTING CONFIGURATION L
5 1X.'» LI
6 TB), P I L IIHEREHER U SHHHE IHHEHHLIHHEHEHE I/
T/

cc

308 WRITE(w, 382)FILENAME, FILENAME, XX(4),XX{18)
TF(OUTFLAG.GT. 1JHRITE(11,382)FILENAME , FILENANE , XX (4), XX (18)

382 FORMAT{/.37X,A,/,33), ' ssttmtunusnkunannnnt' ///

1 ' NAME OF SIMULATION MODEL : A/,
2 ' DAMOUNT TO BE HARVESTED (CU.FT.) : 'F8.8,/,
3 ' TIME DELAY PARAMETER : 'F8.4,////,
4 12X'MACHINE CONFIGURATION',/
512 ' A
o
WRITE(#,321)

IF (QUTFLAG.GT. 1)WRITE(11,321)
321 FORMAT(' PROCESS £ IN ORIGIN OUT DESTINATION'/,
1l])

DO 326 INDEX1=1,131

IF(USERARR(23, INDEX1) .EQ.@.AND.USERARR (24, INDEX1) .EQ.B)THEN
WRITE(*, '{4X,12)") INDEX1
IF(QUTFLAG.GT. 1)RRITE(11, ' {4X,12) ' JINDEX?

GOTO 327

ENDIF

IF(INDEX1.EQ.1) THEN
WRITE (*,322) INDEX1,USERARR(23, INDEX1)

IF(OUTFLAG.GT. 1JWRITE (11,322)INDEX),USERARR (23, INDEX1)
322 FORMAT (4X,12,23X,F3.8)

ELSEIF (INDEX1.GE.2.AND. INDEX1.LE.18) THEN
WRITE (#,323)INDEX1,USERARR (24, INDEX1) ,USERARR(23, INDEX1)
IF{OUTFLAG.GT.1)WRITE (11,323) INDEX1,USERARR(24, INDEX1),

1 USERARR(23, INDEX1)

323

324

325

327
326

FORMAT (4X,12,18X,F3.8,10X,F3.8)
ELSETF{ INDEX1.EQ. 11} THEN

WRITE (®,324)INDEX1,USERARR(24 , INDEX1) ,USERARR(7,5),
| USERARR(7,6)

IF (OUTFLAG.GT.1)WRITE (11,324)INDEX1,USERARR(24,INDEX1),

1 USERARR(7,5) ,USERARR(7,6)
FORMAT (4X,12,184,F3.8,18X,F3.98,2X,F3.0)
ELSE
WRITE (*,325)INDEX1,USERARR(24,INDEX1)
1F(OUTFLAG.GT. 1)WRITE (11,325) INDEX1,USERARR(24, INDEX1)
FORMAT (4X,12,18X,F3.8)
ENDIF
CONTINUE
CONTINUE

DISTRIBUTION DATA OF THE TREES/LOGS/PULPLOGS/SAWLOGS

LAO000000 0O

402

494
496

408

ooon

WRITE(®,402)

IF (QUTFLAG.GT. 1 JHRITE(11, 482)

FORMAT(///// ,12X"HATERIAL FREQUENCY DISTRIBUTIONS'/
1 12X /)

DO 486 INDEX1=1,4,1

WRITE(*,484) INDEX1,DISTRIBNAMES (INDEX1)

IF(QUTFLAG.GT . 1)WRITE(11,484) INDEX1, DISTRIBNAMES (INDEX) }
FORMAT(® CUMULATIVE FREQUENCY DISTRIBUTION NO.'I1' : 'A)
CONT INUE

WRITE(*,488)

TF{OUTFLAG.GT.1}WRITE(11,488)

FORMAT(//, 10X,

1*DISTRIBUTTON 1°4X'DISTRIBUTION 2°4X'DISTRIBUTION 34X
2'DISTRIBUTION 4',/,

3' CLASS '

4'FREQ.% CU.FT'4X'FREQ.%* CU.FT'4X'FREQ.% CU.FT'4X
S'FREQ.%# CU.FT'/,

&

7!_____-____-____!)

DO 458 INDEX1=1,18,1

1F(DISARR(1, INDEX1).EQ.@.AND.DISARR(2, INDEX1).EQ.@.AND.
1 DISARR(3,INDEX1).EQ.@.AND.DISARR(4, INDEX1}.EQ.8.AND.
2 DISARR(S, INDEX1).EQ.®.AND.DISARR(6, INDEX1).EQ.@.AND,
% DISARR(7,INDEX1).EQ.P.AND.DISARR(8, INDEX1).EQ.8) THEN

GOTQ 449

249

412

448

449
450

250

ELSE
WRITE(#,412) INDEX1
IF (OUTFLAG.GT. 1)KRITE(11, 412) INDEX}
FORMAT(/,2X,12,1X,\)

ENDIF

DO 448 INDEX2=1,8,1

IF(DISARR(INDEX2, INDEX1) .EQ.8) THEN
WRITE(*, " (9%, \)')

IF(OUTFLAG.GT. DMRITE(11, ' (9X,\) ")

ELSEIF (DISARR(INDEX2, INDEX1).GT.8) THEN
WRITE(*, '(1X,Fa.2,\) ")DISARR(INDEX2, INDEX1)
IF(OUTFLAG.GT. DHRITE(11, ' (1X.FA.2,\) ')DISARR(INDEX2, INDEX1)

ELSE
CONTINUE

ENDIF

CONTINUE

CONTINUE
CONTINUE

DESCRIPTION OF THE PROCESSES USED

nwoaaaaaoaaan

5d2

532
534

WRITE (%, 582)

IF(OUTFLAG.GT.)WRITE(11,582)

FORMAT(/////,12X"' INVENTORY AND BUFFER SIZES '/,

112 ')

WRITE(*,534)

IF (OUTFLAG.GT. 1)HRITE(11,534)

FORMAT(/,

1' PRO- NAME DISTRI- STARTUP MININUM STARTUP',
2' MAXIMUM STARTUP'/,

2' CESS BUTION INV. INV. MINIMUM',
3* INv. MAXKIMUNM'/,

4 '
Bltmmee i - ')

DO 578 INDEX1=1,13.1
IF(USERARR(23, INDEX1) .EQ.@ .AND .USERARR(24, INDEX1).EQ.8) GOTO 569
IF (INDEX1.EQ. 1) THEN
INDEX2=X)LEVEL (7)+INDEX1
WRITE{#*,536) INDEX1,PROCNAMES (INDEX1) ,USERARR(S, INDEX1)
IF(OUTFLAG.GT. 1)MRITE(11,536) INDEX1,PROCNAMES { INDEX1},
1 USERARR(S , INDEX1)

536

538

569
570
c
¥
¥

¢

FORMAT(2X,12,3X,A,2X,F2.0)

ELSE

INDEX2=XXLEVEL(7)+INDEX1

INDEX3=XXLEVEL(3)+INDEX1

INDEX4=XXLEVEL{5)+INDEX1

INDEX5=XXLEVEL (4)+ INDEX}

INDEX6=XXLEVEL{ 6)+INDEX1

HRITE(*,538) INDEX1,PROCNAMES (INDEX1) ,USERARR(5, INDEX1),

MX(INDEX2) , X0 INDEX3) ,X0((INDEX4) , XX(INDEX5) , XX (INDEX6)

IF(QUTFLAG.GT. 1)RRITE(11,538) INDEX1,PROCNAMES { INDEX1) .
USERARR(5 , INDEX1) ,XX(INDEX2) ,XX(INDEX3) ,
XX{ INDEX4) , XO{(INDEX5) , XX (INDEX6)

FORMAT(2X,12,3X,A,2X,F2.8,5X,F8.1,1X,F8.1,

1%,F8.9,1X,F8.1.1X,F8.1)

ENDIF
CONTINUE

CONT INUE

C PROCESS DESCRIPTION

¢

¢

608

682

64

605

606

1

DO 699 INDEX1=1,13,1
IF (USERARR(23, INDEX1).EQ.d.AND.USERARR(24 ,INDEX1).EQ.8) GOTO 698

WRITE(*,682) INDEX1,PROCNAMES (INDEX1)
IF (QUTFLAG.GT. 1)WRITE(11,662) INDEX1,PROCNAMES (TNDEX 1)
FORMAT(///// \ZX'PROCESS NO.'I12": 'A,/,

12X nnnennnnsnnnnn'/)

IF (INDEX1.EQ.1) THEN
INDEX2=1
INDEX3=4
INDEX4=USERARR(23, INDEX1)
INDEX5~USERARR(5, INDEX1)
WRITE(*, 645)USERARR(25 , INDEX) ,PROCNAMES(INDEX4) ,
USERARR(S, INDEX 1), DISTRIBNAMES (INDEX5)
IF(OUTFLAG.GT. 1)RRITE(11,605)USERARR (23, INDEX1),
PROCNAMES (INDEX4) ,USERARR(5 , INDEX1) , DISTRIBNAMES (INDEX5)

FORMAT(
1 * OUTGODING DESTINATION : PROCESS NO.'F3.8" 'A./
2 ' DISTRIBUTION USED + F3.0,18%,4)

IF(USERARR(4,INDEX1).EQ.9) THEN
WRITE(*,6086)
IF(QUTFLAG.GT.1)WRITE(11,686)
FORMAT(* LOADER USED : NONE')
ELSE
INDEX4=USERARR(4, INDEX1)
WRITE(*,607)USERARR(4, INDEX 1}, MCHNAMES (INDEX4)

251

687

688

689

612

614

616
618

628

252

IF{OUTFLAG. GT.@)WRITE{ 11,687)USERARR (4, INDEX1},
MCHNAMES (INDEX4)
FORMAT(* LOADER USED : PR, A
ENDIF

IF(USERARR (9, INDEX1) .EQ.#) THEN

WRITE(*,688)

IF {OUTFLAG.GT. 1)NRITE(11,688)

FORMAT(

' TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS')
ELSE

WRITE(*,689)

IF{QUTFLAG. GT. V)WRITE(11,609}

FORMAT(

' TIME DELAYS HANDELED BY : USER-NRITTEN FORTRAN SUERCUTINE’)
ENDIF

WRITE(*,612)
IF(OUTFLAG. GT. 1)WRITE(11,612)
FORMAT(/,
' MACHINES USED 2
'OTIPE NAME INITIAL # OF MACHINES'/,
] |,
DO 618 INDEX4=INDEX2, INDEXS, !
IF (USERARR(6,INDEX4).EQ.8) THEN
GOTO 616
ELSE
WRITE(*.614) INDEX4, HGHNAMES (INDEX4) , USERRRR(6, INDEX4)
IF(OUTELAG. GT. 1)WRITE(11,614) INDEX4 , NCHNAMES (INDEX4) ,

USERARR(6, INDEX4)
FORMAT(3X,12,5X.A,12X,F3.8)
ENDIF
CONTINUE
CONTINUE

ELSETF (INDEX1.NE.11) THER
INDEX2=XXLEVEL (7)+INDEX1
INDEX3=XXLEVEL (3)+INDEX1
INDEX4=XXLEVEL(5)+INDEX1
INDEXS=XXLEVEL (4}+INDEX1
INDEX6=XXLEVEL(6)+INDEX1
INDEX7~USERARR(24, INDEX1)
INDEX8=USERARR (23, INDEX1)
INDEX9=USERARR(5, INDEX1)
IF(USERARR (23, INDEX1) .EQ.8) THEN
WRITE(*,628)USERARR (24 , INDEX1) ,PROCNANES (INDEX?)
TF(OUTFLAG.GT. 1)KRITE(11,628)USERARR (24, INDEX1) ,
PROCNAMES { INDEX7)
FORMAT (
' INCOMING ORIGIN : PROCESS KO.'F3.8' 'A)
ELSE

253

WRITE(#,621)USERARR(24, INDEX1) ,PROCNAMES (INDEX?) ,
1 USERARR{23¥, INDEX1) ,PROCNAMES { INDEX8)
IF(OUTFLAG.GT. 1)HRITE(11,621)USERARR (24, INDEX1),
1 PROCNAMES (INDEX?) ,USERARR{23, INDEX1} ,PROCNAMES { INDEX8)

621 FORMAT(
1 ' INCOMING ORIGIN : PROCESS NO.'F3.0' 'A./,
2 ' OUTGOING DESTINATION : PROCESS NO.'F3.3' 'A)
ENDIF

WRITE(%,622)USERARR(5, INDEX1) , DISTRIBNAMES (INDEX9) ,
1 XX({INDEX2) , XX(INDEX3) , XX (INDEX4} ,X}{(INDEXS}) , XX (INDEX6)
IF(OUTFLAG.GT. 1)HWRITE(11,622)USERARR(5 , INDEX1) ,
1 DISTRIBNAMES(INDEX®).XX(INDEX2).XX(INDEX3) .XX{INDEX4),
2 XA(INDEXS),)XX(INDEX6)

622 FORMAT(
1 * DISTRIBUTION USED : 'L P88, 18X, A,/
2 ' STARTUP-INVENTORY LEVEL : ',Fe.1,/
3 ' MINIMUM INVENTORY LEVEL : ',F8.1,/
4 ' STARRTUP LEVEL MININUW : ' ,F8.1,/
5 ' MAXIMUM INVENTORY LEVEL : ',Fe.1,/
6 ' STARTUP LEVEL MAXIMUN : '.F8.1)
c
IF(USERARR (4, INDEX1} .EQ.8) THEN
628 WRITE(*,638)
IF(OUTFLAG.GT. 1)WRITE(11,638)
630 FORMAT("® LOADER USED : NONE')
ELSE
INDEX4=USERARR (4, INDEX1}
632 WRITE(»,654)USERARR(4, INDEX1), MCHNAMES (INDEX4)
IF{OUTFLAG.GT. 1)NRITE(11,634))USERARR (4 , INDEX1},
1 MCHNAMES { INDEX4)
634 FORMAT(' LOADER USED TR - Y PRELAY §
ENDIF
c

IF(USERARR(Y, INDEXt) .EQ.B) THEN
WRITE(*,638)
IF(OUTFLAG.GT.1)WRITE(11,638)
638 FORMAT(
1 ' TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS®)
ELSE
WRITE(®,648)
IF(OUTFLAG .GT. 1)NRITE{ 11,648)
649 FORMAT(
1 ' TIME DELAYS HANDELED BY : USER-WRITTEN FORTRAN SUBROUTINE')
ENDIF

IF{INDEX1.GE.2.AND. INDEX1.LE. 18) THEN
INDEX2=INDEX1%*3-1
INDEX3=INDEX1#3+1
ELSEIF(INDEX!.EQ.12) THEN
INDEX2=37
INDEX3=49

254

ELSEIF(INDEX1.EQ.13) THEN
INDEX2=41
INDEX3=42

ELSE
CONT INUE

ENDIF

WRITE(*,642)

IF(OUTFLAG.GT. 1)MRITE(11,642)

642 FORMAT(/,

1 ' MACHINES USED M,
' TYPE NAME INITIAL # OF MACHINES'/,
3¢ 3

DO 648 INDEX4=INDEX2, INDEX3,1
IF (USERARR(6, INDEX4).EQ.@) THEN
GOTO 646
ELSE
WRITE (%, 644) INDEX4, MCHNAMES (INDEX4 } , USERARR (6 , INDEX4)
IF(OUTFLAG. GT. 1)KRITE{11,644) INDEX4 ,NCHNANES { INDEX4) ,
1 USERARR(6, INDEX4)
644 FORMAT(3¥,12,5¥,A.12X,F3.9)
ENDIF
646 CONT INUE
648 CONTINUE

ELSEIF(INDEX1.EQ.11) THEN
INDEX2=XLEVEL (7)+ INDEX1
INDEX3=XXLEVEL (3)+INDEX1
INDEX4=XXLEVEL (5} +INDEX1
INDEX5=XXLEVEL (4 }+INDEX1
INDEX6=XXLEVEL (6)+ INDEX1
INDEX7=USERARR (24, INDEX1)
INDEX8=USERARR(7,5)
INDEX9=USERARR (7.6}

650 WRITE(*,652)USERARR(24, INDEX1) ,PROCNAMES (INDEX7) ,
1 USERARR(7,5),PROCNAMES { INDEX8),
2 USERARR(7,6),PROCNAMES(INDEX9),
3 USERARR(7,3),USERARR(7.4)

IF(OUTFLAG. GT. 1)WRITE(11,652}

1 USERARR(24, INDEX1),PROCNAMES(INDEX7},

2 USERARR(7,5),PROCNAMES (INDEXB?,

3 USERARR(7,6) ,PROCNAMES(INDEX9),

4 USERARR(7,3)},USERARR(7,4}

652 FORMAT(

1 ' INCOMING ORIGIN : PROCESS NO.'F3.9" 'A,/.

2 ' OQUTGOING ROUTE 1 : PROCESS NO.'F3.8' 'A,/,

3 ' OUTGOING ROUTE 2 : PROCESS NO.'F3.8° 'A./,

4 ' % GOING ROUTE 1 ' F8.2," %,/

5 * % GOING ROUTE 2 ", F8.2," &%)
INDEX9=USERARR(5, INDEX1)

654 WRITE(%,656)USERARR(5, INDEX1} ,DISTRIBNAMES (INDEXS} , XX(INDEXZ) ,
1 ¥X(INDEX3),XX(INDEX4),XX(INDEX5), XX(INDEX6)

656

658

668

662

664

668

678

658
699

255

IF(OUTFLAG.GT. 1)WRITE{11, 656 JUSERARR (5. INDEX1),
1 DISTRIBNAMES(INDEX9) ,XX(INDEX2),
XX(INDEX3) , X (INDEX4} , XX (INDEX5) , Xx{(INDEX6)

FORMAT(
1 ' DISTRIBUTION USED : ', F8.8,18X,A,/,
2 ' STARTUP-INVENTORY LEVEL : *.F8.1,/,
3 ' MINIMUM INVENTORY LEVEL : °',F8.1,/,
4 ' STARTUP LEVEL MINIMUM : ',F8.1,/,
5 ' MAXIMUM INVENTORY LEVEL : ' F8.1,/,
6 ' STARTUP LEVEL MAXIMU® : ', F8.1)

IF(USERARR({4,INDEX1).EQ.B) THEN

WRITE{*,668)

IF{QUTFLAG.GT. 1)HRITE(11.668)

FORMAT(* LOADER USED : NONE')
ELSE

INDEX4=USERARR(4 , INDEX1)

WRITE (*, 664 JUSERARR (4, INDEX1) ,MCHNAMES (INDEX4)

IF(QUTFLAG.GT. 1JMRITE(11,664)USERARR(4 , INDEX1) ,

1 MCHNAMES INDEX4)

FORMAT(* LOADER USED : ', Fa.8," *.A)

ENDIF

IF{USERARR(9,INDEXY) .EQ.8) THEN
WRITE(*, 668)
IF(QUTFLAG.GT . 1)WRITE(11,668)
FORMAT(
1 ' TINKE DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS')
ELSE
WRITE(*%,678)
IF (OUTFLAG.GT. 1)WRITE{11,678)
FORMAT(
! ' TIME DELAYS HANDELED BY : USER-WRITTEN FORTRAN SUBROUTINE®)
ENDIF

ELSE
CONTINUE
ENDIF

CONTINUE
CONTINUE

MACHINE PARAMETERS

OO 0O a0 aaan

C
780

DO 788 INDEX1=1,42,1
IF (USERARR(6,INDEX1).EQ.8) GOTO 779

WRITE (%, 782) INDEX1 ,MCHNAMES (INDEX1)
IF (QUTFLAG. GT. 1)WRITE(11,782) INDEX1 ,MCHNAMES (INDEX1)

702

703

84

185

06

788

u

12

74

718

728

722

13

1

On W e W

256

FORMAT(///// \2X'MACHINE TYPE "12°: 'A,/,

12X =z mmmmmmmmmmnt /)

IF(INDEX1.EQ.48.0R. INDEX1.EQ.42)GOTO 1
WRITE(*, 783)USERARR(6 , INDEX1)

IF{OUTFLAG.GT. 1)MRITE(11, 783)USERARR(6, INDEX1)

FORMAT(* INITIAL NUMEER OF MACHINES :'F6.0)

IF (INDEX.EQ.39) GOTo 785
HRITE(*, 704 JUSERARR (1, INDEX1)
IF(OUTFLAG.GT. 1)KRITE(11, 784 JUSERARR(1, INDEX1)

FORMAT(® AVERAGE PROCESSING TIME / TREE : ' F8.4)
WRITE(*, 796)USERARR(2, INDEX1)

IF (OUTFLAG.GT.1)RRITE(11, 786)USERARR(2, INDEX1)

FORMAT(* FIXED CONSTANT TIME / LOAD : ', F8.4)
HRITE(*, 788 JUSERARR(3, INDEX1)

IF(OUTFLAG. GT. 1)MRITE(11, 788)USERARR(3, INDEX1)

FORMAT(® FIXED CONST. TIME / ONE WAY HAUL : ',FR.4)
KRITE(*,712)USERARR{ 21, INDEX1)
IF(QUTFLA.GT. V)RRITE(11, 712)USERARR(21, INDEX1)

FORMAT{® FIXED QOST / SCHEDULED HOUR : ', FB.2)
KRITE(*,714)USERARR(22, INDEX1)

IF(OUTFLAG. GT. 1)MRITE(11, 714)USERARR(22, INDEX1)
FORMAT(* VARIABLE COST/ MACHINE HOUR 1 'L, FB.2)
WRITE (*, 718 JUSERARR(8, INDEX1}
IF(OUTFLAG.GT.1)NRITE(11,718)USERARR (8, INDEX1)

FORMAT(' MACHIME CAPACITY IN CU.FT : ', FB.2)

KRITE(%,722) INDEX1,MCHNAMES (INDEX1)
IF(QUTFLAG.GT. 1)WRITE(11,722) INDEX1 ,MCHNAMES (INDEX 1)

FORMAT(/,
' FREQUENCY DISTRIBUTIONS MACHINE TYPE 'I2' : 'A,/
' CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.%’,

' REPAIR TIME*/,

IF (MCHARR(INDEX1,1,1) .EQ.8.)THEN
WRITE(*,723)
IF(QUTFLAG.GT. 1)WRITE(11,723)
FORMAT(/, 28X, *#swenk DISTRIBUTION NOT USED wwwwx')
ELSE
DO 768 INDEX2=1,18,1
I¥ (MCHARR(INDEX1,1, INDEX2) .EQ.@.AND.
MCHARR { INDEX1,3, INDEX2) .EQ.8) THEN
GOTO 759
ELSEIF (MCHARR(INDEX1,1,INDEX2).GT.@.AND.
MCHARR(INDEX1,3, INDEX2) .EQ.8) THEN
HRITE(#,724) INDEX2,MCHARR (INDEX1,1, INDEX2),
MCHARR(INDEX1,2, INDEX2)
IF(QUTFLAG.GT.1)WRITE(11,724) INDEX2,
MCHARR(INDEX1,1, INDEX2) .MCHARR(INDEX1, 2, INDEX2)

724 FORMAT(4X,12,10%,F8. 2, 19X,F8.2)
ELSEIF (MCHARR(INDEX1,1,INDEX2).EQ.08.AND.
1 MCHARR (INDEX1,3, INDEX2) . GT.@) THEN
WRITE(*,726) INDEX2,MCHARR(INDEX1, 3, INDEX2),
1 MCHARR(INDEX1, 4, INDEX2)
IF (OUTFLAG. GT. 1)WRITE(11,726) INDEX2 ,MCHARR (INDEX1,3, INDEX2)
1 ,MCHARR(INDEX 1,4, INDEX2)
726 FORMAT{4X, 12, 18X,8X, 18X, 8X, 18X ,F8.2, 10X,F8.2)
ELSE
WRITE(®,728) INDEX2 ,MCHARR(INDEX1, 1, INDEX2),
1 MCHARR (INDEX1,2, INDEX2) ,MCHARR { INDEX1, 3, INDEX2) ,
2 MCHARR (INDEX1,4 , INDEX2)
TF (QUTFLAG.GT. 1)WRITE(11,728) INDEX2, MCHARR(INDEX1, 1, INDEX2)
1 , MCHARR(INDEX1, 2, INDEX2) ,MCHARR(INDEX1,3, INDEX2) ,
2 MCHARR(INDEX? , 4, INDEX2)
728 FORMAT(4X,12,16X,F8.2,10X,Fg.2,10X,F8.2,18X,F8.2)
ENDIF
759 CONTINUE
760 CONTINVE
ENDIF
c
779 CONTINUE
788 CONTINUE
c
c

C END OF SUBROUTINE

T r—

c
WRITE(®, " (////)")
IF{OUTFLAG.GT. 1)HRITE(1Y, " (////)")
IF(OUTFLAG.GT. 1)CLOSE(11)

9998 RETURN

¢

END

257

APPENDIX D

5. Listing, MODIFY.FOR

258

CRRFHRR RO ICEEIEIN I I IS I M ORI I VNI IO I 3
(o] *
Cw OREGON STATE UNIVERSITY *
Cw JUNE 1986 *
C» *
C* > LOGS I N *
(ol »
Gw SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS *
[]
o3 "
Cw DESIGNED BY : CHRISTOPH WIESE "
ng MASTERS CANDIDATE, DEP. OF INDUSTRIAL "
Cn ENGINEERING, OREGON STATE UNIVERSITY "
o3 "
Cw DESIGNED FOR:; DEPARTMENT OF FOREST ENGINEERING "
c» OREGON STATE UNIVERSITY »
Cw »
o3 L]
o SUPERVISION : DR. ELDON OLSEN "
c» ASSOCIATE PROFESSOR, DEP. OF INDUSTRIAL #
c* ENGINEERING, OREGON STATE UNIVERSITY »
(ol »
) »
(590000 ST AN E NI HIE MMM MMM I D SNSSSIE SHEIE-06 M0 00 0 06 336 3036 20 3
[0l »
Cw FORTRAN INPUT USER-INTERFACE: MODIFY.FOR *
(o] »
Cw 31-MAY-B7 18:55 "
Cu "
(ST TSI M0 00 - 0 T T30 003G 0 00 T 0 0 -0 006 20
c
C
C
c
c
$INCLVDE: "PRCTL .FOR™
C
C PROGRAM DECLARATION:
c -
c

SUBROUTINE MODIFY
c

C COMMON BLOCK :

C amxamaaz=azass

c

$INCLUDE : "VARBLOCK.DOC’

c

C DEFINE LOCAL VARIABLES. NAMES & TYPE:

C
c

259

C

260

INTEGER*4 IANSWER, INDEX1, INDEX2, INDEX3, INDEX4, INDEXS
INTEGER#4 INDEX6, INDEX?, INDEXS, INDEX?, IND18, IND1
CHARACTER®28 CHRANSWER

REAL F1ANSHER,F2ZANSWER, F3ANSWER, F4ANSWER, FSANSHER , FOANSHER
REAL F7ANSHWR,FB8ANSWR,FIANSHER, F1BANSHR ,F11ANSWER, F12ANSKER
LOGICAL*4 FILESTATUS

C BEGIN PROCESSING:

T ——

C

G OPENING SCREEN:

124

WRITE(*, 1£9)
FORMATL " 10 /271111711 ELIEELIEEEITE1T 101101011 75K,
1 SUBROUTINE MODIFY*/5X,
2! svunnsmzmanmnanus’ //5X,
S'THIS SUBROUTINE ALLOKS YOU TO MODIFY THE DATA OF A '/5X,
4'SINULATION MODEL PREVIOUSLY DEFINED WITH SUBROUTINE '/5X,
5'READIN.* ,///)
WRITE(®, ' (7X,A\)') 'DO YOU WISH TO CONTINUE (Y/N) 2 [Y)-----> '
READ (#,'(BZ,A1)') CHRANSWER
IF (CHRANSWER.EQ.'N') THEN
GOTO 9598
ELSE
CONT INUE
ENDIF

INITIALIZATION OF ALL VARIAELES AN READIN THE FILE

OO0 aooon

c
2pd
285

214

22p
c

CALL INITREAD

WRITE(#,2085)
FORMAT(/7 2777247 200120021041
1 5X*SUBRROUTINE MODIFY CHOICES:',/,

2 sx’ = /7,

3 2X'EDIT SYSTEM PARAMETERS =1/,
4 2X'EDIT MATERIAL FREQUENCY DISTRIBUTIONS = 2',/,
5 2X'EDIT PROCESS PARAMETERS =3/,
6 2X'EDIT MACHINE PARAMETERS =4'/,
7 2X'EDIT MACHINE DISTRIBUTIONS =5")
HRITE(*,218)

FORMAT(

1 2X'SAVE MODIFYIED MODEL =6',/,
2 2X'RETURN TO MAIN MENU = @',/
320 PLEASE ENTER CHOICE ~ ---—- > "\)

READ{#, *{12)')IANSWER

238
1

MODL

IF(IANSHER.LT.#.0R. IANSWER.GT.6) THEN

WRITE(*,238)

FORMAT(/,2X,' 1ttt CANNOT BE, PLEASE TRY AGAIN t1t',/,
X' PLEASE ENTER CHOICE

GOTO 228

ELSEIF (IANSWER.EQ.@) THEN
RETURN

ELSETF(JANSWER .EQ. 1)THEN
GUTO 1888

ELSEIF(1ANSHER .EQ.2) THEN
GOTO 2098

ELSEIF (IANSWER.EQ.3) THEN
GOTO 3908

ELSEIF (IANSWER.EQ.4)THEN
GOTO 4888

ELSEIF(1ANSWER.EQ.5)THEN
GOTO 5808

ELSEIF{ IANSWER. EQ .6) THEN
GOTO 6888

ELSE
CONTINUE

ENDIF

FYING SYSTEM PARAMETERS

GO0 0O000 000

1898 MWRITE(*,1918)FILENAME XX (4),XX(19)
108 FORMAT(/// /707 407HEFETEEEEE T,
' EDITING SYSTEM PARAMETERS:',/,

1

: A/,
: 'Fe.8,/,
'F8.4,/,

2 L]

12X* NAME OF SIMULATION MODEL

2 2X*1 = AMOUNT TC BE HARVESTED (CQU.FT.)
3 2%'2 = TIME DELAY PARAMETER

4 2X'd = RETURN TO MODIFY MENU',//,

4 2X'PLEASE ENTER CHOICE

1928
¢

1838
1

1849

READ(*,*(12)' YIANSHER

IF(IANSWER.LT.d.0R. IANSHER. GT.2) THEN

WRITE(*, 1838)

—> 0\

FORMAT(/,2X,*!1t CANNCT BE, PLEASE TRY AGAIN

2X'PLEASE ENTER CHOICE
GOTQ 1828

ELSEIF(IANSWER.EQ.H)THEN
GOTO 208

ELSEIF (IANSWER.EQ.1) THEN
WRITE(®,*'(//,A,\)*)" HOW MANY CU.FT SHOULD BE HARVESTED? --->'

READ(®,' (Fd.8)')F1ANSHER

261

IF(F1ANSHER .EQ.B) THEN
WRITE (*,'(/,A)')" {1t CANNOT BE, PLEASE TRY AGAIN !i!*
GOTO 1848

ELSEIF (F1ANSMER .GE.9999998) THEN
WRITE (*,"(/,A)*)" 11! CANNQOT BE, PLEASE TRY AGAIN t1f*
GOTO 1948

ELSE
¥X(4)=F1ANSHER

ENDIF

ELSEIF(IANSWER.EQ.2) THEN

1050 WRITE(*,'(//,A,\)")" VALUE OF THE TIME DELAY PARAMETER? ---)'

READ(®, ' (FB.4)’)F1ANSHER

IF (F1ANSUER.EQ.B) THEN
WRITE (®,'(/,A)')' t!t CANNOT BE, PLEASE TRY AGAIN f!t'
GOTO 1854

ELSETF(F1ANSWER .GE _999.0R.F1ANSHER.LT.8.0081) THEN
WRITE (®,’(/,A)*)" 1ttt CANNCT BE, PLEASE TRY AGAIN 111’

GOTO 1858
ELSE
XA (18) =F 1ANSHER
ENDIF
ELSE
CONTINUE
ENDIF
c
GOTO 1968
c
c
C MODIFYING DISTRIBUTION DATA OF THE TREES/LOGS/PULPLOGS/SAWLOGS
c
c
C
2008 WRITE(*,2818)DISTRIBNAMES(1),DISTRIBNANES(2) ,DISTRIBNAMES(3),
1 DISTRIENAMES(4)
201@ FORMAT(////////7///7/// .25 'EDITING MATERIAL DISTRIBUTIONS:',/,
1 /4
2 24*1 = EDIT DISTRIBUTION NO.1 *,A,/,
3 2X'2 = EDIT DISTRIBUTION NO.2 *,A,/,
4 2%'3 « EDIT DISTRIBUTION NO.3 *,A,/,
5 24'4 = EDIT DISTRIBUTION NO.4 *,A,/,
6 2X'A = RETURN TO MODIFY MENU',//,
7 2{'PLEASE ENTER CHOICE -—-> ', \)

2028 READ(=,'(12)")IANSWER
c

IF (IANSWER.LT.@.0R. IANSWER.GT.4)THEN
KRITE(%, 2038}
2030 FORMAT(/,2X,'!!t CANNOT BE, PLEASE TRY AGAIN 11t’,/,
1 2X'PLEASE ENTER CHOICE ----> '\)
GOTO 2028
ELSEIF { IANSWER.EQ.8)THEN
GOTO 20d

262

c
c
c
2035
2949

2852
2968

2061
2062

2063
2064

263

ELSE
INDEX1=1ANSHER
ENDIF

WRITE(#,204@) INDEX1, DISTRIBNAMESC INDEX1)
FORMATC/ /77777071 EPET TR TE i EieY,

1 18%, 'DISTRIBUTION NO.*,

212" : LA/,

3 10X, = Y
4" CLASS CUM.REL.FREQ.% QLFT*/,
5' ')

IF(INDEX1.EQ. 1) THEN
IF(DISARR(1,1).EQ.9)THEN
WRITE(*,*(/,3X,A) ") rssnsusust DISTRIBUTION NOT USED seessiemu t
ELSE
DO 2868 INDEX2=1,19,1
IF(DISARR{1, INDEX2).EQ.8)GOTO 2268
WRITE(*,2852) INDEX2,DISARR(1, INDEX2),DISARRR(2, INDEX2)
FORMAT(4X,12,18%,F8.2,18X,F8.2)
CONTINUE
ENDIF
WRITE(*,'(//,A,\)")" EDIT DISTRIBUTION (Y/N) 7 [N]-—-»*
READ(®, * (A1) ' YCHRANSWER
IF(CHRANSHER.EQ. 'Y’)GOTO 2188
ELSEIF{ INDEX1.EQ.2)THEN
IF(DISARR(3, 1) .EQ.8)THEN
WRITE(%,*({/,3X,A)") *usssnsns DISTRIBUTION NOT USED swmseons!
ELSE
DO 2862 INDEX2=1,19,1
IF (DISARR(3, INDEX2) .EQ.B)GOTO 2062
KRITE(*,2861) INDEXZ, DISARR(3, INDEX2},DISARRR(4, INDEX2)
FORMAT(4X,12, 19X,F8.2,18%,F8.2)
CONTINUE
ENDIF
WRITE(*,'(//,A,\)")" EDIT DISTRIBUTION (Y/N) 7 [NJ~--->'
READ(#*,’ (A1)") CHRANSHER
IF { CHRANSWER.EQ. 'Y")GOTO 2189
ELSEIF(INDEX1.EQ.3)THEN
IF(DISARR(5,1).EQ.8) THEN
RRITE(®,'(/,3%,A)") wtstemid DISTRIBUTION NOT USED heessen *
ELSE
DO 2864 INDEX2=1,18,1
IF(DISARR(5, INDEX2).EQ.B)GOTO 2864
WRITE{»,2@863)INDEX2,DISARR(5, INDEX2) ,DISARRR(6, INDEX2)
FORMAT(4X,12,18%,F8.2,18X,F8.2)
CONTINUE
ENDIF
RRITE(*,'(//,A,\)")' EDIT DISTRIBUTION (Y/N) ? [N]-—->'
READ(#*, ' {A1)') CHRANSMER
IF (CHRANSKER.EQ.'Y*)GOTO 21p9

2065
2066

c

ELSE
IF(DESARR(?,1).EQ.) THEN
WRITE(#*," (/,3%,A)") eoeneen DISTRIBUTION NOT USED et
ELSE
DO 2066 INDEX2=1,18,1
IF(DISARR(7, INDEX2).EQ.2)GOTO 2866
WRITE (%, 2065)INDEX2,DISARR(7, INDEX2) ,DISARRR(8 , INDEX2)
FORMAT(4X,12,18X,F8.2,10X,F8_2)
CONTENUE
ENDIF
HRITE(*,'(//,A,\}")* EDIT DISTRIBUTION (Y/N) ? [N]-——->'
READ(*, ' (A1)") CHRANSWER
IF(CHRANSHER.EQ. 'Y *)GOTO 2109
ENDIF
GOTO 2008

G INITIALIZE THE DISTRIBUTION

¢

2186 DO 2185 INDEX2=1,18,1

IF(INDEX1.EQ. 1) THEN
DISARR(1,INDEX2)=fl
DISARR(2,INDEX2)=2

ELSEIF (INDEX1.EQ.2)THEN
DISARR(3, INDEX2) =8
DISARR(4, INDEX2)«f

ELSEIF(INDEX1.EQ.3)THEN
DISARR(5,INDEX2)=@
DISARR(6, INDEX2) =@

ELSE
DISARR(7,INDEX2)=d
DISARR(8, INDEX2)~@

ENDIF

2785 CONTINUE

21ze

2130
2148
2154

WRITE(*,2118) INDEX!

FORMAT(/,

' FREQUENCY DISTRIBUTION NO.'I2,':'/,
L] I)

WRITE(*,2128)

FORMAT(/,' NAME OF THIS DISTRIBUTION ? ----- >N\
RERD(#," (A) ') CHRANSWER

DISTRIBNAMES { INDEX 1) =CHRANSHER

DG 2188 INDEX2=1,14,1
WRITE(*,2150) INDEX2
FORMAT(/," CLASS ',I2,": CUM.REL.FREQENCY? [@1--->'\)
READ(= ' (EN,F8.2)")F1ANSUER
WRITE(*,2160) INDEX2

264

2168 FORMAT(® CLASS *,12,°: VOLUME CU.FT? [B3--->'\)
READ(*, " (EN,F8.2)*)FZANSHER
IF(INDEX2.EQ.1.AND.F1ANSWER.EQ.8)THEN
GOTO 2198
ELSEIF(F2ANSWER ,LE.#)THEN
WRITE(*,*(A,/)")" 1t CANNOT BE, PLEASE TRY AGAIN tt'
GOTQ 2148
ELSEIF (F1ANSWER.GT. 188)THEN
HRITE(*,*{A,/)")" 1t CANNOT BE, PLEASE TRY AGAIN t!'
GOTO 2148
ELSEIF(INDEX2.GT.1.AND.F1ANSWER.LE .F3ANSWER) THEN
WRITE(*,"(A,/)')* 1! GCANNOT EE, PLEASE TRY AGAIN t!'
GOTO 2148
ELSEIF (INDEX2.EQ. 18.AND. F1ANSWER . NE. 188) THEN
WRITE(*,"(A,/)"}" 1! CANNOT BE, PLEASE TRY AGAIN t1°
GOTO 2148
ELSE
F3ANSHER=F1ANSHER
IF (INDEX1.EQ. 1) THEN
DISARR(1,INDEX2)=F 1ANSHER
DISARR{2, INDEX2 }=F 2ANSKER
IF(FIANSWER.EQ.188)GOTO 2198
ELSEIF (INDEX1.EQ.2)THEN
DISARR(3,INDEX2)=F 1 ANSHER
DISARR(#, INDEX2)=F2ANSWER
IF(F1ANSHER.EQ.188)GOTO 2199
ELSEIF{ INDEX1.EQ.3)THEN
DISARR(S, INDEX2)=F 1 ANSWER
DISARR(6, INDEX2) =F2ANSWER
IF(F1ANSWER.EQ. 188)GOTO 2198
ELSE
DISARR(7, INDEX2)=F1ANSKER
DISARR(8, INDEX2Z)=FZANSWER
IF (F1ANSHER.EQ.18@)GOTO 2198
ENDIF
ENDIF
2188 CONTINUE
2158 CONTINUE
c
GOTO 2835

EDIT PROCESS PARAMETERS

GOGGGGO

3088 WRITE(=,3810)
3818 FORMAT(////7771770720777707777, 2 EDITING PROCESS PARAMETERS:',/,
t ' nh
DO 3858.INDEX1=1,13,1
IF(USERARR(23, INDEX1) .EQ.0. AND .USERARR (24, INDEX?) .EQ.8)GOTO 3848
WRITE(*,3828) INDEX1, INDEX1,PROCNAMES ¢ INDEX1)

265

@28 FORMAT(2X,12' = PROCESS NO.'I2' :',A)
Jgan CONT INUE

3058 CONTINUE
WRITE(*,3068)
3868 FORMAT(2X* & = RETURN TO MCDIFY MENU',//
1 2X'PLEASE ENTER CHOICE ----> ')\)
3070 READ(*,'(12)')IANSHER
c
IF(IANSWER.LT.#.0R. IANSWER. GT. 13)THEN
WRITE(*, 3088)
308d FORMAT(/,2X, "ttt CANNOT BE, PLEASE TRY AGAIN 1tt'./,
1 2X'PLEASE ENTER CHOICE ----> "\}
GOTO 3870
ELSEIF (IANSWER. EQ.) THEN
GOTO 2ea
ELSEIF (USERARR(23, IANSWER) .EQ. 8. AND .USERARR (24, IANSHER) .EQ. #) THEN
WRITE(»,33%8)
3898 FORMAT(/,2X,'11t PROCESS NOT ACTIVE, PLEASE TRY AGAIN t1t*./,
1 2X'PLEASE ENTER CHOICE ~--=~=> '"\)
GOTO 3878
ELSE
INDEX1=IANSWER
ENDIF
c
c
c

3108 WRITE(+,3118) INDEX1,PROCNAMES (INDEX1)
308 FORMAT(///IPEL L LA LTI EIEii7i17Y
1 12X'PROCESS NO.'12': 'A,/,

2 T3 A ———

IF (INDEX1.EQ.1) THEN
INDEXZ=1
INDEX3=4
INDEA4=USERARR (23, INDEX 1)
INDEX5=USERARR (5 , INDEX1)
3128 MRITE(*,3138)USERARR(23, INDEX1) , PROCNAMES(INDEX4},
1 USERARR(S, INDEX1), DISTRIBNAMES (INDEXS)

330 FORMAT(
1 ' OUTGOING DESTINATION : PROCESS NQ.'F3.B" ‘'A,/
2 " DISTRIBUTION USED : ', F3.0,18%,A)
c
IF(USERARR (4, INDEX1).EQ. @) THEN
WRITE(*,3148)
3148 FORMAT(" LOADER USED 1 NONE')
ELSE
INDEX4=USERARR(4, INDEX1)
WRITE(#,3158)USERARR (4 , INDEX1), MCHNAMES (INDEX4)
3158 FORMAT(* LOADER USED : PR3 A
ENDIF

IF(USERARR(9, INDEX1) .EQ.8) THEN
WRITE({*,3168)

266

3168

3178

3188

319

3208

3218
3229

323
3248

3258

1

1

1

1
2

W W N —

1

FORMAT(

' TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS')
ELSE

WRITE(%,3178)

FORMAT(

' TIME DELAYS HANDELED BY : USER-WRITTEN FORTRAN SUBROUTINE')
ENDIF

ELSEIF (INDEX1.NE.11) THEN
INDEX2=XXLEVEL(7)+INDEX1
INDEX3=XXLEVEL(3)+INDEX}
INDEX4=XXLEVEL (5)+INDEX1
INDEXS=XXLEVEL (4)+INDEX1
INDEX6=XXLEVEL (6)+INDEX1
INDEX7=USERARR (24, INDEX1)
INDEX8=USERARR (23, INDEX1)
INDEX9=USERARR (5 , INDEX1)
IF{USERARR(23, INDEX1) .EQ.#) THEN
WRITE(#,3188) USERARR (24, INDEX1), PROCNAMES (INDEX7)
FORMAT(
' INCOMING ORIGIN ¢ PROCESS NC.'F3.8' 'A)
ELSE
WRITE(%,3198)USERARR(24. INDEX1) ,PROCNAMES (INDEX7),
USERARR(23, INDEX1), PROCNAMES { INDEXE)

FORMAT(

' INGOMING ORIGIN : PROCESS NO.'F3.8' °A./,
' CUTGOING DESTINATION : PROCESS NO.'F3.8' 'A)
ENDIF

WRITE (*, 326)USERARR(5, INDEX1) ,DISTRIBNAMES(INDEX9) ,
XX(INDEX2), XX (INDEX3}, XX (INDEX4) , XX(INDEXS) , XX(INDEX6)
FORMAT(

' DISTRIBUTION USED : ', F8.8,184,A,/
' STARTUP-INVENTORY LEVEL : ',F8.1,/

' MINIMUM INVENTORY LEVEL : ', FB.1,/

' STARTUP LEVEL MINIMUM : ', F8.1,/

' MAXIMUM INVEMTORY LEVEL : ' F8.1,/

' STARTUP LEVEL MAXIMUM : '.F8.1)

IF(USERARR{4, INDEX1).EQ.8) THEN
WRITE(#,3228)
FORMAT(' LOADER USED : NONE')
ELSE
INDEX4=USERARR (4, INDEX1)
WRITE (#,3240)USERARR (4, INDEX1) ,HCHNAMES (INDEX4)
FORMAT(' LOADER USED : ' FB.E, 'L A)
ENDIF

IF (USERARR(S, INDEX1) .EQ.@) THEN

WRITE(#,3258)

FORMAT(

' TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS')

267

ELSE
WRITE(*,326d)
5268 FORMAT(
1 ' TIME DELAYS HANDELED BY : USER-WRITTEN FORTRAN SUBROUTINE')
ENDIF

ELSEIF (INDEX1.EQ.11) THEN
INDEX2=XXLEVEL(7)+INDEX1
INDEX3=XXLEVEL (3)+INDEX1
INDEX4=XXLEVEL (5)+ INDEX1
INDEX5=XXLEVEL (4} +INDEX1
INDEX6=XXLEVEL (6)+INDEX1
INDEX7-USERARR (24, INDEX1)
INDEX8=USERARR(7,5)
INDEX9=USERARR(7,6)

3280 WRITE(*, 3290)USERARR{ 24, INDEX1), PROCNAMES{ INDEX7) ,

1 USERARR(7,5) .PROCNAMES(INDEXS),

2 USERARR(7,6),PROCNAMES (INDEX9) ,

USERARR(7,3) ,USERARR(7,4)
3298 FORMAT (
1 ' INCOMING ORIGIN : PROCESS NO.'F3.8° ‘'A,/,
2 ' OUTGOING ROUTE 1 : PROCESS NQ.'F3.8° 'A,/,
3 ' OUTGOING ROUTE 2 : PROCESS NO.'F3.8° 'A,/,
4 ' % GOING ROUTE 1 L 1 - F
5 ' X GDING ROUTE 2 1 LFa.2,' %)
INDEX9=USERARR(S, INDEX1)

3300 WRITE(*,3318)USERARR(5, INDEX1) ,DISTRIBNAMES(INDEX9) , XX {INDEX2),
1 XCL(INDEX3) ,XX{INDEX4),XX(INDEX5),XX{ INDEX6)

3310 FORMAT(
1 ' DISTRIBUTION USED : ', Fe.8,18X,A,/,
2 ' STARTUP-INVENTORY LEVEL : °',F8.1,/,
3 ' MINIMUM INVENTORY LEVEL : '.F8.1,/,
4 ' STARTUP LEVEL MININUM : ',F8.1,/,
S ' MAXiMUM INVENTORY LEVEL : ',F8.1,/,
6 ' STARTUP LEVEL MAXINUM : °'.F8.1)

IF(USERARR(4, INDEX1} .EQ.@) THEN
3328 WRITE(*,3348}

3340 FORMAT(® LOADER USED 1 NONE')
ELSE
INDEX4=USERARR(4, INDEX1)
3350 WRITE(%*, 3368)USERARR (4, INDEX1), MCHNANES (INDEX4)
3360 FORMAT(* LOADER USED s ', FB.B, LA
ENDIF
G

IF(USERARR(9, INDEX1) .EQ.@) THEN
WRITE(*,3378)
3370 FORMAT(
1 ' TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS')
ELSE
WRITE(*,3388)

3380 FORMAT(

1 ' TIME DELAYS HANDELED BY : USER-WRITTEN FORTRAN SUBROUTINE')
ENDIF
C
ELSE
CONTINUE
ENDIF
C

WRITE{*,3398)
3390 FORMAT(/,2X, CONTINUE EDITING? Y/N (NJ-—-> '\)
READ(#, " (A) ' yCHRANSHER
IF (CHRANSWER.EQ.'Y') THEN
GOTO 3498
ELSE
GOTO 3pa8
ENDIF

aaa O

3499 WRITE(#, 350) INDEX1
3508 FORMAT(//' EDITING PROCESS MNO.'I2,/
1 ' '

)
WRITE(#,"(A,\)")" NAME OF PROCESS? -—-—->'
READ(»," (A20) ") CHRANSWER
PROCNAMES { INDEX 1) =CHRANSWER

C
3518 WRITE(*,'(A,\}')" NO. OF DISTRIBUTION TO USE? = ———- > !
READ(», ' (12} ')1ANSHER
INDEX2=1ANSHER"*2
INDEX2=INDEX2-1
IF{IANSHER.LT.1.0R.1ANSHER.GT.4)THEN
WRITE(»,3528)
3528 FORMAT(" tt! CANNOT BE, PLEASE TRY AGAIN ttt'/)
GOTO 3518
ELSEIF(DISARR(INDEX2,1).EQ.8.) THEN
WRITE(%*,3538)
3534 FORMAT(® t!t DISTRIBUTION NOT ACTIVE, PLEASE TRY AGAIN t1t'/)
GOTO 3518
ELSE
USERARR (5, INDEX1)=IANSWER
ENDIF
IF(INDEX1.EQ. 1) GOTO 3668
C
¢
IF (INDEX1.EQ.11) THEN
3531 WRITE(#,3532)
3532 FORHQT(' HOW MUCH INVENTORY IN % GOES ROUTE 1 7 %%%.%%--——- >
1 1 l')
READ(», ' (F6.2) ')F1ANSWER
WRITE(*,3533)

269

3533
1

3534

3540

3558

3569

351

3564

3594

3600

FORMAT(' HOW MUCH INVENTORY IN £ GUES ROUTE 2 7 %K%.%f----->'
LAY
READ(*,'{F6.2)"')FZANSHER
FSANSHER=F 1ANSHER+F2ANSHER
IF (F3ANSWER.NE.188) THEN
KRITE(*,3534)
FORMAT(/," 111 CANNOT BE, PLEASE TRY AGAIN 1tt*,/)
GOTO 3531
ELSE
USERARR(7,3)=F 1ANSWER
USERARR (7, 4) =F2ANSWER
ENDIF
ENDIF

WRITE(*,"'(A,\)")" STARTUP-INVENTORY LEVEL? [1)===== > !
READ(*," (F8.1)")F1ANSWER
IF(F1ANSWER.LT.@) THEN
WRITE(%,3559)
FORMAT(' ttt CANNOT BE, PLEASE TRY AGAIN t!t'/)
GOTO 3544
ELSEIF (F1ANSWER .EQ. P) THEN
INDEX2=XXLEVEL (7) «INDEX1
XX (INDEX2)=1
ELSE
INDEX2=XXLEVEL(7)+INDEX1
XX (INDEX2)=F1ANSHER
ENDIF

WRITE(*,'(A,\)")" MINNIMUM INFEED INVENTORY LEVEL? [(gl----- >
READ(*, " (F8.1)" JF1ANSHER
IF (F1ANSWER.LT.8.0R.F1ANSHER. GT. XX (INDEX2}) THEN
WRITE(*,3578)
FORMAT(® t1t CANNOT BE, PLEASE TRY AGAIN t!t'/)
GOTO 3568
ELSE
INDEX2=XXLEVEL (3) +INDEX1
00 INDEX2) =F 1ANSHER
ENDIF
WRITE(*, *{A,\}")" STARTUP-INV.LEVEL AFTER MINIMUM? [a3--—--- > !
READ(*, ' (F8.1) ")F 1ANSHER
IF(F1ANSWER.LT.8.0R.XX(INDEX2) .GT.F1ANSWER) THEN
WRITE(*,3590)
FORMAT(' 1!t CANNOT BE, PLEASE TRY AGAIN 11!'/)
GOTO 3588
ELSE
INDEX2=XYLEVEL(5)+INDEX1
XX INDEX2)=F 1 ANSHER
ENDIF

WRITE(*,'(A,\)")" MAXIMUM INFEED INV. LEVEL? [999999.91--—-- > !
READ(#*,*(F8.1}")F1ANSWER
INDEX3=XXLEVEL (5)+INDEX1

270

271

IF(F1ANSHR.LT.0) THEN
WRITE(*,3618)
3610 FORMAT(' 1t CANNOT BE, PLEASE TRY AGAIN tt1'/)
GOTO 3608
ELSEIF(FYANSHER.GT.0.AND. XX (INDEX3).GE.FYANSHER) THEN
WRITE(»,362d)
3620 FORMAT(' tt! CANNCT BE, PLEASE TRY AGAIN t1t*/)
GOTC 3600
ELSEIF (FIANSHER.EQ.) THEN
F3ANSHER=999999.9
INDEX2~XXLEVEL (4)+INDEX1
XX(INDEX2)=999999.9
ELSE
F3ANSWER=F1ANSHER
INDEX2=XXLEVEL (4)+INDEX1
XX(INDEXZ)=F1ANSKER
ENDIF

3639 MWRITE(*,’(A,\)’")" STARTUP-INV.LEVEL AFTER MAXIMUN? {999999.91--> '
READ(#,*'(F8.1) ')F1ANSHER
INDEX3=XXLEVEL (3)+INDEX1
IF(F1ANSHER .LT.®.0R.F1ANSWER. GT .F3ANSWER) THEN
WRITE(*,3640)
3640 FORMAT(® 1ttt CANNOT BE, PLEASE TRY AGAIN !1t'/)
GOTO 3638
ELSEIF(F1ANSWER.GT.B.AND. FIANSWER .LT.X0{(INDEX3)) THEN
WRITE(*,3650)
3650 FORMAT(' 11t CANNOT BE, PLEASE TRY AGAIN t!1'/)
GOTO 3638
ELSEIF(F1ANSHER.EQ.8) THEN
INDEX2=XXLEVEL (6)+INDEX1
XX(INDEX2)=999995.9
ELSE
INDEX2=XXLEVEL(6)+INDEX1
XX (INDEX2)=F1ANSHER
ENDIF
3668 CONTINUE

3670 WRITE(»,3688)
3688 FORMAT(/* WHAT LOADER DO YOU WANT TO USE (32-36) 7 [8]----- >
1T 'Y
READ(#,*(12)* YIANSWER
IF (1ANSWER.EQ.B) THEN
USERARR (4, INDEX1)=1ANSHER
ELSEIF (IANSHER.GE.32.AND.IANSHER.LE.36)} THEN
IF(USERARS (6, IANSWER) . LE . B)THEN
WRITE(*,3685)
3685 FORMAT(® 1tt CANNCT BE, PLEASE TRY AGAIN t11'/)
GOTO 3678
ELSE
USERARR (4, INDEX1) = ANSNER
ENDIF

ELSE
WRITE(*,3698)
690 FORMAT(® 11t CANNOT BE, PLEASE TRY AGAIN tit'/)
GOTO 3678
ENDIF
¢
3788 WRITE(»,3718)
3710 FORMAT(* BUILD-IN MODEL=@ OR USERFUNCTION=1 7 (8)----- >,
LAY

RERD{#,’(I2)*)IANSWER
TF(IANSWER.GT.1.0R. IANSWER.LT.8) THEN
WRITE(*,5720)
372 FORMAT(* tit CANNOT BE, PLEASE TRY AGAIN t1!'/)

GOTO 37l
ELSE
USERARR(9, INDEX1)=1ANSHER
ENDIF
[
GOTO 3188
[
[
[
[
c
C
c
C EDITING MACHINE PARAMETERS
[
[
[
c

4308 WRITE(#,4818)
4018 FORMAT(//// 77111100 ITEITIIEIIEEII S,

1 2X, '"EDITING MACHINE PARAMETERS:',/,

2 e%,’ '4/)

WRITE(*,4829)
428 FORMAT(2X,'PLEASE ENTER THE NUMBER OF THE MACHINE You',/
2X,'HANT TO EDIT. IF THE MACHINE HAS NOT BEEN',/
2X, 'SET ACTIVE PREVIQUSLY YOU CAN ACTIVATE'/.
2X,'IT NOW BY SPECIFYING THE INITIAL NUMBER OF'",/
2X, "MACHINES GREATER THAN 8.°'/,
2X,"'1-42 = MACHINE NUMBER',/
2X,' @ = RETURN TO MODIFY MENU'//,
2X, 'PLEASE ENTER CHOICE -—-> ",\)
4838 READ(#,'(12)') IANSHER
c

EC - R L

IF(IANSWER.LT.®.0R. IANSUER.GT.42) THEN
WRITE (%, 4@48)
4049 FORMAT(/,2X,'t!t CANNOT BE. PLEASE TRY AGAIN !tt',/,
1 2X'PLEASE ENTER CHOICE ----> "\)
GOTO 4a38
ELSEIF (IANSHER.EQ.8) THEN
GOTO 288

272

4042

4854

4060

4062

—

-

ELSE
INDEX1=1ANSWER
ENDIF

IF(INDEX1.GE.1.AND. INDEX1.LE.4)
INDEX9-1

THEN

ELSEIF(INDEX1.GE.5.AND. INDEX1 .LE.7) THEN

INDEX9=2

ELSEIF(INDEX1.GE.?7.AND. INDEX1.LE.18)THEN

INDEX9=3

ELSEIF (INDEX1.GE.11.AND. INDEX].
INDEX9=4

ELSEIF(INDEX1.GE.14.AND. INDEX1
INDEX9=5

ELSEIF (INDEX1.GE. 17.AND. INDEX1
INDEX9=6

ELSEIF{INDEX1.GE.20.AND. INDEX1
INDEX9=7

ELSEIF (INDEX1.GE. 25.AND. INDEX1
INDEX9=8

ELSEIF (INDEX1.GE. 26. AND. INDEX1
INDEX9=9

ELSEIF (INDEX1.GE. 29.AND. INDEX1
INDEX9=14

ELSEIF (INDEX1.GE.32.AND. INDEX1.
INDEX9=14

ELSEIF (INDEX1.GE. 57.AND. INDEX1 .
INDEX9=12

ELSEIF (INDEX1.GE.41.AND. INDEX1.
INDEX9=13

ELSE
CONTINUE

ENDIF

IF{INDEX9 .NE. 14) THEN

LE. 13)THEN

.LE.16)THEN

.LE.19)THEN

.LE.22)THEN

.LE.25)THEN

.LE.28) THEN

.LE.31)THEN

LE.36)THEN

LE.48)THEN

LE.42)THEN

WRITE (*, 4868) INDEX9, PROCNAMES (INDEX9)
FORMAT/ /777 7777771817077 771 117,

2X'PROCESS NO,'I2°: ',A,/

2 2 mmmmmmmmmmennt)

ELSEIF(INDEX9.EQ.14) THEN
WRITE(*,4862)

FORMAT/ /711807717018 T LT

24°LOADING DEVICES',/

2 Py A ———— |

ELSE
CONTINUE
ENDIF

273

4265

4a78

4480
4081

4@82

4258
4192

4118

a o o a

4229
4224

4234

4249

WRITE(*,4365) INDEX1, MCHNANES (INDEX1)
FORMAT(2X'MACHINE TYPE 'I2': 'A,/,

WRITE(*,4878)USERARR(6 , INDEX1)
FORMAT(* INITIAL NUMBER OF MACHINES 'F6.@)
IF(INDEX1.EQ.48.0R. INDEX1.EQ.42)G0TO 4850
IF(INDEX1.EQ.3%) GOTO 4881
WRITE (=, 4@888)USERARR (1, INDEX1)
FORMAT(® AVERAGE PROCESSING TIME / TREE : ', F8.4)
WRITE(®,4882)USERARR(2, INDEX1),

USERARR (3, INDEX 1), USERARR (8, INDEX1)

FORMAT(* FIXED CONSTANT TIME / LOAD : ', F8.4,/
' FIXED CONST. TIME / ONE WAY HAUL : *,F8.4,/
' MACHINE CAPACITY IN CULFT 1 ', F8.2)
WRITE(*,4188)USERARR(21, INDEX1) ,USERARR(22, INDEX1)
FORMAT(® FIXED COST / SCHEDULED HOUR : ', F8.2,/
* VARIABLE COST/ MACHINE HOUR : ' ,F8.2)
WRITE(*, 4118)

FORMAT(/,2X, 'CONTINUE EDITING? Y/N [N]----> '\)
READ{(#,"' (A) * YCHRANSWER
IF (CHRANSWER.EQ.'Y') THEN
GOTO 4289
ELSE
GOTO 488
ENDIF

WRITE(*,4228) INDEX1

FORMAT(//,* MACHINE TYPE 'I2' :*,/," ==========wene-)
WRITE(*,*(A,\)")* NAME OF MAGHINE TYPE ?
READ(*, * (A28)*) CHRANSHER

NCHNANES (INDEX1)=CHRANSHER

MRITE(#,*(A,\)")" INITIAL NUMBER OF MAGHINES ?
READ(#, * (14)*)[ANSWER

USERARR(6, INDEX 1) =IANSHER

IF(INDEX1.EQ.48.0R. INDEX1.EQ.42) GOTO 4278
IF(INDEX1.EQ.39) GOTD 4240

WRITE(*,"(A,\)*)* AVERAGE PROCESSING TIME / TREE? [d]
READ(*, *(F8.4)")F1ANSHER

1F (FAANSMER.LT.?) THEN

WRITE(*,*(A,/)")" t11 CANNOT BE, PLEASE TRY AGAIN !t
GOTO 4238

ELSE

USERARR(1, INDEX1)=F1ANSWER

ENDIF

WRITE(*,*(A,\)')" FIXED CONSTANT TIME / LOAD? [a]
READ(#,*(F8.4) *)F 1 ANSKER

IF (FAANSWER.LT.8) THEN

WRITE(*,'(A,7)")" 11t CANNOT BE, PLEASE TRY AGAIN !t
GOTO 4248

274

4250

4268

427

4280

[%]

EDI

275

ELSE

USERARR(2, INDEX1)=F1ANSHER
ENDIF
WRITE(*,'(A,\)")' FIXED CONST. TIME / ONE WAY HAUL? [#]------ >
RERD(®, ' (F8.4)")F1ANSHER
IF (F1ANSWER.LT.#) THEN

WRITE(*,"{A,/)')" 11t CANNOT BE, PLEASE TRY AGAIN t1t'

GOTO 4258
ELSE

USERARR (3, INDEX1)=F Y ANSHER
ENDIF
KRITE(®,"'(A,\)')" MACHINE CAPACITY IN CU.FT? 11-——-- >
READ{», ' (F8.2)')F1ANSHER
IF (F1ANSWER.LT.H) THEN

WRITE(*,"(A,/)')" 111 CANNOT BE, PLEASE TRY AGAIN t1t'

GOTO 4268
ELSEIF(F1ANSWER.EQ.8) THEN

USERARR(B, INDEX1)=1
ELSE

USERARR (8, INDEXY)=F 1ANSHER
ENDIF
WRITE(*,'(A,\)')' FIXED COST / SCHEDULED HOUR? {a]—-—- >
READ(*, ' (F8.2) ')F 1ANSHER
IF (F1ANSWER.LT.d) THEN

WRITE(*,"(A,/)")" 111 CANNOT BE, PLEASE TRY AGAIN 1I1t'

GOTO 4278
ELSE

USERARR(21, INDEX1)=F 1 ANSHER
ENDIF
KRITE(*,"(A,\)")" VARIABLE COST/ MACHINE HOUR? el--—-->
READ{»,' (F8.2)')F1ANSHER
IF (F1ANSKER.LT.8) THEN

WRITE(#,'(A,/)")' 11t CANNOT BE, PLEASE TRY AGAIN tt¢'

GOTO 4289
ELSE

USERARR{22, INDEX1)=F 1ANSWER
ENDIF

GOTO 4858

TING THE MACHINE BREAKDOWN PARAMETERS

O O O Do o o0on

5688 WRITE(=, 5019)

5818
1

FORMAT(/ /774771181700 0118170041108141107141107117 2K,
'"EDITING MACHINE BREAKDOWN PARAMETERS:',/,

2 X, "W

WRITE(*,5826)

5820 FORMAT(2X,'PLEASE ENTER THE NUMBER OF THE MACHINE FOR',/
2X,"NHICGH YOU HANT TO EDIT THE MACHINE BREAK-',/
2X,"DOWN PARAMETERS.'/,

2%, 1-42 = MACHINE MUMBER',//

2X,’ 8 = RETURN TO MODIFY MENU'/,

2X"PLEASE ENTER CHOICE ~----> ',\)

5838 READ(®,’(I2)')IANSHER

MU W -

IF (IANSWER.LT.8.0R. IANSKER. GT. 42)THEN
WRITE(*,5848)
5849 FORMAT(/,2X,"1¢1 CANNOT BE, PLEASE TRY AGAIN 1!t’,/,
1 2X'PLEASE ENTER CHOICE --—--> '\)
GOTO 5838
ELSEIF(IANSHER.EQ. #)THEN
GOTo 288
ELSE
INDEX1=IANSWER
ENDIF

5168 HWRITE(*,5118)INDEX1,MCHNAMES (INDEX1)
SVIR FORMAT(////7 77 EELEELE LT i1 007877,
1 * FREQUENCY DISTRIBUTIONS MAGHINE TYPE 'I2' : 'A,/

3 ' CLASS CUX FREQ.X TIME BETW.FAILURE CUM.FREQ.X*,

4° REPAIR TIME'/,

5
§ Pmmmmmmamn e ')
IF (MCHARR(INDEX1,1,1) .EQ.@.) THEN
WRITE(*,5128)
5128 FORMAT(/, 20X, '+ DISTRIBUTION NOT USED s’)
ELSE

DO 5178 INDEX2=1,18,1
IF(MCHARR(INDEX1, 1, INDEX2) .EQ. 2. AND.
1 MCHARR(INDEX1,, INDEX2) .EQ.@) THEN
GOTo 5166
ELSEIF (MCHARR(INDEX1,1,INDEX2).GT..AND.
1 MCHARR{INDEX1,3,INDEX2) .EQ.8) THEN
WRITE(,5138) INDEX2, MCHARR(INDEX1, 1, INDEX2)
1 MCHARR(INDEX1,2, INDEX2)
5138 FORMAT (4X, 12, 18X, F8.2, 18X, F6.2)
ELSEIF (MCHARR(INDEX,1,INDEX2).EQ.4.AND.
1 MCHARR(INDEX 1,5, INDEX2).GT.@) THEN
HRITE(®,5143)INDEX2 , MCHARR(INDEX1, 3, INDEX2},
1 MCHARR(INDEX1,4,INDEX2)
5148 FORMAT(4X, 12, 18X,8X, 18X ,8X, 18X, F8.2, 18X, F§.2)
ELSE
WRITE{#,5158) INDEX2, MCHARR INDEX1, 1, INDEX2)
1 MCHARR(INDEX1,2,INDEX2) ,MCHARR(INDEX1,3, INDEX2)
2 FCHARR(INDEX?,4, INDEX2)
5158 FORMAT(4X, 12, 18X,F8.2, 18X,F8.2, 10X ,F8.2, 18, F8.2)
ENDIF
5168 GONTINUE

276

5178 CONTIMUE

ENDIF
c
WRITE(*,5188)
5188 FORMAT(/,2X,'CONTINUE EDITING? Y/N [N]----> "\)
READ(*, * (A) " YCHRANSHER
IF (CHRANSHER.EQ.'Y") THEN
GOTO 5182
ELSE
GOTO Sesd
ENDIF
c
c
c

5182 DO 5185 IND1@=1.4,1
DO 5183 IND11=1,18,1
MCHARR(INDEX1,IND14, IND11) =8
5183 CONTINUE
5185 CONTINUE

F3ANSHER~9
5194 WRITE(™,5288) INDEX1,NCHNAMES { INDEX1)
S208 FORMAT(/////71701711111100011018114117,
1 ' MAGHINE TYPE *,12,' : ',A,/
2 ' mmmmmmammsmamamsa’ /f,
3 ' FREQUENCY DISTRIBUTION FOR TIMES BETWEEN FAILURES:'/,
4 ")
5214 DO 5288 INDEX2=1,18,1
5226 WRITE(®,5238)INDEX2
5238 FORMAT(/,’ CLASS *,12,': CUM.REL.FREQENCY? [B1———->"\)
READ(*, ' (BN,F8.21*)FIANSKER
HRITE(#,5248)INDEX2
5248 FORMAT(' CLASS ’,I2,': TIME BETHEEN FAILURES? ([@1----->'\)
READ(*," (BN,F8.2)* JF2ANSHER
IFCINDEX2.EQ. 1. AND.F1ANSHER .EQ. @) THEN
GOTO 5489
ELSETF(FZANSWER. LE . 8) THEN
WRITE(*,"(A,/)')" 11 CANNOT BE, PLEASE TRY AGAIN t1°
GOTD 5228
ELSEIF(F1ANSWER,GT. 188 }THEN
HRITE(*,'(A,/)’)" f1 CANNOT BE, PLEASE TRY AGAIN 11°
GOTO 5220
ELSE{F(INDEX2.5T. 1. AND.F1ANSNER. LE . F 3ANSHER YTHEN
WRITE(¥,*(A,/3')" 1! GANNOT BE, PLEASE TRY AGAIN It’
GOTO 5228
ELSEIF{ INDEX2.EQ. 14 . AND. F1ANSHER .NE . 168) THEN
WRITE(*,’(A,/)')’ 1t CANNOT BE, PLEASE TRY AGAIN 11
GOTO 5228
ELSE
F3ANSHER=F 1 ANSRER
MCHARR INDEX1,1, INDEX2) =F1ANSHER
MCHARR(INDEX1 , 2, INDEX2) =F2ANSHER
IF(F1ANSWER .EQ. 108) GOTO 5298

ENDIF
5288 CONTINUE
c
c

5290 F3ANSWER=g
WRITE(®,5%88) INDEX1 ,MCHNANES (INDEX1)
5308 FORMAT(///F171111EHTETTELETTE1E Y,
1 ' MACHINE TYPE '12' : 'A,/

2 N7
3 ' FREQUENCY DISTRIBUTION FOR MACHINE REPAIR TIMES:'/,
4! 4]

5318 DO 5388 INDEX2=1,18,1
5328 WRITE(*,5338) INDEX2

5538 FORMAT(/,* CLASS ',12,': CUM.REL.FREQENCY? [B1-—-3'\)

READ(*, ' (BN,FB.2)" JF1ANSWER
WRITE(®,5348) INDEX2

5348 FORMAT(' CLASS ',I2,': MACHINE REPAIR TIME? (@3----->')

READ(®, * (BN,FB.2)")F2ANSWER
IF{ INDEX2.EQ. 1. AND,F{ANSKER .EQ. 8) THEN
HRITE(*,'{A,7}*)* t1 CANNOT BE, PLEASE TRY AGAIN
GOTO 5328
ELSEIF(F2ANSHER .LE.#) THEN
WRITE(*,'(A,7}')" 11 CANNOT BE, PLEASE TRY AGAIN
GOTO 5320
ELSEIF (F1ANSWER.GT . 188) THEN
WRITE(*,"(A,/}")" 1t CANNOT BE, PLEASE TRY AGAIN
GOTO 5326
ELSEIF(INDEX2.GT.1.AND. FANSWER.LE . F3ANSHER) THEN
WRITE(*,"'(A,/)*)" 1! CANNOT BE, PLEASE TRY AGAIN
GOTO 5324
ELSEIF{ INDEX2.EQ. 19.AND. F1ANSHER . NE. 188) THEN
WRITE(*,'(A,/}')" 11 CANNOT BE, PLEASE TRY AGAIN
GOTO 5326
ELSE
F3ANSWER=F 1 ANSWER
MCHARR{ INDEX1,3, INDEX2) =F 1ANSHER
MCHARR(INDEX?, 4, INDEX2) =F 2ANSHER
IF(F1ANSWER.EQ. 188)GOTO 5429
ENDIF
5388 CONTINUE
c
c
5480 CONTINUE
c
GOTO 5100

O o 00 o0

1"

278

279

SAVING MODEL ON DISK

[
¢
[
[
6008 WRITE(x,6802)
6882 FORMAT(/////7/71070000000000007070007707 208,
1'END OF SUBROUTINE MODIFY'/20%
2' v

3' YOU HAVE TO SAVE THE EDITED MODEL ON DISK,'/,
4' OTHERWISE ALL YOUR WORK WILL BE LOST t1'//)

c
6004 WRITE(*,’(/A\)’)’ SAVE MODEL ON DISK Y/N 7 [Y]-=—-> !
READ(*,' (A1)') CHRANSKER
"
IF (CHRANSWER.EQ.'N') THEN
WRITE{*,’(/,A.\)")* ARE YOU REALY SURE Y/N 7 (N)------ >
READ(*, * (A1) ' YCHRANSHER
IF (CHRANSWER.EQ.'Y') THEN
GOTO 9998
ELSE
GOTD 6084
ENDIF
ELSE
CONTINUE
EMDIF
c

6018 INQUIRE(FILE=FILENAME ,EXIST=F [LESTATUS)
IF(.NOT.FILESTATUS) THEN
OPEN(18, FILE=F1LENAME , STATUS="NEW")
ELSE
RRITE(*,6@12)F [LENAME
6812 FORMAT(/,' 1111 FILE: "A’* ALREADY EXISTS 1111'//,
1 ' OVERWRITE OLD FILE? [N]-----~ >\
READ(*, * (A1) ' JCHRANSKR
IF(CHRANSHER .EQ. " Y*)THEN
OPEN(18, FILE=F ILENAME , STATUS =" OLD*)
REWIND 18
ELSE
WRITE(*,6813)
6813 FORMAT(/,' INPUT NEW FILENAME FOR MODEL: =---- >\
READ(*, ' (A28) * YFILENAME
GOTO 6818
ENDIF
ENDIF

WRITE(18,' (FB.1)") XX(1)
WRITE(1E,' (FB.1)") XN(2)
WRITE(18,' (F8.1)") XA(3)
WRITE(18,*(F8.8)") XX(4)
WRITE(14,'(F8.1)") XX(5)
WRITE(18,"(F8.1)") XX(6)
RRITE(1@, ' (F8.1)") XX(?)

6020
6az2

6024
6826
628

6034
6836
€038

640
cH42
6044

6p46
6048
6050
6052

6854
6856

6058
6068

WRITE(18,'(FB.1)") XX(8)

RRITE(¢18,'(FB.1)") XX(9)

RRITE(18,'(F8.4)') XX(1H)

DO 6822 INDEX1=11,120,1
WRITE(18,6828) XX(INDEX1)
FORMAT(F8.1)

CONTINUE

DO 6828 INDEX1=1,3,1

DO 6826 INDEX2+%,42,1
RRITE(18,6024) USERARR(INDEX1,INDEX2)
FORMAT(FB. 4)

CONTINUE

CONTINUE

DO 6838 INDEX1=4,26,1

DO 68%6 INDEX2=1,42,1
WRITE(18,6034} USERARR(INDEX1,INDEX2)
FORMAT(F8.2)

CONTINUE

CONTINUE

DO 6844 INDEX1=1,8,1

DO 6842 INDEX2=1,18,1
RRITE(18,6848) DISARR{INDEX},INDEX2)
FORMAT(F8.2)

CONTINUE

CONTINUE

DO 6852 INDEX1=1,42,1

DO 6858 INDEX2=1,4,1

DO 6848 INDEX3=1,18,1
WRITE(18,6846) MCHARR(INDEX1,INDEX2,INDEX3)
FORMAT(F8.2)

CONTINUE

CONTINUE

CONTINUE

DO 6856 INDEX1~1,52,1
WRITE(18,6054) MCHNAMES(INDEX1)
FORMAT(A)

CONTINUE

DO 6860 INDEX1=1,28,1
WRITE(10,6058) PROCNAMES(INDEX1)
FORMAT(A)

CONTINUE

280

281

DO éA64 INDEX1=1.4,1
WRITE(18,6062) DISTRIBNAMES(INDEX1)
é062 FORMAT(R)
6964 CONTIMUE

REWIND 18
CLOSE(19, STATUS="KEEP*)
WRITE(*,6066)
6066 FORMAT(///,2BX,"!'t! MODEL HAS BEEN SAVED 1t11+/,
128%,* PRESS RETURN TO CONTINUE®)

READ(#*,* (I2)"')IANSKER
GOTO 298

¢

C

¢

C END OF SUBROUTINE:

C ssmsamassassasaszs
c

9998 RETURN
END

X s N R oW -

bt ek ek
o= e

282

APPENDIX E

TABLE OF CONTENTS:

Figure, Harvesting system 1ccovvvveevnereenranronsnnennnnnns 283
LOGSIM, Harvesting system 1 printoutoeevevneenrensens 284
LOGSIM, simulation results system 1eecvveveenenevnvinnennns 290
Figure, Harvesting system 2coooiiviiiiincivncninrineannn. 294
LOGSIM, Harvesting system 2 printout.........ce..veevevenevnnnsn, 295
LOGSIM, simulation results SYStEM 2.......oovvveerneenivneenrones. 302
Figure, Harvesting system 3ccoiuueiueeneeenreneerorinsanennenens 307
LOGSIM, Harvesting system 3 printoutcoeeveeeenenrenenens 308
LOGSIM, simulation results System 3.....cccevveveeeenivnivnnennens 314
Figure,Harvesting system 4. ..c.ooininiininiiiiiriierensieerenrennns 319
LOGSIM, Harvesting system 4 printoutcocoeevevevrenennsn. 320

LOGSIM, simulation results system 4........ccoevveeenvenivneeniens 331

APPENDIX E

1. Figure, Harvesting system 1

R .
FL o rolwaie
1
i
ol ST)
- S 1
i
i
. _ = - i
padindie B BB *T5373 - :
!
—_ —_ = I
- = PR -, |
— = = = = -—— o= o T
3= == - o o= i
1
ML 0
x
R Tz oo
P T i Y
A d
i m A —m e S
=t == [- - ~
N b T .
'
Y b = = = x -4
. * i T 7. L =
! - - - - - r
oML [b ST a e e
A
Lot . [Y pad - - —
A S A e - - —
|
‘L.:F-«cu:uas TIiME - B- . _TaCET “TE

283

APPENDIX E

2. LOGSIM, Harvesting system 1 printout

STV G 00 I DI D P D S-S I

P>LOGS T ML
HARVESTING CONFIGURATION

x %k X
- x ¥

%

SYSTEM!.MCD

T 6 D 26

NAME OF SIMULATION MODEL : SYSTEM1.MOD
AMOUNT TO BE HARVESTED (CU.FT.) : 255664,
TIME DELAY PARAMETER : .aad

MAGHINE CONFIGURATION

PROCESS 7 IN ORIGIN OUT DESTINATION

WM 1 O W e W =

- s —a
W = Im

285

MATERIAL FREQUENCY DISTRIBUTIONS

CUMULATIVE FREQUENCY DISTRIBUTION NO.1 : WHOLE TREES
CUMULATIVE FREQUENCY DISTRIBUTION NO.2 : SAWLOGS
CUMULATIVE FREQUENCY DISTRIBUTION NO.3 :

CUMULATIVE FREQUENCY DISTRIBUTION NO.4 :

DISTRIBUTION 1 DISTRIBUTION 2 DISTRIBUTION 3 DISTRIBUTION 4
CLASS FREQ.2 QU.FT FREZ.X2 QULFT FREQ.2 QU.FT FREQ.2 QU.FT

1 11.68 4.48 20.e8 3.
2 29.78 9.48 58.38 9.30
3 50.48 18.88 67.38 15.50
4 69.998 28.38 8d.98 21.58
5 84 .40 49.%0 91.18 29.20
6 93.00 54.60 96.1@ 3.0
7 97.78 708.28 98.90 48.89
8 188.08 92.18 180.98 59.40
INVENTORY AND BUFFER SIZES
PRO- NAME DISTRI- STARTUP MINIMUM STARTUP MAXIMUM STARTUP
CESS BUTION INV, INV. MINTMUM INV. MAXIMUM
1 MANUAL FELLING 1.
2 CRBELE SKIDDING 2. 1280.8 128.0 1280.9 999999.9 999999.9
13 FINAL TRANSPORT 2. 1184.0 . B 12888.8 2560.8
PROCESS NO. 1: MANUAL FELLING
QUTGOING DESTINATION : PROCESS NO. 2. CABLE SKIDDING
DISTRIBUTION USED . P WHOLE TREES
LOADER USED : NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

HACHINES USED :
TYPE NAME INITIAL £ OF MACHINES

1 HAND FELLERS 2.

PROCESS NO. 2:

INCOMING CRIGIN
OUTGOING DESTINATION
DISTRIBUTION USED

STARTUP-INVENTORY LEVEL :
MINIMUM INVENTORY LEVEL :

STARTUP LEVEL MINIMUM

MAXTMUM INVENTORY LEVEL :

STARTUP LEVEL MAXIMUM
LOADER USED

TIME DELAYS HANDELED BY :

CABLE SKIDDING

PROCESS NO. 1. MANUAL FELLING
PROCESS NQ.13. FINAL TRANSPORT
2. SANLOGS
1268.9
128.8
1280.0
999999.9
999999.9
NONE
STANDARD BUILD-IN FUNCTIONS

MACHINES USED
TYPE NAME INITIAL # OF MAGHINES
5 CAT 528 1.
PROCESS NO.13: FINAL TRANSPORT

INCOMING ORIGIN
DISTRIBUTION USED

STARTUP- INVENTCRY LEVEL :
MINTMUM INVENTCRY LEVEL :

STARTUP LEVEL MINIMUM

MAXIMUM INVENTORY LEVEL :

STARTUP LEVEL MAXIMUM
LOADER USED
TIME DELAYS HANDELED BY

MACHINES USED
TIPE NAME

PROCESS NO. 2. CABLE SKIDDING
2. SAWLOGS
1184.8
.8
N)
12608.0
2568.8
NONE
: STANDARD BUILD-IN FUNCTIONS

INITIAL # OF MACHINES

41 LOG TRUCK

HACHINE TYPE

1: HAND FELLERS

INITTIAL NUMBER OF MACHINES : 2.

AVERAGE PROCESSING TIME

/ TREE : . 1508

287

FIXED CONSTANT TIME / LOAD : . eped
FIXED CONST. TIME / ONE WAY HACL : .doa
FIXED COST / SCHEDULED HOUR : .53
VARTABLE COST/ MACHINE HOUR : 21.50
MACHINE CAPACITY IN GU.FT 1 99999.08

FREQUENCY DISTRIBUTIONS MACHINE TYPE 1 : HAND FELLERS

288

CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME
1 29.09 3.00 38.00 1.00
2 4999 7.00 55.00 5.00
3 64.08 12.00 75.80 T.08
4 89.08 22.00 90.908 11.08
5 188.09 44.00 100.00 16.80

MACHINE TYPE 5: CAT 528

INITIAL NUMBER OF MACHINES : 1.

AVERAGE PROCESSING TIME / TREE : 1500

FIXED CONSTANT TIME / LOAD : 1580

FIXED CONST. TIME / ONE WAY HAUL .aaaa

FIXED COST / SCHEDULED HOUR : 29.44

VARIABLE COST/ MACHINE HOUR : 35.72

MACHINE CAPACITY IN CU.FT T 128.90

FREQUENCY DISTRIBUTIONS MACHINE TYPE 5 : CAT 528

CLASS CUM FREG.% TIME BETW.FAILURE GUM.FREQ.% REPAIR TIME
1 28.90 7.00 35.08 .50
2 48.89 14.08 €5.00 1.88
3 64.00 28.08 €5.08 3.0
4 84.08 56.98 95.08 8.00
5 192.09 100.00 188.88 16.00

MACHINE TYPE 41: LOG TRUCK

INITIAL NUMBER OF MACHINES : 1.
AVERAGE PROCESSING TIME / TREE : 0990
FIXED CONSTANT TIME / LOAD : . 7508
FIXED CONST. TIME / ONE WAY HAUL : 1. 0080
FIXED COST / SCHEDULED HOUR : 15.84
VARITABLE COST/ MACHINE HOUR : 31.56

MACHINE CAPACITY IN CU.FT ¢ 4508

FREQUENCY DISTRIBUTIONS MACHINE TYPE 41 : LOG TRUCK

CLASS CUM FREQ.® TIME BETW.FAILURE CUM.FREQ. % REPAIR TIME
1 28.28 7.08 35.00 .58
2 48.28 14.98 65.08 1.88
3 60.6d 28.00 85.08 3.08
4 62.22 56.09 95.28 .ea
5 120.89 120.00 128.22 16.289

APPENDIX E

3. LOGSIM, simulation results system 1

*

» >LO0GS TN LK
* SIMULATION RESULTS
»

* X X X

SIMULATION MODEL USED: SYSTEM1.MOD

BV UMD DI

DATE= 86-81-87
TIME= 81:29:29
SIMULATION RUN 1 OF 1.

PROCESS NO. 1 : MANUAL FELLING

TIME BEGIN OF PROCESS : .PO@QB@DE+JR
TIME END OF PROCESS 1 .B989930E+83
DURATION OF PROCESS : .B989932E+03
TIME INVENTORY TOO LOW : .0@29000E+9
TIME INVENTORY TOO HIGH : .2222adfE+Bd

% INVENTORY DOWNTIME : . B909RBPE+DD
TOTAL # OF MACHINES : 2
SUM SCHEDULED HOURS : L 1T97986E+B4

SUM MACH.BREAKDOWN HOURS: .4150800E+33
SUM PRODUGTIVE HOURS : L 1382977E+D4
% NET UTILIZATION MACH. : .7691812E+32
% GROSS UTILIZATION MACH: .9999959E+d2

MACHINE TYPE 1 : HAND FELLERS

TOTAL # OF MACHINES : 2
SUM SCHEDULED HOURS + . 1797986E+B4
SUM MACH.BREAKDOWN HOURS: .4150000E+83

SUM PRODUCTIVE HOURS 1 L 1382977E+DB4

AVERAGE INVENTORY
MAXIMUM INMVENTORY
MINIMUM INVENTORY
STD.DEV. INVENTORY

OF OBSERVATIONS INV,
SUM UNITS PROCESSED
SUM COST OF PROCESS
COST PER UNIT H
COST PER SCHEDULED HOLR :

COST PER MACHINE
COST PER SCHEDULED HOUR :
% NET UTILIZATION MACH. :
% GROSS UTILIZATION MACH:

: .DOAOPBIE+DR
1 .PdPRIRE+DD
: .BPSPRBPE+ag
: -PPDIDIE+DD

.Bd28A0BE+08
1 . 2556640E+36
. 3B6B694E+E5
. 1200284E+28
L1TB6740E+B2

: 1534347485
.1T96740E+92
.7691812E+012
-9999950E+92

291

PROCESS NO. 2 : CABLE SKIDDING

TIME BEGIN OF PROCESS : .3000@@0E+dt
TIME END OF PROCESS 1 L3112599E+84
DURATION OF PROCESS : 3189599E+04

TIME INVENTORY TOO LOW : .@d28dP8E+HE
TIME INVENTORY TOO HIGH : .PR@SS@aE+ad

% INVENTORY DOWNTIME : .P2gegeaE+aa
TOTAL # OF MACHINES : 1
SUM SCHEDULED HOURS : .3189599E+B4
SUM MACH.BREAKDOWN HOURS: .1995828E+83
SUY PRODUCTIVE HOURS 1 . 2918899E+84

% NET UTILIZATION MACH. : _9358438E+#2
% GROSS UTILIZATION MACH: .1008addE+@3

MACHINE TYPE 5 : CAT 528

TOTAL # OF MACHINES : 1
SUM SCHEDULED HOURS 1 3109599E+94
SUM MACH.BREAKDOWN HOURS: .1995290E+85
SUM PRODUCTIVE HOURS 1 . 2910899E+24

PROCESS NO.13 : FINAL TRANSPORT

TIME BEGIN OF PROCESS : .1835@38@E+R2
TIME END OF PROCESS 1 N5 1E+B4
DURATION OF PROCESS + _3B9B4B1E+E4

TIME INVENTORY TOO LOW : .Ad2sdadE+ee
TIME INVENTORY TOO HIGH : .@d2A28aE+ae

% INVENTORY DOWNTIME 1 .B0800BAE+D8
TOTAL # OF MACHINES : 1
SUM SCHEDULED HCURS : 3098421 E+84
SUM MACH.BREAKDOWN HOURS: .1458888E+23
SUM PRODUCTIVE HOURS t . 1680250E+84

% NET UTILIZATION MACH. : .5422958E+82
% GROSS UTILIZATION MACH: _5898942E+@2

AVERAGE INVENTORY
MAXINUM INVENTORY
HINIMUM INVENTORY
STD.DEV. INVENTORY

OF OBSERVATIONS INV.
SUM UNITS PROCESSED
SUM COST OF PROCESS
COST PER UNIT :
COST PER SCHEDULED HOUR :

COST PER MACHINE
COST PER SCHEDULED HOUR :
% NET UTILIZATION MACH. :
% GROSS UTILIZATION MACH:

AVERAGE INVENTORY
MAXIMUM INVENTORY
HINIMUM INVENTORY
STD.DEV. INVENTORY

OF OBSERVATIONS INV.
SUM UNITS PROCESSED
SUM COST OF PROCESS
COST PER UNIT :
COST PER SCHEDULED HOUR :

: .B92B633E+05
1 . 1829480E+86
: . 2230anE+La
: .5284588E+05
1 1143020E+85
1 .2556599E+26
: . 1954953E+86
- T646695E+00
-6286834E+82

: . 1954953E+86
.6286834E+82
-935B438E+82
- 1500800E+3

: .2966347E+03
1 . 1284988E+4
: .B2ageaaE+aa
: J1736158E+83
1 . 2822080E+04
- 2556680E+86
- 1B97181E+86
.4291252E+80
.354@863E+82

MACHINE TYPE 41 : LOG TRUCK

TOTAL # OF MAGHINES : 1 COST PER MACHINE : J199T1B1E+@6
SUM SCHEDULED HOURS : . 30984ME+B4 COST PER SCHEDULED HOUR : .3548863E+82
SUM MACH.BREAKDOWN HOURS: .1458880E+83 X NET UTILIZATION MACH. : .5422958E+82
SUM PRODUCTIVE HOURS : . 1680250E+B4 % GROSS UTILIZATION MAGH: .5899942E+02

COMPLETE HARVESTING SYSTEM STATISTICS

COMPUTER TIME START SIMULATION DATE: 86-81-87 TIME: 8@:31:38
COMPUTER TIME END SIMULATION DATE: 86-91-87 TIME: @1:44:57

SIMULATION RUN 1 OF 1.

BEGIN OF HARVESTING : .OEAPBBPE+AE END OF HARVESTING : J3NETS1E+4A
TOTAL # OF MACHINES : 4 SUM OF UNITS HARVESTED : .255664@E+B6
SUM SCHEDULED HOURS : .8A05986E+84 SUM COST OF SYSTEM 1 . 3358924E+86
SUM MACH.BREAKDOWN HOURS: .75958€PE+@3 COST PER UNIT : L 13138B4E+81
SUM PRODUCTIVE HOURS : .5973326E+84 COST PER SYSTEM HOUR 1 1B777H0E+B3

% NET UTILIZATION MACH. : .7461874E+82
% GROSS UTILIZATION MACH: .B489739E+82

END OF RUN # 1 OF 1,

APPENDIX E

4, Figure, Harvesting system 2

ir
Bl FE__INS
i 2 NP i NI
i
|
¥
35999.79 ;9999'3.9
L 223, | 2220
32 SkIDDING
| ' !
2 | wgRM 0 NC
i
i
!
| 889 S E2%
| @ D
| #3 DZLIMB & BRIK
T ;
|1 L .
1
i
— 1
| I
| 13122 L4338
. !
i @ | &
= -~
L #i3 FINAL TRANZEIRS
H 1
‘g | NCFM iz

T
1

Hax. (NVENTCA- §TaRT

M [yH

MIN.INVENTGRY | 37anT

AININYM

NLIMET
PR

+PRLC=55 7 &

o ar maonieer | TIME JELL @Y LtapER YRR

294

APPENDIX E

5. LOGSIM, Harvesting system 2 printout

295

LOGSTIH<K

HARVESTING CONFIGURATION

»
» 0
»
»

NANE OF SIMULATION MODEL
AMOUNT TO BE HARVESTED (CU.FT.)
TIME DELAY PARAMETER

SYSTEM2.MOD

FRE R NN N MO

: SYSTEMZ2.MOD
255664.
8108

MACHINE CONF LGURATION

PROCESS # IN ORIGIN OUT DESTINATION

1 2.
2 1. 3
3 2 13.
4
5
[
7
8
9
[
1"
12

"
W

MATERIAL FREQUENCY DISTRIBUT IONS

CUMULATIVE FREQUENCY DISTRIBUTION NO.1 : WHOLE TREES

CUMULATIVE FREQUENCY DISTRIBUTION NQ.2 : SAWLOGS
CUMULATIVE FREQUENCY DISTRIBUTION NO.3 :
CUMULATIVE FREQUENCY DISTRIBUTION NO .4 :

DISTRIBUTION 1
CLASS FREQ.X CU.FT

DISTRIBUTION 2

297

DISTRIBUTION 3 DISTRIBUTION 4

FREQ.X CU.FT FREQ.X CU.FT FREQ.X CU.FT

1 11.68 4.4 2094 3.7
2 29.70 9.48 50.38 9.38
3 58.48 18.88 67.38 15.38
4 69.99 28.30 88.88 21.54
5 84.48 48.94 91.18 29.28
6 9328 54.68 96.18 38.00
7 97.78 78.28 98.98 48.M9
8 188.98 92.18 198.98 59.48
INVENTORY AND BUFFER SIZES
PRO- NAME DISTRI- STARTUP MINIMUM STARTUP MAXIMUM STARTUP
CESS BUT10N INV. INV. MINIMUM INV. MAXIMUM
1 FELLING 1.
2 SKIDDING 1. 22ap.4 228.8 2204.4 999999.9 999999.9
DELIMBING & BUCKING 1. 1.2 .8 . 8a@.a 220.8
13 FINAL TRANSPORT 2. 1.8 B A 13128.8 409d.4
PROCESS NO. 1: FELLING

QUTGOING DESTINATION
DISTRIBUTION USED

LOADER USED

TIME DELAYS HANDELED BY :

MACHINES USED
TYPE NAME

PROCESS NO. 2. SKIDDING

1.

NONE
STANDARD BUILD-IN FUNCTIONS

WHOLE TREES

INITIAL # OF MACHINES

1 CAT 227 FELLER-ENCH

PROCESS NO. 2: SKIDDING

INCOMING CRIGIN : PROCESS MO, 1. FELLING

OUTGOING DESTINATION : PROCESS NO. 3. DELIMBING & BUCKING
DISTRIBUTION USED : 1. WHOLE TREES
STARTUP-INVENTORY LEVEL : 2200.4

MINIMUM INVENTORY LEVEL : 228.8

STARTUP LEVEL MINIMUM : 2208.4

MAXIMUM INVENTORY LEVEL : 999999.9

STARTUP LEVEL MAXIMUM : 999999.9

LOADER USED : NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED :
TYPE NAME IRITIAL # OF MACHINES
5 CAT 528 GRAB-SKIDDER 2.

PROCESS NO. 3: DELIMBING & BUCKING

INCOMING ORIGIN : PROCESS NO. 2. SKIDDING
OUTGOING DESTINATION : PROCESS NO.13. FINAL TRANSPORT
DISTRIBUTION USED : 1. WHOLE TREES
STARTUP-INVENTORY LEVEL : 1.8

MINIMUM INVENTORY LEVEL : .4

STARTUP LEVEL NINIMUM : .a

MAXIMUM INVENTORY LEVEL : 884.d

STARTUP LEVEL MAXIMUM 220.4

LOADER USED i NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED :
TYPE NAME INITIAL # OF MACHINES

8 HAHN HARVESTER 1.

PROCESS NO.13: FI

INCOMING ORIGIN
DISTRIBUTICN USED :
STARTUP-INVENTORY LEVEL :
MINIMUM INVENTORY LEVEL :
STARTUP LEVEL MININUMN =
MAXTMUM INVENTORY LEVEL :
STARTUP LEVEL MAXIMUM
LOADER USED :
TIME DELAYS HANDELED BY :

NAL TRANSPORT

PROCESS NO. 3. DELIMBING & BUCKING
2. SAWLOGS
1.9
.8
.8
15128.0
4000.0
32. CAT 225 LOG LOADER

STANDARD BUILD-IN FUNCTIONS

MACHINES USED
TYPE NAME INITIAL # OF MACHINES
4 LOG TRUCK 3.
MACHINE TYPE 1: GAT 227 FELLER-BNCH

INITIAL NUMBER OF MACHINES

AVERRGE PROCESSING TIME / TREE

FIXED COMSTANT TIME / LOAD
FIXED CONST. TIME / ONE NAY
FIXED COST / SCHEDULED HOUR
VARIABLE COST/ MACHINE HOUR
MACHINE CAPACITY IN CU.FT

FREQUENCY DISTRIBUTIONS MACHINE TYPE 1

.aege

400

.ogoe
41.99
41.35
82.56

HAUL

: CAT 227 FELLER-BNCH

CLASS CUM FREQ.X TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME
1 2880 6.00 50.88 .58
2z 49.00 12.80 78.00 1.00
3 68.08 2880 80.00 2.08
4 80.80 36.00 99.00 5.09
5 180.08 64.00 100.08 19,88

MACHINE TYPE 5:

INITIAL NUMBER OF MACHINES

AVERAGE PROCESSING TIME / TREE

FIXED CONSTANT TIME / LOAD

FIXED CONST. TIME / ONE HAY HAUL

CAT 528 GRAB-SKIDDER

2.
.oege
. 1888
. Bpan

FIXED COST / SCHEDULED HOUR : 29.44
VARIABLE COST/ MACHINE HOUR : 36.72
MACHINE CAPACITY IN QU.FT i 22d.80

FREQUENCY DISTRIBUTIONS MACHINE TYPE 5 : CAT 528 GRAB-SKIDDER

CLASS CUM FREQ.X TIME BETW.FAILURE CUM.FREQ. % REPAIR TIME
1 20.88 6.9 50.08 -58
2 4990 12.08 70.88 1.88
3 68.88 28.88 8a.a8 2.88
4 8p.08 36,80 98.08 5.08
5 188.88 64.20 188.08 18.88

MACHINE TYPE 8: HAHN HARVESTER

(LT EE RS ETY L 2]

INITIAL NUMBER OF MACHIKES : 1.
AVERAGE PROCESSING TIME / TREE : 8188
FIXED CONSTANT TIME / LOAD : .2oe8
FIXED CONST. TIME / ONE WAY HAUL : N
FIXED COST / SCHEDULED HOUR : 55.44
VARIABLE COST/ MACHINE HOUR : 39.72
MACHINE CAPACITY IN QU.FT 1 99999 00

FREQUENCY DISTRIBUTIONS MACHINE TYPE & : HAHN HARVESTER

CLASS CUM FREQ.® TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME
1 20.00 5.0 30.00 1.08
2 48.00 7.00 5580 .00
3 68.90 12.00 75.08 7.80
4 ed.me 22.88 99.08 11.08
5 188.00 44,00 180.88 16.88

MACHINE TYPE 32: CAT 225 LOG LOADER

INITIAL NUMBER OF MACHINES : 1.
AVERAGE PROCESSING TIME / TREE : N
FIXED CONSTANT TIME / LOAD : .2588
FIXED CONST. TIME / ONE WAY HAUL : 0808
FIXED COST / SCHEDULED HOUR : 41.99
VARIABLE COST/ MACHINE HOUR : 41.35

MACHINE CAPACITY IN QU.FT t 131208

FREQUENCY DISTRIBUTIONS MACHINE TYPE 32 : CAT 225 LOG LOADER

CLASS CUM FREQ.%* TIME BETW.FAILURE CUM.FREG. % REPAIR TIME
1 20.98 7.08 35.08 .58
2 40.08 14.88 65.08 1.98
3 60.88 28.00 85.08 3.00
4 80.00 56.08 95.08 8.08
5 180.20 \Be.28 88.80 16.89

MACHINE TYPE 41: LOG TRUCK

INITIAL MUMBER OF MACHINES : 3.
AVERAGE PROCESSING TIME / TREE : N
FIXED COMSTANT TINE / LOAD : 5800
FIXED CONST. TIME / ONE WAY HAUL : 1.0080
FIXED COST / SCHEDULED HOUR : 15.84
VARIABLE COST/ MACHINE HOUR : 36.48
MACHINE CAPACITY IN CU.FT : 1312.00

FREQUENCY DISTRIBUTIONS MACHINE TYPE 41 : LOG TRUCK

CLASS CUM FREQ.# TIME BETW.FAILURE CUM.FREQ. % REPAIR TIME
1 20.00 7.08 35.08 .50
2 40.09 14.08 65.08 1.00
3 6h.08 28.90 85.08 >.00
4 84.08 56.80 95.80 8.08
5 100.80 188.088 180.00 16.08

APPENDIX E

6. LOGSIM, simulation results system 2

302

x ¥ ¥ %

D>LOGS I MK
SIMULATION RESULTS

¥ ¥ & x

I

SIMULATION MODEL USED: SYSTEMZ.MOD

FHIHOHOHOUHOHOHIEH

DATE= @6-@1-87
TIME= @29:20:52
SIMULATION RUN 1 OF 1.

PROCESS NO. 1 : FELLING

TIME BEGIN OF PROCESS : .A2@P@deE+28
TIME END OF PROCESS 1 .9504154E+82
DURATION OF PROCESS 1 9504 154E+02
TIME INVENTORY TOO LOW : .29P@@02E+D8

TIME INVENTORY TOO HIGH : .2@@edesE+da
% INVENTORY DOWNTIME : .PEgdeaaE+2d
TOTAL # OF MACHINES : 2
SUM SCHEDULED HOURS 1 . 1988831E+@3
SUM MACH.BRERKDOWM HOURS: .22502@@E+P2
SUM PRODUCTIVE HOURS 1 J1675T1RE+E3
£ NET UTILIZATION MACH. : .88156T1E+@2
% GROSS UTILIZATION MACH: _9999364E+82

MACHINE TYPE 1 : CAT 227 FELLER-8NCH

TOTAL # OF MACHINES :]
SUM SCHEDULED HOURS 1 1988831 E+d3
SUM MACH.BREAKDOWN HOURS: .22588@PE+A2
SUM PRODUCTIVE HOURS i . 167571BE+83

AVERAGE INVENTORY
MAXIMUM INVENTORY
MINIMUM INVENTORY
STD.DEV. INVENTORY

OF OBSERVATIONS INV.
SUM UNITS PROCESSED
SUM COST OF PROCESS
COST PER UNIT :
COST PER SCHEDULED HOUR :

COST PER MACHINE
COST PER SCHEDULED HOUR :
% NET UTILIZATION MACH. :
% GROSS UTILIZATION MACH:

: .@apapPeE+Re
: .dePeePeE+Da
: .doesaesE+oa
: .BPEspenE+Ra
: .PPEsPERE+ad
1 .2556648E+86
1 . 1491865E+85
1 .5832127E-M1
. 1844288E+82

1 .T455325E+84
. 1844280E+82
.BB156TIE+H2
.9999364E+@12

303

PROCESS NO, 2 : SKIDDING

TIME BEGIN OF PROCESS : .7200P@0E+08
TIME END OF PROCESS : . 1894959E+83
DURATION OF PROCESS 1 .1887759E+0%
TIME INVENTORY TOO LOW : .@PE0888E+8
TIME INVENTCRY TOO HIGH : .2EO@PEEE+AA

X INVENTORY DOWNTIME 1 .HEPPBPE+Pd
TOTAL # OF MACHINES H 2
SUM SCHEDULED HOURS : 3TIS518E+83
SUM MACH.BREAKDOWN HOURS: .28580PPE+82
SUM PRODUCTIVE HOURS t . 1284814E+#3

% NET UTILIZATION MACH. : .348B896E+E2
% GROSS UTILIZATION MACH: .3943867E+82

MACHINE TYPE 5 : CAT 528 GRAB-SKIDDER

TOTAL # OF MACHINES : 2
SUM SCHEDULED HOURS : 3TI5518E+83
SUM MACH.BREAKDOMN HOURS: .2858P@PE+82
SUM PRODUCTIVE HOURS : .1284814E+83

AVERAGE INVENTORY
MAXIMUM INVENTORY
MINIMUM INVENTORY
STD.DEV. INVENTORY

OF OBSERVATIONS INV.
SUM UNITS PROCESSED
SUM COST OF PROCESS
COST PER UNIT

COST PER SCHEDULED HOUR :

COST PER MACHINE
COST PER SCHEDULED HOUR :
X NET UTILIZATION MACH. :
X GROSS UTILIZATION MACH:

PROCESS NO. 3 : DELIMBING & BUCKING

TIME BEGIN OF PROCESS : .82@22@1E+2d
TIME END OF PROCESS : J1898650E+83
DURATION OF PROCESS : 189PASEE+I3

TIME INVENTORY TCO LON : .@@d@aseE+ad
TIME INVENTORY TOQ HIGH : .1184749E+@3

% INVENTORY DOWNTINE 1 .6267H21E+02
TOTAL # OF MACHINES : 1
SUM SCHEDULED HOURS 1 . 1898450E+@3
SUM MACH.BREAKDOWN HOURS: .16B88B2E+02
SUM PRODUCTIVE HOURS : .9361892E+82

X NET UTILIZATION MACH. : .4952284E+82
X GROSS UTILIZATION MACH: .5798563E+82

AVERAGE INVENTORY
MAXIMUM INVENTORY
MINIMUM INVENTORY
STD.DEV. INVENTORY

OF OBSERVATIONS INV.
SUM UNITS PROCESSED
SUM COST OF PROCESS
COST PER UNIT :
COST PER SCHEDULED HOUR :

: .5914857E+85
: . 1184574E+86
: .BEO2APOE+DA
: .35485Q4E+D5
1 S54T300EE+B4
. 2556656E+06
+ _1583083E+85
B191691E-N
.4192889E+02

: J1915813E+84
-41928a9E+82
.3400896E+82
.3943867E+082

: .4358824E+03
: 1273986E+4
: PPAPBBPE+DE
: L26TT4E+B3

. @64 708E+25
. 2556 TB5E+6
. 1419920E+85
. 5553 188E-81
LS11015E+82

304

305

MACHINE TYPE 8 : HAHM HARVESTER

TOTAL # OF MACHINES : 1 GOST PER MACHINE ! L 1419920E+05
SUM SCHEDULED HOURS : .1898458E+83 COST PER SCHEDULED HOUR : .7511815E+82
SUM MACH.BREAKDOWN HOURS: .168PB@BE+P2 % NET UTILIZATION MACH. : _49522B4E+82
SUM PRODUCTIVE HOURS : .9361892E+82 X GROSS UTILIZATION MACH: .5798563E+82

PROCESS NO.13 : FINAL TRANSPORT

TIME BEGIN OF PROCESS : .830PPEAE+#8 AVERAGE INVENTORY : .6858059E+A4
TIME END OF PROCESS : 1961243E+85 MAXIMUM INVENTORY : .131688BE+H5
DURATION OF PROCESS 1 J1952943E+83 MINIMUM 1NVENTORY : .PPAAAPAE+DD
TIME INVENTORY TOO LOW : .G8REE@AE+8@ STD.DEV.INVENTORY 1 3418662E+84
TIME INVENTORY TOO HIGH : .73D4746E+B2 # OF OBSERVATIONS INV. : _9S6BEPHE+04
£ INVENTORY DCWNTIME : J37E379E+82 SUM UNITS PROGESSED 1 . 2556655E+86
TOTAL # OF MACHINES : 5 SUM COST OF PROCESS : -2855527E+@5
SUM SCHEDULED HOURS : .5858829E+83 COST PER UNIT : .1116928E+28
SUM MACH.EREAKDOWN HOURS: .2858PD8E+B2 COST PER SCHEDULED HOUR : .4873886E+@2
SUM PRODUCTIVE HOURS 1 S412167E+B3

£ NET UTILIZATION MACH. : .9237627E+H2
£ GROSS UTILIZATION MACH: .9724872E+82

MACHINE TYPE 41 : LOG TRUCKK

TOTAL # OF MACHINES : 3 COST PER MACHINE 1 .9518422E+B4
SUM SCHEDULED HOURS : .5858829E+@3 COST PER SCHEDULED HOUR : .4873886E+@2
SUM MACH.BREAKDOWN HOURS: .285P@PBE+P2 % NET UTILIZATION MACH. : .9237627E+d2
SUM PRODUCTIVE HOURS : .5412167E+83 £ GROSS UTILIZATION MACH: _9724072E+82

LOADING DEVICES

TOTAL # OF MACHINES : 1 SUM OF UNITS HARVESTED : .2556648E+86
SUM SCHEDULED HOURS 1 .1961243E+@83 SUM COST LOADER DEVICES : .1B21485E+85
SUM MACH.BREAKDOWN HOURS: .1588B08E+#1 COST PER UNIT : .3995419E-81

SUM PRODUCTIVE HOURS : L48TI69E+A2
% NET UTILIZATION MACH. : .2483975E+02
% GROSS UTILIZATION MACH: .2560457E+92

MACHINE TYPE 32 : CAT 225 LOG LOADER

TOTAL # OF MACHINES : 1
SUM SCHEDULED HOURS 1 J1961243E+83
SUM MACH.BREAKDOWN HOXRS: .1589000E+91
SUM PRODUCTIVE HOURS : .4871679E+82

COST PER SCHEDULED HOUR : .5208353E+92

COST PER MACHINE L 1024979E+85
COST PER SCHEDULED HOUR : .5226124E+82
% NET UTILIZATION MACH. : .2483975E+82
% GROSS UTILIZATION MACH: .256B8457E+02

COMPLETE HARVESTING SYSTEM STATISTICS

COMPUTER TIME START SIMULATION DATE: #6-91-87 TIME: £8:05:32
COMPUTER TIME END STMULATION DATE: 96-01-87 TINE: 80:30:06

SIMULATION RUN 1 OF 1.

BEGIN OF HARVESTING 1 .fAgerIOE+aD
TOTAL # OF MACHINES H 9
SUM SCHEDULED HOURS : . 1538687E+B4
SUM MACH.BREAKDOWN HOURS: .8%0009E+82
SUM PRODUCTIVE HOURS 1 L9TI5249E+03

% NET UTILIZATION MACH. : .6365979E+82
% GROSS UTILIZATION MACH: .6944354E+p2

END OF RUN # 1 OF 1.

END OF HARVESTING t 19612434083
SUM OF UNITS HARVESTED : .255664QE+P6
SUM COST OF SYSTEM : .837R998E+I5
COST PER UNIT r 3274219E+00
COST PER SYSTEM HOUR 1 . 4268211E+03

306

APPENDIX E

7. Figure, Harvesting system 3

i
i i i
—= - T
voml FELLIMG & EXIZDONET,
: g poa
. 1 ! nNoRM < ;
L | i
| .
. [
dIBe. P ZEEI.
¢ PE :
! |
o3 CELIME L Sul<ING i
H .
i ;
. i o ' a i
i : MGEHN , Vi :
H :
1
i i
P 2ZZe -
!
PR oo
[i
! _ . -
Pl } ToaMmERORT
Pl ! ; SR
i T :
i % b TR e
! 2 i var 3z

boMIt Dy ERTIRY ETIET oMInIN
\

S s oo . 2] -
L =Ly Fooo == =
: ! i

' | i =

(@ 3F =atuidEe ; TIAE DELAY Br o _ZafIS fE

307

APPENDIX E

8. LOGSIM, Harvesting system 3 printout

308

FHEIE ST NI IIEFENEIEIHEDEIEIE - MEIEIHIE -3 M TN DTS S0 D JE T - 50

»]
" »2>LOGS I M L "
" HARVESTING CONFIGURATION *
] »

SYSTEM3. MOD

Pk 2P - - D P

NAME OF SIMULATION MODEL : SYSTEM3.MOD
AMOUNT TO BE HARVESTED (CU.FT.} : 255664.
TIME DELAY PARAMETER : .9190

HACHINE CONFIGURATION

PROCESS # IN ORIGIN QUT DESTINATION

1 2.
2 1 13.
3

4

5

6

7

8

2

18

n

12

13 2

MATERIAL FREQUENCY DISTRIBUTIONS

CUMULATIVE FREQUENCY DISTRIBUTION NO.1 : WHOLE TREES
CUMULATIVE FREQUENCY DISTRIBUTION NQO.2 : SAWLOGS
CUMULATIVE FREQUENCY DISTRIEUTION NO.J

CUMULATIVE FREQUENCY DISTRIBUTION NO.4 :

310

DISTRIBUTION 1 DISTRIBUTICN 2 DISTRIBUTION 3 DISTRIBUTION 4
CLASS FREQ.X CU.FT FREQ.X CU.FT FREQ.X CU.FT FREQ.X CU.FT
1 11.68 4.4 0.08 3.7
2 29.78 9.4 50.38 9.39
3 58.48 18.90 67.38 15.38
4 69.90 28.38 8d.88 21.50
5 B4.48 49.58 1.8 25%.28
é 93.08 54.68 96.18 38.80
7 97.78 70.28 58.98 48.09
8 108.98 92.18 109.09 59.48
INVENTORY AND BUFFER SIZES
PRO- NAME DISTRI- STARTUP MINIMUM STARTUP MAXIMUM STARTUP
CESS BUTION INV. INV. MINIMUM INV., MAXIMUM
1 FELLING & SKIDDING 1.
2 DELIMB & BUCKING 1. 274a.8 8 B 4580, 3660.0
13 FINAL TRANSPORT 2. Bzg.a 130 1311.8 0 9338.8 7970.9
PROCESS MO, 1: FELLING & SKIDDING

OUTGOING DESTINATION PROCESS NO. 2. DELIMB & BUCKING
DISTRIBUTION USED HEEE W NHOLE TREES
LOADER USED NONE

TIME DELAYS HANDELED BY : STANDARD BUTLD-IN FUNCTIONS
MACHINES USED

TYPE NAME INITIAL # OF MACHINES

1 CLAMBUNK FELL-SKID 1.

PROCESS NO. 2: DELIMB & BUCKING

TNCOMING ORIGIN
OUTGOING DESTINATION
DISTRIBUTION USED

STARTUP-INVENTORY LEVEL :
MINIMUM INVENTORY LEVEL :

STARTUP LEVEL MINIMUM

MAXTMUM INVENTORY LEVEL :

STARTUP LEVEL MAXIMUM
LOADER USED

TIME DELAYS HANDELED BY :

MACHINES USED
TYPE NAME

PROCESS NO. 1. FELLING & SKIDDING
PROCESS NO.13. FINAL TRANSPORT
1. WHOLE TREES
2740.4
N
N
4580.9
3660.0
NONE
STANDARD BUILD-IN FUNCTIONS

INITIAL # OF MACHINES

5 GRAPPLE PROCESSOR

PROCESS NO.13: FINAL TRANSPORT

INCOMING ORIGIN
DISTRIBUTION USED

STARTUP- INVENTORY LEVEL :
MINIMUM INVENTORY LEVEL :

STARTUP LEVEL MINIMUM

MAXIMUM INVENTORY LEVEL :

STARTUP LEVEL MAXTMUM
LOADER USED

TIME DELAYS HANDELED BY :

MACHINES USED
TYPE NAME

PROCESS NO. 2. DELIMB & BUCKING
2. SANLOGS
332.0
1311.8
1311.8
9336.0
7970.8
32. LOG LOADER
STANDARD BUILD-IN FUNCTIONS

INITIAL # OF MACHINES

4 LOG TRUCK

MACHINE TYPE

INITIAL NUMBER OF MACHINES

1: CLAMBUNK FELL-SKID

AVERAGE PROCESSING TIME / TREE : .Bona
FIXED CONSTANT TIME / LOAD .6188
FIXED CONST. TIME / ONE WAY HAUL : . Bdae

FIXED COST / SCHEDULED HOUR ; 57.28

311

VARIABLE COST/ MACHINE HOUR H 46.61
HACHINE CAPACITY IN CU.FT 915.22

FREQUENCY DISTRIBUTIONS MACHINE TYPE 1 : CLAMBUNK FELL-SKID

312

CLASS GUM FREQ.X TIME BETW.FAILURE CUM.FREQ.X REPAIR TIME
1 28.98 3.00 28.09 .49
2 48.08 9.08 40.00 .99
3 60.08 16.00 60.80 2.00
4 88.08 28.99 8s.88 5.0
5 10998 53.80 188.00 14.98

MACHINE TYPE 5: GRAPPLE PROCESSOR

INITIAL NUMBER OF MACHINES : 1.

AVERAGE PROCESSING TIME / TREE : 867

FIXED CONSTANT TIME / LOAD : N

FIXED CONST. TIME / ONE WAY HAUL : .88

FIXED COST / SCHEDULED HOUR : 48.98

VARIABLE, COST/ MACHINE HOUR : 46.89

MACHINE CAPACITY IN CU.FT 1 99999.80

FREQUENCY DISTRIBUTIONS MACHINE TYPE 5 : GRAPPLE PROCESSOR

CLASS CUM FREQ.X TIME BETW.FAILURE CUM.FREQ. X REPAIR TIME
1 2809 3.08 3p.80 1.88
2 48.98 7.08 55.80 3.80
3 6898 12.88 75.08 7.080
4 88.00 22.98 99.99 11.88
5 108.08 44,08 108.88 16.98

MACHINE TYPE 32: LOG LOADER

INITIAL NUMBER OF MACHINES : 1.
AVERAGE PROCESSING TIME / TREE H .80p8
FIXED CONSTANT TIME / LOAD H . 2588
FIXED CONST. TIME / ONE MAY HAUL : .88
FIXED COST / SCHEDULED HOUR : 41.99
VARIABLE, COST/ MACHINE HOUR : 41.35

MACHINE CAPACITY IN CU.FT 1316.80

FREQUENCY DISTRIBUTIONS MACHINE TYPE 32 : LOG LOADER

CLASS CUM FREQ.X TIME BETW.FAILURE QUM FREQ. % REPAIR TIME
1 28,890 7.88 35.08 .50
2 48.98 14.84 65.98 1.88
3 68.88 28.00 85.08 3.08
4 8p.08 56.08 95.00 8.ma
5 188.84 184.84 188.88 16.89

MACHINE TYPE 41: LOG TRUCK

INITIAL NUMBER OF MACHINES 3.

AVERAGE PROCESSING TIME / TREE .2pao

FIXED CONSTANT TIME / LOAD .BBa

FINED CONST. TIME / ONE WAY HAUL 1.8888

FIXED COST / SCHEDULED HOUR 15.84

VARIABLE COST/ MACHINE HOUR 36.48

MACHINE CAPACITY IN QU.FT 1316.84

FREQUENCY DISTRIBUTIONS MACHINE TYPE 41 : LOG TRUCK

CLASS CUM FREQ.X TIME BETW.FAILURE CUM.FREQ. % REPAIR TIME

1 28.88 7.808 35.08 .50
2 49.08 14.08 65.80 1.08
3 8.8 28.49 85.90 >.88
4 8d.00 56.00 95.88 8.md
5 184.80 144.84 188.88 16.80

313

314

APPENDIX E

9. LOGSIM, simulation results system 3

* PLOGS I M<K
* SIMULATION RESULTS

»*

* K »

I I I IS 3 S S S R S IHHEHHHHHHHOHHC

SIMULATION MODEL USED: SYSTEM3.MOD
UM USRI B R

DATE= @6-81-87
TIME= 2@:@3:29
SIMULATION RUN 1 OF 1.

PROCESS NO. 1 : FELLING & SKIDDING

TIME BEGIN OF PROCESS : .0@@@@edE+dd
TIME END OF PROCESS 1 . 2042438E+85
DURATION CF PROCESS i .2542438E+3

TIME INVENTORY TOO LOW : .P2@s2daE+2d

TIME INVENTORY TOO HIGH : .A@afS8eE+aa
% INVENTORY DOWNTIME : . BPPA0AAE~DD
TOTAL # OF MACHINES : 1
SUM SCHEDWLED HOURS : .2542438E+83
SUM MACH.BREAKDOWN HOURS: .4060880E+d2

SUM PRODUCTIVE HOURS t J1TET4T3ESDS
% NET UTILIZATION MACH. : _6951881E+82
% GROSS UTILIZATION MACH: .8548773E+82

MACHINE TYPE 1 : CLAMBUNK FELL-SKID

TOTAL 7 OF MACHINES : 1
SUM SCHEDULED HOURS : ,2542438E+83
SUM MACH.BREAKDOWN HOURS: .4B682@BE+82
SUM PRODUCTIVE HOURS : TET4T3ESDS

AVERAGE INVENTORY 1 .B0PRBEE+ad
MAXIMUM INVENTORY : .0900808E+2A
MINIMUM INVENTORY : . BBIABBAE+DE
STD.DEV. INVENTORY : .BpdenagE+as
OF OBSERVATIONS INV. : .PPO208BE+ad
SUM UNITS PROCESSED : . 2556640E+86
SUM COST OF PROCESS : . 2278094E+E5
COST PER UNIT : .8918500E-21

COST PER SCHEDULED HOUR : .B8968272E+82

COST PER MACHINE : .2278B94E+85
COST PER SCHEDULED HOUR : .B896@272E+82
% NET UTILIZATION MACH. : .6951881E+#2
% GROSS UTILIZATION MACH: .8548773E+82

315

PROCESS NO. 2 : DELIMB & BUCKING

TIME BEGIN OF PROCESS : .247280E+1
TIME END OF PROCESS : .2544584E+83
DURATION OF PROCESS : .2519864E+83
TIME INVENTORY TOO LOW : .RBORRREE+E3
TIME INVENTORY TOO HIGH : .3689656E+82

% INVENTORY DOWNTIME : . 1464228E+82
TOTAL # OF MACHINES : 1
SUM SCHEDULED HOURS i . 2519864E+83
SUM MACH.BREAKDOWN HOURS: .728088BE+R2

SUM PRODUCTIVE HOURS : .643426BE+82
% NET UTILIZATION MACH. : .2553419E+82
% GROSS UTILIZATEION MACH: .5418716E+82

MACHINE TYPE 5 : GRAPPLE PROCESSOR

TOTAL # OF MACHINES : 1
SUM SCHEDULED HOURS 1 . 2519864E+83
SUM MACH.BREAKDOWN HOURS: .7280880E+32
SUM PRODUCTIVE HOURS 1 .6434268E+82

PROCESS NO.13 : FINAL TRANSPORT

TIME BEGIN OF PROCESS : .3255984E+01
TIME END OF PROCESS 1 .2591564E+03
DURATION OF PROCESS ¢ .2559P@5E+03
TIME INVENTORY TOO LOW : .1987365E+83
TIME INVENTORY TOO HIGH : .PPARSPE+DE

% INVENTORY DOWNTIME 1 JI766161E+82
TOTAL # OF MACHINES : 3
SUM SCHEDULED HOURS 1 JT677816E+D3

SUM MACH.BREAKDOWN HOURS: .2658008E+82
SUM PRODUCTIVE HOURS 1 .4425683E+83
% NET UTILIZATION MAGH. : .5764848E+B2
% GROSS UTILIZATION MACH: .611@@35E+52

AVERAGE INVENTORY
MAXTMUM INVENTORY
MINIMUM INVENTORY
STD.DEV. INVENTORY

OF OBSERVATIONS INV.
SUM UNITS PROCESSED
SUM COST OF PROCESS
COST PER UNIT

COST PER SCHEDULED HOUR :

COST PER MACHINE

: .TABU161E+83

.5383209E+04
. BEPBPOOE+BD
-9263840E+03
.9891083E+04
. 2556695E+06

1 158551 1E+85

COST PER SCHEDULED HOUR :
% NET UTILIZATION MACH. :
% GROSS UTILIZATION MACH:

AVERAGE INVENTORY
MAXIMUM INVENTORY
NINIMUN INVENTORY
STD.DEV. INVENTORY

OF OBSERVATIONS INV.
SUM UNITS PROCESSED
SUM COST OF PROCESS
COST PER UNIT

COST PER SCHEDULED HOUR

1 .5888584E-81
.5974572E+82

. 158551 1E+85
LSITASTZEB2
.2553419E+82
S4H1B716E+82

S317993E+04
. 705806 TE+D4
.BEBPBBPE+ED
128754 TE+34

.9882800E+4

: .2556648E+86

: L2769113E+85

: . VB83186E+BD
687N TE+D2

316

MACHINE TYPE 41 : LOG TRUCK

TOTAL # OF MACHINES : 3 COST PER MACHINE t 92383 7SE+D4
SUM SCHEDULED HOURS : .7677@16E+8% COST PER SCHEDULED HOUR : .3687817E+@2
SUM MACH.BREAKDOWN HOURS: .2658B@BE+B2 X NET UTILIZATION MACH. : .5764B4BE+@2
SUM PRODUCTTVE HOURS : JH25683E+83 X GROSS UTILIZATION MACH: .6118@35E+82

LOADING DEVICES

TOTAL # OF MACHINES : 1 SUM OF UNITS HARVESTED : .255664BE+B6
SUM SCHEDULED HOURS 1 .2591564E+3 SUM COST LOADER DEVICES : _1275357E+@5
SUM MACH.BREAKDOWN HOURS: .S80d@@dE+B1 COST PER UNIT : -4988418E-81
SUM PRODUCTIVE HOURS 1 .4856844E+82 COST PER SCHEDULED HOUR : .4921185E+@2
£ NET UTILIZATION MAGH. : .1874B9TE+82

£ GROSS UTILIZATION MACH: .2867831E+82

MACHINE TYPE 32 : LOG LOADER

TOTAL £ OF MACHINES : 1 COST PER MAGHINE : . 1289328E+05
SUM SCHEDULED HOURS : .2591564E+83 COST PER SCHEDXLED HOUR : .497394BE+82
SUM MACH.BREAKDOWN HOURS: .5P@PPPAE+@! % NET UTILIZATICN MACH. : _1874B97E+B2
SUM PRODUCTIVE HOURS 1 .4856844E+P2 % GROSS UTILIZATION MACH: .2067831E+82

COMPLETE HARVESTING SYSTEM STATISTICS

COMPUTER TIME START SIMULATION DATE: B5-31-87 TIME: 25:41:48
GOMPUTER TIME END SIMULATION DATE: B5-81-87 TIME: #6:03:25

SIMULATION RUN 1 OF 1.

BEGIN OF HARVESTING : .BA09PBOE+PE END OF HARVESTING : .2591564E+83
TOTAL # OF MACHINES H & SUM OF UNITS HARVESTED : .2556640E+H6
SUM SCHEDULED HOURS : .1533888E+P4 SUM COST OF SYSTEM 1 .7B288TME+D5
SUM MACH.BREAKDOWN HOURS: .1441@@gE+@3 COST PER UNIT : .3661860E+00
SUM PRODUCTIVE HOURS + 732226 7E+83 COST PER SYSTEM HOUR 1 . 3p20598E+a3

X NET UTILIZATION MACH. : .4776155E+82
% GROSS UTILIZATION MACH: .5716888E+@2

317

318

END OF RUN # 1 OF 1.

319

APPENDIX E

10. Figure, Harvesting system 4

Lz
-
23
"

o
o

[

@

1]
L]

()]
o

=
Y,

R

LY

W

o

"
o

[Te]

L

"
T
e
i

|
[N

~l

SEBLRWIN

M
v

=

[P

320

APPENDIX E

11. LOGSIM, Harvesting system 4 printout

321

f

MILOGS I M <KL
HARVESTING CONFIGURATION

* * ¥ %
® ¥ X =

%

SYSTEM4 .MOD

FHEHHENIEE SIS S M

NAME OF SIMULATION MODEL : SYSTEM4 .MOD
AMOUNT TO BE HARVESTED (CU.FT.) : 255664.
TINE DELAY PARAMETER : . eeg

MACHINE CONFIGURATION

PROCESS # IN ORIGIN OUT DESTINATION

1 2.
2 1 3.
3 2 1",
4 1 12.
5
6
7
8
9

¢

- =
wWoR o
>
Y
-
W

MATERIAL FREQUENCY DISTRIBUTIONS

CUMULATIVE FREQUENCY DISTRIBUTION NO.1 : WHOLE TREES

CUMULATIVE FREQUENCY DISTRIBUTION NQ.2 : SAWLOGS
CUMULATIVE FREQUENCY DISTRIBUTION NO.3 : PULPHOCD
CUMULATIVE FREQUENCY DISTRIBUTION NO.4 :

DISTRIBUTION 1 DISTRIBUTION 2 DISTRIBUTION 3 DISTRIBUTION 4

CLASS FREQ.¥* GU.FT FREQ.X* CU.FT FREQ.% GU.FT FREQ.X GQU.FT

1 3.58 2.80 53.38 25.88 3.8 2.08

2 14.68 6.88 79.38 38.00 14.60 6.0

3 2.8 1.88 93.69 48.88 34.20 11.88

4 52.18 19.88 100.00 59.88 77.50 18.00

5 .88 29.88 82.14 25.88

6 85.08 42.08 168.08 29.08

? 93.30 56 .08

8 97.99 73.88

9 188 .09 93. 08

INVENTORY AND BUFFER SIZES

PRO- NAME DISTRI- STARTUP MINIMUM STARTUP MAXIMUM STARTUP
CESS BUTION INV. INV. MINIMUM INV. MAXIMUM

1 FELLING 1.

2 SKIDDING 1. %a1d8.8 891.8 9818.8 999999.9 999999.9

3 SWINGING 1. 9 .8 8 B 359m.8 2702.8

4 DELIMB & DEBARK 3. 1.8 8 A Smeg.8 2792.8

11 DISTRIBUTION 1. 1.8 .8 -A 999999.9 999999.9

12 CHIPPING 3. 1.8 a2 -8 999999.9 999999.9

13 LOG FTRAPO 2. 1.8 a -8 999999.9 999999.9

PROCESS NO. 1: FELLING

OUTGOING DESTINATION : PROCESS NO. 2. SKIDDING
DISTRIBUTION USED HE WHOLE TREES
LOADER USED 1 NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

322

MACHINES USED
TYPE NAME

INITIAL # OF MACHINES

1 CAT 227 FELL-BUNCH

PROCESS NQ. 2: SKIDDING

INCOMING ORIGIN
CUTGOING DESTINATION
DISTRIBUTION USED

STARTUP-INVENTORY LEVEL :
MINIMUM INVENTORY LEVEL :

STARTUP LEVEL MINIMUN

MAXIMUM INVENTORY LEVEL :

STARTUP LEVEL MAXIMUN
LOADER USED

TINE DELAYS HANDELED BY :

MACHINES USED
TYPE NAME

PROCESS NO. 1. FELLING
PROCESS NO. 3. SWINGING
1. WHOLE TREES
ame.e
B91.8
910.8
999999.9
999999.9
NONE
STANDARD BUILD-IN FUNCTIONS

INITIAL # OF MACHINES

5 TJ CLAMBUNK SKID

PROCESS NO. 3: SWINGING

INCOMING ORIGIN
OUTGOING DESTINATION
DISTRIBUTION USED

STARTUP- INVENTORY LEVEL :
MINIMUM INVENTORY LEVEL :

STARTUP LEVEL MINIMUM

MAXIMUM INVENTORY LEVEL :

STARTUP LEVEL HAXTMUM
LOADER USED

TINE DELAYS HANDELED BY :

MACHINES USED
TYPE NAME

PROCESS NO. 2, SKIDDING
PROCESS NO.11. DISTRIBUTION
1. WHOLE TREES
91,9
N
.8
3598.9
2702.8
32. CAT 225 LOG LOADER
STANDARD BUILD-IN FUNCTIONS

INITIAL # OF MACHINES

B SET-OUT TRUCK

323

PROCESS NO. 4: DELIMB & DEBARK

INCOMING CRTGIN

OUTGOING DESTINATION
DISTRIBUTION USED
STARTUP-TNVENTORY LEVEL :
MINTMUM TNVENTORY LEVEL :
STARTUP LEVEL MINIMUM
HAXTMUM TNVENTORY LEVEL :
STARTUP LEVEL MAXIMM
LOADER USED :
TIME DELAYS HANDELED BY :

MACHINES USED
TYPE NAME

PROCESS NO.11. DISTRIBUTTON
PROCESS NO.12. CHIPPING
3. PULPHOCD
1.9
N
.8
9M19.8
2702.8
33. CAT 225 W/SLASHER
STANDARD BUTLD-IN FUNCTIONS

INTTIAL # OF MACHINES

1 CHAIN-FLAIL DEB,

PROCESS NO.11: DISTRIBUTION

INCOMING ORIGIN

OUTGOING ROUTE 1

OUTGOING ROUTE 2

% GOING ROUTE 1

% GOING ROUTE 2
DISTRIBUTION USED
STARTUP-INVENTORY LEVEL :
MINIMUM INVENTORY LEVEL :
STARTUP LEVEL MINIMUM
MAXTMUM TNVENTORY LEVEL :
STARTUP LEVEL MAXTMUM
LOADER USED :
TIME DELAYS HANDELED BY :

PROCESS NO. 3. SWINGING
PROCESS NO. 4. DELIMB & DEBARK
PROCESS NO.13. LOG FTRAPO
69.53 £
39.47 %
1. WHOLE TREES
1.2
.2
.8
999999.9
999999.9
NONE
STANDARD BUILD-IN FUNCTIONS

PROCESS NO.12: CHIPPING

INCOMING ORIGIN
DISTRIBUTTON USED
STARTUP-INVENTORY LEVEL :
MINIMUM INVENTORY LEVEL :

PROCESS NO. 4. DELIMB & DEBARK

X PULPWOOD
1.8
.8

324

STARTUP LEVEL MINIMUM : .a

MAXTMUM TNVENTORY LEVEL : 999999.9

STARTUP LEVEL MAXIMUM : 999999.9

LOADER USED 1 NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED :

TYPE NRME INITIAL # OF MACHINES
3 CHIPPER 1.

39 CHIP TRAILER 6.

44 CHIP TRAKTOR 3.

PROCESS NO.13: LOG FTRAPQ

INCOMING ORIGIN : PROCESS NO.1t. DISTRIBUTION
DISTRIBUTION USED : 2. SAWLOGS
STARTUP-INVENTORY LEVEL : 1.8

HINIMUM INVENTORY LEVEL : .2

STARTUP LEVEL MINIMUM : .8

MAXIMUM INVENTORY LEVEL : 999999.9
STARTUP LEVEL MAXIMUM : 999999.9
LOADER USED : 33. CAT 225 W/SLASHER
TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED

TYPE NAME INITIAL # OF MACHINES
41 LOG TRAILER 6.

42 LOG TRAKTOR 2.

MACHINE TYPE 1: CAT 227 FELL-BUNCH

INITIAL NUMBER OF MACHINES : 2.
AVERAGE PROCESSING TIME / TREE : .2e0a
FIXED CONSTANT TIME / LOAD : 2384
FIXED CONST. TIME / OME WAY HAUL : .0a00
FIXED COST / SCHEDULED HOUR : 41.99
VARIABLE COST/ MACHINE HOUR : 41.35

MACHINE CAPACITY IN CU.FT t 82.65

325

FREQUENCY DISTRIBUTICNS MACHINE TYPE 1 : CAT 227 FELL-BUNCH

CLASS CUM FREQ.# TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME
1 20.900 6.00 50.80 .58
2 40.08 12.08 79.08 1.80
3 68,08 28,80 ad.8d 2.09
4 80.00 36.00 99.08 5.88
5 188,80 64. 80 188 .80 10.89

MACHINE TYPE 5: TJ CLAMBUNK SKID

INITIAL NUMBER OF MACHINES : 1.

AVERAGE PROCESSING TIME / TREE 8972

FIXED CONSTANT TIME / LOAD 8178

FIXED CONST. TIME / ONE WAY HAUL 2

FIXED COST / SCHEDULED HOUR 57.20

VARIABLE COST/ MACHINE HOUR 46.61

MACHINE CAPACITY IN CQU.FT 9m1.088

FREQUENCY DISTRIBUTIONS MACHINE TYPE 5 : TJ CLAMBUNK SKID

CLASS CUM FREQ.# TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME
1 28.00 6.0 50.00 58
2 48.00 12.88 7d.08 1.88
3 60.89 28.98 86.80 2.08
4 en.oe 36.88 9n.08 5.08
5 180.80 64.00 90.08 18.98

MACHINE TYPE 8: SET-QUT

INITIAL NUMBER OF MACHINES
AVERAGE PROCESSING TIME / TREE
FIXED CONSTANT TIME / LOAD
FIXED CONST. TIME / ONE WAY HAUL
FIXED COST / SCHEDULED HOUR
VARIABLE COST/ MACHINE HOUR
MACHINE CAPACITY IN QU.FT

TRUCK

1.
.6en8
1588
Seea

15.84
36.48
1842.88

326

FREQUENCY DISTRIBUTIONS MACHINE TYPE 8 : SET-QUT TRUCK

CLASS CUM FREQ.X TIME BETW.FAILURE CUM.FREQ. X REPAIR TIME
1 28 .88 7.08 35.08 .5
2 49.00 14.00 65.80 1.00
3 60.08 28.89 85.00 3.00
4 8024 56.80 95.m 8.8
5 194.08 190. 00 190.08 16.70

MACHINE TYPE 11: CHAIN-FLAIL DEB.

INITIAL NUMBER OF MACHINES : t.

AVERAGE PROCESSING TIME / TREE : -Ae31

FIXED CONSTANT TIME / LORD : N0

FIXED CONST. TIME / ONE WAY HAUL pege

FIXED COST / SCHEDULED HOUR : 57.28

VARIABLE COST/ MACHINE HOUR : p.eg

MACHINE CAPACITY IN CU.FT 1 99939.28

FREQUENCY DISTRIBUTIONS MACHINE TYPE 11 : CHAIN-FLAIL DEB.

CLASS CUM FREQ.® TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME
1 50.00 4.00 568.00 .58
2 75.080 8.08 .08 1.84
3 85.0d 2 .00 8f.0e 4.04
4 95.088 36.00 908.20 8.8
5 100.80 64.00 100.89 16.89

MACHINE TYPE 32: CAT 225 LOG LOATDER

INITIAL NUMBER OF MACHINES : 1.
AVERAGE PROCESSING TIME / TREE : N
FIXED CONSTANT TIME / LOAD : 2580
FIXED CONST. TIME / ONE WAY HAUL : - Bafa
FIXED COST / SCHEDULED HXR : 41.99
VARIABLE COST/ MACHINE HOUR : 41.35

MACHINE CAPACITY IN CU.FT 1 1842.90

327

FREQUENCY DISTRIBUTIONS MACHINE TYPE 32 : CAT 225 LOG LOADER

CLASS CUM FREQ.X TIME BETW.FAILURE CUM.FREQ. X REPAIR TIME
1 28.00 7.00 35.98 58
2 40.90 14.90 €5.28 1.08
3 6a.08 28.098 85.00 .09
4 88.20 56.09 95.08 8.4a
5 100.08 1ed.88 18¢.00 16.90

MACHINE TYPE 33: CAT 225 W/SLASHER

INITIAL NUMBER OF MACHINES : 1.

AVERAGE PROCESSING TIME / TREE : 2853

FIXED CONSTANT TIME / LOAD : .gasa

FIXED CONST. TIME / ONE WAY HAUL -gagg

FIXED COST / SCHEDULED HOUR : 41.99

VARIABLE COST/ MACHINE HOUR : 41.35

MACHINE CAPACITY IN QU.FT : 82.56

FREQUENCY DISTRIBUTIONS MAGHINE TYPE 33 : CAT 225 W/SLASHER

CLASS CUH FREQ.X TIME BETW.FAILURE CUM,FREQ.% REPAIR TIME
1 20.04 6.04 58.68 .58
2 49.08 12.090 8.8 1.80
3 6d. 80 28.08 83.90 2.ed
L] 8a.28 36.00 98.88 5.80
5 180.48 64,00 168.98 10.90

MACHINE TYPE 37: CHIPPER

INITIAL NUMBER OF MACHINES H 1.

AVERAGE PROCESSING TIME / TREE 1 N H)
FIXED CONSTANT TIME / LOAD : .ane8
FIXED CONST. TIME / ONE WAY HAUL : .aoaa
FIXED COST / SCHEDULED HOUR : 41.98
VARTABLE COST/ MACHINE HOUR : 58.58

MACHINE CAPACITY IN CU.FT : 99999.20

328

FREQUENCY DISTRIBUTIONS MACHINE TYPE 37 : CHIPPER

CLASS CUM FREQ.%* TIME BETW.FAILURE CUM_FREQ.% REPAIR TIME
1 50.90 4.00 50.08 .50
2 75.08 8.00 70.00 1.08
3 85,80 20.8d 88,08 4.0
4 9598 3690 96.88 §.98
5 18884 6488 188.08 16.08
MACHINE TYPE 39: CHIP TRAILER
INITIAL NUMBER OF MACHINES : 6.
FIXED CONSTANT TIME / LOAD : L1588
FIXED CONST. TIME / ONE WaY HAUL : 1.90888
FIXED COST / SCHEDALLED HOUR : .82
VARIABLE COST/ MACHINE HOUR : 2.88
MACHINE CAPACITY IN CU.FT : 1316.88
FREQUENCY DISTRIBUTIONS MACHINE TYPE 39 : CHIP TRAILER
CLASS CUM FREQ.% TIME BETH.FAILURE CUM.FREQ.% REPRIR TIME
minsse DISTRIBUTION NOT USED oo
MACHINE TYPE 48: CHIP TRAKTOR
FIXED COST / SCHEDULED HOUR : 13.12
VARLABLE COST/ MACHINE HOUR : 3.24
MACHINE CAPACITY IN CU.FT : .88
FREQUENCY DISTRIBUTIONS MACHINE TYPE 43 : CHIP TRAKTOR
CLASS CUnM FREQ.% TIME BETH.FAILURE CUM.FREQ.% REPAIR TIME
1 20.88 1.00 35.00 .50
2 49 .88 14.89 65.80 1.08
3 6898 26.98 85.80 5.00
4 88.88 56 .08 95.08 £.88
5 108.88 196.28 188.089 16.88

329

MACHINE TYPE 41: LOG TRAILER

INITIAL NUMBER OF MACHINES : 6.
AVERAGE PROCESSING TIME / TREE : 2082
FIXED CONSTANT TIME / LOAD : L1580
FIXED CONST. TIME / ONE WAY HAUL : 1.9809
FINED COST / SCHEDULED HOUR : 1.28
VARIABLE COST/ MACHINE HOUR : 2.2
MACHINE CAPACITY IN CU.FT : 1316.89

FREQUENCY DISTRIBUTIONS MACHINE TYPE 41 : LOG TRAILER

CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME
sakaa® DISTRIBUTION NOT USED s
MACHINE TYPE 42: LOG TRAKTOR

FIXED COST / SCHEDULED HOUR : 13.12
VARIABLE COST/ MAGHINE HOUR : 34.24
MACHINE CAPACITY IN CU.FT : g

FREQUENCY DISTRIBUTIONS MACHINE TYPE 42 : LOG TRAKTOR

CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME

sHebe DISTRIBUTION NOT USED wwwwenst

330

331

APPENDIX E

12. LOGSIM, simulation results system 4

SR HHEEHHHEHAHHOHHEOHEHEHOEHORHEEE OISR

* WrLOGSI ML
» SIMULATION RESULTS

SIMULATION MODEL USED: SYSTEM4.MOD

FRIEHEHHHOHHEHEHHHHE

DATE= §5-31-87
TIME= 22:16:34
SIMULATION RUN 1 OF 1.

PROCESS NO. 1 : FELLING

TIME BEGIN OF PROCESS
TIME END OF PROCESS

DURATION OF PROCESS .8798502E+82
TIME INVENTORY TOO LOW . AE0ADNIE+HY
TIME INVENTORY TOO HIGH : .P2P2dsdE+pa
% INVENTORY DOWNTIME .BapAaedE+oa
TOTAL # OF MACHINES : 2
SUM SCHEDULED HOURS L1759 700E +33
SUM MACH.BREAKDOWN HOURS: .148PQ2E+82
SUM PRODUCTIVE HOURS .1619598E+83
% NET UTILIZATION MACH. : .9203829E+82
% GROSS UTILIZATION MACH: .9999419E+@2

: .DPB0BOOE+AE
: .B798502E+82

MACHINE TYPE 1 : CAT 227 FELL-BUNCH

TOTAL # OF MACHINES : 2
SUM SCHEDULED HOURS : L 1759780E+23
SUM MACH.BREAKDOWN HOURS: .1480B@JE+#2
SUM PRODUCTIVE HOURS : .1619598E+83

AVERAGE INVENTORY
MAXIMUM INVENTORY
MINIMUM INVENTORY
STD.DEV. INVENTORY

OF OBSERVATIONS INV.
SUM UNITS PROCESSED
SUM COST OF PROCESS
COST PER UNIT

COST PER SCHEDULED HOUR :

COST PER MACHINE

COST PER SCHEDULED HOUR :
% NET UTILIZATION MACH. :
% GROSS UTILIZATION MACH:

: -0PPBAPEE+DD
: .PB0BPE+DD
: .DBPEPBRE+DD
: .B0PBRPPE+DE
: .20P002PE+2
: 2556640405
: . 1408602E+85
: .5589583E-81
.8BPA783E+E2

1 . 7843810E+B4
.8PR4783E+02
.9203829E+82
.9999419E+02

332

PROCESS NO. 2 : SKIDDING

TIME BEGIN OF PROCESS : .2803208E+@1
TINE END OF PROCESS 1 . 156T840E+A3
DURATION OF PROCESS : .1539808E+83

TIKE INVENTORY TOO LOW : .B@Qd200E+£d
TIME INVENTORY TOO HIGH : .B20Q0Q0E+2d

% INVENTORY DOWNTIME : -BREA0AAE+aA
TOTAL # OF MACHINES : 1
SUM SCHEDULED HOURS : .1539808E+03
SUM MACH.BREAKDOMN HOURS: .9508082E+81
SUM PRODUCTIVE HOURS : J142197OE+83

% NET UTILIZATION MACH. : .9254727E+32
% GROSS UTILIZATION MACH: .9851688E+82

MACHINE TYPE 5 : TJ CLAMBUNK SKID

TOTAL # OF MACHINES : 1

SUM SCHEDULED HOURS : .1539606E+03
SUM MACH.BREAKDOWN HOURS: .9520B80E+dt
SUM PRODUCTIVE HOURS 1 J1421970E+03

PROCESS NO.%1 : DISTRIBUTION

TIME BEGIN OF PROCESS : .4882385E+8%
TIKE END OF PROCESS : .1586829E+83
DURATION OF PROCESS : . 1538005E+83

TIME INVENTORY TOO LOW : .Pd0effdE+nd
TIME INVENTCRY TOQ HIGH : .#@fd0ndE+#0

% INVENTORY DOWNTIME : .2andesE+an
TOTAL # OF MACHINES : 8
SUM SCHEDULED HOURS : PAPAORAE-+BY
SUM MACH.BREAKDOWN HOURS: .DES8B@pE+nd
SUM PRODUCTIVE HOURS 1 .AgROBANE+Ad

% NET UTILIZATION MACH. : .A8088@0E+A
% GROSS UTILIZATION MACH: .2dd00R0aE+ds

AVERAGE INVENTORY 1 .6186A50E+A5
MAXIMUM INVENTORY 1 L 121611HE+86
HMININUN INVENTORY : . AEAf0PIE+B0
STD.DEV. INVENTORY 1 J33T6338E+05
OF OBSERVATIONS INV. : .4508000E+34
SUM UNITS PROCESSED ;. 2556640E+A6
SUM COST OF PROCESS : L A543550E+05
COST PER UNIT 1 .6837418E-91

COST PER SCHEDULED HOUR : .18@2431E+83

COST PER MACHINE 1 Y543550E+B5
COST PER SCHEDULED HOUR : .1382431E+83
% NET UTILIZATION MACH. : .9234727E+82
% GROSS UTILIZATION MACH: .9851688E+82

AVERAGE INVENTORY : . 3568324E+03
MAXIMUM INVENTORY : 4929597E+04
HINIMUM INVENTORY : .020A0PE+0d
STD.DEV. INVENTORY 1 JT7A981E+03
OF OBSERVATIONS INV. : ,2023000E+84
SUM UNITS PROCESSED 1 . 2556640E+D6
SUM COST OF PROCESS 1 .00R0PANE+EA
COST PER UNIT : .O00992AE+AD

COST PER SCHEDULED HOUR : .0880820E+28

333

PROCESS NO. 3 : SWINGING

TIME BEGIN OF PROCESS : .368898BE+D1
TIME END OF PROCESS 1 .1588981E+83
DURATION OF PROCESS 1 1552012E+03

TIME INVENTORY TOO LOW : .P0202POE+BY
TIME INVENTORY TOO HIGH : .2995998E+1

% INVENTORY DOWNTIME : L 1938397E+
TOTAL # OF MACHINES : 1
SUM SCHEDULED HOURS + L1552012E4835
SUM MACH.BREAKDOWN HOURS: .S8080BPE+81
SUM PRODUCTIVE HOURS : . 14D4496E+a3

% NET UTILIZATION MAGH. : .9849523E+@2
% GROSS UTILIZATION MACH: .53716B6E+D2

MACHINE TYPE 8 : SET-OUT TRUCK

TOTAL # OF MACHINES : 1
SUM SCHEDULED HOURS : . 1552012E+85
SUM MACH.BREAKDOWN HOURS: .SPAB@ABE+E1
SUM PRODUCTIVE HOURS : L M4B4496E+D3

PROCESS NO. 4 : DELIMB & DEBARK

TIME BEGIN OF PROCESS : .4882385E+81
TIME END OF PROCESS : L 159B361E+83
DURATION OF PROCESS : J1541537E+83

TIME INVENTORY TCO LOW : .DEQE2SEE+B0
TIME INVENTORY TOO HIGH : .BEQBOBEE+EY

% INVENTORY DOWNTIME : .EO0BAPEE+BD
TOTAL # OF MACHINES : 1
SUM SCHEDULED ROURS 1 J1541537E+83
SUM MACH.BREAKDOWN HOURS: .328800PE+#2
SUM PRODUCTIVE HOURS : 5766267E+82

% NET UTILIZATION MACH. : .3748596E+82
% GROSS UTILIZATION MACH: .5816446E+82

AVERAGE INVENTORY HES
MAXIMUM INVENTORY H
MINIMUM INVENTORY T
STD.DEV. INVENTORY

OF OBSERVATIONS INV.
SUM UNITS PROCESSED
SUM COST OF PROCESS
COST PER UNIT :
COST PER SCHEDULED HOUR :

COST PER MACHINE :
COST PER SCHEBULED HOUR : .
% NET UTILIZATION MACH. :
% GROSS UTILTZATION MACH:

AVERAGE INVENTORY
MAXIMUM INVENTORY
MINIMUM INVENTORY
STD.DEV. INVENTORY

OF OBSERVATIONS INV.
SUM UNITS PROCESSED
SUM CUST OF PROCESS
COST PER UNIT :
COST PER SCHEDULED HOUR :

1616534E+84
40P6RPOE+34
EpeBBoRE+ad

-BB45816E+83
: . 4310800E+E35
1 .2556640E+86
: JT4ST829E+D4
1 L2917043E-91
.48B5266E+82

. 7457829E+04

4805266E+02

.9049523E+82
.9371686E+02

.2006120E+84
.9818806E+54
.BB0ABREE+HA
: 268573 1E+04
1 .9183000E+D4
L 1547534E+86
: . 1B54747E+85
: .6B15664E-81
.6842178E+02

334

MACHINE TYPE 11 : CHAIN-FLAIL DEB.

TOTAL # OF MACHINES : 1
SUM SCHEDULED HOURS 1 JA541537E+03
SUM MACH.BREAKDOWN HOURS: .328p@00E+#2
SUM PRODUCTIVE HOURS : .5T66267E+D2

PROCESS NQ.13 : LOG FTRAPQ

TIME BEGIN OF PROCESS : .4BB25R5E+A1
TIME END OF PROCESS 1 J1676927E+03
DURATION OF PROCESS : . 1628185E+83
TIME INVENTORY TOO LOW . B38AADEE+28

TIME INVENTORY TOC HIGH : .22@8282E+28
% INVENTORY DOWNTIME : .200aA@0E+DH
TOTAL # OF MACHINES : 8
SUM SCHEDULED HOURS : L 1382483E+84
SUM MAGH.BREAKDOWN HOURS: .@@@ezndE+sa
SUM PRODUGTIVE HOURS : .BE7SE62E+E3
% NET UTILIZATION MACH. : .6199746E+#2
% GROSS UTILIZATION MACH: .6199746E+82

MACHINE TYPE 41 : LOG TRAILER

TOTAL # OF MACHINES : 6
SUM SCHEDULED HOURS 1 .976B621E+E3
SUM MACH.BREAKDOWN HOURS: .E078@@E+8d
SUM PRODUGCTIVE HOURS 1 4994063E+03

MACHINE TYPE 42 : LOG TRAKTOR

TOTAL # OF MACHINES : 2
SUM SCHEDULED HOURS : .32562087E+83
SUM MACH.BREAKDOWN HOURS: .@p@aaadE+fg
SUM PRODUGTIVE HOURS 1 . 3881882E+23

COST PER MACHINE
COST PER SCHEDULED HOUR :
% NET UTILIZATION MACH. :
% GROSS UTILIZATION MACH:

AVERAGE INVENTORY :
NAXIMUM INVENTORY
HINIMUM INVENTORY
STD.DEV. INVENTORY

£ OF OBSERVATIONS INV.
SUM UNITS PROCESSED
SUM COST OF PROCESS
COST PER UNIT

COST PER SCHEDULED HOUR :

COST PER MACHINE

COST PER SCHEDULED HOUR :
% NET UTILIZATION MACH. :
% GROSS UTILIZATION MACH:

COST PER MACHINE
COST PER SCHEDULED HOUR :
% NET UTILIZATION MACH. :
% GROSS UTILIZATION MACH:

: . 1054 T4TE+B5
.6842178E+82
3748596E+82
.5816446E+82

. 99664 S2E+£3
: . 3699BT4E+£4
-B080BBAE 00
1 62924 74E+83
1 25002RPE+03
. 1889186E+86
L1719054E+85
1 1783542E+80
.1319829E+82

39484 23E+03
242516 TE+E1
.5112352E+82
.51123528+82

1 L TA1ET44E+84
.4551765E+82
.9461929E+82
.9461929E+82

335

PROCESS NO.12 : CHIPPING

TIME BEGIN OF PROCESS : .4888785E+1
TIME END OF PROCESS : 1756062E+05
DURATION OF PROCESS 1 NFETITAE+DS

TIME INVENTORY TOO LOW : .@2c02dgE+a8
TIME INVENTORY TOO HIGH : .@@a@saeE+fa

% INVENTORY DOWNTIME : .20edPBAE+0D
TOTAL # OF MACHINES H 1
SUM SCHEDULED HOURS : 70T TAE+B4
SUM MACH.BREAKDOWN HOURS: .16888B8E+22
SUM PRODUCTIVE HOURS 1 L 1374853E+94

% NET UTILIZATION MACH. : .8853386E+82
% GROSS UTILIZATION MACH: .8147188E+@2

MACHINE TYPE 37 : CHIPPER

TOTAL # OF MACHINES : 1
SUM SCHEDULED HOURS : JAT8T1TAE+D3
SUM MACH.BREAKDOWN HOURS: .1823@8@@E+82
SUM PRODUCTIVE HOURS : .2815513E+82

MACHINE TYPE 39 : CHIP TRAILER

TOTAL # OF MACHINES : [
SUM SCHEDULED HOURS L 1E24304E+24
SUM MACH.BREAKDOWN HOURS: .PdedagdE+da
SUM PRODUCTIVE HOURS 1 .B845480E+03

MACHINE TYPE 48 : CHIP TRAKTOR

TOTAL # OF MACHINES : 3
SUM SCHELULED HOURS 1 51215228403
SUM MACH.BREAKDOWN HOURS: .6082082E+d1
SUM PRODUCTIVE HOURS : .4621580E+a3

AVERAGE INVENTORY 1 61500Z4E+D4
HAXIMUM INVENTORY : L1211180E+D5
MININUM INVENTORY : .D80geA0E+DA
STD.DEV. INVENTORY 1 .3288347E+84
OF OBSERVATIONS INV. : .1889800E+5
SUM UNITS PROCESSED : . 1547534E+06
SUM COST OF PROCESS : . 3708039E+05
COST PER UNIT : . 2398926E+20

COST PER SCHEDULED HOUR : .2167348E+@2

QOST PER MACHINE : .BB16D44E+24
COST PER SCHEDULED HOUR : .5164116E+82
% NET UTILIZATION MACH. : .1649224E+82
% GROSS UTILIZATION MACH: .2234988E+B2

COST PER MACHINE 1 L 940149TE+03
COST PER SCHEDULED HOUR : .5587852E+a1
% NET UTILIZATION MACH. : .B635597E+82
% GROSS UTILIZATION MACH: .B8635597E+82

COST PER MACHINE 1 JT514484E+04
GOST PER SCHEDULED HOUR : .44@1789E+92
% NET UTILIZATION MACH. : .9023684E+@2
% GROSS UTILIZATION MACH: .914@836E+82

336

LOADING DEVICES

TOTAL # OF MACHINES : 2 SUM OF UNITS HARVESTED

SUM SCHEDULED HOURS : .3512124E+#3 SUM COST LOADER DEVICES :
SUM MACH.BREAKDOWN HOURS: .13580Q8E+B2 COST PER UNIT :
SUM PRODUCTIVE HOURS : .7431316E+@92 COST PER SCHEDULED HOUR :

£ NET UTILIZATION MACH. : -23155B4E+B2
£ GROSS UTILIZATION NACH: .258P286E+B2

MACHINE TYPE 32 : CAT 225 LOG LOADER

TOTAL # OF MACHINES : 1 COST PER MACHINE

SUM SCHEDULED HOURS s .1756P62E+@3 COST PER SCHEDULED HOUR :
SUM MACH.BREAKDORN HOURS: .1088@@2E+31 X NET UTILIZATION MACH. :
SUM PRODUCTIVE HOURS : .3469923E+82 X GROSS UTILIZATION MACH:

MACHINE TYPE 33 : CAT 225 W/SLASHER

TOTAL # OF MACHINES : 1 COST PER MACHINE

SUM SCHEDULED HOURS : J1756862E+@3 COST PER SCHEDULED HOUR :
SUM MACH.BREAKDOWN HOURS: .1258B8PE+#12 X NET UTILIZATION MACH. :
SUM PRODUCTIVE HOURS : .3961393E+82 X GROSS UTILIZATTON MACH:

COMPLETE HARVESTING SYSTEN STATISTICS

COMPUTER TIME START SIMULATION DATE: #5-31-87 TIME: 21:53:43
COMPUTER TIME END SIMULATION DATE: £5-31-87 TIME: 22:33:49

SIMULATION RUN 1 OF 1,

BEGIN OF HARVESTING : .BOEEQERE+28 END OF HARVESTING
TOTAL # OF MACHINES : 25 SUM OF UNITS HARVESTED
SUM SCHEDULED HOURS : .40BQ175E+84 SUM COST OF SYSTEN
SUM MACH.BREAKDOWN HOURS: .9P@PEBPE+B2 COST PER UNIT

SUM PRODUCTIVE HOURS : .2758942E+84 COST PER SYSTEM HOUR

% NET UTILIZATION MACGH. : .6897B53E+#2
£ GROSS UTILIZATION MACH: .T122843E+£2

1 255664 BE+86
. 1740978E+85
.6889688E-81
.9914857E+82

: .8808517E+04
.SH16863E+02
.1975968E+#82
. 2032914E+82

9811 740E 454
.5131790E+82
.2255839E+02
. 2967659E+82

A TS6B62E+13
. 255664 BE+H6
: JT191275E+86
: .4659532E+00
1 .6785785E+03

337

END OF RUN £ 1 OF

1.

338

