
AN ABSTRACT OF THE THESIS OF

Christoph Wiese for the degree of Master of Science in Industrial

Engineering presented on June 9, 1987.

Title: Simulation of Mechanized Log Harvesting Systems

Abstract approved: Redacted for Privacy
Eldon Olsen

The focus of this research is to develop a personal computer based

simulation model of the mechanized logging process, from felling until the

log arrives at the sawmill. The SLAM II simulation language is used for

modeling, and the main emphasis is on the overall performance of this

system, and the interaction between the individual components.

The main approach will be, to break the logging process down into

its components. Each component can then be analyzed and modeled to form

a modular system. By giving the components/modules of a specific opera-

tion, these modules will then be arranged in the desired order by the

simulation processor. Thus, the variations of a system can be explored and

evaluated in their performance for different machine configurations. The

possible machine configurations for a particular environment can be tested

and compared.

A front-end interface for simulation inputs and outputs is developed.

The input interface facilitates the user in entering input parameters to the

model without the need to learn the simulation language. The output inter-

face produces easy to understand and readable outputs.

Simulation of Mechanized Log Harvesting Systems

by

Christoph Wiese

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Completed June 9, 1987

Commencement June 1988

APPROVED:

,_Redacted for Privacy

Associate Professor of Industrial Engineering in charge of major

-Redacted for Privacy
Head of Department' of Industrial Engineering

Redacted for Privacy
4

Dean of Graduate School

Date thesis is presented June 9, 1987

Typed by Christoph Wiese for Christoph Wiese

ACKNOWLEDGEMENTS

During the course of this study many individuals helped me by the

completion of this project. I would like to use this opportunity to express

my thanks to all these people. Special thanks are due to:

Dr. Eldon Olsen, my major professor, for his counsel, guidance,

and his patiences.

Don Schuh, Research assistant in the Department of Forest Engi-

neering at Oregon State University for the countless hours of his time

during the initialization phase of the project.

My family at home and Petra, who supported and encouraged me de-

spite the distance between us and waited so patiently for my returning.

This work is dedicated to my father, Hermann F. Wiese

TABLE OF CONTENTS

I.

U.

III.

IV.

INTRODUCTION

OBJECTIVE

PROBLEM
A. LITERATURE
B. SIMULATION
C. PROCESS

MODELING

Page

ANALYSIS
REVIEW

DESCRIPTION

APPROACH

1

4

5
5
9

10

20
A. PROGRAMMING LANGUAGE 20
B. THE SIMULATION MODEL 22

1. GENERAL REMARKS 22
2. THE SLAM NETWORK 24
3. MODELING INVENTORIES 27
4. MODELING MACHINES 30
5. PROCESS #1, FELLING 36
6. PROCESSES #2 #10, NORMAL PROCESSES 36
7. PROCESS #11, SORTING 37
8. PROCESS #12, CHIPPING 39
9. PROCESS #13, FINAL TRANSPORT 42
10. LOADING DEVICES 44

V. FRONT-END DESIGN 46
A. INPUT FRONT-END 46

1. DEFINING A NEW HARVESTING MODEL 47
a PHASE ONE, GENERAL PARAMETERS 48
b PHASE TWO, MATERIAL FLOW 49
c PHASE THREE, MATERIAL DISTRIBUTIONS 50
d PHASE FOUR, PROCESS PARAMETERS 51
e PHASE FIVE, NUMBER OF MACHINES 54
f PHASE SIX, MACHINE PARAMETERS 55
g PHASE SEVEN, MACHINE BREAKDOWNS 56

2. PRINT A HARVESTING MODEL 57
3. EDITING AN EXISTING HARVESTING MODEL 58

B. OUTPUT FRONT-END 60
1. SIMULATING A HARVESTING SYSTEM 60
2. SIMULATION RESULTS 61

a PROCESS STATISTICS 62
b MACHINE STATISTICS 66
c LOADER STATISTICS
d COMPLETE HARVESTING SYSTEM

67

STATISTICS 70

TABLE OF CONTENTS
(continued)

Page

VI. RESULTS 73
A. EXAMPLE RUNS 73
B. RUNTIME AND HARDWARE CONSIDERATIONS 77
C. MODELING CONSIDERATIONS 78
D. STATISTICAL ANALYSIS OF SIMULATION RESULTS 79

VII. CONCLUSIONS AND SUGGESTIONS FOR FUTURE
RESEARCH 81
A. CONCLUSIONS 81
B. SUGGESTIONS FOR FUTURE RESEARCH 81

BIBLIOGRAPHY 83

APPENDICES 87
APPENDIX A 87
APPENDIX B 134
APPENDIX C 172
APPENDIX D 210
APPENDIX E 282

LIST OF FIGURES

Figure Page

1 HARVEST SYSTEM FLOWCHART 12

2a HARVEST SYSTEM WORK ELEMENTS 13

2b HARVEST SYSTEM WORK ELEMENTS 14

3 TIMBER PRODUCTS 17

4 HARVEST SYSTEMS TECHNOLOGIES 18

5 HARVEST SYSTEM TECHNOLOGIES 19

6 INVENTORY BUFFER CONFIGURATION 29

LIST OF TABLES

Table Page

1 Simulation results 75

2 Cost per unit 77

3 Contents of ATRIBUTES 123

4 Contents of XX(i) variables 124

5 ARRAY description 127

6 Machines & Processes 130

SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS

I. INTRODUCTION

In the Pacific-Northwest we can observe a significant change in the

environment in which a logging operation typically takes place. The main

reasons for these changes are the increased proportion of merchantable

second growth forest and an increased public awareness concerning forest

issues.

In the western region of the United States, we have typically had a

low level of mechanization. Now, however, a wave of mechanization of

the logging process is taking place because of the increased operation in

second growth forest:

In the past when stems were large, the logger had very little lati-
tude on how the trees were handled and processed. Consequently,
trees were felled and bucked at the stump, forwarded to the landing
as log lengths, loaded on trailers and hauled to the mill.

However, with smaller stems the opportunities for handling and
processing are much greater. By combining material handling
phases and/or processing material at the landing or stump, there are
far more variables in the "Harvesting Cost Equation" (Carson,
1984).

For nearly every step of the logging process, material handling

systems and automatic processors have been developed. A great variety of

devices have been constructed and adapted to the logging environment.

Thus, a great number of specialized machines exist. The development and

investment costs for these machines have exploded with the increase of

their complexity. On the other side, the recession in the past few years

has hit the forest products industry, mostly because of the close relation-

2

ship between the construction industry and the forest products industry.

This had, of course, significant influence on the logging industry as the

supplier of raw material to the forest products industry. Demand and

profits went down considerably.

The social environment in which a logging operation takes place has

changed:

The public has become more concerned with conservation, wilder-
ness, recreation areas and aesthetics. This concern has the effect
of placing rigid restrictions on the timber cutting practices. Fur-
ther restrictions are placed on the timber cutting practices by gov-
ernmental practices (Anonymous, 1971).

These changes in the economical and social environment have cre-

ated a number of problems for both the manufacturer of logging equipment

and the logging companies. In the case of the machine manufacturer, some

of the problems are:

- What systems should be developed to meet public concern and

the needs of the loggers ?

- What is the economical performance of a proposed system?

- What is the utilization of the machines?

- How can a harvesting system be adapted to a specific envi-

ronment?

- Where can I improve my harvesting system?

The logging operator is concerned about questions like:

- Which harvesting system should I use for which environ-

ment?

- What is the expected performance of the system in terms of

economics, utilization, material flow, capacities?

- How can I improve my system?

- What machines should I buy for my logging environment?

3

- What machines should I buy for my logging environment?

- What is the best mix of equipment (type and number) and

labor for a given logging site?

Thus, it can clearly be seen that there is need for a tool to analyze

and optimize the timber harvesting process. Generally, this involves math-

ematical modeling of one sort or another. However, in complex systems,

the mathematics can be extremely difficult to apply. Simulation is one

tool to analyze more complex systems since this method is often easier to

apply than pure analytical methods, and hence can be employed by many

more individuals. Therefore, we will employ simulation to develop such

an analytical tool.

4

II. OBJECTIVE

The main goals of this thesis will be:

1) Definition of a model of the harvesting process suitable for an-

alyzing a broad range of harvesting configurations.

2) Development of a general simulation processor with the follow-

ing abilities:

Capable of running in an IBM-PC or compatible computer

hardware environment.

The user should be able to define, on-line in an interactive

session, the specific machine configuration and environment

of a timber harvesting process.

- The program should verify the given system and parameters.

- Output of the desired results in an easy to analyze and read-

able form.

- Since the environment and machine configurations change for

every application, the model should be built in a modular

fashion, and be easy to use.

5

PROBLEM ANALYSIS

A. LITERATURE REVIEW

There have been many attempts in simulating (modeling) the timber

harvest process. In their state-of-the-art report Goulett, Iff and Sirois

(Goulett, Iff, Sirois; 1979) classify these attempts into two general

classes:

1) Tree-to-Mill models:

The entire process from felling until the log arrives at the

sawmill is modeled.

2) Phase models:

A certain phase/part of the process is modeled. Most work

so far has been done in this second class. Models for spe-

cific phases have been developed, like

- Simulation of the operation of a log landing for a Heli-Stat

airship in old growth timber stands (Gerstkemper, 1982).

- Simulation of a helicopter yarding system (Ledoux, 1975).

- Loading and hauling subsystems of a logging system

(Johnson, 1970).

- Simulation of a Rubber-Tired Feller-Buncher (Winsauer,

Bradley, Dennis; 1982).

- Harvesting machines for mechanized thinning (Newnham,

Sjunnesson; 1969).

- Simulation of a timberyard (Lohman, Lehnhausen; 1983).

6

- Mechanized felling in dense softwood plantations (Winsauer,

1984).

These are only a few models from the great existing number of

simulation approaches for a single or a few phases of the logging process.

However, in the first class Goulett, Iff and Sirois only identify eight

models, which are concerned about the whole process. These approaches

have different features and capabilities:

- The Auburn pulpwood harvesting system simulator (Bussel,

Hool, Leppet, Harmon; 1969).

Simulates eight shortwood and six tree length harvesting

configurations.

- The forest harvesting simulation model (Killham, 1975).

Capable of addressing variability in individual operations, but

doesn't collect statistical data for these estimates.

- Full-Tree chipping and transportation simulator (Bare, Jayen,

Anho lt; 1976).

Designed to simulate harvesting, in-woods full-tree chipping

and transport to the mill.

- Georgia Tech model (Stark, 1975).

Is one of the earliest attempts in simulating forest harvest-

ing systems.

- Harvesting System Simulator (O'Hearn, Stuart, Walbridge;

1976).

The most complex model found, capable of modeling many

machine configurations in great detail.

7

- Residues for Power (Bradley, Biltonen, Winsauer; 1976).

A more general material handling model that can be used to

simulate timber harvesting and transportation systems.

Simulation applied to logging systems (Johnson, 1976).

General model that is adaptable to a variety of logging con-

figurations.

- Timber harvesting and transportation simulator (Martin,

1976).

Simulates the standard harvesting configurations.

All these models examine the timber harvest process, with great va-

riety in both, function and detail. They are considered to be the first

generation of timber harvesting simulators and are about ten years old.

However, presently many of these models are obsolete. The assumptions

and configurations used are no longer relevant, due to the mechanization

wave. The environment has changed significantly, which isn't reflected in

these models. Thus, today there exists a need for a new approach in

simulating the timber harvesting process.

D. B. Webster (Webster, 1984) suggested the following approach

for a simulation project. He divides the approach into three phases, with

certain activities:

1) Initialization Phase:

- Problem definition

- Definition of objectives and criteria

- System definition

The most important and difficult step in a simulation prob-

lem is to define the simulation. The following questions

should be asked:

8

a) What are the questions to be answered by the model?

b) What are the performance variables of interest?

c) What output is required?

d) Are only mean values required, or is a distribution for-

mat needed?

2) Modeling Phase:

Phase one has been successfully performed; the problem envi-

ronment has been well defined. Tasks now required are:

- Model formulation

- Data preparation

- Selection of programming language

- Model development

- Coding of the model

- Model verification, and

- Model validation

3) Implementation Phase:

This last phase determines whether or not all previous effort

has been in vain. Tasks which must be accomplished include:

- Strategic planning

- Tactical planning

- Experimentation

- Analysis of result

- Decision or indications obtained by the model

- Follow up studies

This thesis will deal only with phase one and two of this approach,

because of the size and the complexity of the topic.

9

B. SIMULATION

Simulation is one of the most widely used techniques in operations

research and management science. The recent advances in computer

hardware and software makes this tool even more accessible for the

decision-maker and researcher.

Simulation is an excellent analytical tool to view and examine com-

plex systems. It makes it possible to explore systems in their totality as

well as in great detail. However, simulation has one drawback, it is not

an analytical optimizing technique. Still, this can be overcome by simulat-

ing the desired system several times, each time with a different set of

parameter values. With the help of sensitivity analysis a projection can

then be made to approximate the desired optimization or minimization ob-

jective. Simulation is quite often employed to analyze what-if scenarios

of complex systems, where it is too costly or simply not possible to run a

real-time experiment. As was demonstrated in the Literature Review,

simulation techniques have been successfully employed to analyze the vari-

ous aspects of the timber harvesting process.

In most simulations, time is the major independent variable. Other

variables included in the simulation are functions of time and are the de-

pendent variables (Pritsker, Pedgen; 1984).

Simulation models of systems can be classified generally into three

classes: discrete, continuous or combined discrete-continuous models.

In a discrete simulation the dependent variables change discretely at

specified points in simulated time. These points are referred to as event

times. Depending on whether the discrete changes in the dependent

10

variable can occur at any point in time or only at specified points, the

independent time variable may be either continuous or discrete.

In a continuous simulation the dependent variables may change con-

tinuously over simulated time. The system may be either continuous or

discrete in time. This is depending on whether the values of the depen-

dent variables are described as differential equations for any given point

in simulated time, or if with certain events the change in value is mod-

eled.

In the combination of discrete and continuous models the dependent

variables may change discretely, continuously, or continuously with discrete

jumps super imposed. The time variable may be continuous or discrete.

The timber harvesting process can be modeled with all three ap-

proaches depending on the simulation language used. However, by using a

simulation language which is capable of employing all three techniques, the

greatest possible flexibility can be maintained. Thus, it is the responsi-

bility of the modeler to choose the appropriate technique and language.

C. PROCESS DESCRIPTION

The timber harvesting process can be broken down into seven major

sub-processes (Kellogg, July 1986):

1) Felling

2) Bunching

3) Processing at stump

4) Primary Transport

5) Processing at landing or central site

6) Secondary Transport

7) Loading

11

Figure 1 (Kellogg, July 1986) shows a flow chart of the harvesting

system. Figure 2 (Sessions, 1985) shows the same system, only this time

in terms of the work elements. The main work elements of the timber

harvesting process are:

- Felling

- Delimbing

- Measuring

- Bucking

- Topping

- Bunching

- Forwarding/Skidding/Yarding

Loading

Sorting

- Debarking

- Chipping

- Hauling

HARVEST SYSTEM FLOW CHART
START F MANUAL

FOREST -1, FEM-. Irnner

frozigToPi

FE _LING I BUNCHING

I 4we-pial I

1-74,1 too-

PRIMAR

I
I)4 twin

I LOADING

MILL

I S
LoLjuo

1.0+

a*- ,.£

I SSG

TRANSPORT

eurna4 PROCESSING
I OCIAle I

-Pku--t.oul AT AT LANDING OR I Fa4

IFORrw+DI STUMP CENTRAL SITE

Jr

tUCX

SECONDARY

TRANSPORT

N.)

Nodes 000 - 099 Field Operations
Nodes 100 - 199 Landing Operations
Nodes 201 - 299 Transfer Yard Operations
Nodes 300 - 399 Mill Yard Operations

15

For a good discussion and explanation of these terms see Simmons,

1979.

Both figures demonstrate the complexity of the timber harvesting

process. Due to the mechanization machines can combine several work-

elements or even sub-processes into one machine. Logging is a serial op-

eration; that is, certain steps must be performed in a given order so the

objective may be achieved. However, the order of these steps varies

from system to system (Conway, 1976). Moreover, work elements like

delimbing and bucking can happen at nearly every stage of the harvesting

process. Therefore, in different harvesting systems, different types of

products can flow through at the same stage.

There can be restrictions on the inventory buffers before each pro-

cess. Those inventory limits can be a minimum size of inventory required

to operate a certain machine (ex. Chipper) or a maximum inventory allow-

able (ex. space constrains in the woods). There may be a startup level to

each of those cases, after the minimum or a maximum inventory level has

been reached. Also an initial startup-inventory level can apply for a

work-element or stage.

Some work-elements require a preliminary loading action. This

loading action can be provided by the machine itself (ex. self-loading

truck) or by a loading device (ex. Log-Loader). It is possible for work

elements on different stages to share the same loading device.

The logger or researcher has to match desired product mix with

available technology and required performance criteria (Garland, 1986).

Figure 3 (Garland, 1986) shows possible products emerging from the

harvesting process. In the case of technology, we have to consider equip-

ment, systems, techniques, and the labor force. Figure 4 (Garland, 1986)

16

and 5 (Garland, 1986) give an overview for possible technology used for

felling, yarding, loading, hauling and field processing. Some of the per-

formance criteria are timber size capability, production potential, cost of

production, topography limits, road access requirements, availability and

environmental limitations.

A simulation model capable of accommodating all the constraints and

desired properties has to be very general and broadly designed.

Figure 3: TIMBER PRODUCTS

ISOFTWOODS

PRODUCTS

RESIDUES

TREES

I L I MOS

ATTACHED

LOGS

DELIA/1EO

SHORT
LOGS

CHIPS,
FLAKES

tIONG

LOGS

CHUNKS

17

Figure 4: HARVEST SYSTEMS TECHNOLOGIES

LARGE
TIMBER

CONVENTIONAL

MANUAL

DIRECTIONAL
FELLING

FELLING TECHNOLOGY

SMALL
TIMBER

L..
SLOPES SLOPES

c 30Z >307.

TREE
PROCESSORS

FELLER
FORWARDERS

TREE -TO -TREE
FELLING

HYDRAULIC
EXCAVATORS

CLIMBING
BAC KHOES

YARDING TECHNOLOGY

ANUAL

NOT YARDING

GROUND BASED

SKIDDING
MACHINES

CABLE AERIAL

1
MELIOSTAT-1
CYCLOCRANE

-J

LOW- GROUND
PRESSURE BALLOON ELICOPTER

SINGLE SPANS RUNNINGmULTI-SPANS SKYLINES

LOADING TECHNOLOGY

YARDING E
LOADING

INSRRL
lCABLEJ

DOUBLE
SWING
(HYDRAULIC)

FRONT-END
LOADERS

TRACKS EELS

HEEL-BOON
LOADERS

CABLE

SELF-LOADERS

YDRAULIC

CHIP
LOADERS

BLOWERS

'CHUNK I

'LOADERS)

J

CONVEYORS

18

Figure 5: HARVEST SYSTEM TECHNOLOGIES

FIELD PROCESSING TECHNOLOGY
'LANDING OR WOODS YARD)

DELIRIUMS S
BUCKING

MANUAL DELIMMERS LOG
PROCESSO S

OVERHEAD
KNIFE

TRAY
KNIFE LAIL

I r --I
CHIPPERS I CHUNKERS II BAILERS II SHREDDERS I. DENSIFIERs I

r
I MOBILE I PORTABLE
L

MOBILE

COMPUTERIZED I

HAULING TECHNOLOGY

-L--.
SELF

LOADERS
SNORT

LOGGERS
CONVENTIONAL

TREES CHIPS 'CHURNS

OVERSIZE INGLES DOUBLES

OCNSIFIED
.mATERIALSJ

19

20

IV. MODELING APPROACH

A. PROGRAMMING LANGUAGE

The simulation model for the timber harvesting process was devel-

oped using SLAM (Simulation Language for Alternative Modeling) network

modeling. SLAM is an event-oriented or a process-oriented simulation

language and was developed by Pedgen and Pritsker (see Pritsker, Pedgen;

1984). In SLAM a discrete change system can be modeled within an event

orientation, process orientation or both. Continuous change systems can be

modeled using either differential or difference equations. Combined

discrete-continuous change systems can be modeled by combining the event

and/or process orientation with the continuous orientation. In addition,

SLAM incorporates a number of features that correspond to the activity

scanning orientation.

SLAM as the simulation language was chosen because of a number

of reasons:

1) SLAM is available for an IBM-PC environment.

2) SLAM unifies all three modeling approaches within one simula-

tion language; moreover, all three approaches can be combined

within the same simulation model.

3) SLAM is based on FORTRAN, thus, easy to learn and usable on

a great variety of computers. It is possible to port the devel-

oped programs and simulation models with a minimum effort

21

to other computing hardware, even to mainframes if the need

arises (Lilegdon, O'Reilly; 1986).

4) A SLAM language package was available through the Department

of Forest Engineering at Oregon State University.

In the process orientation in SLAM, a modeler combines a set of

standard symbols, called nodes and branches, into an interconnected net-

work structure which represents the system of interest pictorially. After

the network model of the system has been developed, it is translated into

an equivalent of SLAM program statements for execution on the computer

(Law, Kelton; 1982). In the event orientation and continuous orientation of

SLAM, the modeler defines as FORTRAN subroutines the events, potential

changes to the system when an event occurs, and the differential or dif-

ference equations which describe the dynamic behavior of the system.

These subroutines are then linked to the SLAM Execution Processor,

which performs the actual simulation. SLAM also provides the modeler

with a set of subroutines, which can be employed in the custom FORTRAN

coding. These pre-written subroutines provide an interface to the SLAM

network, and ease the task of statistical data collection. It is not the

scope of this Thesis to provide the reader with a working knowledge of

the SLAM simulation language (for a complete and thorough discussion of

SLAM as a simulation language see Pritsker and Pedgen, 1984, Lilegdon

and O'Reilly, 1986; and O'Reilly, 1984). To understand completely the

programming done in this research, a good knowledge of FORTRAN is

also mandatory (for references of the FORTRAN computer language see

Etter, 1984; and the Microsoft FORTRAN Compiler Manuals, Microsoft

1985).

22

The simulation model was programmed in SLAM II for the IBM-PC,

available from Pritsker & Associates Inc., West Lafayette,Indiana and the

Microsoft FORTRAN Compiler Version 3.31 from Microsoft Corporation,

Redmond, Washington. The programs created will run under MS-DOS

(Microsoft Disk Operating System) Version 2.11 and higher.

B. THE SIMULATION MODEL

1. GENERAL REMARKS

The simulation model consists of three major parts. First the

SLAM Network model, second the FORTRAN written subroutines, which

accompanies the network and contains routines to initiate the simulation

process, statistical data sampling functions, routines to assign values to

variables and the output user-interface. The third part is the user inter-

face for inputting, editing and printing the simulation parameters of the

harvesting system. This user interface is also written in FORTRAN,

which produces files that can be read by the SLAM simulation language.

Therefore, it is possible to specify harvesting systems in advance, store

them on mass storage media like floppy disks or hard disks and retrieve

them whenever desired. The user-interfaces are described in more detail

in their respective section.

The LOGGING SIMULATOR (LOGSIM) can be viewed as a gen-

eral framework model of the log harvesting process. The user defines

the desired harvesting system as a set of parameters. This set of pa-

rameters can be viewed as a customized model by itself and will be re-

ferred to as the harvesting model throughout this text. After the harvest-

ing system has been specified with the input program, a customized SLAM

Execution Processor has to be executed. This program will perform the

23

actual simulation and gives a detailed simulation results output in readable

form at the end of the run.

LOGSIM is capable of simulating a harvesting system from the

felling operation until the log arrives at the sawmill or timberyard. The

harvesting of one timber stand at a time can be modeled. The model con-

sists of thirteen processes, which can be arranged in nearly any desired

order. However, the model always starts out from process #1 and must

end with either Process #12, #13, or both. Process #11 has the ability to

divert the material flow into two branches, therefore, making it possible

to simulate sorting operations or systems with two primary products like

pulpwood and sawlogs. Each of the processes can employ different types

of machines that have to be specified. In total, the simulation model can

handle up to 90 machines within the system. The properties and capabili-

ties of those thirteen processes are discussed in more detail in the fol-

lowing sections.

In order to simulate the flow of different materials through the

harvesting system, the user can specify up to four material frequency

distributions with up to ten frequency classes. An example is that it is

possible to distinguish between whole trees, bucked logs, pulpwood pieces

and sawlogs within the model and investigate the influence of piece sizes.

By specifying different material frequency distributions for each simula-

tion run, the performance of a given harvesting system configuration can

be evaluated.

The model is capable of investigating the properties and influence

of inventory buffers throughout the harvesting system. Optionally, the

user can also model machine breakdown through the use of cumulative

24

frequency distributions which describe time between machine breakdowns

and repair times.

Times are generally described in decimal format throughout the

simulation. An example is that 1.0 hrs is equal to one hour, 0.5 hrs are

30 minutes and 0.1 hrs are 6 minutes.

In the following sections we will describe the workings of the sim-

ulation network and FORTRAN programs.

2. THE SLAM NETWORK

The SLAM network consists of three subnetworks. The first is

used to initialize the simulation, the second to model machine breakdowns

and the third to model the actual harvesting process. The third network

is the main logic to simulate the harvesting process. It consists of sev-

eral subroutines, one for altering resource capacities, one for modeling

time delays, one for each process and several help routines for controlling

the simulation.

The model uses approximately 13800 words out of 16000 available

reserved by the SLAM processor to define a network. Thus, 2200 Words

still can be used for further modeling or increasing the number of ma-

chines the model is capable to handle if necessary. The relatively small

size of the model was achieved by indexing processes and variables and

using FORTRAN written user functions, thus, replacing SLAM code with

FORTRAN statements which are not accounted for in the space reserved

by the SLAM processor for the network description. Therefore, it is

possible to build models which use up to 640 K on the IBM-PC even if the

SLAM processor only occupies 320 K of memory. The current version of

the LOGSIM requires approximately 420 K available memory to run, thus,

25

leaving an additional 220 K free for further programing of FORTRAN

user functions.

In most simulation models an entity that "flows" through the net-

work represents a material unit, a customer, or a work piece. In the

SLAM Network of the LOGSIM, however, an entity within the network

represents a machine rather than a tree or cubic foot of wood. Each ma-

chine entity has seven ATTRIBUTES attached to it describing various pa-

rameters that are used to control the flow of the entity through the model

(see Appendix A. 2).

The network model employs the concept of resources to indicate if

a given machine is active and available and to control the simulation. In

Appendix A. 1, an output of the SLAM Network is given along with several

tables to describe which variables carry which values.

The ARRAY function available in SLAM II was heavily employed in

the modeling process. These ARRAY functions and the XX(i) variables

contain the parameters that describe the harvesting model and are also

used to control the simulation. For a description of what the XX(i) vari-

ables represent, see Appendix A. 3 . For the description of the ARRAY

variables, see Appendix A. 4.

For a description of the initialization of the simulation model and

the use of FORTRAN user functions see Appendix A. 6.

When starting a processing cycle the entity seizes a machine (see

also section W.B.4), checks if a loader is required for this process and

if so also seizes a loader (see likewise section IV.B.10). Then, the en-

tity is routed to the main processing subroutine. There the actual load

size of this run is determined according to the specified distribution for

this process and the load size capacity of the machine. This is done by a

26

FORTRAN written user function (for a listing of the FORTRAN user

functions see Appendix B). It should be noted that each time a FORTRAN

user function is called the variable XX(5) should be indexed with the num-

ber describing which user function ought to be performed. This is done

to overcome a flaw in the SLAM Processor, that does not transfer this

number correctly when using the USERF(IFN) function. The model then

performs several inventory calculations and checks, tests if the process is

ended, e.g. if this is the last load, and then models the loading function if

one is required. After this the actual machine processing, e.g. the time

delays because of machine action, are accomplished (see also section

IV.B.4). The model proceeds then with calculating the new inventories,

checking inventory levels, adding machine hours and collecting statistics on

the inventories. The resource machine is freed and the gates of the cur-

rent and following process are pushed open to enable continuation of the

simulation. Finally, the entity is routed back to the process where it

originated and the whole cycle begins again.

When the initial startup level for a process is reached, the assigned

machines are activated by altering their respective resource capacities.

The statistics for the process are initialized and the model then begins

processing available inventory in the above described manner. Also entities

are placed into the machine breakdown network if the modeling of ma-

chine breakdowns is desired. The machine breakdown network is a rela-

tively simple matter. In a FORTRAN user function, the model assigns

two values to the machine entity, one for the time between failures and

the other for the repair time. These values are set according to the fre-

quency distributions specified in the harvesting model. The entity is then

delayed for the assigned time between failures. After this time has

27

passed, the machine is seized and made unavailable for normal processing.

The repair time is lapsed after which the seized machine resource is re-

leased, thus making it available to resume normal operation. The cycle is

then started again by assigning the next pair of time values to the entity.

When a process is finished, the respective machine entities in the machine

breakdown network are disposed, freeing the SLAM processor of these

entities.

If the ending condition of a process is reached, the model sets a

flag accordingly to indicate this fact, calls a user function to calculate the

final statistics, and gives an output of these statistics. Statistics are

given in the sequence of completed processes. When the complete har-

vesting system is finished, the output user function is called one more

time and the statistics for the whole system are compiled and given out

(see section V.B.2). The end of simulation message is then displayed and

the SLAM processor exits to the DOS prompt.

3. MODELING INVENTORIES

For modeling material buffers throughout the system and their re-

strictions and capabilities, the modeler is given several tools to analyze

this harvesting system component. He can describe the inventory levels of

the material input buffers of Processes 2 to 13 if desired. Since Process

1 feeds directly from the stand, there are no restrictions on the input

buffer of this process. The description of inventory sizes is done by

specifying the minimum size of the inventory required for this process or

the maximum size the buffer/inventory can bear. Also a startup level

which has to be reached after the inventory minimum or maximum has

been triggered can be specified. Lastly the modeler can set an inventory

28

level for the initial startup of the process, thus, describing starting condi-

tions. Throughout the model the input buffer of one process is the output

buffer of the previous process (see Figure 6).

Figure 6: INVENTORY BUFFER CONFIGURATION

STAND

PROCESS #1
1

1

1 PROCESSING
!FELLING)

OUTPUT

I

LOGGED TREES 1 INFEED BUFFER

PROCESS 42 I

) PROCESSING
(SKIDDING)

CUT PUT

SKIDDED TREES INFEED BUFFER

PROCESS *3

tBIJCKING)

OUTPUT

1,

BUCKED LOGS

PROCESS #I3

SEC. TRANSPORT;

PROCESSING

INFEED BUFFER

PROCESSING

29

30

During the simulation the model automatically checks the inventories

of the active processes each time an inventory transaction is performed.

If the minimum inventory level is reached, the machines of the current

pro-cess are deactivated. If the maximum level is reached, the machines

of the previous process are deactivated. Accordingly, the respective pro-

cesses are reactivated when the startup limits are reached. When a pro-

cess is deactivated, the machines currently engaged in a processing action

still will finish their immediate job, not simply be preempted and stopped.

This is done by altering the available resources allocated to the respective

machine types. The model will collect statistics of inventory downtimes

throughout the simulation and will show them in the simulation results.

Throughout the simulation a set of flags are set to indicate the in-

ventory state (maximum reached, minimum reached etc.). These flags can

be easily accessed and used to control the simulation if the model should

be extended (ARRAY lines 15, 19, 20).

Also, the model keeps track of the inventories in transit, meaning

that the inventory amount involved currently in processing activities. This

is done to prevent premature ending of processes, that can occur if the

previous process has an inventory of zero in its input buffer, but the ma-

chine carrying the last load is still engaged in processing. Therefore, in-

ventory is still on its way to be processed by the next process. By

checking the inventory in transit the program assures that no premature

ending of processes can occur.

4. MODELING MACHINES

The simulation model can simulate up to 42 different types of ma-

chines. These machine types are divided between the thirteen process

31

(see Appendix A. 5). For each of these 42 machine classes, the modeler

can specify a different set of parameter values through the input user-in-

terface. This set of parameters describe the machine capacity, processing

times, machine breakdowns, costs and how many machines of each type

are available (see section VA.1.).

A total of approximately 90 machines can be handled by the model at

any given point in time during the simulation. Since the model places for

each machine one entity in the processing network and one additional entity

in the machine breakdown network , it is possible to simulate up to 180

machines simultaneously if the modeling of machine breakdowns is omit-

ted. Another route to increase the possible number of machines is to use

the free space of approximately 2200 words in the network description to

increase the number of entities preset with the LIMITS statement at the

beginning of the network. This would yield another 200 entities or 100

additional machines.

In the following paragraphs, we will describe how the model han-

dles different aspects of the simulation of machine actions. However, the

machine types representing loading actions are handled somewhat differ-

ently than normal machines and are, therefore, described in more detail in

section IV.B.10.

In order to model time delays due to machine actions, the model

gives the user two principal choices: the first is to use the built-in routine

to model time delays; the second is to write a FORTRAN user function

and link it to the SLAM Execution Processor. As stated before, times are

defined in a decimal format, where 1.0 hrs equals one hour.

To use FORTRAN user functions for modeling more complicated

time delays requires a throughout understanding of FORTRAN, SLAM and

32

the simulation model. A much easier way is to employ the built-in capa-

bilities of the model by using the first modeling option. For each ma-

chine, the user has the choice to specify three different types of time de-

lays. The values for these delays are specified in the input user-

interface when the parameters for the respective machine are set.

The first type of built-in time delay is the time required per tree.

When the model sets the load size for each machine run according to the

specified distribution and machine capacity, the number of trees for the

particular run is also stored in an attribute of the machine entity. The

model then simply multiples the number of trees in the run times the time

required per tree and delays the entity accordingly. Examples for this

type of time delay are time required to fell a tree, average time to set a

choker for a skyline, and time for chipping a tree.

The second type of time delay is the time per load. This is a con-

stant time required by the process for each load. Examples for this type

of delay are the average time a skidder operator needs to hook-up a skid

load, time to load a self-loading truck, and time to prepare a truck for a

hauling action.

The third built-in time delay models hauling times. The user

specifies how much time one way of the haul requires. During the simu-

lation the model will then delay the required time, adds the transported

load to the inventory of the next process and performs the required inven-

tory checks. Thus, the transported inventory is made available for the

next process after a one way haul. The model will delay the entity a

second time, simulating the haul back. Only then the resource attached to

the entity is released and made accessible for the next processing cycle.

33

Examples for this type of time delay are easy to find: transporting logs to

the sawmill, average skidding times and so on.

With the help of these three build-in time modeling alternatives, the

user should be able to simulate a vast array of machines and processes.

For additional examples of processing-time modeling see section VIA. Ex-

ample runs.

The SLAM network of LOGSIM already incorporates an interface

for FORTRAN user functions, making it easy to use them if necessary.

The user simply indicates that he wishes to use user functions to simulate

the time delays for a certain process. This is done in the input user-

interface when the parameters for the considered process are set. He

then writes the required user function in which he assigns values to the

machines used in this process. Since each machine entity carries the ma-

chine type and process number as an attribute value (see Appendix A. 2),

it is quite simple to route the entities accordingly and distinguish between

the different machine types used within the same process. The user

function has to be appended to the already existing user functions (see Ap-

pendix B. 4). The addition has then to be indicated right at the beginning

of the subroutine USERF, where the program jumps to the desired pro-

gram label according to the value of XX(5). The values 1 to 99 are al-

ready reserved to indicate the jump address. The subroutine USERF has

then to be recompiled and linked to the SLAM Execution Processor. When

the simulation model is executed, the model checks automatically if the

machine entity belongs to a process for which time delays are modeled

with the help of a FORTRAN user function. The entity is then routed ac-

cordingly. Thus, the user is not required to alter the SLAM network to

incorporate user functions for time delays. To ease the task of modeling

34

constant time delays per load and hauling times, the program still will

perform those time delays if specified for a certain machine, even if a

FORTRAN user functions is used. Only the variable time per load is

skipped by the network when using the user function option to model time

delays. Therefore the input user-interface will still prompt the user for

values for these time parameters.

At the beginning of the main processing routine, the actual load size

of the current machine run is determined according to the specified distri-

bution for this process and the load size capacity of the machine. As

stated before, this is done by a FORTRAN written user function (see Ap-

pendix B. 4). In this user function, the model first determines if there is

actually enough inventory for a full load according to the capacity of the

machine. If there is not enough inventory available, the entity is routed

back to the main processing routine and is sent to a waiting loop where

the previously seized resources are released and the entity delayed ac-

cording to the value of the "time delay parameter". This "time delay pa-

rameter" describes the time intervals that the model checks if inventory

for processing is available. This parameter is set in the input user-

interface right at the beginning when a new process is defined (see sec-

tion V.A.1.a). From the above we see that the model will perform an

actual processing activity only when a full load according to the machine

capacity is available.

In the next step the user function performs a loop in which trees

are generated according to the specified distribution. A uniform dis-

tributed random number between 0 and 100 is fetched from the SLAM pro-

cessor. The program then looks up the matching percentage class of the

material distribution for this number, sets the tree volume accordingly and

35

adds this volume to the load size. The tree count for the load is raised

by one and the loop repeated until the maximum load size is reached.

Therefore, the actual load size will vary throughout the simulation as in

reality where the next tree is simply too big to add to the load even

through some capacity is still available. The entity is then routed back to

the main processing routine in the network.

However, one special case is when the user wants to model the

processing of one tree or work piece at a time as in a manual felling

process using chainsaws or the debarking with a transportable rotary de-

barker. In this case, the user specifies a machine capacity of 99,999.0

cubic feet (cuft) when asked to set the load size for a given machine type

in the input user-interface. The program then fetches the values for only

one tree according to the specified distribution in the above described man-

ner and proceeds.

Another special case is if a process is completed and the current

entity represents the last run where only a rest inventory has to be pro-

cessed, not yielding a full load size. The program detects this and as-

signs the remaining inventory as a load. It determines the number of

trees and load size as described and flushes the rest inventory that does

not yield the volume of a tree on top of the load, adding one additional

tree to the load size. If the processing of a single tree was specified and

the rest of the inventory is smaller than the volume of the largest tree

possible, the load size is set to the remainder and one tree is processed

additionally. Therefore, the model processes mathematically exact all in-

ventory, leaving no remainders in the input buffers of the processes used.

Throughout the simulation, the model keeps track of the actual

hours a machine is really active and accumulates those productive machine

36

hours. Later these figures are used to determine machine utilizations and

costs. The results are shown in the simulation results (see section

V.B.2.).

5. PROCESS #1, FELLING

The first process the simulation model starts with is Process #1.

This process will mostly model a felling operation in a harvesting system.

However, it also could stand for any other work element if the partial

modeling of a harvesting system is desired. For example, it could repre-

sent a primary transportation function if the simulation of a previously

logged site is wanted. Another alternative is that the modeler could use

the first process to simulate the first three work-elements of a harvest-

ing system only describing the outgoing stream of inventory and modeling

the following processes in greater detail. To provide the greatest possible

flexibility, the user is also allowed to model a loading action by requesting

the use of a loader when setting the parameters for this process in a har-

vesting model.

Up to four different machine types can be specified for this pro-

cess to simulate machine activities (see Appendix A. 5) by setting machine

types 1 to 4 active. This is done in the input user-interface where the

modeler will be asked how many machines of each type he wants to em-

ploy. By setting this parameter greater than zero, the modeler activates

the respective machine.

6. PROCESSES #2 - #10, NORMAL PROCESSES

Processes #2 to #10 are thought to be used to model the bulk of

the work elements of a harvesting operation. They can stand for skid-

ding, delimbing, bucking or a swinging process. The processes can be

37

arranged in any desired order. For each of these processes, the modeler

is able to use up to three different machine types with different machine

capabilities and costs, see Appendix C. 2.

The behavior of the model when simulating such a process is de-

scribed in IV.B.2..

7. PROCESS #11, SORTING

This process provides the modeler with the means to simulate the

dividing of the material flow through the model into two separate

branches. This makes it possible to simulate harvesting systems where

two primary products like pulpwood and sawlogs are produced, which re-

quire different processing after the products have been sorted out.

Process #11 can be activated through the input user-interface. The

modeler will be asked for the numbers of the following processes for

each route, which can be any of the others, except of course Process #1.

In both routes there is no limit on how many processes follow subse-

quently. The only restriction is that each branch ends either with Process

#12 or Process #13. Later in the input user-interface the modeler speci-

fies how much of the incoming materials stream is directed to each route

by stating the desired percentages. As with any other process, minimum

and maximum inventory sizes can also be specified, thus, completely mod-

eling a sorting deck.

To simulate the sorting process, the user can optionally activate a

loading device for this process by modeling the machine actions required

for a sorting process. If Process #11 represents a log deck from which

the following processes draw their input inventory, the use of a loader

38

simply may be omitted. It is possible to simulate the partition of the ma-

terial flow with or without time delay.

The model checks every time interval according to the value of the

time delay parameter if new inventory has arrived at the input buffer of

the process. It then calculates how much of the incoming inventory goes

to each path in confirmation to the specified percentages for the individual

routes. Internally, the model keeps track of how much inventory in the

current input buffer belongs to each route changing the amounts dynami-

cally throughout the simulation. The program then determines how much

inventory it can route through the two different material flow paths,

checking the current inventories of the following processes, and setting the

amount to be routed through each path according to the inventory limits im-

posed on the following processes. The calculated amount is then trans-

ferred, with or without time delay, to the new input inventories calculated,

and the cycle is started again.

Since the model always calculates the exact amount of inventory it

can allocate through the different paths according to the maximum size of

the following inventories, the subsequent input buffers will never be over-

loaded. The modeler should keep this in mind when analyzing the perfor-

mance of a specific harvesting model in regard of the buffer sizes. If

for subsequent processes the maximum inventory sizes are too small di-

mensioned, it will be reflected in the statistics of Process #11. They

will cause either inventory downtime because the inventory is too high or

an uncharacteristic high average inventory level/maximum inventory.

Process #11 is also a good example of how to incorporate a full

processing function into the model without using the main processing rou-

tine. This process is a complete self-contained network within the third

39

network, only using commonly accessible subroutines to check for inven-

tory statuses and the end of the process. It is an example of how to

write network submodels to simulate special machines or processes where

the normal network does not provide sufficient modeling support. It also

demonstrates the flexibility and capacity for expansions of the existing

simulation model, thus, making it easy for the researcher or user to cus-

tomize the existing framework to analyze more complex systems.

8. PROCESS #12, CHIPPING

Process 12 was modeled with the simulation of chipping operations

in mind. As stated before, the in-woods processing of stems has in-

creased rapidly with the growing share of second-growth forests in log-

ging operations, thus, making this process a very important one.

The machine configuration modeled in this process is as followed:

one main machine type, which requires a second machine type for machine

actions. The second machine type may or may not require a third machine

type when beginning processing itself. The real world machine configura-

tion that was the model for this process is a chipper, the main machine

type, which blows the chips into a chip van or chip trailer, the second ma-

chine type. To allow modeling of configurations where a chip trailer and

towing truck combination is used, the third machine type has been intro-

duced. In this case, the trailer is represented with the second machine

type while the towing unit is modeled with the third type.

When defining Process #12 in the input user-interface, the primary

or main machine type (machine type 37, see Appendix A. 5) is automati-

cally set active making one machine available. The user is asked how

many primary transporting devices he wants to employ, specifying the

40

number of machines in the second machine type (machine type 39). He

then has to specify how many secondary transporting devices he wants to

use, the third machine type (machine type 40). The primary transporting

device stands for the chip trailer, the secondary transporting device for

the towing truck. If no towing truck is used, e.g. the chip van is one unit

including towing device, the user simply sets the number of secondary

transporting devices equal zero, thus not using this option. All machine

parameters concerning the time delay caused by transporting action will be

requested from the input user-interface when specifying the parameters

for the primary transporting device, machine type 37. The model allows

the user to specify different cost values for the primary and secondary

transporting devices, that would make it possible to obtain fairly exact re-

sults on the cost structure of a given transporting system. A typical

working cycle of process #12 is described in the next paragraph.

When starting a work cycle, the model seizes the main machine and

a primary transporting device. If no primary transporting device is avail-

able, the entity is routed to the waiting loop and delayed until a primary

device is serviceable. It then checks if a loading action is required and if

so also seizes a loading device. The batchsize of the primary machine is

then determined with the FORTRAN user function provided in the usual

manner. The program performs the necessary inventory calculations,

models the loading action if requested and continues with the machine ac-

tions of the main machine. After these time delays, the processed inven-

tory is added internally to a buffer that represents the amount of material

in the primary transportation device and the cycle for the main machine is

started again. Therefore it is possible to specify different machine ca-

pacities for the main machine and the transportation devices. When the

41

buffer for the transporter exceeds the amount specified as the capacity of

the primary transporting device, an entity representing this device is re-

leased modeling the transporting action. The buffer is set to zero and a

flag is set, that a new primary transportation device is to be seized by the

entity representing the main machine. The model will seize a new pri-

mary transportation device only when the current one is fully loaded. The

transportation entity then checks if a secondary transporting device is nec-

essary. If a secondary device is necessary, it is seized and the process

continues with the modeling of the time delays caused by transporting.

The required inventory calculations are performed, the haul back is simu-

lated, and the seized primary and secondary transporting devices are re-

leased making them available.

Since the model allows the user to specify the capacity of the main

machine independent from the primary loading device, it is possible to

model the processing of a single tree (machine capacity 99,999.0), little

chunks representing a material input buffer at the chipper itself or a

whole trailer load at once. However, when modeling little chunks, care

should be taken that the capacity of the primary loading device is a multi-

ple of these chunks or the chunk-size is set accordingly. Since the model

only checks if the inventory in the primary loading device has reached a

certain level and then advances the loading device, an error is introduced

when adding the last chunk which might lead to a significant overloading.

This results in an increase of transporting capacity which is actually not

available. Generally when not using the single tree option at the main ma-

chine, we recommend that when the processing of whole trailer loads is

modeled the capacity of the primary transporting device is set to its nomi-

nal capacity minus the largest possible tree size according to the used

42

distribution. When the processing of little chunks was modeled, we rec-

ommend a primary transporting device capacity of nominal capacity minus

half a chunk size. This will reduce possible errors and we feel that the

resulting error is negligible.

If the user wants to model a harvesting system where the material

stream is divided into two branches but does not want to simulate a chip-

ping process, he can use process #12 as a finishing function by setting the

processing times for machine #37 (the chipper) to zero, thus causing no

time delay. The capacity of machine #37 should be set equal to the ca-

pacity of the transportation device used. The capacity of the primary

transportation device, machine #39, should be set to the same amount mi-

nus the greatest possible tree size according to the material distribution

used. By doing so, the model will behave just like the normal transporting

function as described in the next section.

9. PROCESS #13, FINAL TRANSPORT

Process #13 models the transportation of the logs to the sawmill.

It has the same structure of the transporting procedure as Process #12.

The modeler can use a primary transporting device and an optionally sec-

ondary one. The primary device represents either a log truck including

the towing unit or a log trailer while the secondary transporting device

represents the towing unit in the later case. Machine type 41 represents

the primary transporting device, machine type 42 the secondary one (see

Appendix A. 5). As usual the user can model the loading of the trans-

portation unit with a loading function.

The above described machine configuration is very flexible. The

user can model transportation systems which for example can consist of

43

four log trailers and two towing units. Each of these machine types can

have a different cost structure, which is normally the case, thus, a good

cost analysis is possible. Normal transportation configurations where

trailer and towing truck are one unit can be simulated as well by simply

omitting the secondary transporting device.

When starting a working cycle, the model behaves in the usual man-

ner. It seizes a primary transportation device, checks if a loading func-

tion is required and if so seizes also a loading device. It then determines

the load size of the current run, performs the inventory calculations and

continues with the load function if one is required. The program then

seizes the secondary transporting device, if one was activated, and delays

the entity according to the specified times. The machine statistics are up-

dated and the seized machine released, then the cycle starts over again.

Process #13 is, along with Process #12, the process that should

stand at the end of the modeled harvesting configuration. The reason for

this is to properly enable the simulation model to detect the end of the

harvesting process. However, by simply labeling this process and its ma-

chines accordingly, the analyst is able to model any other function if de-

sired. The only limitation in this case is that only one machine type can

be used. If this limits the modeling process, the analyst uses one of the

normal processes to model the desired function and specifies a simple

transporting function with no time delays and no costs, a dummy process.

The produced simulation statistics will show results without any signifi-

cant influence of this dummy process.

44

10. LOADING DEVICES

For each of the thirteen processes, the analyst is able to model the

use of a loading device to feed the main machine with material. The ac-

tivating of these loading devices is done in the input user-interface when

the processes are specified in more detail. The user is asked which

loader type he wants to use for a process. He can activate one loader

type per process and has the choice between five machine types, machine

type 32 to 36 (see Appendix A. 5). It is possible that the different pro-

cesses share the same loading device type throughout the simulation, which

is quite common in real-world operations. Right after the specification of

the processes, the user is asked to input how many machines of each acti-

vated loader types are available. Later the characteristics of the loader

types are set when the parameters of all machines are entered.

The user can specify machine capacities, delay times, machine costs

and machine breakdown distributions for the loading machines just as for

any other machine. However, the model handles loading actions a little bit

differently than normal machine actions. Instead of determining for each

run of the loader the batchsize and the number of trees processed like the

main machine with the FORTRAN user function, the model uses the batch-

size numbers of the main machine. It simply divides the load size of the

main machine by the capacity of the loader, thus calculating the number of

runs needed to load the main machine. The program multiplies this num-

ber with the specified time per load. It then adds this to the time for one

way hauling and the time per tree times the number of trees. Thus, the

entire processing time needed to load the main machine is calculated. It

then delays the entity of the main machine accordingly, records the

45

machine time for the loading device and continues the normal processing

cycle.

When executing a loading function, the simulation model uses the

entity of the main machine to control the flow of the loader through the

model. Therefore, for each loader, only one entity is created in the net-

work, which is needed for the machine breakdown network. If the sim-

ulation of breakdowns is omitted, no entity representing a loader exists

within the network during a simulation run.

Since loaders can be shared throughout the simulation by different

processes, statistics compiled for loading actions are based on the entire

simulated harvesting time (see also V.B.2., output front end). Thus, the

statistics for the scheduled hours and the given utilizations have the whole

harvesting time as basis. This also means that loaders are not included in

the statistics of the processes where they have been used. At the end of

the simulation the, output front-end compiles separate statistics for the

loading devices and shows them in the simulation report as a separate

topic (see V.B.2.c). If a loader type is only used by one process, the

user can recalculate the statistics accordingly by hand if desired, since all

necessary numbers are given in the output report.

46

V. FRONT-END DESIGN

The Front-ends or user-interfaces provided with the model where

developed to ease the task of modeling for the analyst. They should en-

able analysts with no prior knowledge of SLAM as a simulation language

to use the developed model of the harvesting process as an analyzing tool.

However, a knowledge of the principles of simulation should be a prereq-

uisite when using any kind of simulation as a management tool.

The user-interfaces are divided into two major parts, the input

front-end and the output front-end. The input front-end is used to enter

the different parameters of a harvesting configuration into the model,

while the output front-end calculates the statistics during the simulation

and presents the results in the simulation report. In the following section,

these two user interfaces are presented.

A. INPUT FRONT-END

The input front-end, written using the Microsoft FORTRAN com-

piler version 3.31, requires approximately 200 K bytes of available memory

to run on the IBM-PC. The program is invoked at the DOS prompt by

typing "FRONTEND.EXE". It consists of three parts:

1) A module to define a new harvesting model.

2) A module to edit an existing harvesting model.

3) A module to print out an existing harvesting model for docu-

mentation purposes.

47

The program is completely menu-driven and the user is prompted

for each input. When the program is started, a greeting message is dis-

played along with the main menu from where the user can access the dif-

ferent modules. A listing of an example session with the input user-

interface is given in Appendix C. 2 - C. 4. A figure describing the file

structure of the FORTRAN programs is also given in Appendix D. 1.

1. DEFINING A NEW HARVESTING MODEL

The module to define a new harvesting model is carried out by

choosing the menu option 1 in the main menu of the LOGSIM input user-

interface. After choosing this option the program shows the opening

screen of this program module and verifies that the user wants to continue

with the defining of a harvesting model. If not, the program jumps back

to the main menu so the user can choose another option. The input of a

harvesting system is structured into seven phases:

PHASE 1:

Specification of the general harvesting parameters like file-

name of the model, amount to be harvested and value of the

time delay parameter.

PHASE 2:

Definition of the material flow through the harvesting sys-

tem.

PHASE 3:

Entering of the material frequency distributions used.

PHASE 4:

Specification of the process parameters like optional name

of process,inventory levels, material distribution used etc.

48

PHASE 5:

Input of how many machines per machine type are used.

PHASE 6:

Definition of the machine parameters like processing times,

capacity and costs.

PHASE 7:

Specification of the machine breakdown distributions.

At the start of each phase an introduction screen is given which

tells the user what he has to enter next. Default values are given at the

input prompt in square brackets throughout the program. To use them the

modeler needs only to press the ENTER key.

Besides the entering of the necessary values for the simulation pa-

rameters, the user also can enter optional labels and descriptions for ma-

chines and processes. This information is used later on in the simulation

results and the harvesting system description to make those outputs more

readable and easier to understand.

a) PHASE ONE, GENERAL PARAMETERS

In phase one the user inputs first a filename under which the model

yet to be entered will be stored. This filename should follow the DOS

conventions for filenames and be a unique name to identify a harvesting

system according to any scheme you choose. Normally the naming of a

file consists of two parts: a filename and a filename extension. The

filename and its extension are separated by a period. A filename can be

from 1 to 8 characters long. The filename extension is optional, but rec-

ommended, and can be from 1 to 3 characters in length.

The next item to be entered is the amount of wood to be harvested.

This number can have a range from 1 to 9,999,998 cuft with no decimal

49

digits. Care should be taken to enter the decimal point when entering this

number.

The third and last item to specify is the value of the time delay

parameter. This number describes which time interval the model will use

to check the inventory buffers of the activated processes if enough inven-

tory is available to process a machine run. The time delay parameter can

have a range from 0.0001 to 999.0 decimal hours. However, if the value

was chosen either too big or too small the model will obviously produce

either unreliable simulation results or needs an excessive amount of com-

puter runtime. We recommend 0.1 hrs, which equals 6 real time minutes,

or 0.01 hrs, equal 36 real time seconds, as values if the modeler is not

sure about the real time value of this parameter.

b) PHASE TWO, MATERIAL FLOW

Phase two defines the material that flows through the model, e.g.

the sequence of processes. The program will ask in sequence for the in-

coming origin and the outgoing destination of the material stream for each

of the thirteen processes. If a process is not used, simply press ENTER

on both questions and the process will not be activated. For Process #11,

sorting, the program will ask for the outgoing destination route 1 and the

outgoing destination route 2 to divert the material stream into two

branches.

After the user has given all the information, a table of these num-

bers will be displayed so the modeler can check if they are correct. At

the bottom of the table a message is displayed prompting the user to indi-

cate if all values are correct. If answered negative, the program jumps

back to the beginning of Phase two and starts again. If answered posi-

tive, the model performs a check if all numbers match logically. When

50

the program finds the table not correct it displays an error message indi-

cating where it found the first mismatch and returns to the beginning of

Phase two after the ENTER key has been pressed.

c) PHASE THREE, MATERIAL DISTRIBUTIONS

The third phase is used to specify the material frequency distribu-

tions to describe the trees, logs and pulpwood pieces which are handled by

the machines. Up to four frequency distributions, each with up to ten fre-

quency classes can be specified.

These distributions are based on the volume in cubic feet of the re-

spective product. However, the modeler can use any other measurement

units or any other parameter suitable to describe the material. Care

should be taken to describe the machine capacities in the same units since

these distributions are later used to determine the number of pieces in a

load and the actual load size per machine run.

The program starts out with the usual introduction screen. It then

asks for an optional name for the first distribution, which can be up to 20

characters long. For each of the ten possible frequency classes the cu-

mulative relative frequency and the volume in cubic feet are then re-

quested. Cumulative relative frequency distribution means that the fre-

quency percentages for the different classes build an increasing sequence,

ending with 100.00 %. Throughout the entering process the program

checks that each frequency number is larger than the previous one and that

the last class specified ends with the value 100.00. The range for these

numbers are from 0.01 % to 100.00 %. The range for the values of the

volumes is 00000.01 to 99,999.99 cubic feet. Care should be taken when

compiling the frequency distributions so that the lowest class represents

the smallest piece size with the following classes specifying the piece size

51

in increasing order. When the program encounters a class with 100.00 %

cumulative frequency or the tenth class is entered, it stops prompting for

new values and a table of the just entered distribution is displayed. The

user is given the option to accept the entered values or to start over again.

If the distribution is accepted and no errors are found, the input cycle for

the next distribution is started.

To omit any of the four distributions, the modeler simply presses

ENTER when the name of the distribution is asked and also ENTER for

the first cumulative relative frequency and the first volume information.

However, at least one frequency distribution with one valid frequency

class has to be specified. The program will issue an error message if

this is not the case and returns at the beginning of Phase three.

d) PHASE FOUR, PROCESS PARAMETERS

In Phase four the processes activated with Phase one are defined in

more detail. After a process has been defined, the user as usual gets a

table of the just entered values and the option to accept them or to enter

them over again.

For each of the active processes, the program automatically asks

for values of the following parameters.

The first parameter to enter is an optional label for the process,

again up to 20 characters long.

The second prompt asks the user to name the material frequency

distribution he wants to use to model this process. An integer number

from 1 to 4 can be entered, which represents the distribution number.

The program then checks if the specified distribution was set active dur-

ing Phase 3 and if not, issues an error message with the request to enter

52

the distribution number again. Otherwise, the value will be accepted and

the program continues.

The third parameter is the startup inventory level. This is the in-

ventory level needed for the first initial start of a process. It can have a

range from 000000.1 to 999,999.9 cubic feet. The program will check that

this number is less than the total amount to be harvested. However, when

dividing the material stream into two branches care should be taken that

the values for this parameter can be achieved during the simulation ac-

cording to the specified percentages. The user interface uses a default

value of 1.0 cuft for the initial startup-inventory when ENTER is pressed.

The initial startup-level is also used by the program to determine the point

in time when the process actually started (see also V.B.2.a)). To get

meaningful simulation results we therefore recommend that the user sets

this parameter to at least the largest load size of the machine types used

in the respective process. Otherwise the program will start the process

despite the fact that not enough inventory for a machine run is available.

Next, the minimum infeed inventory level has to be entered. This

parameter defines the level of inventory to be maintained in the input

buffer throughout the simulation. A range from 000000.0 to 999,999.9 can

be specified while the default value is 0.0. The default means that all in-

ventory can be used for processing.

The fifth parameter sets the inventory level to start up again if the

minimum inventory level has been reached. Numbers from 000000.0 to

999,999.9 are accepted, with a default value of 0.0 . The program cross

checks that the entered value is equal or greater than the minimum level

specified previously and will report an error if this is not the case.

53

Next the maximum size of the inventory buffer has to be specified

with a number range of 000000.1 to 999,999.9. The default is 999,999.9,

which represents an unlimited size of the buffer. The program checks

automatically that the maximum is greater than the minimum inventory

level and greater than the startup level for the inventory minimum. When

specifying this parameter, care should be taken to set this number at least

as large as the largest capacity of the machines employed in this process,

to ensure that enough inventory for a machine run is available.

The seventh parameter to be entered is the startup level to which

the inventory of the current process has to drop after the maximum in-

ventory has been reached so that the previous process can be reactivated.

Again the range for the values is 000000.1 to 999,999.9 with a default of

999,999.9. Checks are performed to insure that the entered value is at

least greater then the minimum inventory level and less than the maximum

level.

The eighth prompt asks the user to indicate if he wants to employ

a loading function for the modeling of the process. By entering the num-

ber of the respective loader type, an integer between 32 and 36, the re-

quired loader is set active. When no loading function is necessary, the

user simply should press ENTER to use the default of 0 which indicates

that no loader is used.

The last parameter requested by the program to describe a process

is if the modeler wants to use his own FORTRAN user functions to model

the time delays machine actions require or use the built-in modeling func-

tions. The default is 0, which means the built-in functions are used. If

the user enters a value of 1, the simulation model will use FORTRAN

54

user functions supplied by the user during the simulation to model this

process.

e) PHASE FIVE, NUMBER OF MACHINES

The fifth phase defines, for each of the processes, which machine

types will be used and how many machines of each machine type will be

available throughout the simulation.

However, if any processes were defined in the previous phase that

use a loading function, the program first will prompt to specify how many

machines for each activated loader type are available. It will accept inte-

ger values from 0 to 80. If an activated loader type is set to 0, the pro-

gram will display an error message and prompts again for the number of

machines available. As usual the user will be presented with a table of

the entered values with the option to re-enter them if desired.

The input interface will then continue in sequence of the activated

processes to prompt the user for each of the available machine types per

process and how many machines he wants to employ during the simulation

run. The prompts will already show the machine type number according

to Appendix A. 5.

If process #11 was activated the program will ask the user to

specify the percent of the incoming material stream that goes to route 1

and how much goes to route 2. It will accept values between 0.01 and

99.99 percent and checks that the sum of both percentages equals 100.00 %.

When process #12 is utilized, the user is prompted to indicate how

many primary and secondary transporting devices he wants to use. The

chipper, machine type 37, is automatically activated by the program and set

to 1 available machine.

55

For process #13, final transportation, the interface again prompts

for the number of primary and secondary transporting devices.

The program checks that for each of the utilized processes at least

one active machine exists. In case of process #12 and #13 it verifies that

at least one primary transportation unit is available. After each process

the user can inspect on screen the values just entered and is given oppor-

tunity to change them.

f) PHASE SIX, MACHINE PARAMETERS

In this phase the actual specification of the machine types takes

place. Again the program will ask the user in sequence of the machine

types for several parameter values. After one machine type has been de-

clared, the entered values are displayed so that the user can reenter them

if desired.

First the modeler can input an optional name for the machine type,

up to 20 characters long. The second prompt asks for the average pro-

cessing time per tree, which can obtain a value from 000.0000 to 999.999.

The default is 0. Then the fixed constant time per load is requested,

which can have the same range as the average processing time and has

also the same default. The forth prompt asks the fixed constant time of

one way hauling.

The fifth parameter defines the capacity of the respective machine

type. The allowable range for this number is 00000.01 to 99,999.99 cubic

feet; the default is 1.0 cuft. However, care should be taken that this

value is at least as large as the largest tree volume value specified in the

material frequency distribution used for the process to which the machine

type belongs. If the analyst wants to model a machine which only pro-

cesses one tree at a time such as certain types of delimbing and debarking

56

machines, he simply has to enter a machine capacity of 99,999 cubic feet.

The simulation model will then behave accordingly during run time and

only assign one tree per machine cycle with a volume from the material

frequency distribution.

The next two parameters are concerned with the cost structure of

the machine. The first one sets the fixed cost per scheduled hour, the

second one the variable cost per machine hour. These values are later

during the simulation run used to compile cost related statistics. For an

explanation of what a scheduled hour and a machine hour means please see

chapter V.B.2., the output front end design. All the terms related to the

simulation results are described there. The input range for both cost pa-

rameters is 00000.00 to 99,999.99 with a default of 0.0. Therefore, when

using the default option, no cost statistics are produced by the simulation

model.

g) PHASE SEVEN, MACHINE BREAKDOWNS

The seventh phase completes the description of the machine types by

specifying the breakdown behavior of the machine type. The analyst has

to enter one frequency distribution for the times between failures and one

for the repair times. If the modeling of machine breakdowns is not de-

sired, it can be omitted by using the default values of 0 for the first fre-

quency class of the frequency distribution for times between failures.

The program will then skip the entering of repair times for this machine

and will display a message that this particular distribution is not used. As

usual, the program displays after each machine the entered values to give

the user the opportunity to make changes. The conventions to enter the

frequency distributions for the machine breakdowns are just like the ones

for the material frequency distributions, and may be read in section

57

V.A.1.c) if desired. The times between failures and repair times have a

range from 00000.01 to 99,999.99 and should be entered in the usual deci-

mal time format. The program performs checks to ensure that the values

are entered properly and will prompt the user with a message if a fault

is detected.

After Phase 7 has been completed the program asks the user if the

just defined harvesting model should be saved or not. To use the har-

vesting model for simulation purposes with the developed SLAM network it

must be saved! The model uses the filename entered in Phase 1 to write

the file to the default mass storage media. Before doing so it will check

if a file with the same filename exists. When this is the case it prompts

the user to enter a new filename for the harvesting model. After the

program has stored the model successfully, it displays a message that it

has done so and will return to the main menu after the user presses the

ENTER key. By choosing the appropriate modules the user can then either

edit or print the harvesting model.

2. PRINT A HARVESTING MODEL

By choosing the menu option 2 at the main menu prompt the user

can route any previously defined harvesting model to a printer. The pro-

gram will prompt the analyst if he wants to continue and if so asks for

the filename of the harvesting model to be retrieved. The model will

check if the file is in the current directory and will load it. If no file

under the specified filename is found an error message is displayed and

the user prompted for a substitute filename. When the model has been

successfully fetched, a message is displayed accordingly.

58

The user is given the choice either to display the harvesting model

on screen or to route the output to a printer. Example outputs can be seen

in Appendix E. 2, E. 5, E. 8, and E. 11. An example of the dialog be-

tween user and computer is given in Appendix C. 3.

These printouts can be used to document the harvesting models and

will show the entered data in an easy to understand and well organized

manner.

After the program has produced the desired output it returns back

directly to the main menu to allow the user the continuation of the pro-

gram.

3. EDITING AN EXISTING HARVESTING MODEL

The last module in the input user-interface can be used to modify

an existing harvesting model. It is invoked by entering the number 3 at

the input prompt of the main menu. After the desired file has been re-

trieved, a menu with seven choices is displayed from which the user can

edit all harvesting system parameters. The only exception is that the ma-

terial flow, the process configuration, can't be modified. If a different

process configuration is desired a new harvesting model has to be entered.

An example run of this front-end module is given in Appendix C. 5.

When the user has made his choice from the modify menu the pro-

gram will first prompt for the identification number of the desired ma-

chine, process or distribution. For the material distributions and pro-

cesses, it will indicate which of them are currently activated to give some

assistance to the user. If the user enters a zero at the prompt, that is

the default, the program jumps back to the modify menu.

59

After the identification number has been entered, the user-interface

displays the current values on screen in tabular form and asks if the user

actually wishes to continue with the editing process, thus, entering new

values. If the modeler does not want to continue, the program jumps back

to the previous menu so that the next identification number can be entered.

This is the default set by the program.

If the user continues, the program will prompt him for the new pa-

rameter values. The same value ranges, defaults, and restrictions apply

for each of the new parameters as described earlier in the section V.A.1.,

definition of a new harvesting model. The program will perform the re-

quired cross checks to prevent mistakes and will display error messages

if it detects one.

After the values have been entered an updated table of the values is

displayed so the user can check his work. Again he is asked if he wants

to continue editing, thus, changing the values. If not, the program jumps

back to the input prompt for the identification number as explained previ-

ously.

When the user is done with the editing, the modified harvesting

system must be saved. This is done by choosing option 6 in the modify

menu. The program will asked if it should save the file. When an-

swered positively, it checks if a file with the same filename already ex-

ists. If this is the case the program will display an error message. The

user is prompted to indicate if he wishes either to enter a new filename

or to overwrite the old file. When a new filename is entered, the same

check is performed again. If no matching filename is found the edited

harvesting model is saved under the new filename, otherwise the user is

60

prompted again with the error message. When choosing the overwrite op-

tion, the values of the old file will be unrecoverably lost.

When the analyst wants to add a loading function to a process, he

first has to check if the desired loader type is activated, e.g. a positive

number of machines have been specified for this machine type previously.

If this is not the case the user can set this machine type active by choos-

ing the menu option 4 and enter a number greater then zero if prompted

for the initial number of machines. He then should enter the other ma-

chine parameters and a machine breakdown frequency distribution if de-

sired. This applies also for the activation of all other machine types. If

the deactivation of a machine type is wanted, the initial number of ma-

chines has to be set to zero, therefore, making them unavailable. Simula-

tion results will only be generated for activated machines in activated pro-

cesses.

B. OUTPUT FRONT-END

1. SIMULATING A HARVESTING SYSTEM

The output front-end was developed to provide the user with easy to

read output of the simulation results. It is integrated into the FORTRAN

user functions that builds in conjunction with the initialization subroutines a

customized SLAM Execution Processor that performs the actual simulation

of a harvesting system.

This customized SLAM Execution Processor is invoked from the

DOS prompt by entering LOGSIM.EXE. The program will then be loaded

and executed. For an example session with the customized execution pro-

cessor see Appendix C. 1. The SLAM Processor will ask first for the

filename of the network model, which is HARVEST.TRA. After that the

61

user is prompted for the filename of the harvesting system he wants to

simulate and to which output device the simulation results should be routed.

Simulation results can be routed either to the screen only or to the screen

and the attached line printer. Then the number of simulation runs to be

performed has to be entered.

The preset maximum number of simulation runs is 10, the default

used by the program is only 1 run. Between each of the simulation runs,

the SLAM Processor clears all statistical arrays and variables, initializes

the internal filing system and, therefore, re-initialized the whole simula-

tion system. Only the seeds for the random number streams are not re-

initialized to provide different starting seeds for each simulation run.

The complete harvesting system model is read in again and the next run is

performed. Therefore, the program will perform multiple runs of a har-

vesting model but does not require any actions by the user between runs to

re-start the simulation.

During the simulation, the program displays the current simulation

run, the total amount harvested so far, the current real time and the sim-

ulated time. This is done to provide the user with some means of control

for models which require excessive simulation time.

When done with the simulation, the customized SLAM processor will

return to the DOS prompt, from there the user can continue his computing

session in the usual manner.

2. SIMULATION RESULTS

When the program detects the end of a process during the simula-

tion, it will calculate the simulation statistics for this process and present

them. Therefore, the simulation results are given in the order of finished

62

processes. At the end of each simulation run when the complete harvest-

ing system is done, the statistics for loading functions and a summary

statistic for all processes are compiled and presented.

Generally, the simulation result output can be divided into the fol-

lowing sections:

- A header, describing which harvesting model was used.

Computer time, computer date, and the number of the cur-

rent simulation run to identify the output.

- The simulation results for a process. These results con-

sists of two parts. The first one is concerned with the

performance of the process overall, incorporating all active

machine types for this process except loading devices. The

second one is

- The results for each of the activated machine types for a

process.

- The performance of the loader devices, if any were acti-

vated.

- The complete harvesting system statistics

In the following sections we will define what each of the compiled

numbers means and for what it stands for.

a) PROCESS STATISTICS

For each process, the customized SLAM processor produces the

following statistical numbers. Note, however, that these numbers do not

include any loading devices the process may have used. Since a loading

device can be shared by multiple processes throughout the harvesting sys-

tem, the program will compile statistics for loaders separate.

63

If process #11 was used in the simulated harvesting configuration,

the program will compile process statistics for this process just as if it

were for a normal process. However, no statistics for the sum of

scheduled hours, the sum of machine breakdown hours , and the machine

utilizations are given since the employed loader type could be used by other

processes as well.

- Time begin of Process. [1]

This is the time recorded by the model when the initial

startup inventory level has been reached (see also V.A.1.d)).

- Time end of Process. [2]

Time the process is finished and all machines employed in

this process have finished their tasks.

Duration of process. [3]

The calculated amount of time a process was active:

[3] = [2] - [1]
- Time inventory too low. [4]

Cumulated time the input inventory buffer of the respective

process was below the specified inventory minimum.

- Time inventory too high. [5]

Cumulated time the input inventory buffer of the respective

process was above the specified inventory maximum.

- % Inventory downtime. [6]

This number represents the portion of inventory downtime in

relation to the duration of the process in percent.

[6] = (([4] + [5]) ÷ [3]) * 100

64

- Total H of machines. [7]

The sum of all machines employed for processing in this

process.

j
[7] = E [2211

- Sum scheduled hours. [8]

The total sum of machine hours scheduled for this process

(except loading machines).

[8] = [7] * [3]
- Sum machine breakdown hours. [9]

Total sum of machine breakdown hours recorded for all

machines types involved with this process.

[9] = 11, [24]1

- Sum productive hours. [10]

Is the sum of all recorded time delays caused by processing

actions for all machines used by this process.

[10] =) [25]1

- % Net utilization machines. [11]

The portion of time machines were really processing in re-

lation to the sum of scheduled hours.

[11] = ([10] ÷ [a]) * 100

- % Gross utilization machines. [12]

The same as [11], only including machine breakdown hours.

This number was included because often machine breakdown

is a parameter that cannot be influenced in the real world.

65

This number represents the portion of time machines are

generally "busy" doing something.

[12] = (([10] + [9]) + [8]) * 100
- Average inventory. [13]

The average inventory level of the input buffer of the re-

spective process for the simulated time, calculated by the

normal formula for statistics based on observations.

n
E Xn
i=i[13] = xn

Maximum inventory. [14]

The observed maximum value for the input buffer of the

process.

- Minimum inventory. [15]

The observed minimum value for the input buffer of the

process.

- Standard deviation inventory. [16]

Standard deviation of the observed inventory buffer values.

[16] = Sx = (M + (n*(n-1))

where M = n * E x2 - (E x)2
- Number of observations inventory. [17]

The number of observations made during the simulation run

for the size of the inventory buffer of the respective pro-

cess.

Sum units processed. [18]

How much material has been processed by the machines of

this process.

66

- Sum cost of process. [19]

The sum of fixed and variable costs of all machines em-

ployed by the process.

j[19] = E ([26]i * [22]i)
i

- Cost per unit. [20]

The cost to process one unit through this process.

[20] = [19] ÷ [18]
- Cost per scheduled hour. [21]

The cost per scheduled hour for the machine configuration

of this process.

[21] = [1 9] ÷ [8]
b) MACHINE STATISTICS

For each machine type employed by a process the program calcu-

lates statistics upon this machine type and will show them after the sum-

mary statistics for the process. These statistics are as followed:

- Total ft of machines. [22]

The number of machines set active for this machine type.

- Sum scheduled hours. [23]

The sum of scheduled machine hours for this machine type.

[23] = [22] * [3]
- Sum machine breakdown hours. [24]

The accumulated machine breakdown hours for this machine

type.

- Sum productive hours. [25]

The accumulated machine hours where the machines actually

processed material.

67

- Cost per machine. [26]

The cost share for one machine of this machine type on the

total process costs.

(26) = ([23]i * Cfixed i)

([251 * Cvariable i)

- Cost per scheduled hour. [27]

Actual cost of one machine of this machine type for one

scheduled hour.

[27] = [26] + [23]
- % Net utilization machine. [28]

The percentage of time machines of this machine type were

processing inventory in relation to the sum of scheduled

hours.

[28] = ([25] + [23]) * 100

- % Gross utilization machine. [29]

The same as [28] only including machine breakdown hours.

This number represents the portion of time machines of this

machine type have been generally "busy".

[29] = (([25] + [24]) + [23]) * 100

c) LOADER STATISTICS

Statistics for the loading functions are generally the same as de-

scribed in V.B.2.a) and V.B.2.b). The only difference is that for formu-

las incorporating time the complete harvesting time for the simulated sys-

tem is used [49].

Statistics for the complete loading process are:

- Total H of machines. [30]

Sum of all activated machines used by all loader types.

68

[30]. r. [40]i

- Sum scheduled hours. [31]

Sum of all accumulated machine hours scheduled for loading

functions.

[31] = [30] [58]
- Sum machine breakdown hours. [32]

Cumulated machine breakdown hours of all loading devices.

[32]= 3; [42]i

- Sum productive hours. [33]

Sum of all productive hours of loaders.

[33]=)1 [43]i

- % Net utilization machines. [34]

The percentage of time the loaders were actually engaged in

loading actions.

[34] = ([33] + [31]) * 100
- % Gross utilization machines. [35]

The same as [34] only including machine breakdown hours

as active time.

[35] = (([32] + [33]) + [31]) * 100
- Sum units processed. [36]

Sum of material processed by loaders.

- Sum cost of process. [37]

Sum cost of loading functions.

dude:

69

[37].)1 [44]i * [40]i)

- Cost per unit. [38]

Cost of loading for one processed material unit.

[38] = [37] ÷ [36]

- Cost per scheduled hour. [39]

Cost of loading actions per scheduled hour.

[39] = [37] ÷ [31]

The statistics compiled for the individual loader machine types in-

- Total # of machines. [40]

The number of machines set active for this machine type.

- Sum scheduled hours. [41]

The sum of scheduled machine hours for this machine type.

[41] = [40] * [58]

- Sum machine breakdown hours. [42]

The accumulated machine breakdown hours for this machine

type.

Sum productive hours. [43]

The accumulated machine hours where the machine was ac-

tually processing material.

- Cost per machine. [44]

The cost share for one machine of this machine type on the

total loading costs.

(44) = ([41]i * Cfixed i)

([43]i * Cvariable i)

70

- Cost per scheduled hour. [45]

Actual cost of one machine of this machine type for one

scheduled hour.

[45] = [44] ÷ [41]
- % Net utilization machine. [46]

The portion of time machines of this machine type were

processing material in relation to the sum of scheduled

hours.

[46] = ([43] + [41]) 100

- % Gross utilization machine. [47]

The same as [46] only including machine breakdown hours.

This number represents the percentage of time machines of

this machine type have been generally "busy".

[47] = (([42] + [43]) ÷ [41]) * 100

d) COMPLETE HARVESTING SYSTEM STATISTICS

The statistics compiled for the complete simulated harvesting sys-

tem give an overview of the overall performance of the modeled harvest-

ing configuration. It is the last item in the simulation results output. The

statistics for the complete harvesting configuration include:

- Computer time start simulation. [48]

The real-time date and time when the computer started with

the simulation of the current run.

- Computer time end simulation. [49]

The real-time date and time when the computer ended the

simulation of the current simulation run. The figures [48]

and [49] were included in the output to give the analyst the

71

opportunity to time the use of computing equipment. These

figures can be used later for fee calculations if desired.

- Begin of harvesting. [51]

Simulated time when the harvesting process began.

- Total # of machines. [52]

Sum of all machines in all machine types used for the har-

vesting model, includes loaders.

j = 1 3

[52] = M
1

[7]i + [30]
=

- Sum scheduled hours. [53]

Sum of all scheduled machine hours for all activated ma-

chine types.

] =42
[53] .

1

[23]i + [31]
1=

- Sum machine breakdown hours. [54]

Cumulated machine breakdown hours for all activated ma-

chine types.

j=42
[54] = M

=1
[24]i + [32]i

- Sum productive hours. [55]

Total sum of time spent actually processing material.

j=42
[55] =

1 1

[25] i [33]
=

% Net utilization machines. [56]

The share of productive hours on scheduled hours in per-

cent. This figure represents the overall efficiency of the

72

simulated harvesting configuration.

[56] = ([55] + [53]) * 100

- % Gross utilization machines. [57]

The same as [56] only including machine breakdown hours.

[57] = (([54] + [55]) + [53]) * 100

- End of harvesting. [58]

Total simulated time it took to complete the whole harvest-

ing process for the specified harvesting configuration.

- Sum of units harvested. [59]

Total amount of material processed.

- Sum cost of system. [60]

Total cost for the specified harvesting model including

loading actions.

j =1 3
[60] =

i
[19]i [37]

=

- Sum cost per unit. [61]

Cost of one unit material after it has been processed

through the whole harvesting system. This number is only

correct if process #11, the sort, is not used.

[61] = [60] + [59]

- Cost per system hour. [62]

Cost of one hour for the simulated harvesting system con-

figuration.

[62] = [60] ÷ [58]

With the provided simulation results, the modeler should be able to

thoroughly analyze the performance and cost structure of any desired har-

vesting configuration.

VI. RESULTS

A. EXAMPLE RUNS

73

To verify the correct functioning of the simulation model extensive

test runs have been performed. In these test runs the behavior of the

modules and mechanisms employed to control the simulation was examined

by using test data that simulated the different situations possible in a har-

vesting system. The results of the test runs were then compared with

manual calculations.

Also four complete harvesting systems (stump-to-mill) were simu-

lated. The production and cost information used were provided by Don

Schuh, Research Assistant, Department of Forest Engineering, Oregon

State University. Each of these four harvesting systems uses a different

machine configuration with different capabilities. The systems are out-

lined briefly below:

1) Traditional manual sawlog operation:

Manual felling, delimbing, and bucking. Cable skidder for

primary transport. Self-loading highway log truck for sec-

ondary transport.

2) Contemporary mechanized sawlog operation:

Felling by swing-boom feller-buncher. Primary transportation

by grapple skidder. Delimbing and bucking with a Hahn Har-

vester. Swing-boom loader for decking and loading and a

highway log truck for secondary transport.

74

3) Potential mechanized sawlog system:

Felling and primary transport by TJ Clambunk Skidder with

sawhead. Delimbing and bucking done by a grapple processor.

Swing-boom loader for loading and a highway log truck for

secondary transportation.

4) Mechanized pulpwood/sawlog operation:

Felling with swing-boom feller-buncher. Primary transport

with TJ Clambunk Skidder. Swing-boom log loader for load-

ing and a set-out tractor-trailer combination for swinging to

the central site. Here the material stream is divided into the

two products. The chip processing is done with a multistem

delimber-debarker machine feeding into a Morbark Model 22

chipper. The chips are blown directly into a chip trailer that

needs a separate towing truck for the haul to the mill.

The sawlogs are directly hauled to the mill by a tractor-

trailer combination. The delimber-debarker and the log trailer

both use the same swing-boom log-loader for loading actions.

All four harvesting models were used to harvest the same amount

of wood for comparison reasons. In Appendix E the printouts for the dif-

ferent harvesting model configurations and the simulation results for each

harvesting system are given. To ease the task of entering the required

information with the input user-interface we recommend that the user may

draw a schematic flowchart of the harvesting configuration. Examples of

how such a flowchart may look like can be seen in Appendix E. 1, E. 4,

E. 7, and E. 10. These flowcharts give an immediate overview of the

processing configuration.

75

Table 1 summarizes the simulation results. As expected, the man-

ual sawlog operation used the most time to finishing the harvesting pro-

cess.

Table 1: Simulation results

Parameter System 1 System 2 System 3 System 4

Duration hrs 3116.75 196.12 259.15 175.61
% Net. Utiliz. 74.61 63.65 47.76 68.97
% Gross Utiliz. 84.09 69.44 57.16 71.22
Cost of system 335893.40 83709.98 78280.74 119127.50
Cost/unit 1.31 .33 .31 .47

Cost/system.hr. 107.77 426.82 302.06 679.38
Runtime hrs. 1.13 .41 .36 .66

The systems 1 to 3 can be compared together, while system 4 has

to be examined separate because it uses different material distributions

due to the two products in the system.

From table 1, we can see that system 1, as expected, needs the

most time to accomplish the task with a duration of 3116.75 decimal

hours. The clear winner is configuration three in terms of costs. How-

ever, if the shortest duration of the harvesting process is desired to free

machines for the next task, then system 2 represents an alternative with a

slightly higher cost per unit of 2 cents. Under this view, we compare the

performance of these harvesting systems in regard to a given stand and

logging environment.

We could also examine each harvesting system on its own and see

where we can improve. For example, system 3 has a net utilization of

only 47.76 96. By examining the simulation results of system 2, (see Ap-

pendix E. 9), we see that the gross utilization in process #2, skidding,

was only 39.43 %. This suggests that instead of two Grapple -skidders

only one is probably required to do the job. In process #13, final trans-

76

port, we discover that from 195.29 hrs this process was active the inven-

tory buffer overflow existed for 73.04 hrs. An increase of the buffer

size would yield an increase in utilization for the preceding process # 3,

delimbing & bucking. When increasing the utilization of process #3, the

utilization of its predecessor, process #2 skidding, will also increase

since the inventory overflow condition set for process #3 will not be

reached so often. In this harvesting configuration the inventory limit im-

posed on process #13 creates a serious bottleneck for all the preceding

processes. Thus, by examining the results for a given harvesting configu-

ration, we could focus on variables like inventory downtimes, machine uti-

lizations, and machine breakdown hours. These suggestions could then be

implemented and tested by simulating the modified harvesting model. By

using the simulation model in this way the optimization of a given har-

vesting system can be attempted, where the optimization goals could be

costs, machine utilizations, or duration of the logging operation.

Also the impact of environmental issues could be tested, for exam-

ple, restriction on landing sizes, travel-speed limits for machines due to

soil conditions, in-woods limitations on inventory buffers, and the required

use of a specific machine configuration to prevent damage to the environ-

ment. The impact of those restrictions on the cost structure and machine

utilization could be analyzed and different machine configurations can be

tested to find the best solution.

The fourth harvesting model demonstrates a system with multiple

products. As described above, the system performance and behavior of the

chosen harvesting configuration can be examined. However, this system

also analyzes the cost structure for a given product. Since the model

shows the cost per unit for each of the activated processes, the analyst

77

can determine the actual cost per unit for each of the end products, chips

and sawlogs. By simply adding the appropriate values of the processes

used by each product, the individual cost per unit chips and per unit sawlog

can be determined (see Table 2). Chips have a cost of approximately 52

cents per unit, sawlogs approximately 45 cents. By setting the costs in

relation to the expected selling prices an estimate of the profits can be

made.

Table 2: Cost per unit

Cost per unit chips:

Process Cost per unit

#1 Felling 0.0551
#2 Skidding 0.0604
#3 Swinging 0.0291
#11 Sorting 0.0000
#4 Delimbing & Debarking 0.0681
#12 Chipping & Transport 0.2390

Loading actions 0.0680

Sum cost per unit $ 0.5197

B. RUNTIME AND HARDWARE CONSIDERATIONS

The model was created to be used with a hard disk as mass stor-

age medium. Since the programs are too large to fit on one floppy disk,

excessive disk swapping is necessary, making the handling of the simula-

tion system on a floppy disk based system inconvenient.

We also recommend the that the system used for simulation should

be equipped with a Math co-processor for floating point arithmetic such as

the INTEL 8087/80287. Besides an execution speed gain of two to three

times the coprocessor will improve the mathematical accuracy of the sim-

ulation. The SLAM simulation processor uses a FORTRAN data format

78

of REAL*4 for most variables. This format has advantages in terms of

memory requirements but has a poor performance for floating point arith-

metic in terms of accuracy if no Math co-processor is used.

The examples where all computed on an IBM-AT compatible com-

puter system equipped with a 10 Mhz, no wait state motherboard and an 8

Mhz 80287 Math co-processor unit. This system runs approximately 4 to 7

times faster than a plain IBM-PC. Therefore, at least an AT size ma-

chine is recommended for the simulation.

When simulating a larger harvesting system that requires multiple

simulation runs the task of averaging all those numbers for all the given

simulation results can be quite tedious. By redirecting the simulation out-

put to a Disk file (start the simulation with

LOGSIM.EXE>FILENAME.DOC) these results can later be imported to a

Spreadsheet program like LOTUS 1-2-3 that could be used to ease this

task.

C. MODELING CONSIDERATIONS

The potential user of the LOGSIM system should be aware that the

produced simulation results are only as accurate as the entered simulation

parameters. The task of collecting the required data for the simulation

might be difficult. The performance parameters for machines such as

processing times and machine breakdowns might require extensive time

studies to establish. The mathematical relationships are needed between

machine actions and environmental parameters. These include the influ-

ence of stand parameters and terrain conditions on the productivity of a

given machine. Extensive research has been done to establish some of

these mathematical relationships (for examples see Mc Moreland, 1977;

79

O'Hearn, 1977; Powell, December 1981; Powell, July 1981; and Stuart et

al, 1981), but there is still much to be done.

The variables that influence the machine productivity for a given

machine have to be specified. The modeler or analyst should then decide

which ones are essential for the modeling of a given harvesting configura-

tion and which level of accuracy is desired. Then the actual values for

these parameters should be developed and incorporated into the harvesting

model.

It is the responsibility of the modeler to judge if the built-in func-

tions of the model are sufficient or if FORTRAN written user functions

have to be employed.

D. STATISTICAL ANALYSIS OF SIMULATION RESULTS

Another aspect of simulation, the statistical analysis of simulation

results, should also be considered by the modeler. Simulation represents a

tool to generate, collect, and analyze statistical data for a given system.

Therefore simulation is a statistical experiment that should be planned

carefully. The analyst should be aware what the variables of interest are

and plan accordingly.

There are two types of simulations with regard to analysis of the

output data. A terminating simulation is one for which the desired mea-

sures of system performance are defined relative to the interval of simu-

lated time. Examples for this type of simulation are the time it takes to

harvest a given stand with a given machine configuration, and the complete

costs to harvest a given stand. A steady-state simulation is one that de-

fines the measures of performance as limits as the length of the simula-

80

tion goes to infinity. Examples are the cost per unit or the average in-

ventory size of a given process.

The terminating simulation type requires multiple simulation runs to

achieve a statistically acceptable number of observations or sample size.

These samples should then be averaged to obtain representative simulation

results. By calculating the confidence intervals for the desired simulation

results the user can determine if additional runs are necessary to achieve

the desired level of statistical confidence.

When the variable of interest are of the steady-state type, the user

has to set the amount to be harvested large enough to reach the steady

state condition. Again, by calculating the appropriate confidence intervals

it can be determined if the length of the performed simulation run was

large enough. For an excellent discussion of the statistical techniques used

to perform these analysis see Law and Kelton, 1982. When the perfor-

mance of different harvesting configurations under the same stand condi-

tions are analyzed, statistical tests like the T-test should be employed to

test the hypothesizes in question.

Therefore, a preliminary analysis before each simulation project

should be done. This analysis should determine if the expected simulation

results and the benefits of using simulation as an analytical tool will out-

weigh the considerable efforts of preparing the required data for the sim-

ulation. Also by taking into account the variable type, the appropriate

sampling method (multiple runs or one single run) should be chosen to in-

sure the statistical validity.

81

VII. CONCLUSIONS AND SUGGESTIONS

FOR FUTURE RESEARCH

A. CONCLUSIONS

The simulation model for log harvesting represents a general solu-

tion for modeling any kind of production process that has to deal with re-

strictions on inventory sizes between processes. By simply labeling the

processes accordingly, nearly any kind of operation that has the same

structure can be modeled. We feel, that with the incorporation of FOR-

TRAN user functions, the modeler should be able to handle the modeling of

operations with a minimum of new programming.

Currently computers build around the advanced 80386 processing unit

have been introduced with speeds up to 20 Mhz. With the increased avail-

ability of such computers and multitasking operating systems, simulation

and numerical analysis will be even more practical.

B. SUGGESTIONS FOR FUTURE RESEARCH

Future research could be done mainly in two areas. The first is to
concentrate on the model itself and enhance it in various ways. The

model could be enlarged to simulate multiple harvesting sites accessing the

same processes or sharing equipment. Instead of using the distribution ap-

proach for modeling, userfunctions could be developed to build a spacial

model of the stand and the harvesting area to better investigate environ-

mental influences. The simulation output could be enhanced to make it

82

more readable and to include additional information. The input user-

interface could be improved to make the entering of data easier. The

build-in time handling functions for processing times also can be improved

by including processing times based on statistical distributions and pro-

cessing times based on the tree volume.

The second type of research would be to undertake time studies of

the various machines used in the timber harvesting process. This re-

search is needed to find the variables of interest that influence the per-

formance of the system.

83

BIBLIOGRAPHY

Anonymous; 1971
National timber supply is in the public eye.
Forest Industry Journal 98(4):11

Bare, 03.; B.A. Jayen; B.F. Anima; 1976
A simulation based approach for evaluating logging residual handling
systems.
USDA Forest Service Report PNW-45;
Portland, Oregon

Bradley, D.P.; R.E. Biltonen; S.A. Winsauer; 1976
A simulation model for full-tree chipping and trucking.
USDA Forest Service, Research Paper NC -129;
St. Paul, Minnesota

Bussel, W.H.; J.N. Hool; A.M. Leppet; G.R. Harmon; 1969
Pulpwood harvesting systems analysis.
Report to the Southern Executive Association, Auburn University;
Auburn, Alabama

Carson, Barry; March 1984;
Evaluation of six short rotation harvesting systems.
PH.D.-Thesis, University of Washington;
Seattle, Washington

Conway, Steve; 1976
Logging Practices: Principles of Timber Harvesting Systems.
Miller Freeman Publications, Inc.;
San Francisco, California

Etter, D.M.; 1984
PROBLEM SOLVING with Structured FORTRAN 77.
The Benhamin/Cummings Publishing Company, Inc.
Menlo Park, California

Garland, John J.; Spring 1986
Seminar for mechanized harvesting operations.
Forest Engineering Institute,
Oregon State University;
Corvallis, Oregon

84

Gerstkemper, John C.; 1982
A simulation of the operation of a log landing for a Heli-Stat Air-
ship in old growth timber.
Research paper, Oregon State University,
Dep. of Forestry; June 1982

Goulett, Daniel v.; Ronald H. Iff; Donald L. Sirois; 1979
Tree-to-mill forest harvesting simulation models: Where are we?
Forest Products Journal: 50 -55; October 1979

Johnson, L.R.; 1970
Simulation of the loading and hauling subsystems of a logging sys-
tem.
MS-Thesis, Montana State University;
Bozeman, Montana

Johnson, L.R.; 1976
SAPLOS: Documentation and use.
Report to USFS Northwestern Forest Experiment Station, Morgan-
town W.- Virginia;
University of Idaho, Moscow, Idaho

Kellogg, Loren D.; July 1986
Center for wood utilization research, mechanized harvesting of
small timber: Study plan, years 2-5.
Department of Forest Engineering,
Oregon State University;
Corvallis, Oregon

Killham, J.R.; 1975
The development of a forest harvesting simulation model.
MS-Thesis, Auburn University;
Auburn, Alabama

Law, Averill M.; W. David Kelton; 1982
Simulation Modeling and Analysis.
McGraw-Hill Book Company, Inc.
New York, N.Y.

Ledoux, Chris B.; 1975
Simulation of a helicopter yarding system in old growth timber
stands.
MS-Thesis, Oregon State University;
Corvallis, Oregon

Lilegdon, William R.; Jean J. O'Reilly, 1986
SLAM II PC Version User's Manual.
Pritsker & Associates, Inc.;
West Lafayette, Indiana

85

Lohman, H.; Lehnhausen, H.; 1983
Systemanalyse eines Holzhofes durch die Simulation des Materi-
alflusses.
Forstarchiv 54(6):221-228;
Goettingen, W.-Germany

Martin, A.J.; 1976
A user's guide for THATS.
USDA Northeastern Forest Experiment Station;
Princeton, W.-Virginia

Mc Moreland, B.A.; 1977
Evaluation of Volvo VM 971 Clam Bunk Skidder.
FERIC Tech. Report

Microsoft Corporation, 1985
Microsoft FORTRAN Compiler, User's Guide.
Microsoft Corporation,
Redmond, Washington

Microsoft Corporation, 1985
Microsoft FORTRAN Compiler, Reference Manual.
Microsoft Corporation,
Redmond, Washington

Newnham, R.M.; S. Sjunnesson; 1969
A FORTRAN program to simulate harvesting machines for mecha-
nized thinning.
Forest management research and service Institute, Report FMR-X-23
Ottawa, Ontario Canada

O'Hearn, S.E.; B.W. Stuart; T.A. Walbridge; 1976
Using computer simulation for comparing performance criteria be-
tween harvesting systems.
1976 Winter Meeting, American Society for Agricultural Engineers,
Paper No. 76-1567

O'Hearn, S.E; 1977
Economic and productivity comparisons between full tree chipping
and conventional harvesting systems on a variety of stand types.
M.S. thesis, Virginia Polytechnical Institute and State University;
Blacksburg, Virginia

O'Reilly, Jean J.; 1984
SLAM II Quick Reference Manual.
Pritsker & Associates, Inc.;
West Lafayette, Indiana

Powell, L.H.; December 1981
Interior limbing, bucking, and processing study - evaluation of Hahn
Tree-length Delimber.
For.Eng.Res.Inst. of Canada;
Tech. Note No. TN-51

86

Powell, L.H.; July 1981
Interior limbing, bucking, and processing study - evaluation of
Barko 450 Loader.
For.Eng.Res.Inst. of Canada;
Tech. Note No. TN-46

Pritsker, A.Alan B., Claude Dennis Pedgen; 1984
Introduction to simulation and SLAM II.
2 nd edition, Halsted Press, a Division of
John Wiley & Sons, INC.;
New York, NY

Sessions, John; 1985;
Class notes FE 365.
Department of Forest Engineering;
Oregon State University;
Corvallis, Oregon

Simmons, Fred C.; 1979
Handbook for Eastern Timber Harvesting.
U.S. Dep. of Agriculture, Forest Service,
Northeastern Area, State & Private Forestry,
Broomall, Pennsylvania

Stark, J.I.; 1975;
A simulation model for the common pulpwood harvesting systems of
the southern pine region.
MS-Thesis, Dep. of Ind. Eng., Georgia Tech Inst. of Technology;
Atlanta, Georgia

Stuart, W.B.; J.V. Perumpral; T.A. Walbridge;
S. Shartle; 1981
Pine plantation data for future equipment design.
Am.Soc. of Agric.Eng. Transactions Vol.24 No.3

Webster, D.B.; 1984
Guidelines for the development of simulation models.
Paper presented at the conference COFE/IUFRO;
SAF Publication No. 84-13:81-86
Orono, Maine

Winsauer, S.A.; Bradley, P. Dennis; 1982
A program and documentation for simulation of rubber-tired feller-
buncher.
Research Paper NC-212, U.S. Dep. of Agriculture,
Forest Service, N. Cen. Forest Exp. Station,
St. Paul, Minnesota

Winsauer, Sharon A.; 1984
Simulation of mechanized felling in dense softwood plantations.
Paper presented at the conference COFE/IUFRO;
SAF Publication No. 84-13:175-180
Orono, Maine

APPENDICES

87

APPENDIX A

TABLE OF CONTENTS:

1. Listing, SLAM Network 88

2. Table 3: Contents of ATRIBUTES 123

3. Table 4: Contents of XX(i) variables 124

4. Table 5: ARRAY description 127

5. Table 6: Machines & Processes 130

6. Initialization of the Network 132

88

APPENDIX A

1. Listing, SLAM Network

89

OREGON STATE UNIVERSITY

JUNE 1986

>>> L 0 G S I M <<<

SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS

DESIGNED BY : CHRISTOPH WIESE

MASTERS CANDIDATE, DEP. OF INDUSTRIAL *

ENGINEERING, OREGON STATE UNIVERSITY

DESIGNED FOR: DEPARTMENT OF FOREST ENGINEERING

OREGON STATE UNIVERSITY

SUPERVISION :DR. ELDON OLSEN

ASSOCIATE PROFESSOR, DEP. OF INDUSTRIAL *

ENGINEERING, OREGON STATE UNIVERSITY

SLAM II NETWORK: HARVEST.TRA

31 -MAY -87 18:55

SYSTEM STATEMENTS:

GEN,CHRISTOPH WIESE,NECH.LOG HARVEST SIM,5/31/1987,18,Y,N,Y,Y,N;

INITIALIZE,0.99999.0;

LIMITS,63,7,200;

;MONTR,TRACE,15.75,50,II,TNOW,1,2,3,4.5,6,7, -1, -2, -3, -4, -5, -7, -38, -31, -40;

ARRAY:

ARRAY(1,42)/0.00;

AVERAGE PROCESSING TIME PER UNIT

ARRAY(2,42)/8.00;

FIXED CONSTANT PROCESSING TIME PER LOAD

90

ARRAY(3,42)/0.00;

FIXED CONSTANT TINE FOR ONE WAY HAULING

ARRAY(4,13)/0.00;

WHICH LOADER TO USE IF TRANSPORT FUNCTION DESIRED 0NONE

ARRAY(5,13)/0.00,0,0,0,0,0,0,0,0,0,0,0,0;

ARE WE DEALING WITH 0 -TREES 1-LOGS 2flSAWLOGS 3sPULPLOGS

ARRAY(6,42)/0.00;

/ OF INITIALLY AVAILABLE RESOURCES

ARRAY(7,18)/0.00;

SORTING PARAMETERS

ARRAY(8,42)/0.00;

THRESHHOLD LEVEL FOR INDIVIDUAL BATCHES FOR THE MACHINES

ARRAY(9,42)/0.00;

WHAT TO MODEL AT EACH PROCESS D liVERAGE 1flUSERF

ARRAY(10,42)/0.00;

ACCUMULATED MACHINE HOURS

ARRAY(11,13)/0.00;

ACCUMULATED INVENTORY DOWNTIME HOURS, INFEED

ARRAY(12,13)/0.00;

ACCUMULATED INVENTORY DOWNTIME HOURS, OUTFEED

ARRAY(13,2)/0.00;

ARRAY LINE FOR CHIPPING PARAMETERS

ARRAY(14,2)/0.00;

ARRAY LINE FOR FTRAPO PARAMETERS

ARRAY(15,14)/0.00;

FLAG PROCESS IS UP & RUNNING ONOT STARTED 1-UP 2 -ENDED 3ENDED+STATS

ARRAY(16,13)10.00;

START TIME FOR PROCESS & CALC. SCHEDULED HOURS

ARRAY(17,13)/0.00;

START TIME INVENTORY DOWNTIME

ARRAY(18,42)/0.00;

CUMULATED MACHINE BREAKDOWN TIMES OF MACHINES

ARRAY(19,13)/0.00;

FLAG PROCESS ALTERED BECAUSE OF INFEED INVENTORY 0NO 1-YES

ARRAY(20,13)10.00;

FLAG PROCESS ALTERED BECAUSE OF OUTFEED INVENTORY 0 -NO 1YES

ARRAY(21,42)/0.00;

FIXED COSTS (MACHINE OPERATOR) PER SCHEDULED HOUR

ARRAY(22,42)/0.00;

VARIABLE COSTS PER MACHINE HOUR

ARRAY(23,13)/0.00;

INDEXES WHERE GOES THE INVENTORY TO

ARRAY(24,13)/0.00;

INDEXES WHERE COMES THE INVENTORY FROM

ARRAY(25,6)/0.00;

ARRAY FOR STATISTICAL VALUES AT END OF PROCESS

ARRAY(26,13)/0.00;

INVENTORY IN TRANSIT

91

; EQUIVALENCE STATNENTS TO INDEXING THE BEGINNING OF XX-VARIABLES BLOCKS

EQUIVALENCE/15,LEVEL1;

EQUIVALENCE/27,LEVEL2;

EQUIVALENCE/39,LEVEL3;

EQUIVALENCE/51,LEVEL4;

EQUIVALENCE/63,LEVEL5;

EQUIVALENCE/75,LEVEL6;

EQUIVALENCE/87,LEVEL7;

HOW MANY CU FT HAVE BEEN PROCESSED

INFEED INVENTORY

STOPPING LEVEL INFEED INVENTORY TOO LOU

STOPPING LEVEL OUTFEED INVENTORY TOO HIGH

STARTUP INVENTORY INFEED

STARTUP INVENTORY OUTFEED

STARTUP INVENTORY LEVEL FOR PROCESS

; TIMST FOR COLLECTING STATISTICS ABOUT INVENTORY

STAT,2,INV.PROCESS 2;

STAT,3,INV.PROCESS 3;

STAT,4,INV.PROCESS 4;

STAT,5,INV.PROCESS 5;

STAT,6,INV.PROCESS 6;

STAT,7,INV.PROCESS 7;

STAT,B,INV.PROCESS 8;

STAT,9,INV.PROCESS 9;

STAT, 10, INV.PROCESS10;

STAT,11,INV.DISTRIUBTION;

STAT,12,INV.CHIPPING;

STAT, 13, INV.FTRAPO;

NETWORK;

RESOURCES USED:

RESOURCE/FELLER1(0),20,1;

RESOURCE/FELLER2(0),20,2;

RESOURCE/FELLER3(0),20,3;

RESOURCE/FELLER4(0),20,4;

RESOURCE/PROC.1.1(0),20,5;

RESOURCE/PROC.1.2(0),20,6;

RESOURCE/PROC.1.3(0).20.7;

RESCURCE/PROC.2.1(0),20,8;

RESOURCE/PROC.2.2(0),20,9;

RESOURCE/PROC.2.3(0),20,10;

RESOURCE/PROC.3.1(0),20,11;

RESOURCE/PROC.3.2(0),20,12;

SITE I:

RESOURCE/PROC.3.3(0),20.13;

RESOURCE/PROC.4.1(0),20,14;

RESOURCE/PROC.4.2(0),20,15;

RF.SOURCE/PROC.4.3(0),20,16;

RESOURCE/PROC.5.1(0),20,17;

RESOURCE/PRCC.5.2(0),20,18;

RESOURCE/PROC.5.3(0),20,19;

RESOURCE/PROC.6.1(0),28,20;

RESOURCE/PROC.6.2(0),20,21;

RESOURCEPROC.6.3(0),20,22;

RESOURCE/PROC.7.1(0),20,23;

RESOURCE/PROC.7.2(0),20,24;

RESOURCE/PROC.7.3(0),20,25;

RESOURCE/PROC.8.1(0),20,26;

RESOURCE/PROC.8.2(0),20,27;

RESOURCE/PROC.8.3(0),20,28;

RESOURCE/PROC.9.1(0),20,29;

RESOURCE/PROC.9.2(0),20,50;

RESOURCE/PROC.9.3(0),28,31;

RESOURCE/LOADER1(0).20.82;

RESOURCE/LOADER2(0),20,33;

RESOURCE/LOADER3(0).20,34;

RESOURCE/LOADER4(0),20,35:

RESOURCE/LOADER5(0),20.56;

RESOURCE/CHIPPER1(0),20,37;

RESOURCE/CH1PPER2(0),20,58;

RESOURCE/CHIPTRA1(0),20,59;

RESOURCE/CHIPTRA2(0),20,40;

RESOURCE/FTRAP01(0),20,41;

RESOURCE/FTRAP02(0),20,42;

GATES USED:

GATE/1,GATEI,CLOSE,51;

GATE/2,GATE2,CLOSE,52;

GATE/3,GATE3,CLOSE53;

GATE/4,GATE4,CLOSE,54;

GATE/5,GATE5,CLOSE,55;

GATE/6,GATE6,CLOSE,56;

GATE/7,GATE7,CLOSE,57;

GATE/R,GATE8,CLOSE,58;

GATE/9,GATE9,CLOSE,59;

92

93

GATE/10,GATE10,CLOSE,60;

GATE/11,GATE11,CLOSE,6I;

GATE/12,GATE12,CLOSE,62;

GATE/13,GATE13,CLOSE,63;

FIRST NETWORK **********************

NETWORK TO START-UP THE SIMULATION

CREATING INITIALIZATION ENTITY AND READING VALUES FROM FILE

CREATE1,1;

GOON,1;

ACTXX(1).EQ.0,SEN6

ACT;

CREATE ONE ENTITY FOR START

NO SIMULATION AT ALL

ASSIGN,IIARRAY(4,11),1; INDEXING LOADER FOR DISTRIB

ACTII.EQ.0,SY8;

ACT;

ASSIGN,ARRAY(4.9)ARRAY(8,I1); STORE BATCHSIZE OF THIS LOADER

; PLACING LOAD ENTITIES INTO THE NETWORK

SY0 ASSIGN,XX(3) -0;

SY1 ASSIGN,XX(3)XX(3)1.1; PROCESS COUNTER

GOON,1;

ACTXX(3).EQ.1,SY2;

ACTX1(3).GT.I.AND.XX(3).LE.10,573;

ACTXX(3).EQ.11,SY1;

ACTXX(3).EQ.12.5.(4;

ACTXX(3).EQ.13,SY5;

ACTXX(3).GT.13,SY16;

94

SY11 ASSIGN,KK(2)0,1;

ACTXX(1).EQ.0,511;

ACT;

SY12 ASSIGN,XX(2)XX(2)+1;

GCCN,2;

ACTXX(2).LT.M1(1),SY12;

ACTXX(3).EQ.1,FELL;

ACTXX(3).EQ.2,PRO1;

ACTXX(3).EQ.3,PRO2;

ACTXX(3).EQ.4,PRO3;

ACTXX(3).EQ.5JR04;

ACTXX(3).EQ.6,PRO5;

ACTrh(3).EQ.7,PR06;

ACTXX(3).EQ.B,PRO7;

ACTXX(3).EQ.9,PRO8;

ACTYX(3).EQ.10.PRO9;

ACTXX(3).EQ.12,CN1P;

ACTXX(3).EQ.13,FTRA;

ACT,SY1;

COUNTER

SY2 ASSIGN,XX(1)ARRAY(6,1)+ARRAY(6,2).1-ARRAY(6,3)+ARRAY(6,4);

ACT,,,SY11;

SY3 ASSIGN,11XX(3)413 -1;

ASSIGN,XX(1)ARRAY(6,I1),1III+1;

ASSIGN,XX(1)XX(1)+ARRAY(6,II),IIII+1;

ASSIGN,XX(1)XX(1)+ARRAY(6,II);

ACT,SY11;

SY4 ASSIGN,KK(1);

ACT,,, 5111;

SY5 ASSIGN,XX(1)ARRAY(6,41);

ACT,SY11;

; BRING LW FELLER RESOURCES TO INITIATE THE PROCESS

SY16 ALTER,FELLERLARRAY(6,1);

ALTER,FELLER2,ARRAY(6,2);

ALTER,FELLER3,ARRAY(6,3);

ALTER,FELLER4,ARRAY(6,4);

ALTER,LOADER1,ARRAY(6,32);

ALTER,LOADER2,ARRAY(6,33);

ALTER,LOADER3,ARRAY(6,34);

ALTER,LOADER4,ARRAY(6,35);

95

ALTER,LOADER5,ARRAY(6,36);

ASSIGN,ARRAY(15,1)n1;

OPEN,GATE1;

ASSIGN,ATRIB(2)1ATRIB(3)s4,ATRIB(5)1,2; INITMACH.BREAICCOUN

ACT,SY13;

ACT;

ASSIGN,ATRIB(2)32,ATRIB(3)36,ATRIB(5)14,2; INIT MACH.BREAKDOWN

ACT,SY13;

ACT;

DEST TERMINATE; END INITIALIZATION SIMULATION

;**** *** +w +01** *** SECOND NETWCRK *****1****** **********

;* NETWORK TO SIMULATE MACHINE BREAKDOWN

; *

; PLACING ENTITIES INTO MACHINE BREAKDOWN NETWORK

SY13 ASSIGN,KK(3)ATRIB(2) -1;

SY14 ASSIGN,XX(3)wn(3)+1,1;

ACTXX(3).GT.ATRIB(3),DEST;

ACT;

ASSIGN,XX(2)0;

ASSICN,XX(1)ARRAY(6,XX(3)),1;

ACTXX(1).EQ.0,SY14;

ACT;

SY15 ASSIGN,XX(2)XX(2)+1,ATRIB(1)XX(3);

GOON,2;

ACTXX(2).LT.XX(1),SY15;

ACT,SY20;

ACT,S114;

96

; MAIN ROUTINE TO MODEL MACHINE BREAKDOWN

; ATRIB(1)MACHINE ATRIB(2)TIME BETWEEN FAILIURES, ATRIB(3) -REPAIR TIME,

SY20 GOON,1; BEGIN MAIN ROUTINE

ASSIGN,XX(5) 110; INDEXING USERFUNCTION

ASSIGN,ATRIB(2)USERF(110); ASSIGNING TIME BETWEEN FAILIURES

ASSIGN,XX(5)111; INDEXING USERFUNCTION

ASSIGN,ATRIB(3)USERF(111),1; ASSIGNING REPAIR TIME

ACTATRIB(2).EQ.0,DEST; NO BREAKDOWN OF THIS MACHINE

ACTARRAT(15,ATRIB(5)).GT.I,DEST; END OF PROCESS

ACT;

GOON,1;

ACT,ATRIB(2); TINE BETWEEN FAILURE

GOON,1;

ACTARRAY(15,ATRIB(5)).GT.1,DEST; END OF PROCESS

ACT;

SY24 AWAIT(ATRIB(1)1,50),ATRIB(1)/1; MACHINE FAILURE,SEIZE MACHINE

ACT,ATRIB(3); REPAIR TIME

ASSIGN,ARRAY(113,ATRIB(1))ARRAY(18,ATRIB(1))+ATRIB(3); ADD DOWNTIME

FREE,ATRIB(1)/1,1; FREE RESOURCE, REPAIR OVER

ACTATRIB(5).EQ.13,SY20;

ACT;

OPEN,ATRIB(5),1;

ACT,5T20; CONTINUE BREAKDOWN CYCLE

;;****************** THIRD NETWORK ******(1.****16**********

;31

;* MAIN NETWORK TO SIMULATE THE FELLING OPERATION

;*
;****.M*

; ROUTINE FOR ALTERING PROCESS RESOURCES BECAUSE OF INVENTORY/END

AL GOON,1; GO TO INDEXING WHICH RESOURCES TO ALTER

ACTATRIB(5).EQ.I,IN1;

ACTATRIB(5).GT.1.AND ATRIB(5).LE.10,IN2;

ACTATRIB(5).EQ.I1;DEST;

ACTATRIB(5).EQ.12,IN3;

ACTATRIB(5).EQ.13.IN3;

ACT,DEST;

IN1 ASSIGN,ATRIB(2)1,ATRIB(31s4: FELLING

ACr,INO:

IN2 ASSIGN,ATRIB(2) ATRIB(5)*3-1,ATRIB(3)ATRIB(2)+2; PROCESSES

ACr,INO;

IN3 ASSIGN,ATRIB(2)37,ATRIB(3)37; CHIPPING

ACT,INO;

IN4 ASSIGN,ATRIB(2)41,ATRIB(3)41; FINAL TRANSPORT

ACF,INO:

INO 000N,1; GO TO DESIRED ALTERING:

ACTATRIB(1).EQ.I,AL1; DECREASE REOURCES

ACIATRIB(1).EQ.2,AL2; MA/CE RESOURCE AGAIN AVAILABLE

ALI ASSIGN,EC(1)s -11 SET XX(1) NEGATIVE

ASSIGN,XX(I)XX(I)*ARRAY(6,ATRIB(2)); INDEXING HOW MANY RESC.AVAIL.

ALTER,ATRIB(2),XX(1); DECREASE AVAILABLE RESOURCES

ASSIGN,A1RIB(2)ATRIB(2)41,1;

ACTAIRIB(2).LE.ATRIB(3),AL1;

ACT;

CLOSE,ATRIB(5);

TERMINATE;

CLOSE GATE OF PROCESS

AL2 ASSIGN,II-ATRIB(2),XX(1)ARRAY(6,II); RAKE RESOURCES BACK AVAILABLE

ALTER,ATRIB(2),XX(1);

ASSIGN,ATRIB/21ATRIB(2)+1,11

ACIATRIB(2).LE.ATRIB(3),AL2;

ACT;

OPEN,ATRIRI5/;

TERMINATE;

ROUTINE FOR PROCESSING

PROC GOON,I;

ASSIGN,XX(5)1111

ACT,USERF(2);

GO1fl G00N,1;

ACTATRIB(5).EQ.1,G011;

ACT;

OPEN GATE OF PROCESS

SET BATCHSIZE & TREES

97

98

G011

GOON,1;

ACTATRIB(2).EQ.0,WAIT;

ACT;

ASSIGN,II LEVEL2+ATRIB(5).XX(II)XX(II)-ATRIB(2),1; CALC.INFEED INVEN.

ASSIGN,XX(5)103; INDEXING USERF

Acr,usERF(10); coLcr STATS

ASSIGN,ARRAY(26,ATRIB(5)) ARRAY(26,ATRIB(5))+ATRIB(2);INV.IN TRANSIT

ASSIGN,IILEVEL1+ATRIB(5),XX(II)XX(II)+ATRIB(2);1; SUN.PROCESSED

GCON,2;

ACT,ENO; TEST CURRENT PROCESS END

ACT;

GOON,1;

ACTARRAY(15,ATRIB(5)).12.2,G012;

ACT;

ASSIGN,ATRIB(7)1(

G012 GGON,1;

ACTATRIB(5).EQ.1,AS20;

ACT;

GOON,2;

ACT,INLO;

ACT;

GCON,2;

ACT,OUTN;

ACT;

TEST IF LAST ENTITY OF PROCES

MARX LAST ENTITY

REROUTE IF FELLING ENTITIY

TEST INFEED INVENTORY CURRENT PROC.TCO LOW

TEST OUTFEED INVENTORY PREVIOUS PROC. NORMAL?

AS20 ASSIGN,ATRIB(4)TNOW,1;

ACTARRAY(4,ATRIB(5)).GT.M,LOAD;

ACT;

DIVERT IF LOAD FCTN

0013 GOON,1;

ACTATRIB(5).EQ.13.AND.ARRAY(6,42).GT.0,A160; SEIZE TRACTOR FTRAPO

ACT;

G014 GOON,1;

ACTARRAY(9,ATRIB(5)).EQ.0,G015;

ACTARRAY(9,ATRIB(5)).EQ.1,G016;

MODELLING CONSTANT TIMES

MODELLING WITH USERFUNCTIONS

G015 ASSIGN,ATRIB(3)ATRIB(3)ARRAY(1,ATRIB(1)); CALC VARIABLE PROCESS TIME

ACT,ATRIB(3);

GOON,1;

ACT,G017;

G016 ASSIGN,XX(5)ATRIB(1);

ACT,USERF(3);

G017 GOON,1;

ACT,ARRAY(2,ATRIB(1));

GOON,1;

ACT,ARRAY(5,ATRIB(1));

GOON,1;

ACTATRIB(5).GE.12,0018;

ACT;

1ST CONSTANT TIME FACTOR

2ND CONSTATNT TIME FACTOR

REROUTE IF FTRAPO/CHIPPING

ASSIGN,XX(1)ARRAY(23,ATRIB(5)); INDEXING NEXT PROCESS

ASSIGN,II xLEVEL2+XX(1),XX(II) +XX(II)+ATRIB(2); INV.CALC.INFEED NEXT

ASSIGN,U(5) +104; INDEXING USERF

ACT,USERF(104); COLCT STATS

ASSIGN,ARRAY(26,ATRIB(5)) ARRAY(26,ATRIB(5))-ATRIB(2);INV.IN TRANSIT

GOON,2;

ACT,OUTH;

ACT;

GOON,2;

ACT,,. INN;

ACT;

6018 GOON,1;

ACT,ARRAY(5,ATRIB(1));

ASSIGN,ATRIB(4)+TROU -ATRIB(4);

ASSIGN,ARRAY(10,ATRIB(1))ARRAY(10,

FREE,ATRIB(1)/1,1;

ACTATRIB(5).EO.15,FTST;

ACT;

6021 OPEN,ATRIB(5),1;

ACTATRIB(5).EQ.12,G063;

ACTATRIB(7).EQ.1,STAT;

ACT;

TEST OUTFEED INVENTORY TOO HIGH

TEST INFEED INVENTORY NORMAL?

2ND CONSTANT TIME FACTOR

CALCULATE MACHINE HOURS

ATRIB(1))+ATRIB(4); ADD MACHINE FIRS

FREE RESOURCE

REROUTE IF FTRAPO

OPEN GATE CURRENT PROCESS

REROUTE IF CHIPPING

GOTO STATS IF LAST ENTITY

6019 GOON,1;

ACTATRIB(5).EQ.12.AND.ATRIB(7).EQ.1,0065;

ACTATRIB(5).EQ.15,FTRA;

ACT;

ASSIGN,ATRIB(1)ARRAY(23,ATRIB(5));

OPEN,ATRIB(1),1;

6020 GCON,1;

ACTATRIB(5).EQ.1,FELL;

ACTATRIB(5).EQ.2,PRO1;

ACTATRIB(5).EQ.3,PR02;

ACTATRIB(5).EQ.4,PR03;

ACTATRIB(5).EQ.5,PRO4;

ACTATRIB(5).EQ.6,PRO5;

ACTATRIB(5).EQ.7,PRO6;

ACTATRIB(5).EQ.B,PRO7;

LAST ENTITY CHIPPING

REROUTE IF FTRAPO

INDEXING NEXT PROCESS

OPEN GATE NEXT PROCESS

99

ACTATRIB(5).EQ.9,PROB;

ACTATRIB(5).EQ.10,PRO9;

ACTATRIB(5).EQ.I2,CHIP;

ACTATRIB(5).EQ.13,FIRA;

ROUTINE, TESTING INFEED CURRENT PROCESS INVENTORY TOO LOU

INLO ASSIGN,IIsATRIB(5)+LEVEL2,XX(1)XX(II);

ASSIGN,IIsATRIB(5)+LEV113,XX(2)XX(II);

ASSIGN,IInARRAY(24,ATRIB(5)).1;

ACTXX(1).GE.A7(2),DEST;

ACTARRAY(15,II).GE.2,DEST;

ACTARRAY(15,ATRIB(5)).GE.2,DEST;

ACTARRAY(20,ATRIB(5)).GT.O,DEST;

ACTARRAY(19,ATRIB(5)).GT.B,DEST;

ACT;

ASSIGN,ARRAY(17,AIRIB(5))flTNOW;

ASSIGN,ARRAY(19,ATRIB(5))..11

ASSIGN,ATRIB(1)1,1;

ACT,AL;

ACTUAL INFEED INV.CURRENT PRO

STOPPING LEVEL MIN.INFEED INV

INDEXING PREVIOUS PROCESS

INVENTORY TEST

PREVIOUS PROCESS ENDED

CURRENT PROCESS ENDED

OUTFEED ALREADY DOWN

FLUX AROUND LIMIT

STORE TIME

SET FLAG

SET FLAG DECREASING RESOURCES

GOTO ALTERING

; ROUTINE, TEST INFEED INVENTORY NEXT PROCESS BACK TO NORMAL

INN ASSIGN,ATRIB(6)nARRAY(23,ATRIB(5));

INN1 ASSIGN,II-ATRIB(6)+LEVEL2,IX(1)eXK(II);

ASSIGN,IIATRIB(6)+LEVEL5,XX(2)XX(II);

ASSIGN,IlnATRIB(6),1;

ACTARRAY(15,10.EQ.B,DEST;

ACTM(1).LT.XX(2),DEST;

ACTARRAY(19,II).EQ.0,DEST;

ACTARRAY(20,II).GT.B,DEST;

ACT;

INDEXING NEXT PROCESS

INFEED INV.NEXT PROCESS

STARTUP INV.LEVEL

INDEXING NEXT PROCESS

NEXT PROCESS NOT UP YET

INVENTORY TEST NEXT PROCESS

FLUX AROUND LIMIT

OUTFEED ALREADY DOWN N.P.

ASSIGN,XX(1)flTION-ARRAY(17,II); CALC.DOWNTIME

ASSIGN,ARRAY(19,I1) -0,ARRAY(11,II)ARRAY(11,II)+XX(1);ADD DOWNTIME

ASSIGN,ATRIB(5)sII,ATRIB(1)-2;

OPEN,ATRIB(5);

ALT, AL;

SET FLAG INCREASING RESOURCES

OPEN GATE NEXT PROCESS

GOTO ALTERING RESOURCES

100

101

; ROUTINE, TEST OUTFEED INVENTORY CURRENT PROCESS IS TOO HIGH

; (OUTFEED INVENTORY CURRENT PROCESS INFEED INVENTORY NEXT PROCESS)

OUTH ASSIGN,I1sLEVEL2+ARRAY(23,ATRIB(5)),XX(1)XX(II);INFEED INV.NEXT PROC

ASSIGN,IILEVEL4+ ARRAY(23,ATRIB(5)),XX(2)XX(II),1; MAX.INV.NEXT PROC

INDEXING NEXT PROCESS

NEXT PROC.NOT UP YET

INVENTORY TEST NEXT PROC.

CURRENT PROCESS ENDED

INFEED ALREADY DOWN

FLUX AROUND LIMIT

ASSIGN,II.ARRAY(2S,ATRIB(5)),I;

ACTARRAY(15,1I).EQ.0,DEST;

ACTXX(I).LE.U(2),DEST;

ACTARRAY(15,ATRIB(5)).GE.2,DEST;

ACTARRAY(19,ATRIB(5)).GT.B,DEST;

ACTARRAY(20,ATRIB(5)).GT.O,DEST;

ACT;

ASSIGN,ARRAY(17,II) sTNOW; STORE TIME

ASSIGN,ATRIB(1).1,ARRAY(2B,ATRIB(5))1; SET FLAG DECREASE RESOURCES

ACT,AL;

ROUTINE, TEST OUTFEED INVENTORY PREVIOUS PROCESS BACK TO NORMAL

(INFEED INVENTORY CURRENT PROCESS OUTFEED INVENTORY PREVIOUS PROCESS)

UTN ASSIGN,I1LEVEL2+ATRIB(5),XX(I) XX(II);

ASSIGN,IIsLEVEL64.ATRIB(5),XX(2)sXX(II);

ASSIGN,II.ARRAY(24,ATRIB(5)),I;

ACTXX(I).GT.XX(2),DEST;

ACTARRAY(15,1I).GE.2,DEST;

ACCARRAY(20,II).KE.I.DEET;

ACTARRAY(19,11).GT.O,DEST;

ACT;

INV.CURRENT PROCESS

STARTUP LEVEL MAX.INV.

INDEXING PREVIOUS PROCESS

INVENTORY TEST MAX.INV.

PREV.PROCESS ALREADY ENDED

FLUX AROUND LIMIT

INFEED INV.DOWN PREV.PROCESS

ASSIGN,XX(1)NOW-ARRAY(17,ATRIE(5)); CALC.DOWNTIME

ASSIGN,ARRAY(12,ATRIB(5)) sARRAY(12,ATRIB(5))+XX(1); ADD DOWNTIME

ASSIGN,ARRAY(20,II)=0,ATRIB(5),II; SET FLAG,SET PROCESS

ASSIGN,ATRIB(1)s2; SET FLAG INCREASING RESOURCES

OPEN,ATRIB(5); OPEN GATE PREVIOUS PROCESS

ACT,,, AL; CAN ALTERING RESOURCES

; ROUTINE, TEST END OF PROCESS

END GCON,I;

ACTATRIB(5).EQ.1,EFELL;

ACT;

ASSIGN,IILEVEL2+ATRIB(5),XX(1)eXX(II);

ASSIGN,IIARRAT(24,ATRIB(5)),1;

ACTXX(1).GT.O.O01,DESTI

ACTARRAY(15,II).LT.2,DEST;

ACTARRAY(26,II).GT.B.001,DEST;

ACT;

TEST IF FELLING

INVENTORY CURRENT PROCESS

INDEXING PREVIOUS PROCESS

TEST INVENTORY CURRENT PROCESS

TEST PREVIOUS PROCESS FINISH

TEST INVENTORY IN TRANSIT

ASSIGN,ARRAY(15,ATRIB(5))2ATRIB(7)..1; SET FLAG PROCESS FINISHED

ACT ,SEND; GOTO RESOURCE ADJUSTMENT

EFELL ASSIGN,II- LEVEL1+1

GCON,I;

ACTXX(II).LT.XX(4),DEST;

ACT;

ASSIGN,ARRAY(15,1)*2,ATRIB(7)=1;

SEND ASSIGN,ATRIB(1)1,2;

ACT,AL;

ACT;

GOON,1;

ACTATRIB(5).EQ.I1,E4;

ACTATRIB(5).EO.12,E21

ACTATRIB(5).EQ.13,E3;

ACT;

TEST IF ALL TREES HARVESTED

SET FLAG PROCESS FINISHED

SET FLAG DECREASING RESOURCE

TESTING IF DISTRIBUTION

TESTING IF CHIPPING

TESTING IF FTRAPO

ASSIGN,IIARRAY(23,ATRIB(5)),ATRIE(5)II,ATRIB(1)'.2,1; INDEX NEXT PROC

ACT,ES;

E2 ASSIGN,XX(8)'2;

ACT,DEST;

E3 ASSIGN,EL(9)2;

ACT,DEST;

SET FLAG CHIPPING ENDED

SET FLAG FTRAPO ENDED

E4 ASSIGN,IIARRAY(7.5),ATRIB(5)II,ATRIB(1)z2,2;

ACT,E5;

ACT;

ASSIGN,II-ARRAY(7,6),ATRIB(5)II;

E5 GOON,1;

ACTARRAT(20,ATRIB(5)).EQ.1,DEST;

ACTARRAY(19,ATRIB(5)).EQ.1,E6;

ACT,DEST;

INDEXING ROUTE 1

INDEXING ROUTE 2

NEXT PROCESS DOWN OUTFEED

NEXT PROCESS DOWN INFEED

DESTROY IF DONE

102

E6 ASSIGN,ARRAY(19,ATRIB(5))0.2;

ACT,,,AL;

ACTATRIB(5).EQ.11,E7;

ACT,DEST;

E7 OPEN,GATE11;

ACT,DEST;

ROUTINE TO CALCULATE THE REQUIRED STATISTICS

STAT ASSIGN,XX(5)..120;

ACT,USERF(120);

ASSIGN,ARRAY(15,ATRIB(5))3,1;

ASSIGN,ARRAY(26,ATRIB(5))4J,1;

ACT,0019;

; ROUTINE: MODELLING LOADING FUNCTION

LOAD GOON,1;

ACTARRAY(9,ATRIB(5)).EQ.0,G031;

ACTARRAY(9,ATRIB(5)).EQ.1,G032:

SET FLAG PROCESS UP INFEED

BRING BACK NEXT PROCESS

CONTINUE IF DISTRIBUTION

OTHERWISE DESTROY

OPEN GATE FOR DISTRIBUTION

DESTROY IF DONE

OUTPUT STATS TO PRINTER

SET FLAG PROC.COMPLETLY ENDED

SET INV.IN TRANSIT 0

RETURN TO MAIN PROCESSING

6031 ASSIGN,XX(6)ARRAY(1,ATRIB(6))ATRIB(3); CALC VARIABLE PROCESSING TIME

ACT,XX(6);

GOON,1;

ACT,G053:

6032 ASSIGN,XX(5)ATRIB(6);

ACT,USERF(4);

0033 GOON,1;

ASSIGN,XX(1)=ATRIB(2)/ARRAY(8,ATRIB(6)); CALC.HOW MANY LOADS

ASSIGN,XX(6)=XX(1)*ARRAY(2,ATRIB(6)); CALC.IST CONST.TIME FACTOR

ASSIGN,XX(6)-XX(6)*XX(1)*ARRAY(3,ATRIB(6)); CALC.2ND CONST TIME

ACT,XX(6); 1ST-1.2ND CONSTANT TIME FACTOR

GOON,2;

ACT,G034;

ACTATRIB(5).LT.10.0R.ATRIB(5).GE.12,G013;RETURN TO MAIN PROCESSING

ACT,DEST;

103

0034 GOON,1;

ASSIGN,XX(1)ATRIB(2)/ARRAY(8,ATRIB(6)); CALC.HOW MANY LOADS

ASSIGN,XX(1)XX(1)*ARRAY(3,ATRIB(6); CALC.2ND CONST.TIME FACTOR

ACT,XX(1); 2ND CONSTANT TIME FACTOR

ASSIGN,ATRIB(4)INOW-ATRIB(4); MACH. TIME;

ASSIGN,ARRAY(1LATRIB(6))ARRAY(10,117R18(6))+ATRIB(4); ADD.MACH.TIIIE

FREE,ATRIB(6)/1.1;

ACT,DEST;

; ROUTINE: TEST END OF SIMULATION

SEN1 ASSIGN,II ARRAY(24,ATRIB(5)),ATRIB(1)20,1;INDEXING PREVIOUS PROCESS

ACTARRAY(15,II).NE.3,WA11; TESTING IF PREV.PROC.ENDED

ACT;

SEN2 GOON,1;

ACrARRAY(15,13).GT.0,130TH;

ACT,SEN5;

SEN3 ASSIGN,11 ARRAY(24,ATRIB(5)),ATRIB(1)21,1; INDEX PREY. PROCESS

ACTARRAY(15,I1).NE.3,WA11; TESTING IF PREV.PROC.ENDED

ACT;

SEN4 GOON,1;

ACTARRAY(15,12).GT.O,BOTH;

ACT,SEN5;

BOTH ACCUMULATE,2,1,LAST,1;

SENS ASSIGN,ATRIB(1)22,1;

ASSIGN,ARRAY(15,14)3;

ACTNRUSE(32).GT.O,WA11;

ACTNRUSE(33).GT.O,WAII;

ACr..NRUSE(34).GT.0,WAII;

ACTNRUSE(35)GT.O,WA11;

ACTNRUSE(36).GT.0,14A11;

ACT;

ASSIGN,ATRIB(5)-14,XX(5)120;

ACT,USERF(120);

SEN6 TERMINATE,1;

TEST IF ALL LOADERS ARE SHUT

DOWN FOR STATS

INDEXING FOR STATS

DEFINITIVE END OF SIMULATION

104

105

; ROUTINE: WAITING LOOPS

WAIT FREE,ATRIB(1)/1,1;

ACFATRIB(6).EQ.0,WA00;

ACT;

FREE,ATRIB(6)/1,1;

WA00 GOON,1;

ACT,,ATRIB(5).EQ.I2,WAI3;

ACT;

WAD] GOON,1;

ACT,XX(10);

MONO;

ACT,G020;

WAI3 FREE,CNIPTRA1/1,1;

ASSIGN,ARRAY(13,2) a1;

ACT,WA10;

WAII GOON,1;

ACT,XX(I0);

GOON,1;

ACTATR18(1).EQ.20,SEN1;

ACTATRIB(1).EQ.21,SEN3;

ACTATRIB(1).EQ.22,SEN5;

BEGINN OF FELLING PROCESS, SITE 1

WAITING LOOP IF NO INFEED INV

NO LOADER USED

FREE LOADER

IS AVAILABLE

RETURN TO MAIN PROCESS ROUT.

FREE CHIPTRA IF CHIP PROCESS

RESET FLAG SEIZE PRIME TRAPO

WAITING LOOP IF END OF SIMU,

PROCESS IS NOT FINISHED

ROUTINE OT ASSIGN AVAILABLE FELLER

FELL ASSIGN,ATRIB(5)1,ATRIB(6)ARRAY(4,1),1;

ACINNRSC(1).GT.0,MAI;

ACTNNRSC(2).GT.0,MA2;

ACTNNRSC(3).GT.0,MA3;

ACTNNRSC(4).GT.0,MA4;

ACI,CLI;

106

CL1 CLOSE,GATE1;

Al AWAIT(51),GATE1;

ACT,FELL;

MA1 ASSIGN,ATRIB(1)-1;

ACT,AWI;

MA2 ASSIGN,ATRIB(1)2;

ACT,,,AW1;

MA3 ASSIGN,ATRIB(1)3;

ACT,,,AW1;

MA4 ASSIGN,ATRIB(1)4;

ACT,,,AW1;

AGM AWAIT(ATRIB(1)1,50),ATRIB(1).1;

ACTATRIB(6).EQ.0,PROC;

ACT;

F3 AWAIT(ATRIB(6)1,50),ATRIB(6); SEIZE LOADER

ACT,PROC;

; BEGIN OF SECOND PROCESS

; ROUTINE TO ASSIGN AVAILABLE RESOURCES AND GO TO PROCESSING

PRO; ASSIGN,ATRIB(5)a2,ATRIB(6)aARRAY(4,2),I;

ACTNNRSC(5).GT.0,MA.5;

ACTNNRSC(6).GT.0,MA6;

ACTNNRSC(7).GT.0,MA7;

ACT,CL2;

CL2 CLOSE,GATE2;

A2 AWAIT(52),GATE2;

ACT,PRO1;

MA5 ASSIGN,ATRIB(1)5;

ACT,AW2;

MA6 ASSIGN,ATRIB(1)6;

ACF,AW2;

MA7 ASSIGN,ATRIB(1)7;

ACT,AW2;

107

AIT AWAIT(ATRIB(1)1,50),ATRIB(1).1;

ACTATRIB(6).EQ.11,PROC;

ACT;

A3 ANAIT(ATRIB(6)150),ATRIB(6); SEIZE LOADER

ACT,PROC;

; SECOND PROCESS: DETECT, STARTUP INVENTORY LEVEL REACHED

DETECT,XX(29),XP,XX(89)1;

ACTARRAY(15,2).GT.O,DEST;

ACT;

ASSIGN,ATRIB(1) 2,A1RIB(5)2,ATRIB(2)5,ATRIB(3)7;

ASSIGN,ARRAY(15,2)=1,ARRAY(16,2)1NOW,2;

ACT,AL;

ACT,SY13;

BEGIN OF THIRD PROCESS

ROUTINE TO ASSIGN AVAILABLE RESOURCES MD GO TO PROCESSING

PRO2 ASSIGN,ATRIB(5)3,ATRIB(6)ARRAY(4,3),1;

ACTNNRSC(8).GT.0,11A8;

ACTNNRSC(9).GT.0,MA9;

ACTNNRSC(10).GT.8,MA10;

ACT,CL3;

CL3 CLOSE,GATE3;

ARAIT(53),GATE3;

ACT,PRO2;

MA8 ASSIGN,ATRIB(1)8;

ACT,AW3;

MA9 ASSIGN,ATRIB(1)9;

ACT,ARS;

MAIO ASSIGN,A1RIB(1)10;

ACT,M3;

108

AU3 ARAIT(ATRIB(1)1,514),ATRIB(1),I;

ACFATRIB(6).EQ.B,PROC;

ACT;

AWAIT(ATRIB(6)1,50),ATRIB(6); SEIZE LOADER

ACF,PROC;

THIRD PROCESS: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT,XX(30),XP,XX(90)1;

ACTARRAY(15,3).GT.O,DEST;

ACT;

ASSIGN,ATRIB(1) 2,ATRIB(5)3,ATRIB(2),ATRIB(3)10;

ASSIGN,ARRAY(15.3)1,ARRAY(16,3)TNOM;

ACT,AL;

ACT,SYI3;

BEGIN OF FORTH PROCESS

ROUTINE TO ASSIGN AVAILABLE RESOURCES AND GO TO PROCESSING

PROS ASSIGN,ATRIB(5)4,ATRIB(6)ARRAY(4,4),I;

ACFNNRSC(II).GT.0,MAII;

ACFNNRSC(12).GT.0,MA12;

ACFNNRSC(13).GT.0,MA13;

ACY,CL4;

CL4 CLOSE,GATE4;

AWAIT(54),GATE4;

ACF,PRO3;

109

MA11 ASSIGN,ATRIB(1)11;

AGT,AW4;

MA12 ASSIGN,A1RIB(1)12;

ACT,AR4;

MA13 ASSIGNATRIB(1)13;

ACT,AW4;

AW4 AWAIT(ATRIB(1)1,50),ATRIB(1).1;

ACTATRIB(6).EQ.0,PROC;

ACT;

AWAIT(ATRIB(6)1,50),ATRIB(6); SEIZE LOADER

ACT,PROC;

; FORTH PROCESS: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT,M1(31),XP,U(91),,1;

ACTARRAY(15,4).GT.O,DEST;

ACT;

ASSIGLATRIB(1) 2,ATRIB(5)4,ATRIB(2)11,ATRIB(3)13:

ASSIGN,ARRAY(15,4)1,ARRAY(16,4)TNOW,2;

ACT,AL;

ACT,SY13;

; BEGIN OF FIFTH PROCESS

; ROUTINE TO ASSIGN AVAILABLE RESOURCES AND GO TO PROCESSING

PRO4 ASSIGN,ATRIB(5)5,ATRIB(6)ARRAY(4,5),1;

ACTNERSC(14).GT.O,MA14;

ACTNNRSC(15).GT.0,MA15:

ACTNNRSC(16).GT.0,MA16;

ACT,CL5;

110

CL5 CLOSE,GATE5;

AWAIT(55),GATE5;

ACT,,,PRO4;

MA14 ASSIGN,ATRIB(1)14;

ACT,AW5;

MA15 ASSIGN,ATRIB(1)-15;

ACT,AW5;

MA16 ASSIGN,ATRIB(1)=16;

ACT,AW5;

AW5 AWAIT(ATRIB(1).0,50),ATRIB(1),1;

ACTATRIB(6),EQ.0,PROC;

ACT;

AWAIT(ATRIB(6)1,50),ATRIB(6); SEIZE LOADER

ACF,PROC;

FITH PROCESS: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT,MX(32),V,XX(92),.1;

ACTARRAY(15,5).Gr.A,DEST;

ACT;

ASSIGN,ATRIB(1)-,2,ATRIB(5)e5,ATRIB(2).04,ATRIB(3)16;

ASSIGN,ARRAY(15,5)-1,ARRAY(16,5)..TNOW,2;

ACT,AL;

ACT,SY15;

111

BEGIN OF SIXT PROCESS

ROUTINE TO ASSIGN AVAILABLE RESOURCES MID GO TO PROCESSING

PROS ASSIGN,ATRIB(5)6,ATRIB(6)ARRAY(4,6),1;

ACTNNRSC(17).47.8,MA17;

ACTNNRSC(18).GT.O,NA18;

ACTNNRSC(19).GT.O,MA15)

ACT,CL6;

CL6 CLOSE,GATE6;

AWAIT(56),GATE6;

ACT,PRO5;

MA17 ASSIGN,ATRIB(1)17;

ACT.A86;

MA18 ASSIGN,ATRIB(1)18;

ACT,A86;

NA19 ASSIGN,ATRIB(1)19;

ACT,A86;

AW6 AWAIT(ATRIB(1)1,50),ATRIB(1),1(

ACTATRIB(6).EQ.0,PROC;

ACT;

AWAIT(ATRIB(6)1,50),ATRIB(6); SEIZE LOADER

ACT,PROC;

; SIXT PROCESS: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT,XX(58),XP,XX(93),,I

ACTARRAY(15,6).GT.B,DEST;

ACT;

ASSIGN,ATRIB(1)2,ATRIB(5)6,ATRIB(2)=17,ATRIB(3) -15)

ASSIGN,ARRAY(15,6)I,ARRAT(16,6)TNOW,2;

ACT, AL;

ACT,SY13;

112

BEGIN OF SEVENTH PROCESS

ROUTINE TO ASSIGN AVAILABLE RESOURCES AND GO TO PROCESSING

PRO6 ASSIGN,ATRIB(5)7,ATRIB(6).ARRAY(4,7).1;

ACTNNRSC(20).GT.0,MA20;

ACYNNRSC(21).GT.0,MA21;

ACYNNRSC(22).GT.0,11A22;

ACT,CL7;

CL7 CLOSE,GATE7;

AWAIT(57),GATE7;

ACT,PRO6:

MA20 ASSIGN,ATRIB(1)-.20;

ACT,AW7;

KA21 ASSIGN,ATRIB(1)21;

ACT,AW7;

MA22 ASSIGN,ATRIB(1)22;

ACT,AW7;

AW7 AWAIT(ATRIB(1)e1,50),ATRIB(1),1:

ACTATRIB(6).EQ.0,PROC;

ACT;

AWAIT(ATRIB(6)1,521),ATRIB(6); SEIZE LOADER

ACT,PROC;

SEVENTH PROCESS: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECF,XX(54),XP,XX(94),,1;

ACTARRAY(15,7).U.O,DEST;

ACT;

ASSIGN,ATRIB(1)2,ATRIB(5)7,ATRIB(2)20,ATRIB(3)22;

ASSIGN,ARRAY(15,7)I,ARRAY(16,7)TNOW,2;

ACT,AL;

ACT,SY13;

BEGIN OF EIGTH PROCESS

ROUTINE TO ASSIGN AVAILABLE RESOURCES AND GO TO PROCESSING

PRO7 ASSIGN,ATRIB(5)8,ATRI8(6)-ARRAY(4,8),1;

AUNNRSC(23).GT.0,MA23;

ACFNMRSC(24).GT.8,MA24;

ACTNNRSC(25).GT.0,MA25;

ACT,CL8;

CLB CLOSE,GATE8;

AWAIT(58),GATE8;

ACT,PRO7;

MA23 ASSIGN,ATRIB(I)23;

ACT,AW8;

NA24 ASSIGN,ATRIB(1)24;

ACF,AW8;

MA25 ASSICN,ATRI8(1)25;

ACT,A88;

AW8 AWAIT(ATRIB(1)-1,50),ATRIB(1),1;

ACTATRI8(6).EQ.0,PROC;

ACT;

AWAIT(ATRIB(6)=1,50),ATRIB(6);

ACT,PROC;

SEIZE LOADER

113

; EIGTH PROCESS: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT,XX(35),rP,XX(95)1;

ACrARRAT(15,8).GT.O,DEST;

ACT;

ASSIGN,ATRIB(1) 2,ATRIB(5)8,ATRIB(2)23,ATRIB(3)'25;

ASSIGN,ARRAY(I6,6)8,ARRAY(16,8)sTNOW,2;

ACT,AL;

ACT,SY13;

; BEGIN OF NINETH PROCESS

; ROUTINE TO ASSIGN AVAILABLE RESOURCES AND CO TO PROCESSING

PROS ASSIGN,ATRI8(5)9,ATRIB(6)aARRAY(4.9),1;

ACTNNRSC(26).GT.1,MA26;

ACrNNRSC(27).GT.0,MA27;

ACTNNRSC(28).GT.0,Mk28;

ACr.(1.9;

CL9 CLOSE,GATE9;

AWAIT(59),GATE9;

ACT,PRO8;

MA26 ASSIGN,ATRIB(1)26;

ACr,AW9;

MA27 ASSIGN,ATRIB(I)27;

ACT,AW9;

MA28 ASSIGN,ATRIB(1)=28;

ACT,AW9;

AW9 AWAIT(ATRIB(1)s1,50),ATRIB(I),1;

ACTATRIB(6).EQ.0,PROC;

ACT;

AWAIT(ATRIB(6)-1,50),ATRIB(6);

ACT,PROC;

SEIZE LOADER

114

115

; NINETH PROCESS: DETECT, STARTUP - INVENTORY LEVEL REACHED

DETECT,XX(36),XP,XX(96)1;

ACTARRAY(15,9).GT.O,DEST;

ACT;

ASSIGN,ATRIB(1) 2,ATRIB(5)9,ATRIB(2)26,ATRIB(3)28;

ASSIGN,ARRAY(15,9)1,ARRAY(16,9)TNOW,2;

ACT,AL;

ACT,SY13;

BEGIN OF TENTH PROCESS

ROUTINE TO ASSIGN AVAILABLE RESOURCES AND GO TO PROCESSING

R09 ASSIGN,ATRIB(5)10,ATRIB(6)ARRAY(9,10),1;

ACFNNRSC(29).CF.0,MA29:

ACTNNRSC(30).GT.0,MA30;

ACFNNRSC(31).GT.0,MA31;

ACT,CL10;

CLIO CLOSE,GATE10;

AWAIT(60),GATE10;

ACF,PRO9;

MA29 ASSIGN,ATRIB(1)29;

ACT,AW10;

MA30 ASSIGN,ATRIB(1)30;

ACT,AW10;

MA31 ASSIGN,ATRIB(1)31;

ACT,A1410;

AW10 AWAIT(ATRIB(1)1,50),ATRIB(1),1;

ACTATRIB(6).EQ.0,PROC;

ACT;

AWAIT(ATRIB(6)1,50),ATRIB(6);

ACT,PROC;

SEIZE LOADER

; TENTH PROCESS: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT,XX(37),XP,X1(97)1;

ACTARRAY(15,10).GT.O,DEST;

ACT;

ASSIGN,ATR/B(1)x2,ATRIB(5)10,ATRIB(2)29,ATRIB(3)31;

ASSIGN,ARRAY(15,10)sI,ARRAY(16,10)TNOWa;

ACT,AL;

ACT,SY13;

'BEGIN

SORT ASSIGN,ATRIB(5)11,1;
ACTATRIB(1).EQ.1,G047;
ACT;

ASSIGN,XX(5)103;
ACT,USERF(103);

ASSIGN, n(5)=130;

ACT,USERF(130);

GCON,1;

ACTARRAY(15,11).NE.1,SOR1;
ACTARRAY(19,I1).EQ.1,SOR1;
ACTATRIB(2).EQ.0,SOR1;
ACT;

PROCESS ENDED,LAST ENTITY

INDEXING USERF

COLECT INV.STATS

INDEXING USERF
CALC INVENTORY

PROCESS NOT UP YET
INFEED TCO LOW
NOTHING TO ROVE

116

117

AS47 ASSIGN,ATRIB(1)=ARRAY(4,11),ARRAY(26,11)ARRAY(26.11)+ATRIB(2).1;

ACEATRIB(1).EQ.0,AS48; TEST IF LOADER USED,NOJUMP

ACT; YESCONTINUE

AWAIT(ATRIB(1)1,58),ATRIB(1),1; SEIZE LOADER

AS48 ASSIGN,XX(5)-1031

ACT,USERF(103);

GCON,2;

ACT,END;

ACT;

GOON,1;

ACTARRAY(15,I1).LT.2,G046;

ACT;

ASSIGN,ATRIB(1) -1;

G046 GCON,2;

ACT,,, INLO;

ACE;

GCON,2;

ACT,OUTN;

ACT;

INDEXING USERFUNCTION

COLCT INV.STATS

TEST PROCESS ENDED

INDEXING LAST ENTITY

TEST INFEED INV.CURRENT PROC

TEST OUTFEED INV.PREVICUS P.

GOON,1; TEST IF LOADER IS USED

ACTARRAY(4,11).EQ.0,044; NO LOADER,JUMP TO NEXT STEP

ACT; CONTINUE

ASSIGN,ATRIB(4)TNOW,1;

ACTARRAY(9,11).EQ.0,AS49;

ACCARRAY(9,11).EQ.1,G042;

MARK BEGIN PROCESSING

MODELLING AVERAGE

MODELLING USERF

AS49 ASSIGN,IIARRAY(4,11),XX(6)ARRAY(1,Il)AIRIB(3);CALC VAR.PROC.TIME

ACI,K4(6);

GOON,1;

ACT,G043;

G042 GOON,1;

ACT,USERF(11);

G043 ASSIGN,II-ARRAT(4,11); INDEXING LOADER

ASSIGN,XX(1)ATRIB(2)/ARRAY(8,II); CALC I OF RUNS

ASSIGN,XX(6)-XX(1)*ARRAY(2,11); 1ST CONSTANT TIME/RUN

ASSIGNX(6)-X1(6)+XX(1)*ARRAT(3,11); 2ND CONSTANT TIME

ACT, X1(6);

118

G044 ASSIGN,II eARRAY(7,5)+LEVEL2,XX(II) XX(II)+ATRIB(6);INVENTORIES INFEED

ASSIGN,II ARRAY(7,6)+LEVEL2,XX(II)X(II)+ATRIB(7);NEXT PROCESSES

ASSIGN,ARRAY(26,11) cARRAY(26,11)-ATRIB(2),XX(5).105,1;USRF&TRANSITINV

ACT,USERF(105); COLCT STATS INV.NEXT PROC

ASSIGN,XX(5)106; INDEXING USERF

ACT,USERF(106); COLCr STATS INV.NEXT PROC

ASSIGN,ATRIB(6)ARRAY(7,5)a; INDEXING ROUTE 1

ACT,INN1; TEST INFEED INV.NEXT PROC1

ACT;

ASSIGN,ATRIB(6)ARRAY(7,6),2;

ACT,INN1;

ACT;

INDEXING ROUTE 2

TEST INFEED ItiV.NEXTPROC2

G0ON,1; TEST IF LOADER USED

ACTARRAY(4,11).EQ.0,G045; NO LOADER USED,JUMP STEP

ACT; clam

ASSIGN,II.ARRAY(4,11),XX(1).ATRIB(2)/ARRAY(0,1I); INDEXING LOADER

ASSIGN,XX(1).XX(1)*ARRAY(3,I1); CALCULATE 2ND CONST.TIME

ACT,XX(1); 2ND CONSTANT TIME

ASSIGN,ATRIB(4)TNN-ATRIB(4); CALC MACHINE TIME

ASSIGN,IIARRAY(4,11); INDEXING LOADER

ASSIGN,ARRAY(10,II)-ARRAY(10,II))+ATRIB(4);SUM MACHINE TIME

ASSIGN,ARRAY(7,18)-ARRAY(7,18)+ATRIB(4); SUM MACH.TIME PROCESS

ASSIGN,ATRIB(3) -II; INDEXING LOADER USED

FREE,ATRIB(3)/1; FREE LOADER

G045 ASSIGN,IDLEVEL1+11; INDEXING)0(-VAR

ASSIGN,XX(II)-XX(II)+ARRAY(7,10); SUN PROCESSED

ASSIGN,ATRIB(2)ARRAY(7,5),ATRIB(3)ARRAY(7,6); INDEXING NEXT ?ROCS

OPEN,ATRIB(2);

OPEN,ATRIB(3);

ACT,SORT;

OPEN GATE NEXT PROCESS /1

OPEN GATE NEXT PROCESS /2

COT) BEGIN SORT/DISTRIBUTION

G047 ASSIGN,ARRAY(15,11) 2.3; MARK PROCESS REALLY ENDED

ASSIGN,XX(5)020; INDEXING USERFUNCTION

ACT,USERF(120); PRINT OUT STATS

GOON,1;

ACr,DEST;

SOR1 GOON,1; THIS IS A WAITING LOOP FOR

ACr,XX(10); DISTRIBUTION. EVERY XX(10)

G0014,1; WE CHECK IF WE CAN MARE A

ACT,SORT; DISTRIBUTION

119

; DISTRIBUTION/SORTING: DETECT,STARTUP -INVENTORY LEVEL REACHED

DETEGT,XX(38),XP,XX(98)1;

ACTARRAY(15,11).GT.O,DEST;

ACT;

FLUX AROUND LIMIT

ASSIGN,ARRAY(15,11)al,ARRAY(16,11)TNCQ; SET VARIABLES

OPEN,GATE11,1; OPEN GATE

ACT,SORT; BEGIN SORTING

; BEGIN OF CHIPPING OPERATION

CHIP ASSIGN,ATRIB(5)12,ATRIB(6)eARRAY(4,12),1;

ACTNNRSC(37).GT.O.AND.ARRAY(13,2).EQ.1.AND.NNRSC(39).GT.O,AW60;

ACTNNRSC(37).GT.O.ANDARRAY(13,2).EQ.0,AW61;

ACT;

CL62 CLOSE,GATE12;

AWAIT(62),GATE12;

ACT,CHIP;

AW60 AWAIT(351),CHIPTRA1,1;

ASSIGN,ARRAY(13,2).0;

AW61 ASSIGN,ATRIB(1)37;

ANAIT(37),ATRIB(1),1;

ACTATRIB(6).EQ.0,PROC;

ACT;

AWAIT(ATRIB(01,50),ATRIB(6);

ACT,PROC;

SEIZE TRANSPORT UNIT

SET FLAG PRIME TRAPO SEIZED

SET ATRIB

SEIZE CHIPPER

G063 ASSICN,ARRAY(10,39)ARRAY(10,39)+ATRIBM,2;ADD MACH.HRS.PRIME TRAPO

ACT,G067; FIRST CONTINUE, THEN GOTO

ACT,CHIP; CHIPPING

G067 ASSIGN,ARRAY(13.1) -ARRAY(13,1)+ATRIB(2),I;ADD TO INV.TRAILER

ACTATRIB(7).EQ.1.6068; CONTINUE IF LAST ENTITY

ACTARRAY(13,1).LT.ARRAY(8,39),DEST; TRAILER NOT FULL YET

ACT; START ACTUAL SHIPPING

120

G068 ASSIGN,ATRIB(4)INOW,ARRAY(13,2)1,1; SET FLAGS & TEST CORSI

ASSIGN,ATRIB(2)ARRAY(15,1),ARRAY(13,1)0,1; SET AMOUNT HAULED

ACTARRAY(6.48).LE.O,FR60; TRACTOR COMBINATION 0NO
ACT;

FR60

AWAIT(40).CHIPTRA2/1;

ASSIGN,ATRIB(6)INOW;

ACT,ARRAY(2.39);

GCON,1;

ACF,ARRAY(3,39);

GOON,1;

ACT,ARRAY(3,39);

SEIZE IRAKTOR

STORE TRACTOR TINE

1.CONSTANT TIME

2.CONSTANT TIME

2.CONSTANT TIME

FREE,C1IPTRA1/1,1; FREE TRAILER;

ASSIGN,XX(1)TNOW-ATRIB(4),1; GM.C.MACH.HRS.CHIPTRA1

ASSIGN,ARRAY(10,39)ARRAY(10,35)+MX(1),1;ADD MACH.HRS

ACTARRAY(6,40).LE.0,G064; TEST COMBINATION

ACT;

ASSIGN,ATRIB(6)TNOW -ATRIB(6),ARRAY(10,40)ARRAY(10,40)+ATRIB(6);ADD

FREE,CHIPTRA2/1,1; FREE TRACTOR HRS

G064 GOON,1;

ACTATRIB(7).EQ.1,STAT;

ACT;

OPEN,GATE12;

ASSIGNda(5)131,XX(15)ri(15)+ATRIB(2); SUM SYSTEM HARVESTED

ACT,USERF(131); DISPLAY AMOUNT HARVESTED

GOON,1;

ACT,DEST;

LAST ENTITY, GOTO STATS

G065 GOON,1;

ACTATRIB(7).EQ.1,SEN1;

ACT,DEST;

LAST ENTITY,COTO END SIMU

CHIPPING: DETECT, STARTUP-INVENTORY LEVEL REACIED

DETECT,XX(39),XP,XX(99),.1;

ACTARRAY(15,12).GT.0,DEST;

ACT;

ASSIGN,ATRIB(1)2,ATRIB(5)12,ATRIB(2)37,ATRIB(3)40;

ASSIGN,ARRAY(15,12)s1,ARRAY(16,12)alliOW,ARRAY(13,2) -1;

ALTER,CHIPTRALARRAY(6,39);

ALTER,CHIPTRA2,ARRAY(6,40);

OPEN,GATE12,2;

ACT,AL;

ACT,SY13;

121

; BEGIN OF FINAL TRANSPORT

FTRA ASSIGN,ATRIB(1)41,ATRIB(5)s13,ATRIB(6)sARRAY(4,13),1;

ACTATRIB(7).EQ.1,SEN3; LAST ENTITY

ACFNNRSC(41).GT.0,AW13; RESOURCE CAN BE SEIZED

ACT;

CL13 CLOSE,GATE13;

Al) AWAIT(631,GATE13;

ACT,FTRA;

AW13 AWAIT(41),FTRAP01,1;

ACTATRIB(6).EQ.0,PROC;

ACT;

A14 AWAIT(ATRIB(6)e150),ATRIB(6),1;

ACT,PROC;

AW50 AWAIT(42),FTRAP02,1;

ASSIGN,ATRIB(6)TNOW;

ACT,G014;

FTST ASSIGN,XX(15).XX(15)+ATRIB(2),XX(5)w131,1; CALC.AMOUNT HARVESTED

ACT,USERF(131); DISPLAY AMOUNT HARVESTED

GODN,1;

ACTARRAY(6,42).EQ0,0021; NO FTRAP02,RETURN MAIN ROUT.

ACT;

ASSIGN,ATRIB(6)eTNOW-ATRIB(6); CALC.MACH.TIMEFTRAP02

ASSIGN,ARRAY(10,42)ARRAY(10,42)+ATRIB(6);ADD MACHINE TIME FTRAP02

FREE,FTRAP02/1,1; FREE FTRAP02

ACT,,,G021; RETURN TO MAIN ROUTINE

FINAL TRANSPORT: DETECT, STARTUP-INVENTORY LEVEL REACHED

DETECT,XX(40),XP,XX(1013)1;

ACFARRAY(15,13).GT.O,DEST;

ACT;

ASSICN,ATRIB(1)2,ATRIB(5)13,ATRIB(2).41,ATRIB(3)42;

ALTER,FTRAP02,ARRAY(6,42);

ASSIGN,ARRAY(15,13)-1,ARRAY(16,13).TNOW,2;

ACT,AL;

ACT,SYI3;

END;

FIN;

122

123

APPENDIX A

2. Table 3: Contents of ATTRIBUTES

Attribute 1 = If of resource used

Attribute 2 = Load volume of current run

Attribute 3 = it of logs in current run & calculated processing time per

tree

Attribute 4 = TNOW

Attribute 5 = 11 of current Process

Attribute 6 = t/ of loading resource used

Attribute 7 = Flag last entity

124

APPENDIX A

3. Table 4: Contents of XX(i) variables

X
)(-V

A
R

IA
B

LE
S

X
X

(1) - H
E

LP

V
A

R
IA

B
LE

F
O

R

C
A

LC
U

LA
T

IO
N

S

X
X

(2) - H
E

LP

V
A

R
IA

B
LE

F
O

R

C
A

LC
U

LA
T

IO
N

S

X
X (3) - H

E
LP

V
A

R
IA

B
LE

F
O

R

C
A

LC
U

LA
T

IO
N

S

X
X

(4) H
O

N

M
A

N
Y

C
U

F
T

T
O

B
E

H
A

R
V

E
S

T
E

D

X
X

(5) - IN
D

E
X

IN
G

F
O

R
T

A
N

U
S

E
R

F
U

N
C

T
IO

N
S

X
X

(6) - P
R

O
C

E
S

S
IN

G

T
IM

E

F
O

R

LO
A

D
IN

G

F
U

N
C

T
IO

N

X
X

(7) - IN
V

E
N

T
O

R
Y

M
A

R
K

F
O

R

C
A

LC
U

LA
T

IN
G

IN
V

E
N

T
O

R
Y

IN
C

R
E

A
S

E

D
IS

T
R

IB
U

T
IO

N

F
T

C
T

)C
(

(8) - F
LA

G

F
IN

A
L

T
R

A
P

O

E
N

D
E

D

X
X

(9) - F
LA

G

C
H

IP
P

IN
G

P
R

O
C

E
S

S

E
N

D
E

D

X
X

(10)

T
IM

E

D
E

LA
Y

P
A

R
A

M
E

T
E

R

X
X

(11)

)C
(

(12)

X
X (13)

-

X
X

(14)

°

X
X

(15)

-

X
X

(16)

- S
U

M

C
U

F
T P

R
O

C
E

S
S

E
D

P
R

O
C

E
S

S

1

)0(

(17)

S
U

N

C
U

F
T

P
R

O
C

E
S

S
E

D

P
R

O
C

E
S

S

2

X
X

(18)

S
U

M

C
U

F
T

P
R

O
C

E
S

S
E

D

P
R

O
C

E
S

S

3

X
X

(19)

- S
U

M

C
U

F
T

P
R

O
C

E
S

S
E

D

P
R

O
C

E
S

S

4

)0(

(20)

S
U

M

C
U

F
T

P
R

O
C

E
S

S
E

D

P
R

O
C

E
S

S

5

X
)(

(21)

- S
U

M

C
U

F
T

P
R

O
C

E
S

S
E

D

P
R

O
C

E
S

S

6

X
X

(22)

- S
U

M

C
U

F
T

P
R

O
C

E
S

S
E

D

P
R

O
C

E
S

S

7

X
X (23)

S
U

M

C
U

F
T

P
R

O
C

E
S

S
E

D

P
R

O
C

E
S

S

8

X
X

(24)

S
U

M

C
U

F
T

P
R

O
C

E
S

S
E

D

P
R

O
C

E
S

S

9

)0(

(25)

- S
U

M

C
U

F
T

P
R

O
C

E
S

S
E

D

P
R

O
C

E
S

S

10

)0(

(26)

- S
U

N

C
U

F
T

P
R

O
C

E
S

S
E

D

S
O

R
T

IN
G

X
X

(27)

S
U

M

C
U

F
T

P
R

O
C

E
S

S
E

D

C
H

IP
P

IN
G

X
X

(28)

S
U

M

C
U

F
T

P
R

O
C

E
S

S
E

D

F
IN

A
L

T
R

A
N

S
P

O
R

T

X
X

(29)

IN
V

E
N

T
O

R
Y

P
R

O
C

E
S

S

2

X
X

(30)

IN
V

E
N

T
O

R
Y

P
R

O
C

E
S

S

3

)0(

(31)

- IN
V

E
N

T
O

R
Y

P
R

O
C

E
S

S

4

X
X

(32)

- IN
V

E
N

T
O

R
Y

P
R

O
C

E
S

S

5

)0(

(33)

IN
V

E
N

T
O

R
Y

P
R

O
C

E
S

S

6

X
X (34)

- IN
V

E
N

T
O

R
Y

P
R

O
C

E
S

S

7

X
X

(35)

= IN
V

E
N

T
O

R
Y

P
R

O
C

E
S

S

0

X
X

(36)

- IN
V

E
N

T
O

R
Y

P
R

O
C

E
S

S

9

X
X

(37)

- IN
V

E
N

T
O

R
Y

P
R

O
C

E
S

S

10

)0(

(38)

- IN
V

E
N

T
O

R
Y

S
O

R
T

IN
G

X
X

(39)

- IN
V

E
N

T
O

R
Y

C
H

IP
P

IN
G

X
X

(40)

IN
V

E
N

T
O

R
Y

F
IN

A
L

T
R

A
N

S
P

O
R

T

X
X

(41)

M
IN

IM
U

M

IN
V

E
N

T
O

R
Y

LE
V

E
L

P
R

O
C

E
S

S

2

)0(

(42)

M
IN

IM
U

M

IN
V

E
N

T
O

R
Y

LE
V

E
L

P
R

O
C

E
S

S

3

X
X

(43)

M
IN

IM
U

M

IN
V

E
N

T
O

R
Y

LE
V

E
L

P
R

O
C

E
S

S

4

X
X

(44)

M
IN

IM
U

M

IN
V

E
N

T
O

R
Y

LE
V

E
L

P
R

O
C

E
S

S

5

X
X

(45)

M
IN

IM
U

M

IN
V

E
N

T
O

R
Y

LE
V

E
L

P
R

O
C

E
S

S

6

X
X

(46)

M
IN

IM
U

M

IN
V

E
N

T
O

R
Y

LE
V

E
L

P
R

O
C

E
S

S

7

X
X

(47)

M
IN

IM
U

M

IN
V

E
N

T
O

R
Y

LE
V

E
L

P
R

O
C

E
S

S

X
X

(48)

M
IN

IM
U

M

IN
V

E
N

T
O

R
Y

LE
V

E
L

P
R

O
C

E
S

S

9

125

126

XX (49) MINIM! INVENTORY LEVEL PROCESS 10

XX (50) MINIMUM INVENTORY LEVEL SORTING

XX (51) MINIMUM INVENTORY LEVEL CHIPPING

XX (52) MINIMUM INVENTORY LEVEL FINAL TRANSPORT

XX (53) MAXIIIM INVENTORY LEVEL PROCESS 2

XX (54) - MAXIMUM INVENTORY LEVEL PROCESS 3

XX (55) MAXIMUM INVENTORY LEVEL PROCESS 4

XX (56) aMAXI/RIM INVENTORY LEVEL PROCESS 5

XX (57) MAXIMUM INVENTORY LEVEL PROCESS 6

XX (58) MAXIMUM INVENTORY LEVEL PROCESS 7

XX (59) - MAXIMUM INVENTORY LEVEL PROCESS 8

XX (60) a MAXIMIA1 INVENTORY LEVEL PROCESS 9

XX (61) - MAXIMUM INVENTORY LEVEL PROCESS 10

XX (62) MAXIMUM INVENTORY LEVEL SORTING

XX (63) MAXIMUM INVENTORY LEVEL CHIPPING

XX (64) MAXIMA' INVENTORY LEVEL FINAL TRANSPORT

XX (65) STARTUP-INVENTCRT LEVEL MINIMUM PROCESS 2

XX (66) STARTUP-INVENTORY LEVEL MINIMUM PROCESS 3

XX (67) STARTUP-INVENTORY LEVEL MINIMUM PROCESS 4

XX (68) STARTUP-INVENTORY LEVEL MINIMUM PROCESS 5

XX (69) STARTUP-INVENTORY LEVEL MINIMUM PROCESS 6

XX (70) STARTUP-INVENTORY LEVEL MINIMUM PROCESS 7

XX (71) - STARTUP - INVENTORY LEVEL MINIMUM PROCESS 8

XX (72) - STARTUP-INVENTORY LEVEL MINIMUM PROCESS 9

XX (73) STARTUP-INVENTORY LEVEL MINIMUM PROCESS 10

XX (74) STARTUP - INVENTORY LEVEL MINIMUM SORTING

XX (75) STARTUP-INVENTORY LEVEL MINIMUM CHIPPING

XX (76) STARTUP-INVENTORY LEVEL MINIMUM FINAL TRANSPORT

XR (77) STARTUP-INVENTORY LEVEL MAXIMUM PROCESS 2

XX (78) STARTUP-INVENTORY LEVEL MAXIMUM PROCESS 3

XX (79) - STARTUP- INVENTORY LEVEL MAXIMUM PROCESS 4

XX (80) - STARTUP-INVENTORY LEVEL MAXIMUM PROCESS 5

XX (81) STARTUP-INVENTORY LEVEL MAXIMUM PROCESS 6

XX (82) STARTUP-INVENTORY LEVEL MAXIMUM PROCESS 7

XX (83) STARTUP-INVENTORY LEVEL MAXIMUM PROCESS 8

XI (84) STARTUP INVENTORY LEVEL MAXIMUM PROCESS 9

XX (85) STARTUP-INVENTCRY LEVEL MAXIMUM PROCESS 10

XX (86) - STARTUP-INVENTORY LEVEL MAXIMUM SORTING

XX (87) STARTUP-INVENTORY LEVEL MAXIMUM CHIPPING

XX (88) - STARTUP-INVENTORY LEVEL MAXIMUM FINAL TRANSPORT

XX (89) STARTUP-INVENTORY LEVEL FOR PROCESS 2

XX (90) - STARTUP-INVENTORY LEVEL FOR PROCESS 3

)C((91) STARTUP-INVENTORY LEVEL FOR PROCESS 4

XX (92) STARTUP-INVENTORY LEVEL FOR PROCESS 5

XX (93) - STARTUP-INVENTORY LEVEL FOR PROCESS 6

XX (94) - STARTUP-INVENTORY LEVEL FOR PROCESS 7

XX (95) STARTUP-INVENTORY LEVEL FOR PROCESS 8

XX (96) = STARTUP-INVENTORY LEVEL FOR PROCESS 9

XX (97) STARTUP-INVENTORY LEVEL FOR PROCESS 10

XX (98) STARTUP-INVENTORY LEVEL FOR SORTING

XX (99) STARTUP-INVENTORY LEVEL FOR CHIPPING

XX (100)- STARTUP-INVENTORY LEVEL FOR FINAL TRANSPORT

127

APPENDIX A

4. Table 5: ARRAY description

128

ARRAY
row #

Description

ARRAY DESCRIPTION

1 Average process. time per tree / machine types
2 Constant time per load / machine type
3 Constant time per one way haul / machine type
4 # of loader to use / process
5 # of material distribution / process
6 # of machines / machine type
7 Used for process #11, sorting (see next page)
8 machine load capacity / machine type
9 Time delays / process; 0=build in, 1=USERF

10 Cumulated productive machine hrs / machine type
11 Cum. inventory downtime hrs minimum / process
12 Cum. Inv. downtime hrs maximum / process
13 Used for process #12, chipping
14

15 Flag process is activated 0=no, 1=yes, 2= ended
3= ended & statistics / process

16 Start time process / process
17 Start invent. downtime (temp.buffer) / process
18 Cum. machine breakdown hrs / machine type
19 Flag process down because of minimum inv.
20 Flag process down because of maximum inv.
21 Fixed costs per scheduled hr. / machine type
22 Variable cost per productive hr. / machine type
23 # of the proceeding process / process
24 # of the preceeding process / process
25 Cum. statistics for complete system stets
26 Inventory in transit / process

ARRAY
line 7
column

ARRAY line 7, Process #11, sorting

Description

1

2
3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

Sum route 1
Sum route 2
Percentage route 1
Percentage route 2
Proceeding process
Proceeding process
Internal inventory
Internal inventory

Sum to move, temp.

#, route 1
#, route 2

, route 1
, route 2

buffer

Flag inventory too high, route 1
Flag inventory too high, route 2
How much goes route 1, temp. buffer
How much goes route 2, temp. buffer

Sum productive machine hrs., loader for sorting

129

130

APPENDIX A

5. Table 6: Machines & Processes

131

Machine
type Process #

MACHINES & PROCESSES

1 1, Felling
2 1, Felling
3 1, Felling
4 1, Felling
5 2

6 2
7 2

8 3

9 3

10 3

11 4

12 4
13 4
14 5
15 5

16 5

17 6

18 6

19 6

20 7
21 7
22 7

23 8

24 8
25 8
26 9

27 9

28 9

29 10

30 10

31 10
32 Loader
33 Loader
34 Loader
35 Loader
36 Loader
37 12, Chipper type 1
38 12, Chipper type 2
39 12, Primary transportation device
40 12, Secondary transportation device
41 13, Primary transportation device
42 13, Secondary transportation device

132

APPENDIX A

6. Initialization of the Network

133

INITIALIZATION OF THE NETWORK

At the beginning of each simulation run, the SLAM processor calls

the FORTRAN written function INTLC.FOR (see Appendix B Listing 2). The

User is prompted for the filename of the harvesting model created

previously with the input front-end and that he wants to simulate (see

also section V.B., output front-end). The file is then read into a

variable array called USERARR within the COMMON Block USER3 (see

Appendix B, Listing 1), that is identical to the local ARRAY block

within the SLAM network. Care should be taken, if any additional FORTRAN

inserts are made, to maintain the given COMMON Block and variable

declarations given in Appendix B, Listing 1 (see also O'Reilly, 1984;

Page 3-2 and 3-3). The values stored in USERARR are then copied to the

ARRAY within the SLAM network and the XX(i) variables that contain the

inventory information are initialized. For a description of the XX(i)

variable content, see Appendix A, Listing 3; and for the ARRAY variables

see Appendix A, Listing 4.

The model then performs some additional initializations, places

the machine entities in their respective subnetworks and starts the

first process by releasing the machine entities placed into the AWAIT-

node attached to this process.

134

APPENDIX B

TABLE OF CONTENTS:

1. Listing, COMMON Block 135

2. Listing, INTCL.FOR 137

3. Listing, INITREAD.FOR 144

4. Listing, USERF.FOR 150

135

APPENDIX B

1. Listing, COMMON Block

C

C DEFINE COMMON BLOCK VARIABLE NAMES FOR ALL PROGRAMS:

C

C

COMMIN/SCOM1/ATRIB(100),DD(100),DDL(100),DTNOW,II,MFAMSTOP,NCLNR

1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(1B0)

ODMICN/USER1/DISARR(8,10),MCHARR(42,4,112),XXLEVEL(7),OUTFLAG

COMMCN/USER2/11CHNAKES(52),PROCNAMES(20),DISTRIBNAKES(4),FILENAME

1,STSTR,SDSTR,ETSTR,EDSIR

COMMCN/USER3/USERARR(26,42),SIMRUN

C

C DEFINE COMMON VARIABLE TYPES FOR ALL PROGRAMS:

C

C

REAL*4 ATRIB,DD,DDL,DTNOW

INTEGER*2 II,MFA,MSTOP,NCLNR,NPRNT,NNRUN,NNSET,NTAPE

REAL*4 SS,SSL,TNEXT,TNON,KK

REAL*4 DISARR,NCHARR

REAL*4 USERARR,SIMRUN

INTEGER*2)2CLEVEL,OOTFLAG

CHARACTER112611CHNAMES,PROCNAMES,DISTRIBNAMES,FILENAME

CHARACTER*10 STSTR,SDSTR,ETSTR,EDSTR

C

C

136

137

APPENDIX B

2. Listing, INTCL.FOR

138

DHOH141410.****4061011HH41014HHHHHHOHHHIMHF*****IHHEN1HOHOI*******10H1****

C
C*

Cm

C*

C
C*

C*

C*

C*

C
C*

C*

C*

C*

C.

C*

C*

C*

C*

C*

C*

C*

OREGON STATE UNIVERSITY

JUNE 1986

>>> LOGSIM<<<

SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS

DESIGNED BY : CHRISTOPH WIESE

MASTERS CANDIDATE, DEP. OF INDUSTRIAL *

ENGINEERING, OREGON STATE UNIVERSITY

DESIGNED FOR: DEPARTMENT OF FOREST ENGINEERING

OREGON STATE UNIVERSITY

SUPERVISION : DR. ELDON OLSEN

ASSOCIATE PROFESSOR, DEP. OF INDUSTRIAL *

ENGINEERING, OREGON STATE UNIVERSITY

C*******414******, F Y AN' 31-14 **MOM* AN*

C*

C FORTRAN USERFUNCTIONS: INICL.FOR (INITIALIZE SIMULATION) *

C*

C* 31 -MAY -87 18:55

C*

C****************10HHHHHHHHHHHOHOHHHHONHI iHOHOH4********WHI

C

C

C

C

C

SINCLUDE:TRCTL.FCRI

C

C

C

C

C INTERFACE TO COS-SERVICES:

C

C

INTERFACE TO SUBROUTINE TIME (N,STR)

CHARACTER*10 STR (NEAR,REFERENCE]

INTEGER*2 N [VALUE]

END

INTERFACE TO SUBROUTINE DATE (N,STR)

CHARACTER*18 STR [NEAR, REFERENCE]

INTEGER*2 N [VALUE]

END

139

C

C PROGRAM DECLARATION:

C

C

SUBROUTINE INTLC

C

C

C COMMON BLOCK :

C

C

SINCLUDE:WARBLOCK.DOCI

C

C

C DEFINE LOCAL VARIABLES, NAMES & TYPE:

C

C

INTEGER*4 1ANSWER,INDEX1,INDEX2,INDEX3,INDEX4,INDEX5

INTEGER*4 INDEX6,INDEX7,INDEX8,INDEX9,IFN

CHARACTER*20 CHRANSWER

CHARACTER*10 TSTR

REAL F1NUM,F2NUM,F3NUM,F4NUM,F5NUM,F6NUM,F7NUM

LOGICAL*4 FILESTATUS

C

C

C BEGIN PROCESSING:

C

C

C

C CHECK WHICH SIMULATION RUN IS CURRENT:

C

C

C

IF (NNRUN.GT.1) GOTO 150

C

C

C

C OPENING SCREEN:

C

90

NRITE(*,90)

FCRMAT(////////////////////////////,

1 lex,1*&44m444444&4444444444*******m**************44444.444440/.

2 10X,I* 10/,

3 10X,1*)>>LOGSIM<<< *11,

4 10X,1* MECHANIZED LOG HARVESTING SIMULATOR *1/,

5 10X,I* SIMULATION MODULE *1/,

6 10x, .***********em*********4.*************************IHHHHofoit
7 ////)

140

C

C

100 WRITE(8,101)

101 FORRAT(5X,

1' BEGIN OF SIMULATION' /5X,

2' '//5X,

31THIS FUNCTION READS A PREVIOSLY DEFINED MODEL INTO THE SLAM -' /5X,

4'NETWORK AND SIMULATES IT. ',///)

WRITE(8,.(7X,AW) 'DO YOU WISH TO CONTINUE (YIN) ? [Y] > '

READ (*,'(Al)') CHRANSWER

IF (CHRANSWER.EQ.'N') THEN

XX(1) -0

WRITE(8,102)

102 FORMAT(///10X'Ittlt BYE-BYE, SEE YOU AGAIN It

1 10X. >>>LOGSIM(<<'///)
STOP '

ELSE

CONTINUE

ENDIF

C

C

150 CALL INITREAD

C

C

DO 420 INDEX1-1,3,1

DO 410 INDF12 -1,42,1

F1NUN -USERARR(INDEXLINDEX2)

CALL PUTARY(INDEX1,INDEX2,FINUM)

410 CONTINUE

420 CONTINUE

DO 440 INDEX1-4,5,1

DO 430 INDEX2-1,13,1

F1NUM-USERARR(INDEXLINDEX2)

CALL PUTARY(INDEX1,INDEX2,F1NUM)

430 CONTINUE

440 CONTINUE

DO 450 INDEX1 -1,42,1

F1NUM-USERARR(6,INDEX1)

CALL PUTARY(6,INDEX1,F1NUM)

450 CONTINUE

DO 460 INDEX1 -1,18,1

F1NUM-USERARR(7,INDEX1)

CALL PUTARY(7,INDEX1,F1NUM)

460 CONTINUE

DO 480 INDE11. 8,10,1

DO 470 INDEX2 -1,42,1

F1NUM-USERARR(INDEX1,INDEX2)

CALL PUTARY(INDEX1,INDEX2,F1NUM)

470 CONTINUE

141

480 CONTINUE

CO 483 INDEX111,12,1

DO 482 INDEX21,15,1

F1NUMUSERARR(INDEX1,INDEX2)

CALL PUTARY(INDEX1,INDEX2,F1NUM)

482 CONTINUE

483 comma
DO 485 INDEX113,140

DO 484 INDEX212,1

F1NUMUSERARR(INDEX1,INDEX2)

CALL PUTARY(INDEX1,INDEX2,F1NUN)

484 CONTINUE

485 CONTINUE

DO 487 INDEX1- 15,17,1

CO 486 INDEX2- 1,13,1

F1NUMUSERARR(INDEX1,INDEX2)

CALL PUTARY(INDEXLINDEX2,F1NUM)

486 CONTINUE

487 CONTINUE

DO 488 INDEX2e1,42,1

F1NUMUSERARR(18,INDEX2)

CALL PUTARY(18,INDEX2,F1NUM)

488 CONTINUE

DO 491 INDEX119,210,1

DO 490 INDEX21,13,1

F1NUMUSERARR(INDEX1,INDEX2)

CALL PUTARY(INDEX1,INDEX2,F1NUM)

490 CONTINUE

491 CONTINUE

DO 500 INDEX1- 21,22,1

DO 499 INDEX21,42,1

F1NUMUSERARR(INDEX1,INDEX2)

CALL PUTARY(INDEXLINDEX2,F1NUM)

499 CONTINUE

500 CONTINUE

DO 520 INDEX1- 23,24,1

DO 510 INDEX2- 1,13,1

F1NUMUSERARR(INDEX1,INDEX2)

CALL PUTARY(INDEX1,INDEX2,F1NUM)

F2NUMGETARY(INDEX1,INDEX2)

510 CONTINUE

520 CONTINUE

DO 524 INDEX2 -1,6,1

F1NUN- USERARR(25, INDEX2)

CALL PUTARY(25,INDEX2,F1NUM)

524 CONTINUE

DO 526 INDEX11,13,1

F1NUMUSERARR(26,INDEX2)

CALL PUTARY(26,INDEX2,F1NUM)

526 CONTINUE

C

C

C

142

IF(ANRUN.GT.1) GOTO 1000

C

C

WRITE(4,530)

530 FORMAT(///,10X'SINULATION RESULTS SHOULD BE ROUTED TO:',/,

1 10X' SCREEN 1',/,

2 10X' SCREEN & PRINTER 2',//,

3 10X'PLEASE ENTER CHOICE > '\)

535 READ(4,"(BN,12)')IANSWER

IF (IANSWER.LT.1.0R.IANSWER.GT.2) THEN

WRITE(4,540)

540 FORMAT(/.10L'Ill CANNOT BE MY.

1 10X,'PLEASE ENTER AGAIN

GOTO 535

ELSE

OVITLAG-IANSWER

END IF

C

C

WRITE(4,541)

541 FORMAT(//,10X'HOW MANY SIMULATION RUNS DO YOU WANT?', /,

1 10XITHE PRESET MAXIMUM IS 10.',/,

2 10X'ENTER NUMBER OF RUNS [1] > ',\)

544 READ(",1(BN,I2)')IANSWER

IF (IANSUER.LT.O.OR.IANSWER.GT.10) THEN

WRITE(4545)

545 FORMAT(/,10X,111? CANNOT BE ftI'/,

1 10X,'PLEASE ENTER AGAIN [17

GOTO 535

ELSEIF (IANSUER.EQ.0) THEN

SIMRUN-1.0

ELSE

SIMRUN-IANSWER

ENDIF

C

C

C

WRITE(4,550)

550 FORMAT(///,10X,'PLEASE HIT >RETURN< TO START THE SIMULATION'/

1 10X,' ')

READ(4,9I2P)IANSWER

C

C

C

C

C

C DATTIM.FOR program - To access the date and time:

C

C

C CALL DATE AND TIME (NOTE THAT THE STRING LENGTH IS PASSED

C AS THE FIRST ARGUMENT)

143

C

1000 CALL DATE (10,TSTR)

SDSIR-TSIM

CALL TIME (10,TSTR)

STSTR-TSTFI

WRITE (4t, *) 'TIME -',STSTR

WRITE (*,1I) 'DATE -1,SDSTR

C

C

Y1(1)-1

C

C

C

9998 RETURN

END

144

APPENDIX B

3. Listing, INITREAD.FOR

145

C*, / X/ X / a a * X X * X/ X Y 111114***********)HMit

C.

C* OREGON STATE UNIVERSITY

C* JUNE 1986

C*

C* >>> LOGSIM<<<
C*

C* SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS

C
C*

C* DESIGNED BY : CHRISTOPH WIESE

C* MASTERS CANDIDATE, DEP. OF INDUSTRIAL *

C* ENGINEERING, OREGON STATE UNIVERSITY

C
C* DESIGNED FOR: DEPARTMENT OF FOREST ENGINEERING

C* OREGON STATE UNIVERSITY

C*

C*

C* SUPERVISION DR. ELDON OLSEN

C* ASSOCIATE PROFESSOR, DEP. OF INDUSTRIAL *

C* ENGINEERING, OREGON STATE UNIVERSITY

C*

C*

c*** *11401.1114HHHI***4H11.****************

C*

C* FORTRAN USERFUNCTIONS: INITREAD.FOR (READ IN VARIABLES) *

C*

C* 31-MAY-87 18:55

C*

C****101****************1011.11111111****************141111101401**********

C

C

C

C

C

$INCLUDE:1PRC11..FORI

C

C PROGRAM DECLARATION:

C

C

SUBROUTINE INITREAD

C

C COMMON BLOCK :

C

C

SINCLUDE:WARBLOCK.DOC'

C

C DEFINE LOCAL VARIABLES, NAMES & TYPE:

C

C

INTEGER*4 IANSWER,INDEX1,INDEX2,INDEX3,INDEX4,INDEX5

INTEGER*4 INDEX6,INDEX7, INDEX8, INDEX9

146

CHARACTER*20 CHRANSWER

REAL F1ANSWER,F2ANSWER,F3ANSWER

LOGICALN4 FILESTATUS

C

C

C FUNCTION INITREAD.FOR, READ-IN THE SIMULATION MODEL AND INITIALIZE ALL VARS

C

C

C

C

C INITIALIZATION OF ALL VARIABLES

C

C

C

C

DO 110 INDEX11,100,1

M(INDEX1)*0.00
110 CONTINUE

C

DO 114,INDEX1s1,26,1
DO 112,INDEX21,42,1
USERARR(INDEX1,INDEX2)0.00

112 CONTINUE
114 CONTINUE
C

DO 118 INDEX1a1,8.1
CO 116 INDEX21,10,1

DISARR(INDEX1,INDEX2)x0.00
116 CONTINUE
118 CONTINUE

C

DO 124 INDEX1c1,42,1

DO 122 INDEX2 -1,4,1

DO 120 INDEX3.0.10,1
MCHARR(INDEXLINDEX2,INDEX3)-0.80

120 CONTINUE
122 CONTINUE

124 CONTINUE
C

DO 126 INDEXI- 1,52,1

MCHNAMES(INDEX1)"
126 CONTINUE

C

DO 128 INDEX11,20.1
PROCNAMES(INDEX1)e"

128 CONTINUE

C

DO 130 INDEX1

DISTRIBNAMES(INDEX1)e"
130 CONTINUE
C

C

147

C

C CHECK WHICH CURRENT SIMULATION RUN

C

C

IF (NNRUN.GT.1) COTO 2070

C

C RETRIVE TFtE MODEL FROM DISK DRIVE AND READ VARIABLE VALUES

C

C

C

200 WRITE(*,202)

202 FORMAT(///,7X'FILENAKE OF MODEL TO BE RETRIEVED?

READ(*, ' (A20)')FILENAME

C

204 INQUIRE(FILE- FILENANE,EXIST- FILESTATUS)

IF(.NOT.FILESTATUS) THEN

WRITE(*,206)FILENAME

206 FORMAT(/.7X'1111 FILE: 'A' DOES NOT EXISTS 111?!./)

WRITE(*,'(7X,A, \)')'INPUT NEW FILENAME

READ(11,1(A20)5FILENAME

GOTO 204

ELSE

CONTINUE

ENDIF

C

C

WRITE(*,207)

207 FORMAT(//10X,9?! PLEASE WAIT A MOMENT UP)
C

C

2070 OPEN(10,FILE*FILENABE,STATUSs'OLD')

REWIND 10

C

C

READ(10,(F8.1)1) XX(1)

READ(10,1(F8.1)i) XX(2)

READ(10,.(F8.1).) XX(9)

READ(10,.(F8.0)i) XX(4)

READ(10,.(F8.1)1) XX(5)

READ(10,*(F8.1)1) XX(6)

READ(10,1(F8.1)1) XX(7)

READ(10,'(F8.1)1) XX(8)

READ(10,'(F8.1)') XX(9)

READ(10,I(F8.4)1) XX(10)

C

DO 210 INDEX1- 11,100,1

READ(10,208) XX(INDEX1)

208 FORMAT(F8.1)

210 CONTINUE

C

C

148

DO 213 INDEX1.1,30

DO 212 INDEX21,42,1

READ(10,211) USERARR(INDEXLINDEX2)

211 FORMAT(F8.4)

212 CONTINUE

213 CONTINUE

C

DO 2130 INDEX14,26,1

DO 2120 INDEX2- 1,42,1

READ(10,2110) USERARR(INDEXI.INDEX2)

2110 FORMAT(F8.2)

2120 CONTINUE

2130 CONTINUE

C

C

C

DO 222 INDEX11,8,1

DO 220 INDEX2100,1

READ(10,219) DISARR(INDEX1.INDEX2)

219 FORMAT(F8.2)

220 CONTINUE

222 CONTINUE

C

DO 230 INDEX1e1,42,1

DO 228 INDEX2 -1,4,1

DO 226 INDEX3=1,10,1

READ(10,224) MCNARR(INDEX1,INDEX2,INDEX3)

224 FORMAT(F8.2)

226 CONTINUE

228 CONTINUE

230 CONTINUE

C

DO 234 INDEX11,52,1

READ(10,232) MCHNAMES(INDEX1)

232 FORMAT(A)

234 CONTINUE

C

DO 238 INDEX11,20,1

READ(10,236) PROCNAMES(INDEX1)

236 FORMAT(A)

238 CONTINUE

C

DO 242 INDEX11.4,1

READ(10,240) DISTRIENAMES(INDEX1)

240 FORMAT(A)

242 CONTINUE

C

REWIND 10

CLOSE(10,STATUS'KEEP')

149

C

C

C

WRITE(N,300)

30B FORMAT(//00X,

1411 MODEL HAS BEEN SUCCESSFULLY RETRIEVED III')

C

C

9998 RETURN

END

150

APPENDIX B

4. Listing, USERF.FOR

C**0*************WOHHOHOHI*****.V4***************MHONHOHOHH0OM

C*

C* OREGON STATE UNIVERSITY

Cm JUNE 1986

C*

C* >>> LOGSIMM
C*

C* SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS

C*

C*

C* DESIGNED BY : CHRISTOPH WIESE

C* MASTERS CANDIDATE, DEP. OF INDUSTRIAL *

C* ENGINEERING, OREGON STATE UNIVERSITY

C*

C* DESIGNED FOR: DEPARTMENT' OF FOREST ENGINEERING

C* OREGON STATE UNIVERSITY

C*

C*

C* SUPERVISION -DR ELDON OLSEN

C* ASSOCIATE PROFESSOR, DEP. OF INDUSTRIAL *

C* ENGINEERING, OREGON STATE UNIVERSITY

C*

C*

C14400111.1014H1**********10H110H1**************1Ht*********-10***********

C*

C*

Cm

C*

C*

FORTRAN USERFUNCTIONS: USERF.FOR

31-MAY-87 18:55

C********M0-101**MHONMOMMWWWOOHI*MHOHOWIMWHONOMISIHNNNW*

C

C

C

C

C

C

C

C COMPILER DIRECTIVES:

C

C

SINCLUDE:TRCTL.FOR'

C

C

C INTERFACE TO COS SERVICES:

C

C

INTERFACE TO SUBROUTINE TIME (N,STR)

CHARACITR*10 STR [NEAR,REFERENCE]

INTEGER*2 N [VALUE]

END

INTERFACE TO SUBROUTINE DATE (N,STR)

CHARAGTER*10 STR (NEAR, REFERENCE]

151

152

INTEGER2 N [VALUE]

END

C

C

C PROGRAM DECLARATION:

C

C

C

FUNCTION USERF(IFN)

C

C COMMON BLOCK :

C

C

SINCLUDE:'VARBLOCK.DOCI

C

C DEFINE LOCAL VARIABLES, NAMES & TYPE:

C

C

INTEGER*4 IANSWER,INDEXLINDEX2,INDEX3,INDEX4,INDEX5

INTEGER*4 INDEX6,INDEX7,INDEXB,INDEX9,IFN,MARKE

CHARACITR*20 CHRANSWER

CHARACTER*10 TSTR

REAL F1NUM,F2NUM,F3NUM,F4NUM,F5NUM,F6NUM,F7NUM,F8MUM,F9NUM

REAL F1ONUM,F11NUM,F12NUM,F13NUM,F14NUM,F15NUN,F16NUM,F17NUM

REAL F1BNUM,F19NUM,F2ONUM,F21NUN,F22NUM,F23NUM,F24NUM,F25NUM

LOGICAL*4 FILESTATUS

C

C BEGIN PROCESSING:

C

C

IF(XX(5).EQ.101) THEN

COTO 1000

ELSEIF (XX(5).EQ.103) THEN

GOTO 5000

ELSEIF (XX(5).EQ.104) THEN

GOTO 5100

ELSEIF (XX(5).EQ.105) THEN

GUM 5200

ELSEIF (XX(5).EQ.106) THEN

GOTO 5300

ELSEIF (XX(5).EQ.110) THEN

GOTO 2000

ELSEIF (XX(5).EQ.111) THEN

GOTO 2000

ELSEIF (XX(5).EQ.120) THEN

GOTO 4000

ELSEIF (XX(5).EQ.130) THEN

GUR 7000

ELSEIF (MK(5).EQ.131) THEN

COTO 7500

ELSE

NRITE(*,20)IFM,XX(5)

153

20 FORMAT(' !WWI USERFUNCTION '15' IS NOT DEFINED (Mr,/

1 XX(5).F8.3,/,

2 PRESS RETURN TO CONTINUE')

USERF0

0711) 9998

ENDIF

C

C

C

C

C USERF(101), ASSIGN TREE/LOG/PAPER/PULP DISTRIBUTION PARAMETERS
C

C

C

1000 USERF0
C

C GENERAL PROCEDURES
C

C

INDEX9ATRIB(5)
INDEX ? -0

C

C

C

C

C TESTING 0 SET FLAG IF PREVIOUS PROCESS ENDED:

C

IF(ATRIB(5).NE.1) THEN
INDEX2GETARY(24, INDEX9)

INDEX3GETARY(15,INDEX2)
F1NUMGETARY(28,INDEX2)
IF(INDEX3.LT.2) THEN

INDEX' 0

ELSEIF(INDEX3.GE.2.AND.F1NUM.GT.0.001) THEN

INDEX10
ELSE

INDEXI1
ENDIF

ELSE

INDEX10
ENDIF

C

C TESTING IF INVENTORY IS AVAILABLE:

IF(INDEX9.NE.1) THEN

INDEX34XLEVEL(2)+ATRIB(5)
F1NUMXK(INDEX3)

ELSE

INDEX3XXLEVELOPATRIB(5)
F1NUM sr:C(4) -XX(INDEX3)

ENDIF

IF (FINUM.LE.0) THEN

ATRIB(2)0
ATRIB(3)0

154

RETURN

ELSE

CONTINUE

ENDIF

C

C GET BATCHSIZE & ROUTE ACCORDINGLY

INDEX6ATRIB(1)

F2NUN0GETARY(8,INDEX6)

IF(F2NUM.EQ.95555)THEN

GOTO 1300

ELSE

CONTINUE

ENDIF

C

C

C SET BATCHSIZE FOR A NORMAL CAPACITY

C

C

C TESTING IF BATCHSIZE GREATER INVENTORY:

IF(ATRIB(5).EQ.11) THEN

F2NUNGETARY(7,10)

ENDIF

F3NUNF1NUN-F2NUM

IF (ATRIB(5).EQ.1.AND.F3NUN.LT.0) THEN

F4NUMFNCH

INDEX71

ELSEIF (F3NUN.LT.O.AND.INDEX1.EQ.1)71IEN

F4NU11411411/1

INDEX ? -1

ELSEIF (F3NUM.GE.0)711EN

F4NUN-F2N1111

ELSE

ATRIB(2)0

ATRIB(3)41

RETURN

ENDIF

C

C INDEXING THE DISARR-COLUNS ACOORDING TO DISTRIBUTION SPECIFIED:

1025 INDEX1=GETARY(5,INDEX9)

IF (INDEXI.EQ.1) THEN

INDEX21

INDEX3 -2

ELSEIF (INDEX1.EQ.2) THEN

INDEX23

INDEX34

ELSEIF (INDEX1.EQ.3) THEN

INDEX2.5

INDEX36

ELSEIF (INDEX1.EQ.4) THEN

INDEX27

INDEX3 -8

ELSE

CONTINUE

ENDIF

C

C SET INITIAL VALUES:

ATRIB(5) 0

ATRIB(2)0

FWUM0
F6NUM0

INDEX40

C

C LOOP TO CREATE BATCHSIZE:

C

C F6NUMCURRENT BATCN SIZE CALCULATED

C F5NUMTESTING VALUE SUM CUFT

C F4NUMBATCNSIZE

C F3NUM SAMPLE

C F2NUMUPPERBOUND

C F1N121LOWERBOUND

C INDEX4 'NUMBER OF TREES

C

1050 F3NUMUNFRM(0.0,100.0,6)

F1NL1110

C

DO 1100 INDEED 1,10,1

F2NUMDISARR(INDEX2,INDEX8)

IF (F3NUM.GE.F1NUM.AND.F3NUM.LE.F2NUM) THEN

F5NUMF5NUM+DISARR(INDEX3, INDEX0)

INDEX4INDEX4+1

GOTO 1200

ELSE

F1NUMFENUM

ENDIF

1100 CONTINUE

C

1200 IF (F5NUM.LE.F4NUM) THEN

F6NURIeF5MAI

GOTO 1050

ELSEIF (F5NUM.GT.F4NUM) THEN

ATRIB(2)F6NUM

ATRIB(5) INDEX4 -1

ELSE

CONTINUE

ENDIF

C

FlNUMF4NAR1-F6NUM

IF (ATRIB(5).EQ.11) THEN

CONTINUE

ELSEIF (F1NUM.GT.O.AND. INDEX7.EQ. 1) THEN

ATRIB(2)F4NUM

ATRIB(3)-ATRIB(3)+1

155

156

C

C

C

ELSE

CONTINUE

ENDIF

RETURN

C

C

C

C

C SET BATCHSIZE FOR CAPACITY 499999. SINGLE TREE

C

C

C INDEXING THE DISARR-COLUMS ACCORDING TO DISTRIBUTION SPECIFIED:

C

1500 INDEX5- INDEX1

INDEX1eGETARY(5,INDEX9)

IF (INDEX1.EQ.1) THEN

INDEX21

INDEX32

ELSEIF (INDEXI.EQ.2) THEN

INDEX2 43

INDEX3 44

ELSEIF (INDEX1.EQ.3) THEN

INDEX2s5

INDEX' m5

ELSEIF (INDEX1.EQ.4) THEN

INDEX2 -7

INDEX3 48

ELSE

CONTINUE

ENDIF

C

C SET INITIAL VALUES:

ATRIB(3) s0

ATRIB(2) 40

F5NUM0

F6NUM40

C

C LOOP TO CREATE BATCHSIZE:

C

C F5NUMCACLULATED BATCHSIZE

C F3NUM4SAMPLE

C FENN.' aUPPERBOUND

C F1NUM4LOWERBOUND

C

1350 F3NUMUNFRM(0.0.100.0,6)

F114.1110

157

C

DO 1400 INDEX8e1,10,1

F2M.B1DISARR(INDEX2,INDEX8)

IF (F3NUM.GE.F1NUM.AND.F5NOM.LE.F2NUM) THEN

F5NUMDISARR(INDE13,INDEX8)

GOTO 1450

ELSE

PINUMFENUM

ENDIF

1400 CONTINUE

C

C

C TESTING IF BATCHSIZE GREATER INVENTORY:

1450 IF(INDEX9.NE.1) THEN

INDEX3- XXLEVEL(2) +ATRIB(5)

F1NUMXX(INDEX3)

ELSE

INDEX, XXLEVEL(1)+ATRIB(5)

F1NUMXX(4)-XX(INDEX3)

ENDIF

C

C

C

C

C

F3NUMF1NUM-F5NUM

IF (ATRIB(5).EQ.1.AND.F5NOM.LT.0) THEN

ATRIB(2)F1N121

ATRIB(3)1

ELSEIF (F3NUM.LT.0.AND.INDEX5.EQ.1)THEN

ATRIB(2)-F1NUM

ATRIB(5)1

ELSEIF (F3NUM.GE.0)1HEN

ATRIB(2)F5NUM

ATRIB(3)1

ELSE

ATRIB(2)0

ATRIB(3) -0

ENDIF

RETURN

C

C

C MACHINE BREAKDOWN, ASSIGNMENT OF THE PARAMETERS

C

C

C

2000 INDEX9ATRIB(1)

IF (MCHARR(INDEX9,1,1).EQ.0) THEN

USERF0

RETURN

ENDIF

158

IF (XX(5).EQ.110) THEN

INDEX8*2

INDEX7 -1

ELSEIF (XX(5).EQ.111) THEN

INDEX8*4

INDEX7*5

ELSE

CONTINUE

END IF

C

C

2050 F3NUM*UNFRM(0.0,100.0,6)

F1NUM*0

C

DO 2100 INDEX1*1,10,1

F2NUM*MCHARR(INDEX5,INDEX7,INDEXI)

IF (F3NUM.GE.F1NUN.AND.F3NUN.LE.F2NUN) THEN

F5NUM*MCHARR(INDEX9,INDEX8,INDEX1)

GOTO 2200

ELSE

FINUM-F2NUM

END IF

2100 CONTINUE

C

2200 USERF*F5NUM

RETURN

C

C

C

C USERFUNCTION TO DISPLAY/PRINTOUT THE SIMULATION RESULTS

C

C

C OPEN THE APPROPRIATE OUTPUT DEVICES:

C

C

C

4000 USERF -0

C

IF (ATRIB(5).EQ.1.AND.OUTFLAG.GT.1) OPEN(15,FILE*ILPT1')

C

C

IF (ATRIB(5).EQ.1) THEN

WRITE(*,4050)FILENAME

IF (OUTFLAG.GT.1) WRITE(15,4050)FILENAME

4050 FORMAT(////,

1 lomiwwwimmm...***********************m*********************,/,

2 10X,' *'/,

3 10X,'*)>>LOGSIN<(<
4 10X,'* SIMULATION RESULTS *1/,

5 10X,'* *'/,

6 ifax,,*moHomemmwommimEimm********.im**.Aw**************m.*,/,

7 //2X'SIMULATICN MODEL USED: ',A,/,2r**********************'/)

C

CALL DATE (10,TSTR)

WRITE(*,*) ' DATE- ',TSTR

IF (OUTFLAG.GT.1) WRITE(15,

CALL TIME (10,TSTR)

WRITE(*,*) ' TIME- ,TSTR

IF (OUTFLAG.GT.1) WRITE(15,

C

*) ' COMPUTER DATE: ',TSTR

*) ' COMPUTER TIME: ',TSTR

WRITE(*,4052)NNRUN,SIMRUN

IF(OUTFLAG.47.1)WRITE(15,4052)NNRUN,SIMRUN

4052 FORMAT(' SIMULATION RUN '12' OF 'F3.0)

C

ELSEIF (ATRIB(5).EQ.14) THEN

GOTO 4500

ELSE

CONTINUE

ENDIF

C

C

INDEX9*ATRIB(5)

C

C

WRITE(*,4100)INDEX9,PROCNANES(INDEX9)

IF (OUTFLAG.GT.1) WRITE(15,4100)INDEX9,PROCNAMES(INDEX9)

4100 FORMAT(/////,10X`PROCESS NO.'12' : ',A/,

1 10X,' ',//)

C

C

C

C

F1NUM*GETARY(16,INDEK9)

F2NUM*TNOW

F3NUM*F2NUM-F1N1P1

F6NUM*GETARY(11,INDEX9)

F7NUM-GETARY(12,INDEX9)

FBNUT1*((F6NUM+F7NUM)/F3N)M)*100

IF(INDEX9.EQ.1) iTEN

INDEX1*USERARR(6,1)+USERARR(6,21*USERARR(6,5)+USERARR(6,4)

F9NUN*GETARY(18,1)+GETARY(18,2)+GETARY(18,3)+GETARY(18,4)

F25NUM*GETARY(10,1)

F24NUM*GETARY(10,2)

F23NUM*CETARY(10,3)

F22NUM*GETARY(10,4)

F5NUM-F25NUN+F24NUM+F23NUM+F22N1R1

F16NUM*GETARY(10,1)*USERARR(22,1)-*

1 GETARY(10,2)*USERARR(22,2)+

2 GETARY(10,3)*USERARR(2213)*

3 GETARY(10,4)*USEEARR(22,4)*

4 USERARR(6,1)*F3NUM*USERARR(21,1)*

5 USERARR(6,2)*F5NUM*USERARR(21,2)+

6 USERARR(6,3)*F3NUM*USERARR(21,3)*

7 USERARR(6,4)*F3NUM*USERARR(21,4)

159

160

F11NUM -0

FIENUMs0

F13/021-0

F14N121 -0

F15NUM -0

ELSEIF(INDEX9.GE.2.AND.INDEX9.LE.10) THEN

INDEX5eINDICK911 -1

INIEX6-INDEX5+1

INDEX7-INDEX5+2

INDEXisUSERARR(6,INDEX5) *USERARR (6 , INDEX6)+USERARR (6 , INDEX?)

F9NUM-GETARY(18,INDEX5)+GETARY(18,INDEX6)+GETARY(18,INDEX7)

F5NUM-GETARY(10,INDEX5)+GETARY(10,INDEX6)+GETARY(10,INDEX7)

F16MA1-GETARY(10,INDEX5)*USERARR(22,INDEX5)+

1 GETARY(10,INDEX6)*USERARR(22,INDEX6)4.

2 GETARY(10,INDEX7)*USERARR(22,INDEX7)+

3 USERARR(6,INDEX5)*F3NUMNUSERARR(21,INDEX5)+

4 USERARR(6,INDEX6)*F3NUM*USERARR(21,INDEX6)+

5 USERARR(6,INDEX7)*F3NUMmUSERARR(21,INDEX7)

F11NUM-CCAVG(INDEX9)

F12NUM-CCMAX(INDEX9)

F13NUM-CCMIN(INDEX9)

F14NUM-CCSTD(INDEX9)

F15NUM-OGNUM(INDEX9)

ELSEIF(INDEX9.EQ.11) THEN

/NDEX4-USERARR(4,11)

IF(INDEX4.GT.0) THEN

INDEX1 -1

F5NUM-GETARY(7,18)

F16NUM-F9NUM*USERARR(21,INDEX4)+F9NUM,USERARR(22,INDEX4)

F17N111-F16/8111/F19NUM

ELSE

INDEX' -0

F5NUM -0

F16NUM -0

F17NUM -0

ENDIF

F4NUM -0

F9NUM -0

F1ONUM -0

F20NUM -0

F18NUM -0

INDEX8-XXLEVEL(1)+INDEX9

F19NUMXX(INDEX8)

F11NUM-CCAVG(INDEX9)

F12NUMCCMAX(INDEX9)

F13IMAI-CCMIN(INDEX9)

F14NUM-CCSTD(INDEX9)

F15NUM-CCIAJM(INDEX9)

GOTO 4105

161

ELSEIF(INDEX9.EQ.12) THEN

INDEX1USERARR(6,37)+USERARR(6,39)+USERARR(6,40)

F9NUN4GETARY(18,37)+GETARY(18,39)+GETARY(18,40)

FMR14GETARY(10,37)+GETARY(10,39)+GETARY(10,40)

F16NUNGETARY(10,37)*USERARR(22,37)+

1 GETART(10,39)*MSERARR(22,39)+

2 GETARY(10,40)+USERARR(22,40)+

3 USERARR(6,37)4F3NUN*USERARR(21,37)+

4 USERARR(6,39)*F3NUN*USERARR(21,39)4

5 USERARR(6,40)*F3NUM*USERARR(21,40)

Fl1NUNCCAVG(INDEX9)

F12NUM4CCMAX(INDEX9)

F13NUN flCCMIN(INDEX9)

F14NUN4CSTD(INDEX9)

F15NUN4CCNUM(INDEX9)

ELSEIF (INDEX9.EQ.13) THEN

INDEX1USERARR(6,41) USERARR(6,42)

F9N1214CETARY(18,41)+GETART(113.42)

F5NUN4GETARY(10,41)+GETARY(10,42)

F16NUNGETARY(10,41)4USERARR(22,41).4

1 GETARY(10,42)4USERARR(22,42)+

2 USERARR(6,41)*F3NUN*USERARR(21,41)+

3 USERARR(6,42)*F3NUN*USERARR(21,42)

F11NUN4CCAVG(INDEX9)

F12NUMCOTAX(INDEX9)

F13NUNCCNIN(INDEX9)

F14NUN4CCSTD(INDEX9)

F15MAT4CC14121(INDEX9)

ELSE

CONTINUE

ENDIF

F4NUNINDEX14F5NUN

FlONUI14(F5NUN/F4NUN)4100

F2ONUM-((F9NUM+F5NUM)/F4NUM) 4100

INDEX8XXLEVEL(1)+INDEX9

F19NUMOCK(INDEXII)

F17NUMF16NUN/F19NUM

F 18UM 4F16NUK/F4NUN

USERARR(25,1) 4USERARR(25,1)+F4NUM

USERARR(25,2) USERARR(25,2)4T9NUN

USERARR(25,3)USERARR(25.3)4f5NUN

USERARR(25,4)4USERARR(25,4)416NUN

C

C

4105 IIRITE(,4110)F1NUM,F11411114,F2NUILF12NUN,F344114,F13141M,F6NUN,F14NUM

IF(OUTFLAG.GT.1) WRITE(15,4110) F1NUM,F11NUM,F2NUM,F12NUN,F3NUN,

1 F13W2hF6NUN,F14NUN

4110 FORMAT(2X,'TIME BEGIN OF PROCESS :',E13.7,

1 2X,'AVERAGE INVENTORY :',E13.7,/.

2 2X, 'TINE END OF PROCESS :',E13.7,

3 2X,IMAXINUN INVENTORY :',E13.7,/,

4 2X,'DURATION OF PROCESS :',E13.7,

5 2X,'MINIMUM INVENTORY :',E13.7,/,

6 2X,'TIME INVENTORY TOO LOW :',E13.7,

7 2X,'STD.DEV.INVENTORY :',E13.7)

WRITE(0,4150)F7NUM,F15NUM,F8NUM,F19NUM,INDEX1,F16NUM,F4NUM,F17MUN

IF(OUTFLAG.GT.1) WRITE(15,4150)F7NUM,F15NUM,FINUM,F19NUM,INDEX1,

1 F16NUM,F4NUM,F17NUIT

4150 FORMAT(2MTIME INVENTORY TOO HIGH :',E13.7,

1 21,1 OF OBSERVATIONS INV. :',E13.7,/,

2 INVENTORY DOWNTIME :',E13.7,

3 2X,'SUN UNITS PROCESSED :',E13.7,/,

4 2X,'TOTAL I OF MACHINES :',I13,

5 2X,'SUM COST OF PROCESS :',E13.7,/,

6 2X,'SUll SCHEDULED HOURS :',E13.7,

7 2X,'COST PER UNIT :',E13.7)

WRITE(*,4280)F9NUM,F113NUM,F5NUM,F1ONUM,F2ONUM

IF(OUTFLAG.GT. 1) WRITE(15,4200)F9NUM,F18NUM,F5NUM,F1ONUM,F2ONUM

4200 FORMAT(U, 'S(M MACH.BREAKDOWN HOURS:',E13.7,

1 2X,'COST PER SCHEDULED HOUR :',E13.7,/,

2 2X, 'SUM PRODUCTIVE HOURS :',E13.7,/,

3 2X,'% NET UTILIZATION MACH. :',E13.7,/,

4 2X,'% GROSS UTILIZATION MACN:',E13.7.//)

C

C

C

IF(INDEX9.EQ.1.) THEN

INDEX41

INDEX3 -4

ELSEIF(INDEX9.GT.I.AND.INDEX9.LE.10) THEN

INDEX4INDEX9m3 -1

INDEX3flINDEX93+1

ELSEIF(INDEX9.EQ.11) THEN

INDEX4 -0

INDEX3 -0

GOTO 4455

ELSEIF(INDEX9.EQ.12) THEN

INDEX4 -37

INDEX3 -40

ELSEIF(INDEX9.EQ.13) THEN

INDEX4 -41

INDEX3 -42

ELSE

CONTINUE

ENDIF

DO 4450 INDEX2INDEX4,INDEX3,1

INDEX1USERARR(6,INDEX2)

IF(INDEX1.EQ.0)GOTO 4445

F4NUMF3NUM*INDEX1

F9MAIGETARY(18,INDEX2)

F5NUMGETARY(10,INDEX2)

F1ONUMs(F5NUM/F4NUM)*100

F2ONUM((F5NUINF9NUM)/F4NUN)0100

FI6NUMF5NUM*USERARR(22,INDEX2)+F4NUM*USERARR(21,INDEX2)

F18NUMF16NUM/F4NUM

162

F16MAI*F16NUM/INDEX1

WRITE(*,4301)INDEX2,MCHNAMES(INDEX2),INDEX1,F16NUM,F4NUM,F18NUM,

1 F9NUM.F10NUM

IF(OUTFLAG.GT.1)WRITE(15.4300)INDEX2,MCHNAKES(1NDEX2),INDEX1,

1 F16NUM,F4MIN,F18NUM,F5141111,F10NUM

4300 FORMAT(//,2X, 'MACHINE TYPE '12' : ',A,/,

1 2X,' ',//,

2 2X, 'TOTAL / OF MACNINES :',I13,

3 2X,'COST PER MACHINE 2,,E13.7./,

4 2X,'SUM SCHEDULED HOURS :',E13.7,

5 2X,'COST PER SQIEDULED HOUR :',E13.7,/

6 2X,'SUM MACH.BREAKDOWN HOURS:',E13.7,

7 2X,I% NET UTILIZATION MACH. :',E13.7)

WRITE(*.4350)F5NUM,F2ONUM

IF(OUTFLAG.GT.1)WRITE(15,4350)F5NUM,F20NUM

4350 FORMAT(

1 2X,'SUM PRODUCTIVE HOURS :',E13.7,

2 2X,'% GROSS UTILIZATION MACH:',E13.7)

4445 CONTINUE

4450 CONTINUE

C

C

C

4455 RETURN

C

C

C

4500 INDEX1*USERARR(6,32)+USERARR(6,33)+USERARR(6,34)+USERARR(6,35)

1 +USERARR(6,36)

IF(INDEXI.EQ.0)GOTO 4900

WRITE (*,4550)

IF (OUTFLAG.41.1) WRITE(15,4550)

4550 FORMAT(/////,10X,'LOADING DEVICES'/,

1 10X. ',//)

C

INDEXI*USERARR(6,32)+USERARR(6,33)+USERARR(6.34)+USERARR(6.35)

1 +USERARR(6.36)

F4NUM*TNOW*INDEXI

F5NUM*GETARY(10,32)+GETARY(10,33)*GETARY(10,34)+GETARY(10,35)

1 +GETARY(10.36)

F9NUM*GETARY(18,32)+GETARY(10,33)+GETARY(18,34)+GETARY(18,35)

1 +GETARY(18,36)

FI0NUM*(F5NUM/F4NUM)*100

F2ONUM*((F9NUM+F5NUM)/F4NUM)+100

F19NUM *NX(4)

F16NUM*GETARY(10,32)+USERARR(22,32)+GETARY(10,53)*USERARR(22,33)+

1 GETARY(10,34)*USERARR(22.34)+GETARY(10,35)*USERARR(22.35)+

2 GETARY(10.36)+USERARR(22,36)+

3 USERARR(6,32)*F3NUM*USERARR(21,30)+

4 USERARR(6,33)*F3NUM*USERARR(21,33)+

5 USERARR(6,34)*F3NUM*USERARR(21.34)+

6 USERARR(6,35)*F3NUM*USERARR(21,35)+

7 USERARR(6.36)*F3NUM*USERARR(21,36)

163

164

F17NUMF16NUM/F19NUM

F18NUMF16NUM/TNOW

C

WRITE(*,4600)INDEX1,F19NUM,F4NUM,F16NUM,F9NUM,F17NUM,F5NUM,F18M81

IF(OUTPLAG.GT.1) NRITE(15,4600)INDEX1,F19NUM,F4NUM,F16(881,F9NUM,

1 F17NUM,F5NUM,F18MMI

4600 FORMAT(2X, 'TOTAL / OF MACHINES :',113,

1 2X, 'SUM OF UNITS HARVESTED :',E13.7,/,

2 2X, 'SUM SCHEDULED HOURS :',E13.7,

3 21, 'SUM COST LOADER DEVICES :',E13.7,/,

4 21,'SUMMACH.BREAKDOWN HOURS:',E13.7,

5 2X,'COST PER UNIT :',E13.7,/,

6 2X,'SUI'l PRODUCTIVE HOURS :',E13.7,

7 2X,'COST PER SCHEDULED HOUR :',E13.7)

IIRITE(*,4650)F10NUM,F2ONUM

IF(OUTFLAG.GT.1)WRITE(15,4650)F10NUM,F20NUM

4650 FCRMAT(2X,'S NET UTILIZATION MACH. :',E13.7,/,

1 2X,'% GROSS UTILIZATION MACH:',E13.7,/)

USERARR(25,1)USERARR(25,1)4F4NUM

USERARR(25,2)USERARR(25,2)F9NUM

USERARR(25,3)USERARR(25,3)+F5M21

USERARR(25,4).USERARR(25,4)416141.81

C

INDEX432

INDEX336

DC) 4800 INDEX2INDEX4,INDEX3,1

INDEX1- USERARR(6, INDEX2)

IF (INDEXLE12.0)GOTO 4790

F4NUMTNOW*INDEX1

F9M2IGETARY(18,INDEX2)

F5NUMGETARY(10,INDEX2)

F1BNUM(F5NUM/F4NUM)*100

F2ONUMe((F5NUM+F9NUM)/F4NUM)01100

F16NUMF5NUM*USERARR(22,INDEX2) -44NUM*USERARR(21,INDEX2)

F1814181F16NUM/F41421

F16NUMF16NUM/INDEX1

WRITE(*,4700)INDEX2,MCHNAMES(INDEX2),INDEX1,F16NUM,F4NUM,F18NUM,

1 F9NUM,F10NUI1

IF(OUTFLAG.GT.1)WRITE(15,4700)INDEX2,MCHNAMES(INDEX2),INDEX1,

1 F16NUM,F4NUM,F18NUM,F9NUM,F10NUM

4700 FORMAT(//,2X,'MAQIINE TYPE '12' : ',A,/,

1 2X,' ',//,

2 2X,'TOTAL / OF MACHINES :',113,

3 2X,'COST PER MACHINE

4 2X,'SUM SCHEDULED HOURS :',E13.7,

5 2X,'COST PER SCHEDULED HOUR :',E13.7,/

6 MACH.BREAXD3141 HOURS:',E13.7,

7 2X,'% NET UTILIZATION MACH. :',E13.7)

WRITE(,4750)F5611.111,F2ONUM

IF(OUTFLAG.GT.1) WREfE(15,4750)F5NUM,F20NUM

4750 FORMAT(2X,'SUM PRODUCTIVE HOURS :',E13.7,

1 2X,'% GROSS UTILIZATION MACH:',E13.7)

4790 CONTINUE

165

4800 CONTINUE

C

C

C

C

C

4900

4910

C

WRITE (4,4910)

IF (OUTFLAG.GT.1) WRITE(15,4910)

FORISAT(/////,10X, 'COMPLE(E HARVESTING SYSTEM STATISTICS'/,

1 10X,' ',//)

CALL DATE (10,TSTR)

EDS1RTSTR

CALL TINE (10,TSTR)

ETSTRTSTR

WRITE01,4920) SDSTR,STSTR,EDSTR,ETSTR

IF (OUTFLAG.GT.1) WRITE(15,4920) SDSTR,STSTR,EDSTR,ETSTR

4920 FORMAT(211,`COMPUTER TIME START SIMULATION DATE: ',A,

1 3X,'TIME: 'A,/,

2 2X, 'COMPUTER TIME END SIMULATION DATE: ',A,

3 3X,'TIME: 'A,/)

WRITE(4,4921)NNRUN,SIMRUN

IF(CUTFLAG.GT.1)WRITE(15,4921)NNRUN,SIMRUN

4921 FORMAT(' SIMULATION RUN '12' OF 'F3.0)

C

FINUM40

F2NUM4TNOW

INDEX140

DO 4930 INDEX8- 1,42,1

INDEX1- INDEX1+USERARR(6, INDEX8)

4930 CONTINUE

F4NUM4USERARR(25.1)

F9NUMUSERARR(25,2)

F5NUM4USERARR(25,3)

F1ONUM4(F5NUM/F4NUM)4100

F20NUM4((F5NUM+F9NUM)/F4NUM)4100

F19NUM4XX(4)

F16NUMUSERARR(25,4)

F17NUM4F16NUM/F19NUM

FI8NUM4F16NUM/F2NUI1

C

WRITE(4,4935)F1NUM,F2N1.111

IF (OUTFLAG.GT.1) WRITE(15,4935)F1NUM,F2NUM

4935 FORMAT(2X,'BEGIN OF HARVESTING :',E13.7,

1 2X, 'END OF HARVESTING :',E13.7)

WRITE(11,4946)114DEX1,F19NIELF4N121,F16NUM,F9NUM,F17NUM,F5NUM,F18N1/1

IF(OUTFLAG.U.1) WRITE(15,4940)INDEX1,F19NUM,F4NUM,F16NUM,F9NUM,

1 F17NI01,F5NUM,F18NUM

4940 FORMAT(2X,'TOTAL / OF MACHINES :1,113,

1 2X, 'SUN OF UNITS HARVESTED :',E13.7,/,

2 2.X, 'SUM SCHEDULED HOURS :',E13.7,

3 2X,'SUM COST OF SYSTEM :',E13.7,/,

4 2X,'SUM MACH-BREAKDOWN HOURS:',E13.7,

166

5 2X,'COST PER UNIT :',E13.7,/,

6 2X, 'SUM PRODUCTIVE HOURS :',E13.7,

7 2X,'COST PER SYSTEM HOUR :',E13.7)

C

C

C

WRITEI*,49501F10NUM,F20NUM,t4NRUN,SINRUN

IF(OUTFLAG.GT.1)NRITE(15,4950)F10NUM,F20N1R1JRaUN,SIMRUN

4950 FORMAT(2X,P% NET UTILIZATION MACE. :',E13.7,/,

1 2X,'% GROSS UTILIZATION MACH:',E13.7,/////,

2 2X,' END OF RUN PIE' OF 'F3.0,

3 ',///)

C

IF(OUTFLAG.GT.1)CLOSE(15)

C

C

C

CC

C

C

C

C

C

C

C

IF (NNRUN.EQ.SIMRUN) THEN

STOP "

ELSE

CONTINUE

ENDIF

RETURN

C

C

C

C USERFUNCTION TO RECORD OBSERVATIONS ON THE INVENTORIES

C

C

C

5000 USERF0

IF (ATRIB(5).EQ.1) RETURN

C

INDEX1- ATRIB(5)

INDEX2XXLEVEL(2)+ATRIB(5)

CALL COLCT(XX(INDEX2),INDEX1)

RETURN

C

5100 USERF0

INDEX3ATRIB(5)

INDEX1GETARY(23,INDEX3)

INDEX2MYLEVEL(2)+INDEX1

CALL COLCT(XX(INDEX2),INDEX1)

RETURN

167

C

5200 USERF0

INDIalUSERARR(7,5)

INDEI2XXLEVEL(2)+INDEX1

CALL COLCT(MINDE22),INDEX1)

RETURN

C

5300 USERF0

INDEX1USERARR(7,6)

INDEX2ECLEVEL(2)+INDEX1

CALL COLCT(XX(INDEX2),INDEX1)

RETURN

C

C

C

C

C USERFUNCTION 160: CM.UCALTE INVENTORY TO MOVE ROUTE I & ROUTE 2 DISTRIBUTION

C

C

C

7000 USERF -0
C

C

C CALCULATE THE CURRENT INVENTORY
C

C

INDEX1XXLEVEL(2)+11
F1NUM- XX(INDEXI) -XX(7)

XX(7)XX(INDEX1)
IF (F1NUM.GT.0) THEN

F2NUMF1NUM*USERARR(7.3)/100
F3NUMGETARY(7,7)+F2NUM
CALL PUTARY(7,7,F3NUM)
F4HUMF1NUM*USERARR(7,4)/100
F5NUMGETARY(7,8)+F4NUM
CALL PUTARY(7,8,F5NUM)

ELSE
comrum

ENDIF
C

C

C CALCULATING THE INVENTORY TO MOVE ROUTE 1
C

C

1)0E21 USERARR(7,5)

INDEX2USERARR(7,5)+XKLEVEL(2)
F1NUMXX(INDEX2)
INDEX3USERARR(7,5)+XXLEVEL(4)
F2NUMXX(INDEX3)
F3NUTIF2NUM-F1NUM
F4NUMGETARY(7,7)

IF(FINUM.GT.F2MM) THEN

USERARR(7,15) -0

ELSEIF (F3NUM.GT.F4NUM) THEN

USERARR(7,15).F4NUM

ELSE

USERARR(7,15)-F7IM

ENDIF

C

C

C CALCULATING THE INVENTORY TO MOVE ROUTE 2

C

C

C

INDEX1-USERARR(7,6)

INDEX2-USERARR(7,6)+XXLEVEL(2)

F1NUM-XX(INDEX2)

INDEX3-USERARR(7,6) 0DUIVEL(4)

F2NUM-XX(INDE1(3)

F3NUM-F2NUM-F1NUM

F4NUM-GETARY(7,8)

IF(F1NUM.GT.F2NUM) THEN

USERARR(7,16) -0

ELSEIF (F3NUM.GT.F4NUM) THEN

USERARR(7,16)-F4NUM

ELSE

USERARR(7,16)-F3NUM

ENDIF

C

C

C CALCULATE SUM TO MOVE

C

C

C TEST IF PREVIOUS PROCESS ENDED

C

C

INDEX2USERARR(24,11)

INDEX3- GETARY(15, INDEX2)

FINUM- GETARY(26, INDEX2)

IF (INDEX3.LT.2) THEN

INDEX4 -0

ELSEIF (INDEX3.GE.2.AND.F1NUM.GT.0.001) THEN

INDEX4 -0

ELSE

INDEX4-1

ENDIF

F1NUM-USERARR(7,15)

F2I4M-USERARR(7,16)

F3NUM.F1M.111+F2NUM

INDEX1-USERARR(4,11)

IF(INDEXI.GT.0)F4NUM-USERARR(8,INDEX1)

168

C

C

C

IF(F3NUN.EQ.0) THEN

ATRIB(2)0

ATRIB(6)0

ATRIB(7)B

CALL PUTARY(7,10,0)

CALL PUTARY(7,15.0)

CALL PUTART(7,16,0)

ELSEIF(INDEX1.GT.0.AND.F4NUN.GT.F3NUN.AND.INDEX4.EQ.0)THEN

ATRIB(2)0

ATRIB(6)0

ATRIB(7)0

CALL FUTART(7,10,0)

CALL PUTART(7,15,0)

CALL PUTARY(7,16,0)

ELSE

ATRIB(2)F3NUM

ATRIB(6)F1NUN

ATRIB(7)FENUN

CALL PUTARY(7,10,F3NUN)

CALL PUTARY(7,15,F1NUN)

CALL PUTARY(7,16,F2NUN)

F15NUN-GETARY(7,7)

F16NWIGETARY(7,B)

F15NUM F15NUN -EMUS

FI6NUMFI6NUM

CALL PUTART(7,7,F15NUN)

CALL PUTARY(7,8,F16NUN)

INDEXIXXLEIBEL(2)+11

ri(INDEX1)NI(INDEX1)-F3NUI

XX(7)IX(INDEX1)

ENDIF

INDEX1USERARR(4, 11)

IF (INDEXI.EQ.0) THEN

RETURN

ELSE

CONTINUE

ENDIF

C

C

C SET MOUNT OF TREES ACCORDING TO DESIRED DISTRIBUTION

C

C

C

F4NUMF3NRI

F2EN111F3NUN

169

170

C

C INDEXING THE DISARR-COLUMS ACCORDING TO DISTRIBUTION SPECIFIED:

7025 INDEX1eGEFARY(5,11)

IF (INDEX1.EQ.1) THEN

INDEX2 -1

INDEX3 -2

ELSEIF (INDEXI.EQ.2) THEN

INDEX24.3

INDEX344

ELSEIF (INDEXI.EQ.3) THEN

INDEX245

INDEX3-6

ELSEIF (INDEX1.EQ.4) THEN

INDEX247

INDEX3-8

ELSE

CONTINUE

ENDIF

C

C SET INITIAL VALUES:

ATRIB(3)0

ATRIB(2) -0

F514040

F6NUN -0

INDEX440

C

C LOOP TO CREATE BATCHSIZE:

C

C F6NUN4CIAIRENT BATCH SIZE CALCULATED

C F5NUM4TESTING VALUE SUN CUFT

C F4NUN4BATCHSIZE

C F3NUM4SAKPLE

C F2N1R14UPPERBOUND

C F1NUM4LOWERBOUND

C INDEX444RIBER OF TREES

C

7050 F3NUMUNFRM(0.0,100.0.6)

F1NUM0

C

W 7100 INDEXB 1,10,1

F2NUN4DISARR(INDF12,INDEX8)

IF (F3NUM.GE.F1NUM.AND.F3NUM.LE.F2NUN) THEN

F5NUM4F5NUM+DISARR(INDEX3,INDEX8)

INDEX4INDEX441

GOTO 7200

ELSE

F1N1R1 4F2NUM

ENDIF

7100 CONTINUE

C

7200 IF (F5NUM.LE.F4NUM) THEN

F6NUN4F5NIRI

GOTO 7050

C

C

171

ELSE

ATIIIB(2)F20NUM

ATRI8(3)INDEX4 -1

ENDIF

RETURN

C

C

C

C

C

C USER FUNCTION TO DISPLAY THE AMOUNT HARVESTED

C

C

C

C

7500 USERF0

CALL TIME (10,TSTR)

WRITE(*,7510)NNRUN,XX(15),TSTR,IMOW

7510 FORMAT(2X,' RUN PIS,' AMOUNT HARVESTED:1E13.7' TIME:'A,

1 ' MON:1E13.7)

C

C

RETURN

C

C

C

C

C

9998 RETURN

C

C

END

172

APPENDIX C

TABLE OF CONTENTS:

1. Example session, LOGSIM 173

2. Example session, FRONTEND.FOR, Readin 179

3. Example session, FRONTEND.FOR, Printout 198

4. Example session, FRONTEND.FOR, Modify 201

173

APPENDIX C

1. Example session, LOGSIM

174

SLAM II

Version 3.0

This software is proprietary to and a trade secret of Pritsker

& Associates, INC. Access to and use of the software is granted

under the terms and conditions of the software license agreement

between Pritsker & Associates, INC., and licensee.

The terms and conditions of the agreement shall be strictly

enforced. Any violations of the agreement may void licensees

right to use the software.

Pritsker & Associates, INC.

P.O. B o x 2 4 1 3

W e s t L a f a y e t t e , I N 4 7 9 0 6

Enter file name of translated model:HARVEST.TRA

**********************11HHOOHM********************IHSM

>)>LOGSIM<<<
MECHANIZED LOG HARVESTING SIMULATOR

SIMULATION MODULE

414HHOH1**41***11141**********4*******************************

BEGIN OF SIMULATION

THIS FUNCTION READS A PREVIOSLY DEFINED MODEL INTO THE SLAM-

NETWORK AND SIMULATES IT.

DO YOU WISH TO CONTINUE (Y/N) 7 CYl > Y

175

FILENAME OF MODEL TO BE RETRIEVED? > PTEST10.MOD

It! PLEASE WAIT A MOMENT III

III MODEL HAS BEEN SUCCESSFULLY RETRIEVED III

SIMULATION RESULTS SHOULD BE ROUTED TO:

SCREEN - 1

SCREEN & PRINTER - 2

PLEASE ENTER CHOICE > 1

HOW MANY SIMULATION RUNS DO YOU WANT?

THE PRESET MAXIM! IS it

ENTER NUMBER OF RUNS [1] > 1

PLEASE HIT >RETURN< TO START THE SIMULATION

TIME- 22:28:44

DATE- 06 -01 -87

176

*INTERMEDIATE RESULTS**

RUN / 1 AMOUNT HARVESTED: .1000000E+01 TIME:22:28:44 THOU: .2000000E+01

RUN 1 1 AMOUNT HARVESTED: .2000000E+01 TIME:22:28:44 TNOW: .3000000E+01

RUN / 1 mow HARVESTED: .3000000E+01 TIME:22:28:45 TNOW: .4000000E+01

RUN t 1 AMOUNT HARVESTED: .4000000E+01 TIME:22:28:45 TNOW: .5000000E+01

RUN / 1 Amin HARVESTED: .5000000E+01 TIME:22:28:45 TNOW: .6000000E+01

RUN / 1 AMOUNT HARVESTED: .6000000E+01 TIME:22:28:45 1110W: .7000000E+01

RUN I 1 AMOUNT HARVESTED: .7000000E+01 TIME:22:28:45 THOU: .8000000E+01

RUN I 1 AMOUNT HARVESTED: .8000000E+01 TIME:22:28:45 THOU: .9000000E+01

RUN 1 1 AMOUNT HARVESTED: .9000000E+01 TIME:22:28:46 TNC44: .1000000E+02

RUN 1 AMOUNT HARVESTED: .1600000E+02 TIME:22:28:46 THOU: .1100000E+02

RUN I 1 AMOUNT HARVESTED: .1100000E+02 TINE:22:28:46 SNOW: .1200000E+02

RUN / 1 AMOUNT HARVESTED: .1200000E+02 TIKE:22:28:46 THOR: .1300000E+02

RUN I 1 AMOUNT HARVESTED: .1300000E+02 TIME:22:28:46 TNOW: .1400000E+02

RUN I 1 AMOUNT HARVESTED: .1400000E+02 TIME:22:28:46 TNOW: .1500000E+02

>>>LOGSIM<CC
SIMULATION RESULTS

****************OH********IHt*****************************

SIMULATION MODEL USED: PTEST10.MOD

*******MOHOHHOHW*****

DATE.. 06-01-87

TINE- 22:28:52

SIMULATION RUN 1 OF 1.

PROCESS NO. 1 : felling

TIME BEGIN OF PROCESS : .0000000E+00 AVERAGE INVENTORY .0000000E+00

TIME END OF PROCESS : .5000000E+02 MAXIMUM INVENTORY .0000000E+00

DURATION OF PROCESS : .5000000E+02 MINIMUM INVENTORY .0000000E+00

TIME !PERM TOO LOU : .0000000E+00 STD.DEV.INVENTORY .0000000E+00

TIME INVENTORY TOO HIGH : .0000000E+00 / OF OBSERVATIONS INV. : .0000000E+00

% INVENTORY DOWNTIME : .0000000E+00 SUM UNITS PROCESSED : .5000000E+02

TOTAL / OF MACHINES : 1 SUM COST OF PROCESS : .0000000E+00

SUM SCHEDULED HOURS : .5000000E+02 COST PER UNIT .0000000E+00

SUM MACH.BREAXDOUN HOURS: .0000000E+00 COST PER SCHEDULED HOUR : .0000000E+00

177

SUN PRODUCTIVE HOURS : .5000000E+02

% NET UTILIZATION MACH. : .1000000E+03

% GROSS UTILIZATION MACH: .1000000E+03

MACHINE TYPE 1 :

TOTAL / OF MACHINES : 1 COST PER MACHINE : .0000000E+00

SUM SCHEDULED HOURS : .5000000E+02 COST PER SCHEDULED HOUR .0000000E+00

SUM MACH.BREAKDOWN HOURS: .0000000E+00 S NET UTILIZATION MACH. : .1000000E+03

SUM PRODUCTIVE HOURS : .5000000E+02 S GROSS UTILIZATION MACH: .1000000E+03

RUN / 1 AMOUNT HARVESTED: .4900000E+02 TIME:22:28:52 TROD: .5000000E+02

RUN I 1 AMOUNT HARVESTED: .5000000E+02 TIME:22:28:52 INOW: .5100000E+02

PROCESS NO.13 : ftrapo

TIME BEGIN OF PROCESS : .1000000E+01 AVERAGE INVENTORY : .5000000E+00

TIME END OF PROCESS : .5100000E+02 MAXIMUM INVENTORY : .1060000E+01

DURATION OF PROCESS : .5000000E+02 MINIMUM INVENTORY : .0000000E+00

TIME INVENTORY TOO LON : .0000000E+00 STD.DEV.INVENTORY : .5025185E+00

TIME INVENTORY TOO HIGH : .0000000E+00 I OF OBSERVATIONS INV. : .1000006E+03

% INVENTORY DOWNTIME : .0000000E+00 SUM UNITS PROCESSED : .5000000E+02

TOTAL I OF MACHINES : 1 SUN GUST OF PROCESS : .0000000E+00

SUM SCHEDULED HOURS : .5000000E+02 COST PER UNIT : .0000000E+00

SUM MACH.BREAKDOWN HOURS: .0000000E+00 COST PER SCHEDULED HOUR : .0000000E+00

SUM PRODUCTIVE HOURS : .5000000E+02

% NET UTILIZATION MACH. : .1000000E+03

S GROSS UTILIZATION MACH: .1000000E+03

MACHINE TYPE 41 : truck

TOTAL / OF MACHINES : 1 COST PER MACHINE : .0000000E+00

SUM SCHEDULED HOURS : .5000000E+02 COST PER SCHEDULED HOUR : .0000000E+00

SUM MACH.BREAKDOWN HOURS: Asolaregege+a S NET UTILIZATION MACH. : .1000000E+03

SUM PRODUCTIVE HOURS : .5000000E+02 S GROSS UTILIZATION MACH: .1000000E+03

COMPLETE HARVESTING SYSTEM STATISTICS

COMPUTER TIME START SIMULATION DATE: 06-01-87 TIME: 22:28:44

COMPUTER TIME END SIMULATION DATE: 06-01-87 TIME: 22:28:52

SIMULATION RUN 1 OF 1.

BEGIN OF HARVESTING : .0000000E+00 END OF HARVESTING : .5100000E+02

TOTAL / OF MACHINES : 2 SUM OF UNITS HARVESTED : .5000000E+02

SUM SCHEDULED HOURS : .1000000E+03 SUM COST OF SYSTEM : .0000000E+00

SUM MACH.BREAKDOWN HOURS: .0000000E+00 COST PER UNIT : .0000000E+00

SUM PRODUCTIVE HOURS : .1000000E+03 COST PER SYSTEM HOUR :.0000000E +00

% NET UTILIZATION MACH. : .1000000E+03

% GROSS UTILIZATION MACH: .1000000E+03

END OF RUN I 1 OF 1.

178

179

APPENDIX C

2. Example session, FRONTEND.FOR, Readin

180

>>>LOGSIM(<<
INPUT USER-INTERFACE

MAIN-MENU

DEFINING A MODEL * 1

PRINT OUT A MODEL 2

EDIT A MODEL 3

EXIT THE PROGRAM . 0

ENTER CHOICE PLEASE > 1

SUBROUTINE READIN

THIS IS THE SUBROUTINE TO DEFINE THE SIMULATION MODEL, LATER

USED BY THE SLAM PROCESSOR. THE FOLLOWING DATA IS NECCESSARY

TO DEFINE A HARVESTING MODEL:

- HARVESTING CONFIGURATION, GENERAL PARAMETERS

- DISTRIBUTION DATA OF THE TREES/LOGS/PULPLOGS/SAWLOGS

MAXIIIRI/MININUM DATA OF MATERIAL BUFFERS PER PROCESS

- HOW MANY MACHINES USED PER PROCESS

MACHINE DATA: TIMES, BREAKDOWN FREQUENCIES, COSTS ETC

DEFAULT VALUES WILL BE GIVEN IN SQUARE BRAKETS []. IF YOU

WANT TO USE THEM, HIT SPACE BAR AND PRESS RETURN.

DO YOU WISH TO CONTINUE (Y/N) 1 [Y] > Y

181

FIRST PHASE

SPECIFICATION OF GENERAL SYSTEM PARAMETERS

WHAT IS THE FILENAME OF THE MODEL? --->TEST.MOD

HOW MANY CU.FT SHOULD BE HARVESTED? --->20000.

VALUE OF THE TIME DELAY PARAMETER? --->.01

SECOND PHASE

WE NOW ARE GOING TO DEFINE THE MATERIAL FLOW THROUGH

THE HARVESTING SYSTEM. FOR EACH PROCESS PLEASE STATE

THE PROCESS FROM WHICH THE INCOMING MATERIALS STREAM

ORIGINATES AND THE DESTINATION OF THE OUTGOING MATERIAL

STREAM. A VALUE OF 0 FOR BOTH QUESTIONS MEANS THAT THE

PROCESS IS NOT USED.

(PLEASE HIT RETURN TO CONTINUE)

PROCESS 1:

OUTGOING DESTINATION? ->2

PROCESS 2:

INCOMING ORIGIN?

OUTGOING DESINATION? - - ->13

PROCESS 3:

182

INCOMING ORIGIN?

OUTGOING DESINATION? --->

PROCESS 4:

INCOMING ORIGIN?

OUTGOING DESINATION? --->

PROCESS 5:

INCOMING ORIGIN?

OUTGOING DESINATION? --->

PROCESS 6:

INCOMING ORIGIN?

OUTGOING DESINATION? --->

PROCESS 7:

INCOMING ORIGIN?

OUTGOING DESINATION? --->

PROCESS 8:

INCOMING ORIGIN?

OUTGOING DESINATION? --->

PROCESS 9:

INCOMING ORIGIN?

OUTGOING DESINATION? --->

PROCESS 10:

INCOMING ORIGIN?

OUTGOING DESINATION? --->

PROCESS 11:

INCOMING ORIGIN?

OUTGOING DESINATION, ROUTE 1 ?

OUTGOING DESINATION, ROUTE 2 7

PROCESS 12:

183

INCOMING ORIGIN?

PROCESS 13:

INCOMING ORIGIN?

PROCESS / IN ORIGIN OUT DESTINATION

1 2.

2 1. 13.

3

4

5

6

7

8

9

10

11

12

13 2.

IS THIS CORRECT? (Y/N) [Y] >

THIRD PHASE

NOW WE DEFINE THE CUMULATIVE FREQUENCY DISTRIBUTIONS

USED TO DESCRIBE TREES, LOGS ETC..

YOU CAN SPECIFY UP TO FOUR DIFFERENT FREQUENCY DISTRIBUTIONS,

WITH 10 FREQUENCY CLASSES EACH. YOU HAVE TO SPECIFY AT LEAST

ONE CLASS IN ONE DISTRIBUTION.

ft! DONT FORGET THE DECIMAL POINT FOR INPUT It!

(PLEASE HIT RETURN TO CONTINUE)

184

FREQUENCY DISTRIBUTION NO. 1:

NAMEOFTHISDISTRIBUTION? > WHOLE TREES

CLASS 1: CUM.REL.FREQENCY? [0] - - ->11.6

CLASS 1: VOLUME CU.FT? [t] ->4.4

CLASS 2: CUM.REL.FREQENCY? [0]--->29.7

CLASS 2: VOLUME CU.FT? [0]--->9.4

CLASS 3: CWIREL.FREQENCY? [0]--->50.4

CLASS 3: VOLUME CU.FT? [0] - - ->18.

CLASS 4: CUM.REL.FREQENCY? [0] ->69.9

CLASS 4: VOLUME cusn [0] - ->28.3

CLASS 5: CUM.REL.FREQENCY? [0]--->84.4

CLASS 5: VOLUME CU.FT? [0] ->40.9

CLASS 6: CUM.REL.FREQENCY? [0]--->93.

CLASS 6: VOLUME CU.FT? [0] ->54.6

CLASS 7: CUM.REL.FREQENCY? [0] - - ->97.7

CLASS 7: VOLUME CU.FT? [0]---)70.2

CLASS 8: CUM.REL.FREQENCY? (0] ->100.

CLASS 8: VOLUME CU.FT? [0]--->92.1

DISTRIBUTION NO. 1 : WHOLE TREES

CLASS CUM.REL.FREQ.% CU.FT

1 11.60 4.40

2 29.70 9.40

3 50.40 18.00

4 69.90 28.30

5 84.40 40.90

6 93.00 54.60

7 97.70 70.20

8 100.00 92.10

185

DISTRIBUTION OK (T/N) ? [Y] - - - - >Y

FREQUENCY DISTRIBUTION NO. 2:

NAME OF THIS DISTRIBUTION ?

CLASS 1: CUM.REL.FREQENCY? [0] ->

CLASS 1: VOLUME CILF17 [0]--->

DISTRIBUTION NO. 2 :

CLASS CUM.REL.FREQ.K CU.FT

141** DISTRIBUTION NOT USED **Kan

DISTRIBUTION OK (Y/N) 7 (Y1---->Y

FREQUENCY DISTRIBUTION NO. 3:

NAME OF THIS DISTRIBUTION 7

CLASS 1: CUM.REL.FREQENCY? [01 - - ->

CLASS 1: VOLUME CU.FT? [0]--->

DISTRIBUTION NO. 3 :

CLASS CUM .REL .FREQ.% CU.FT

***4"1" DISTRIBUTION NOT USED "nu*

186

DISTRIBUTION OK (Y/N) 7 (11---->Y

FREQUENCY DISTRIBUTION NO. 4:

NAME OF THIS DISTRIBUTION

CLASS 1: CUM.REL.FREQENCY? (0)--->

CLASS 1: VOLUME CUM'? [0]--->

DISTRIBUTION NO. 4 :

CLASS CUM.REL.FREQ.% CU.FT

w4***** DISTRIBUTION NOT USED ***ma*

DISTRIBUTION OK (Y/N) 7 111---->Y

FORTH PHASE

IN THIS PHASE WE WILL DESCRIBE THE PROCESSES USED A LITTLE

BIT MORE IN DETAIL. YOU WILL BE ASKED FOR :

- AN OPTIONAL NAME FOR THE PROCESS

- THE DISTRIBUTION TO BE USED FOR THIS PROCESS

STARTUP-INVENTORY LEVEI. FOR THE PROCESS

- MINIMUM INPUT BUFFER SIZE

- STARTUP -INV. LEVEL AFTER MINIMUM HAS BEEN REACHED

- MAXIMUM INPUT BUFFER SIZE

- STARTUP-INV. LEVEL AFTER MAXIMUM HAS BEEN REACHED

PLEASE REMEMBER: THE INPUT BUFFER OF A PROCESS IS THE OUT-

PUT BUFFER OF HIS PREVIOUS PROCESS. THE MINIMUM BUFFER SIZE

EFFECTS THE CURRENT PROCESS, ME MAXIMUM EFFECTS THE PREVIOUS

ONE.

tit DONT FORGET THE DECIMAL POINT FOR INPUT 111

(PLEASE HIT RETURN TO CONTINUE)

PROCESSS NO. 1

NAME OF PROCESS? > FELLING

NO. OF DISTRIBUTION TO USE? > 1

WHAT LOADER W YOU wrea TO USE (32-36) 7 [0]

TIME DELAYS HANDELD BY

BUILD-IN MODEL0 OR USERFUNCTION1 7 [0] >

PROCESS NO. 1: FELLING

DISTRIBUTION USED: 1

STARTUP INVENTORY: .0

MINIMUM INVENTORY: .0

STARTUP MINIMUM : .0

MAXIMUM INVENTORY: .0

STARTUP MAXIMUM : .0

LOADER TYPE USED : NONE

TIME DELAYS BY : BUILD-IN FUNCTIONS

INPUT DATA OK (Y/N)? [Y]---->Y

PROCESS NO. 2

NAME OF PROCESS? > SKIDDING

NO. OF DISTRIBUTION TO USE? > 1

STARTUP-INVENTORY LEVEL? [1] >

MINNINUM INFEED INVENTORY LEVEL? [0] >

STARTUP-INV.LEVEL AFTER MINIMUM? [0] >

MAXIMUM INFEED INV. LEVEL? [999999.9] >

STARTUP-INV.LEVEL AFTER MAXIMUM? [999999.9] >

WHAT LOADER CO YOU WANT TO USE (32-36) ? [0]

TIME DELAYS HANDELD BY

BUILD-IN N3DEL41 OR USERFUNCTIONO 7 [0]

187

188

PROCESS NO. 2: SKIDDING

DISTRIBUTION USED: 1

STARTUP INVENTORY: 1000.0

MINIMUM INVENTORY: .0

STARTUP MINIMUM : .0

MAXIMUM INVENTORY: 999999.9

STARTUP MAXIMUM : 999999.9

LOADER TYPE USED : NONE

TINE DELAYS BY : BUILD-IN FUNCTIONS

INPUT DATA OK (Y/N)? [Y] ---->Y

PROCESS NO.13

NAME OF PROCESS? > FINAL TRANSPORT

NO. OF DISTRIBUTION TO USE? > 1

STARTUP-INVENTORY LEVEL? [1] > 2000.

MINNIMUM INFEED INVENTORY LEVEL? [07 > 1320.

STARTUP -INV.LEVEL AFTER MINIMUM? [07 > 1320.

MAXIMUM INFEED INV. LEVEL? [999999.9] > 5000.

STARTUP -INV.LEVEL AFTER MAXIMUM? [999999.97 -> 5000.

WHAT LOADER DO YOU WANT TO USE (32-36) ? [0] >

TIME DELAYS HANDELD BY

BUILD-IN MODEL0 OR USERFUNCTION1 7 [0] >

PROCESS NO.13: FINAL TRANSPORT

DISTRIBUTION USED: 1

STARTUP INVENTORY: 2000.0

MINIMUM INVENTORY: 1320.0

STARTUP MINIMUM : 1320.0

MAXIMUM INVENTORY: 5000.0

STARTUP MAXIMUM 5000.0

LOADER TYPE USED : NONE

TIME DELAYS BY : BUILD-IN FUNCTIONS

189

INPUT DATA OK (YIN)? [Y] >Y

FIFTH PHASE

WE NOW SPECIFY THE RESOURCES E.G. MACHINES WE WANT TO USE IN

EACH PROCESS. FOR EACH ACTIVE PROCESS THE PROGRAM WILL GIVE

A CHOICE OF DIFFERENT MACHINE TYPES. YOU WILL HAVE TO SPECIFY

THE INITIAL NUMBER OF MACHINES FOR EACH TYPE. MULTIPLE TYPES

OF MACHINES WITH DIFFERENT INITIAL NUMBERS OF MACHINES PER

PROCESS ARE POSSIBLE.

HOWEVER, IF YOU HAVE SPECIFIED ANY PROCESSES USING LOADERS

THE PROGRAM WILL PROMPT YOU FIRST TO ENTER HOW MANY

MACHINES FOR EACH LOADER TYPE USED YOU WANT TO EMPLOY.

THE MAXIMUM NUMBER OF MACHINES WHICH THE NETWORK WILL

HANDEL IS APPROXIMATLY 90 MACHINES IN TOTAL.

(PLEASE HIT RETURN TO CONTINUE)

PROCESS NO. 1: FELLING

THERE ARE FOUR (4) DIFFERENT MACHINE TYPES POSSIBLE:

MACHINE TYPE 1: INITIAL if OF MACHINES 7 10 > 2

MACHINE TYPE 2: INITIAL 0 OF MACHINES 7 ID

MACHINE TYPE 3: INITIAL of OF MACHINES ? (0

MACHINE TYPE 4: INITIAL / OF MACHINES ? (0

PROCESS NO. 1 : FELLING

MACHINE TYPE 1, / OF INITIAL MACHINES : 2.

MACHINE TYPE 2, / OF INITIAL MACHINES : 0.

190

MACHINE TYPE 3, / OF INITIAL MACHINES 0.

MACHINE TYPE 4, / OF INITIAL MACHINES : 0.

INPUT DATA OK (Y/N)? [Y] - - -X(

PROCESS NO. 2: SKIDDING

THERE ARE THREE (3) DIFFERENT MACHINE TYPES POSSIBLE:

MACHINE TYPE 5: INITIAL I OF MACHINES ? [0] > 1

MACHINE TYPE 6: INITIAL t OF MACHINES ? [0] >

MACHINE TYPE 7: INITIAL / OF MACHINES 7 [0] >

PROCESS NO. 2 : SKIDDING

MACHINE TYPE 5, / OF INITIAL MACHINES : 1.

MACHINE TYPE 6, / OF INITIAL MACHINES : 0.

MACHINE TYPE 7, / OF INITIAL MACHINES : 0.

INPUT DATA OK (Y/N)? [Y] ->Y

PROCESS NO.13: FINAL TRANSPORT

FOR THIS PROCESS YOU CAN SPECIFY A PRIMARY AND A SECONDARY

TRANSPORTING DEVICE.

HOW MANY PRIMARY TRANSPORTERS DO YOU WANT TO USE 7 > 1

HOW MANY SECONDARY TRANSPORTERS DO YOU WANT TO USE ? [0] 0

PROCESS NO. 13 : FINAL TRANSPORT

NUMBER OF PRIMARY TRANSP.DEVICES USED : 1.

NUMBER OF SECONDARY TRANSP.DEVICES USED : 0.

191

INPUT DATA OK (Y/N)? [Y] ->Y

SIXTH PHASE

HERE WE SPECIFY ALL THE PARAMETERS RELATED TO THE MACHINE

TYPES YOU HAVE SET ACTIVE EARLIER:

NAME OF MACHINE

- AVERAGE PROCESSING TIME PER TREE

- FIXED CONSTANT TIME PER LOAD

FIXED CONSTANT TIME PER ONE WAY HAUL

- MACHINE CAPACITY IN CU.FT.

FIXED COST PER SCHEDULED HOUR

VARIABLE COST PER MACHINE HOUR

(PLEASE HIT RETURN TO CONTINUE)

PROCESS NO. 1: FELLING

MACHINE TYPE 1 :

NAME OF MACHINE TYPE ? > CAT 227 FELLER-BUNCH

AVERAGE PROCESSING TIME / TREE? [0]

FIXED CONSTANT TIME / LOAD? [0] > .04

FIXED CONST. TIME / ONE WAY HAUL? [0]

MACHINE CAPACITY IN CU.FT? [1] > 82.56

FIXED COST / SCHEDULED HOUR [0] > 41.99

VARIABLE COST/ MACHINE HOUR (0] > 41.35

PROCESS NO. 1 : FELLING

MACHINE TYPE 1

NAME OF MACHINE TYPE : CAT 227 FELLER-BUNCH

AVERAGE PROCESSING TIME / TREE : .0000

FIXED CONSTANT TIME / LOAD .0400

FIXED CONST. TIME / ONE WAY HAUL : .0000

MACHINE CAPACITY IN CU.FT : 82.56

FIXED COST / SCHEDULED HOUR : 41.99

VARIABLE COST/ MACHINE HOUR : 41.35

192

INPUT DATA OK (Y/N)? [Y7- ->Y

PROCESS NO. 2: SKIDDING

MACHINE TYPE 5 :

NAME OF MACHINE TYPE ? > CAT 528 GRAB-SKIDDER

AVERAGE PROCESSING TIME / TREE? [0]

FIXED CONSTANT TIME / LOAD? [0] > .1

FIXED CONST. TIME / ONE WAY HAUL? [07

MACHINE CAPACITY IN CII.FT? [1] > 220.

FIXED COST / SCHEDULED HOUR [0] > 36.72

VARIABLE COST/ MACHINE HOUR [0] > 22.

PROCESS NO. 2 : SKIDDING

MACHINE TYPE 5

NAME OF MACHINE TYPE : CAT 528 GRAB -SKIDDER

AVERAGE PROCESSING TIME / TREE : .0000

FIXED CONSTANT TIME / LOAD .1000

FIXED CONST. TIME / ONE WAY HAUL : .0000

MACHINE CAPACITY IN CU.FT : 29.44

FIXED COST / SCHEDULED HOUR : 36.72

VARIABLE COST/ MACHINE HOUR : 22.00

INPUT DATA OK (Y/N)? [Y] ->Y

PROCESS NO.13: FINAL TRANSPORT

MACHINE TYPE 41 :

NAME OF MACHINE TYPE ? > LOG TRUCK

AVERAGE PROCESSING TIME / TREE? [O]

193

FIXED CONSTANT TIME / LOAD? [0] > .5

FIXED CONST. TIME / ONE WAY HAUL? [0] > 1.

MACHINE CAPACITY IN CU.FT? [1] > 1312.

FIXED COST / SCHEDULED HOUR [0] > 15.04

VARIABLE COST/ MACHINE HOUR [0] > 36.48

PROCESS NO. 13 : FINAL TRANSPORT

MACHINE TYPE 41

NAME OF MACHINE TYPE : LOG TRUCK

AVERAGE PROCESSING TIME / TREE : .0000

FIXED CONSTANT TIME / LOAD .5000

FIXED CONST. TIME / ONE WAY HAUL : 1.0000

MACHINE CAPACITY IN CILFT : 1312.00

FIXED COST / SCHEDULED HOUR : 15.04

VARIABLE COST/ MACHINE HOUR : 36.48

INPUT DATA OK (Y/N)? [Y]---->Y

SEVENTH PHASE

IN THIS LAST PHASE YOU ARE ABLE TO SPECIFY THE MACHINE

BREAKDOWN PARAMETERS FOR EACH ACTIVE MACHINE. IN ORDER

TO DO SO YOU WILL HAVE TO INPUT THE CUMULATIVE FREQUENCY

DISTRIBUTION FOR THE TIME BETWEEN FAILURES AND THE

ACTUAL REPAIR TIME EACH OF THESE TWO DISTRIBUTIONS CAN

HAVE UP TO TEN CLASSES.

111 DONT FORGET THE DECIMAL POINT FOR INPUT Mt

(PLEASE HIT RETURN TO CONTINUE)

194

MACHINE TYPE 1 : CAT 227 FELLER-BUNCH

FREQUENCY DISTRIBUTION FOR TIMES BETWEEN FAILURES:

CLASS 1: OPLREL.FREQENa? [0] >20.

CLASS 1: TIME BETWEEN FAILURES? [0] >6.

CLASS 2: CUM.REL.FREQENCY? [0] >40.

CLASS 2: TIME BETWEEN FAILURES? [0] >12.

CLASS 3: CUM.REL.FREQENCY? [0] >60.

CLASS 3: TIME BETWEEN FAILURES? [0] >20.

CLASS 4: CUM.REL.FREQENCY? [0] >80.

CLASS 4: TIME BETWEEN FAILURES? [0] >36.

CLASS 5: CUM.REL.FREQENCY? [0] >100.

CLASS 5: TIME BETWEEN FAILURES? [0] >64.

MACHINE TYPE 1 : CAT 227 FELLER-BUNCH

FREQUENCY DISTRIBUTION FOR MACHINE REPAIR TIMES:

CLASS 1: CUM.REL.FREQENCY? [0] >50.

CLASS 1: REPAIR TIME? [0] >.5

CLASS 2: CUM.REL.FREQENCY? [0] >70.

CLASS 2: REPAIR TIME? [0] >1.

CLASS 3: CUM.REL.FREQENCY? Eel >80.

CLASS 3: REPAIR TIME? [0] >2.

CLASS 4: CUM.REL.FREQENCY? [0] >90.

CLASS 4: REPAIR TIME? [0] >5.

CLASS 5: CUM.REL.FREQENCY? [0] >100.

CLASS 5: REPAIR TIME? [0] >10.

195

FREQUENCY DISTRIBUTIONS MACHINE TYPE 1 : CAT 227 FELLER-BUNCH

CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME

1 20.00 6.00 50.00 .50

2 40.00 12.00 70.00 1.00

3 60.00 20.00 80.00 2.00

4 80.00 36.00 90.00 5.00

5 100.00 64.00 100.00 10.00

DISTRIBUTION OK (Y/N) ?

MACHINE TYPE 5 : CAT 528 GRAB -SKIDDER

FREQUENCY DISTRIBUTION FOR TIMES BETWEEN FAILURES:

CLASS 1: CUM.REL.FREQENCY? [0] >

CLASS 1: TIME BETWEEN FAILURES? [01 >

FREQUENCY DISTRIBUTIONS MACHINE TYPE 5 : CAT 528 GRAB-SKIDDER

CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME

****" DISTRIBUTION NOT USED ********

DISTRIBUTION OK (Y/N) ? [Y] -3Y

196

MACHINE TYPE 41 : LOG TRUCK

FREQUENCY DISTRIBUTION FOR TIMES BETWEEN FAILURES:

CLASS 1: (101.REL.FREQF.NCY? [0] >

CLASS 1: TIME BETWEEN FAILURES? [0] >

FREQUENCY DISTRIBUTIONS MACHINE TYPE 41 : LOG TRUCK

CLASS CUM FREQ.% TINE BETW.FAILURE CUM.FREQ.% REPAIR TIME

'MO*" DISTRIBUTION NOT USED ******o*

DISTRIBUTION OK (Y/N) ? [Y] - - - ->Y

END OP SUBROUTINE READIN

YOU HAVE NON DEFINED A MODEL FOR THE MECHANIZED LOG

HARVESTING SIMULATOR. CO YOU WANT TO SAVE THIS MODEL ON

DISK? IF YOU DONT DO SO ALL YOUR WORK WILL BE LOST 11

SAVE MODEL ON DISK Y/N ? [Y]

lilt MODEL HAS BEEN SAVED 1111

PRESS RETURN TO CONTINUE

197

*********1H1********4HH1********************H6*******

>>>LOGS111<<<
INPUT USER-INTERFACE

MAIN -MENU

DEFINING A MODEL I

PRINT OUT A MODEL - 2
EDIT A MODEL 3

EXIT THE PROGRAM 0

ENTER CHOICE PLEASE

198

APPENDIX C

3. Example session, FRONTEND.FOR, Printout

199

3014HHOHHHOFIHOF*1011H1111101-11**4111111410HOHOOHOHHOHOOHHORaiH***

>>>LOGSIM<<<
INPUT USER-INTERFACE

*MAM4,4***************************. 4**414HHHHHOI

MAIN-MENU

DEFINING A MODEL 1

PRINT OUT A MODEL 2

EDIT A MODEL 3

EXIT THE PROGRAM 0

ENTER CHOICE PLEASE > 3

SUBROUTINE PRINT

WITH THIS SUBROUTINE YOU CAN PRINTOUT THE DATA OF A

SIMULATION MODEL PREVIOUSLY DEFINED WITH SUBROUTINE

READIN.

DO YOU WISH TO CONTINUE (Y/N) ? > Y

FILENAME OF MODEL TO BE RETRIEVED? > TEST1.MOD

tit PLEASE WAIT A MOMENT

It! MODEL HAS BEEN SUCCESSFULLY RETRIEVED III

OUTPUT SHOULD BE ROUTED TO:

SCREEN 1

SCREEN & PRINTER 2

PLEASE ENTER CHOICE > 1

200

>>>> FOR EXAMPLE OUTPUTS SEE APPENDIX E <<<

11*****1141*****IH1441101**IMHOOHO1HOO Ir NM / Y 1.1 N 'N 4

>>>LOGSIN<<<
INPUT USER-INTERFACE

MAIN-MENU

DEFINING A MODEL a 1

PRINT OUT' A MODEL a 2
EDIT A MODEL a 3
EXIT THE PROGRAM - 0

ENTER CHOICE PLEASE > 0

201

APPENDIX C

4. Example session, FRONTEND.FOR, Modify

202

>>>LOGSIM(<<
INPUT USER-INTERFACE

t***11***********************

MAIN-MENU

DEFINING A MODEL = 1

PRINT OUT A MODEL = 2

EDIT A MODEL - 3

EXIT THE PROGRAM

ENTER CHOICE PLEASE > 3

SUBROUTINE MODIFY

THIS SUBROUTINE ALLOWS YOU TO MODIFY THE DATA OF A

SIMULATION MODEL PREVIOUSLY DEFINED WITH SUBROUTINE

READIN.

D3 YOU WISH TO CONTINUE (Y/N) > Y

FILENAME OF MODEL TO BE RETRIEVED? > TEST1.MOD

111 PLEASE WAIT A MOMENT It!

111 MODEL HAS BEEN SUCCESSFULLY RETRIEVED 111

203

SUBRROUTINE MODIFY CHOICES:

EDIT SYSTEM PARAMETERS 1

EDIT MATERIAL FREQUENCY DISTRIBUTIONS - 2

EDIT PROCESS PARAMETERS 3

EDIT MACHINE PARAMETERS 4

EDIT MACHINE DISTRIBUTIONS 5

SAVE MODIFYIED MODEL 6

RETURN TO MAIN MENU 0

PLEASE ENTER CHOICE > 1

EDITING SYSTEM PARAMETERS:

NAME OF SIMULATION MODEL : TEST1.MOD

1 AMOUNT TO BE HARVESTED (CU.FT.) : 25640.

2 - TIME DELAY PARAMETER .0100

0 RETURN TO MODIFY MENU

PLEASE ENTER CHOICE --> 1

HOW MANY CU.FT SHOULD BE HARVESTED? --->23450.

EDITING SYSTEM PARAMETERS:

NAME OF SIMULATION MODEL : TEST1.MOD

1 = AMOUNT TO BE HARVESTED (CU.FT.) : 23450.

2 = TIME DELAY PARAMETER .0100

0 - RETURN TO MODIFY MENU

PLEASE ENTER CHOICE ----> 0

SUBRROUTINE MODIFY CHOICES:

EDIT SYSTEM PARAMETERS 1

EDIT MATERIAL FREQUENCY DISTRIBUTIONS = 2

EDIT PROCESS PARAMETERS - 3

204

EDIT MACHINE PARAMETERS 4

EDIT MACHINE DISTRIBUTIONS 5

SAVE MODIFYIED MODEL 6

RETURN TO MAIN MENU 0

PLEASE ENTER CHOICE > 3

EDITING PROCESS PARAMETERS:

1 - PROCESS NO. 1 :FELLING

2 PROCESS NO. 2 :SKIDDING

13 PROCESS NO.13 :FINAL TRANSPORT

0 RETURN TO MODIFY MENU

PLEASE ENTER CHOICE ----> 2

PROCESS NO. 2: SKIDDING

INCOMING ORIGIN : PROCESS NO. 1. FELLING

OUTGOING DESTINATION : PROCESS NO.13. FINAL TRANSPORT

DISTRIBUTION USED 1. WHOLE TREES

STARTUP-INVENTORY LEVEL : 880.0

MINIMUM INVENTORY LEVEL : 220.0

STARTUP LEVEL MINIMUM : 220.0

MAXIMUM INVENTORY LEVEL : 1600.0

STARTUP LEVEL MAXIMUM : 1600.0

LOADER USED : NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

CONTINUE EDITING? Y/N (141) ----> Y

EDITING PROCESS NO. 2

NAME OF PROCESS? > SKIDDING

NO. OF DISTRIBUTION TO USE? > 1

STARTUP-INVENTORY LEVEL? [1) > 1000.

MINIMUM INFEED INVENTORY LEVEL? [0] > 220.

STARTUP-INV.LEVEL AFTER MINIMUM? [01 > 220.

MAXIMUM INFEED INV. LEVEL? [995999.97 > 800.

STARTUP-INV.LEVEL AFTER MAXIMUM? [999999.9] -> 800.

205

WHAT LOADER DO YOU WANT TO USE (32-36) 7 [0]

BUILD-IN MODEL=0 OR USERFUNCTION=1

PROCESS NO. 2: SKIDDING

INCOMING ORIGIN : PROCESS NO. 1. FELLING

OUTGOING DESTINATION : PROCESS NO.13. FINAL TRANSPORT

DISTRIBUTION USED 1. MOLE TREES

STARTUP-INVENTORY LEVEL 1000.0

MINIMUM INVENTORY LEVEL : 220.0

STARTUP LEVEL MINIMUM : 220.0

MAXIMUM INVENTORY LEVEL : 800.0

STARTUP LEVEL MAXIMUM : 800.0

LOADER USED : NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

CONTINUE EDITING? Y/N [N] -> N

EDITING PROCESS PARAMETERS:

1 = PROCESS NO. 1 :FELLING

2 PROCESS NO. 2 :SKIDDING

13 PROCESS NO.13 :FINAL TRANSPORT

0 RETURN TO MODIFY MENU

PLEASE ENTER CHOICE -> 0

SUBRROUTINE MODIFY CHOICES:

EDIT SYSTEM PARAMETERS = 1

EDIT MATERIAL FREQUENCY DISTRIBUTIONS 2

EDIT PROCESS PARAMETERS a 3

EDIT MACHINE PARAMETERS = 4

EDIT MACHINE DISTRIBUTIONS 5

SAVE MODIFYIED MODEL - 6

RETURN TO MAIN MENU 0

206

PLEASE ENTER CHOICE > 4

EDITING MACHINE PARAMETERS:

PLEASE ENTER THE NUMBER OF THE MACHINE YOU

WANT ID EDIT. IF THE MACHINE HAS NOT BEEN

SET ACTIVE PREVIOUSLY YOU CAN ACTIVATE

IT NOW BY SPECIFYING THE INITIAL NUMBER OF

MACHINES GREATER THAN 0.

1-42 MACHINE NUMBER

0 RETURN TO MODIFY MENU

PLEASE ENTER CHOICE ----> 5

PROCESS NO. 2: SKIDDING

MACHINE TYPE 5: CAT 528 GRAB-SKIDDER

INITIAL NUMBER OF MACHINES : 2.

AVERAGE PROCESSING TIME / TREE : .0000

FIXED CONSTANT TIME / LOAD .0800

FIXED CONST. TIME / ONE WAY HAUL : .0000

MACHINE CAPACITY IN CU.FT : 29.44

FIXED COST / SCHEDULED HOUR : 36.72

VARIABLE COST/ MACHINE HOUR : 22.00

CONTINUE EDITING? Y/N [N] -> Y

MACHINE TYPE 5 :

NAME OF MACHINE TYPE ?

INITIAL NUMBER OF MACHINES ?

AVERAGE PROCESSING TIME / TREE?

FIXED CONSTANT TIME / LOAD?

> CAT 528 GRAB-SKIDDER

> 2

[0] > .095

[0]

FIXED CONST. TIME / ONE WAY HAUL? [0]

MACHINE CAPACITY IN CU.FT? [1] > 29.44

FIXED COST / SCHEDULED HOUR [0] > 36.72

VARIABLE COST/ MACHINE HOUR [0] > 28.52

207

MACHINE NO. 2: SKIDDING

MACHINE TYPE 5: CAT 528 GRAB-SKIDDER

INITIAL NUMBER OF MACHINES : 2.

AVERAGE PROCESSING TIME / 'TREE : .0000

FIXED CONSTANT TIME / LOAD .0950

FIXED CONST. TIME / ONE WAY HAUL : .0000

MACHINE CAPACITY IN CU.FT : 29.44

FIXED COST / SCHEDULED HOUR 36.72

VARIABLE COST/ MACHINE HOUR : 28.52

CONTINUE EDITING? Y/N IN]----> N

EDITING MACHINE PARAMETERS:

PLEASE ENTER THE NUMBER OF THE MACHINE YOU

WANT TO EDIT. IF THE MACHINE HAS NOT BEEN

SET ACTIVE PREVIOUSLY YOU CAN ACTIVATE

IT NOW BY SPECIFYING THE INITIAL NUMBER OF

MACHINES GREATER THAN 0.

1-42 MACHINE NUMBER

0 RETURN TO MODIFY MENU

PLEASE ENTER CHOICE ----> 0

SUBRROUTINE MODIFY CHOICES:

EDIT SYSTEM PARAMETERS - 1

EDIT MATERIAL FREQUENCY DISTRIBUTIONS = 2

EDIT PROCESS PARAMETERS 3

EDIT MACHINE PARAMETERS 4

EDIT MACHINE DISTRIBUTIONS = 5

SAVE NODIFYIED MODEL 6

RETURN TO MAIN MENU 0

PLEASE ENTER CHOICE > 0

208

END OF SUBROUTINE MODIFY

YOU HAVE TO SAVE THE EDITED MODEL ON DISK.

OTHERWISE ALL YOUR WORK WILL BE LOST !I

SAVE more, ON DISK UN ? Cr] > Y

1111 FILE: TEST1.MOD ALREADY EXISTS 1111

OVERWRITE OLD FILE? IN] > Y

1111 MODEL HAS BEEN SAVED 1111

PRESS RETURN TO CONTINUE

SUBRROUTINE MODIFY CHOICES:

EDIT SYSTEM PARAMETERS - 1

EDIT MATERIAL FREQUENCY DISTRIBUTIONS - 2

EDIT PROCESS PARAMETERS - 3

EDIT MACHINE PARAMETERS a 4

EDIT MACHINE DISTRIBUTIONS 5

SAVE MODIFYIED MODEL - 6

RETURN TO MAIN MENU a 0

PLEASE ENTER CHOICE > 0

* *
>>>LOGSIM<<<

INPUT USER-INTERFACE

************MM*************************************

209

MAIN-MENU

DEFINING A MODEL - 1

PRINT OUT A MODEL - 2
EDIT A MODEL - 3
EXIT THE PROGRAM - I/

PLEASE ENTER =ICE > D

210

APPENDIX D

TABLE OF CONTENTS:

1. Figure, FORTRAN filestructur FRONTEND.EXE 211

2. Listing, FRONTEND.FOR 212

3. Listing, READIN.FOR 215

4. Listing, PRINTOUT.FOR 245

5. Listing, MODIFY.FOR 258

APPENDIX D

1. Figure, FORTRAN filestructure FRONTEND.EXE

PI all IN. rck

ticil)I -I

I 11'1 [lit/

F Lt:

1-12UN1LND FOR 1

Mct11,, INT .1-'lik

19FI'LF

PR INI t.iI I

MOHIF'r f-

IN I IRE ALE. F ur,

211

212

APPENDIX D

2. Listing, FRONTEND.FOR

213

C********AHHI*

C*

C* OREGON STATE UNIVERSITY

C* JUNE 1986

C*

C* >>> LOGSIM<<<
C*

C* SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS

C*

C*

C* DESIGNED BY : CHRISTOPH WIESE

C* MASTERS CANDIDATE, DEP. OF INDUSTRIAL *

C* ENGINEERING, OREGON STATE UNIVERSITY

C*

C* DESIGNED FOR: DEPARTMENT OF FOREST ENGINEERING

C* OREGON STATE UNIVERSITY

C*

C*

C* SUPERVISION : DR. ELDON OLSEN

C* ASSOCIATE PROFESSOR, DEP. OF INDUSTRIAL *

C* ENGINEERING, OREGON STATE UNIVERSITY

C*

C*

G**********PHHHONHI***MHHOHHOHNHHOM***********MHHOOM***********

C*

C* MAIN PROGRAM OF THE CUTOMIZED SLAM II PROCESSOR: LOGSIM.EXE *

C*

C* 31-MAY-87 18:55

C*

01**

C

C

C

C METACOMMANDS:

C

C

$INCLUDE:PPRCTL.FOR'

C

C PROGRAM DECLARATION:

C

C

PROGRAMM HARVEST

C

C

C

C COMMON BLOCK:

C = *****

C

$ INCLUDE:'VARBLOCK.DOC'

C

C

214

C INITIALIZE SYSTEM PARAMETERS:

C

C

NCRDRs5

NPRNT0

NTAPE -7

XX1.EVEL (1)s15

XXLEVEL(2)s27

)0CLEVEL (5)-39

)0CLEVEL(9).51

XXLEVEL(5) -63

XXLEVEL(6)75

XXLEVEL(7) sal

C

C

C CALL SLAM SIMULATION PROCESSOR

C

C

C

CALL SLAM

C

C

C

C FORMAL END OF PROGRAM

C

C

C

C

STOP "

9998 END

215

APPENDIX D

3. Listing, READIN.FOR

216

OREGON STATE UNIVERSITY

C* JUNE 1986

C*

C* >77 LOGSIM<<<
C*

C* SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS

C*

C*

C* DESIGNED BY : CHRISTOPH WIESE

C* MASTERS CANDIDATE, DEP. OF INDUSTRIAL *

C* ENGINEERING, OREGON STATE UNIVERSITY

C*

C* DESIGNED FOR: DEPARTMENT OF FOREST ENGINEERING

C* OREGON STATE UNIVERSITY

C*

C*

C* SUPERVISION : DR. ELDON OLSEN

C* ASSOCIATE PROFESSOR, DEP. OF INDUSTRIAL *

C* ENGINEERING, OREGON STATE UNIVERSITY

C*

C*

C********************M**MHHM************************Mel********
C*

C* FORTRAN INPUT USER-INTERFACE: READIN.FCR

C*

C* 31-MAY-87 18:55

C*

C**114*************

*

*

*

*

*

C

C

C

C

C

KINCLUDE:TRCTL.FOR'

C

C PROGRAM DECLARATION;

C

C

SUBROUTINE READIN

C

C COMMON BLOCK :

C

C

KINCLUDE:'VARBLOCK.DOC'

C

C DEFINE LOCAL VARIABLES, NAMES & TYPE:

C

C

217

INTEGER*4 IANSWER,INDEXI,INDEX2,INDEX3,INDEX4,INDEX5

INTEGER*4 INDEX6, INDEX7,INDEX8,INDEX9

CHARACIER*20CHRANSWER,CHR1ANSWER

REAL F1ANSWER,F2ANSWER,F3ANSIIER,F4ANSWER,F5ANSWF.R,F6ANSWER.

REAL F7ANSWER,F8ANSWER,F9AHSWER,F10ANSUER,F11ANSUER,FIRANSWER

LOGICAL014 FILESTATUS

C

C BEGIN PROCESSING:

C

C

C OPENING SCREEN:

C

C

WRITE(*,100)

100 FORMAT('1'////5X,

1' SUBROUTINE READIN'/5X,

2' '//5X,

3'THIS IS DIE SUBROUTINE TO DEFINE THE SIMULATION MODEL, LATER' /5X,

4'USED BY THE SLAM PROCESSOR. THE FOLLOWING DATA IS NECCESSARY' /5X,

51TO DEFINE A HARVESTING MODEL:'//5X,

6' - HARVESTING CONFIGURATION, GENERAL PARAMETERS /5X,

7' DISTRIBUTION DATA OF THE TREES/LOGS/PULPLOGS/SAWLOGS')

WRITE(*,101)

101 FORMAT(5X,

1' - MAXIMUIVNINIMIN DATA OF MATERIAL BUFFERS PER PROCESS' /5X,

2' HOW MANY MACHINES USED PER PROCESS'/5X,

3' - MACHINE DATA: TIMES, BREAKDOWN FREQUENCIES, COSTS ETC' / / /5X,

4'DEFAULT VALUES WILL BE GIVEN IN SQUARE BRAKETS [3. IF YOU' /5X,

5'WANT TO USE THEM, HIT SPACE BAR AND PRESS RETURN.'////5X)

WRITE(*,.(A\)') ' DO YOU WISH TO CONTINUE (YIN) 7 CY

READ (*,1(B2,A1)1) CHRANSWER

IF (CHRANSIJER.EQ. 'N') THEN

GOTO 9998

ELSE

CONTINUE

ENDIF

C

C

C

C INITIALIZATION OF ALL VARIABLES

C

C

DO 110 INDEX1- 1,100,1

XX(INDEX1)s0

110 CONTINUE

C

00 114 INDEX11,26,1

CO 112 INDEX2 -1,42,1

USERARR(INDEXI,INDEX2) -0

112 CONTINUE

114 CONTINUE

C

218

DO 118 INDEX141,8,1

DO 116 INDEX241,10,1

DISARR(INDEX1,INDEX2)0

116 CONTINUE

118 CONTINUE

CO 124 INDEX141,42,1

DO 122 INDEX241,4,1

DO 120 INDEX341,10,1

MCNARR(INDEXLINDEX2,INDEX3)40

120 CONTINUE

122 CONTINUE

124 CONTINUE

C

DO 126 INDEX1- 1,52,1

MCHNAMES(INDEX1) 4"

126 CONTINUE

C

DO 128 INDEX141,20,1

PROCNAMESTINDEX1/4"

128 CONTINUE

C

DO 130 INDEX141,4,1

DISTRIBNAMES(INDEX1) 4"

130 CONTINUE

C

C

C

C

C BEGIN OF DEFINING THE MODEL

C

C

C HARVESTING CONFIGURATION AND GENERAL PARAMETERS:

C

C

WRITE(*0000)

1000 FORMAT(111//////////////////////////////.

1 20X' FIRST PHASE',/,

2 20X' ',//,

3' SPECIFICATION OF GENERAL SYSTEM PARAMETERS'/)

C

C

1010 ITRITE(4,'(//,A,\)')' WHAT IS THE FILENAME OF THE MODEL?

FIEAD(*,'(A20)1)FILENAME

IF(FILENAME.EQ.") THEN

WRITE (*,'(/,A)'). 111 CANNOT BE, PLEASE TRY AGAIN It!'

GOTO 1010

ENDIF

C

C

219

1020 WRITE(*,'(//,A,\)'r HOW MANY CU.FT SHOULD BE HARVESTED? ->'

READ(*,'(F8.0)')F1ANSWER

IF(F1ANSWER.EQ.0) THEN

WRITE (*,'(/di)'r tit CANNOT BE, PLEASE TRY AGAIN III'

GOTO 1020

ELSEIF(F1ANSWER.GE.9999998) THEN

WRITE (*,'(/,A)'r Itt CANNOT BE, PLEASE TRY AGAIN HI'

GOTO 1020

ELSE

)C((4) -F1ANSWER

ENDIF

C

C

1030 WRITE(*,'(//,A,W). VALUE OF THE TIME DELAY PARAMETER? ->.

READ(*,1(F8.4)')F1ANSWER

IF(F1ANSWER.EQ.0) THEN

WRITE (*,W,A)'). ttt CANNOT BE, PLEASE TRY AGAIN ft!'

GOTO 1030

ELSEIF(F1ANSWER.GE.999.0R.F1ANSWER.LT.0.0001) THEN

WRITE (*,'(/,A)')' tit CANNOT BE, PLEASE TRY AGAIN tIt'

GOTO 1030

ELSE

n(10) -F1ANSWER

ENDIF

C

C

1100 WRITE(*,1110)

1110 FORMAT(/////////////////////////////,20X,

1ISECOND PHASE' /19X' '///,

2' WE NOW ARE GOING TO DEFINE THE MATERIAL FLOW THROUGH'/,

3' THE HARVESTING SYSTEM. FOR EACH PROCESS PLEASE STATE'/,

4' THE PROCESS FROM WHICH THE INCOMING MATERIALS STREAM' /,

5' ORIGINATES AND THE DESTINATION OF THE OUTGOING MATERIAL'/,

6' STREAM. A VALUE OF 0 FOR BOTH QUESTIONS MEANS THAT THE'/,

7' PROCESS IS NOT USED.'//)

WRITE(*,'(A \)') (PLEASE HIT RETURN TO CONTINUE)'

READ (*,4(BZ,I6)1) IANSWER

WRITE(*,'(/////////////////////////////)')

C

C

C

DO 1350 INDEX1 -103,1
C

1200 IF(INDEXI.EQ.1)THEN
WRITE(*,'(A)')' PROCESS 1:'
WRITE(*,'(A)')'

WRITE(*,'(A\)')t OUTGOING DESTINATION?
READ(*,'(BN,F8.0)')F1ANSWER

IF(F1ANSWER.LE.I.OR.FIANSWER.GT.13.)THEN

WRITE(*.W.A./11)1 It OUT CANNOT BE, PLEASE TRY AGAIN ?I'
COTO 1200

ELSE

220

USERARR(23.1)-F1ANSWER

USERARR(24,1)*0

ENDIF

ELSEIF(INDEXI-GE.2.AND.INDEX1.LE.10)THEN

WRITE(*,1210)INDEX1

1210 FORMAT(//,' PROCESS './)

WRITE(*.1(A\)'). INCOMING ORIGIN? - - ->'

READ(*,'(BN,F8.0).) F1ANSWER

WRITE(*,'(A\)') ' OUTGOING DESINATION7

READ(*,'(BN,FE1.0)1) F2ANSWER

IF(F1ANSWER.LT.0.0R.F1ANSWER.GT.11.0R.F1ANSWER.EQ.INDEX1)THEN

WRITE(*,1220)

1220 FORMAT(/,' tt IN CANNOT BE, PLEASE TRY AGAIN tt'/)

GOTO 1200

ELSEIF(F2ANSWER.LT.O.OR.F2ANSWER.GT.13.0R.F2ANSWER.EQ.INDEX1)

1 THEN

WRITE(*,1230)

1230 FORMAT(/,' tt OUT CANNOT BE, PLEASE TRY AGAIN tt'/)

GOTO 1200

ELSE

USERARR(23,INDIM1)F2ANSWER

USERARR(24,INDEX1)-F1ANSWER

ENDIF

C

ELSEIF(INDEX1.EQ.11)THEN

WRITE(*,1240)INDEX1

1240 FORMAT(//,' PROCESS ',/)

WRITE(*,1(A\)'). INCOMING ORIGIN? - - ->'

READ(*,l(BN,F8.0)') F1ANSWER

WRITE(*.'(A\)') ' OUTGOING DESINATION, ROUTE 1 7

READ(*.1(0N.F8.0).) F2ANSWER

WRITE(*.1(AW) ' OUTGOING DESINATION, ROUTE 2 7 --->'

READ(*,'(BN,F8.0)') F3ANSWER

IF(F1ANSWER.LT.O.OR.F1ANSWER.GT.11.0R.F1NSWER.EQ.INDEX1)THEN

WRITE(*,1250)

1250 FORMAT(/,' It IN CANNOT BE, PLEASE TRY AGAIN It' /)

GOTO 1200

ELSEIF(F2ANSWER.LT.O.OR.F2ANSWER.GT.13.0R.F2ANSWER.EQ.INDEX1)

1 THEN

WRITE(*,1260)

1260 FORMAT(/,' It OUT 1 CANNOT BE, PLEASE TRY AGAIN 11'/)

GOTO 1200

ELSEIF(F5ANSWER.LT.O.OR.F3ANSWER.GT.13.CR.F3ANSWER.EQ.INDEX1)

1 THEN

WRITE(*,1270)

1270 FORMAT(/,' 11 OUT 2 CANNOT BE, PLEASE TRY AGAIN I!' /)

COTO 1200

ELSE

USERARR(24,INDEX1)F1ANSWER

USERARR(7,5)- F2ANSWER

USERARR(7,6)- F3ANSWER

ENDIF

221

ELSEIF(INDEX1.EQ.12)THEN

WRITE(*,1280)INDEX1

1280 FORMAT(//,' PROCESS 11)

WRITE(*,'(A\)'Y INCOMING ORIGIN?

READ(*,'(BN,F8.0)') F1ANSWER

IF(F1ANSWER.LT.O.OR.FIANSWER.GT.11.0R.F1ANSWER.EQ.INDEX1)THEN

WRITE(46,1290)

1290 FORMAT(/,' II IN CANNOT BE, PLEASE TRY AGAIN 1t'/)

GOTO 1200

ELSE

USERARR(24,INDEX1) sFIANSWER

USERARR(23,INDEX1)0

ENDIF

ELSE

WRITE(*,1300)INDEX1

1300 FORMAT(//,' PROCESS ',I2,':',/,' ',/)

WRITE(*,'(AW). INCOMING ORIGIN?

READ(*,.(BN,F8.0).) F1ANSWER

IF(F1ANSWER.LT.O.OR.F1ANSWER.GT.11.0R.F1ANSWER.EQ.INDEX1)THEN

WRITE(*,1310)

1310 FORMAT(/,' 11 IN CANNOT BE, PLEASE TRY AGAIN IP!)

GOTO 1200

ELSE

USERARR(24,INDEX1)-F1ANSWER

USERARR(23,INDEXI) 0

ENDIF

ENDIF

CONTINUE

C

1350 CONTINUE

C

C

WRITE(*,1400)

1400 FORMAT(/////////,' PROCESS /

1'

C

DO 1500 INDEX1-1,130

C

IN ORIGIN OUT DESTINATION'/,

IF (USERARR (23 , I NDEX1) EQ.0 . AND USERARR (24 , INDEX1).EQ.O ITHEN

WRITE(*,'(4X,I2)')INDEX1

GOTO 1450

ENDIF

IF(INDEX1.EQ.1) THEN

WRITE (*,1410)INDEX1,USERARR(23,INDEX1)

1410 FORMAT (4X,12,23X,F3.0)

ELSEIF(INDEX1.GE.2.AND.INDEX1.LE.10) THEN

WRITE (*0420)INDEX1,USERARR(24,INDEX1),USERARR(23,INDEX1)

1420 FORMAT (4X,I2,10X,F3.0,10X,F3.0)

ELSEIF(INDEX1.EQ.11) THEN

WRITE (*,1430)INDEX1,USERARR(24,INDEX1),USERARR(7,5),

1 USERARR(7,6)

1430 FORMAT (4X,I2,10X,F3.0,10X,F3.0,2X,F3.0)

ELSE

WRITE (1.,1440)INDEX1,USERARR(24,IATEX1)

1440 FORMAT (4X,I2,10X,F3.0)

ENDIF

1450 CONTINUE

1500 CONTINUE

C

WRITE (,1550)

1550 FORMAT(/,' IS THIS CORRECT? (YM) [Y]

READ (*,'(A1)')CliRANSWER

IF(CHRANSWER.EQ.'N') THEN

COTO 1100

ELSE

CONTINUE

ENDIF

C

C

C

DO 1610 INDEX1-1,13,1

>

IF(INDEXLEQ.1) THEN

INDEX2-USERARR(23,1)

IF (USERARR(24,INOEX2).NE.INDEX1) GOTO 1650

ELSEIF(INDEF1.GE.2.AND.INDEX1.LE.10) THEN

IF(USERARR(23,INDEX1).EQ.0.AND.USERARR(24,INDEX1).EQ.0)GOTO 1600

INDEX2-USERARR(23,INDEX1)

IF(USERARR(24,INDEX2).NE.INDEX1) GOTO 1650

INDEX2 -USERARR(24,INDEX1)

IF(INDEX2.EQ.11) GOTO 1600

IF (USERARR(23,INDEX2).NE.INDEXI) COTO 1650

ELSEIF(INDEX1.EQ.11) THEN

IF(USERARR(24,INDEX1).EQ.O.AND.USERARR(7,5).EQ.0.AND.

1 USERARR(7,6).EQ.0) GOTO 1600

INDEX2-USERARR(7,5)

IF(USERARR(24,INDEX2).NE.INDEX1) GOTO 1650

INDEX2-USERARR(7,6)

IF(USERARR(24,INDEX2).NE.INDEX1) GOTO 1650

ELSEIF(INDEX1.EQ.12) THEN

IF(USERARR(23,INDEX1).EQ.O.AND.USERARR(24,INDEX1).EQ.0)GOTO 1600

INDEX2-USERARR(24,INDEX1)

IF(INDEX2.EQ.11) GOTO 1600

IF(USERARR(23,INDEX2).NE.INDEX1) GOTO 1650

ELSEIF(INDEX1.EQ.13) THEN

INDEX2USERARR(24, INDEX1)

IF(USERARR(23,INDEX1).EQ.0.AND.USERARR(24,INDEX1).EQ.0)GOTO 1600

IF(INDEX2.EQ.11) GOTO 1600

IF (USERARR(23,INDEX2).NE.INDEXI) GOTO 1650

ELSEIF(USERARR(23,12).EQ.O.AND.USERARR(24,12).EQ.O.AND.

1 USERARR(25,13).EQ.0.AND.USERARR(24,15).EQ.0) THEN

GOTO 1650

ELSE

CONTINUE

ENDIF

222

1600 CONTINUE

1610 CONTINUE

C

GOTO 2000

C

C

1650 kRITE(*,1660) INDEX1

1660 FCRMAT(//,

1' 1111 LOGICAL ERROR IN PROCESS NO.1I2' 1111'/

2' I111 PLEASE ENTER FROM THE BEGINNING tIft'///)

WRITE(*,'(A\I') ' (PLEASE HIT RETURN TO CONTINUE)'

READ (* '(B2,16)') [ANSWER

GOTO 1100

C

C

C

C DISTRIBUTION DATA OF THE TREES/LOGS/PULPLOGS/SAWLOGS
C

C

2800 WRITE(*,2010)

2010 FORMAT(/////////////////////////////,20X,

1'111IRD PHASE' /20X' '//,

2' NOW WE DEFINE THE CUMULATIVE FREQUENCY DISTRIBUTIONS '/,

3' USED TO DESCRIBE TREES, LOGS ETC..'/,
4' YOU CAN SPECIFY UP TO FOUR DIFFERENT FREQUENCY DISTRIBUTIONS,'/,

5' WITH 10 FREQUENCY CLASSES EACH. YOU HAVE TO SPECIFY AT LEAST'/,
6' ONE CLASS IN ONE DISTRIBUTION.'/,

7' !It DONT FORGET THE DECIMAL POINT FOR INPUT 111',//)

WRITE(*.1(A\)') (PLEASE HIT RETURN TO CONTINUE)'

READ (* l(BN I6)') IANSWER
C

C

C

C

C

DO 2300 INDEX1 -1,4,1

IF(INDEX1.EQ.1)THEN
INDEX8 -1

INDEX9 -2

ELSEIF(INDEX1.EQ.2)THEN
INDEX8.3

INDEX9.4

ELSEIF(INDEX1.EQ.3)THEN

INDEX8 -5

INDEX96
ELSEIF(INDEXLEQ.4)THEN

INDEX8s7

INDEX9-8

ELSE
CONTINUE

ENDIF

223

2100 WRITE(*,2110)INDEX1

2110 FORMAT(///////////////////////////////////////,

1 ' FREQUENCY DISTRIBUTION NO.'12.':'/.

2 '

1)

C

WRITE(*,2120)

2120 FORMAT(/,' NAME OF THIS DISTRIBUTION 7

READ(*.'(W)04UNSWER

DISTRIBNAMES(INDEX1)-CHRANSWER

C

2130 DO 2170 INDEX2-1,10,1

2140 WRITE(*,2150)INDEX2

2150 FORMAT(/,' CLASS CUM.REL.FREQENCY7 (01--->'\)

READ(*,'(BN,F8.2)')F1ANSWER

WRITE(*.2160)INDEX2

2160 FORMAT(' CLASS ',I2,': VOLUME CU.FT?

READ(*,.(BN,F8.2)')F2ANSWER

IF(INDEX2.EQ.1.AND.F1ANSWER.EQ.0)THEN

GOTO 2180

ELSEIF(F2ANSWER.LE.0)7HEN

WRITE(*.W.A11)1 It CANNOT BE, PLEASE TRY AGAIN It'

GOTO 2140

ELSEIF(FIANSWER.GT. 100)THEN

WRITE(*,W.Ar)' II CANNOT BE, PLEASE TRY AGAIN It'

GOTO 2140

ELSEIF(INDEX2.GT.1.AND.FIANSWER.LE.F3ANSWER)THEN

WRITE(*,W,A1')1 It CANNOT BE. PLEASE TRY AGAIN It'

GOTO 2140

ELSEIF(INDEX2.EQ.10.AND.F1ANSWER.NE.100)THEN

WRITE(*,W,A).)1 It CANNOT BE. PLEASE TRY AGAIN 11'

GOTO 2140

ELSE

F3ANSWERF1ANSWER

DISARR(INDEX8, INDEX2) =F1ANSWER

DISARR(INDEX9, INDEX2)- F2ANSWER

IF(F1ANSWER.EQ.100)GOTO 2180

ENDIF

2170 CONTINUE

C

2180 CONTINUE

C

C

C

WRITE(*,2200)INDEX1,DISTRIBNAMES(INDEX1)

2200 FORKAT(//,
1 10X,'DISTRIBUTION NO.',

2 12' ',A,/,

3 10X,' '//,

4 ' CLASS CUM.REL.FREQ.%

5 '

IF(DISARR(INDEX8,1).EQ.0)THEN

WRITE01,1(/.3X,A)'r
ELSE

CU.FTU,
,)

DISTRIBUTION NOT USED **N****'

224

225

DO 2230 INDEX2 *1,10,1

IF(DISARR(INDEXB,INDEX2).EQ.0)GOTO 2230

WRITE(41,2210)INDEX2,DISARR(INDEXB,INDEX2),

1 DISARRR(INDEX9,INDEX2)

2210 FORMAT(4X,I2,10X,F13.2,10X,F8.2)

2230 CONTINUE

ENDIF

WRITE(*,'(//,A,\)'V DISTRIBUTION OK (Y/N) 7 [Y]---->'

READ(*,'(A1)')04RANSWER

IF(CHRANSWER.EQ.'N')THET4

DO 2240 INDEX2 *1,10,1

DISARR(INDEX8, INDEX2) *0

DISARR(INDEX9, INDEX2) *0

2240 CONTINUE

GOTO 2100

ENDIF

C

C

2300 CONTINUE

C

C

C

C

IF(DISARR(1,1).EQ.O.AND.DISARR(3,1).EQ.O.AND.DISARR(5,1).EQ.0

1.AND.DISARR(7,1).EQ.0) THEN

WRITE (*,2350)

2350 FORMAT(////,

1 ' YOU DID NOT SPECIFY ANY DISTRIBUTION 1111"/,

2 ' THIS IS NOT ALLOWED, ENTER FROM THE BEGINNING 11141///)

WRITE(*.I(AW)

READ (*,'(BZ,I6)') IANSWER

GOTO 2000

ELSE

CONTINUE

ENDIF

(PLEASE HIT RETURN TO CONTINUE)'

C

C

C

C

C

C

C DESCRIPTION OF THE PROCESSES USED
C

C

3000 WRITE(*,3010)

3010 FORMAT(///////////////////////////////,20X,
1'FORTH PHASE' /20X' '//,

2' IN THIS PHASE WE WILL DESCRIBE THE PROCESSES USED A LITTLE' /,

3' BIT MORE IN DETAIL. YOU WILL BE ASKED FOR :' /,
4' - AN OPTIONAL NAME FOR THE PROCESS'/,
5' - THE DISTRIBUTION TO BE USED FOR THIS PROCESS'/,

6' - STARTUP-INVENTORY LEVEL FOR THE PROCESS'/,
7' - MINIMUM INPUT BUFFER SIZE')

WRITE(4,3020)

3020 FCRMAT(

1' - STARTUP-INV. LEVEL AFTER MINIMUM HAS BEEN REACHED'/,

2' - MAXIMUM INPUT BUFFER SIZE'/,

3' STARTUP-INV. LEVEL AFTER MAXIMUM HAS BEEN REACHED'//.

4' PLEASE REMEMBER: ME INPUT BUFFER OF A PROCESS IS THE OUT-'/,

5' PUT BUFFER OF HIS PREVIOUS PROCESS. THE MINIMUM BUFFER SIZE')

WRITE(,3030)

3030 FCRMAT(' I,

1' EFFECTS THE CURRENT PROCESS, THE MAXIMUM EFFECTS THE PREVIOUS'/,

2' ONE.'//,

3' t!t COW FORGET THE DECIMAL POINT FOR INPUT t!!',//)

WRITE(4,1(A\P) (PLEASE HIT RETURN TO CONTINUE)*

READ (4,'(32,16)') IANSWER

C

F1ANSWER0
F2ANSWER0
F3ANSIER0
F4ANSWER0
F5ANSWERs0
F6ANSWER0
F7ANSWER-0

C

C

C

3100 DO 3500 INDEX1 *1,13,1

C

C

3105 IF(USERARR(23,INDEX1).EQ.O.AND.USERARR(24,INDEX1).EQ.0) GOTO 3490
C

WRITE(,3110)INDEX1
3110 FORMAT(////////////////////////' PROCESS NO.'12./' ')

RRITE(,"(A,\)1)' NAME OF PROCESS? > '

READ(4,'(A20)1)0MANSWER
C

3120 WRITE(,.(A,\)'r NO. OF DISTRIBUTION TO USE? > '

READ(4,'(12)')IANSWER
INDEX2*IANSWER*2

INDEX2 *INDEX2 -1

IF(IANSWER.LT.1.0R.IANSWER.GT.4)1HEN

WRITE(4,3130)
3130 FORMAT(/,' !!! CANNOT BE, PLEASE TRY AGAIN t1t')

GOTO 3120

ELSEIF(DISARR(INDEX2,1).EQ.0.) THEN
WRITE(,3135)

3135 FORMAT(/,' It! DISTRIBUTION NOT ACTIVE, PLEASE WY AGAIN !!!')

GOTO 3120

ELSE

INDEX9 *IANSWER

ENDIF
C

IF(INDEX1.EQ.1) GOTO 3260

226

227

C

3140 WRITE(01,'(A,\)')1 STARTUP - INVENTORY LEVEL?

READ(*,1(F8.1)')F1ANSWER

IF(F1ANSWER.LT.0.OR.F1ANSWER.GE.XX(4)) THEN

WRITE(*,3150)

3150 FORMAT(/,' tit CANNOT BE, PLEASE TRY AGAIN tit')

GOTO 3140

ELSEIF(F1ANSWER.EQ.0)THEN

F1ANSWER*1

ELSE

CONTINUE

ENDIF

C

3160 WRITE(*,1(11,\)')' MINNIKRI INFEED INVENTORY LEVEL? [0] > '

READ(*,'(F8.1)')F2ANSWER

IF(F2ANSWER.LT.0.0R.F2ANSWER.GT.F1ANSWER) THEN

WRITE(*,3170)

3170 FORMAT(/,' Mt CANNOT BE, PLEASE TRY AGAIN tit')

GOTO 3160

ELSE

CONTINUE

ENDIF

C

3180 WRITE(*,'(A,\)')' STARTUP -INV.LEVEL AFTER MINIMUM? (0] > '

READ(",l(F0.1)')F3ANSWER

IF(F3ANSWER.LT.O.OR.F2ANSWER.GT.F3ANSWER) THEN

WRITE(*,3190)

3190 FORMAT(/,' t!t CANNOT BE, PLEASE TRY AGAIN t!!')

GOTO 3180

ELSE

CONTINUE

ENDIF

C

3200 WRITE(*,'UOIT MAXIMUM INFEED INV. LEVEL? (999999.9

READ(*,'(F13.1)')F4ANSWER

IF(F4ANSWER.LT.0) THEN

WRITE(*,3210)

3210 FORMAT(/,' tt! CANNOT BE, PLEASE TRY AGAIN !ft')

GOTO 3200

ELSEIF(F4ANSWER.GT.O.AND.F3ANSWER.GE.F4ANSWER) THEN

WRITE(*,3220)

3220 FORMAT(/,' tt! CANNOT BE, PLEASE TRY AGAIN tt!')

COTO 3200

ELSEIF(F4ANSWER.EQ.0)THEN

F4ANSWER -999999.9

ELSE

CONTINUE

ENDIF

C

3230 WRITE(*,'(10)1)' STARTUP -INV.LEVEL AFTER MAXIMUM? [999999.9] - -> '

READ01,'(F8.1)11F5ANSWER

IF(F5ANSWER.LT.O.OR.F5ANSWER.GT.F4ANSWER) THEN

WRITW,3240)

228

3240 FORMAT(/,' It! CANNOT BE, PLEASE TRY AGAIN !W)

GOTO 3230

ELSEIF(F5ANSWER.GT.0.AND.F5ANSWER.LT.F2ANSWER) THEN

URITE(4,3250)

3250 FORMAT(/,' !!! CANNOT BE, PLEASE TRY AGAIN 111')

GOTO 3230

ELSEIF(F5ANSWER.EQ.0)1NEN

F5ANSWER958585.8

ELSE

CONTINUE

ENDIF

C

3260 WRITE(4,3270)

3270 FORMAT(' WHAT LOADER DO YOU WANT TO USE (32-36) ? [0]

1
'

READ(,*(I2)1)INDEX8

IF (INDEXB.EQ.0.0R.INDEX8.GE.32.AND.INDEX8.LE.36) THEN

CONTINUE

ELSE

WRITE(4,3280)

3280 FORMAT(/,' It! CANNOT BE, PLEASE TRY AGAIN HI')

COTO 3260

ENDIF

C

3290 WRITE(*,3300)

3300 FORMAT(' TIME DELAYS HANDELD BY',/

1 ' BUILD-IN MODEL -0 CR USERFUNCFION e1 ? [0]

2 ..\)

READ(4, ' (I2).)INDFX7

IF(INDEX7.GT.1.0R.INDEX7.LT.0) THEN

WRITE(*,3310)

3310 FORMAT(/,' t!! CANNOT BE, PLEASE TRY AGAIN tit')

GOTO 3290

ELSE

CONTINUE

ENDIF

C

C

C

C

WRITE(*,3400)INDEX1,CHRANSWER,INDEX9,F1ANSWER,F2ANSWER,F3ANSWER,

1 F4ANSWER,F5ANSWER

3400 FCRMAT(////////////////////,

1 PROCESS N0.'I2,': 'A,/' '//

2 DISTRIBUTION USED: 'I2,/

3 STARTUP INVENTORY: ',F8.1,/

4 MINIMUM INVENTORY: ',F8.1,/

5 STARTUP MINIMUM : ',F8.1,/

6 MAXIMUM INVENTORY: ',FILL/

7 STARTUP MAXIMUM :

IF(INDEX8.EQ.0)THEN

WRITE(,100')' LOADER TYPE USED : NONE'

ELSE

229

WRITE(*,3410)INDT03

3410 FORMAT(' LOADER TYPE USED : ',I2,)

ENDIF

IF(INDEX7.EQ.0)THEN

WRITE(*.'(A)'r TINE DELAYS BY : BUILD-IN FUNCTIONS'

ELSE

WRITE(*,1(A)'r TINE DELAYS BY : FORMAN -USERFUNCTION'

ENDIF

WRITE(*,'(//,A,\)'II INPUT DATA OK (Y/N)? EY] - - - -3'

READ(N,'(A1)1)CHR1ANSWER

IF(CHRIANSWER.EQ.'N')THEN

GOTO 3105

ELSE

PRCK2UMES(INDEX1)-CHRANSWER

USERARR(5,INDEX1)4INDEX9

INDE2(2-)OTLEVEL(7)+INDEXI

)C((INDEX2)-F1ANSWER

INDEX2-)CCLEVEL(3)+INDEX1

TUINDEX2)-F2ANSWER

INDEX2-ECLEVEL(5)+INDEXI

EgINDEX2)43ANSWF.R

INDEX2-XXLEVIU.(4)*INDEX1

XX(INDEX2)-F4ANSWER

INDEX2- XXLEVEL(6) +INDEX1

XX(INDEX2)-F5ANVER

USERARR(4,INDEX1) -INDEXB

USERARR(9,INDEXI) -INDEX7

ENDIF

C

3490 CONTINUE

C

3500 CONTINUE

C

C

C

C

C SPECIFYING THE RESOURCES USED
C

C

5000 WRITE(*,5010)

5010 FORMAT(///////////////////////////////,20X,
'FIFTH PHASEI/20)(1 '//,

2' WE NOW SPECIFY THE RESOURCES E.G. MACHINES WE WANT TO USE IN'/,
3' EACH PROCESS. FOR EACH ACTIVE PROCESS THE PROGRAM WILL GIVE'/,
4' A CHOICE OF DIFFERENT MACHINE TYPES. YOU WILL HAVE TO SPECIFY'/,

5' THE INITIAL NUMBER OF MACHINES FOR EACH TYPE. MULTIPLE TYPES'/,

6' OF MACHINES WITH DIFFERENT INITIAL NUMBERS OF MACHINES PER '/,
7' PROCESS ARE POSSIBLE.')
WRITE(*,5020)

5020 FORMAT(

1' HOWEVER, IF YOU HAVE SPECIFIED ANY PROCESSES USING LOADERS'/,

230

2' THE PROGRAM WILL PROMPT YOU FIRST TO ENTER HOW MANY'/,

3' MACHINES FOR EACH LOADER TYPE USED YOU WANT TO EMPLOY.'//,

4' THE MAXIMUM NUMBER OF MACHINES WHICH THE NETWORK WILL'/,

5' HANDEL IS APPROXIMATLY 90 MACHINES IN TOTAL.'///)

WRITE(*,'(A \)') (PLEASE HIT RETURN TO CONTINUE)'

READ (1,1(02,16) IANSWER
C

C

C

C SPECIFYING THE NUMBER OF LOADER USED:

C

C

C

4000 INDEXI -0

INDEX20

INDEX3 -0

INDEX40

INDEX50

DO 4010 INDEX7- 1,13,1

IF (USERARR(4,INDEX7).EQ.32) THEN

INDEX11

ELSEIF (USERARR(4,INDEX7).EQ.33) THEN

INDEX21

ELSEIF (USERARR(4,INDEX7).EQ.34) THEN

INDEX31

ELSEIF (USERARR(4,INDEX7).EQ.35) THEN

INDEX41

ELSEIF (USERARR(4,INDEX7).EQ.36) THEN

INDEX5 -1

ELSE

CONTINUE

ENDIF

4010 CONTINUE

C

IF (INDEXLEQ.M.AND.INDEX2.EQ.0.AND.INDEX3.EQ.0.AND.

1 INDEX4.EQ.0.AND.INDEX5.EQ.0) COTO 4900

WRITE(*,4100)

4100 FORMAT(////////////////////////,

1' YOU HAVE TO SPECIFY THE NUMBER OF LOADERS',

2' YOU WANT TO USE :' /,

3'

4' '/)

C

DO 4150 INDEX7- 32,36,1

IF(INDEX7.EQ.32.AND.INDEX1.EQ.0) GOTO 4140

IF(INDEX7.EQ.33.AND.INDEX2.EQ.0) GOTO 4140

IF (INDEX7.EQ.34.AND.INDEX3.EQ.0) GOTO 4140

IF(INDEX7.EQ.35.AND.INDEX4.EQ.0) COTO 4140

IF(INDEX7.EQ.36.AND.INDEX5.EQ.0) GOTO 4140

4110 WRITE(,4120)INDEX7

231

4120 FORMAT(' HOW MANY LOADERS TYPE ',I2,' DO YOU WANT TO USE 71,

1 '
> IA)

READ(*,'(I2)')IANSWER

INDEX8wIANSWER

IF (IANSWER.LE.0) THEN

WRITE(*,4130)

4130 FORMAT(/,' 11! CANNOT BE, PLEASE TRY AGAIN 111")

GOTO 4110

ELSE

USERARR(6,INDEX7)IANSWER

ENDIF

4140 CONTINUE

4150 CONTINUE

C

C

WRITE(*.4200)

4200 FORMAT(/////////////////////////////////////,

1 ' LOADING DEVICES: './.

2 ' '/)

C

WRITE(*,4210)USERARR(6,32),USERARR(6,33),USERARR(6,34),

1 USERARR(6,35),USERARR(6,36)

4210 FORMAT(' NUMBER OF LOADERS TYPE 32 USED : 'F3.0,/

1 NUMBER OF LOADERS TYPE 33 USED : 'F3.0,/

2 ' NUMBER OF LOADERS TYPE 34 USED : 'F3.0,/

3 ' NUMBER OF LOADERS TYPE 35 USED : 'F3.0,/

4 ' NUMBER OF LOADERS TYPE 36 USED ; 'F3.0)

WRITE(*.'(//.A.\)')' INPUT DATA OK (YIN)? [Y] -)'

READ(*,'(A1)')CHRANSWER

IF(CHRANSWER.EQ.'N')GOTO 4000

C

4900 CONTINUE

C

C

C

CC

C

100E1(94

DO 5900 INDEX?- 1.13.1

C

5050 IF(UsERARRI23,INDEXILEQ.0.AND.OSERARR(24,INDEX1).EQ.0)GoTo 5890

C

IF (INDEX1.EQ.1) THEN

5100 WRITE (*,5110)INDEX1,PROCNAMES(INDEX1)

5110 FORMAT(//////////////////////,3X,'PROCESS NO.'I2,': ',A,/

1 3X,' ',/

2 ' THERE ARE FOUR (4) DIFFERENT MACHINE TYPES POSSIBLE:',/)

DO 5150 INDEX21,4,1

5120 WRITF(*,5130)INDEX2

5130 FORMAT(' MACHINE TYPE ',I2,': INITIAL / OF MACHINES 7'

1 [0] > 1.\)

READ(*,1(I2)')IANSWER

232

IF(IANSWER.LT.O.OR.IANSWER.GT.80) THEN

WRITE(*,5140)

5140 FORMAT(/,' 111 CANNOT BE, PLEASE TRY AGAIN !It')

GOTO 5120

ELSE

USERARR(6,INDEX2)*IANSWER

INDEX9INDEX9+IANSWER

ENDIF

5150 CONTINUE

IF(USERARR(6,1).EQ.O.AND.USERARR(6,2).EQ.O.AND.USERARR(6,3).EQ.

1 0.AND.USERARR(6,4).EQ.0) THEN

WRITE (*,5160)

5160 FORMAT(//,' IttI YOU HAVE NOT ACTIVATED ANY MACHINE ',

1 'IN PROCESS 1 1t11',/

2 ' It11.15XITHIS CANNOT BE, PLEASE TRY AGAIN'15X11111',/)

GOTO 5100

ENDIF

C

ELSEIF (INDEX1.GE.2.AND.INDEX1.LE.10) THEN

5200 WRITE (*,5210)INDEX1,PROONANES(INDEXI)

5210 FORMAT(////////////////////////,3X,'PROCESS NO.'I2,': ,,A,/

1 3X,' ',/

2 ' THERE ARE THREE (3) DIFFERENT MACHINE TYPES POSSIBLE:',/)

DO 5250 INDEX2 -1,3,1

INDEX3INDEX1*3-2+INDEX2

5220 WRITEO',5230)INDEX3

5230 FORMAT(' MACHINE TYPE ',I2,': INITIAL / OF MACHINES ?'

[0])

READ(*,'(I2)'/IANSWER

IRDEXII*INDEX5+IANSWER

IF(IANSWER.LT.O.OR.INDEXILGT.80) THEN

WRITE(*,5240)

5240 FORMAT(/,' tt! CANNOT BE, PLEASE TRY AGAIN It!')

GOTO 5220

ELSE

USERARR(6,INDEX3)- IANSWER

INDEX9- INDEX9+IANSWER

ENDIF

5250 CONTINUE

INDEX4*INDEX1*3 -1

INDEX5*INDEX1*3

INDEX6*INDEX1*3+1

IF(USERARR(6,INDEX4).EQ.O.AND.USERARR(6,INDEX5).EQ.O.AND.

1 USERARR(6,INDEX6).EQ.0) THEN

WRITE (11,5260)INDEX1

5260 FORMAT(//,' 1111 YOU HAVE WIT ACTIVATED ANY MACHINE ',

1 'IN PROCESS ',I2,' Mt.,/

2 ' ttIt'15/0THIS CANNOT BE, PLEASE TRY AGAIN'15X'Ittl',/)

GOTO 5200

ENDIF

C

ELSEIF (INDEXI.EQ.11) THEN

5300 WRITE (,5310)INDEX1,PROCNAMES(INDEX1)

233

5310 FORMAT(////////////////////////,3X,'PROCESS NO.92,': ',A,/

1 3X,' ',/

2 ' FOR THIS PROCESS YOU HAVE TO SPECIFY HOW MUCH OF THE'/

3 ' INCOMING INVENTORY HILL BE ROUTED TO THE TWO FOLLOWING'/

4 ' PROCESSES',/)

5320 NRITE(*,5330)

5330 FORMAT(' HOW MUCH INVENTORY IN % GOES ROUTE 1 7 %%%.%%

1 ",\)

READ(4,1(F6.2)')F1ANSWER

WRITE(*,5340)

5340 FORMAT(' HOW MUCH INVENTORY IN % GOES ROUTE 2 7 %%%.%%

1

READ(4,1(F6.2)')F2ANSWER

F3ANSIERFlANSWER4F2ANSWER

IF (F3ANSWER.NE.100) THEN

WRITE(4,5350)

5350 FORMAT(/,' 111 CANNOT BE, PLEASE TRY AGAIN III')

GOTO 5320

ELSE

USERARR(7,3)- F1ANSWER

USERARR(7,4)- F2ANSWER

ENDIF

C

ELSEIF (INDEXI.EQ.12) THEN

5400 WRITE (4,5410)INDEX1,PROCNAMES(INDEX1)

5410 FORMAT(/////////////////////////,3X,'PROCESS NO.'I2,': ',A,/

1 3X,' ',/

2 ' FOR THIS PROCESS YOU CAN SPECIFY A PRIMARY TRANSPORTAION',/

3 ' DEVICE AND A SCONDARY ONE.',/

3 ' THE MACHINE WHICH REQUIRES THESE TRANSPORTATION DEVICES',/

4 ' (EX.: CHIPPER) IS AUTOMATICALLY INVOKED.'/)

5420 WRITE(4,5430)

5430 FORMAT(' HOW MANY PRIMARY TRANSPORTERS DO YOU WANT TO USE 7'

1

READ(4,11(12)')IANSWER

INDEX8INDEK84IANSWER

IF (IANSWER.EQ.0.OR.INDEXB.GT.80) THEN

WRITE(*,5440)

5440 FORMAT(/,' 111 CANNOT BE, PLEASE TRY AGAIN lit')

COTO 5420

ELSE

INDEX9INDEX9+IANSWER

USERARR(6,39)IANSWER

USERARR(6,37)1

ENDIF

5450 WRITE(4,5466)

5460 FORMAT(' HOW MANY SECONDARY TRANSPORTERS DO YOU WANT TO USE 7'

[0] >

READ(4, (12)')1ANSIER

INDEX8- INDEX9 +IANSWER

IF (INDEX8.GT.80) THEN

WRITE(4,5470)

234

5470 FORMAT(/,' ?II CANNOT BE, PLEASE TRY AGAIN II!')

GOTO 5450

ELSE

INDEX9INDEX9+IANSWER

USERARR(6,40)*IANSWER

ENDIF

C

ELSE

5500 WRITE (*,5510)INDEX1,PROCNANES(INDEX1)

5510 FORMAT(///////////////////////////,3X,'PROCESS NO.'I2,': ',A,/

1 5X, /,

2 ' FOR THIS PROCESS YOU CAN SPECIFY A PRIMARY AND A SECONDARY',/

3 ' TRANSPORTING DEVICE.',/)

5520 WRITE(*,5530)

5530 FORMAT(' HOW MANY PRIMARY TRANSPORTERS DO YOU WANT TO USE',

1 ' ? > ,.\)

READ(*.(12)1)1ANSWER

INDEX8INDEI9+IANSWER

IF (IANSWER.EQ.M.OR.INDEX8.GT.80) THEN

WRITE(*,5540)

5540 FORMAT(/,' III CANNOT BE, PLEASE TRY AGAIN 111')

GOTO 5520

ELSE

INDEX9- INDEX9 +IANSWER

USERARR(6,41)IANSWER

ENDIF

5550 WRITE(*,5560)

5560 FORMAT(' HOW MANY SECONDARY TRANSPORTERS DO YOU WANT TO USE',

1
'
? [0] > p,\)

READ(*, (12)11ANSWER

INDEX8sINDEX9+1ANSWER

IF (INDEXB.GT.80) THEN

WRITE(10,5570)

5570 FORMAT(/,' III CANNOT BE, PLEASE TRY AGAIN tit')

COTO 5550

ELSE

INDEX9- INDEX9 +IANSWER

USERARR(6,42) IANSWER

ENDIF

C

C

C

C

C

ENDIF

WRITE(*,5600)INDEX1,PROCNAMES(INDEX1)

5600 FoRmicr(/////////////////////////////////////,
1 ' PROCESS NO. '12' : 'A,/

2 ' '/)

C

IF (INDEX1.EQ.1) THEN

IX) 5628 INDEX2 n1,4,1

WRITE(*,5610)INDEX2,USERARR(6,INDEX2)

235

5610 FORMAT(' MACHINE TYPE '12', I OF INITIAL MACHINES : ',F3.0)

5620 CONTINUE

C

ELSEIF (INDEX1.GE.2.AND.INDEX1.11.10) THEN

DO 5640 INDEX2n1,3,1

INDEX3INDEX1*3-21-INDEX2

WRITE(A,5630)INDE13,USERARR(6,INDEX3)

5630 FORMAT(' MACHINE TYPE 'I2', / OF INITIAL MACHINES : ',13.0)
5640 CONTINUE

C

ELSEIF (INDEX1.EQ.11) THEN

WRITE(*,5650)USERARR(7.3),USERARR(7,4)

5650 FORMAT(' % OF INVENTORY GOING ROUTE 1

1 ' % OF INVENTORY GOING ROUTE 2

C

: 'F6.2' %*/

: 'F6.2' %')

ELSEIF (INDEXI.EQ.12) THEN

WRITE(*,5660)USERARR(6,39),USERARR(6,40)

5660 FORMAT(' NUMBER OF PRIMARY TRANSP. DEVICES USED : IF3.0,/

1 ' NUMBER OF SECONDARY TRANSP. DEVICES USED : 'F3.0)

C

ELSEIF (INDEX1.EQ.13) THEN

WKITE(*,5670)USERARR(6,41),USERARR(6,42)

5670 FORMAT(' NUMBER OF PRIMARY TRANSP.DEVICES USED : 13.0./

1 ' NUMBER OF SECONDARY TRANSP.DEVICES USED : 'F3.0)

C

C

C

ELSE

CONTINUE

ENDIF

WRITE(*,'(//,A,\)'P INPUT DATA OK (Y/N)7 CY) ->'

READ(*,'(Al)')CHRANSWER

IF(CHRANSWER.EQ.'N')GOTO 5050

C

5800 CONTINUE

C

C

5890 CONTINUE

5900 CONTINUE

C

C

C

C

C

C SPECIFYING WE MACHINE PARAMETERS

C

C

6000 WRITE(*,6010)

6010 FORMATC///////////////////////////////,20X,

1 'SIXTH PHASE' /20X' 1//,

2' HERE WE SPECIFY ALL THE PARAMETERS RELATED TO THE MACHINE 1/,

3' TYPES YOU HAVE SET ACTIVE EARLIER:',/,

4' NAME OF MACHINE', /,

236

5' - AVERAGE PROCESSING TIME PER TREE',/,

6' - FIXED CONSTANT TIME PER LOAD',/,

7' FIXED CONSTANT TINE PER ONE WAY HAUL')

WRITE(*,6020)

6020 FORMAT(

1' MACHINE CAPACITY IN CU.FT.',/,

2' FIXED COST PER SCHEDULED HOUR', /,

3' - VARIABLE COST PER MACHINE HOUR',//)

NRITE(*,'(A\)') ' (PLEASE HIT RETURN TO CONTINUE)'

READ (1°,'(BZ,I6)') (ANSWER

C

C

C

C

C

DO 6500 INDEX41,42,1

IF(USERARR(6,INDEX4).EQ.0) COTO 6490

IF (INDEX4.GE.1.AND.INDEX4.LE.4) THEN

INDEX1x1

ELSEIF (INDEX4.GE.5.AND.INDEX4.LE.7) THEN

INDEX12

ELSEIF (INDEX4.GE.13.AND.INDEX4.LE.10) THEN

INDEX13

ELSEIF (INDEX4.GE.11.AND.INDEX4.LE.13) THEN

INDEX1s4

ELSEIF (INDEX4.GE.14.AND.INDEX4.LE.16) THEN

INDEX1 -5

ELSEIF (INDEX4.GE.17.AND.INDEX4.LE.19) THEN

INDEX1s6

ELSEIF (INDEX4.GE.20.AND.INDEX4.LE.22) THEN

INDEX17

ELSEIF (INDEX4.GE.23.AND.INDEX4.LE.25) THEN

INDEX1s8

ELSEIF (INDEX4.GE.26.AND.INDEX4.LE.28) THEN

INDEX1 -9

ELSEIF (INDEX4.GE.29.AND.INDEX4.LE.31) THEN

INDEX1 -10

ELSEIF (INDEX4.GE.32.AND.INDEX4.LE.36) THEN

INDEX114

ELSEIF (INDEX4.GE.37.AND.INDEX4.LE.40) THEN

INDEX1 -12

ELSEIF (INDEX4.GE.41.AND.INDEX4.LE.42) THEN

INDEX1s13

ELSE

CONTINUE

ENDIF

C

6100 IF (INDEXI.NE.14) THEN

WRITE (*,6110)INDEX1,PROCNAMES(INDEX1)

6110 FORMAT(///////////////////////////,

1 ' PROCESS NO.'I2,': ',A,/

2 ' ',)

237

ELSE

WRITE (',6120)

6120 FORMAT(///////////////////////////,

1 ' MACHINE PARAMETERS FOR THE LOADING DEVICE :',/

2 '

ENDIF

C

WRITE(14,6168)INDEM

6160 FORMAT(//,' MACHINE TYPE '12' ')

WRITE01,I(A,\)'r NAME OF MACHINE TYPE ? > '

READ(*.'(A20)1)CHRANSWER

MCHNAMES(INDEX4)-CHRANSWER

IF (INDEX4.EQ.40.OR.INDEX4.EQ.42) GOTO 6220

IF(INDEX4.EQ.39) GOTO 6180

6170 WRITE(N,'(A,W). AVERAGE PROCESSING TIME / TREE? [0] >

READ(*,'(F8.4)')F1ANSWER

IF (F1ANSWER.LT.0) THEN

WRITE(','(/,A)')' 111 CANNOT BE, PLEASE TRY AGAIN It!'

Gam 6170

ELSE

USERARR(1,INDE(4)41ANSWER

ENDIF

6180 WRITE(*,'(A, \)')' FIXED CONSTANT TIME / LOAD? [0] > '

READ(*,.(F8.4)1)F1ANSWER

IF (F1ANSWER.LT.0) THEN

WRITE(','(/,A)')' tft CANNOT BE, PLEASE TRY AGAIN tit'

COTO 6180

ELSE

USERARR(2,1NDE24)-F1ANSWER

ENDIF

6190 WRITE(*,'(A,W)1 FIXED CONST. TIME / ONE WAY HAUL? [0]

READ(*,'(F8.4)')F1ANSWER

IF (F1ANSWER.LT.0) THEN

WRITE(','(/,A)')' tft CANNOT BE, PLEASE TRY AGAIN tit'

GOTO 6190

ELSE

USERARR(3, INDEX4)- FIANSWER

ENDIF

6200 WRITE(*,'(A,\)')' MACHINE CAPACITY IN CU.FT? [1] >

READ(*,'(F8.2)')F1ANSWER

IF (F1ANSWER.LT.0) THEN

WRITE(','(/,A)')' tit CANNOT BE, PLEASE TRY AGAIN tit'

GOTO 6200

ELSEIF (F1ANSWER.GT.99999) THEN

WRITE(','(/,A)')' 111 CANNOT BE, PLEASE TRY AGAIN Itt'

GOTO 6200

ELSEIF(FIANSWER.EQ.0) THEN

USERARR(8, INDEX4) -1

ELSE

USERARR(8,INDEX4)-F1ANSWER

ENDIF

238

6220 WRITE(*,'(AA)')' FIXED COST / SCHEDULED HOUR? [0 >

FtEAD(*,1(78.2)')F1ANSWER

IF (F1ANSWER.LT.0) THEN

WRITE(*,W,A)'). It! CANNOT BE, PLEASE TRY AGAIN Itt'

con 6220

ELSE

USERARR(2I,INDEX4) -FIANSWER

ENDIF

6230 WRITE(*,'(A,\)'P VARIABLE COST/ MACHINE HOUR? [0 > '

READ(*,'(F8.2)')F1ANSWER

IF (F1ANSWER.LT.0) THEN

WRITE(*,'(/,A)')' It! CANNOT BE, PLEASE TRY AGAIN Itt'

GOTO 6230

ELSE

USERARR(22,INDEX4)-F1ANSWER

ENDIF

C

C

IF (INDEXI.NE.14) THEN

WRITE (*,6240)INDEX1,PROCNAMES(INDEX1)

6240 FCRMAT(////////////////////////,' PROCESS NO. 'I2,' : ',A,/

1 ' ',)

ELSE

WRITE (*,6250)

6250 FORMAT (//,' LOADING DEVICE ',/

1 ..)

ENDIF

WRITE(*,6260)INDEX4

6260 FORMAT(,' MACHINE TYPE 'I2,/,

1 ',/)

WRITE(*,6270)NCHNAMES(INDEX4)

6270 FORMAT(' NAME OF MACHINE TYPE : ',A)

IF(INDEX4.EQ.40.0R.INDEX4.EQ.42)GOTO 6310

IF (INDEX4.EQ.39) GOTO 6285

WRITE(*,6280)USERARR(1,INDEX4)

6280 FORMAT(' AVERAGE PROCESSING TIME / TREE : ',F8.4)

6285 WRITE(*,6290)USERARR(2,INDEX4)

6290 FORMAT(' FIXED CONSTANT TIME / LOAD : ',F8.4)

WRITE(*,6300)USERARR(3,INDEX4)

6300 FORMAT(' FIXED CONST. TIME / ONE WAY HAUL : ',F8.4)

WRITE(*,6340)USERARR(8, INDEX4)

6340 FORMAT(' MACHINE CAPACITY IN CU.FT ',F8.2)

6310 WRITE(*,6320)USERARR(21,INDEX4)

6320 FORMAT(' FIXED COST / SCHEDULED HOUR ',F8.2)

WRITE(*,6330)USERARR(22, INDEX4)

6330 FORMAT(' VARIABLE COST/ MACHINE HOUR ',F8.2)

wRITE(*,1(//,A,\)1)' INPUT DATA OK (Y/N)? [Y)---->'

READ(*,'(A1)')CHRANSWER

IF(CHRANSWER.EQ.'N')GOTO 6100

C

C

C

C

239

6490 CONTINUE

6500 CONTINUE

C

C

C

C

C

C DEFINING THE mouse BREAKDOWN PARAMETERS

C

C

C

C

7000 WRITE(4,7020)

7020 FORMAT(///////////////////////////////,20X,

1'SEVENTHPHASEI/20X '//,

2' IN THIS LAST PHASE YOU ARE ABLE TO SPECIFY THE MACHINE '/,

3' BREAKDOWN PARAMETERS FOR EACH ACTIVE MACHINE. IN ORDER',/,

4' TO DO SO YOU WILL HAVE TO INPUT THE CUMULATIVE FREQUENCY',/,

5' DISTRIBUTION FCC THE TIME BETWEEN FAILURES AND THE ',/,

6' ACTUAL REPAIR TIME. EACH OF THESE TWO DISTRIBUTIONS CAN ',/,

7' HAVE UP TO TEN CLASSES.')

WRITE(*,7040)

7040 FORMAT(

1' Itt DONT FORGET THE DECIMAL POINT FOR INPUT tt1',///)

WRITE(4,.(A\)') ' (PLEASE HIT RETURN TO CONTINUE)'

READ (1.,'(B2,I6)') IANSWER

C

C

DO 7500 INDEX1- 1,42,1

IF (USERARR(6,INDEX1).EQ.0) GOTO 7490

7050 F3ANSWER -0

C

WRITE(4,7060)INDWALMCHNAMES(INDEX1)

7060 FORMAT(//////////////////////////////,

1 MACHINE TYPE ',I2,' : ',A,/

2 ' ',//,

3 ' FREQUENCY DISTRIBUTION FOR TIMES BETWEEN FAILURES:'/,

4 ' ',/)

7080 DO 7200INDEX2- 1,10,1

7100 WRITE(4,7120)INDEX2

7120 FORMAT(/,' CLASS CUM.REL.FREQENCY7 [0)
>$.0

READ(4,'(BN,F8.2)1)F1ANSWER

WRITE(4,7140)INDEX2

7140 FORMAT(' CLASS ',I2,': TIME BETWEEN FAILURES? [01 >' \)

READ(4,'(BN,F8.2)')F2ANSWER

IF(INDEX2.EQ.1.AND.F1ANSWER.EQ.0)THEN

GOTO 7490

ELSEIF(F2ANSWER.LE.0)THEN

WRITE(4,W,A)1)' It CANNOT BE, PLEASE TRY AGAIN 11'

GOTO 7100

ELSEIF(F1ANSWER.GT. 100)THEN

181ITE(11,'(/,A)I)' 11 CANNOT BE, PLEASE TRY AGAIN It'

GOTO 7100

240

ELSEIF(INDEXE.GT.1.AND.F1ANSWER.LE.F3ANSWER)THEN

WRITE(*,W,Ar)' It CANNOT BE, PLEASE TRY AGAIN Its

GOTO 7100

ELSEIF(INDEL2.EQ.10.AND.F1ANSWER.NE.100)THEN

WRITE(*,'(/,A)')' It CANNOT BE, PLEASE TRY AGAIN II'

GOTO 7100

ELSE

F3ANSWERF1ANSWER

PICHARR(INDEX1,1,INDE)(2)F1ANSWER

MCHARR(INDEX1.2,INDEX2)F2ANSWER

IF(F1ANSWER.EQ.100)GOTO 7210

ERIE

7190 CONTINUE

7200 CONTINUE

C

C

7210 F3ANSWER -0

WRITE(*,7220)INDEXI,MCF04AMES(INDEX1)

7220 FORMAT(////,

1 ' MACHINE TYPE '12' : 'A,/

2 ' ',//

3 ' FREQUENCY DISTRIBUTION FOR MACHINE REPAIR TIMES:'/,

4 ' '/)

7240 DO 7400 INDEX21,10,1

7260 WRITE(*,7200)INDEX2

7280 FORMAT(/,' CLASS 1,12,': CUM.REL.FREQENCY? (01

READ(*,'(BN,F8.2)')F1ANSWER

WRITE(*,7300)INDEX2

7300 FORMAT(' CLASS ',I2,': REPAIR TIME? [01

READ(*,"(BN,F8.2)')F2ANSWER

IF(INDFI2. EQ 1 .AND F1ANSHER.EQ.)THEN

WRITE(*,W,Ar)' t! CANNOT BE, PLEASE TRY AGAIN I!'

GOTO 7268

ELSEIF(F2ANSWER.LE.0)THEN

WRITE(*,W,Ar)' t! CANNOT BE, PLEASE TRY AGAIN It'

GOTO 7260

ELSEIF(F1ANSHER.GT.100)THEN

WRITE(*,W,Ar)' It CANNOT BE, PLEASE TRY AGAIN t!'

GOTO 7260

ELSEIF(INDEXE.GT.1.AND.F1ANSWER.LE.F3ANSWER)THEN

WRITE(*,W,Ar)' It CANNOT BE, PLEASE TRY AGAIN !!'

GOTO 7260

ELSEIF(INDEX2.EQ.10.AND.F1ANSWER.NE.100)THEN

WRITE(m,W,At')' t! CANNOT BE, PLEASE TRY AGAIN It'

GOTO 7260

ELSE

F3ANSWERF1ANSWER

NCHARR(INDE)(1,3,INDEX2)F1ANSWER

MCHARR(INDEX1,4,INDEX2)42ANSWER

IF(F1ANSWER.EQ.100)GOTO 7490

END IF

7390 CONTINUE

241

7400 CONTINUE

C

C

7490 CONTINUE

C

C

IF (USERARR(6,INDEX1).EQ.0) COTO 7790

7520 WRITE(*.7540)INDEX1,11C1NAMES(INDEX1)

7540 FORMAT(//////////////////////////////,

1 ' FREQUENCY DISTRIBUTICNS MACHINE TYPE '12' : 'A./.

2 ' ',//

3 ' CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.%',

4 ' REPAIR TIME' /,

5 '

6 '

IF(MCHARR(INDEX1,1,1).EQ.0.)THEN

WRITE(*,'(//,20X,A)'r****** DISTRIBUTIONKITUSED IHHHOHHHO

ELSE

DO 7600 100E12-1,10.1

IF(MCHARR(INDEX10,INDEX2).EQ.0.AND.

1 MCHARR(INDEX1.3,INDEX2).EQ.0) MEN

COTO 7590

ELSEIF (MCHARR(INDEX1,1,INDEX2).GT.0.AND.

1 MCHARR(INDEX1.3.10012(2).EQ.0) THEN

WRITE(8,7560)INDEX2,MCHARR(INDEX1,1.1NDEX2).

1 MCHARR(INDEX1,2,INDEX2)

7560 FORMAT(4X,I2,10X,F8.2.10X,F8.2)

ELSEIF (MCHARR(INDEX1.1,INDEX2).EQ.0.AND.

1 MCHARR(INDEX1,3,INDEX2).GT.0) THEN

WRITE(16,7570)INDEX2,MCHARR(INDEX1,3,INDEX2),

1 MCHARR(INDEX1,4,INDEX2)

7570 FORMAT(4X,12,10X.83.10X,BX,10X.F8.2.10X,F8.2)

ELSE

WRITE(.7580)INDEX2,MCHARR(INDEX1,1,INDEX2),

1 NCHARR(INDEX1,2,INDEX2).11CHARR(INDEX1,3.1NDEX2).

2 MCHARR(INDEX1,4,INDEX2)

7580 FORMAT(4X.12.10X,F8.2,10X.F8.2,10X,F8.2,10X,F8.2)

ENDIF

7590 CONTINUE

7600 CONTINUE

ENDIF

WRITE(*,'(//,A,\)'r DISTRIBUTION OK (Y/N) ? CY] - - - -)I

READ(",'(AW)GWRANSWER

IF(CHRANSWER.EQ.'N')THEN

DO 7602 INDEX2 -1,4.1

DO 7601 imma3 -moo

mcHARR(Ineximinen,Impu3) -0

7601 CONTINUE

7602 CONTINUE

GOTO 7050

ENDIF

C

7790 CONTINUE

C

C

C

7500 CONTINUE

C

C

C

C

C SAVING MODEL ON DISK

C

C

C

8000 WRITE(*,8002)

8002 FORMAT(///////////////////////////////,20X,

1 'END OF SUBROUTINE READIN' /20X

2' '//,

3' YOU HAVE NOW DEFINED A MODEL FOR THE MECHANIZED LOG '/,

4' HARVESTING SIMULATOR. DO YOU WANT TO SAVE THIS MODEL ON'/,

5' DISK? IF YOU DONT DO SO ALL YOUR WORK WILL BE LOST t1'//)

C

8004 WRITE(*,WA\)'). SAVE MODEL ON DISK YIN ? [Y] > '

READ(*,'(A1)')CHRANSWER

C

IF (CHRANSWER.EQ.'N') THEN

WRITE(v,W,A,\)'). ARE YOU REALY SURE Y/N ? [N]

READ0,1(A1)1CHF(ANSWER

IF (CHRANSWER.EQ.'Y') MIEN

GOTO 9998

ELSE

GOTO 8004

ENDIF

ELSE

CONTINUE

ENDIF

C

8010 INQUIRE(FILEaFILENAME,EXISTFILESTATUS)

IF(.NOT.FILESTATUS) THEN

OPEN(10,FILEaFILENAME,STATUS&NEW')

ELSE

WRITE(*,8022)FILENANE

8022 FORMAT(/,' 1111 FILE: 'A' ALREADY EXISTS 1111"/

1 ' OVERWRITE OLD FILE? [N > ',\)

READ(*, ' (A1)')CHRANSWR

IF(CHRANSWER.EQ.11)THEN

OPEN(10,FILEFILENAME,STATUS'OLD')

REWIND 10

ELSE

WRITE(*,'(A \)')' INPUT NEW FILENAME FOR MODEL:

READ(*,1(A20)')FILENAME

GOTO 8010

ENDIF

ENDIF

242

243

C

C

WRITE(10,.(F8.111) 10((1)

WRITE(10,'(F8.1)') XX(2)

WRITE(10,1(F8.1)1) n(3)
WRITX(10,'(F8.0)')XX(4)

WRITE(10,I(F8.1)') XX(5)

WRITE(10,'(F8.1)') XX(6)

WRITE(10,'(F8.1)') XX(7)

WRITE(10,'(F8.1)') XX(8)

WRITE(10,'(F8.1)'))0((5)

WRITE(10,'(F8.4)') XX(10)

DO 8023 INDEX1 -11,100,1

WRITE(10,8020) XX(INDEX1)

8020 FORMAT(F8.1)

8023 CONTINUE

C

C

DO 8028 INDEX' -1,3,1

DO 8026 INDEX2 -1,42,1

WRITE(10,8024) USERARR(INDEX1,INDEX2)

8024 FORMAT(F8.4)

8026 CONTINUE

8028 CONTINUE

C

DO 8035 INDEX1 -4,26,1

DO 8034 INDEX2 -1,42,1

WRITE(10,8033) USERARR(INDEX1,INDEX2)

8033 FORMAT(F8.2)

8034 CONTINUE

8035 CONTINUE

C

C

C

C

DO 8844 HIDED -1,8,1

DO 8042 INDEX2 -1,10,1

WRITE(10,8040) DISARR(INDEXLINDEX2)

8040 FORMAT(F8.2)

8042 CONTINUE

8044 CONTINUE

C

DO 8052 INDEX1 -1,42,1

D08050 INDD(2 -1 ,4,1

DO 8048 INDEX3.1,10,1

WRITE(10,8046) MCHARR(INDEX1,INDEX2,INDEX3)

8046 FORMAT(F8.2)

8048 CONTINUE

8050 CONTINUE

8052 CONTINUE

244

C

DO 8056 IMMO 1,52,1

WRITE(10,8054) NCHNANES(INDEX1)

8054 FORMAT(A)

8056 CONTINUE

C

DO 8060 INDEX1z1,20,1

WRITE(10,8058) PROCNANES(INDEX1)

8058 FORMAT(A)

8060 CONTINUE

C

DO 8064 10E21-1,40

WRITE(10,8062) DISTRIBNAMES(INMEX1)

8062 FORMAT(A)

8064 CONTINUE

C

REWIND 10

CLOSE(10,STATUS-'BEEP')

WRITE(11,8066)

8066 FCRNAT(///,20X,'1111 MODEL HAS BEEN SAVED 1111'/,

120X,' PRESS RETURN TO CONTINUE'\)

READ(*,.(I2)1)1ANSWER

C

C

C

C END OF SUBROUTINE:

C

C

9998 RETURN

END

245

APPENDIX D

4. Listing, PRINTOUT.FOR

246

C******IH1******* 41*

C*

C* OREGON STATE UNIVERSITY

C* JUNE 1986

C*

C* >>> LOGS IN(<<

C*

C* SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS

C*

C*

C* DESIGNED BY : CHRISTOPH WIESE

C* PIASTERS CANDIDATE, DEP. OF INDUSTRIAL *

C* ENGINEERING, OREGON STATE UNIVERSITY

C*

C* DESIGNED FOR: DEPARTMENT OF FOREST ENGINEERING

C* OREGON STATE UNIVERSITY

C*

C*

C* SUPERVISION : DR. ELDON OLSEN

C* ASSOCIATE PROFESSOR, DEP. OF INDUSTRIAL

C* ENGINEERING, OREGON STATE UNIVERSITY

C*

C*

c******mw**********.w.**************************************mel*

C*

C* FORTRAN INPUT USR-INTERFACE: NODELPRINT.FOR

C*

C 31-MAY-87 18:55

C*

C*******41.*************0** /1*************4H1*IHHHOHHHH***14*

C

C

C

C

C

SINCLUDE:TRGII.FOR.

C

C PROGRAM DECLARATION:

C

C

SUBROUTINE NODELPRINT

C

C COMMON BLOCK

C

C

SINCLUDE:'VARBLOCK.DOC'

C

C DEFINE LOCAL VARIABLES, NAMES & TYPE:

C

C

247

INTEGER*4IANSWER,It4DEX1,INDEX2,INDEX3,INDEX4,INDFX5

INTEGER*4 INDEX6, INDEX7,INDEX8, INDEX9

CHARACTER*20 Q- RANSWER

REAL F1ANSWER,F2ANSWER, F3ANSWER

LOGICAL*4 FILESTATUS

C

C BEGIN PROCESSING:

C

C

C OPENING SCREEN:

C

C

WRITE(*,108)

100 FORMAT(' 1'////////////////////////////////////5X,

1' SUBROUTINE PRINT'/5X,

2' '//5X,

3'WITH THIS SUBROUTINE YOU CAN PRINTOUT THE DATA OF A '/5X,

4'SIMULATION MODEL PREVIOUSLY DEFINED WITH SUBROUTINE '15X,

5'READIN.',///)

WRITE(*,'(7X,A \)') 'I>3 YOU WISH TO CONTINUE (Y/N) ? TY7 >

READ (11,I(BZ,A1)') CHRANSWER

IF (CHRANSUER.EQ.'N') THEN

GOTO 9998

ELSE

CONTINUE

ENDIF

C

C

C

C INITIALIZATION OF ALL VARIABLES AN READIN THE FILE

C

C

C

CALL INITREAD

WRITE(*,244)

244 FORMAT(///,

1 7X,'OUTPUT SHOULD BE ROUTED TO:'//

2 7X,' SCREEN * 1',/

3 7X,' SCREEN & PRINTER * 2',//

4 7X,'PLEASE ENTER CHOICE > ',\)

245 READ(*.'(12)')OUIFLAG

IF (OUTFLAG.LT.1.0R.OUTFLAG.GT.2) THEN

URITE(*,247)

247 FORMAT(/7X,911 CANNOT BE, PLEASE ENTER AGAIN M.,/

1 'PLEASE ENTER CHOICE

GOTO 245

ELSEIF(OUTFLAG.EQ.1) THEN

CONTINUE

ELSE

OPEN(11,FILE*PLPT1')

WRITE(*,250)

248

250 FORMAT(//7X,

1 'ALIGN PAPER IN PRINTER, THEN PRESS RETURN TO CONTINUE'\)

READ(*,'(I2)')IANSWER

ENDIF

C

C

C

C

C BEGIN OF PRINTING THE MODEL

C

C

C PRINTING GENERAL PARAMETERS AND MACHINE CONFIGURATION

C IF (ATRIB(5).EQ.1) THEN

WRITE(*,290)

IF (OUTFLAG.GT.1) WRITE(15,290)

290 FORMAT(//,

10X,,N A-wKAAA,.****41.**-10HHOHOHHHHOOHOHHHHH.***4144HOHHHWit

2 10X.1* 40/,

3 10X,'* >>>LOGSIM<<< *1/,

4 10X,'* HARVESTING CONFIGURATION *'/,

5 10X.1* *v.

6 (6x.1************************M********1140/.

7 ///)

CC

300 WRITE(*,302)FILENAME,FILENAME,XX(4),XX(10)

IF(OUTFLAG.GT.1)WRITE(11,302)FILENAME,FILENAME,XX(4),XX(10)

302 FORMAT(/,37X,A,/,33X.1***********************',///

1 ' NAME OF SIMULATION MODEL : 'A,/,

2 ' AMOUNT TO BE HARVESTED (CU.FT.) 'F8.0,/,

3 ' TIME DELAY PARAMETER 'F11.4,////,

4 12X'MACHINE CONFIGURATION',/

5 12X' ./)

C

WRITE(*,321)

IF(OUTFLAG.GT.1)WRITE(11.321)

321 FORMAT(' PROCESS I IN ORIGIN OUT DESTINATION'/,

1' ')

C

DO 326 INDEX1*1,13,1

C

IF(USERARR(23,INDEX1).E0.0.AND.USERARR(24,INDEX1).EQ.0)THEN

WRITE(*,'(4X,I2)')INDEX1

IF(OUTFLAG.GT.1)WRITE(11,'(4X,12)')INDEX1

G01'0 327

ENDIF

IF(INDEX1.E0.1) THEN

WRITE (*,322) INDEX1,USERARR(23,INDEX1)

IF(OUTFLAG.GT.1)WRITE (11,322)INDEX1,USERARR(23,INDEX1)

322 FORMAT (4X,I2,23X.F3.0)

ELSEIF(INDEX1.GE.2.AND.INDEX1.LE.10) THEN

WRITE (*,323)INDEX1,USERARR(24,INDEX1),USERARR(23,INDEX1)

IF(OUTFLAG.GT.1)NRITE (11,323)INDEX1,USERARR(24,INDEX1).

1 USERARR(23,INDEX1)

323 FORMAT (4X,I2,10X,F3.0,10X,F3.0)

ELSEIF(INDEX1.EQ.11) THEN

WRITE (4,324)/ADEXI,USERARR(24,INDEX1),USERARR(7,5).

1 USERARR(7,6)

IF(OUITLAG.GT.1)WRITE (11,324)INDEX1,USERARR(24,INDEX1),

1 USERARR(7,5),USERARR(7,6)

324 FORMAT (4X,I2,10X,F3.0,10X,F3.0,2X,F3.0)

ELSE

WRITE (*,325)INDEX1,USERARR(24,INDEX1)

IF(OUTFLAG.GT.1)WRITE (11,325)INDEX1,USERARR(24,INDEX1)

325 FORMAT (4X,I2,10X,F3.0)

ENDIF

327 CONTINUE

326 CONTINUE

C

C

C

C DISTRIBUTION DATA OF THE TREES/LOGS/PULPLOGS/SAWLOGS

C

C

C

400 WRITE(4,402)
IF(OUTFLAG.GT.1)WRITE(11,402)

402 FORMAT(/////,12XIKATERIAL FREQUENCY DISTRIBUTIONS'/

1 12X' 'I)

C

DO 406 INDEX141,4,1

WRITE(4,404)INDEX1,DISTRIBNAMES(INDEX1)
IF(OUTFLAG.GT.1)WRITE(11,404)INDEX1,DISTRIBNAMES(INDEX1)

404 FORMAT(' CUMULATIVE FREQUENCY DISTRIBUTION NO.'I1' : 'A)

406 CONTINUE
C

WRITE(*,408)

IF(OUTFLAG.GT.1)WRITE(11,408)

408 FORMAT(//,10X,
PDISTRIBUTION IWITISTRIBUTION 2'4X'DISTRIBUTION 3'4X

2'DISTRIBUTION 4',/,

3' CLASS '

4IFREQ.% CU.FT'4XIFREQ.% CU.FTMX.FREQ.% CU.FT'AIX

5'FREQ.% CU.FTI/,

6'

C

C

C

7'

DO 450 INDEX1 41,10,1

IF(DISARR(1,INDEX1).EQ.O.AND.DISARR(2,INDEX1).EQ.O.AND.

1 DISARR(3,INDEX1).1:12.0.AND.DISARR(4,INDEX1).EQ.0.AND.

2 DISARR(5,INDEX1).EQ.O.AND.DISARR(6,INDEX1).EQ.O.AND.

3 DISARR(7,INDEX1).EQ.O.AND.DISARR(LINDEX1).EQ.0) THEN
GOTO 449

249

ELSE

WRITE(*,412)INDEX1

IF(OUTFLAC.GT.1)WRITE(11,412)INDEX1
412 FORNAT(/,2X,I2,1X,\)

END IF

C

DO 440 INDEX2 -1,0,1

IF(DISARR(INDEX2,INDEX1).EQ.0) THEN

WRITE(*,1(9X.\)')
IF(CUTFLAG.4T.1)WRITE(11,'(9X,W)

ELSEIF(DISARR(INDEX2,INDEX1).67.0) THEN
WRITE(*,*(1X,F11.2,\)')DISARR(INDEX2,INDEX1)
IF(OUTFLAG.GT.1)WRITE(11,1(1X,F8.2,\)')DISARR(INDEX2,INDEX1)

ELSE

CONTINUE

ENDIF

440 CONTINUE

C

449 CONTINUE

450 CONTINUE

C

C

C

C

C DESCRIPTION OF THE PROCESSES USED

C

C

C

C

500 WRITE(*,502)
IF(OUTFLAG.61.1)WRITE(11,502)

502 FORMAT(/////,12XINVENTORT MD BUFFER SIZES '/,
1 12X1

I)

C

532 WRITE(*,534)

INOOTFLAC.B7.1)WRITE(11,534)
534 FORMAT(/'

1' PRO- NAME DISTRI- STARTUP MINIMUM STARTUP',

2' MAXIMUM STARTUP'',

2' CESS BUTION INV. INV. MINIMUM',

3' INV. MAXIMUM'',

4'

5'
I)

C

DO 570 INDEX1 -1,13,1

IF(USERARR(23,INDEX1).EQ.O.AND.USERARR(24,INDEX1).EQ.0) CCIO 569

IF(INDEX1.EQ.1)1HEN

INDEX2-XXLEVEL(7)+INDEX1
WRITE(*,536)INDEX1,PROCNAMES(INDEX1),USERARR(5,INDEX1)

IF(OUTFLAC.GT.1)WRITE(11,536)INDEX1,PROCRANES(INDEX1),
1 USERARR(5,INDEX1)

250

251

536 FORMAT(2X,I2,3X,A,2X,F2.0)

ELSE

INDEX2- XXLEVEL(7) +INDEX1

INDEX3- XXLEVEL(3) +INDEX1

INDEX4-DILEVEL(5)INDEXI
INDEX5 -XXLEVEL(4)+INDEX1

INDEX6- XXLEVEL(6)+INDEX1

WRITE(*.538)INDEX1,PROCNAMES(INDEXI),USERARR(5,INDEX1),

1 XX(INDEX2),XX(INDEX3),XX(INDEX4),M(INDEX5),XX(INDEX6)
IF(OUTFLAG.GT.1)WRITE(11,538)INDEX1,PROCNAKES(INDEXI).

1 USERARR(5,INDEX1),B1(INDEX2)da(INDEX3),
2 KI(INDEN4),U(INDEX5),XX(INDEX6)

538 FORMAT(2X,I2,3X,A,2X,F2.0,5X,F8.1,IX,F8.1,
I IX,F8.1,1X,F8.1,1X,F8.1)

ENDIF

569 CONTINUE

570 CONTINUE
C

C

C

C

C PROCESS DESCRIPTION

C

C

DO 699 INDEX1*1,13,1

IF (USERARR(23,INDEXI).EQ.O.AND.USERARR(24,INDEXI).EQ.0) COTO 698

C

600 WRITE(*,602)INDEX1,PROCNAMES(INDEX1)

IF(OUTFLAC.GT.1)WRITE(11,602)INDEX1,PROCNAMES(INDEXI)

602 FORMAT(/////02XTRCCESS NO.'l2': 'A,/,

I 12X' '/)

C

IF (INDEXI.EQ.1) THEN

INDEX2 -1

INDEX3 -4

INDEX4- USERARR(23, INDEXI)

INDEX5*USERARR(5,INDEX1)

604 NRITE(11.605)USERARR(23,INDEX1),PROCNAMES(INDEX4),

1 USERARR(5,INDEXI),DISTRIBNAMES(INDEX5)

IF(01117LAG.CT.I)WRITE(11,605)USERARR(23,INDEX1),

1 PROCNAMES(INDEI4),USERARR(5,INDEX1),DISTRIBNAKES(INDEX5)

605 FORMAT(

1 OUTGOING DESTINATION : PROCESS NO.1F3.0"A,/

2 ' DISTRIBUTION USED ',F3.0.10X,A)

C

IF(USERARR(4,INDEX1).EQ.0) THEN

WRITE(m,606)

IF(OUTFLAC.GT.1)WRITE(11.606)

606 FORMAT(' LOADER USED : NONE')

ELSE

INDEX4- USERARR(4, INDEX1)

WRITE(4.607)USERARR(4,INDEX1),MCHNAMES(INDEX4)

252

IF(OUTFLAG.GT.0)WRITE(11,607)USERARR(4,INDEX1).

1 MGNNAMES(INDEX4)

607 FORMAT(' LOADER USED : ',F3.0,",A)
ENDIF

C

IF(USERARR(9,INDEK1).EQ.0) THEN

WRITE(*,608)

IF(OUTFLAG.GT.1)WRITE(11,600)

608 FORMAT(

1 ' TINE DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS')

ELSE

WRITE(*,609)

IF(OUTFLAG.GT.1)WRITE(11,609)

609 FORMAT(

1 ' TINE DELAYS HANDELED BY : USER-WRITTEN FORTRAN SUBROUTINE')

ENDIF

C

WRITE(*,612)

IF(OUTFLAG.GT.1)WRITE(11,612)

612 FORMAT(/,

1 ' MACHINES USED :',/

2 ' TYPE NAME INITIAL / OF MACHINES'/,

3 '

DO 618 INDEX4-INDEX2,INDEX3,1

IF (USERARR(6,INDEX4).EQ.0) THEN

GOTO 616

ELSE

WRITE(*.614)INDEX4,MCHNAMES(INDEX4).USERARR(6,INDEX4)

IF(OUTFLAG.GT.1)WRITE(11,614)INDEX4,MCHNAMES(INDEX4).

1 USERARR(6,INDEX4)

614 FORMAT(3X,I2,5X,A,12X,F3.0)

ENDIF

C

616 CONTINUE

618 CONTINUE

C

C

ELSEIF (INDEX1.NE.11) THEN

INDEX2- XXLEVEL(7) +INDEX1

INDEX3- XXLEVEL(3) +INDEX1

INDEX4-XXLEVEL(5)+INDEX1

INDEX5-XXLEVEL(4)+INDEX1

INDEX6-XXLEVEL(6)+INDEX1

INDEX'? -USERARR(24,INDEX1)

INDEX8- USERARR(23, INDEX1)

INDEX9-USERARR(5,INDEX1)

IF(USERARR(23,INDEX1).EQ.0) THEN

MRITE(*,620)USERARR(24,INDEX1),PROCNANES(INDEX7)

IF(ClITFLAG.GT.1)WRITE(11,620)USERARR(24,INDEX1),

1 PROCNAMES(INDEX7)

620 FORMAT(

1 ' INCOMING ORIGIN : PROCESS NO.1F3.0"A)

ELSE

WRITE(*,621)USERARR(24,INDEX1),PROCNAMES(INDEX7),

1 USERARR(23,INDEX1),PROCNAMES(INDEX8)

IF(OUTFLAG.GT.1)WRITE(11,621)USERARR(24,INDEX1),

1 PROCNAMES(INDEX7),USERARR(23,INDEX1),PROCNAMES(INDEX8)

621 FORMAT(

1 ' INCOMING ORIGIN : PROCESS NO.'F3.0"A,/,

2 ' OUTGOING DESTINATION PROCESS NO.'F3.0"A)

ENDIF

WRITE(*,622)USERARR(5,INDEX1),DISTRIBNAMES(INDEX9),

1 XX(INDEX2),XCINDEX3),XK(INDEX4),XX(INDEX5),n(INDEX6)

IF(OUTFLAG.GT.1)WRITE(11,622)USERARR(5,INDEX1),

1 DISTRIBNAMES(INTEX9),XX(INDEX2),XX(INDEX3),XX(INDEX4),

2 XX(INDEX5),XX(INDEX6)

622 FORMAT(

1 ' DISTRIBUTION USED : ',F8.0,10X,A,/

2 ' STARTUP - INVENTORY LEVEL : ',F8.1,/

3 ' MINIMUM INVENTORY LEVEL : ',F8.1,/

4 ' STARTUP LEVEL MINIMUM : ',F8.1,/

5 ' MAXIMUM INVENTORY LEVEL : ',F8.1,/

6 ' STARTUP LEVEL MAXIMUM : ',F8.1)

C

IF(USERARR(4,INDEX1).EQ.0) THEN

628 WRITE(*,630)

IF(OUTFLAG.GT.1)WRITE(11,630)

630 FORMAT(' LOADER USED : NONE')

ELSE

INDEX4USERARR(4,INDE11)

632 WRITE(*,634)USERARR(4,INDEX1),MCHNAMES(INDEX4)

IF(OUTFLAG.GT.1)WRITE(11,634)USERARR(4,INDEX1),

1 MCHNAMES(INDEX4)

634 FORMAT(' LOADER USED : ',F8.0,",A)

ENDIF

C

IF(USERARR(9,INDEXI).EQ.0) THEN

WRITE(*,638)

IF(OUTFLAG.GT.1)WRITE(11,638)

638 FORMAT(

1 ' TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS')

ELSE

WRITE(*,640)

IF(OUTFLAG.GT.1)WRITE(11,640)

640 FORMAT(

1 ' TIME DELAYS HANDELED BY : USER-WRITTEN FORTRAN SUBROUTINE')

ENDIF

C

IF(INDEX1.GE.2.AND.INDEX1.LE.10) THEN

INDEX2INDEX1*3 -1

INDEX3INDEX1*3+1

ELSEIF(INDEXI.EQ.12) THEN

INDEX2 -37

INDEX3 -40

253

254

ELSEIF(INDEXI.EQ.13) THEN

INDEX2 -41

INDEX3 -42

ELSE

CONTINUE

ENDIF

VRITE(',642)

IF(OUTFLAG.GT.1)WRITE(11,642)

642 FORMAT(/,

1 ' MACHINES USED V.

2 ' TYPE NAME

3 '

INITIAL / OF MACHINES'/,

I)

DO 648 INDEX4-INDE12,INDEX3,1

IF (USERARR(6,INDEX4).EQ.0) THEN

GOTO 646

ELSE

WRITE(*,644)INDEX4,MCHNAMES(INDEX4),USERARR(6,INDEX4)

1F(OUTFLAG.GT.1)WRITE(11,644)INDEX4,MCHNAMES(INDEX4),

1 USERARR(6,INDEX4)

644 FORMAT(3X,I2,5X,A,12X,F3.0)

ENDIF

646 CONTINUE

648 CONTINUE

C

ELSEIF(INDEX1.EQ.11) THEN

INDEX2- XXLEVEL(7) +INDEXI

INDEX3-XXLEVEL(3)+INDEX1

INDEX4-XXLEVEL(5)+INDEX1

INDEX5-XXLEVEL(4)+INDEX1

INDEX6- XXLEVEL(6) +INDEXI

INDEX7-USERARR(24,INDEX1)

INDEX8-USERARR(7,5)

INDEX9-USERARR(7,6)

650 WRITE(*,652)USERARR(24,INDEX1),PROONAMES(INDEX7),

1 USERARR(7,5),PROCNAMES(INDEX8),

2 USERARR(7,6),PROCNAMES(INDEX9),

3 USERARR(7,3),USERARR(7,4)

IF(OUTFLAG.GT.1)WRITE(11,652)

1 USERARR(24,INDEX1),PROCNAMES(INDEX7),

2 USERARR(7,5),PROCNAMES(INDEX8),

3 USERARR(7,6),PROCNAMES(INDEX9),

4 USERARR(7,3),USERARR(7,4)

652 FORMAT(

1 ' INCOMING ORIGIN PROCESS NO.T3.0"A,/,

2 ' OUTGOING ROUTE 1 PROCESS NO.'F3.0"A,/,

3 ' OUTGOING ROUTE 2 PROCESS NO.T3.0"A,/,

4 ' % GOING ROUTE 1 ',F8.2,'

5 % GOING ROUTE 2 ',F8.2,' %')

INDEX9-USERARR(5,INDEX1)

654 WRITE(14,656)USERARR(5,INDEX1),DISTRIBNAMES(INDEX9),XX(INDEX2),

1 XX(INDEX3),XX(INDEX4),XX(INDEX5),XX(INDEX6)

255

IF(OUTFLAG.GT.1)WRITE(11,656)USERARR(5,INDEX1),

1 DISTRIBNAMES(INDEX9),M1(INDEX2),

2 YX(INDEX3),XX(INDEX4),XX(INDEX5),XX(INDEX6)

656 FORMAT(

1 ' DISTRIBUTION USED : ',F8.0,10X,A,/,

2 ' STARTUP-INVENTORY LEVEL : ',F8.1,/,

3 ' MINIMUM INVENTORY LEVEL : ',F8.1,/,

4 ' STARTUP LEVEL MINIMUM : ',F8.1,/,

5 ' MAXIMUM INVENTORY LEVEL : ',F8.1,/,

6 ' STARTUP LEVEL MAXIMUM : ',F8.1)

C

IF(USERARR(4,INDEX1).EQ.0) THEN

658 WRITE(4,660)

IF(OUTFLAG.GT.1)WRITE(11,660)

660 FORMAT(' LOADER USED : NONE')

ELSE

INDEX4USERARR(4,INDEX1)

662 WRITE(4,664)USERARR(4,INDEX1),MCHNAMES(INDEX4)

IF(OUTFLAG.GT.1)WRITE(11,664)USERARR(4,INDEX1),

1 MCHNAMES(INDEX4)

664 FORMAT(' LOADER USED : ',F8.0,",A)

ENDIF

C

IF(USERARR(9,INDEX1).EQ.0) THEN

WRITE(4,668)

IF(OUTFLAG.GT.1)WRITE(11,668)

668 FORMAT(

1 ' TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS')

ELSE

WRITE(4,670)

IF(OUTFLAG.GT.1)WRITE(11,670)

670 FORMAT(

1 ' TIME DELAYS HANDELED BY : USER-WRITTEN FORTRAN SUBROUTINE')

ENDIF

C

ELSE

CONTINUE

ENDIF

C

698 CONTINUE

699 CONTINUE

C

C

C

C MACHINE PARAMETERS

C

C

C

DO 780 INDEX11,42,1

IF (USERARR(6,INDEX1).EQ.0) GOTO 779

C

700 WRITE(4,702)INDEX1,MCHNAMES(INDEX1)

IF(OUTFLAG.GT.1)WRITE(11,702)INDEX1,MCHNAMES(INDEX1)

256

702 FORMAT(/////,12I'MAQUNE TYPE 'I2': 'A, /,

1 12X' '/)

C

IF(INDEXLEQ.40.0R.INDEX1.EQ.42)GOTO 711

WRITE(*,703)USERARR(6,INDEX1)

IF(OUTFLAG.GT.1)WRITE(11,703)USERARR(6,INDEX1)

703 FORMAT(' INITIAL NUMBER OF MACHINES

IF (INDEX1.EQ.39) GOTO 705

WRITE(*,704)USERARR(1,INDEX1)

IF(CUTTLAG.GT.1)WRITE(11,704)USERARR(1,INDEX1)

704 FORMAT(' AVERAGE PROCESSING TINE / TREE : ',F8.4)

705 WRITE(*,706)USERARR(2,INDEX1)

IF(OUTFLAG.GTA)IRITE(11,7116)USERARR(2,INDEX1)

706 FORMAT(' FIXED CONSTANT TIME / LOAD : ',F8.4)

WRITE(41.708)USERARR(3,INDEX1)

IF(OUTFLAG.GT.1)WRITE(11,708)USERARR(3,INDEX1)

708 FORMAT(' FIXED CONST. TINE / ONE WAY HAUL : ',F8.4)

711 WRITE(",712)USERARR(21,INDEX1)

IF(OUTFLA.GT.1)WRITE(11,712)USERARR(21,INDEX1)

712 FORMAT(' FIXED COST / SCHEDULED HOUR : ',F8.2)

WRITE(w,714)USERARR(22,INDEX1)

IF(OUTFLAG.GT.1)WRITE(11,714)USERARR(22,INDEX1)

714 FCRMAT(' VARIABLE COST/ MACHINE HOUR ',F8.2)

WRITE(*,710)USERARR(8,INDEX1)

IF(OUTFLAG.GT.1)WRITE(11,710)USERARR(8,INDEX1)

710 FCRMAT(' MACHINE CAPACITY IN CU.FT ',F8.2)

C

C

720 WRITE(*,722)INDEX1,11CSNAMES(INDEX1)

IF(OUTFLAG.GT.1)WRITE(11,722)INDEX1,MCHNAMES(INDEX1)

722 FORMAT(/,

1 ' FREQUENCY DISTRIBUTIONS MACHINE TYPE '12' : 'A,/

3 ' CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.%',

4 ' REPAIR TIME'/,

5 '

6 '
.)

IF(MCHARR(INDEX1,1,1).EQ.0.)THEN

WRITE(.723)

IF(OUTFLAG.GT.1)WRITE(11,723)

723 FINV1AT(/,211X,'**m*** DISTRIBUTION NOT USED ******')

ELSE

DO 760 INDEX2 *1,10,1

IF(MCHARR(INDEX1,1,INDEX2).EQ.0.AND.

1 MCHARR(INDEX1,3,INDEX2).EQ.0) THEN

GOTO 759

ELSEIF (MCHARR(INDEX1,1,INDEX2).GT.O.AND.

1 MCHARR(INDEX1,3,INDEX2).EQ.0) THEN

WRITE(*,724)INDEX2,MCHARR(INDEX1,1,1NDEX2),

1 MCHARR(INDED11,2,INDEX2)

IF(OUTFLAG.GT.1)WRITE(11,724)INDEX2,

1 MCHARR(INDEX1,1,INDEX2),MCHARR(INDEX1,2,INDEX2)

257

724 FORKAT(42,12,10X,F8.2,10X,F8.2)

ELSEIF (MCMARR(INDEXI,I,INDEX2).EQ.O.AND.

1 NCHARR(INDEX1,3,INDEX2).GT.0) THEN

WRITE(*.726)INDEX2,11CHARR(INDEX1,5,INDEX2),

1 MCMARR(IMEX1,4,INDEX2)

IF(OUTFLAG.GT.1)WRITE(11,726)INDEX2,NCHARR(INDEXI.3,INDEX2)

1 ,MCHARR(INDEX1,4,INDEX2)

726 FORMAT(4X,I2,10L8X.10X,8X,102,F8.2,100,F8.2)

ELSE

WRITE(4,728)INDEX2,NCHARR(INDEX1,1,INDEX2).

1 NCHARR(INDEX1,2,INDEX2),NCHARR(INDEX1,3,INDEX2),

2 MC1ARR(INDEX1.4,INDEX2)

IF(OUTFLAG.C7.1)WRITE(11,728)INDEX2,MCHARR(INDEX1,1,INDEX2)

1 .MCHARR(INDEX1,2,INDEX2),MCHARR(INDEX1.3,INDEB2),

2 MCHARR(INDEX1.4,INDEX2)

728 FORNAT(42,12,10X,F8.2,10X,F8.2,102,F8.2,102,F8.2)

END IF

759 CONTINUE

760 CONTINUE

ENDIF

C

779 comma
780 CONTINUE

C

C

C END OF SUBROUTINE

C

C

WRITE(",'(/ / / /)')

IF(OUTFLAG.U.1)WRITE(11,.(////)')

IF(OUTFLAG.U.1)CLOSE(11)

9998 RETURN

C

END

258

APPENDIX D

5. Listing, MODIFY.FOR

259

C*

OREGON STATE UNIVERSITY

C* JUNE 1986

C*

C*

C*

C* SIMULATION OF MECHANIZED LOG HARVESTING SYSTEMS

C*

C*

C* DESIGNED BY : CHRISTOPH WIESE

C* MASTERS CANDIDATE, DEP. OF INDUSTRIAL *

C* ENGINEERING, OREGON STATE UNIVERSITY

C*

C* DESIGNED FOR: DEPARTMENT OF FOREST ENGINEERING

C* OREGON STATE UNIVERSITY

C*

C*

C* SUPERVISION : DR. ELDON OLSEN

C* ASSOCIATE PROFESSOR, DEP. OF INDUSTRIAL *

C* ENGINEERING, OREGON STATE UNIVERSITY

C*

C*

C***14.1HHHEWHHHOHHOOHHHHHOOHHHOHHHIN4HH****1HIMOHH*****IHHI*****

C*

C* FORTRAN INPUT USER INTERFACE: MODIFY.FOR

C*

C* 31-MAY-87 18:55

C*

c************m*********mwo**************************************

C

C

C

C

>>> LOGSIM<(<
*

*

*

C

SINCLUDE:TRCYL.FOR1

C

C PROGRAM DECLARATION:

C

C

SUBROUTINE MODIFY

C

C COMMON BLOCK :

C

C

SINCLUDE:'VARBLOCK.DOCI

C

C DEFINE LOCAL VARIABLES, NAMES & TYPE:

C

C

260

INTEGER*4IANSWER,INDEX1,INDEX2,INDEX3,INDEX4,INDE(5

INTEGER*4 INDEX6,INDEX7,INDEX8,INDEX9,IND10,IND11

CHARACTER*20 CHRANSWER

REAL F1ANSWER,F2ANSWER,F3ANSWER,F4ANSIOTR,F5ANSWER,F6ANSWER

REAL F7ANSWR,F8ANSWR,F9ANSWER,F1MANSWR,F11ANSWER,F12ANSWER

LOGICAL*4 FILESTATUS

C

C BEGIN PROCESSING:

C

C

C OPENING SCREEN:

C

C

WRITE(*,100)

100 FORMAT(' 11////////////////////////////////////5X,

1' SUBROUTINE MODIFY' /5X,

2' '//5X,

3'THIS SUBROUTINE ALLOWS YOU TO MODIFY THE DATA OF A '/5X,

4'SIMULATION MODEL PREVIOUSLY DEFINED WITH SUBROUTINE '/5X,

5IREADIN.',///)

WRITE(*,17X,A\r) 'DO YOU WISH TO CONTINUE (Y/N) 7 [Y] > '

READ (41,'(82,A1).) CHRANSWER

IF (QIRANSWER.EQ.'N') THEN

GOTO 9998

ELSE

CONTINUE

ENDIF

C

C

C

C INITIALIZATION OF ALL VARIABLES AN READIN THE FILE

C

C

C

CALL INITREAD

C

C

200 WRITE(*,205)

205 FORMAT(/////////////////////,

1 5X'SUBRROUTINE MODIFY CHOICES:',/,

2 5X' ',//,

3 2X'EDIT SYSTEM PARAMETERS 1',/,

4 2X'EDIT MATERIAL FREQUENCY DISTRIBUTIONS 2',/,

5 2X'EDIT PROCESS PARAMETERS 3',/,

6 2X'EDIT MACHINE PARAMETERS = 4',/,

7 2X'EDIT MACHINE DISTRIBUTIONS 5')

WRITE(*,210)

210 FCRMAT(

1 2X'SAVE MODIFYIED MODEL 6',/,

2 2FRETIERN TO MAIN MENU 0',//,

3 2X' PLEASE ENTER CHOICE

220 READ(*,'(12)')IANSWER

C

261

IF(IANSWER.LT.0.0R.IANSWER.GT.6)THEN

WRITE(* 230)

230 FORMAT(/,2X,' 111 CANNOT BE, PLEASE TRY AGAIN 1t1',/,

1 2X' PLEASE ENTER CHOICE > ' \)

GOTO 220

ELSEIF(IANSWER.EQ.0)1MEN

RETURN

ELSEIF(IANSWER.EQ.1)THEN

GOTO 1000

ELSEIF(IANSWER.E02.2)THEN

GOTO 2000

ELSEIF(IANSWER.EQ.3)THEN

GOTO 3000

ELSEIF(IANSWER.EQ.4)THEN

GOTO 4000

ELSEIF(IANSWER.EQ.5)1REN

GOTO 5000

ELSEIF(IANSWER.EQ.6)THEN

COTO 6000

ELSE

CONTINUE

ENDIF

C

C

C

C

C

C MODIFYING SYSTEM PARAMETERS

C

C

C

1000 WRITE(31,1010)FILENAME,XX(4)M(10)

1010 FORMAT(////////////////////////,

1 ' EDITING SYSTEM PARAMETERS:',/,

2 ' ',//

1 2X' NAME OF SIMULATION MODEL : 'A,/,

2 2X'1 AMOUNT TO BE HARVESTED (CU.FT.) : 'FB.0,/,

3 2X'2 = TINE DELAY PARAMETER : 'F8.4,/,

4 2%1 w RETURN TO MODIFY MENU',//,

4 2X'PLEASE ENTER CHOICE ----> ',\)

1020 READ(,1(I2)1)IANSWER

C

IF(IANSWER.LT.O.OR.IANSWER.GT.2)THEN

WRITE(*.1030)

1030 FORMAT(/,2X,'111 CANNOT BE, PLEASE TRY AGAIN !It',/,

1 2X'PLEASE ENTER CHOICE

GOTO 1020

ELSEIF(IANSWER.EQ.0)THEN

GOTO 200

ELSEIF(IANSWER.EQ.1) THEN

1040 WRITE(*,'(//,A,\)'). HOW MANY CU.FT SHOULD BE HARVESTED? - - ->1

READ(,'(FB.0)')F1ANSWER

262

IF(F1ANSWER.EQ.0) THEN

WRITE (*,'(/,A)')' 111 CANNOT BE, PLEASE TRY AGAIN I!!'

COTO 1040

ELSEIF(F1ANSWER.GE.9999998) THEN

WRITE (*,'(/,A)')' 111 CANNOT BE, PLEASE TRY AGAIN 111"

GOTO 1040

ELSE

n(4) 0F1ANSWER

ENDIF

ELSEIF(IANSWER.EQ.2) THEN

1050 WRITE(*,'(//,A,\)'). VALUE OF THE TIME DELAY PARAMETER? - ->.

READ(*,.(F13.4)')F1ANSWER

IF(F1ANSWER.EQ.0) THEN

WRITE (*,'(/,A)')' 111 CANNOT BE, PLEASE TRY AGAIN Itt'

GOTO 1050

ELSEIF(F1ANSWER.GE.999.0R.F1ANSWER.LT.0.0001) THEN

WRITE (*,'(/,A)')' 111 CANNOT BE, PLEASE TRY AGAIN 1!1'

GOTO 1050

ELSE

XX(111)F1ANSWER

ENDIF

ELSE

CONTINUE

ENDIF

C

GOTO 1000

C

C
C MODIFYING DISTRIBUTION DATA OF THE TREES/LOGS/PULPLOGS/SAWLOGS

C

C

C

2000 WRITE(*,2010)DISTRIBNAMES(1),DISTRIBNAMES(2).DISTRIBNAMES(3),
1 DISTRIBNAMES(4)

2010 FORMAT(////////////////,2X'EDITING
1

MATERIAL DISTRIBUTIONS:', /,

' ,/,

2 2r1 EDIT DISTRIBUTION NO.1 ',A,/,

3 2X'2 EDIT DISTRIBUTION NO.2 ',A,/,

4 2)(15 EDIT DISTRIBUTION NO.3 ',A,/,
5 2X'4 - EDIT DISTRIBUTION N0.4 ',A,/,

6 2)(10 RETURN TO MODIFY MENU',//,

7 2X'PLEASE ENTER CHOICE ----> ',\)

2020 READ(*,.(12)1)1ANSWER

C

IF(IANSWER.LT.O.OR.IANSWER.GT.4)THEN

WRITE(*,2030)
2030 FORMAT(/,2X,1111 CANNOT BE, PLEASE TRY AGAIN Ht', /,

1 2X'PLEASE ENTER CHOICE ----> 1\)

GOTO 2020

ELSEIF(IANSWER.EQ.0)THEN
GOTO 200

263

ELSE

INDEX1-IANSWER

ENDIF

C

C

C

2035 URITE(*,2040)INDEX1,DISTRIBNAMES(INDEXI)

2040 FORMAT(//////////////////////////////,

1 10X,'DISTRIBUTION NO.',

2 12' : ',A,/,

3 10X, '//,

4' CLASS GUM.REL.FREQ.% CU.FT'/,

5' ',)

IF(INDEXI.EQ.1)THEN

IF(DISARR(1,1).EQ.0)THEN

WRITE(*,'(/,3X,A)') ******* DISTRIBUTION NOT USED ** 'a *'

ELSE

DO 2060 INDEX2 -1,10,1

IF(DISARR(1,INDEX2).EQ.0)COTO 2060

WRITE(*,2052)INDEX2,DISARR(1,INDEX2),DISARRR(2,INDEX2)

2052 FORMAT(4X,12,10X,F8.2,10X,F8.2)

2060 CONTINUE

ENDIF

WRITE(*,'(//,A,W)' EDIT DISTRIBUTION (Y/N) ? [N]---->'

READ(*,1(A1)')CHRANSWER

IF(CHRANSWER.EQ.'Y')GOTO 2100

ELSEIF(INDEX1.EQ.2)THEN

IF(DISARR(3,1).EQ.0)THEN

WRITE(*,'(/,3X,A)'r******* DISTRIBUTION NOT USED *MHOHOF

ELSE

DO 2062 INDEX2 -1,10,1

IF(DISARR(3,INDEX2).EQ.0)GOTO 2062

WRITE(11,2061)INDEX2,DISARR(3,INDEX2),DISARRR(4,INDEX2)

2061 FORMAT(4X,12,10X,F0.2,10X,F0.2)

2062 CONTINUE

ENDIF

WRITE(*,'(//,A,W)' EDIT DISTRIBUTION (Y/N)

READ(*,'(A1)')CHRANSWER

IF(CHRANSWER.EQ.'110010 2100

ELSEIF(INDEXI.EQ.3)THEN

IF(DISARR(5,1).EQ.0)THEN

NRITE(*,'(/,3X,A)1)1******* DISTRIBUTION NOT USED *******'

ELSE

DO 2064 1NDEX2 -1,10,1

IF(DISARR(5,INDEX2).EQ.0)GOTO 2064

WRITE(*,2063)IATEX2,DISARR(5,INDEX2),DISARRR(6,INDEX2)

2063 FORMAT(4X,I2,10X,FB.2,10X,F8.2)

2064 CONTINUE

ENDIF

WRITE(*,'(//,A,\)')' EDIT DISTRIBUTION (Y/N) (N] ->'

READ(*,'(A1)`)CHRANSWER

IF(CHRANSWER.EQ.'Y')GOTO 2100

264

ELSE

IF(DISARR(7,1).EQ.0)THEN

WRITE(*,'(/,3X,A),),*mHolie* DISTRIBUTION NOT USED wmw000

ELSE

CO 2066 INDEX2 *1,10,1

IF(DISARR(7,INDEX2).EQ.0)COTO 2066

WRITE(*,2065)INDEX2,DISARR(7,INDEX2),DISARRR(8,INDEX2)

2065 FORMAT(4X,I2,10X,F0.2,10X,F8.2)

2066 CONTINUE

ENDIF

WRITE(*,'(//,A,\)'P EDIT DISTRIBUTION (Y/N) 7 [N]---->'

READ(*.'(A1)')CHRANSWER

IF(CHRANSWER.EQ.'Y')CATO 2100

ENDIF

CATO 2000

C

C INITIALIZE THE DISTRIBUTION

C

2100 DO 2105 INDEX21,10,1

IF(INDEX1.EQ.1)THEN

DISARR(1,INDEX2)s0

DISARR(2,INDE12) *0

ELSEIF(INDEX1.EQ.2)THEN

DISARR(3,INDEX2).0

DISARR(4, INDEX2) *0

ELSEIF(INDEX1.EQ.3)THEN

DISARR(5,INDEX2)s0

DISARR(6,INDEX2) -0

ELSE

DISARR(7,INDEX2) -0

DISARR(8,INDEX2)4

ENDIF

2105 CONTINUE

C

C

WRITE(*,2110)INDEX1

2110 FORMAT(/,

1 ' FREQUENCY DISTRIBUTION NO.12,':'/,

2 ' ')

C

WRITE(*,2120)

2120 FORMAT(/,' NAME OF THIS DISTRIBUTION 7

READ(*,1(A)' ICHRANSWER

DI STRIBNANES(INDEX1)CHRANSWER

C

2130 DO 2180 INDEX2a1,10,1

2140 WRITE(*,2150)INDEX2

2150 FORMAT(/,' CLASS ',I2,': 0.111.REL.FREQENCY7 [0] - - ->'\)

READ(*,1(BN,F8.2)')F1ANSWER

WRITE(*,2160)INDEX2

265

2160 FORMAT(' CLASS P$I2,1: VOLUME CU.FT7

READ(*,"(BN,F8.2)')F2ANSWER

IF(INDE:(2.EQ.1.AND.F1ANSWER.EQ.0)THEN

COTO 2190

ELSEIF(F2ANSWER.LE.0)THEN

WRITE(*,P(A,/)11 II CANNOT BE, PLEASE TRY AGAIN It'

GOTO 2140

ELSEIF(F1ANSWER.GT.100)THEN

WRITE(*,P(A,/)')' It CANNOT BE, PLEASE TRY AGAIN !I'

GOTO 2140

ELSEIF(INDEXE.GT.I.AND.F1ANSUER.LE.F3ANSWER)THEN

WRITE(*,'(A, /)')' It CANNOT BE, PLEASE TRY AGAIN 11'

GOTO 2140

ELSEIF(INDEX2.EQ.10.AND.FIANSWER.NE.100)TREN

WRITE(*.P(AAP)' It CANNOT BE, PLEASE TRY AGAIN t!'

GOTO 2140

ELSE

F3ANSWERFIANSIER

IF(INDEX1.EQ.1)THEN

DISARR(1,INDEX2)sF1ANSWER

DISARR(2,INDEX2)- F2ANSWER

IF(FIANSWER.EQ.100)GOTO 2190

ELSEIF(INDEX1.EQ.2)THEN

DISARR(3,INDEX2)flF1ANSWER

DISARR(4,INDEX2)sF2ANSWER

IF(FIANSWER.EQ.100)GOTO 2190

ELSEIF(INDEX1.EQ.3)THEN

DISARR(5,INDEX2)- F1ANSWER

DISARR(6,INDEX2)F2ANSWER

IF(F1ANSUER.EQ.100)GOTO 2190

ELSE

DISARR(7, INDEX2)- F1ANSWER

DISARR(8,INDEX2)aF2ANSWER

IF(F1ANSUER.EQ.100)GOTO 2190

END IF

ENDIF

2180 CONTINUE

2190 CONTINUE

C

GOTO 2035

C

C

C

C EDIT PROCESS PARAMETERS

C

C
C

3000 WRITE(*,3010)

3010 FORMAT(///////////////////////,2XPEDITING PROCESS PARA/ETERS:Pi,

1 ,/)

DO 3050,INDEX1 -1,130

IF(USERARR(23,INDEXI).EQ.0.AND.USERARR(24,INDEX1).E0.0)GOTO 3040

WRITE(*,3020)INDEX1,INDEX1,PROCNAMES(INDEX1)

3020 FORMAT(2X,12' PROCESS NO.1I2' :',A)

3040 CONTINUE

3050 CONTINUE

WRITE(*,3060)

3060 FORMAT(2X' 0 RETURN TO MODIFY MENU',//

1 2X'PLEASE ENTER CHOICE - - -> ',\)

3070 READ(*,.(12)1)1ANSWER

C

IF(IANSWER.LT.0.OR. IANSWER.GT.13)THEN

WRITE(*,3080)

3080 FORMAT(/,2X,'111 CANNOT BE, PLEASE TRY AGAIN I11',/,

1 2X'PLEASE ENTER CHOICE '\)

GOTO 3070

ELSEIF(IANSWER.EQ.0)THEN

COTO 200

ELSEIF(USERARR(23,IANSWER).EQ.0.AND.USERARR(24,1ANSWER).EQ.0)THDI

WR1TE(*5060)

3090 FORMAT(/,2X,'111 PROCESS NOT ACTIVE, PLEASE TRY AGAIN WV,

1 2X'PLEASE ENTER CHOICE

GOTO 3070

ELSE

INDEXIIANSWER

ENDIF

C

C

C

3100 WRITE(*,3110)INDEX1,PROCNAMES(INDEX1)

3110 FORMAT(//////////////////////////////////,

1 12XTROCESS NO.'12': $A,/,

2 12X' '/)

C

IF (INDEX1.EQ.1) THEN

INDEX21

INDEX34

INDEX4USERARR(23, INDEX1)

INDEX5USERARR(5,INDE11)

3120 1BlITE(*,3130)USERARR(23,1NDEX1),PROCNAMES(INDEX4),

1 USERARR(3,INDEX1),DISTRIBNAMES(INDEX5)

3130 FORMAT(

1 ' OUTGOING DESTINATION : PROCESS NO.'F3.0"A,/

2 ' DISTRIBUTION USED : ',F3.0,10X,A)

C

IF(USERARR(4,INDEX1).EQ.0) THEN

WRITE(*5140)

3140 FORMAT(' LOADER USED : NONE')

ELSE

INDEX40USERARR(4,1NDEX1)

WRITE(*,3150)USERARR(4,INDEX1),MCHNAMES(INDEX4)

3150 FORMAT(' LOADER USED : ',F3.0,",A)
ENDIF

C

IF(USERARR(9,INDEX1).EQ.0) THEN

WRITE(*,3160)

266

267

3160 FORMAT(

1 ' TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS')

ELSE

WRITE(4,3170)

3170 FORMAT(

1 ' TIME DELAYS HANDELED BY : USER-WRITTEN FORTRAN SUBROUTINE')

ENDIF

C

C

ELSEIF (INDEX1.NE.11) THEN

INDEX2DLEVEL(7)+INDEX1

INDEX3XXLEVEL(3)+INDEX1

INDEX4XXLEVEL(5)+1NDEX1

INDEX5XXLEVEL(4)+INDEX1

INDEX6XXLEVEL(6)+INDEX1

INDEX7USERARR(24,INDEX1)

INDEX84USERARR(23,INDEX1)

INDEX9USERARR(5,INDEX1)

IF(USERARR(23,INDEX1).EQ.0) THEN

WRITE(4,3180)USERARR(24,INDEX1),PROCNAMES(INDEX7)

3180 FORMAT(

1 ' INCOMING ORIGIN : PROCESS NO.IF3.0"A)

ELSE

WRITE(01,3190)USERARR(24,INDEX1),PROCNAMES(INDEX7),

1 USERARR(23,INDEX1),PROCNAMES(INDEX8)

3190 FORMAT(

1 ' INCOMING ORIGIN : PROCESS NO.'F3.0"A,/,

2 ' OUTGOING DESTINATION : PROCESS NO.'F3.0"A)

ENDIF

WRITE(4,3200)USERARR(5,INDEXMDISTRIBNAKES(INDEX9),

1 XX(INDEX2).XX(INDEX3).XX(INDEX4),XX(INDEX5),U(INDEX6)

3200 FORMAT(

1 ' DISTRIBUTION USED : ',F8.0,10X,A,/

2 ' STARTUP - INVENTORY LEVEL :

3 ' MINIMUM INVENTORY LEVEL :

4 ' STARTUP LEVB1. MINIMUM : ',F8.1,/

5 ' MAXIMUM INVENTORY LEVEL : ',F8.1,/

6 ' STARTUP LEVEL MAXIMUM : ',F8.1)

C

IF(USERARR(4,INDEX1).EQ.0) THEN

3210 WRITE(*,3220)

3220 FORMAT(' LOADER USED : NONE')

ELSE

INDEX44USERARR(4,INDEX1)

3230 WRITE(4,3240)USERARR(4,INDEX1),MCHNAMES(INDEX4)

3240 FORMAT(' LOADER USED : ',F8.0,",A)

ENDIF

C

IF(USERARR(9,INDEX1).EQ.0) THEN

WRITE(4,3250)

3250 FORMAT(

1 ' TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS')

268

ELSE

WRITE(*,3260)

3260 FORMAT(

1 ' TINE DELAYS HANDELED BY : USER-WRITTEN FORTRAN SUBROUTINE')

ENDIF

C

C

ELSEIF(INDEX1.EQ.11) THEN

INDEX2-XXLEVEL(7)+INDEX1

INDEX3000LEVEL(3)+INDEX1

INDEX4-XXLEVEL(5)+INDEX1

INDEX5-XXLEVEL(4)*INDEX1

INDEX6- XXLEVEL(6) +INDEXI

INDEX7-USERARR(24,INDEX1)

INDEX9sUSERARR(7,5)

INDEX9- USERARR(7,6)

3280 WRITE(*,32911)USERARR(24,INDEX1),PR0ONAMES(INDEX7),

1 USERARR(7.5),PROCNAMES(INDEX8),

2 USERARR(7,6),PROCNAMES(INDEX9),

3 USERARR(7,3),USERARR(7,4)

3290 FORMAT(

1 ' INCOMING ORIGIN : PROCESS NO.'F3.0"A,/,

2 ' OUTGOING ROUTE 1 : PROCESS NO.'F3.0"A,/,

3 ' OUTGOING ROUTE 2 : PROCESS NO.'F3.0"A,/,

4 ' % GOING ROUTE 1 : ',F8.2,' %',/

5 ' S GOING ROUTE 2 : ',F8.2,' 5')

INDEX9- USERARR(5, INDEX1)

3300 WRITE(*.3310)USERARR(5,INDEX1),DISTRIBNAMES(INDEX9),XX(INDEX2),

1 XX(INDEX3),XX(INDEX4),XX(INDEX5),XX(INDEX6)

3310 FORMAT(

1 ' DISTRIBUTION USED : ',F8.0,10X,A,/,

2 ' STARTUP-INVENTORY LEVEL : ',F8.1,/,

3 ' MINIMUM INVENTORY LEVEL : ',F8.1,/,

4 ' STARTUP LEVEL MINIMUM : ',F8.1./,

5 MAXIMUM INVENTORY LEVEL : ',F8.1,/,

6 ' STARTUP LEVEL MAXIMUM : '.F8.1)

C

IF(USERARR(4,INDEX1).EQ.0) THEN

3320 WRITE(",3340)

3340 FORMAT(' LOADER USED : NONE')

ELSE

INDEX4-USERARR(4,INDEXI)

3350 WRITE(*.3360)USERARR(4,INDExl),MCHNAMES(INDEX4)

3360 FORMAT(' LOADER USED : ',F8.0,".A)

END IF

C

IF(USERARR(9,INDEX1).EQ.0) THEN

WRITE(*,3370)

3370 FORMAT(

1 ' TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS')

ELSE

WRITE(*,3380)

3380 FORMAT(

1 ' TIME DELAYS HANDELED BY : USER-WRITTEN FORTRAN SUBROUTINE')

ENDIF

C

ELSE

CONTINUE

ENDIF

C

WRITE(*,3390)

3390 FORMAT(/,2X,'CCNTINUE EDITING? Y/N (N)----> '\)

READ(*,'(A)')CHRANSWER

IF (CNRANSWER.EQ.'Y') THEN

GOTO 3490

ELSE

GOTO 3000

ENDIF

C

C

C

C

3490 WRITE(*,3500)INDEX1
3500 FORMAT(//' EDITING PROCESS N0.'I2,/

1 ')

WRITE(*'(A,\)1)' NAME OF PROCESS?
READ(*,.(A20)1)CHRANSWER

PROCNAMES(INDEX1)CHRANSWER

>'

C

3510 WRITE(*,'(A,\)T NO. OF DISTRIBUTION TO USE?
READ(*,1(12)1)1ANSWER

INDEX2IANSWER*2
INDEX2-INDEXZ -1

IF(IANSWER.LT.I.OR.IANSWER.GT.4)THEN

WRITE(*,3520)
3520 FORMAT(' 1!! CANNOT BE, PLEASE TRY AGAIN 1111/)

GOTO 3510
ELSEIF(DISARR(INDEX2,1).EQ.0.) THEN

WRITE(*,3530)
3530 FORMAT(' III DISTRIBUTION NOT ACTIVE, PLEASE TRY AGAIN MY)

GOTO 3510

ELSE
USERARR(5,INDEX1)-IANSWER

ENDIF
IF(INDEXI.EQ.I) GOTO 3660

C

C

IF (INDEX1.EQ.11) THEN

3531 WRITE(*,3532)

3532 FORMAT(' HOW MUCH INVENTORY IN % GOES ROUTE 1 ? %%%.%%
1 ",\)

READ(*,'(F6.2)')F1ANSWER

WRITE(*,3533)

269

270

3533 FORMAT(' HOW MUCH INVENTORY IN % GOES ROUTE 2 7 % % %. %% >1

P ,A)

READ(*,'(F6.2)')F2ANSWER

F3ANSWER-F1ANSIER+F2AICWER

IF (F3ANSWER.NE.100) MEN

WRITE(*,3534)

3534 FORMAT(/,' Itt CANNOT BE, PLEASE TRY AGAIN Itt',/)

GOTO 3531

ELSE

USERARR(7,3) -F1ANSWER

USERARR(7,4)-F2ANSWER

ENDIF

ENDIF

C

C

3540 WRITE(*.'(A,\)')1 STARTUP-INVENTORY LEVEL?

READ(*,1(F8.1)')F1ANSWER

IF(F1ANSWER.LT.0) MEN

WRITE(*,3550)

3550 FORMAT(' It! CANNOT BE, PLEASE TRY AGAIN MY)

GOTO 3540

ELSEIF(FIANSWER.EQ.0)THEN

INDEX2-)2(LEVEL(7).*INDEX1

XX(INDEX2) -1

ELSE

INDEX2-)2(LEVEL(7)+INDEX1

)0C(INDEX2)-F1ANSWER

ENDIF

[1] > '

C

3560 WRITE(*..(701'). !MINIMUM INFEED INVENTORY LEVEL? [0]

READ(*,'(F8.1)')F1ANSWER

IF(F1ANSWER.LT.O.CR.F1ANSWER.GT.Ya(INDEX2)) THEN

WRITE(*,3570)

3570 FORMAT(' ttt CANNOT BE, PLEASE TRY AGAIN tit' /)

GOTO 3560

ELSE

INDEX2-)D1EVEL(3)*INDEX1

)7(INDEX2)-F1ANSIER

ENDIF

3580 WRITE(*,1(A,\)'). STARTUP -INV.LEVEL AFTER MINIMUM? [0] > '

READ(*,.(F8.1)')F1ANSWER

IF(F1ANSWER.LT.O.OR.):((INDEX2).GT.F1ANSIER) THEN

WRITE(,3590)

3590 FORMAT(' t!t CANNOT BE, PLEASE TRY AGAIN ttt'/)

COTO 3580

ELSE

INDEX2-XXLEVEL(5)+INDEXI

XX(INDEX2)- F1ANSWER

ENDIF

C

3600 WRITE(*,1(A,\)')1 MAXIMUM INFEED INV. LEVEL? [999999.9] > '

READ(*,.(F8.1)')F1ANSWER

INDEX3- XXLEVEL(5) +INDEX1

271

IF(F1ANSWR.LT.0) THEN

WRITE(,3610)

3610 FORMAT(' !ft CANNOT BE, PLEASE TRY AGAIN tit' /)

COTO3600

ELSEIF(FlANSWER.GT.0.ANDiCK(INDEX3).GE.F1ANSWER) THEN

WRITE(,3620)

3620 FORMAT(' !ft CANNOT BE, PLEASE TRY AGAIN Ur!)

GOTO 3600

ELSEIF(F1ANSWER.EQ.0)THEN

F3ANSWER-999999.9

INDEX2- XXI.EVEL(4) +INDEX1

XX(INDEX2) -999999.9

ELSE

F3ANSWER-F1ANSWER

INDEX2- XXLEVEL(4) +INDEX1

XX(INDEX2)-F1ANSWER

ENDIF

C

3630 WRITE(.1(AA)'r STARTUP -INV.LEVEL AFTER MAXIMUM? [999999.9] - ->

READ(,1(F8.1)')F1ANSWER

INDEX, -1C(LEVEL(3)+INDEX1

IF(FlANSWER.LT.0.OR.F1ANSWER.0T.F3ANSWER) THEN

WRITE(,3640)

3640 FORMAT(' It! CANNOT BE, PLEASE TRY AGAIN Ur!)

GOTO 3630

ELSEIF(FlANSWER.GT.O.AND.F1ANSWER.LT.XX(INDEX3)) THEN

WRITE(,3650)

3650 FORMAT(' ft! CANNOT BE, PLEASE TRY AGAIN !It' /)

GOTO 3630

ELSEIF(FiANSWER.EQ.0)THEN

INDEX2-XXLEVEL(6)+INDEX1

EX(INDEX2) -999999.9

ELSE

INDEX2-)CCLEVEL(6)+INDEX1

)0((INDEX2)-F1ANSWER

ENDIF

3660 CONTINUE

C

3670 WRITE(,3680)

3680 FORMAT(/' WHAT LOADER DO YOU WANT TO USE (32-36) ? [0] >'

1 ",\)

READ(,1(I2)1)IANSWER

IF (IANSWER.EQ.0) THEN

USERARR(4,INDEX1)-IANSWER

ELSEIF (IANSWER.GE.32.AND.IANSWER.LE.36) THEN

IF(USERARR(6,IANSWER).LE.0)THEN

WRITE(,3685)

3685 FORMAT(' ft! CANNOT BE, PLEASE TRY AGAIN (It'/)

GOTO 3670

ELSE

USERARR(4,INDEX1) -IANSWER

ENDIF

272

ELSE

WRITE(*,3690)

3690 FORMAT(' !It CANNOT BE, PLEASE TRY AGAIN tIt'/)

GOTO 3670

ENDIF

C

3700 WRITE(*,3710)

3710 FCRMAT(' BUILD-IN MODEL-0 OR USERFUNCTION -1 7 [0]

1 P P.M

READ(*, (I2)')IANSWER

IF(IANSNER.GT.1.0R.IANSWER.LT.0) THEN

WRITE(*,3720)

3720 FORMAT(' tit CANNOT BE, PLEASE TRY AGAIN MY)

GOTO 3700

ELSE

USERARR(9,INDEX1)-IANSWER

ENDIF

C

COTO 3100

C

C

C

C

C

C

C

C EDITING MACHINE PARAMETERS

C

C

C

C

4000 I1RITE(*,4010)

4010 FORMAT(/////////////////////////////,

1 2X,'EDITING MACHINE PARAMETERS:',/,

2 2X,'

wRITE(*,4020)

4020 FORMAT(2X,'PLEASE ENTER THE NUMBER OF THE MACHINE YOU',/

1 2X,'WANT TO EDIT. IF THE MACHINE HAS NOT BEEN',/

2 2X,'SET ACTIVE PREVIOUSLY YOU CAN ACTIVATE'/,

3 2X,'IT NOW BY SPECIFYING THE INITIAL NUMBER OF',/

4 2X,'MACHINES GREATER THAN 0.1/,

5 2X,'1 -42 MACHINE NUMBER',/

6 2X,' 0 - RETURN TO MODIFY MENU'//,

7 2X,'PLEASE ENTER CHOICE ----> ',\)

4030 READ(*,'(12)1)1ANSWER

C

IF(IANSWER.LT.0.0R.IANSWER.GT.42)1HEN

WRITE(*,4040)

4040 FORMAT(/,2X,1111 CANNOT BE, PLEASE TRY AGAIN 111',/,

1 2X'PLEASE ENTER CHOICE ----> '\)

GOTO 4030

ELSEIF(IANSWER.EQ.0)THEN

GOTO 200

273

ELSE

INDEX1IANSWER

ENDIF

C

C

C

4042 IF(INDEX1.GE.I.AND.INDEXLLE.4)THEN

INDEX9 41

ELSEIF(INDEXLGE.5.AND.INDEXLLE.7)THEN

INDEX9 42

ELSEIF(INDEX1.0.7.ANDANDEX1.LE.10)THEN

INDEX9 43

ELSEIF(INDEX1.12.11.ANDANDEX1.LE.13)THEN

INDEX9 44

ELSEIF(INDEX1.GE.14.AND.INDEX1.LE.16)THEN

INDEX9 45

ELSEIF(INDEX1.GE.17.AND.INDEX1.LE.19)1104

INDEX9 -6

ELSEIF(INDEXLGE.20.AND.INDEXLLE.22)THEN

INDEX9 -7

ELSEIF(INDEX1.GE.23.AND.INDEX1.LE.25)THEN

INDEX9 48

ELSEIF(INDEX1.GE.26.AND.INDEXLLE.28)THEN

INDEX9 49

ELSEIF(INDEX1.GE.29.AND.INDEXLLE.31)THEN

ELSEIF(INDEX1.GE.32300.INDEXLLE.36)ThEN

INDEX9 414

ELSEIF(INDIDO.GE.37.AND.INDEXLLE.40)THEN

INDEX9 412

ELSEIF(INDEX1.GE.41.AND.INDEXLLE.42)THEN

INDEX9 413

ELSE

CONTINUE

ENDIF

C

C

C

4050 IF(INDEX9.NE.14)THEN

WRITE(*,4060)INDEX9,PROCNAMES(INDEX9)

4060 FCRMAT(/////////////////////////,

1 2X'PROCESS NO.'I2': ',A,/

2 2X' ')

ELSEIF(INDEX9.EQ.14) THEN

W4ITE(*,4062)

4062 FORMAT(/////////////////////////,

1 2X'LOADING DEVICES',/

2 2X'

ELSE

CONTINUE

ENDIF

C

274

WRITE(*,4065)INDEX1,MCHNAMES(INDEX1)

4065 FORMAT(2X'MACHINE TYPE 'I2': 'A./.

1 2X' '/)

C

WRITE(*,4078)USERARR(6, INDEX1)

4078 FORMAT(' INITIAL NUMBER OF MACHINES :'F6.0)

IF(INDEALEQ.40.0R.INDEX1.EQ.42)GOTO 4090

IF(INDEX1.EQ.39) GOTO 4081

WRITE(*,4080)USERARR(LINDEX1)

4080 FORMAT(' AVERAGE PROCESSING TIME / TREE : ',F8.4)

4081 WRITE(*.4082)USERARR(2, INDEX1),

1 USERARR(3,INDEX1),USERARR(8,INDEX1)

4082 FORMAT(' FIXED CONSTANT TIME / LOAD : ',F8.4,/

1 ' FIXED (MIST. TINE / ONE WAY HAUL : ',F8.4,/

2 ' MACHINE CAPACITY IN CU.FT ',F8.2)

4090 WRITE(*,4100)USERARR(21,INDEX1),USERARR(22,INDEX1)

4100 FORMAT(' FIXED COST / SCHEDULED HOUR : ',F8.2,/

1 ' VARIABLE COST/ MACHINE HOUR ',F8.2)

WRITE(*,4110)

4110 FORMAT(/,2X,'CONTINUE EDITING? Y/N IN) -> '\)

READ(*,'(A)')CHRANSWER

IF (CHRANSWER.EQ.'Y') THEN

GOTO 4200

ELSE

GOTO 4000

ENDIF

C

C

C

C

4200 WRITE(*,4220)INDEX1

4220 FORMAT(//,' MACHINE TYPE '12' :',/,')

WRITE(*,1(A,\)'). NAME OF MACHINE TYPE ?

READ(*,'(A20)')CHRANSWER

NCHNAMES(INDEX1)CHRANSIIER

WRITE(46.1(A,\)'). INITIAL NUMBER OF MACHINES ?

READ(*,'(14)') IANSWER

USERARR(6,INDEX1)IANSWER

IF (INDEX1.EQ.40.OR.INDEX1.EQ.42) COTO 4270

IF(INDEX1.EQ.39) GOTO 4240

4230 WRITE(*,'(A,\)')' AVERAGE PROCESSING TIME / TREE? [0] > '

READ(*, '(F8.4)')FlANSIIER

IF (F1ANSWER.LT.0) THEN

WRITE(*,'(A,/)')1 11! CANNOT BE, PLEASE TRY AGAIN 1t1'

GOTO 4230

ELSE

USERMR(1,INDEX1)FlANSIIER

ENDIF

4240 WRITE(*,'(A.\)')' FIXED CONSTANT TIME / LOAD? [0] >

READ(*,'(F8.4)')F1ANSWER

IF (F1ANSWER.LT.0) THEN

WRITE(*,'(A, /)')' 111 CANNOT BE, PLEASE TRY AGAIN 111'

GOTO 4240

275

ELSE

USERARR(2,IMr00) FlANSWER

ENDIF

4250 WRITE(*,'(A, \)')' FIXED CONST. TIME / ONE WAY HAIL? [0]

READ(*,1(F8.4)1)F1ANSWER

IF (F1ANSWER.LT.0) THEN

WRITE(*,1(A,/).)' 111 CANNOT BE, PLEASE TRY AGAIN If!'

GOTO 4250

ELSE

USERARR(3, INDEXI)- F1ANSWER

ENDIF

4260 WRITE(*..(A,\)'!' MACHINE CAPACITY IN CU.F17 [1]

READ(',1(F8.21')F1ANSWEE

IF (FlANSWER.LT.0) THEN

WRITE(*,'(A,/).). !ft CANNOT BE, PLEASE TRY AGAIN tft'

GOTO 4260

ELSEIF(F1ANSWER.EQ.0) THEN

USERARR(8,INDEX1)1

ELSE

USERARR(8,INDEX1) KIANSWER

ENDIF

4270 WRITE(4,'(A,\)1)1 FIXED COST / SCHEDULED HOUR? [0]

READ(*,'(F8.2)')F1ANSWER

IF (F1ANSWER.LT.0) THEN

WRITE(*,'(A,/)1)1 It! CANNOT BE, PLEASE TRY AGAIN !tt'

GOTO 4270

ELSE

USERARR(21,INDEX1) F1ANSWER

ENDIF

4280 WRITE(*,'(A, \)')' VARIABLE COST/ MACHINE HOUR? [0

READ(*, (F8.2).)F1ANSWER

IF (F1ANSWER.LT.0) THEN

WRITE(m,'(A,/).)' !It CANNOT BE, PLEASE TRY AGAIN Ill'

GOTO 4280

ELSE

USERARR(22,INDEX1)F1ANSWER

ENDIF

C

C

GOTO 4050

C

C

C

C

C

C EDITING THE MACHINE BREAKDOWN PARAMETERS

C

C

5000 WRITE(*,5010)

5010 FORMAT(/////////////////////////////////////,2X,

1 'EDITING MACHINE BREAKDOWN PARAMETERS:',/,

2 2X,' ',/)

WRITE(*,5020)

276

5020 FORMAT(2X, 'PLEASE ENTER THE NUMBER OF THE MACHINE FOR'./

1 2X, 'WHICH YOU WANT TO EDIT THE MACHINE BREAK -',/

2 2X.'DOWN PARAMETERS.'/,

3 2X,'1 -42 - MACHINE NUMBER',//

4 2X,' 0 - RETURN TO MODIFY MENU'/,

5 2X'PLEASE ENTER CHOICE ----> ', \)

5030 READ(*,'(I2)')IANSWER

C

IF(IANSWER.LT.O.OR. IANSWER.GT.42)THEN

WRITE(*,5040)

5040 FORMAT(/,2X,'II1 CANNOT BE, PLEASE TRY AGAIN !UV,

1 2X'PLEASE ENTER CHOICE ----> '\)

GOTO 5030

ELSEIF(IANSWER.EQ.0)THEN

GOTO 200

ELSE

INDEX1-IANSWER

ENDIF

C

C

C

5100 WRITE(*,5110)INDEK1,MCNNAMES(INDEX1)

5110 FORMAT(///,

1 ' FREQUENCY DISTRIBUTIONS MACHINE TYPE 'I2' : 'A./

3 ' CLASS CUM FREQ.% TIME BETN.FAILURE CUM.FREQ.%',

4 '

5'
6 I--

REPAIR TIME'/,

IF(MCHARR(INDEX1,1,1).EQ.0.)THFA

WRITE(*.5120)

5120 FORMAT(/,20X,'"wwomm DISTRIBUTION NOT USED *****10)

ELSE

DO 5170 INDEX2s1,10,1

IF(MCNARR(INDEX1,1,INDEX2).EQ.0.AND.

1 MC(ARR(INDEX1,3,INDEX2).EQ.0) THEN

COTO 5160

ELSEIF (MCHARR(INDEX1,1,INDEX2).GT.O.AND.

1 MCHARININDEX1,3,INDEX2).EQ.0> THEN

WRITE(*,5130)INDEX2,MCHARR(INDEX1,1,INDEX2).

1 MCNARR(INDEX1,2,INDEX2)

5130 FORMAT(4X,I2,10X,F8.2.10X,F8.2)

ELSEIF (NCHARR(INDEX1,1,INDEX2).EQ.0.AND.

1 MCHARR(INDEX1.3,INDEX2).GT.0) THEN

WRITE(*,5140)INDEX2.11CHARR(INDEX1,3,INDEX2),

1 MCHARR(INDEXI,4,INDEX2)

5140 FORMAT(4X,I2,10X,8X,10X,E.10X,F8.2.10X,F8.2)

ELSE

WRITE(*,5150)INDEX2,MCHARR(INDEX1,1,INDEX2),

1 MCEARR(INDEX1,2,INDEX2),MCHARR(INDEX1.3,INDEX2),

2 MCHARR(INDEX1,4,INDEX2)

5150 FORMAT(4X,I2,10X,F13.2,10X,F8.2,10X,F8.2,10X,F8.2)

ENDIF

5160 CONTINUE

277

5170 CONTINUE

ENDIF

C

WRITE(16,5180)

5180 FORMAT(/,2X,'CONTINUE EDITING? Y/N [N]----> 1\)

READ(*,*(A)')GRANSWER

IF (CFMANSWER.EQ.'Y') THEN

GOTO 5182

ELSE

GOTO 5000

ENDIF

C

C

C

5182 I 5185 IND1O*1,4,1

DO 5183 IND11*1,10,1

MCNARR(INDEX1,IN)10,IND11)*0

5183 CONTINUE

5185 CONTINUE

C

F3ANSWER -0

5190 WRITE(*,5200)INDEX1,MCNNAMES(INDEX1)

5200 FORMAT(//////////////////////////////,

1 ' MACHINE TYPE ',I2,' : ',A,/

2 ' ',//,

3 ' FREQUENCY DISTRIBUTION FOR TIMES BETWEEN FAILURES:'/,

4 ' ',/)

5210 DO 5280 INDEX2*1,10,1

5220 WRITE(,5230)INDEX2

5230 FORMAT(/,' CLASS ',I2,': CUM.REL.FREQENCY? [0

READ(*,'(Itti,F8.2)1)FIANSWER

WRITE(*,5240)INDEX2

5240 FORMAT(' CLASS ',I2,': TIME BETWEEN FAILURES? [0] >1\)

READ(*,'(BN,F8.2)')F2ANSWER

IF(INDEX2.EQ.1.AND.F1ANSWER.EQ.0)111EN

GOTO 5400

ELSEIF(F2ANSWER.LE.0)THEN

WRITE(*,4A,/).)' It CANNOT BE, PLEASE TRY AGAIN t!'

GOTO 5220

ELSEIF(FlANSWER.GT.100)TNEN

WRITE(*,*(A,/)')1 It CANNOT BE, PLEASE TRY AGAIN It'

GOTO 5220

ELSEIF(INDEX2.47.1.AND.F1ANSWER.LE.F3ANSWER)THEN

WRITE(*,.(A,/).). (I CANNOT BE, PLEASE TRY AGAIN It'

GOTO 5220

ELSEIF(INDE12.EQ.10 .AND .F1 ANSWER .NE .100)THEN

WRITE(*,1(A,/)'r It CANNOT BE, PLEASE TRY AGAIN t!'

GOTO 5220

ELSE

F3ANSWER*FIANSWER

MCiARR(INDEX1,1,INDEX2)*F1ANSWER

MCHARR(INDEX1,2,INDEX2)*F2ANSWER

IF(F1ANSWER.EQ.100)GOTO 5290

278

ENDIF

5280 CONTINUE

C

C

5290 F3ANSWERa0

WRITE(4,5300)INDEX1,MCHNAMES(INDEX1)

5300 FORMAT(//////////////////////////////,

1 ' MACHINE TYPE '12' : 'A,/

2 ' ',//

3 ' FREQUENCY DISTRIBUTION FOR MACHINE REPAIR TIKES:'/,

4 ' '/)

5310 DO 5380 INDEX241,10,1

5320 URITE(4,5330)INDEX2

5330 FCRMAT(/,' CLASS ' 12 1. CUM.REL.FREQENCY? [0]
>' \)

READ(*,'(BN,F8.2)')F1ANSWER

WRITE(4,5340)1NDEX2

5340 FORMAT(' CLASS ',I2,': MACHINE REPAIR TIME? 103 >'\)

READ(*,"(BN,F8.2)')F2ANSWER

IF(INDEX2.EQ.1.AND.F1ANSWER.EQ.0)THEN

WRITE(4,'(A,/).)' It CANNOT BE, PLEASE TRY AGAIN It'

GOTO 5320

ELSEIF(F2ANSWER.LE.0)THEN

WEITE(4,'(A,/).)' tt CANNOT BE, PLEASE TRY AGAIN It'

COTO 5320

ELSEIF(F1ANSWER.GT.100)111EN

WRITE(*,'(A, /)')' It CANNOT BE, PLEASE TRY AGAIN 11'

GOTO 5320

ELSEIF(INDEX2.GT.I.AND.F1ANSWER.LE.F3ANSWER)1110

WRITE(*,'(A,/)')' 11 CANNOT BE, PLEASE TRY AGAIN It'

GOTO 5320

ELSEIF(INDE:(2.EQ.10.AND.F1ANSWER.NE.100)THEN

WRITE(*,.(A./).). t1 CANNOT BE, PLEASE TRY AGAIN It'

COTO 5320

ELSE

F3ANSWER4F1ANSWER

MCHARR(INDEX1,3,INDEX2)41ANSHER

MCHARR(INDEX1,4,INDEX2)F2ANSUEN

1F(F1ANSNER.EQ.100)GOTO 5400

ENDIF

5380 CONTINUE

C

C

5400 CONTINUE

C

COTO 5100

C

C

C

C

C

C

C SAVING MODEL ON DISK

C

C

C

6000 WRITE(*,6002)

6002 FORMAT(///////////////////////////////,20X,

TEND OF SUBROUTINE MODIFYY20X

2' '//,

3' YOU HAVE TO SAVE THE EDITED MODEL ON DISK,'/,

4' OTHERWISE ALL YOUR WORK WILL BE LOST t!'//)

C

6004 WRITE(*.WA\r)' SAVE MODEL ON DISK Y/N ? [Y] > '

READ(*,'(AI)'ICHRANSWER

C

IF (CHRANSWER.EQ.'N') THEN

WRITE(*,'(/,A,\P). ARE YOU REALY SURE Y/N ? IN > '

READ(*,'(AW)CHRANSWER

IF (CHRANSWER.EQ.'Y') THEN

COTO 9998

ELSE

GOTO 6004

ENDIF

ELSE

CONTINUE

ENDIF

C

6010 INQUIRE(FILE*FILENAME,EXIST*FILESTATUS)

IF(.NOT.FILESTATUS) THEN

OPEN(10,FILE*FILENAME,STATUS*'NEW')

ELSE

WRITE(*,6012)FILENAME

6012 FORMAT(/,' tItt FILE: 'A' ALREADY EXISTS Ittt'//,

1 ' OVERWRITE OLD FILE? IN]
> 8;0

READ(*,1(A1)1C10RANSIIR

IF(CHRANSWER.EQ.111)THEN

OPEN(10,FILE*FILENAME,STATUSa'OLD')

REWIND 10

ELSE

WRITE(*,6015)

6013 FORMAT(/,' INPUT NEW FILENAME FOR MODEL:

READ(*,1(A20)1)FILENAME

COTO 6010

ENDIF

ENDIF

C

C

WRITE(10,'(F8.1)') XX(1)

WRITE(10,'(F8.1)') XX(2)

WRITE(10,'(F8.1)') XX(5)

WRITE(10,1(F8.0)') XX(4)

WRITE(10,'(F8.1)') XX(5)

WRITE(10,'(F8.1)') XX(6)

WRITE(10,'(F8.1).) rA(7)

279

280

WRITE(10,'(F8.1)') XX(8)

WRITE(10.1(13.1)1) XX(9)

WRITE(10,1(88.4)') XX(10)

DO 6022 INDEX1 -11,100,1

WRITE(10,6020) XX(INDEX1)

6020 FORMAT(F8.1)

6022 CONTINUE

C

C

DO 6028 INDEX1s1,3,1

DO 6026 INDEX2 -1,42,1

WRITE(10,6024) USERARR(INDEX1,INDEX2)

6024 FORMAT(80.4)

6026 CONTINUE

6028 CONTINUE

C

DO 6038 INDEX1- 4,26,1

DO 6036 INMEX2

WRITE(10,6034) USERARR(INDEX1.INDEX2)

6034 FORMAT(88.2)

6036 CONTINUE

6038 CONTINUE

C

C

C

DO 6044 INDEX1

DO 6042 INDEX2

WRITE(10,6040) DISARR(INDEX1,INDEX2)

6040 FORMAT(88.2)

6042 CONTINUE

6044 CONTINUE

C

DO 6052 INDEX1

DO 6050 INDEX2 -1,4,1

DO 6048 INDEX, -1,10,1

WRITE(10,6046) MCHARR(INDEX1,INDEX2,INDEX3)

6046 FORMAT(88.2)

6048 CONTINUE

6050 CONTINUE

6052 CONTINUE

C

DO 6056 1NDEX1

WRITE(10,6054) MCHNAMES(INDEX1)

6054 FORMAT(A)

6056 CONTINUE

C

DO 6060 INDEX1 -1,20,1

WRITE(10,6058) PROCNAMES(INDEX1)

6058 FORMAT(A)

6060 CONTINUE

C

281

DO 6064 INDEX141,4,1

WRITE(10,6062) DISTRIBNAMES(INDEX1)

6062 FORMAT(A)

6064 CONTINUE

C

REWIND 10

CLOSE(10,STAWS4'KEEP')

WRITE(4,6066)

6066 FORMAT(///,20X,'1111 MODEL HAS BEEN SAVED 1111"/,

120X,' PRESS RETURN TO CONTINUE')

READ(,s(12)1)1ANSWF.R

GOTO 200

C

C

C

C END OF SUBROUTINE:

C

C

9998 RETURN

END

APPENDIX E

TABLE OF CONTENTS:

282

1. Figure, Harvesting system 1 283

2. LOGSIM, Harvesting system 1 printout 284

3. LOGSIM, simulation results system 1 290

4. Figure, Harvesting system 2 294

5. LOGSIM, Harvesting system 2 printout 295

6. LOGSIM, simulation results system 2 302

7. Figure, Harvesting system 3 307

8. LOGSIM, Harvesting system 3 printout 308

9. LOGSIM, simulation results system 3 314

10. Figure,Harvesting system 4 319

11. LOGSIM, Harvesting system 4 printout 320

12. LOGSIM, simulation results system 4 331

283

APPENDIX E

1. Figure, Harvesting system 1

284

APPENDIX E

2. LOGSIM, Harvesting system 1 printout

MOM*MM**********OM********MWM**WW*MMWMOMWM****

>>>LOGSIMW
HARVESTING CONFIGURATION

N

N/A N/N ,NNNNN/NNN NN/...*NN ANN AAN-.A

SYSTD11 . MOD

NAME OF SIMULATION MODEL :SYSTEM1.MOD

MOUNT TO BE HARVESTED (MST.) : 255664.

TIME DELAY PARAMETER .0100

MACHINE CONFIGURATION

PROCESS / IN ORIGIN OUT DESTINATION

2

3

4

5

6

7

9

121

11

12

13 2.

2.
13.

285

286

MATERIAL FREQUENCY DISTRIBUTIONS

CUMULATIVE FREQUENCY DISTRIBUTION NO.1 : WHOLE TREES

CUMULATIVE FREQUENCY DISTRIBUTION NO.2 : SAWLOGS

CUMULATIVE FREQUENCY DISTRIBUTION NO.3 :

CUMULATIVE FREQUENCY DISTRIBUTION NO.4 :

DISTRIBUTION 1 DISTRIBUTION 2 DISTRIBUTION 3 DISTRIBUTION 4

CLASS FREQ.% CU.FT FREQ.% CU.FT FREQ.% CU.FT FREQ.% CU.FT

1 11.60 4.40 20.00 3.70

2 29.70 9.40 50.30 9.30

3 50.40 18.00 67.30 15.30

4 69.90 28.30 80.80 21.50

5 84.40 40.90 91.10 29.20

6 93.00 54.60 96.10 38.00

7 97.70 70.20 98.90 48.00

8 100.00 92.10 100.00 59.40

PRO- NAME

CESS

INVENTORY AND BUFFER SIZES

DISTRI- STARTUP MINIMUM STARTUP MAXIMUM STARTUP

BUTION INV. INV. MINIMUM INV. MAXIMUM

1 MANUAL FELLING 1.

2 CABLE SKIDDING 2. 1280.0

13 FINAL TRANSPORT 2. 1184.0

PROCESS NO. 1: MANUAL FELLING

128.0 1280.0 999999.9 999999.9

.0 .0 12800.0 2560.0

OUTGOING DESTINATION : PROCESS NO. 2. CABLE SKIDDING

DISTRIBUTION USED : 1. WHOLE TREES

LOADER USED : NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED

TYPE NAME INITIAL / OF MACHINES

1 HAND FELLERS 2.

287

PROCESS NO. 2: CABLE SKIDDING

INCOMING ORIGIN :

OUTGOING DESTINATION :

DISTRIBUTION USED

STARTUP-INVENTORY LEVEL :

MINIMUM INVENTORY LEVEL :

STARTUP LEVEL MINIMUM :

MAXIMUM INVENTORY LEVEL :

STARTUP LEVEL MAXIMUM :

LOADER USED :

PROCESS NO. 1.

PROCESS NO.13.

2.

1280.0

128.0

1280.0

999999.9

999999.9

NONE

MANUAL FELLING

FINAL TRANSPORT

SAWLOGS

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED

TYPE NAME INITIAL / OF MACHINES

5 CAT 528 1.

PROCESS N3.13: FINAL TRANSPORT

INCOMING ORIGIN : PROCESS NO. 2. CABLE SKIDDING

DISTRIBUTION USED 2. SAWLOGS

STARTUP - INVENTORY LEVEL : 1184.0

MINIMUM INVENTORY LEVEL : .0

STARTUP LEVIM. MINIMUM : .0

MAXIMUM INVENTORY LEVEL : 12800.0

STARTUP LEVEL MAXIMUM : 2560.0

LOADER USED : NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED

TYPE NAME INITIAL / OF MACHINES

41 LOG TRUCK 1.

MACHINE TYPE 1: HAND FELLERS

INITIAL NUMBER OF MACHINES : 2.

AVERAGE PROCESSING TIME / TREE : .1500

288

FIXED CONSTANT TINE / LOAD .0000

FIXED CONST. TINE / ONE WAY HAUL : .0000

FIXED COST / SCHEDULED HOUR .53

VARIABLE COST/ MACHINE HOUR : 21.50

MACHINE CAPACITY IN CU.FT : 99999.00

FREQUENCY DISTRIBUTIONS MACHINE TYPE 1 : HAND FELLERS

CLASS CUM FREQ.% TINE BETW.FAILURE CUM.FREQ.% REPAIR TIME

1 20.00 3.00 30.00 1.00

2 40.00 7.00 55.00 3.00

3 60.00 12.00 75.00 7.00

4 80.00 22.00 90.00 11.00

5 100.00 44.00 100.00 16.00

MACHINE TYPE 5: CAT 528

INITIAL NUMBER OF MACHINES 1.

AVERAGE PROCESSING TIME / TREE : .1500

FIXED CONSTANT TINE / LOAD .1500

FIXED CONST. TIME / ONE WAY HAUL : .0000

FIXED COST / SCHEDULED HOUR : 29.44

VARIABLE COST/ MACHINE HOUR : 35.72

MACHINE CAPACITY IN CU.FT : 128.00

FREQUENCY DISTRIBUTIONS MACHINE TYPE 5 : CAT 528

CLASS CU?1 FREQ.%

20.00

TIME BETW.FAILURE

7.00

CUM.FREQ.%

35.00

REPAIR TIME

.50

2 40.00 14.00 65.00 1.00

3 60.00 28.00 85.00 3.00

4 80.00 56.00 95.00 8.00

5 100.00 100.00 100.00 16.00

MACHINE TYPE 41: LOG TRUCE

INITIAL NUMBER OF MACHINES 1.

AVERAGE PROCESSING TIME / TREE .0000

FIXED CONSTANT TINE / LOAD .7500

FIXED CONST. TINE / ONE WAY HAUL : 1.0000

FIXED COST / SCHEDULED HOUR 15.04

VARIABLECOST/MACHINEKM : 37.56

MACHINE CAPACITY IN CU.FT : 431.00

289

FREQUENCY DISTRIBUTIONS MACHINE TYPE 41 : LOG TRUCK

CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME

1 20.00 7.00 35.00 .50

2 40.00 14.00 65.00 1.00

3 60.00 28.00 85.00 3.00

4 80.00 56.00 95.00 8.00

5 100.00 100.00 100.00 16.00

290

APPENDIX E

3. LOGSIM, simulation results system 1

291

ft

*

)>>LOGSIM<<<
SIMULATION RESULTS

SIMULATION MODEL USED: SYSTEMLMOD

HIHOHHOHNHOHNHHOHHHHOM

DATE 06-01-87

TIME 01:00:29

SIMULATION RUN 1 OF 1.

PROCESS NO. 1 : MANUAL FELLING

TIME BEGIN OF PROCESS : .0000000E+00 AVERAGE INVENTORY : .0000000E+00

TIME END OF PROCESS : .8989930E+03 MAXIMUM INVENTORY : .00E0000E+00

DURATION OF PROCESS : .8989930E+03 MINIMUM INVENTORY : .0000000E+00

TIME INVENTORY TOO LOW : .0000000E+00 STD.DEV. INVENTORY : .0000000E+60

TIME INVENTORY TOO HIGH : .0000000E+00 / OF OBSERVATIONS INV. : .0000000E+00

% INVENTORY DOWNTIME : .0000000E+00 SUN UNITS PROCESSED : .2556640E+06

TOTAL / OF MACHINES : 2 SUN COST OF PROCESS : .3068694E+05

SUM SCHEDULED HOURS : .1797986E +04 COST PER UNIT : .1200284E+00

SUM MACH.BREAKDOWN HOURS: .4150000E+03 COST PER SCHEDULED HOUR : .1706740E+02

SUM PRODUCTIVE HOURS : .1382977E+04

% NET UTILIZATION MACH. : .7691812E+02

% GROSS UTILIZATION MACH: .9999950E+02

MACHINE TYPE 1 HAND FELLERS

TOTAL I OF MACHINES : 2 COST PER MACHINE : .1534347E+05

SUM SCHEDULED HOURS : .1797986E+84 COST PER SCHEDULED HOUR .1706740E+02

SUM MACH.BREAKDOWN HOURS: .4150000E+63 $ NET UTILIZATION MACH. : .7691812E+02

SUM PRODUCTIVE HOURS : .1382977E+04 % GROSS UTILIZATION MACH: .9999950E+02

292

PROCESS NO. 2 : CABLE SKIDDING

TINE BEGIN OF PROCESS : .3000000E+01 AVERAGE INVENTORY : .6920633E+05

TIME END OF PROCESS : .3112599E+64 MAXIMUM INVENTORY : .1829480E+06

DURATION OF PROCESS : .3109599E+04 MINIMUM INVENTORY : .0000000E+00

TIME INVENTORY TOO LOW : .0000008E+00 STD.DEV.INVENTORY : .5264388E+05

TIME INVENTORY TOO HIGH : .0000000E+00 / OF OBSERVATIONS INV. : .1143000E+05

% INVENTORY DOWNTIME : .0000000E+00 SUM UNITS PROCESSED : .2556599E+06

TOTAL / OF MACHINES SUM COST OF PROCESS : .1954953E+06

SUM SCHEDULED HOURS : .3109599E+04 COST PER UNIT .7646695E+00

SUM MACILBREECDCMN HOURS: .1995000E+03 COST PER SCHEDULED HOUR : .6286834E+02

SUM PRODUCTIVE HOURS : .2910099E+04

% NET UTILIZATION MACH. :

% GROSS UTILIZATION MACH:

MACHINE TYPE 5 : CAT 528

.9358436E+02

.1000000E+03

TOTAL / OF MACHINES : 1 COST PER MACHINE .1954953E+06

SUM SCHEDULED HOURS : .3109599E+04 COST PER SCHEDULED HOUR : .6286834E+02

SUM MACH.BREAKDOWN HOURS: .1995000E+03 % NET UTILIZATION MACH. : .9358438E+02

SUN PRODUCTIVE HOURS : .2910099E+04 % GROSS UTILIZATION MACE: .1000000E+03

PROCESS NO.13 : FINAL TRANSPORT

TIME BEGIN OF PROCESS : .1855000E+02 AVERAGE INVENTORY .2966347E+03

TIME END OF PROCESS : .3116751E+04 MAXIMUM INVENTORY .1284900E+04

DURATION OF PROCESS : .3098401E+04 MINIMUM INVENTORY .0000000E+00

TIME INVENTORY TOO LOW : .0000000E+00 STD.DEV. INVENTORY .1736150E+63

TIME INVENTORY TOO HIGH : .0000000E+00 I OF OBSERVATIONS INV. : .2822000E+64

% INVENTORY DOWNTIME : .0000000E+00 SUN UNITS PROCESSED : .2556600E+06

TOTAL / OF MACHINES : 1 SUM COST OF PROCESS : .1097101E+06

SUN SCHEDULED HOURS : .3098401E+04 COST PER UNIT .4291252E+00

SUN MACH.BREAKDOWN HOURS: .1450000E+03 COST PER SCHEDULED HOUR : .3540663E+02

SUM PRODUCTIVE HOURS : .1680250E+04

% NET UTILIZATION MACH. : .5422958E+02

% GROSS UTILIZATION MACH: .5690942E+02

MACHINE TYPE 41 : LOG TRUCK

TOTAL / OF MACHINES : 1 COST PER MACHINE .1097101E+06

SUM SCHEDULED HOURS : .3098401E+04 COST PER SCHEDULED HOUR 1 .3540863E+02

SUM MACH.BREAICDOWN HOURS: .1450000E+03 % NET UTILIZATION MACH. : .5422958E+02

SUM PRODUCTIVE HOURS : .1680250E44 % GROSS UTILIZATION MACH: .5890942E+02

COMPLETE HARVESTING SYSTEM STATISTICS

COMPUTER TIME START SIMULATION DATE: 06-01-87 TIME: 00:31:38

COMPUTER TIME END SIMULATION DATE: 06-01-87 TIME: 01:44:57

SIMULATION RUN 1 OF 1.

BEGIN OF HARVESTING : .0000000E+00 END OF HARVESTING : .3116751E+04

TOTAL / OF MACHINES : 4 SUM OF UNITS HARVESTED : .2556640E+06

SUM SCHEDULED HOURS : .8005986E+04 SUM COST OF SYSTEM : .3358924E+06

SUN MACH.BREMMOWN HOURS: .7595000E+03 COST PER UNIT : .1313804E+01

SUM PRODUCTIVE HOURS : .5973326E+04 COST PER SYSTEM HOUR : .1077700E+03

% NET UTILIZATION MACH. : .7461074E+02

% GROSS UTILIZATION MACH: .8409739E+02

END OF RUN / 1 OF 1.

293

294

APPENDIX E

4. Figure, Harvesting system 2

2 NCRM NC

1 93999.9 99599.9

222 I 2233

u2 SKIDC:NC.

2 I NORM ;

sao. 223,

#3 t

I 1
I NS9M Nr

22. ' m322,

iz
0i5 TPAN55:57

NCFm 12

MAr.:W.EN7CRY S'IPT Mirlmum !

MIN. I4vEh7cRY

PqCCESS # S ',

[:v.: a- ADE

295

APPENDIX E

5. LOGSIM, Harvesting system 2 printout

1111**********IN*********WHIMHHHIIHHOHHOHHHHOHHHHHOHNHHHHHII

>>> L 0 G S I N <(C

HARVESTING CONFIGURATION

*****MM********101tHHHO*Ve*******.HHHHOHNO****************

SYSTEM2.MOD

11-11114HOHHHHHOHHOHHHHOHHHI

NAM OF SIMULATION MODEL : SYSTEM2.MOD

MOUNT TO BE HARVESTED (CU.FT.) : 255664.

TIME DELAY PARAMETER .0100

MACHINE CONFIGURATION

PROCESS i IN ORIGIN OUT DESTINATION

1 2.

2 1. 3.

3 2. 13.

4

5

6

7

8

9

10

11

12

13 3.

296

297

MATERIAL FREQUENCY DISTRIBUTIONS

CUMULATIVE FREQUENCY DISTRIBUTION 00.1 : WHOLE TREES

CUMULATIVE FREQUENCY DISTRIBUTION 00.2 : SAWLOGS

CUMULATIVE FREQUENCY DISTRIBUTION 00.3 :

CUMULATIVE FREQUENCY DISTRIBUTION 00.4 :

CLASS

DISTRIBUTION 1

FREQ.% CU.FT

DISTRIBUTION 2 DISTRIBUTION 3 DISTRIBUTION 4

FREQ.% CU.FT FREQ.% CU.FT FREQ.% CU.FT

1 11.60 4.40 20.00 3.70

2 29.70 9.40 50.30 9.30

3 50.40 18.00 67.30 15.30

4 69.90 28.30 80.80 21.50

5 84.40 40.90 91.10 29.20

6 93.00 54.60 96.10 38.00

7 97.70 70.20 98.90 48.00

8 100.00 92.10 100.00 59.40

PRO- NAME

CESS

INVENTORY AND BUFFER SIZES

DISTRI- STARTUP MINIMUM STARTUP MAXIMUM STARTUP

BUTION INV. INV. MINIMUM INV. MAXIMUM

1 FELLING 1.

2 SKIDDING 1. 2200.0 220.0 2200.0 999999.9 999999.9

3 DELIMBING & BUCKING 1. 1.0 .0 .0 880.0 220.0

13 FINAL TRANSPORT 2. 1.0 .0 .0 13120.0 4000.0

PROCESS NO. 1: FELLING

OUTGOING DESTINATION : PROCESS NO. 2. SKIDDING

DISTRIBUTION USED : 1. WHOLE TREES

LOADER USED : NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED

TYPE NAME INITIAL P OF MACHINES

1 CAT 227 FELLER-BNCH 2.

298

PROCESS NO. 2: SKIDDING

INCOMING ORIGIN : PROCESS NO. 1. FELLING

OUTGOING DESTINATION : PROCESS NO. 3. DELIMBING & BUCKING

DISTRIBUTION USED 1. WHOLE TREES

STARTUP-INVENTORY LEVEL : 2200.0

MINIMUM INVENTORY LEVEL : 220.0

STARTUP LEVEL MINIMUM : 2200.0

MAXIMUM INVENTORY LEVEL : 999999.9

STARTUP LEVEL MAXIMUM : 999999.9

LOADER USED : NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED

TYPE NAME INITIAL I OF MACHINES

5 CAT 528 GRAB-SKIDDER 2.

PROCESS NO. 3: DELIMBING & BUCKING

INCOMING ORIGIN : PROCESS NO. 2. SKIDDING

OUTGOING DESTINATION : PROCESS NO.13. FINAL TRANSPORT

DISTRIBUTION USED 1. WHOLE TREES

STARTUP-INVENTORY LEVEL : 1.0

MINIMUM INVENTORY LEVEL : .0

STARTUP LEVEL MINIMUM : .0

MAXIMUM INVENTORY LEVEL : 880.0

STARTUP LEVEL MAXIMUM : 220.0

LOADER USED NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED

TYPE NAME INITIAL I OF MACHINES

8 RAIN HARVESTER 1.

299

PROCESS NO.13: FINAL TRANSPORT

INCOMING ORIGIN : PROCESS NO. 3. DELIMBING & BUCKING

DISTRIBUTION USED 2. SAWLOGS

STARTUP-INVENTORY LEVEL : 1.0

MINIMUM INVENTORY LEVEL : .0

STARTUP LEVEL MINIMUM : .0

MAXIMUM INVENTORY LEVEL : 13120.0

STARTUP LEVEL MAXIMUM : 4000.0

LOADER USED 32. CAT 225 LOG LOADER

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED

TYPE NAME INITIAL / OF MACHINES

41 LOG TRUCK 3.

MACHINE TYPE 1: CAT 227 FELLER-BNCH

INITIAL NUMBER OF MACHINES : 2.

AVERAGE PROCESSING TIME / TREE : .0000

FIXED CONSTANT TIME / LOAD .0400

FIXED CONST. TIME / ONE WAY HAUL : .0000

FIXED COST / SCHEDULED HOUR : 41.99

VARIABLE COST/ MACHINE HOUR : 41.35

MACHINE CAPACITY IN CU.FT : 82.56

FREQUENCY DISTRIBUTIONS MACHINE TYPE 1 : CAT 227 FELLER-BNCH

CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME

1 20.00 6.00 50.00 .50

2 40.00 12.00 70.00 1.00

3 60.00 20.00 80.00 2.00

4 80.00 36.00 90.00 5.00

5 100.00 64.00 100.00 10.00

MACHINE TYPE 5: CAT 528 GRAB-SKIDDER

INITIAL NUMBER OF MACHINES : 2.

AVERAGE PROCESSING TIME / TREE : .0000

FIXED CONSTANT TIME / LOAD .1000

FIXED CONST. TIME / ONE RAY HAUL : .0000

300

FIXED COST / SCHEDULED HOUR

VARIABLE COST/ MACHINE HOUR

MACHINE CAPACITY IN CU.FT

: 29.44

36.72

220.00

FREQUENCY DISTRIBUTIONS MACHINE TYPE 5 : CAT 528 GRAB -SKIDDER

CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME

1 20.00 6.00 50.00 .50

2 40.00 12.00 70.00 1.00

3 60.00 20.00 80.00 2.00

4 80.00 36.00 90.00 5.00

5 100.00 64.00 100.00 10.00

MACHINE TYPE 8: HAHN HARVESTER

INITIAL NUMBER OF MACHINES : 1.

AVERAGE PROCESSING TIME / TREE : .0100

FIXED CONSTANT TIME / LOAD .0000

FIXED CONST. TIME / ONE WAY HAUL : .0000

FIXED COST / SCHEDULED HOUR : 55.44

VARIABLE COST/ MACHINE HOUR : 39.72

MACHINE CAPACITY IN CU.FT : 99999.00

FREQUENCY DISTRIBUTIONS MACHINE TYPE 8 : HAM HARVESTER

CLASS CUM FREQ.% TIME BEN.FAILURE CUM.FREQ.% REPAIR TIME

1 20.00 5.00 30.00 1.00

2 40.00 7.00 55.00 3.00

3 60.00 12.00 75.00 7.00

4 80.00 22.00 90.00 11.00

5 100.00 44.00 100.00 16.00

MACHINE TYPE 32: CAT 225 LOG LOADER

INITIAL NUMBER OF MACHINES : 1.

AVERAGE PROCESSING TIME / TREE : .0000

FIXED CONSTANT TIME / LOAD .2500

FIXED CONST. TIME / ONE WAY HAUL : .0000

FIXED COST / SCHEDULED HOUR : 41.99

VARIABLE COST/ MACHINE HOUR : 41.35

MACHINE CAPACITY IN CU.FT : 1312.00

301

FREQUENCY DISTRIBUTIONS MACHINE TYPE 32 : CAT 225 LOG LOADER

CLASS CUM FREQ.% TINE BETW.FAILURE CUM.FREQ.% REPAIR TIME

1 20.00 7.00 35.00 .50

2 40.00 14.00 65.00 1.00

3 60.00 28.00 85.00 3.00

4 80.00 56.00 95.00 8.00

5 100.00 100.00 100.00 16.00

MACHINE TYPE 41: LOG TRUCE

INITIAL NUMBER OF MACHINES : 3.

AVERAGE PROCESSING TIME / TREE : .0000

FIXED CONSTANT TIME / LOAD .5000

FIXED CONST. TIME / ONE WAY HAUL : 1.0000

FIXED COST / SCHEDULED HOUR 15.04

VARIABLE COST/ MACHINE HOUR : 36.48

MACHINE CAPACITY IN CU.FT : 1312.00

FREQUENCY DISTRIBUTIONS MACHINE TYPE 41 : LOG TRUCK

CLASS C1.81 FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TINE

1 20.00 7.00 35.00 .50

2 40.00 14.00 65.00 1.00

3 60.00 28.00 85.00 3.00

4 80.00 56.00 95.00 8.00

5 100.00 100.00 100.00 16.00

302

APPENDIX E

6. LOGSIM, simulation results system 2

303

>>>LOGSIM<<<
SIMULATION RESULTS

SIMULATION MODEL USED: SYSTEM2.MOD

**10HOHHHHOHH011014HHHHHt

DATE- 06-01-87

TIME 00:20:52

SIMULATION RUN 1 OF 1.

PROCESS NO. 1 : FELLING

TINE BEGIN OF PROCESS : .0000000E+00 AVERAGE INVENTORY : .0000000E+00

TINE END OF PROCESS : .9504154E+02 MAXIMUM INVENTORY : .0000000E+00

DURATION OF PROCESS : .9504154E+02 MINIMUM INVENTORY : .0000000E+00

TINE INVENTORY TOO LOW : .0000000E+00 STD.DEV. INVENTORY : .0000000E+00

TIME INVENTORY TOO HIGH : .0000000E+00 / OF OBSERVATIONS INV. : .0000000E+00

% INVENTORY DOWNTIME : .0000000E+00 SUN UNITS PROCESSED : .2556640E+06

TOTAL / OF MACHINES : 2 SUM COST OF PROCESS : .1491065E+05

SUM SCHEDULED HOURS : .1900831E+03 COST PER UNIT : .5832127E-01

SUM MACH.BREAKDOWN HOURS: .2250000E+02 COST PER SCHEDULED HOUR : .7844280E+02

SUM PRODUCTIVE HOURS : .1675710E+03

% NET UTILIZATION MACH. : .8815671E+02

% GROSS UTILIZATION MUM .9999364E+02

MACHINE TYPE 1 : CAT 227 FELLER-BNCH

TOTAL / OF MACHINES : 2 COST PER MACHINE : .7455325E+04

SUM SCHEDULED HOURS : .1900831E+03 COST PER SCHEDULED HOUR : .7844280E+02

SUM MACH.BREAKDOWN HOURS: .2250000E+02 % NET UTILIZATION MACH. : .8815671E+02

SUM PRODUCTIVE HOURS .1675710E+03 % GROSS UTILIZATION MACH: .9999364E+02

304

PROCESS NO. 2 SKIDDING

TIME BEGIN OF PROCESS : .7200000E+00 AVERAGE INVENTORY : .5914057E+05

TIME END OF PROCESS : .1894959E+03 MAXIMUM INVENTORY : .1184574E+06

DURATION OF PROCESS : .1887759E+03 MINIMUM INVENTORY : .0000000E+00

TIME INVENTORY TOO LOW : .0000000E+00 STD.DEV.INVENTORY : .3548504E+05

TIME INVENTORY TOO HIGH : .0000000E+00 / OF OBSERVATIONS INV. : .5473000E+04

% INVENTORY DOWNTIME : .0000000E+00 SUN UNITS PROCESSED : .2556656E+06

TOTAL I OF MACHINES 2 SUN COST OF PROCESS : .1583003E+05

SUM SCHEDULED HOURS :.3775518E +03 COST PER UNIT : .6191691E-01

SUM MACH.BREAKDOWN HOURS: .2050000E+02 COST PER SCHEDULED HOUR : .4192809E+02

SUN PRODUCTIVE HOURS : .1284014E+03

% NET UTILIZATION MACH. : .3400896E+02

% GROSS UTILIZATION MACH: .3943867E+02

MACHINE TYPE 5 : CAT 528 GRAB-SKIDDER

TOTAL / OF MACHINES 2 COST PER MACHINE : .7915013E+04

SUM SCHEDULED HOURS : .3775518E+03 COST PER SCHEDULED HOUR : .4192809E+02

SUM MACH.BREAKDOWN HOURS: .2050000E+02 % NET UTILIZATION MACH. : .3400896E+02

SUM PRODUCTIVE HOURS : .1284014E+03 % GROSS UTILIZATION MACH: .3943867E+02

PROCESS NO. 3 : DELINBING & BUCKING

TIME BEGIN OF PROCESS : .8200001E+00 AVERAGE INVENTORY : .4350824E+03

TIME END OF PROCESS .1898650E+05 MAXIMUM INVENTORY : .1273986E+04

DURATION OF PROCESS : .1890450E+03 MINIMUM INVENTORY : .0000000E+00

TIME INVENTORY TOO LOU : .0000000E+00 STD.DEV. INVENTORY : .2677341E+03

TIME INVENTORY TOO HIGH : .1184749E+03 / OF OBSERVATIONS INV. : .1064700E+05

% INVENTORY DOWNTIME : .6267021E+02 SUM UNITS PROCESSED : .2556705E+06

TOTAL / OF MACHINES : 1 SUM COST OF PROCESS : .1419920E+05

SUM SCHEDULED HOURS : .1890450E+03 COST PER UNIT : .5553708E-01

SUM MACH.BREAKDOWN HOURS: .1600000E+02 COST PER SCHEDULED HOUR : .7511015E+02

SUM PRODUCTIVE HOURS : .9361892E+02

% NET UTILIZATION MACH. : .4952204E+02

% GROSS UTILIZATION MACH: .5798563E+02

305

MACHINE TYPE 8 : HAHN HARVESTER

TOTAL / OF MACHINES : 1 COST PER MACHINE .1419920E+05

SUM SCHEDULED HOURS : .1890450E+03 COST PER SCHEDULED HOUR : .7511015E+02

SUM MACH.BREAKDOWN HOURS: .1600000E+02 S NET UTILIZATION MACH. : .4952204E+02

SUM PRODUCTIVE HOURS : .9361892E+02 S GROSS UTILIZATION MACE: .5798563E+02

PROCESS NO.13 : FINAL TRANSPORT

TINE BEGIN OF PROCESS : .8300000E+00 AVERAGE INVENTORY : .6858059E+04

TIME END OF PROCESS : .1961243E+03 MAXIMUM INVENTORY : .1316800E+05

DURATION OF PROCESS : .1952943E+03 MINIMUM INVENTORY : .0000000E+00

TIME INVENTORY TOO LOW : .0000000E+00 STD.DEV.I6VENTORY : .3418662E+04

TIME INVENTORY TOO HIGH : .7304746E+02 if OF OBSERVATIONS INV. : .9560000E+04

% INVENTORY DOWNTIME : .3740379E+02 SUM UNITS PROCESSED : .2556655E+06

TOTAL / OF MACHINES : 3 SUM COST OF PROCESS : .2855527E+05

SUM SCHEDULED HOURS : .5858829E+03 COST PER UNIT : .1116900E+00

SUM MACH.BMUVCDOWN HOURS: .2850000E+02 COST PER SCHEDULED HOUR : .4873886E+02

SUM PRODUCTIVE HOURS : .5412167E+03

% NET UTILIZATION MACH. : .9237627E+02

% GROSS UTILIZATION MACH: .9724072E+02

MACHINE TYPE 41 : LOG TRUCK

TOTAL / OF MACHINES : 3

SUN SCHEDULED HOURS : .5858829E+03

SUM MACH. BREAKDOWN HOURS: .2850000E+02

SUM PRODUCTIVE HOURS : .5412167E+03

LOADING DEVICES

COST PER MACHINE

COST PER SCHEDULED HOUR :

S NET UTILIZATION MACH. :

% GROSS UTILIZATION MACH:

.9518422E+04

.4873886E+02

.9237627E+02

.9724072E+02

TOTAL / OF MACHINES : 1 SUM OF UNITS HARVESTED : .2556640E+06

SUN SCHEDULED HOURS : .1961243E+03 SUM COST LOADER DEVICES : .1021485E+05

SUN MACH.BREMCDOWN HOURS: .1500000E+01 COST PER UNIT : .3995419E-01

SUM PRODUCTIVE HOURS : .4871679E+02 COST PER SCHEDULED HOUR : .5208353E+02

% NET UTILIZATION MACH. : .2483975E+02

S GROSS UTILIZATION MACH: .2560457E+02

MACHINE TYPE 32 : CAT 225 LOG LOADER

TOTAL / OF MACHINES : 1 COST PER MACHINE : .1024970E+05

SUM SCHEDULED HOURS : .1961243E+03 COST PER SCHEDULED HOUR : .5226124E+02

SUM MACH.BREAKDOWN HOURS: .1500000E+01 S NET UTILIZATION MACH. : .2483975E+02

SUM PRODUCTIVE HOURS : .4871679E+02 $ GROSS UTILIZATION MACH: .2560457E+02

COMPLETE HARVESTING SYSTEM STATISTICS

COMPUTER TINE START SIMULATION DATE: 06-01-87 TIME: 00:05:32

COMPUTER TIME END SIMULATION DATE: 06-01-87 TIME: 00:30:06

SIMULATION RUN 1 OF 1.

BEGIN OF HARVESTING : .0000r00E+00 END OF HARVESTING : .1961243E+03

TOTAL if OF MACHINES : 9 SUM OF UNITS HARVESTED : .2556640E+06

SUM SCHEDULED HOURS : .1538687E+04 SUM COST OF SYSTEM : .8370998E+05

SUM MACH.BREAKDOW4 HOURS: .8900000E+02 COST PER UNIT : .3274219E+00

SUM PRODUCTIVE HOURS : .9795249E+03 COST PER SYSTEM HOUR .4268211E+03

% NET UTILIZATION MACH. : .6365979E+02

% GROSS UTILIZATION MACH: .6944394E+02

END OF RUN if 1 OF 1

306

307

APPENDIX E

7. Figure, Harvesting system 3

1
NORM

I .^

sa :EL::fta
N NO

LPOC:1-SS.

nG ±CiiIngt :ELt, e : - ;E:

308

APPENDIX E

8. LOGSIM, Harvesting system 3 printout

309

>>>LOGSIM<(<
HARVESTING CONFIGURATION

**********MHHHHHOOM

SYSTEM; . MOD

OHHHHI1**********.H.

NAME OF SIMULATION MODEL : SYSTE143.MOD

MOUNT TO BE HARVESTED (CU.FT.) : 255664.

TIME DELAY PARAMETER .0100

MACHINE CONFIGURATION

PROCESS / IN ORIGIN OUT DESTINATION

1 2.

2 1. 13.

3

4

5

6

7

8

9

10

11

12

13 2.

MATERIAL FREQUENCY DISTRIBUTIONS

CUMULATIVE FREQUENCY DISTRIBUTION NO.1 : WHOLE TREES

CUMULATIVE FREQUENCY DISTRIBUTION NO.2 : SAWLOGS

CUMULATIVE FREQUENCY DISTRIBUTION NO.3 :

CUMULATIVE FREQUENCY DISTRIBUTION NO.4 :

310

CLASS

DISTRIBUTION 1

FREQ.% CU.FT

DISTRIBUTION 2 DISTRIBUTION 3 DISTRIBUTION 4

FREQ.% CU.FT FREQ.% CU.FT FREQ.% CU.FT

1 11.60 4.40 20.00 3.70

2 29.70 9.40 50.30 9.30

3 50.40 18.00 67.30 15.30

4 69.90 28.30 80.80 21.50

5 84.40 40.90 91.10 29.20

6 93.00 54.60 96.10 38.00

7 97.70 70.20 98.90 48.00

8 100.00 92.10 100.00 59.40

PRO- NAME

GESS

INVENTORY AND BUFFER SIZES

DISTRI- STARTUP MINIMUM STARTUP MAXIMUM STARTUP

BUTION INV. INV. MINIMUM INV. MAXIMUM

1 FELLING & SKIDDING 1.

2 DELIMB & BUCKING 1. 2740.0 .0 .0 4580.0 3660.0

13 FINAL TRANSPORT 2. 3320.0 1311.0 1311.0 9330.0 7970.0

PROCESS NO. 1: FELLING & SKIDDING

OUTGOING DESTINATION : PROCESS NO. 2. DELI'S & BUCKING

DISTRIBUTION USED : 1. WHOLE TREES

LOADER USED : NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED

TYPE NAME INITIAL 1 OF MACHINES

1 CLANBUNK FELL-SKID 1.

311

PROCESS I. 2: NUMB & BUCKING

INCOMING ORIGIN : PROCESS NO. 1. FELLING & SKIDDING

OUTGOING DESTINATION : PROCESS N0.15. FINAL TRANSPORT

DISTRIBUTION USED 1. WHOLE TREES

STARTUP - INVENTORY LEVEL : 2740.0

MINIMUM INVENTORY LEVEL : .0

STARTUP LEVEL MINIMUM : .0

MAXIMUM INVENTORY LEVEL : 4580.0

STARTUP LEVEL MAXIMUM : 3660.0

LOADER USED : NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED

TYPE NAME INITIAL OF MACHINES

5 GRAPPLE PROCESSOR 1.

PROCESS N0.13: FINAL TRANSPORT

INCOMING ORIGIN : PROCESS NO. 2. DELIKB & BUCKING

DISTRIBUTION USED 2. SAWLCCS

STARTUP-INVENTORY LEVEL : 3320.0

MINIMUM INVENTORY LEVEL : 1311.0

STARTUP LEVEL MINIMUM : 1311.0

MAXIMUM INVENTORY LEVEL : 9330.0

STARTUP LEVEL MAXIMUM : 7970.0

LOADER USED 32. LOG LOADER

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED

TYPE NAME INITIAL / OF MACHINES

41 LOG TRUCK 3.

MACHINE TYPE 1: CLAMBUNK FELL-SKID

INITIAL NUMBER OF MACHINES 1.

AVERAGE PROCESSING TIME / TREE : .0000

FILED CONSTANT TIME / LOAD .6180

FIXED CONST. TINE / ONE WAY HAUL : .0000

FIXED COST / SCHEDULED HOUR : 57.20

312

VARIABLE COST/ MACHINE HOUR : 46.61

MACHINE CAPACITY IN CU.FT : 915.22

FREQUENCY DISTRIBUTIONS MACHINE TYPE 1 : CLAMBUNK FELL-SKID

CLASS GUM FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME

20.00 3.00 20.00 .40

2 40.00 9.00 40.00 .90

3 60.00 16.00 60.00 2.00

4 80.00 28.00 80.00 5.00

5 100.00 53.00 100.00 10.00

MACHINE TYPE 5: GRAPPLE PROCESSOR

INITIAL NUMBER OF MACHINES 1.

AVERAGE PROCESSING TINE / TREE : .0067

FIXED CONSTANT TIME / LOAD .0000

FIXED CONST. TIME / ONE WAY HAUL : .0000

FIXED COST / SCHEDULED HOUR : 48.00

VARIABLE COST/ MACHINE HOUR : 46.00

MACHINE CAPACITY IN CU.FT : 99999.00

FREQUENCY DISTRIBUTIONS MACHINE TYPE 5 : GRAPPLE PROCESSOR

CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME

1 20.00 3.00 30.00 1.00

2 40.00 7.00 55.00 3.00

3 60.00 12.00 75.00 7.00

4 80.00 22.00 90.00 11.00

5 100.00 44.00 100.00 16.00

MACHINE TYPE 32: LOG LOADER

INITIAL NUMBER OF MACHINES 1.

AVERAGE PROCESSING TIME / TREE .0000

FIXED CONSTANT TIME / LOAD .2500

FIXED CONST. TIME / ONE WAY HAUL : .0000

FIXED COST / SCHEDULED HOUR : 41.99

VARIABLE COST/ MACHINE HOUR : 41.35

MACHINE CAPACITY IN CU.FT : 1316.00

313

FREQUENCY DISTRIBUTIONS MACHINE TYPE 32 : LOG LOADER

CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME

1 20.00 7.00 35.00 .50

2 40.00 14.00 65.00 1.00

3 60.00 28.00 85.00 3.00

4 80.00 56.00 95.00 8.00

5 100.00 100.00 100.00 16.00

MACHINE TYPE 41: LOG TRUCK

INITIAL NUMBER OF MACHINES : 3.

AVERAGE PROCESSING TIME / TREE : .0000

FIXED CONSTANT TIME / LOAD .0000

FIXED CONST. TIME / ONE WAY HAUL : 1.0000

FIXED COST / SCHEDULED HOUR : 15.04

VARIABLE COST/ MACHINE HOUR : 36.48

MACHINE CAPACITY IN CU.FT : 1316.00

FREQUENCY DISTRIBUTIONS MACHINE TYPE 41 LOG TRUCE

CLASS CUM FREQ.% TINE BETW.FAILURE CUM.FREQ.% REPAIR TIME

1 20.00 7.00 35.00 .50

2 40.00 14.00 65.00 1.00

3 60.00 28.00 85.00 3.00

4 80.00 56.00 95.00 8.00

5 100.00 100.00 100.00 16.00

314

APPENDIX E

9. LOGSIM, simulation results system 3

315

SIMULATION MODEL USED: SYSTEM3.MOD

*********************111

DATE- 06-01-87

TIME- 00:03:20

SIMULATION RUN 1 OF 1.

PROCESS NO. 1 : FELLING 5 SKIDDING

TIME BEGIN OF PROCESS : .0000000E+00 AVERAGE INVENTORY : .0000000E+00

TIME END OF PROCESS : .2542438E+03 MAXIMUM INVENTORY : .0000000E+00

DURATION OF PROCESS : .2542438E+03 MINIMUM INVENTORY : .0000000E+00

TIME INVENTORY TCO LOW : .0000000E+00 STD.DEV.INVENTORY : .0000000E+00

TIME INVENTORY TOO HIGH : .0000000E+00 I OF OBSERVATIONS INV. : .0000000E+00

% INVENTORY DOWNTIME : .0000000E+00 SUM UNITS PROCESSED : .2556640E+06

TOTAL / OF MACHINES : 1 SUM COST OF PROCESS : .2278094E+05

SUM SCHEDULED HOURS : .2542438E+03 COST PER UNIT : .8910500E-01

SUM MACH.BRENKDOWN HOURS: .4060000E+02 COST PER SCHEDULED HOUR : .8960272E+02

SUM PRODUCTIVE HOURS : .1767473E+03

% NET UTILIZATION MACH. : .6951881E+02

% GROSS UTILIZATION MACH: .8548773E+02

MACHINE TYPE 1 : CLAMBUNK FELL-SKID

TOTAL t OF MACHINES : 1 COST PER MACHINE : .2278094E+05

SUM SCHEDULED HOURS : .2542438E+03 COST PER SCHEDULED HOUR : .8960272E+02

SUM MACH.BREAKDOWN HOURS: .4060000E+02 % NET UTILIZATION MACH. : .6951881E+02

SUM PRODUCTIVE HOURS : .1767473E+03 % GROSS UTILIZATION MACH: .8548773E+02

316

PROCESS NO. 2 : DELIMB & BUCKING

TIME BEGIN OF PROCESS : .2472000E+01 AVERAGE INVENTORY : .7481161E+03

TIME END OF PROCESS : .2544584E+03 MAXIMUM INVENTORY : .5383209E+04

DURATION OF PROCESS : .2519864E+03 MINIMUM INVENTORY : .0000000E+110

TIME INVENTORY TOO LOW : .0000000E+00 STD.DEV.INVENTORY : .9263040E+03

TIME INVENTORY TOO HIGH : .3689656E42 / OF OBSERVATIONS INV. : .9891000E+04

% INVENTORY DOWNTIME : .1464228E+02 SUM UNITS PROCESSED : .2556695E+06

TOTAL / OF MACHINES : 1 SUM COST OF PROCESS : .1505511E+05

SUM SCHEDULED HOURS : .2519864E43 COST PER UNIT : .5888504E-01

SUM MACH.BREAKEOWN HOURS: .7200000E+02 COST PER SCHEDULED HOUR : .5974572E+02

SUM PRODUCTIVE HOURS :

% NET UTILIZATION MACH. :

% GROSS UTILIZATION MACH:

.6434268E+02

.2553419E+02

.5410716E+02

MACHINE TYPE 5 : GRAPPLE PROCESSOR

TOTAL 1 OF MACHINES 1 COST PER MACHINE : .1505511E+05

SUN SCHEDULED HOURS : .2519864E+03 COST PER SCHEDULED HOUR : .5974572E+02

SUM MACH.BREAKDOWN HOURS: .7200000E+02 % NET UTILIZATION MACH. : .2553419E+02

SUM PRODUCTIVE HOURS : .6434268E+02 % GROSS UTILIZATION MACH: .5410716E+02

PROCESS NO.13 FINAL TRANSPORT

TIME BEGIN OF PROCESS : .3255904E+01 AVERAGE INVENTORY : .1317993E+04

TIME END OF PROCESS : .2591564E+03 MAXIMUM INVENTORY : .7058067E+04

DURATION OF PROCESS : .2559005E+03 MINIMUM INVENTORY : .0000000E+00

TINE INVENTORY TOO LOW : .1987365E+03 STD.DEV.INVENTORY : .1207547E+04

TINE INVENTORY TOO HIGH : .0000000E+00 1 OF OBSERVATIONS INV. : .9802000E+04

% INVENTORY DOWNTIME : .7766161E+02 SUM UNITS PROCESSED : .2556640E+06

TOTAL 1 OF MACHINES : 3 SUM COST OF PROCESS : .2769113E+05

SUM SCHEDULED HOURS : .7677016E+03 COST PER UNIT : .1083106E+00

SUM MAGLBREAKDOWN HOURS: .2650000E+02 COST PER SCHEDULED HOUR : .3607017E+02

SUM PRODUCTIVE HOURS : .4425683E+03

% NET UTILIZATION MACH. : .5764848E+02

% GROSS UTILIZATION MACH: .6110035E+02

317

MACHINE TYPE 41 : LOG TRUQC

TOTAL / OF MACHINES COST PER MACHINE : .9230375E+04

SUM SCHEDULED HOURS : .7677016E+03 COST PER SCHEDULED HOUR : .3607017E+02

SUM MACH.BREAKDOWN HOURS: .2650000E+02 % NET UTILIZATION MACH. : .5764848E+02

SUM PRODUCTIVE HOURS : .4425683E+05 S GROSS UTILIZATION MACH: .6110035E+02

LOADING DEVICES

TOTAL / OF MACHINES

SUM SCHEDULED HOURS :

1 SUM OF UNITS HARVESTED : .2556640E+06

.2591564E+03 SUM COST LOADER DEVICES : .1275357E+05

SUN MACH.BREAKDOWN HOURS: .5000000E+01

SUM PRODUCTIVE HOURS : .4856844E+02

% NET UTILIZATION MACH. : .1874097E+02

% GROSS UTILIZATION MACH: .2067031E+02

MACHINE TYPE 32 : LOG LOADER

COST PER UNIT : .4988410E-01

COST PER SCHEDULED HOUR : .4921185E+02

TOTAL / OF MACHINES : 1 COST PER MACHINE : .1289028E+05

SUM SCHEDULED HOURS : .2591564E+03 COST PER SCHEDULED HOUR : .4973940E+02

SUM MACH.BREAKDOWN HOURS: .50000021E+01 S NET UTILIZATION MACH. : .1874097E+02

SUM PRODUCTIVE HOURS : .4856844E+02 % GROSS UTILIZATION MACH: .2067031E+02

COMPLETE HARVESTING SYSTEM STATISTICS

COMPUTER TIME START SIMULATION DATE: 05-31-87 TIME: 23:41:40

COMPUTER TIME END SIMULATION DATE: 06-01-87 TIME: 00:03:25

SIMULATION RUN I OF 1.

BEGIN OF HARVESTING : .0000000E+00 END OF HARVESTING : .2591564E+03

TOTAL / OF MACHINES : 6 SUM OF UNITS HARVESTED : .2556640E+06

SUM SCHEDULED HOURS : .1533088E+04 SUM COST OF SYSTEM : .7828074E+05

SUM MACH.RREAKDOWN HOURS: .1441000E+03 COST PER UNIT : .3061860E+00

SUM PRODUCTIVE HOURS : .7322267E+03 COST PER SYSTEM HOUR : .3020598E+03

% NET UTILIZATION MACH. : .4776155E+02

% GROSS UTILIZATION MACH: .5716088E+02

END OF RUN I 1 OF 1.

318

APPENDIX E

10. Figure, Harvesting system 4

41 REL_INI

1 2

99999.0 99099 5

691

42

2702.

=a

N'T!..z,,,

J 99959.9 ! 99099.5

C

, 41: SC:.7.0

39-4:

C

99993(.9

41:4 rp,_

33

319

320

APPENDIX E

11. LOGSIM, Harvesting system 4 printout

321

>)>LOGSI N <CC
HARVESTING CONFIGURATION

SYSTEM4 .NOD

IHOHOHHOHHHHOO1*******11*

NAME OF SIMULATION MODEL : SYSTF.M4 NOD

AMOUNT TO BE HARVESTED (CU.FT.) : 255664.

TIME DELAY PARAMETER .1000

MACHINE CONFIGURATION

PROCESS I

1

2

3

4

5

6

7

8

9

10

11

12

13

IN ORIGIN

1.

2.
11.

3.
4.

11.

OUT DESTINATION

2.

3.

11.

12.

4. 13.

322

MATERIAL FREQUENCY DISTRIBUTIONS

CUMULATIVE FREQUENCY DISTRIBUTION NO.1 1 WHOLE TREES

CUMULATIVE FREQUENCY DISTRIBUTION N0.2 : SAILOGS

CUMULATIVE FREQUENCY DISTRIBUTION N0.3 : PULPWOOD

CUMULATIVE FREQUENCY DISTRIBUTION N0.4 :

CLASS

DISTRIBUTION 1

FREQ.% CU.FT

DISTRIBUTION 2

FREQ.% CU.FT

DISTRIBUTION 3 DISTRIBUTION 4

FREQ.% CU.FT FREQ.% CU.FT

1 3.30 2.00 53.30 25.00 3.30 2.00

2 14.60 6.00 79.30 38.00 14.60 6.00

3 32.10 11.00 93.60 48.00 34.20 11.00

4 52.10 19.00 100.00 59.00 77.50 18.00

5 70.00 29.00 82.10 25.00

6 85.00 42.00 100.00 29.00

7 93.30 56.00

8 97.90 73.00

9 100.00 93.00

INVENTORY AND BUFFER SIZES

PRO- NAME DISTRI- STARTUP MINIMUM STARTUP MAXIMUM STARTUP

CESS BUTION INV. INV. MINIMUM INV. MAXIMUM

1 FELLING 1.

2 SKIDDING 1. 9010.0 891.0 9010.0 999999.9 999999.9

3 SWINGING 1. 901.0 .0 .0 3590.0 2702.0

4 DELIMB & DEBARK 3. 1.0 .0 .0 9010.0 2702.0

11 DISTRIBUTION 1. 1.0 .0 .0 999999.9 999999.9

12 CHIPPING 3. 1.0 .0 .0 999999.9 999999.9

13 LOG FTRAPO 2. 1.0 .0 .0 999999.9 999999.9

PROCESS NO. 1: FELLING

OUTGOING DESTINATION : PROCESS NO. 2. SKIDDING

DISTRIBUTION USED : 1. WHOLE TREES

LOADER USED : NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

323

MACHINES USED

TYPE NAME INITIAL 1 OF MACHINES

1 CAT 227 FELL-BUNCH 2.

PROCESS NO. 2: SKIDDING

INCOMING ORIGIN : PROCESS NO. 1. FELLING

OUTGOING DESTINATION : PROCESS NO. 3. SWINGING

DISTRIBUTION USED 1. WHOLE TREES

STARTUP-INVENTORY LEVEL : 9010.0
MINIMUM INVENTORY LEVEL : 891.0
STARTUP LEVEL MINIMUM : 9010.0
MAXIMUM INVENTORY LEVEL : 999999.9

STARTUP LEVEL MAXIMUM : 999999.9

LOADER USED : NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED

TYPE NAME INITIAL i OF MACHINES

5 TJ CLAKBUNK SKID

PROCESS NO. 3: SWINGING

INCOMING ORIGIN : PROCESS NO. 2. SKIDDING

OUTGOING DESTINATION : PROCESS NO.11. DISTRIBUTION

DISTRIBUTION USED 1. WHOLE TREES

STARTUP-INVENTORY LEVEL : 901.0

MINIMUM INVENTORY LEVEL : .0

STARTUP LEVEL MINIMUM : .0

MAXIMUM INVENTORY LEVEL : 3590.0

STARTUP LEVEL MAXIMUM : 2702.0

LOADER USED 32. CAT 225 LOG LOADER

TINE DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED

TYPE NAME INITIAL t OF MACHINES

8 SET-OUT TRUCK 1.

324

PROCESS NO. 4: DELIMB & DEBARK

INCOMING ORIGIN : PROCESS NO.11. DISTRIBUTION

OUTGOING DESTINATION : PROCESS NO.12. CHIPPING

DISTRIBUTION USED 3. PULPWOOD

STARTUP - INVENTORY LEVEL : 1.0

MINIM! INVENTORY LEVEL : .0

STARTUP LEVEL MINIMUM : .0

MAXIMUM INVENTORY LEVEL : 9010.0

STARTUP LEVEL MAXIMUM : 2702.0

LOADER USED 33. CAT 225 W/SLASHER

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED

TYPE NAME INITIAL / OF MACHINES

11 CHAIN-FLAIL DEB. 1.

PROCESS NO.11: DISTRIBUTION

INCOMING ORIGIN : PROCESS NO. 3. SWINGING

OUTGOING ROUTE 1 : PROCESS NO. 4. DELIMB & DEBARK

OUTGOING ROUTE 2 : PROCESS NO.13. LOG FTRAPO

S GOING ROUTE 1 60.53 %

S GOING ROUTE 2 39.47 %

DISTRIBUTION USED 1. WHOLE TREES

STARTUP - INVENTORY LEVEL : 1.0

MINIMUM INVENTORY LEVEL : .0

STARTUP LEVEL MINIMUM .0

MAXIMUM INVENTORY LEVEL : 999999.9

STARTUP LEVEL MAXIMUM : 999999.9

LOADER USED : NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

PROCESS NO.12: CHIPPING

INCOMING ORIGIN : PROCESS NO. 4. DELIMB & DEBARK

DISTRIBUTION USED 3. PULPWOOD

STARTUP-INVENTORY LEVEL : 1.0

MINIMUM INVENTORY LEVEL : .0

325

STARTUP LEVEL MINIMUM : .0

MAXIMUM INVENTORY LEVEL : 999999.9

STARTUP LEVEL MAXIMUM : 999999.9

LOADER USED : NONE

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED

TYPE NAME INITIAL / OF MACHINES

37 CHIPPER

39 CHIP TRAILER

40 CHIP TRAKTOR

PROCESS NO.13: LOG FTRAPO

6.

3.

INCOMING ORIGIN : PROCESS NO.11. DISTRIBUTION

DISTRIBUTION USED 2. SAWLOCS

STARTUP-INVENTORY LEVEL : 1.0

MINIMUM INVENTORY LEVEL : .0

STARTUP LEVEL MINIMUM : .0

MAXIMUM INVENTORY LEVET. : 999999.9

STARTUP LEVEL MAXIMUM 999999.9

LOADER USED 33. CAT 225 W/SLASHER

TIME DELAYS HANDELED BY : STANDARD BUILD-IN FUNCTIONS

MACHINES USED

TYPE NAME INITIAL / OF MACHINES

41 LOG TRAILER

42 LOG TRAKTOR

6.

2.

MACHINE TYPE 1: CAT 227 FELL-BUNCH

INITIAL NUMBER OF MACHINES : 2.

AVERAGE PROCESSING TIME / TREE : .0000

FIXED CONSTANT TIME / LOAD .0384

FIXED CONST. TINE / ONE MAY HAUL : .0000

FIXED COST / SCHEDULED HOUR : 41.99

VARIABLE COST/ MACHINE HOUR : 41.35

MACHINE CAPACITY IN CU.FT : 82.65

326

FREQUENCY DISTRIBUTIONS MACHINE TYPE 1 : CAT 227 FELL-BUNCH

CLASS 021 FREQ.% TIME 138-51.FAILURE CUM.FREQ.% REPAIR TIME

1 20.00 6.00 50.00 .50

2 40.00 12.00 70.00 1.00

3 60.00 20.00 80.00 2.00

4 80.00 36.00 90.00 5.00

5 100.00 64.00 100.00 10.00

MACHINE TYPE 5: TJ CLANBUNK SKID

INITIAL NUMBER OF MACHINES : 1.

AVERAGE PROCESSING TIME / TREE : .0072

FIXED CONSTANT TIME / LOAD .0170

FIXED ODNST. TIME / ONE WAY HAUL : .1207

FIXED COST / SCHEDULED HOUR : 57.20

VARIABLE COST/ MACHINE HOUR : 46.61

MACHINE CAPACITY IN CU.FT : 901.00

FREQUENCY DISTRIBUTIONS MACHINE TYPE 5 : TJ CLAMBUNK SKID

CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TINE

1 20.00 6.00 50.00 .50

2 40.00 12.00 70.00 1.00

3 60.00 20.00 80.00 2.00

4 80.00 36.00 90.00 5.00

5 100.00 64.00 100.00 10.00

MACHINE TYPE 8: SET-OUT TRUCK

INITIAL NUMBER OF MACHINES : 1.

AVERAGE PROCESSING TIME / TREE : .0000

FIXED CONSTANT TINE / LOAD .1500

FIXED CONST. TIME / ONE WAY HAUL : .3000

FIXED COST / SCHEDULED HOUR : 15.04

VARIABLE COST/ MACHINE HOUR : 36.48

MACHINE CAPACITY IN CU.FT : 1842.00

327

FREQUENCY DISTRIBUTIONS MACHINE TYPE 8 : SET-OUT TRUCK

CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME

1 20.00 7.00 35.00 .50

2 40.00 14.00 65.00 1.00

3 60.00 28.00 85.00 3.00

4 80.00 56.00 95.00 8.00

5 100.00 100.00 100.00 16.00

MACHINE TYPE 11: CHAIN-FLAIL DEB.

INITIAL NUMBER OF MACHINES : 1.

AVERAGE PROCESSING TIME / TREE : .0031

FIXED CONSTANT TINE / LOAD .0000

FIXED CONST. TIME / ONE WAY HAUL : .0000

FIXED COST / SCHEDULED HOUR : 57.20

VARIABLE COST/ MACHINE HOUR : 30.00

MACHINE CAPACITY IN CU.FT : 99999.00

FREQUENCY DISTRIBUTIONS MACHINE TYPE 11 : CHAIN-FLAIL DEB.

CLASS CUM FREQ.% TIME BEIR.FAILURE CUM.FREQ.% REPAIR TIME

1 50.00 4.00 50.00 .50

2 75.00 8.00 70.00 1.00

3 85.00 20.00 80.00 4.00

4 95.00 36.00 90.00 8.00

5 100.00 64.00 100.00 16.00

MACHINE TYPE 32: CAT 225 LOG LOADER

INITIAL NUMBER OF MACHINES : 1.

AVERAGE PROCESSING TIME / TREE : .0000

FIXED CONSTANT TIME / LOAD .2500

FIXED CONST. TIME / ONE WAY HAUL : .0000

FIXESCOST/SCHEDULEDHOUR 41.99

VARIABLE COST/ MACHINE HOUR : 41.35

MACHINE CAPACITY IN GU.FT : 1842.00

328

FREQUENCY DISTRIBUTIONS MACHINE TYPE 32 : CAT 225 LOG LOADER

CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME

1 20.00 7.00 35.00 .50

2 40.00 14.00 65.00 1.00

3 60.00 28.00 85.00 3.00

4 80.00 56.00 95.00 8.00

5 100.00 100.00 100.00 16.00

MACHINE TYPE 33: CAT 225 W/SLASHER

INITIAL NUMBER OF MACHINES 1.

AVERAGE PROCESSING TIME / TREE : .0033

FIXED CONSTANT TIME / LOAD .0000

FIXED CONST. TINE / ONE NAY HAUL : .0000

FIXED COST / SCHEDULED HOUR : 41.99

VARIABLE COST/ MACHINE HOUR : 41.35

MACHINE CAPACITY IN CU.FT : 82.56

FREQUENCY DISTRIBUTIONS MACHINE TYPE 33 : CAT 225 W/SLASHER

CLASS CUM FREQ.%

20.00

TIME BETW.FAILURE

6.00

CUM.FREQ.%

50.00

REPAIR TINE

.50

2 40.00 12.00 70.00 1.00

3 60.00 20.00 80.00 2.00

4 80.00 36.00 90.00 5.00

5 100.00 64.00 100.00 10.00

MACHINE TYPE 37: CHIPPER

INITIAL NU1SER OF MACHINES : 1.

AVERAGE PROCESSING TIME / TREE : .0031

FIXED CONSTANT TIME / LOAD .0000

FIXED CONST. TIME / ONE WAY HAUL : .0000

FIXED COST / SCHEDULED HOUR : 41.98

VARIABLE COST/ MACHINE HOUR : 58.58

MACHINE CAPACITY IN CU.FT : 99999.00

329

FREQUENCY DISTRIBUTIONS MACHINE TYPE 37 : CHIPPER

CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME

1 50.00 4.00 50.00 .50

2 75.00 8.00 70.00 1.00

3 85.00 20.00 80.00 4.00

4 95.00 36.00 90.00 8.00

5 100.00 64.00 100.00 16.00

MACHINE TYPE 39: CHIP TRAILER

INITIAL NUMBER OF MACHINES 6.

FIXED CONSTANT TIME / LOAD .1500

FIXED CONST. TIME / ONE WAY HAUL : 1.9000

FIXED COST / SQIEWLED HOUR : 3.02

VARIABLE COST/ MACHINE HOUR : 2.88

MACHINE CAPACITY IN CU.FT : 1316.00

FREQUENCY DISTRIBUTIONS MACHINE TYPE 39 : CHIP TRAILER

CLASS CUM FREQ.% TIME BETW.FAILURE CUM.FREQ.% REPAIR TIME

****** DISTRIBUTION NOT USED *****1*

MACHINE TYPE 40: CHIP MAXTOR

FIXED COST / SCHEDULED HOUR : 13.12

VARIABLE COST/ MACHINE HOUR : 34.24

MACHINE CAPACITY IN CU.FT .00

FREQUENCY DISTRIBUTIONS MACHINE TYPE 40 : CHIP TRAKTOR

CLASS CUM FREQ.% TINE BETW.FAILURE CUM.FREQ.% REPAIR TIME

1 20.00 7.00 35.00 .50

2 40.00 14.00 65.00 1.00

3 60.00 28.00 85.00 3.00

4 80.00 56.00 95.00 8.00

5 100.00 100.00 100.00 16.00

330

MACHINE TYPE 41: LOG TRAILER

INITIAL NUMBER OF MACHINES : 6.

AVERAGE PROCESSING TIME / TREE : .0000

FIXED CONSTANT TIME / LOAD .1500

FIXED CORSE. TIME / ONE WAY HAUL : 1.9000

FIXED COST / SCHEDULED HOUR 1.28

VARIABLE COST/ MACHINE HOUR 2.24

MACHINE CAPACITY IN CU.FT : 1316.00

FREQUENCY DISTRIBUTIONS MACHINE TYPE 41 : LOG TRAILER

CLASS CUM FREQ.% TINE BETILFAILURE CUM.FREQ.% REPAIR TIME

"an DISTRIBUTION NOT USED ******

MACHINE TYPE 42: LOG 1RAKTOR

FIXED COST / SCHEDULED HOUR : 13.12

VARIABLE COST/ MACHINE HOUR : 34.24

MACHINE CAPACITY IN ("LET .00

FREQUENCY DISTRIBUTIONS MACHINE TYPE 42 : LOG TRAXTOR

CLASS CUM FREQ.% TIME BETII.FAILURE CUM.FREQ.% REPAIR TIME

nloHot DISTRIBUTION NOT USED *ma**

331

APPENDIX E

12. LOGSIM, simulation results system 4

>>>LOGSIM<<<
SIMULATION RESULTS

SIMULATION MODEL USED: SYSTEM4.MOD

,. /' K A X IR* 4

DATE- 05-31-87

TIME- 22:16:34

SIMULATION RUN 1 OF 1.

PROCESS NO. 1 : FELLING

TIME BEGIN OF PROCESS : .0000000E+00 AVERAGE INVENTORY : .0000000E+00

TIME END OF PROCESS : .8798502E+02 MAXIMUM INVENTORY : .0000000E+00

DURATION OF PROCESS : .8798502E+02 MINIMUM INVENTORY : .0000000E+00

TIME INVENTORY TOO LOU : .0000000E+00 STD.DEV. INVENTORY : .0000000E+00

TIME INVENTORY TOO HIGH : .0000000E+00 I OF OBSERVATIONS INV. : .0000000E+00

% INVENTORY DOWNTIME : .0000000E+00 SUM UNITS PROCESSED .2556640E+06

TOTAL / OF MACHINES : 2 SUM COST OF PROCESS .1408602E+05

SUM SCHEDULED HOURS : .1759700E+03 COST PER UNIT .5509583E-01

SUM MACH.BREAKDOWN HOURS: .1400000E+02 COST PER SCHEDULED HOUR : .8004783E+02

SUM PRODUCTIVE HOURS : .1619598E+03

% NET UTILIZATION MACH. : .9203829E+02

% GROSS UTILIZATION MACH: .9999419E+02

MACHINE TYPE 1 : CAT 227 FELL-BUNCH

TOTAL / OF MACHINES : 2

SUM SCHEDULED HOURS : .1759700E+03

SUM RACH.BREAKDOWN HOURS: .1400000E+02

SUM PRODUCTIVE HOURS .1619598E+03

COST PER MACHINE : .7043010E+04

COST PER SCHEDULED HOUR : .8004783E+02

% NET UTILIZATION MACH. : .9203829E+02

% GROSS UTILIZATION MACH: .9999419E+02

332

333

PROCESS NO. 2 : SKIDDING

TIME BEGIN OF PROCESS : .2803200E+01 AVERAGE INVENTORY : .6186050E+05

TIME END OF PROCESS : .1567840E+03 MAXIMUM INVENTORY : .1216110E+06

DURATION OF PROCESS : .1539808E+03 MINIMUM INVENTORY : .0000000E+00

TIME INVENTM TOO LOW : .0000080E+00 STD.DEV.INVENTORY : .3376338E+05

TIME INVENTCRY TOO NIGH : .0000000E+00 I OF OBSERVATIONS INV. : .4508000E+04

% INVENTCRY DOWNTIME : .0000000E+00 SUM UNITS PROCESSED : .2556640E+06

TOTAL if OF MACHINES 1 SUM COST OF PROCESS : .1543550E+05

SUM SCHEEULED HOURS : .1539808E+03 COST PER UNIT : .6037418E-01

SUM MACH.BREWOXIEW HOURS: .9500000E+01 COST PER SCHEDULED HOUR : .1002431E+03

SUM PRODUCTIVE TOURS : .1421970E+03

% NET UTILIZATION MACH.: .9234727E+02

% GROSS UTILIZATION MACH: .9851688E+02

MACHINE TYPE 5 : TJ CLANDUNK SKID

TOTAL / OF MACHINES : 1 COST PER MACHINE .1543550E+05

SUM SCHEDULED HOURS : .1539808E+03 COST PER SCHEDULED HOUR : .1002431E+03

SUM MACH.BREAKDOIN HOURS: .9500000E+01 % NET UTILIZATION MACH. : .9234727E+02

SUM PRODUCTIVE HOURS : .1421970E+03 % GROSS UTILIZATION MACH: .9851688E+02

PROCESS NO.11 : DISTRIBUTION

TIME BEGIN OF PROCESS : .4882385E+01 AVERAGE INVENTORY : .3560324E+03

TIME END OF PROCESS : .1586829E103 MAXIMUM INVENTORY : .4929597E+04

DURATION OF PROCESS : .1538005E+03 MINIMUM INVENTORY : .0000000E+00

TIME INVENTORY TOO LOW : .0000000E+00 STD.DEV.INVENTORY : .7710981E+03

TIME INVENTORY We HIGH : .0000000E+00 OF OBSERVATIONS INV. : .2023000E+04

% INVENTORY DOWNTIME : .00100000E+00 SUM UNITS PROCESSED : .2556640E+06

TOTAL/OFMACHINES : A SUM COST OF PROCESS : .0000000E+00

SUM SCHEDULED HOURS : .0000000E+00 COST PER UNIT : .0000000E+00

SUM MACH.BREAKDOWN HOURS: .0000000E+00 COST PER SCHEDULED HOUR : .0000000E+00

SUM PRODUCTIVE HOURS : .00011000E+00

% NET UTILIZATION MACH. : .0000000E+00

% GROSS UTILIZATION MACH: .0000008E+00

334

PROCESS NO. 3 : SWINGING

TIME BEGIN OF PROCESS : .3688900E+01 AVERAGE INVENTORY : .1616534E+04

TIME END OF PROCESS : .1588901E43 MAXIMUM INVENTORY : .4006000E+04

DURATION OF PROCESS : .1552012E+03 MINIMUM INVENTORY : .0000000E+00

TIME INVENTORY TOO LOW : .0000000E40 STD.DEV.INVENTORY : .8845016E+03

TIME INVENTORY TOO HIGH : .2995998E+01 1 OF OBSERVATIONS INV. 1 .4310000E+03

% INVENTORY DOWNTIME : .1930397E+01 SUM UNITS PROCESSED : .2556640E+06

TOTAL / OF MACHINES : 1 SUM COST OF PROCESS : .7457829E+04

SUM SCHEDULED HOURS : .1552012E+03 COST PER UNIT : .2917043E-01

SUM MACH.BREAKDOWN HOURS: .5000000E+01 COST PER SCHEDULED HOUR : .4805266E+02

SUM PRODUCTIVE HOURS : .14134496E+03

% NET UTILIZATION MACH. : .9049523E+02

% GROSS UTILIZATION MAGI: .9371686E+02

MACHINE TYPE 8 : SET-OUT TRUCK

TOTAL / OF MACHINES : 1 COST PER MACHINE .7457829E+04

SUM SCHEDULED HOURS : .1552012E+03 COST PER SCHEDULED HOUR : .4805266E+02

SUM MACH.BREAXDOWN HOURS: .5000000E+01 % NET UTILIZATION MACH. : .9049523E+02

SUM PRODUCTIVE HOURS : .1404496E+03 % GROSS UTILIZATION MACH: .9371686E+02

PROCESS NO. 4 : DELIMB 8: DEBARK

TIME BEGIN OF PROCESS .4882385E+01 AVERAGE INVENTORY : .2006120E+04

TIME END OF PROCESS : .1590361E+03 MAXIMUM INVENTORY : .9010000E+04

DURATION OF PROCESS : .1541537E+03 MINIMUM INVENTORY : .0000000E+00

TIME INVENTORY TOO LOW : .0000000E+00 STD.DEV. INVENTORY : .2605731E+04

TIME INVENTORY TOO HIGH : .0000000E+00 / OF OBSERVATIONS INV. : .9183000E+04

% INVENTORY DOWNTIME : .0000000E+00 SUM UNITS PROCESSED : .1547534E+06

TOTAL / OF MACHINES : 1 SUM COST OF PROCESS : .1054747E+05

SUM SCHEDULED HOURS : .1541537E+03 COST PER UNIT : .6815664E-01

SUM MACH.I3REAKDOWN HOURS: .3200000E+02 COST PER SCHEDULED HOUR : .6842178E+02

SUM PRODUCTIVE HOURS : .5766267E+02

% NET UTILIZATION MACH. : .3740596E+02

% GROSS UTILIZATION MACH: .5816446E+02

MACHINE TYPE 11 : CHAIN -FLAIL DEB.

TOTAL / OF MACHINES : 1 COST PER MACHINE .1054747E+05

SUM SCHEDULED HOURS : .1541537E+03 COST PER SCHEDULED HOUR : .6842178E+02

SUM MACH.BRF.AKDOWN HOURS: .3200000E+02 %NETUTILIZATIONMACH. : .3740596E+02

SUM PRODUCTIVE HOURS : .5766267E+02 % GROSS UTILIZATION MACH: .5816446E+02

PROCESS NO.13 : LOG FIRAPO

TINE BEGIN OF PROCESS : .4882385E+01 AVERAGE INVENTORY .9966492E+03

TIME END OF PROCESS : .1676927E+03 MAXIMUM INVENTORY .3699874E+04

DURATION OF PROCESS : .1628103E+03 MINIMUM INVENTORY .0000000E+00

TINE INVENTORY TOO LOW : .0000000E+00 STD.DEV.INVENTORY .6292474E+03

TINE INVENTORY TOO HIGH : .0000000E+00 / OF OBSERVATIONS INV. : .2500000E+03

% INVENTORY DOWNTIME : .0000000E+00 SUM UNITS PROCESSED : .1009106E+06

TOTAL / OF MACHINES : 8 SUM COST OF PROCESS : .1719054E+05

SUM SCHEDULED HOURS : .1302483E+04 COST PER UNIT .1703542E+00

SUM PIACH.BREAKDOWN HOURS: .0000000E+00 COST PER SCHEDULED HOUR : .1319829E+02

SUM PRODUCTIVE HOURS : .8075062E+03

% NET UTILIZATION MACH. : .6199746E+02

% GROSS UTILIZATION MACH: .6199746E+02

MACHINE TYPE 41 : LOG TRAILER

TOTAL / OF MACHINES 6

SUM SCHEDULED HOURS : .9768621E+03

SUM MACH.BREANDOWN HOURS: .0000000E+00

SUM PRODUCTIVE HOURS : .4994063E+03

MACHINE TYPE 42 : LOG TRAKTOR

TOTAL / OF MACHINES :

SUM SCHEDULED HOURS :

SUM MACH.BREMODOWN HOURS:

SUMPRODUCTIVEHOURS :

COST PER MACHINE

COST PER SCHEDULED HOUR :

% NET UTILIZATION MACH. :

% GROSS UTILIZATION MACH:

.3948423E+03

.2425167E+01

.5112352E+02

.5112352E+02

2 COST PER MACHINE : .7410744E+04

.3256207E+03 COST PER SCHEDULED HOUR : .4551765E+02

.0000000E+00 % NET UTILIZATION MACH. .9461929E+02

.3081000E+03 % GROSS UTILIZATION MACH: .9461929E+02

335

PROCESS NO.12 : CHIPPING

TIME BEGIN OF PROCESS : .4888785E+01 AVERAGE INVENTORY : .6150024E+04

TIME END OF PROCESS : .1756062E+03 MAXIMUM INVENTORY : .1211100E+05

DURATION OF PROCESS : .1707174E+03 MINIMUM INVENTORY : .0000000E+10

TIME INVENTORY TOO LOW : .0000000E+00 STD.DEV. INVENTORY : .3280347E+04

TIME INVENTORY TOO HIGH : .0000000E+00 / OF OBSERVATIONS INV. : .1809800E+05

% INVENTORY DOWNTIME : .0000000E+00 SUM UNITS PROCESSED : .1547534E+06

TOTAL / OF MACHINES : 10 SUM COST OF PROCESS : .3700039E+05

SUN SCHEDULED HOURS : .1707174E+04 COST PER UNIT : .2390926E+00

SUN MACH.BREAKDOWN HOURS: .1600000E+02 COST PER SCHEDULED HOUR : .2167348E+02

SUN PRODUCTIVE FOURS : .1374853E+04

% NET UTILIZATION MACH. : .8053386E+02

% GROSS UTILIZATION MACH: .8147108E+12

MACHINE TYPE 37 : CHIPPER

TOTAL if OF MACHINES :

SUM SCHEDULED HOURS :

SUN MACH.BREAKDOWN HOURS:

SUM PRODUCTIVE HOURS :

1 COST PER MACHINE

.1707174E+03 COST PER SCHEDULED HOUR :

.1000000E+02 % NET UTILIZATION MACH. :

.2815513E+02 S GROSS UTILIZATION MACH:

MACHINE TYPE 39 CHIP TRAILER

TOTAL / OF MACHINES 6

SUM SCHEDULED HOURS : .1024304E+04

SUM MACH.BREAKCOWN HOURS: .0000000E+00

SUM PRODUCTIVE HOURS : .8845480E+03

MACHINE TYPE 40 : CHIP TRAKTOR

TOTAL / OF MACHINES : 3

SUN SCHEDULED HOURS : .5121522E+03

SUM MACH.BREAKDONN HOURS: .6000000E+01

SUM PRODUCTIVE HOURS : .4621500E+03

.8816044E+04

.5164116E+02

.1649224E+02

.2234988E+02

COST PER MACHINE : .9401497E+03

COST PER SCHEDULED HOUR : .5507052E+01

S NET UTILIZATION MACH. : .8635597E+02

S GROSS UTILIZATION MACH: .8635597E+02

COST PER MACHINE

COST PER SCHEDULED HOUR :

S NET UTILIZATION MACH. :

S GROSS UTILIZATION MACH:

.7514484E+04

.4401709E+02

.9023684E+02

.9140836E+02

336

337

LOADING DEVICES

TOTAL / OF MACHINES : 2 SUM OF UNITS HARVESTED : .2556640E+06

SUM SCHEDULED HOURS : .3512124E+03 SUM COST LOADER DEVICES : .1740970E+05

SUM MACH.MREAKDOWN HOURS: .1350000E+02 COST PER UNIT : .6809600E-01

SUN PRODUCTIVE HOURS : .7431316E+02 COST PER SCHEDULED HOUR : .9914057E+02

% NET UTILIZATION MACH. : .2115904E+02

X GROSS UTILIZATION MACH: .2500286E+02

MACHINE TYPE 32 : CAT 225 LOG LOADER

TOTAL / OF MACHINES : 1

SUM SCHEDULED HOURS : .1756062E+03

SUM MACH.BREAKD04IN HOURS: .1000000E+01

SUM PRODUCTIVE HOURS : .3469923E+02

MACHINE TYPE 33 : CAT 225 W/SLASHER

TOTAL / OF MACHINES : 1

SUM SCHEDULED HOURS : .1756062E+03

SUM MACH.BREAKDOWN HOURS: .1250000E+02

SUM PRODUCTIVE HOURS : .3961393E+02

COST PER MACHINE

COST PER SCHEDULED HOUR :

% NET UTILIZATION MACH. :

% GROSS UTILIZATION MACH:

.8808517E+04

.5016063E+02

.1975968E+02

.2032914E+02

COST PER MACHINE : .9011740E+04

COST PER SCHEDULED HOUR : .5131790E+02

% NET UTILIZATION MACH. : .2255839E+02

% GROSS UTILIZATION MACH: .2967659E+02

COMPLETE HARVESTING SYSTEM STATISTICS

COMPUTER TIME START SIMULATION DATE: 05-31-87 TIME: 21:53:43

COMPUTER TIME END SIMULATION DATE: 05-31-87 TIME: 22:33:49

SIMULATION RUN 1 OF 1.

BEGIN OF HARVESTING : .0000000E+00 END OF HARVESTING : .1756062E+03

TOTAL / OF MACHINES : 25 SUNOFUNITSHARVESTED : .2556640E+06

SUN SCHEDULED HOURS : .4000175E+84 SUM COST OF SYSTEM : .1191275E+06

SUM MACH.BREAKDOWN HOURS: .9000000E+02 COST PER UNIT : .4659532E+00

SUM PRODUCTIVE HOURS : .2758942E+04 COST PER SYSTEM HOUR : .6783785E+03

% NET UTILIZATION MACH. : .6897053E+02

% GROSS UTILIZATION MACH: .7122043E+02

END OF RUN / 1 OF 1.

338

