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A multidisciplinary perspective is necessitated for the analysis of wave energy con-

version systems, spanning hydrodynamics, mechanics, electric power, and control

systems. The complexity inherent in these scientific domains poses challenges for

unified analysis. This paper addresses these challenges by connecting various do-

mains through the application of circuit theory, characterizing the multiphysics sys-

tem as an equivalent circuit. The methodology is exemplified using the two-body

Reference Model 3 (RM3) Wave Energy Converter (WEC). Initially, equations of

motion for each body are formulated, encompassing all six degrees of freedom, re-

sulting in a model with 12 degrees of freedom. Subsequently, selective Eigenmode

approximation analysis is employed to reduce the model to two modes, visualized

as an equivalent circuit. Simulation results facilitate the comparison between the

equivalent circuit model and the original full-order model.



Furthermore, to enhance the accuracy of WEC modeling and overcome limi-

tations in analogies between mechanical and electrical components, this paper in-

troduces Instantaneous Frequency Modeling (IFM). Improved modeling accuracy

and the facilitation of testing various control methods are achieved through IFM.

Leveraging the principle of electrical resonance, specifically impedance matching,

enables the optimization of wave energy harvesting by controlling the force on the

power take-off unit. Simulation results from the instantaneous model are presented,

and performance under diverse control techniques is investigated.
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Chapter 1: General Introduction

Ocean waves hold substantial energy potential, benefiting from the fact that about

70 percent of the Earth’s surface is covered by the ocean. Unlike solar and wind

energy, which encounter constraints due to irregular energy harvesting—solar en-

ergy is limited to the daytime, and wind energy exhibits notable fluctuations—the

shortcomings of these renewable sources present challenges in fully replacing tra-

ditional methods of energy generation. The demand for energy requires a level of

consistency and stability that is not always met by solar and wind power. Notably,

the ocean wave exhibits a characteristic of consistency. This consistency could aid

in meeting energy needs on time. However, harvesting energy from ocean waves

poses several challenges, including issues with energy transmission, maintenance,

and the complexity of multi-physics interactions. Specifically, the installation of

underwater cables incurs substantial costs, access to devices is hindered by their

offshore locations, and optimization necessitates consideration of mechanical, hy-

drodynamical, electromechanical, and electrical principles.

Addressing these challenges relies on the effective modeling of Wave Energy

Converters (WEC), where a robust model can simultaneously tackle cost, main-

tenance, and optimization issues. A proposed approach involves a unified physics

model represented as an equivalent circuit for WEC to maximize energy harvest [2].

This modeling strategy capitalizes on the mathematical identity highlighting simi-
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larities between mechanical systems and electrical circuits. Furthermore, the appli-

cation of the maximum energy transfer principle in electrical theory is integrated

into the equivalent circuit to optimize the performance of the WEC.

Nevertheless, the application of equivalent circuit modeling is constrained pri-

marily to regular wave scenarios, given the assumption that electrical components

possess passive constant values. While the analysis of regular wave cases is straight-

forward, it tends to be less practical since real sea conditions seldom conform to

regular patterns. To address this limitation, the concept of instantaneous fre-

quency is introduced. This concept not only preserves the simplicity of regular

wave analysis but also enhances the accuracy of equivalent circuit modeling, even

in irregular sea conditions such as JONSWAP and Pierson-Moskowitz spectrum

waves.

Furthermore, the novel modeling technique introduces the potential for real-

time optimization of the Power-Take-Off unit, contrasting with the traditional

assumption of constant wave frequency. This innovative approach offers opportu-

nities for improved performance in the dynamic and unpredictable conditions of

real sea environments.
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Chapter 2: Manuscript 1

2.1 Introduction

Design of wave energy conversion (WEC) systems is particularly challenging due

to the various disciplines involved. The fluid dynamics from waves entail com-

plex physics and associated high-dimensional models. Mechanical systems require

careful design to properly absorb wave energy and moving parts are coupled to

electromechanical machines that convert energy from mechanical into electrical

form. Electrical waveforms and electromagnetically-induced torque are shaped by

power electronics drives and their onboard control systems. The performance and

efficiency of the overall system strongly depend on how these aforementioned sub-

systems interact with one another. Given that each physical discipline has its own

set of techniques and jargon, it is difficult to perceive the overall WEC under a

unified perspective that clearly elucidates how the coupled systems operate. To

bypass this issue, this paper is focused on translating each subsystem into an equiv-

alent circuit such that the overall system can be visualized as a circuit. We place a

strong focus on the derivation of a reduced order model for the wave-to-mechanical

coupling and conclude with simulation results on a two-body Reference Model 3

(RM3) WEC system with drive controls.

The dynamical interactions between waves and mechanical structures are par-
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ticularly complex and are generally studied through a combination of numerical

simulations and/or analytical formulations. Numerical approaches that capture

three-dimensional physics typically rely on formulations tailored toward partial

differential equations associated with fluid mechanics. These include boundary

element and finite element approaches [5]. Although these software simulations

provide high-resolution results, they are computationally burdensome and may

obscure intuition that might be gleaned from a more compact model [15]. On the

other hand, analytical models may provide deeper insight but generally require a

higher level of mathematical sophistication and are not as accurate as high-order

numerical simulations [4].

Mathematically-driven methods for the control and design of WECs, such as

those pursued in this paper, are generally predicated on the use of simplified mod-

els [12]. Towards that end, reduced-order models for hydro-mechanical physics

have received significant attention. Such approaches include proper orthogonal

decomposition [13], principal component analysis [6], and Eigenvalue or modal

decomposition [9]. Despite considerable reductions in model complexity, contem-

porary software packages (e.g., WEC-Sim simulator [14]) must still numerically

solve differential equations across six degrees of freedom for each moving body and

a simple mathematical model is still out of reach.

In this paper, we address the aforementioned shortcomings through the use of

Eigenvalue-based modal decomposition with the aim of reducing the number of

degrees of freedom. We focus on the RM3 [14] point absorber system and show

that the simplified hydro-mechanical model lends itself to a basic circuit represen-
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tation that emphasizes the most important mechanics in the system. Furthermore,

the novel instantaneous-frequency model is developed and implemented to further

enhance the accuracy of the condition at the particular field considered.

2.2 Equivalent Circuit Representation

2.2.1 Governing Equation of RM3

Determining the motion of bodies for a WEC is highly interdisciplinary, integrat-

ing concepts from hydrodynamics, mechanics, electronics, and electromagnetism.

Ignoring mooring and drag forces, the governing equation for the RM3 is

mẍ(t) = Fex(t) + Frad(t) + Frs(t) + Fpto(t) (2.1)

in which Fex is the excitation force of the wave exerting on the bodies, Frad is

the radiation force, Frs is the restoring force about the equilibrium point of the

floating body, and Fpto is the electromagnetic force induced by the linear gen-

erator. Solving hydrodynamics using Finite Element Analysis for the Navier-

Stokes equation is computationally expensive, particularly over the long dura-

tions common to WEC testing. To mitigate this issue, a structural analysis ap-

proach via the boundary element method for input-output is commonly imple-

mented [14]. In the frequency domain, the radiation force can be modeled as

Frad(ω) = −Madd(ω)ẍ(ω) − Brad(ω)ẋ(ω), in which Madd represents the added

mass coefficient matrix, Brad is the radiation damping coefficient matrix and the
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w is the frequency of the incoming wave. These coefficients can be determined by

experiment or numerical analysis. In this project, we use the coefficients calculated

from wave analysis in Massachusetts Institute of Technology [10]. The hydrostatic

restoring force is typically proportional to the displacement of the body relative to

the sea surface, such that: Frs(t) = −Kx(t), in which K is the hydrostatic coef-

ficient matrix. The total mass matrix can be presented as m +Madd(ω) = M(ω)

by superposition, in which m is the dry mass of the RM3. The PTO force can be

modeled in any form, depending on the corresponding controller. This paper con-

siders pure damping control, where the force is proportional to the relative speed

between two bodies in the heave direction. Through the superposition of damping

terms, the total damping coefficient matrix is given as Brad(ω) +Bpto = B(ω).

2.2.2 Equivalent Circuit Representation

It can be observed that an analogy can be made between forces and motion, and

voltage and current. For example, note the same proportional relationships of

F = mdv
dt

and the current-voltage relationship of a capacitor I = C dV
dt
. Under

this analogy, we can think of force as analogous to current, mass to capacitance,

and velocity to voltage. Further analogous relationships can be drawn as shown in

Table 3.1.

The control law of the generator, and the force it provides as a function of

velocity or position, for example, can also be represented as a circuit subsystem [2].

The governing equation of the RM3 is translated from the hydrodynamics terms
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Table 2.1: Mechanical to Electrical Analogy

Mechanical ↔ Electrical
Force [N] ↔ Current [A]

Velocity [m/s] ↔ Voltage [Volts]
Mass [kg] ↔ Capacitance [F]

Damping [N/(m/s)] ↔ 1/Resistance [1/Ohms]
Stiffness [N/m] ↔ 1/Inductance [1/Henries]

to the equivalent circuit representation, as shown in the following equation:

I(t) = CV̇(t) +
1

R
V(t) +

1

L

∫
V(t) dt (2.2)

2.3 Reduced Order Model

2.3.1 Methodology

A generalized WEC is assumed for the presented study: the Reference Model 3

(RM3) two-body point absorber [14]. The geometry of the RM3 WEC is shown

in Fig. 2.1. It consists of two parts: a central spar and a concentric float. The

power take-off system (PTO) is placed between the float and the spar, to control

the relative motion characteristics and hence, energy extraction of the system. In

general, a given rigid object with no constraints has 6 degrees of freedom (DOF),

which means it is free to move and rotate in 6 primary directions. The 6 DOF

consists of 3 translational and three rotational. Because the RM3 system has two

parts, it inherently has 12 DOF (2× 6).
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Figure 2.1: RM3 point absorber WEC geometry.

2.3.2 Constraints

Newton’s second law of motion can be formulated for each of the degrees of freedom,

which, in vector form: m ẍ = F In this equation, m represents the mass matrix for

all DOF (3 lumped masses and three mass moments of inertia), ẍ is the acceleration

of the mass system in all DOF, and finally, F represents the forces acting on the

body. For instance, if one wants to develop the equation of motion for one of the

bodies in RM3, float, for example, it becomes:



9



M11 0 0 0 0 0

0 M22 0 0 0 0

0 0 M33 0 0 0

0 0 0 Ixx 0 0

0 0 0 0 Iyy 0

0 0 0 0 0 Izz





ẍ1

ẍ2

ẍ3

ẍ4

ẍ5

ẍ6


=



f1

f2

f3

f4

f5

f6


In this vector equation, since the mass of the float is homogeneous, M11 =

M22 = M33 = Mfloat; and fi represents the total forcing terms acting on the ith

DOF.

Considering the two bodies in the RM3, if the bodies have no geometric con-

straints with respect to each other, then there would be 12 independent DOF.

A system of 12 equations and 12 unknowns can then be set up and solved at

each time step. However, the existing configuration has a geometric constraint

between the spar and the float, allowing only an independent translational motion

in heave. The RM3 configuration is in a way that the spar constrains all DOF of

the float, except heave. Therefore there are 5 DOF constrained between float and

spar (surge, sway, roll, pitch, and yaw) and 2 unconstrained DOF (heave of the

spar and relative heave of the float with respect to spar), as depicted in Fig. 2.

To address this reduction in the number of DOF, a constraint matrix is devel-

oped to map the responses (here, for example, displacements) from 12 DOF to 7

as x = Tcxc, in which, x is the displacement in 12 DOF of the two bodies, Tc

represents the constraint transformation, and xc is the resultant displacement in
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7 DOF after constraint. If the initial distance between the centers of gravity of

float and spar is denoted by d and assumes small rotation angles in pitch and roll

(cosϕ = 1 and sinϕ = ϕ), then we can derive the linear simplified geometrical

constraint transformation as:

x1f

x2f

x3f

x4f

x5f

x6f

x1s

x2s

x3s

x4s

x5s

x6s



=



1 0 0 0 d 0 0

0 1 0 d 0 0 0

0 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0





x1s

x2s

x3s

x4s

x5s

x6s

x′7



In this matrix, variables x1f through x6f represent the 6 DOF of the float

(surge, sway, heave, roll, pitch, yaw), and x1s through x6s are the 6 DOF of the

spar. The 6 variables on the right-hand side of the equation are defined at the

center of gravity of the spar in addition to x
′
7 representing the relative heave dis-

placement at the center of gravity of the float. In the constrained DOF, both the

float and the spar have the same accelerations, velocities, and displacements. The
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Figure 2.2: Degrees of freedom and local/global (red/blue) coordinate system def-
inition for the RM3 WEC.

constraint reduces the total number of DOF from 12 to 7, assuming 7 of them at

the center of gravity of the spar (ẍ1s, ẍ2s, . . . , ẍ6s) and the relative motion (ẍ′7) at

the center of gravity of the float. The original 12 by 12 matrices are constructed

from wave analysis in Massachusetts Institute of Technology hydrodynamic coef-

ficient outputs and reduced down to 7 by 7 using the constraint transformation

matrix Tc introduced above as Mc = T⊤
c MTc, Bc = T⊤

c BTc, Kc = T⊤
c KTc, and

Fex = T⊤
c Fc, where Mc, Bc, and Kc are the constrained mass, damping, and stiff-

ness matrices, respectively. This results in seven equations and seven unknowns:

Mcẍc +Bcẋc +Kcxc = Fc.
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All the hydrodynamic coefficients from wave analysis in Massachusetts Insti-

tute of Technology are computed relative to the local axis of each body, assuming

gravitational acceleration pointing straight downward. Since the location and ori-

entation of each body change in time, we need to transfer all the hydrodynamic

matrices into global coordinates using Euler Angle Transformations (roll (ϕ), pitch

(θ), and yaw (ψ)) which decomposes the body-fixed variables to global coordinate.

In general: ug = T× ul, in which, ug and ul are the variables in global and local

coordinates, respectively, and T is the transformation matrix. In the presented

study, since originally the rotations are assumed to be small, then the T matrix is

unity, and global and local coordinates are assumed to be the same.

2.3.3 Basis and Assumptions for Modal Analysis

The modal analysis of the 7 DOF system results in 7 natural frequencies of the

structure (WEC) and 7 Eigenvectors. Because the WEC is symmetric and the

wave field is assumed long crested (no variation in y-direction), it can be assumed

that all the WEC responses are in the 2D plane of x-z. Given the fact that every

combination of variables can be described in a 2D plane with 2 orthogonal vectors,

2 modes were chosen out of the 7 modes resulting from the modal analysis of the

system. The procedure to choose the 2 modes incorporates the assumption that

the most important driving force in the system is the excitation force from the

incoming waves. Hence, the two modes with frequencies closest to the incoming

waves frequencies were selected, and the corresponding Eigenvectors Φm = [Φ1Φ2]
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are used to reduce the system to 2 DOF in Eigen domain using the Eigenvectors

Φm as ΦT
mMcΦm = Me, Φ

T
mBcΦm = Be, Φ

T
mKcΦm = Ke, and ΦT

mFc = Fe, in

which Me, Be, Ke, and Fe represent the 2 DOF equivalent variables in the Eigen

domain. Finally, the reduced order equation of motion becomes:

Fe1(t)

Fe2(t)


︸ ︷︷ ︸
ΦT

mFexc

=

m11 m12

m21 m22


︸ ︷︷ ︸

ΦT
mMcΦm

ẍe1(t)
ẍe2(t)

+

b11 b12

b21 b22


︸ ︷︷ ︸

ΦT
mBcΦm

ẋe1(t)
ẋe2(t)



+

k11 k12

k21 k22


︸ ︷︷ ︸

ΦT
mKcΦm

xe1(t)
xe2(t)

 (2.3)

in which, the accelerations/velocities/displacements are in the Φ1, Φ2 basis, instead

of the original DOF. The computed response quantities can be transformed back

to the 7 DOF system by inverting the process of the reduction.

The frequency range for this analysis was selected based on the assumption of

heave-dominated WEC behavior. As it can be seen from Fig.2.3, for float and spar,

when investigating the excitation coefficients, one can find the transition period

for the heave-dominated motion is about 5.2 s for float and spar. To this end, the

range of periods included in the presented study was limited to a minimum of 5

seconds.
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Figure 2.3: RM3 excitation force coefficients for (a) float (b) spar for all 6 DOF
as a function of excitation period. For low periods, pitch dominates, and at large
periods, heave dominates.

2.3.4 ROM Validation via Comparison to WEC-Sim

The general assumptions that are included in the simulation validation runs, com-

pared to WEC-Sim results, are (1) the duration and ramp time for simulations in

both ROM and WEC-Sim models were chosen as 100 and 20 wave periods (peak

period for irregular waves); (2) time step was fixed at 0.01 s for both ROM and

WEC-Sim models; (3) for regular and irregular waves, the period range of 5 s to
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13 s seconds were included in the simulation due to heave dominancy; (4) for ir-

regular waves, a JONSWAP spectrum with equal energy assumption was used in

WEC-Sim, with specified range of periods between 4 and 20 seconds, to include

the developing sea-states for higher energetic conditions. The error definition was

defined as the difference between the results from ROM with those generated by

WEC-Sim in the following manner:

• The measure of the error for regular waves is assumed as the percent differ-

ence between the amplitude of response in heave.

Errorregular = 100× HROM −HWEC-Sim

HWEC-Sim

• The measure of the error for irregular waves is assumed as the percent dif-

ference between the standard deviations of the heave response.

Errorirregular = 100× σROM − σWEC-Sim

σWEC-Sim

• For irregular waves, each peak period was modeled 10 times with random

phases, and the mean value is reported as the mean error.

Mean Errorirregular =

∑10
i=1 Errorirregular (i)

10
.

The analysis of the RM3 WEC was performed using the proposed ROM model

and WEC-Sim, and the results were compared. It should be mentioned that in
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Figure 2.4: Maximum amplitude difference between the Reduced Order Model and
WEC-Sim for regular waves for (a) spar and (b) float.

WEC-Sim analysis, none of the “nonlinear” features of the program were enabled.

The range of periods considered is 5 s to 13 s with a constant wave height of 1 m,

with PTO damping of zero.

Calculated errors as outlined previously are presented in Fig.2.4(a) and Fig.2.4(b)

for the float and spar, respectively. From the figures, it can be found that the dif-

ference between ROM and WEC-Sim results stays below 5 %. Also, the maximum

error occurs at a period of 5 s which, as explained previously, is not considered

in the heave-dominated region and does not completely satisfy the small rotation

assumption of the presented ROM model.
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Figure 2.5: Mean standard deviation difference between the Reduced Order Model
and WEC-Sim for irregular Waves for (a) spar and (b) float. (The dashed line
represents one standard deviation band.)
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The same analysis was performed under irregular wave conditions with a range

of peak period of Tp = 5 s to 13 s and significant wave height of Hs = 1 m,

following a Joint North Sea Wave Project (JONSWAP) spectrum with γ = 1 and

PTO damping of zero [7]. The wave field for each wave condition was generated

10 times with random phases for both ROM and WEC-Sim models, and errors

were computed using the definition mentioned previously. Calculated mean errors

with upper and lower bounds of one standard deviation also are presented in Fig.

2.5 (a) and Fig. 2.5 (b) for the float and spar, respectively. Fig. 2.5 (a) shows a

large mean error for Tp = 5 s caused by large rotation contributions from periods

smaller than 5.2 s. For the rest of the test cases, the difference between ROM and

WEC-Sim results remains below 5 %.

2.3.5 Circuit Representation of ROM

The two second-order differential equations in (3.1) are modeled as two isolated

circuits by Equation (2.2), with the assumption that all the coefficient matrices are

diagonalized by Eigen-decomposition. As a result, the non-diagonal components

in the mass matrix and K matrix are close to zero. However, the non-diagonal

components in the damping matrix have significant values due to the electromag-

netic damping from the PTO unit. To address the coupling terms b12 and b21 in

(3.1), a gyrator is introduced, converting the voltage of the neighbor circuit to the

current with a gyration ratio of G = b12. Notably, b12 ≈ b21 is due to Newton’s

third law. The schematic of the Equivalent circuit is described in Fig. 2.6.
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Figure 2.6: Equivalent circuit schematic in which each of the two coupled circuit
components represents the two dominant modes of RM3 relative motion.

2.4 Irregular Wave Case

In this paper, regular waves and irregular waves are subjected as input to the equiv-

alent circuit model. A regular wave is defined as a wave with constant amplitude

and a constant time period between crests. The irregular wave is created using the

JONSWAP spectrum [7] with significant wave height and dominant frequency as

depicted in Table 2.2. Both wave elevation profiles were converted into excitation

force time series using the boundary element method for input-output analysis.

Since the regular waves have a single frequency, the hydrodynamic coefficients are

constant. On the other hand, the frequency of the incoming wave fluctuates over

time in irregular wave cases. Since the hydrodynamics coefficients are dependent

on the frequency of the incoming wave, WEC-Sim solves the problem by calculat-

ing the convolution with the impulse response function of each coefficient, which

is derived from the frequency domain analysis.
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2.4.1 Fixed Frequency Model

The fixed frequency equivalent circuit model (FFM) assumes the wave input can

be modeled as a single constant frequency, and therefore the components of the

equivalent circuit model are constant and can be modeled as simple passive circuit

components (resistors, capacitors, etc.)

2.4.2 Instantaneous Frequency Model

In contrast to the Fixed Frequency Model, an Instantaneous Frequency Model

(IFM) uses constant circuit parameters, but the parameters are updated at each

sample time according to an estimated instantaneous excitation frequency.

Through linear random wave theory, the analytic expression x(t) of the wave

time series generated from the JONSWAP spectrum with γ = 1 can be expressed

as

x(t) = A(t) cos (wt+ ϵ(t)) (2.4)

in which ϵ(t) represents a slowly varying phase information, w, which is the energy

mean angular frequency of the spectrum, and A(t) is a function of the slowly

varying envelope amplitude of the wave, which follows a Rayleigh distribution

[11]. To estimate the instantaneous frequency of the wave excitation signal, the

instantaneous phase of x(t) can be defined as χ(t) = arg(xa(t)) = arg(x(t)+jx̂(t)),

where xa(t) denotes the analytic representation of x(t), and x̂(t) is the Hilbert

Transform of x(t) [3]. The analytic representation with the Hilbert Transformed
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signal can be expressed as xa(t) = A(t)ej(wt+ϵ(t)), therefore, χ(t) = wt+ ϵ(t).

By differentiating χ(t), the analytic instantaneous frequency

χ̇(t) = w + ϵ̇(t) (2.5)

is obtained, in which w = m1

m0
(m1 and m0 are the first and zeroth-order spec-

tral moments of the JONSWAP spectrum) and ϵ̇(t) is relatively small and slowly

varying.

In the discrete-time domain, x̂[n] can be approximated by the discrete Hilbert

transform of x[n] via Discrete Time Fourier Transform (DTFT), expressed as

x̂[n] ≈ H[x[n]], due to the slow varying nature of A(t) and ϵ(t). As a result,

χ[n] = arctan
(

H[x[n]]
x[n]

)
is obtained. By differentiating χ[n], the instantaneous fre-

quency is obtained

χ̇[n] = {arctan
(
H[x[n]]

x[n]

)
− arctan

(
H[x[n− 1]]

x[n− 1]

)
} 1

∆t
(2.6)

However, the differentiation and DTFT operation can result in noise amplifica-

tion and large transients, so a moving average filter is usually applied. The filter

window size is estimated as ten times the model period (energy peak period) in

the power spectrum density function as shown in Fig. 3.2(c). An example of the

instantaneous frequency along with the corresponding wave data are presented in

Fig. 3.2(a) and Fig. 3.2(b). The w expressed in Hz is presented in Fig. 3.2(c),

which shows the average of the estimated instantaneous frequency is close to the

analytic instantaneous frequency as expected.
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Figure 2.7: (a) Water surface elevation; (b) instantaneous frequency; (c) power
spectrum density. The mean frequency is 0.1614 Hz and the computed energy
mean from the PSD is 0.1657 Hz.

2.5 Simulation Results

A regular case is simulated with parameters shown in Table 2.2 using WEC-Sim

and the equivalent circuit model.
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Figure 2.8: (a) Float and (b) spar displacement; (c) float and (d) spar velocity;
(e) PTO power for the regular wave case.

The irregular cases generated from WEC-Sim exhibit randomness in the time

domain due to the phase information. This randomness introduces variations in the
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Figure 2.9: (a) Float and (b) spar displacement; (c) float and (d) spar velocity;
(e) PTO power for the irregular wave case.
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Table 2.2: Simulation Parameters

Parameters Regular Irregular
Wave height 2 m

Wave Frequency 0.125 Hz
Duration 1200 s
Timestep 0.1 s
Ramptime 40 s

PTO damping 1200000 Ns/m

simulation results, which can lead to both larger and smaller errors between WEC-

Sim and the equivalent circuit model. The variations in the phase information

can cause the models to produce slightly different responses, resulting in varying

degrees of error between the two simulations. To address the issue, the ten irregular

wave cases, which share the same PSD of waves, were simulated using WEC-Sim,

FFM, and IFM with the simulation parameters described in Table 2.2. A ramp

function, which allows the excitation force to fully develop at a set time, was used

to mitigate transient issues. The PTO unit was assumed to be a simple damper.

• Root-Mean-Squared-Errors (RMSE) were calculated by subtracting the val-

ues between the two simulations at each time step. The RMSEs are normal-

ized by the Root-Mean-Squared values of WEC-Sim responses.

ErrorRMSE = 100×
Mean(

√
Σ(Xmodel −XWEC-Sim)2)

Mean(
√
Σ(XWEC-Sim)2)

The simulation results of the equivalent circuit model closely match WEC-Sim’s

responses in regular wave cases within 3% error as shown in Table 2.3. Figure 2.8

shows the simulation results of the equivalent circuit model compared with WEC-
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Sim for the first 160 seconds in a regular wave case. The values in Table 2.4

represent the average errors from ten different irregular wave cases.

Table 2.3: Errors in Regular Case

Variables float spar
Displacement 0.8% 2.04%

Velocity 0.85% 1.54%
Power generation 1.71%

Table 2.4: Errors in Irregular Cases

IFM FFM
Variables float spar float spar

Displacement 10.2% 10.7% 11.0% 9.4%
Velocity 10.2% 11.2% 14.5% 12.4%

Power generation 15.51% 21.0%

The IFM exhibits slightly better overall results compared to FFM, except for

the displacement in the spar. Figure 2.9 presents an example of results from

WEC-Sim, FFM, and IFM for 160 seconds. The simulations were conducted on a

MacBook Pro 16 (2021 model). The total elapsed times were measured for each

model to simulate the ten irregular wave cases. The elapsed times for each model

are as follows:

• FFM: 14.6 seconds

• IFM: 26.0 seconds

• WEC-Sim: 94.8 seconds
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And the comparison of the elapsed times relative to WEC-Sim:

FFM is
94.8 seconds

14.6 seconds
≈ 6.49 times faster than WEC-Sim.

IFM is
94.8 seconds

26.0 seconds
≈ 3.65 times faster than WEC-Sim.

FFM is
26.0 seconds

14.6 seconds
≈ 1.78 times faster than IFM.

2.6 Conclusion

The equivalent circuit of the Reduced Order Model, obtained through modal anal-

ysis, exhibits the potential for simplicity in PTO control optimization via energy-

focused DOF reduction. Additionally, this concise representation significantly re-

duces computational costs, enabling real-time control of the PTO unit with re-

duced delays. The paper not only offers a structural analysis of RM3 supporting

the DOF reduction but also introduces a novel approach to estimating the instan-

taneous frequency and its corresponding modeling for real sea conditions. This

modeling technique will be valuable for future research in developing equivalent

circuit models for Wave Energy Converters, facilitating more accurate simulations

under real sea conditions. The equivalent circuit model of RM3 via Eigen anal-

ysis is simulated and compared with WEC-Sim. The equivalent circuit model

performs exceptionally well in regular wave cases. The Instantaneous Frequency

Model (IFM) performs well in calculating the response of RM3 bodies, while the

Fixed Frequency Model (FFM) demonstrates computational advantages in irregu-

lar wave cases. However, the primary objective of the circuit representation is to
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optimize the Power Take-Off (PTO) unit control. Given that the error in power

generation is around 4.5% lower in IFM, the IFM would be a more reliable model

for PTO control optimization. Future research will focus on using the IFM to

improve performance in impedance matching control. Additionally, experimental

validation of the models is in progress with Laboratory Upgraded Point Absorber

(LUPA), an open-source two-body point absorber wave energy converter, built

and tested at Oregon State University [1]. The LUPA specification is shown in

Fig. 2.10.
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(a)

(b)

Figure 2.10: (a) LUPA schematic and (b) experimental testing at
the O.H. Hinsdale Wave Laboratory at Oregon State University.
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Chapter 3: Manuscript 2

3.1 Introduction

In this study, we undertake a comprehensive analysis of a 2-body wave energy con-

verter (WEC) using a reduced-order model (ROM) derived through Eigen analysis.

For validation, the ROM model results are compared against WEC-Sim, a widely

recognized WEC numerical modeling tool [14]. Our analysis focuses on the Rep-

resentative Model 3 (RM3) within WEC-Sim. The reduced-order model enhances

precision through equivalent circuit modeling. This equivalent circuit methodol-

ogy holds the potential for optimal Power-Take-Off (PTO) unit control, employ-

ing the impedance matching technique. To optimize computational efficiency and

minimize errors in field sea conditions relative to WEC-Sim, we introduce the in-

stantaneous frequency of wave data into the equivalent circuit. Additionally, this

novel modeling technique paves the way for potential control strategies due to

its instantaneous characteristics. We present simulation results employing diverse

control techniques using the equivalent circuit model, leveraging the instantaneous

frequency of wave data.
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3.2 Equivalent Circuit Modeling of a WEC via Eigen Analysis

3.2.1 Reduced Order Model

The presented study utilizes a generalized two-body point absorber, one of the

standard configurations in NREL’s WEC-Sim: the RM3 point absorber. It is

made up of a Spar (central section) and a Float, with a Power Take-Off system

(PTO) in between. The PTO controls the relative motion and determines energy

extraction. Typically, a rigid body has 6 degrees of freedom (DOF), and given

the RM3 has two parts, it possesses 12 DOF (2×6). Using Newton’s second law,

mẍ = f , one can determine the responses of the WEC given the forces acting on the

bodies. The total force, f(t), comprises excitation, radiation damping, forces from

PTO, viscous effects, buoyancy and restoring, and mooring system forces. These

forces’ calculations use hydrodynamic coefficients obtained from WAMIT [10]. The

configuration of RM3 has a set of geometric constraints between the spar and the

float that only allows a relative translational motion of the float in heave respective

to (w.r.t.) the spar. In this manner, there are a total of 7 dynamic DOF, 6 DOF

defined at the CG of the spar and the 7th one, the relative heave motion of the

CG of the float (w.r.t. the C.G. of the spar). Enforcing this constraint can be

performed using a constraint matrix in the form of x = Tcxc, where x is the

displacement in 12 DOF of the two bodies, Tc represents the constraint matrix,

and xc the reduced DOF. The conference paper from authors in the process of

publication on ECCE 2023 explains the details of Tc. The constraint reduces the

total number of DOF from 12 to 7, for example, for the hydrodynamic coefficients
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using T T
c (H)Tc = Hc, in which, H represents the hydrodynamic coefficients. The

modal analysis of the 7 DOF system results in several modes of the structure

(WEC) and 7 Eigenvectors. Since the problem in hand is symmetrical in space, in

a way that the WEC itself is symmetrical and the wave field is assumed long crested

(no variation in y-direction), it can be assumed that all the WEC responses are in

the 2D plane of x-z and can be presented by 2 orthogonal vectors. Hence, 2 modes

were chosen from the modal analysis of the system, the modes with frequencies

closest to the incoming waves frequencies were selected, and the corresponding

Eigenvectors, Φm, are used to reduce the system to 2 DOF in the Eigen domain,

using for example ΦT
mMcΦm = Me. In this expression, Mc represents the mass

matrix and can be replaced by Bc, Kc, and Fc, as the radiation damping, stiffness,

and forcing matrices. The right-hand side, Me, is the 2 DOF equivalent variables

in the Eigen domain. Finally, the reduced order equation of motion becomes:

Fe1(t)

Fe2(t)


︸ ︷︷ ︸
ΦT

mFexc

=

m11 m12

m21 m22


︸ ︷︷ ︸

ΦT
mMcΦm

ẍe1(t)
ẍe2(t)

+

b11 b12

b21 b22


︸ ︷︷ ︸

ΦT
mBcΦm

ẋe1(t)
ẋe2(t)



+

k11 k12

k21 k22


︸ ︷︷ ︸

ΦT
mKcΦm

xe1(t)
xe2(t)

 (3.1)

The analysis assumes a heave-dominated behavior for the WEC, with a tran-

sition period at around 5.2 s. Simulations used a time frame of 100 wave periods,
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with a time step of 0.01 s, using the JONSWAP spectrum for irregular wave sim-

ulations [7]. Errors are measured in amplitude difference and standard deviation

difference for regular and irregular waves, respectively. Both regular and irregular

wave results between ROM and WEC-Sim show a difference of under 5 %.

3.2.2 Modification on Constraint matrix

Several methods exist for defining a constraint matrix, including one that was de-

scribed in the previous section. To accommodate various control algorithms and

circuit representations, a modified constraint matrix was also formulated. In this

modified version, the 7th DOF was specifically selected to represent the heave

motion of the float. This choice contrasts with the original constraint matrix,

where the 7th DOF was associated with the relative motion instead. The mod-

ified constraint matrix is critical in developing different equivalent circuit model

strategies.

3.2.3 Equivalent Circuit Representation of Reduced Order Model

The relationship between forces and motion can be analogously linked to that of

voltage and current. For instance, one can observe the same proportional relation-

ships between F = mdv/dt and the current-voltage relationship of a capacitor,

I = CdV/dt. Through this analogy, we can draw parallels where force corresponds

to current, mass equates to capacitance, and velocity corresponds to voltage. This
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analogy yields further relationships, as detailed in Table 1. Notably, even the con-

trol law of a generator and the force it produces, contingent on velocity or position,

can be depicted as a circuit subsystem [2].

(a)

(b)

Figure 3.1: Schematics of RM3 equivalent circuits using (a) original constraint
matrix and (b) modified constraint matrix respectively.

Note that non-diagonal terms, such as m12,m21,k12, and k21 in equation 3.1,

converge to zero due to the eigen decomposition performed during the brief diag-

onalization process. The reduced order equation 3.1 undergoes translation from

its hydrodynamics terms to an equivalent circuit representation respectively, as

demonstrated by the following equation:

I(t) = CV (t) +
1

R
V (t) +

1

L

∫
V (t)dt (3.2)
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The equivalent circuit schematics of RM3, derived from two distinct constraint

matrices, are presented in Fig.3.1 (a) and (b). Notably, the modified constraint

matrix permits the placement of the PTO unit between the mode circuits, as de-

picted in Fig. (b). In contrast, the model employing the original constraint matrix

necessitates dealing with coupled terms like b12 and b21, making it challenging to

identify a suitable location for the PTO unit within the circuit.

Table 3.1: Mechanical to Electrical Analogy

Mechanical ↔ Electrical
Force [N] ↔ Current [A]

Velocity [m/s] ↔ Voltage [Volts]
Mass [kg] ↔ Capacitance [F]

Damping [N/(m/s)] ↔ 1/Resistance [1/Ohms]
Stiffness [N/m] ↔ 1/Inductance [1/Henries]

3.3 Instantaneous Frequency Modeling

An instantaneous frequency model uses constant circuit parameters, but the pa-

rameters are updated at each sample time according to an estimated instantaneous

excitation frequency. The analytic definition and derivation of the instantaneous

frequency of wave data are shown in [8]. The discrete-time complex signal x[n] can

be approximated by the discrete Hilbert transform of the original signal x[n] via

the Discrete Time Fourier Transform (DTFT), expressed as x̂[n] ≃ H[x[n]]. As a

result, the discrete-time instantaneous phase χ[n] = arctan(H[x[n]]
x[n]

) is obtained By



36

differentiating χ[n], the discrete-time instantaneous frequency is obtained as

χ̇(t) = {arctan (H[x[n]]

x[n]
)− arctan (

H[x[n− 1]]

x[n− 1]
)} 1

∆t
(3.3)

Figure 3.2: (a) Water surface elevation; (b) instantaneous frequency; (c) power
spectrum density. The mean frequency is 0.1614 Hz and the computed energy
mean from the PSD is 0.1657 Hz.

However, the differentiation and DTFT operation can result in noise amplifica-

tion and large transients, so a moving average filter is usually applied. The filter
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(a) (b)

Figure 3.3: Schematics of (a) the abbreviated equivalent circuit and (b) Norton’s
Equivalent circuit

window size is estimated as ten times the model period (energy peak period) in

the power spectrum density function as shown in Fig 3.2(c). An example of the

instantaneous frequency along with the corresponding wave data is presented in

Fig 3.2(a) and Fig 3.2(b). The ω̄ expressed in Hz is presented in Fig. 2(c), which

shows the average of the estimated instantaneous frequency is close to the analytic

instantaneous frequency as expected.

3.4 Impedance Matching Control Optimization

Let Y1 and Y2 be the admittances of individual modes, as depicted in Fig 3(a).

The reduced-order model’s equivalent circuit is transformed into a concise form,

illustrated in Fig 3(b), using Norton’s equivalent. The equivalent admittance is de-

rived as Yeq(ω) = Y1(ω) ∥ Y2(ω) and ), and the corresponding equivalent excitation

force Feq(ω) is calculated as Feq(ω) = (F1(ω)Y2(ω)−F2(ω)Y1(ω))/(Y1(ω)+Y2(ω)).
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Moving forward, the complex PTO power

Spto(ω) = Ppto(ω) + jQpto(ω) = |Feq(ω)|2/|Yeq(ω) + Ypto(ω)|2conj(Ypto(ω))

is obtained. The real power in Equation 4 can be calculated as:

Ppto(ω) = vpto(ω)Fpto(ω) = ((|Feq(ω)|2)/|Yeq(ω) + Ypto(ω)|2)Gpto(ω)

in whichGpto(ω) represents the real part of PTO admittance, equal to real(Ypto(ω)).

Note that Gpto(ω) can be interpreted as the proportionality of velocity to force

provided by the PTO, hence damping. The imaginary component of Ypto(ω) cor-

responds to the proportionality of acceleration or position to force. The optimiza-

tion of PTO power generation occurs when Ypto = Y ∗
eq since Feq(ω) and Yeq(ω)

are determined and invariant in given wave conditions. However, achieving com-

plex control of PTO is not always feasible, particularly in systems requiring non-

causal controllers. To mitigate such challenges, constraining the imaginary part

of PTO control is often employed as a sub-optimal control strategy. By setting

the imaginary part of Ypto(ω) equal to zero, the optimal control is achieved when

Ypto(ω) = Gpto(ω) = |Yeq(ω)|. The four different PTO control techniques have

been simulated instantaneous model to find the optimal control that harvests the

most energy from the same wave elevation data. The four cases are followed as:

• Case 1: Damping PTO control with fixed frequency parameters.

Ypto = |Y ∗
eq(ma(ωm), b(ωm), k)|



39

• Case 2: Complex conjugate PTO control with fixed frequency parameters.

Ypto = Y ∗
eq(ma(ωm), b(ωm), k)

• Case 3: Damping PTO control and instantaneous frequency model with

instantaneous parameters.

Ypto = |Y ∗
eq(ma(ω(t)), b(ω(t)), k)|

• Case 4: Complex conjugate PTO control and instantaneous frequency model

with instantaneous parameters.

Ypto = Y ∗
eq(ma(ω(t)), b(ω(t)), k)

※ Note that ωm is the mode frequency of the power spectrum density function and

ma, b represents the equivalent radiation force coefficients based on the incoming

wave frequency.

3.5 Results

The results show that complex conjugate control improves power conversion, as

seen in Case 2 outperforms Case 1, and Case 4 outperforms Case 3. It was expected

that control based on instantaneous estimates of the mechanical impedance (Case

4) would outperform the case in which the impedance is estimated as constant
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(Case 2), however, this is not observed in the simulation. More investigation is

required to explain the behavior, especially as it concerns instantaneous frequency

concepts as an approximation for convolution operation.

Figure 3.4: Simulation results

Cases Total Energy Average power
Case1 164.7 MJ 137.2 kW
Case2 323.3 MJ 269.4 kW
Case3 168.6 MJ 140.5 kW
Case4 226.1 MJ 188.5 kW

Table 3.2: Simulation Results

3.6 Conclusion

These findings demonstrate the effectiveness of the ROM model in considerably

capturing the WEC’s behavior compared to the WEC-Sim. The insights gained
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from the ROM were implemented in optimizing the control parameters through a

novel conversion of mechanical to electrical dynamics into circuit representations,

with a focus on synthesizing Newtonian mechanics as circuit equivalents. This

approach enables the development of a circuit model that computes the forces and

effects of the PTO system. The combined ROM-circuit model of a WEC can be

applied to optimize the control of the PTO Force by impedance matching tech-

nique, ultimately improving the efficiency of wave energy conversion systems. The

accurate and efficient nature of the ROM makes it a valuable tool for evaluat-

ing design alternatives and control strategies, which can lead to cost-effective and

high-performance WEC systems.
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Chapter 4: Addendum

The previous chapter introduced Power-Take-Off (PTO) control optimization using

an equivalent circuit model. However, as Chapter 2 results revealed, a small but

non-negligible error exists compared to WEC-Sim results. To address this discrep-

ancy, a parallel analysis was conducted within the equivalent circuit framework,

and the PTO control technique was implemented in WEC-Sim’s PTO control,

consistent with equivalent circuit modeling.

4.1 Real-time PTO Control Using Instantaneous frequency

Figure 4.1: Workflow for PTO control parameters

Figure 4.1 illustrates the process of determining PTO control parameters. While

the process aligns with the method presented in Chapter 3, the calculation of in-

stantaneous frequency for WEC-Sim is performed in real-time, unlike the previous

model. In Chapter 3, the model accessed the entire water elevation time series
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data at the simulation’s initiation, enabling a single Fast Fourier Transform (FFT)

calculation to establish the instantaneous frequency. While this method yields ac-

curate frequency data, it is impractical as it necessitates complete water elevation

data in advance.

To overcome this limitation, A practical real-time instantaneous frequency cal-

culation has been integrated into WEC-Sim’s Power-Take-Off (PTO) control. This

entails limiting access to water elevation data to the past and current time and

establishing a window size estimated by multiplying the wave peak period. The

multiplication factor is set at 10. For example, assuming that the dominant pe-

riod of the wave spectrum is 8 s, the past and current water elevation data for

80 s have been employed to perform the Hilbert transform at each time step as

shown in Figure.4.2. Before the simulation time reaches the pre-defined window

size for the Fast Fourier Transform (FFT) calculation, historical water elevation

data is unavailable. During this period, the model utilizes the wave spectrum’s

mode frequency as a single frequency to estimate the PTO control parameters.

The pre-calculated PTO stiffness table reveals negative values within a specific

wave period range of 5.063 s to 11.635 s, as illustrated in Figure 4.3. When the

negative stiffness surpasses the system’s hydrodynamic stiffness, it leads to device

instability and potential disintegration. Consequently, a negative stiffness limit

has been established to truncate the exceeded values, as shown in Figure 4.3. The

truncated amount in stiffness has been compensated by adjusting the damping

coefficient to match the amplitude of the equivalent admittance Yeq. The peak

wave periods have been selected from Tp = 4 s to 12 s with an increment of 1 s.
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Figure 4.2: An example of real-time instantaneous frequency calculation.

For each wave peak period case, where wave data is generated from the JONSWAP

spectrum with Gamma = 1 and significant wave height = 1.5 m, simulations are

conducted using five different PTO force control techniques in WEC-Sim. The

corresponding PTO control techniques are presented as follows:
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Figure 4.3: (a) damping and (b) stiffness coefficient for PTO force via eigen analysis

• Case 1: Default damping 1, 200, 000 N/m and no stiffness PTO force control.

• Case 2: Damping and no stiffness PTO force control with fixed frequency

parameters.

Ypto = |Y ∗
eq(ma(ωm), b(ωm), k)|

• Case 3: Complex conjugate damping and stiffness PTO force control with
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fixed frequency parameters.

Ypto = Y ∗
eq(ma(ωm), b(ωm), k)

• Case 4: Damping and no stiffness PTO force control with instantaneous

frequency parameters.

Ypto = |Y ∗
eq(ma(ω(t)), b(ω(t)), k)|

• Case 5: Complex conjugate damping and stiffness PTO force control with

instantaneous frequency parameters.

Ypto = Y ∗
eq(ma(ω(t)), b(ω(t)), k)

The details of wave and simulation parameters are provided in Table 4.1 and 4.2.

It is noteworthy that Hs, Tp, and γ represent significant wave height, energy peak

period, and the extra peak enhancement factor gamma, where γ = 1 essentially

denotes the Pierson-Moskowitz spectrum.

Parameters Values
Wave spectrum JONSWAP

Hs 1.5 m
Tp 4 s to 12 s
γ 1

Table 4.1: Wave Parameters

Parameters Values
Duration 1200 s
Timestep 0.1 s
Ramptime 40 s

FFT window size 10 ∗ Tp

Table 4.2: Simulation Parameters
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Figure 4.4: Simulation results of the accumulative energy harvested by PTO at
the wave peak period of (a) Tp = 4 s, (b) Tp = 8 s, and (c) Tp = 12 s.
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4.2 Results

The accumulated energy harvested from the PTO unit is utilized for comparison

between the cases, as depicted in Figure 4.4. The default damping PTO control

(Case 1) yields optimal results under faster wave conditions, specifically at 4 s

and 5 s, with a peak at 9 s followed by a decline. In contrast, both real-time

PTO control (cases 4 and 5) and fixed PTO parameter control (cases 2 and 3)

demonstrate an increasing trend in effectiveness as the wave peak period rises, as

illustrated in Figure 4.5. Case 2 demonstrates its superiority in the periods from

6 s to 9 s. Case 5 exhibits a more pronounced increase than other cases at higher

peak periods, becoming the most optimal among the cases from 10 s to 12 s of the

peak period.

4.3 Addendum Conclusion

A total of five different PTO control cases were simulated across nine wave peak

periods. Due to limitations imposed by the structural nature of the device, optimal

impedance matching control has not been achieved. Nevertheless, it is notewor-

thy that the real-time control using instantaneous frequency has proven effective,

demonstrating remarkable results in higher wave period conditions, even though its

sub-optimal parameters were applied. The anticipated lower performance of cases

2 through 5 in faster wave conditions is expected, given that eigenmode analysis

predominantly indicates the heave sides and the corresponding PTO control pa-

rameters derived from that perspective. This is illustrated in Figure 2.3 in Chapter
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Figure 4.5: Simulation results of the accumulative energy harvested at end time
versus wave peak period

2, where pitch excitation becomes the dominant factor when the wave period is

lower than 5.2 s. Physically, higher-frequency waves are accompanied by shorter

wavelengths. The shorter wavelength impacts the heaving excitation force on the

floating body, resulting in a less pronounced heaving motion. This underscores

the importance of designing WEC devices with consideration for the specific wave

conditions at their deployment locations. Such considerations are vital for ensuring

that the Wave Energy Converter operates in the intended motion, facilitating the

implementation of optimal control to maximize energy harvest. Furthermore, the

exploration of enabling more negative PTO stiffness by adjusting structural param-

eters, while ensuring system stability or reducing the imaginary component of the

equivalent admittance, will be undertaken to implement more optimal impedance
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matching control in future research.
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Chapter 5: General Conclusion

The application of instantaneous frequency to model wave energy conversion de-

vices and optimize their Power Take-Off (PTO) control has been discussed in

preceding chapters. Chapter 2 assesses the modeling accuracy through a com-

bination of eigen-mode analysis and instantaneous frequency modeling in real sea

conditions. Building upon the model’s accuracy presented in Chapter 3, PTO force

control optimization was implemented in the equivalent circuit modeling using the

instantaneous frequency concept, yielding promising results. Finally, Chapter 4

demonstrates the real-time implementation of PTO control using instantaneous

frequency, integrated into WEC-Sim’s PTO control system.

The use of instantaneous frequency in equivalent circuit modeling provides com-

putational benefits, thanks to its conciseness achieved through selective eigenmode

analysis. This approach improves accuracy in predicting system responses in field

sea conditions, including the JONSWAP and Pierson-Moskowitz waves. Addition-

ally, by leveraging electrical circuit theory and applying the impedance matching

technique to the equivalent circuit, a potential optimal control scheme has been

introduced. Despite limitations imposed by mechanical constraints, it is notewor-

thy to confirm the functionality of the control under specific conditions, such as

heave-dominant wave excitation to the devices, as discussed in Chapter 4.

In future research, the exploration of proper mechanical design to facilitate
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optimal impedance matching techniques, as discussed in Chapter 4, will be un-

dertaken. Additionally, the experimental validation of these techniques could be

demonstrated using the Laboratory Upgraded Point Absorber at Oregon State

University.
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