Spectroscopic and Structural Characterization of FXR Agonists and Antagonists

Xiao Lan Chang Mentor: Victor Hsu Department of Biochemistry and Biophysics

Farnesoid X Receptor (FXR)

Metabolic Syndrome

- Central Obesity
- High blood pressure
- High triglycerides
- Low HDL-cholesterol
- Insulin resistance

<u>FXR</u>

- Glucose homeostasis
- Lipoprotein metabolism
- Bile acid homeostasis
- Liver regeneration

FXR Gene Regulations

Organ	Function	Gene Product	Regulatory Effect
Liver	Bile Acid Metabolism	BSEP MRP2 MDR3 SHP BAT BACS NTCP CYP7A1 CYP8B1 Mrp4	Induced Induced Induced Induced Induced Repressed Regulated Repressed Induced
	Lipid Metabolism	SREBP-1c ApoAI ApoB ApoCII ApoCIII PDK4	Repressed Repressed Repressed Repressed Induced
	Glucose Metabolism	PEPCK Glucose-6-phosphatase	Induced or Repressed Induced
Small Intestine	Bile Acid Transport	IBABP FGF15 ASBT	Induced Induced Induced
Kidney	Bile Acid Transport	OST MRP2 ASBT	Induced Induced Repressed
Heart and Blood Vessels	Vascular Function	Endothelin1 ICAM1 VCAM1 DDAH1	Repressed Induced Induced Induced

2

Purpose

Development of a biophysical assay that can be used to facilitate the direct identification of agonist and antagonist ligands of FXR

Hypothesis

Ligands will have spectroscopic characteristics consistent with whether they exhibit agonist or antagonist properties

Acrylamide Titration

- · Acrylamide is a quenching molecule
- FXR is made up of 227 amino acids, two of which are tryptophan (Trp)

Fluorescence Spectroscopy

Method: Stern-Volmer
Relationship
$$\frac{F_0}{F} = 1 + K_{sv}[Q]$$

- F₀ is the fluorescence without quenching
- F is the fluorescence after quenching with given amounts of acrylamide
- K_{sv} is the Stern-Volmer quenching constant
- · [Q] is the concentration of the quenching molecule

Stern-Volmer Relationship of Ligands and FXR

Further Research

- Additional acrylamide titrations to better confirm the observed data
- Experiment with other known agonist and antagonist ligands to refine our assay
- Analyzing the structure of known FXR ligands to predict the general chemical and structural property of possible agonist vs. antagonist ligands to later test the assay

Acknowledgment

Dr. Victor Hsu Dr. Kevin Ahern Liping Yang Stefan Lucchini

The Howard Hughes Medical Institute

Undergraduate Research, Innovation, Scholarship Creativity (URISC)

Cripps scholarships