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A SCHWARTZ-CHRISTOFFEL ANALYSIS OF CAVITATING FLOW IN A
TWO=-DIMENSIONAL MITERED ELBOW

INTRODUCTION AND PURPOSE

Cavitation is a phenomenon commonly found in hydraulic
machines and pipe systems. It exists where there are high
localized velocities, or else where there is a high enclosed
elevation head such as may be found in vertical draft tubes.
These high velocities or high elevations will induce low
pressures in a fluid, and may decrease the pressure until
vapor pressure is reached, at which point vapor pockets form.
These vapor pockets are carried downstream to points of
higher pressure where they collapse.

Because the vapor cavities reduce the area available
for fluid flow, cavitation will reduce the efficiency of
hydraulic machinery considerably. In addition. the forma-
tion and collapse of vapor pockets will cause stress rever-
sals in various parts of hydraulic machinery and conduit
systems. Ship propellers and turbine runners have been
severely damaged due to cavitation. Concrete penstocks in
which high local velocities exist have been literally eroded
away by cavitation-induced shock waves. Cavitation has
usually been avoided by proper design and thus elimination
of these high localized velocities.

A ninety degree elbow has a very high velocity at the

inside corner compared to the average velocity which exists



in the straight section upstream or downstream from the cor-
ner. It is because of this high relative velocity that cavi-
tation can exist at the inside corner of a ninety degree
elbow. The purpose of this thesis is to perform an analysis
of the flow pattern in which cavitation is present rather
than suggest any design practices which should be followed in
order to eliminate cavitation.

The analysis consists of determining mathematically the
flow net in a ninety degree mitered elbow and then consider-
ing its validity, when cavitation is occurring, by actual

laboratory experiment.

THE SCHWARTZ-CHRISTOFFEL TRANSFORMATION

General Orientation

The mathematical analysis to be used in this presenta-
tion is the Schwartz-Christoffel Transformation. The
Schwartz-Christoffel Transformation as applied to fluid flow
assumes that fluid will flow around any polygon or boundary
shape without separation. For some boundary shapes that do
not have abrupt changes, this transformation is undoubtedly
valid. For some sections of a ninety degree elbow upstream
from the corner, the actual fluid flow follows the ideal
conditions assumed in the Schwartz-Christoffel Transforma-

tion. At the points where it exists, cavitation certainly



produces a different pressure distribution from that realized
in noncavitating flow. The purpose of testing the flow in a
ninety degree elbow when cavitation is present was to see if
the flow at the inside boundary slightly upstream from the
corner followed the ideal conditions as presented in the
Schwartz-Christoffel Transformation.

The transformation involves the establishment of a flow
net for the channel in question by transferring points into
the flow net, or real plane, from a simple flow net, which
is made up of a grid of perfect squares, and which is located
on a separate imaginary plane. The analysis is made as
simple as possible by two methods: first, the transformation
is two-dimensional, and second, because it is necessary only
to find the velocity distribution near the inside corner of
the elbow, only the segments of the flow net along the inside
boundary are determined.

This particular analysis involves the use of three
planes: the z plane, which is the real plane of the two-
dimensional elbow itself, the t plane, which is an inter-
mediate plane, and the w plane, which is the final imaginary
plane described in the preceding paragraph. These planes are

shown schematically in Figure 1.



— - ] z
4
z Plane
(t,ie)
(<)
t Plane
¢’ d. ¢5 ¢q b) ¢1 ¢-
¥y
i Y, i
\
¢
w Plane
Figure 1

Schematic Diagrams of the z, t, and w Planes
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The z and w planes have rectangular complex coordinétea; the
t plane, polar complex coordinates. The two-headed arrows
indicate the directions in which flow can occur on each
plane. The specific points and flow directions for this

problem are established as shown in Figure 2.
Derivation of Equations

The general form of the Schwartz-Christoffel Transforma-
tion is z = A [S(t-a)'% (4=b)"% (=c)"7 ceseeensedt] + B
where [a, b, ¢, ..........]aro points on the t ’pla.ne, and
[a § B Ty esvmennesd ] are exterior angles of the real
polygon. The algebraic summation of these angles is, of
course, 27T, (Reference 1, p. 173)

The derivation of the transformation from the z plane to

the t plane is as follows:
z = A [S(t-a)"?"‘ (t-b)-g (t-0)™F (t-d)"i dt | + B

a=20 b=«1 ¢=x d = +1
o
oA =17 ﬁ--é- q-.ﬂ' S---‘_;:

z = A [S(t'l) (t-l-l).}é (t-l)y‘l‘ dt] + B

= A [S(% y-:_—%;_) dt] +B-A[5<j_%-t?.-l_-tdj:2_4>] + B
= A [1n(t+ /tz—-l)-cos'l%] + B

1n (t+ /t%-1) = 1n \ g+ /421 I + 1 arg (t+ /t2-1)
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Using the plus sign in% /-1—2- - 1 and setting t = 1
t

then from Figure 2, z = 0 + i0,

z-A[1n|1| + dferg (1) +1iln |1 -a.rg(l)] + B
s [0+10+30-0] +3

0=4(0) +B Bao0



Setting t = =1, and again from Figure 2, z = =Q+ i £
i e wlé Tke A [ln I-l‘ +1iarg («1) +4iln |-1|-arg (-1)]
= A [o + 1T 4+ 0 T ]

[n|t+t-1 +iarg(t+/t2-l)
1 > O
+1ln|$+ -1| - arg (—+ -1) (Bquation 1)
t

The next step is to obtain a transformation from the t
plane to the w plane. Referring to Figure 2, this transfor-
mation consists of the analysis of an infinite strip units

wide. (Reference 1, p. 177) The derivation follows.

w =gri¥e 4 [s(m)'ﬁ (8-0)"F (t=0)F (1-a)~# at] +
a=0 b = =1 ¢ =00 d = +1
& =T B=0 T=T §=0

we a5 (¢4 1)° (4 -1)° dt] + B
d
.A$$+B-Alnt+]3
Setting ¢t = 1; from Figure 2, w = 0 + i0
O+40 =A1ln (1) + B=A (0) + B B=20
Setting t = -1; again from Figure 2, w = 0 + 1
i 2 £
0+4f=A1n (-1) = A (4T) A=3F =7

W o= + i == 1n ¢

lnt-w(%*iv) &(d);iv) =t




Along the inside boundary of the elbow (from point 4 to D),
¥ = 0. The transformation for the elbow along the inside

boundary becomes

e
t=e % (Equation 2)
dw 4t  dw
Velocity equals % " ds ' &%
dz _ 2|12 a I fm
dt'ﬂ“[t t+1] s z'z[t t-l]
%‘-:— = -T’% (%-) (BEquation A)
| e
dy _dw gt el e T 41
dz = dt ~ dz $-1 j o
e X -1

From Figure 1, increases in the upstream direction,

| I
and as e _IQ—’ o0 then

approaches 1

If Q is the flow per unit width of elbow and q, is the

velocity where there is uniform flow, then Q =f q,+ Also,
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ax)
dw ::I- + 1
qg Upstream = q = q | Smg—— (Equation 3)
e -1
aw 24
and E% ol 22 (Note Equation A, page 9)
Rq
ke -
W= e in % ¥ In t
In t = 1_%! = -,E‘-g- for this case
Equation 2 becomes
o
t=eol (Equation 2-A)

Also Equation 1 becomes

0 () 8 2% Te 21rd
3 =37 In|e® +/ e% -1 [+1 arg (e R+ &% & 1)
=T -21d =T [=27vp
+il1n (o9 + /e ¢ .1 arg (e e, jL S 1)

(Equation 1=-A)

Equation 3 becomes

(Equation 3-A)
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If Vl equals g and 72 equals the local downstream

32_9..%.:__1.
velocity near the corner, then Vl e
Q

2 -1

The Euler Number is next found in terms of the velocity

v
ratio Va' As shown in Appendix A,
1
1 vl
= - S Euler Number (Equation 4)
[y 2o
) -
1

The Euler Numbers determined from Equation 4 are com-
pared with those obtained from actual laboratory experiment
to determine the validity of the Schwartz-Christoffel Trans-
formation. Euler Numbers are used in preference to velocity
ratios as pressure readings and average velocities were ob-

tained in the laboratory analysis.

Explanation of Terms

On the following pages, values of % y By -g—‘z'- . -qi y and
o

Euler Numbers are tabulated and plotted. These terms will
now be discussed in detail. Q is the flow per unit width of

elbow and q, is the velocity where uniform flow exists. (b

¢

represents the equipotential lines and E is the convenient



form for this representation. 3z, which is the location of

the equipotential lines, is based on Equation l-A whieh is

P e | 2 e 2w >
z-;ﬁ, lneQ+cQ'-1 +iarg<eQ+eQ-l
-Mé | -2 -Te | -2 )
+ilnle® s e Y21 -arg(e Qifed -1

2 Q'-'1> is not a

(e:u%2+ -

For values of %— used,
complex number, and so there is no problem involved in the

calculation of the absolute value. Because it is not a

o / 21Yd >
complex number, arg (e Q + e L 1 is zero. The

- | 2o

absolute value of (e < +4\Je % - 1) equals one for all

- [2
eQ+ e Q-l

is zero. Solution for z therefore involves finding values

values of % used in thie analysis, so 1ln

only for the first and last terms of the equation. %‘-:- 2
(o

is the ratio of velocity at the equipotential line in

question to that upstream where uniform flow is assumed to

exist., As shown in the derivation of Schwartz~Christoffel

12

i
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TABLE I

LOCATION OF THE GIVEN EQUIPOTENTIAL LINES,
AND VELOCITY RATIOS AND EULER NUMBERS
AT THE GIVEN POINTS

v 1 Euler
-(j?— z (inches) dz " q Nanbas
= —————— — =
0.00955 0.00309 8.1593 0.124
0.01910 0.00889 5.7760 0.176
0.038153 0.01895 L 4734 0.230
0.09549 0.09852 2.5915 0.416
0.1910 0.27710 1.8528 0.638
0.3813 0.58999 1.4710 0.925
0.9549 2.76474 1.0512 3,02
0.1146 0.12987 237 0.465

Note: For the laboratory apparatus, the downstream
piezometer is 0.13 inches upstream from the corner. Using

z equal to 0.13%, find % of 0,13 from the plot of equipo-

b
tential lines against z. From plot of :l- against Euler

Numbers, find an Euler Number of 0.50 for g equal to 0.13.

As shown above, finding % for z equal to 0.13 by trial and

error yields a velocity ratio of 2.37 and an Euler Number

of 0.465.
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equations

= %! P = and Buler Number equals z
2 q
0 Vé
(T)' 4
1

LABORATORY ANALYSIS

Laboratory Apraratus

The laboratory test section consisted of a four-inch
square plexiglas pipe mitered into a ninety degree elbow as
shown in Figure 5. The upstream leg was approximately five
feet long. The downstream section, about a foot long, was
connected to a fifteen foot vertical draft tube which induced
cavitation at the inside corner of the elbow. Piexometer
taps, one located very close to the inside corner, and the
other about a foot upstream where uniform flow was assumed
to exist, were connected to a differential manometer. The
upstiream tap was alsc connected to an open end manometer so
that absolute pressures at both points could be determined.
An alternate position for the downstream tap was two inches
downstream from the inside corner where the longitudinal
pressure distribution was more uniform. In Figure 6 is shown

the test section used in the July, 1959 tests. This test
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section is the same as that shown in Figure 5 except that its
cross section is 4.25 inches square and the downstream
piezometer tap is located closer to the inside corner than is

that for the March, 1960, tests.

Procedure

The test section was connected to o surge tank by seven-
teen feet of ten-inch steel pipe and fifteen feet of five-~
inch plexiglas pipe. The surge tank was in turn connected
to a pump which supplied water from a sump. Flow was regu-
lated by the gate valves indicated in Figure 7. With the
valve leading from the tank fully open, the flow was increased
by opening the valve leading into the tank. The vertical
draft had to be flowing full in order for it to induce cavi-
tation. When the entrance valve was first opened, the draft
tube was not flowing full, and the water level in the surge
tank rose. As soon as the draft tube was flowing full, on
the other hand, the water level started decreazing. This de-
crease was checked by throttling the exit valve. 3Steady flow
was reached when the surge tank level stayed constant. Dif-
ferent flows were obtained by regulating both valves. The
existence of cavitation was determined by the cracking sound
made by the formation and collapse of vapor bubbles in the

plexiglas conduit.
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Calculation of Terms

Average upstream velocity was calculated on the basis of
the differences in weighing tank readings after given periods
of time. Absolute upstream pressure could be found on the
basis of open-end manometer readings, and the difference be-
tween absolute upstream and downstream pressures could be

- calculated on the basis of differential manometer readings.
EXPERIMENTAL RESULTS

A summary of the experimental results is given in
Table 2, and the original date is given in Appendix C. As
shown in Table 2, the Euler Number is approximately 0.83 when
the piezometer is located about an eighth of an inch upstreanm
from the corner, and the parameter is approximately 0.56
when the tap is two inches below the corner on the downstream
leg. Also shown here are the absolute pressure heads at the
downatroaﬁ point. The mean values of these pressure heads are
approximately +28.5 feet and +15.0 feet when the piezometer
is slightly upstream from the corner and two inches down-
stream from it respectively. Vapor pressure head is 0.83,
and so a pressure greater than that of vapor exists at the
downstream points measured.

The Euler Number obtained from the Schwartz-Christoffel

Transformation is 0.465, which does not agree very closely



TABLE 2

SUMMARY OF EXPERIMENTAL RESULTS

Mean Euler
Run Number from
# Laboratory
Analysis
March 9, 1960
1-3 0.826
Mareh 23, 1960
#-5 0056
July, 1959
6~8 0.678
9-15 0.683

Euler Number
from Schwartz-
Christoffel
Transformation

0.465

0.465

0.465
0.465

Mean Downstream Pressure
Pressure Head at
Head Vapor

(feet) Pressure

Absolute Pressures

28.5 0.83

15.0 0.85

Absolute Pressures
Not Calculated

(44
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TABLE 2 (Continued)

Notes

1. Assumptions

A, Atmospheric pressure for all tests was the same as
that determined for the March 23, 1960 tests, or
3242 inches of mercury.

B.23=2
T d

2. Differences in Tests

A, Tests dated March 9, 1960 and March 23, 1960 were made
using the test section shown in Figure 5. The cross
section was four inches square. For the tests dated
March 9, 1960, the downstream piezometer was 0.13
inches upstream from the corner, and for those dated
March 23, 1960 the tap was two inches below the
corner on the downstream leg.

B. Tests dated July, 1959 were made using the test sec-
tion shown in Pigure 6. Cross section was 4.25
inches square, and the downstream piezometer was
0.07 inches upstream from the corner.

3. Existence of Cavitation

For the July, 1959 tests, there was noncavitating
flow in runs number 6 through 8, and cavitating
flow in runs 9 through 15. Cavitation existed for
both sets of March 1960 tests.
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with the values obtained from the laboratory anaslysis. This
value does show however, that the pressure et the downstreanm

point is greater than vapor pressure.

CONCLUSIONS

The inconsistency of the theoretical and asctual results
can be explained by factors that lie in the transformation
itself as well as in the laboratory apparatus.

Considering the inside corner of the elbow, where z is
zero, the transformation shows the ratio of the velocity at
the inside corner to that upstream in the uniform flow sec-
tion to be infinity. The Euler Number approaches zero and
80 the difference between the pressure at the corner and that
upstream approaches infinity. Therefore, at points near the
inside corner the theoretical pressure difference and Buler
Number would eppear to deviate from the actual quite signi-
ficantly. Evidently, the point selected for this analysis
was too close to the corner. Nevertheless, this point was
selected to find the pressure distribution as near as pos-
sible to the zone of cavitation.

The Schwartz-Christoffel Transformation assumes non-
separating, irrotational flow. In the upstream area

analyzed, separation does occur upstream from the outside
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corner. (Reference 2, p. 26) This would help to account
for the difference in theoretical and actual pressure dis-
tribution. As calculated in Appendix D, the Reynolds Number
for all the tests was about 500,000. The flows are there-
fore high enough to yield the velocity distribution de-
manded by irrotational flow. Nevertheless, the parallel
stream lines assumed for irrotational flow are distorted
near the boundary because of the fact that the velocity at
s smooth boundary surface must be zero. This rotational
effect would cause a lower velocity at the downstream point
than that calculated by the Schwartz-Christoffel Transfor-
mation.

According to flow net theory, the stream lines around
the corner of a ninety degree bend follow paths symmetrical
sbout a line joining the inside and outside corners.
(Reference 2, p. 24) By centrifugal force however, these
stream lines are actually displaced outward from the posi-
tions assumed. These inner stream lines force the outer ones
inward along the walls, thus setting up a double spiral and
reducing the inside pressure. (Reference 3, p. 420)

There are three possibilities for error in the construc-
tion of the laboratory apparatus., First, the upstreanm leg
of the test section was not long enough to establish uniform

flow. As noted in Appendix D, a length of straight conduit of



26

approximately seventeen feet is required to establish uni-
form flow in this section, whereas there were only four feet
of square pipe upstream from the point where uniform flow
was assumed to exist.

Second, the transition from the five-ineh round pipe to
the four-inch square pipe produces eddy currents which are
carried downstream and which mix the stream lines so that
velocity distribution cannot accurately be determined.

Por two-dimensional flow, the pipe section should be a
rectangle infinitely wide. The third possibility for error
then, is that the square cross section does not give this
two-dimensional requirement.

The results in Table 2 dated July, 1959 show Euler
Numbers that were obtained both with and without cavitation.
These parameters are essentially the same, and so the incon-
sistencies between actual and theoretical resulis are due to
the laboratory conditions and the transformation rather than
the presence of cavitation.

The actual conditions that exist in the laboratory
analysis therefore only approximate the ideal conditions
assumed in the Schwartz-Christoffel Transformation. The
scope of this thesis was first to leern sbout the Schwartz-

Christoffel Transformation and the complex variable relations
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associated with it, and then to establish a transformation
for a two-dimensional mitered elbow, and finally tc perform
an epproximate laboratory analysis of this transformation.

A second, more refined, laboratory analysis was therefore not
run.

As can be seen in the summary of results, the Euler
Numbers derived from the Schwartz-Christoffel Transformastion
are consistently lower than those determined experimentally.
It would therefore appear that if the transformation were
applied to any other similar problem, such as a bridge pier,
turbine runner, or some other hydraulie shape, results would
be in error on the safe side, for actual loecalized high
velocities and local pressure drops would be less than those

calculated from the Schwartz-Christoffel Transformation.
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APPENDIX A
Relation of Velocity Ratios to Euler Numbers

Using the Bernoulli Equation between points one and two

2 2
\ p v o
2¢ T @ "2 ¢

= = Buler Number
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APPENDIX B

Finding Values of z, Velocity Ratios,
and Euler Number Using the Schwartz-
Christoffel Transformation Equations

Given %- 0.1910

Then M = 0060

Q

Therefore

V)
= 1.8528 = 7=
1
Buier Namter = 1 = 1 = 0,638
v, 2 j1.85282 o i
('r -1



o F@’
e & 4 Je % o1 21,8221 ¢ 1.5232 = 3.3453

ﬁb 2T ¢
In e “ + e “ . 1 = 1.2705
S
e, Je & -1= 0.5488 + i 0.8359
- -2
e® + /e Y 1] = |o0.5488 + 1 0.8559‘ = 1.00
L) -2
arg e <o, Je e 1 = arg (0.5488 + i 0.8359)
= tan™t 8—:—2%58% = 56° 42V 33" = 0,989)
0 e 2Mh | T 2o
z:-;]-_-‘.- In eQ’+ eQ-l + i arg eQ+ eQ-l
- -2 -N¢ =21rd
+ 1 1ln eQ+ eQ-—l - arg eQ+ eQ-l

L 2
= [1.2075 $ 040 = 0.9899] = £ (0.2176)

R= 4,00"

z = 0.2771"

31
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APPENDIX C

Laboratory Results

Original Data

Wednesday, March 9, 1960 Barometric Pressure:
Test section as shown in 29.9 inches--Read
Figure 3 from aneroid baro-
meter which later
Dovnstream piezometer at proved to be inac-
point z curate
Veighing Tank Manometers
Scale Readings Tine Open End Differential
Elapsed
eginning | End P Left | Right Left Right
Pounds |Pounds Inches | Inches| Inches Inche
1 1000 3500 25 + 207 - 20" - 2.1" + 2-5
2 | 1000 3500 23 + 2.4 |<-2.0)] - 2.9 + 3.1
3| 1000 3500 21 + 2.1 - 1.7 | = 3.5 + 3.3
Wednesday, March 23, 1960 Barometric Pressure:
Test section as shown in 32.5 inches absolute
Figure 3 Read from mercury
Downstream piezometer at VR
point 3
F;Fl Weighing Tank Manometers
Time
Scale Readings Elapsed Open End Differential

oginning- End

Left |Right Lef't Right

Seconds Inches | Inches| Inches Incho:

23 - 1.5 [+ 1.2 | = 5.1 + 5.4
21.5 o 105 + 1.4 > 6.0 + 6.2




Original Data (Continued)

July, 1959

Test section as shown in

33

VS UBWNNHOWO~IO

1000
1000
1000
1000
1000
1000
1000
1000
1000
1000

3500
3500
3500
3500
3500
3500
3500
3500
3500
3500

21
20
19
18
17.5
16
15
14,5
14
13

O DN O FFE
N @SR ®F W,

]
-

Figure 4
Run Differential
| # Weighing Tank Manometer
Scale Readings Time
Elapsed
Beginning | End Left Right
Pounds Pounds Segemds Inches Inches

. - -

R R R

O @OV FFFw
O O~IWO £F~3W - ®

+
[




Samplo Calculations

To find V

1

Water passing through during test period = 3500 -« 1000

= 2500#
Time = 23 seconds

Flovw = 32%9 = 108,5 #/sec. = %ggﬁi#/cu' = 1.7h cfs

v, = %ﬁlg-qw x 144 8q"/sq' = 15,7 fps

To find Py

P)\tmosphere = 32.5 inches Hg = §§=§;yft = 2,71 £t. Hg.

o
¢

Thg
= 2,71 x 13.6 = 36,8 feet H20

= P4  Left Reading x 13.6 Right Reading x 13.6
i 12 - 12

=
_ (&1 - 11w _ Bight Reading
(6" - 11 78 )

= 36.8 + (=1.5 x l%;é) - (+1.2 x l%;é) - (6.92 = tié%)

= 26,92 feet



To find p3
%5 _ 21, Left Reading (156 _ 1)
T - q 12 . =

Right Reading .
= 12 (1306 - 1) + l}

"
- 26,92 + (= 5.1 x 1?56) - (+ 5.4 x 1‘356) + 5*1-5
2
16.25 Assume this equals T
Euler Number = '1 = vL = 121

/2_4._2 28p.2  [2(26.92 - 16.25) 32,2
z |~

%2—5-% = 0.600
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APPENDIX D

Reynolds Number Calculations

Reynolds Number RR = %% for circular pipes of diameter D

mp® 1L D
Hydreulic radius R of circular pipe = Ll

Therefore

Nn = 2;5 for any cross section
For conduit 4 inches square flowing full
2
R = % = 1 inch = 0.0833 feet

v

pinimum = 1*+45 fps (Run #1, Appendix C)

Assume the water temperature is the same as room
temperature, or 70° F

V= 1.05 x 1072 ttz/scc.

. - hxbhs x 00833 _ 4 56 x 107
minimum 1.05 x 10

N

Beceuse Reynolds Number for this analysis was at leest
4,52 x 105, turbulent flow in this test section was quite
probable (Reference 2, p. 173), particularly considering
upstream disturbances (see Figure 7)
Minimum length for uniform turbulent flow to be established
in cirecular pipe 22 50 D (Reference 2, p. 189)
For square pipe, minimum langih

50 (4R) = 200 R

200 x 0,0833 = 16.67 feet



