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A SCHW;RT.-CHRISTOFPEL AÌALYSIS OF CAVITATING FLOW IN A 
TIO-DINENSIONAL ITERED ELBOW 

INTRODUCTION AND PURPOSE 

Cavitation is a phenomenon cormon1y found in hydraulic 

machines and pipo systems. It exists where there are high 

localized velocities, or else where there is a high enclosed 

elevation head such as may be found in vertical draft tubes. 

These high velocities or high elevations will induce low 

pressures in a fluid, and may decrease the pressure until 

vapor pressure is reached, at which point vapor pockets form. 

These vapor pockets are carried downstream to points of 

higher pressure where they collapse. 

Because the vapor cavities reduce the area available 

for fluid flow, cavitation will reduce the efficiency of 

hydraulic machinery considerably. In addition the forma- 

tion and collapse of vapor pockets will cause stress rever- 

sais in various parts of hydraulic machinery and conduit 

systems. ìhip propellers and turbine runners have been 

severely damaged due to cavitation. Concrete penstocks in 

which high local velocities exist have been literally eroded 

away by cavitation-induced shock waves. Cavitation has 

usually been avoided by proper design and thus elimination 

of those high localized velocities. 

L ninety degree elbow has a very high velocity at the 

inside corner compareã to the average velocity which exists 
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in the strai}it section upstrean or downstroai from the cor- 

ner. It is because of this high relativo velocity that cavi- 

tation can exist at the iriidc corner of a ninety degree 

elbow. The purpose of tuis thesis is to perform an analysis 

of the flow pattern in which cavitation is present rather 

than suggest any design practices which should be folloiod in 

order to eliminate cavitation. 

The analysis consists of determining mathematically the 

flow net in a ninety degree iiterod elbow arid then consider- 

ing its validity, when cavitation is occurring, by actual 

laboratory experiment. 

THE SCHWART-CHRISTOFFEL TRNiFORIATION 

General iriontation 

The mathematical analysis to be used in this presenta- 

tion is the Jchwartz-Christoffel Transformation. The 

3chwartz-Christoffe1 Transfori.iation as applied to fluid flow 

assu:ies tui. t fluid will flow around any polygon or boundary 

shape without separation. For sorio boundary shapes that do 

not have abrupt changes, this transforaation is undoubtedly 

valid. For some sections of ti ninety degree elbow upstream 

fro;:i the corner, the actual fluid flow follows the Ideal 

conditions assumed in the chwartz-Christoffel Transforma- 

tion. It the points xhere it exists, cavitation certainly 



produces a different pressure distribution from that realized 

in noncavitating flow. The purrose of testing the flow in a 

ninety degree elbow when cavitation is present was to see if 

the flow at the inside boundary slightly upstream froii the 

corner followed the ideal conditions as :resented in the 

chwartz-Christoffel Transformation. 

The transformation involves the establishment of a flow 

net for the channel in question by transferring points into 

the flow net, or real plane, from a simple flow net, vhich 

is made up of a grid of perfect sruares, and which is located 

on a separate imaginary plane. The analysis is made as 

simple as possible by two methods: first, the transformation 

is two-dimensional, and second, because it is necessary only 

to find the velocity distribution near the inside corner of 

the elbow only t'ie segments of the flow net along the inside 

boundary are determined. 

This particular analysis involves the uso of three 

planes: the z plane, which is the real plane of the two- 

dimensional elbow itself, the t plane. which is an inter- 

mediate plane, and the w plane, which .s the final imaginary 

plane described in the preceding paragraph. These planes are 

shom schematically in Figure 1. 



z Plane 

t k-lane 

(1\ ,4 A 

w Plane 

Figure 1 

H' 

Schematic Diagrams of the z, t, and w Planes 
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The z and w planes have rectangular complex coordinates; the 

t plane, polar complex coordinates. The two-headed arrows 

indicate the directions in which flow can occur on each 

plane. The specific points and flow directions for this 

problem are established as shown in Figure 2. 

Derivation of Equation5 

The general form of the Sohwartz-Christoffel Transforma- 
Q- 

tion is z A [5(t_a) (t-b)(t-c) .........dt] + B 

where 
[ 
a, b, c, . ........ . j are points on the t plane, and 

I 
L , , .......... are exterior angles of the real 

polygon. The algebraic summation of these angles is, of 

course, 211. (Reference 1, p. 173) 

The derivation of the transformation from the z plane to 

the t plane is as follows: 

Q'- , g: C 

z = A [(t_a) (t-b) (t-c) (t_d)+ dt 
J 

B 

a=O b-1 c= d+l 
5(=Tr :: =1r g-4 

z - A [S(t) (tiY (t-i) dtl + B 

= A )dt1 B I1:j1 - 2l) B 

= A [ in (t Jt_l) - cos 
] 

in (t+ J2l) in t+ /t2_i + j ar (t /t2_i 
) 



z Plane 

b a d C 

t Plane 
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ci 1, 0 
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nates Angles 

A-.°,iO îl 
B O,iR 
C 00,10 =1T 
D 0,0 

Flow is from A to C 

Figure 2 

Coordinates, Exterior Angles, and Flow Directions for the 

z, t, and w Planes Used in this Analysis 
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-1 1 Letcos --u 

lu -lu 
e +e 008 U w 

2 

e1Ue_IU 

iu 
2iu 2e 2iu 2e 1-o e +1- e - + 

lu t __________ e - 2 2 t 

and lu-in t- 
t2 

in -) --lin (j+ i) u-- 
i 

- -i in Ji + arg 
J 

- 1) 

z-A [1nt+ [t2_i +iarg (t+ Jt2_i) 
-arg( j_i) 

J 

i + I]. 
Using the plus sign in - /- - 1 and setting t - i 

"t 

then from Figure 2, z - O + io. 

z=A inIi + iaz'g(i)+iin I]. _ar(i)) +B 

A [oio+io_oI +B 

O-A(0)+B BO 



Setting t - -i, and again from Figure 2, z - -2 LE 

z - -2 iR- A [in _l + i arg (-i) + i in I_il - arg 

-A [o+i'fl' o_'nJ 
-R+iE 2 

A -tr 
z_4[in t+Jt2_l+jarg(t+jt2_l) 

i in 
+ J- - i - arg ( 

+ 
- i)] (Equation i) 

The next step 1r3 to obtain a transformation from the t 

piane to the w plane. Referring to Figure 2, this tranafor- 

mation consists of the analysis of an infinite strip units 

wide. (Reference 1, p. 177) The derivation follows. 

w _4iY.. A [5(t_aY4 (t-bY4 (t-c)4 (t-d dtl + B 

a-O b-1 c=O d+l 
a-11 

w A[5(t_1) 
( t + 1)0 (t - 1)0 dt] + B 

= A + B - A in t + B 

Setting t - 1; from Figure 2, w - O + iO 

O+iO-Aln(i)+B-A(0)B BO 
Setting t - -1; again from Figure 2, w O + i 

Oi2-Aln(-l)-A(i11) A_H. -4 
w- +i --mt 
in t - '' + j'?) ( 4, + i") 

e- -t 



Along the inside boundary of the elbow (from point A to D), 

'P = O. The transformation for the elbow alonG the inside 

boundary becomes 

'1rct 

t e (Euation 2) 

dv dt dv 
Velocity equalE - = 

dz R 1 ItJ t îr 

=T 

dw L 
11 

dv dv dt - - - = 
dz dt dz 

(uation - 

____ I ír 
ft-f-i /e' i 

J = I irò 

- 

From Figure 1, increa3es in the upstream direction, 

and aS C 00 tLeri 

dye +1 
dz 

C -1 

approaches i 

If is the flow per unit width of elbow and q i the 

velocity where there is uniform flow, then = q0. Aleo, 



lo 

dw 
q = q 

/ 

+ 1 
(Equation 3) -ustreaí. dz I-i- 

dw Q o and = - (Note Equation À, pase 9) 

q0 
w = in t in t 

,1rw ir in t - -- - for this case 

Equation 2 becomes 

t e (Equation 2-A) 

Also Equation i becomes 

i-r /21 i14 
in e iJe_1 iarg(e Je -i) 

-íìi / 
-2114' -ire j -2jVU iln e -1 -arg(e Je -i) 

(:quation l-A) 

Equation 3 bocomos 

iYc 

dw e 1 
n (Equation 3-A) 

e 
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If V1 equals q0 and V2 equals the local downstream 

V 
2 e +1 

velocity near the corner, then Ç 
- 1 

The Euler Nuiber is next found in terms of the velocity 
V 

ratio As shown in Appendix 41, 

i 

______ Vi 

________ ________ Euler Nunber (Equation if) 

((V2\2 

..j 

Vi, 

The Euler Number3 determined from Equation k are corn- 

pared with those obtained from actual laboratory experiment 

to determine the validity of the Schwartz-Christoffel Trans- 

formation. Euler Numbers are used in preference to velocity 

ratios as rreure readings and average velocities were ob- 

tamed, in the laboratory analysis. 

Explanation of Terms 

On the following page3, values of , z, 
dw 1 - . - , and 
dz q 

o 

uler Numbers are tabulated and plotted. These terms will 

now be discussed in detail. is the flow per unit width of 

elbow and q0 is the velocity where uniform flow exists. 

represents the equipotential lines and is the convenient 
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form for this representation. z, which is the location of 

the ec1uipotential lines, is based on F4quation l-A which is 

1c /21r 

in e ' _i +iarg(eQJe Q_i 

_flh$ ¡ 
_2.fl / -'rr / -21 

+jln o+je ::i -ar((c _je -1 

I4 /21Y \ 
For values of -- used, (e + j e - i I is not a 

complex number, and so there is no rroblem involved in the 

calculation of the absolute value. Because it is not a 

('n'd /21i \% 

complex number, arg 1..,e + J o - i / is zero. The 

(:i:!/-2'w \) 

absoluto value of e + e ' - i J equals one for ll 

-" I -211'4 

values of fused in thIs analysis, so in e + je - i 

is zero. Solution for z therefore involves finding values 

only for the first and last terms of the equation. s 

dz 

is the ratio of velocity at the equipotential line in 

juestion to that upstream where uniform flow is assumed to 

exist. As shown in the derivation of Schwartz-Christoffel 
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TABLE I 

LOCATION OF TH GIVEN EQ.UIPOTTIAL LINES, 
AND VELoCITY RATIOS AND EULER NIJNBERS 

AT THE GIVEN POINTS 

z (inches) dz q0 
Euler 
Number 

0.00955 0.00309 8.1595 0.12k 
0.01910 0.00089 5.7760 0.176 
0.03813 0.01895 k.k73k 0.230 
O.095k9 0.09852 2.5915 o.k16 
0.1910 0.27710 1.8528 0.638 
0.3813 0.58999 1.k710 0.925 
O.95k9 2.76k74 1.0512 3.02 

o.11k6 0.12987 2.37 o.k65 

Iote: For the laboratory apparatus the downstrearu 

piezouieter j_3 0.13 inches upstrernn front the corner. Using 

z equal to 0.13, find of 0.13 front the plot of equipo- 

tential lines against z. From plot of against Euler 

uiberc, find an huler Nuiiber of 0.50 for equal to 0.13. 

s shown above, finding for z equal to 0.13 by trial and 

error yields a velocity ratio of 2.37 and an Euler Number 

of o.k65. 
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equations 

- -1e 
dw i 

equals 

1 
r - and Uuler Nuiber 

ge -1 

LABORATORY ANALYSIS 

Laboratory Apparatu3 

The 1aborrtory tort ccton coneieted of a four-inch 

square plexiglas pipe mitered into a ninety degree elbow as 

shown in Figure . The upstre&i leg vas approxirrntely five 

feet long. The downstream section, about a foot long, was 

connected to a fifteen foot vertical draft tube which induced 

cavit.tion .t the incide corner of the elbow. Fiexorieter 

taps, one located very close to the inside corner, and the 

other about a foot upstream where uniform f1or was assumed 

to exist, were connected to a differential manometer. The 

upstream tap was also connected to an open end manometer so 

that absolute pressures at both points could be determined. 

lin alternate position for the downstream tap was two inches 

downstream from the inside corner where the longitudinal 

pressure distribution was moro uniform. In Figure 6 is shown 

the test section used in the July, 1959 tests. This test 



Test sectIorJ 
Cross 5ectlOfl 
wa 4.00 ncke 
S9uQre 

Note: 
Piezometer 

were c.t points I 

2 C0r te McArd 9 
*ets,ond of I and 3 
Çcr he MorcL 23 
-L- s 

6-It" 

te r 

4 

p 0 

o 

3 

\ 
w 

M 

Figure 5 

to.o 

Schematic Diagram of the Laboratory 
Test Section Used for the March 9 and 

March 23, 1960 Tests 
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I 2cfcl 

-Th st zect ion Wot_ 
Cr-osa $ectuon wo.s 
0H425 tncIes s9ure 

1+ 

DÇrenf.iI 
mQnometer 

Figure 6 

Schematic Diagram of the Laboratory Test Section 
Used for the July, 1959 Tests 
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section ia the same as that shown in Figure 5 except that ita 

cr033 section is 4.25 inches square and the downstream 

piezorneter tap is located closer to the inside corner than is 

that for the March, 1960, testa. 

f ro cedur e 

The test section was connected to a surge tank by seven- 

teen feet of ten-inch steel pipe and fifteen feet of five- 

inch plexiglas pipe. The surge tank was in turn connected 

to a pump which sup)1ied water froni a sump. Flow was reu- 

].ated by the gate valve3 indicated in Figure 7. Jith the 

valve leading fror.i the tank fully open, the flou was increased 

by opening the valve leading into the tank. The vertical 

draft had to be flowing full in order for it to induce cavi- 

tation. hen the entrance valve was first opened, the draft 

tube was not flowing full, and the water level in the surge 

tani: rose. itS SOOfl as the draft tube was flowing full, on 

the other hand, the water level started decreasing. This de- 

crease was checked by throttling the exit valve. .teady flow 

was reached when the surge tank level stayed constant. Pif- 

ferent flows were obtained by regulating both valves. The 

existence of cavitation was determined by the cracking sound 

made by the formation and collapse of vapor bubbles in the 

plexiglas conduit. 
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Calculation of Terms 

Average upstream velocity was calculated on the basis of 

the differences in weighing tank readings after given periods 

of time. Absolute u2treaIn pressure could be found on the 

basis of open-end manometer readings, and the difference be- 

tween absolute upstream and downstream pressures could be 

calculated on the basis of differential manometer readings. 

1XPERIMENTAL RESULTS 

A sunmiary of tne experiiaental results is given in 

Table 2, and the original data is given in Appendix C. As 

shown in Table 2, the Euler Thirnber is approximately 0.83 when 

the piezometer is located about an eighth of an inch upstream 

from the cerner, and the parairAeter is approxinately 0.56 

when the tap 15 two inchos below the corner or. the downstream 

leg. Also ohowi here are the absolute pressure heads at the 

downstream point. The mean values of these pressure heads are 

approximately 28.5 feet and +15.0 feet when the piezometer 

is slightly upstream from the corner ami two inches down- 

stream from it respectively. Vapor pressure head is 0.83, 

and so a pressure greater than that of vapor exists at the 

downstream points measured. 

The iu1er Number obtained from the Schwartz-Christoffel 

Transformation is O.k65, which does not agree very closely 



PABLE 2 

SUNflARY OF EXPERIMENTAL RESULTS 

Mean Euler Euler 1u.iber Mean Downstrean ìressure 
Run Number from from Schwartz- Pressure Head at 

Laboratory Christoffel Head Vapor 
Analysis Transformation (feet) ìressurefeet 

March 9, 1960 Absolute Pressures 

1-3 0.826 o.k65 28.5 0.03 

March 23, 1960 

k-5 0.56 o.k65 15.0 0.83 

July, 1959 

6-8 0.670 o..k65 
Absolute iressures 

9-15 0.683 0.1+65 ot Calculated 

N) 
r'.) 
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TÁBL 2 (Continued) 

I ote8 

1. Assumptions 

A. Atmospheric j;ressure for all tests ras the sane as 
that determined for the ilaroh 23, 1960 teste, or 
32.2 inches of mercury. 

B.2 
2. Differences in Tests 

A. Tests dated March 9, 1960 and Haroh 23, 1960 were .de 

using the test section shown in Figure 5. The cross 
section was four inches square. For the tests dated 
Ìarch 9, 1960, the downstream piezometer was 0.13 
inches upstream from the corner, and for those dated 
March 23, 1960 the tau was two inches below the 
corner on the downstreaLl leg. 

13. Tests dated July, 1959 were nade using the test sec- 
tion shown in Figure 6. Cross section was k.25 
inches square, and the downstrean piezometer was 
0.07 inches upstream from the corner. 

3. Jxisteìice of Cavitation 

For tue July, 1959 tests, there was noncavitating 
flow in rims number 6 through 8, and cavitating 
flow in runs 9 through 15. Cavitation existed for 
both sets of March 1960 tests. 



2k 

with the values obtained from the laboratory analysis. This 

value does show however, that the preasure at the downstream 

point is greater than vapor pressure. 

CONCLUSIONS 

The inconsistency of the theoretical and actual results 

can be explained by factors that lie in the transformation 

itself as well as in the laboratory apparatus. 

Considering the inside corner of the elbow, where z is 

zero, the transformation shows the ratio of the velocity at 

the inside corner to that upstream in the uniform flow sec- 

tion to be infinity. The Euler Ihunber approaches zero and 

so the difference between the pressure at the corner and that 

upstream approaches infinity. Therefore, at pointu near the 

inside corner the theoretical pressure difference and Buler 

Number would appear to deviate from the actual quite signi- 

ficantly. Evidently, the point selected for this analysis 

was too close to the corner. Nevertheless, this point was 

selected to find the pressure distribution as near as pos- 

sible to the zone of cavitation. 

The ohwartz-Chr1stoffel Transformation assumes non- 

separating, irrotational flow. In the upstream area 

analyzed, separation does occur upstream from the outside 
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corner. (Reference 2, P. 26) This would help to account 

for the difference in theoretical and actual pressure dis- 

tribution. As calculated in Appendix D, the Reynolds Number 

for all the tests was about 500,000. The flows are there- 

fore high enough to yield the velocity distribution de- 

manded by irrotational flow. Nevertheless, the parallel 

stres lines assumed for irrotational flow are distorted 

near the boundary because of the fact that the velocity at 

a smooth boundary surface must be zero. This rotational 

effect would cause a lower velocity at the downstream point 

than that calculated by the Schwartz-Christoffel Transfor- 

mation. 

According to flow net theory, the stream lines around 

the corner of a ninety degree bend follow paths symmetrical 

about a line joining the inside and outside corners. 

( Reference 2, p. 2+) By centrifugal force however, these 

stream lines are actually displaced outward from the posi- 

tions assumed. These inner stream lines force the outer ones 

inward along the walls, thus setting up a double spiral and 

reducing the inside pressure. (Reference 3, p. ¿+20) 

There are three possibilities for error in the construc- 

tion of the laboratory apparatus. First, the upstrean leg 

of the test section was not long enough to establish uniform 

flow. As noted in Appendix D, a length of straight conduit of 



approximatoly seventeen feet is re:uired to establish uni- 

forL flow in this section, whereas there e only four feet 

of scuare pipe upstream from the point where uniforn flow 

wa8 assumed to exist. 

Second, the transition frou the five-inch round pipe to 

the four-inch square pipe produces eddy currents which are 

carried downitream and which mix the stream lines so that 

velocity distribution cannot accurately be detereined. 

For two-dimensional flow, the pipe section should be a 

rectengle infinitely wide. The third possibility for error 

then, is that the square croes section does not give this 

two-dimensional requirement. 

The results in Table 2 dated July, 1959 show Euler 

Numbers that were obtained both with and without cavitation. 

These parameters are essentially the same, and 80 the moon- 

sistencies between actual and theoretical results ire due to 

the laboratory conditions and the transformation rather thrn 

the presence of cavitation. 

The actual conditions that exist in the laboratory 

analysis therefore oniy apjroximnate the ideal conditions 

assumed in the Schwartz-Christoffel Transformation. The 

scope of this thesis was first to learn about the Schwartz- 

Christoffel Transformation and the complex variable relations 
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associated with it, and then to establish a transforriation 

for a two-dimensional mitered elbow, and finally to perform 

an approximate laboratory analysis of this transformation. 

A second. more refined, laboratory analysis was tierefore not 

rw 

AB can be seen in the summary of results, the iuler 

Numbers derived from the Schwartz-Christoffel Transfornation 

are consistently lower than those determined experixrentally. 

It would therefore appear that if the trnaformation were 

applied to any other similar problem, auch as a bridge pier, 

turbine runner, or some other hydraulic shape, results would 

be in error on the safe side, for actual loc-iized high 

velocities and local pressure drops would be less than those 

calculated from the Schwartz-Christoffel Transformation. 
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APPENDIX A 

Relation of Velocity Ratios to Euler Numbers 

Using the Bernoulli Equation between points one and two 

V12 '!.2+! 
2g 

!a 
2g 2g where V2> V1 and p1 p2 

V22 
____ 2 p 

C- 

IV2 
Vi 

___________ 
Vi 

/fV2 
-1 

= /2 
0 

= Euler Number 



ÀPPEN1)IX B 

Finding Values of z, Velocity Ratlos, 
and Euler NuBiber Using the Schwartz- 
Christoffel Transformation Equations 

Given 0.1910 

Then = 0.60 

There fore 

= 1.3221 

3.3201 
e" 

= 0.5k88 

0.3011 

dw 
.;:. - I .2tL_ 1.8528 T;. (i- V1 

e - i 

Eio: N1'r - 1 

fY- i 
- 1 =0.638 

J1.8528e - i 

30 



TT6 1 2it<b
eQ +JeQ-l = 1.8221 + 1.5232 - 3.3453

In

1T<t) /2Tf$

e Q+ J e 'v' - 1 1.2705

/ j=23U.
Q / (J - l » 0.5488 + i 0.8359

6 + \i e

-trt> / -2ir»
eQ +./e Q -1 0.5^88 + i 0.8359 « 1.00
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-TW / ~2Tr4>
arg e t J e - 1 » arg (0.5^88 + i 0.8359)

- tan"1 °\Hll - 56° 42' 33" - 0.989?

TT
In

+ i In

TT4> r 2trd>

e Q' + e Q - 1

e Q ♦ . . Q - 1

Tt<t> / 27T<t>
Q / Q

+ i arg e + / e - 1

-Tfo / -2TT(t>

- arg e ^ + / e - 1

je
TT

1.2075 +0 +0 - 0.9899J - ijfc (0.2176)

j£= 4.00"

a - 0.2771"



32 

APPETDIX C 

Laboratory Reiults 

Original Data 

Jednesday, March 9, 1960 Barometric t-'ressure: 
Test section as shown in 29.9 Inches--Read 

Figure 3 from aneroid baro- 
meter which later 

Downstream piezometer at proved to be mac- 
point curate 

m 
, 

- 
'.eighing Tank iJanometers 

Scale Readings Time Open End Differential 
Elapsed 

ìeginning End 
econde 

______ 
Left 

______ 
Right Left 

____ 
Right 

lounds sounds Inches Inches inches Inche 

1 1000 3500 25 2.7 -2.k -2.1+ 2.5 
2 1000 3500 23 + 2.k - 2.0 - 2.9 3.1 

2 1000 3500 21 + 2.1 - 1.7 - 3.5 3.3 

wednesday, March 23, 1960 Barometric Pressure: 

Test section as shown in 32.5 inches absolute 
Figure 3 Read from mercury 

barometer 
Downstream piezometer at 

point 3 

iun 
JL Weighing Tank Manometers 

Scale Readings 
Tine 

Elapsed 
Open End Differential 

---S 
;gmnnin End seconds Left Right Left Right 
Pounds bounds Inches Inches Inches Inches 

¿I. 1000 3500 23 - 1.5 + 1.2 - 5.1 5.1+ 

5 1000 3500 21.5 - 1.5 1.i- - 6.0 + 6.2 
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Original Data (Continued) 

July 1959 

Test section as shown in 
Figure 1 

iii;: Weighing Tank Differential 
.L _________________- 1anorneter 

Scale Readings 

_________- 
Time 

- - -_______ _____- Elapsed 

3eginning End 
Seconds 

Left Right 
Pounds Pounds Inches Inches 

6 1000 3500 21 - 3.5 1- 3.8 
7 1000 3500 20 - 4.1 4.]. 

8 1000 3500 19 4.4 .4- 4.3 
9 1000 3500 18 - 4.8 + 4.7 

lo 1000 3500 17.5 - 5.5 5.4 
il 1000 3500 16 - 6.1 + 6.0 
12 1000 3500 15 - 7.4 . 73 
13 1000 3500 14.5 - 7.8 + 7.7 
1k 1000 3500 14 - 8.1 + 8.0 
L5 bOu 3500 13 - 10.2 + 10.0 
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Saniple Calculations 

To find V, 

.'ater passing through during test period = 3500 - 1000 

= 2500 

Time 23 seoonds 

2500 108.5 Flou 
23 

108.5 #/sec. 
62.4 #iii' 

1.7k ofa 

i.74 
V1 - x 14k sqU/sq = 15.7 fpe 

To find p1 

tmosphero 32.5 inches 2n/ft 2.71 ft. 11g. 

iig 

2.71 x i,.6 = 36.8 feet 1120 

p1 
= Left Reading x 13.6 Right Readin;- x 13.6 

T 12 12 

- (6' - il" Right Readin 
12 

= 36.3 (-1.5 x 
13.6) - (1.2 x 13.6) -(6.92- 

12 

= 26.92 feet 



To find p3 

35 

- 
Left Reading 

(13.6 - i) 
ci 12 

Right Reading (136 - i) + 
12 

12.6 12.6 ¿ftP 

26.92 + (-5.1 
12 / 

- (+ 5.k 12 ' + 

16.25 Assume this equals 
q- 

V V 15.7 Euler Number - i - 1 ______________________ 
/2&p I2p J2(26.92 - 16.25) 32.2 

fì' 

15.7 
26.2 

- 0. 00 
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APPENDIX D 

P.eynolds Number Calcul tiona 

VD 
Reynolds i:umber = for circul:.r ipes of diameter D 

1TD2 i D 
xiydrauli.c radius R of circular pipe = 

Therefore 

kv 
for any cross section 

For conduit /+ inches square flowin: full 

R 1 inch 0.0833 feet 

Vifljim lLf.k5 fps (Run #1, Appendix C) 

Assume the water temperature is the same as room 
temperature, or 700 F 

'T. 1.05 x 10 ft2/sec. 

X lk.k5 x 0.0833 
1f.58 x 

minirium 1.05 x 10 

Because heynold8 Iumber for this analysis was at least 

f.52 X 10 turbulent flow in this test sction was quite 

probable (Reforoice 2, p. 173), particularly considering 

upstream disturbances (see Figure 7) 

Ilinimum length for uniform turbulent flow to be established 

in circular pipe 50 D (Reference 2, p. 189) 

For square pipe, minimum length 

50 (L1.R) - 200 R 

200 X 0.0833 = 16.67 feet 


