

AN ABSTRACT OF THE THESIS OF

Timothy B. Costa for the degree of Master of Science in Mathematics presented on

February 27, 2014.

Title: Analysis of Domain Decomposition Methods for the Simulation of

Charge Transport in Semiconductor Structures with Heterojunctions

Abstract approved:

Malgorzata S. Peszyńska

Charge transport in a semiconductor structure with heterojunction is described by

a multiscale partial differential equation model. This model can be used, e.g., for the

design of more efficient solar cells.

Phenomena at the heterojunction must be resolved at the angstrom scale while the

size of the device is that of microns. The challenge is therefore to account for correct

physics and to keep the model computationally tractable. Thus we use an approach

introduced by Horio and Yanai in which the physics at the interface is approximated at

the device scale, which is handled by tranditional drift diffusion equations, by unusual

jump conditions, called thermionic emission equations. In this model the heterojunction

region is approximated by an abrupt interface, resulting in a loss of continuity in the

primary variables. The thermionic emission equations consist of a nonhomogeneous jump

in the electrostatic potential and unusual Robin-like conditions for carrier transport. The

data for these jumps is determined from an angstrom scale first principles calculation in

the true heterojunction region.

The continuum scale model lends itself well to a domain decomposition approach.

In this thesis we present iterative substructuring methods developed for the drift diffusion

system with thermionic emission transmission conditions and analyze the convergence of

these algorithms.

c©Copyright by Timothy B. Costa

February 27, 2014

All Rights Reserved

Analysis of Domain Decomposition Methods for the Simulation of Charge Transport in
Semiconductor Structures with Heterojunctions

by
Timothy B. Costa

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented February 27, 2014
Commencement June 2014

Master of Science thesis of Timothy B. Costa presented on February 27, 2014

APPROVED:

Major Professor, representing Mathematics

Chair of the Department of Mathematics

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State

University libraries. My signature below authorizes release of my thesis to any reader

upon request.

Timothy B. Costa, Author

ACKNOWLEDGEMENTS

Academic

I am indebted to Dr. Malgorzata Peszynska for the advice and guidance she pro-

vided me as well as for sharing with me her enthusiasm for applied and computational

mathematics.

Research in this work was performed under the support of the National Science

Foundation, grant 1035513 ”SOLAR: Enhanced Photovoltaic Efficiency through Hetero-

junction Assisted Impact Ionization,” (Principal Investigator Stephen Kevan, Co-Principal

Investigator Malgorzata Peszynska, Co-Principal Investigator Geraldine Richmond) under

the direction of Malgorzata Peszynska.

I would also like to thank my collaborators David Foster and Guenter Schneider

from the Physics Department at Oregon State University for their hard work and in-

sights, without which this thesis would want for physical grounding.

Personal

I wish to thank my wife, Jen, and daughter, Emily, for their unwavering support.

I also wish to thank my parents, John and Denise Costa, for a lifetime of support and

enthusiasm for my endeavors. Additionally, thanks to my brother, Anthony, for many

productive conversations on science and applied mathematics.

TABLE OF CONTENTS

Page

1. INTRODUCTION . 1

2. MATHEMATICAL MODEL FOR SEMICONDUCTOR STRUCTURES WITH
HETEROJUNCTION . 3

2.1. Drift Diffusion . 3

2.2. Heterojunction . 4

2.3. External Boundary Conditions. 7

2.4. Well-posedness . 8

2.4.1 Mathematical Background . 9

2.4.2 Single Material Domain . 10

2.4.3 Gummel Decoupling . 12

3. NUMERICAL TECHNIQUES . 14

3.1. Finite Difference Discretization . 14

3.2. Newton’s Method. 18

4. DOMAIN DECOMPOSITION . 21

4.1. Mathematical Background . 21

4.1.1 Continuous Formulation . 21

4.1.2 Algebraic Formulation . 24

4.1.3 Neumann-Neumann Algorithm . 25

4.1.4 Richardson Iteration . 26

4.1.5 Complexity Comparison. 28

4.2. DDM for Potential Equation. 29

4.2.1 Continuous Formulation . 29

4.2.2 Algebraic Formulation . 31

4.2.3 Algorithm . 32

4.2.4 Convergence Analysis . 33

TABLE OF CONTENTS (Continued)

Page

4.3. DDM for Carrier Transport . 40

4.3.1 Continuous Formulation . 41

4.3.2 Algebraic Formulation . 43

4.3.3 Algorithm . 44

4.3.4 Convergence Analysis . 45

4.3.5 Alternative Algorithm . 51

5. NUMERICAL RESULTS . 54

5.1. Model Problems . 54

5.1.1 Potential Equation . 54

5.1.2 Equations for Carrier Densities . 57

5.2. Semiconductor Structures with Heterojunctions . 58

6. CONCLUSIONS . 62

BIBLIOGRAPHY . 64

APPENDICES . 68

A Density Functional Theory . 68

B Code . 70

B1 Algorithm DDP. 70

B2 Algorithm DDC . 72

B3 Other Code . 74

Analysis of Domain Decomposition Methods for the Simulation of

Charge Transport in Semiconductor Structures with Heterojunctions

1. INTRODUCTION

In this study domain decomposition techniques are developed and analyzed for the

simulation of a multiscale model for charge transport in semiconductor structures with

heterojunctions. This work is motivated by the collaboration of computational mathe-

maticians, physicists, and material scientists who are interested in such structures for the

purpose of building more efficient solar cells.

A heterojunction is an interface between distinct semiconductor materials. This

interface has a positive width on the angstrom scale. However, the scale of the bulk

semiconductor regions is that of microns. Thus we use the model presented in [18] where

transport across the heterojunction region is approximated at the device scale by a set of

unusual transmission conditions, called the thermionic emission model (TEM). Data for

the model is computed by an angstrom scale density functional theory (DFT) calculation.

Much of the detail on modeling issues is presented in [12].

Charge transport at the device scale is modeled by the drift diffusion equations. The

drift diffusion model is a coupled non-linear system of partial differential equations consist-

ing of a Poisson equation for electrostatic potential and two advection-diffusion equations

for conductive electron and hole densities. In a single semiconductor material this model

is well-established, however, numerical simulation is riddled by difficulties stemming from

its non-linear coupled nature as well as boundary and interior layer behavior.

The heterojunction model is well suited for treatment by domain decomposition

2

methods. In 1D the problem is amenable to a monolithic approach where the TEM

equations are hard coded into the algebraic system resulting from a discretization of the

drift diffusion equations in the bulk semiconductor regions. However, this approach may

be intractable in higher dimensions where complicated interface geometries may arrise.

Using the DDM presented in this work ”black box” drift diffusion solvers may be used

to simulate semiconductor structures with heterojunction, as the TEM conditions are

enforced at the level of the domain decomposition driver. The domain decomposition

methods analyzed here were first presented in [7, 12].

The thesis is composed of 6 chapters. In Chapter 2 the model is presented. In

Chapter 3 established computational techniques for simulating the model are reviewed.

In Chapter 4 novel domain decomposition techniques are presented for the simulation

of semiconductor structures with heterojunction. Convergence analysis of these methods

is also performed. In Chapter 5 numerical results are presented. Finally in Chapter 6

conclusions and future work are discussed.

3

2. MATHEMATICAL MODEL FOR SEMICONDUCTOR
STRUCTURES WITH HETEROJUNCTION

In this section we describe the model used to simulate charge transport in semicon-

ductor structures with heterojunctions [12].

Let Ω ⊂ RN , N ∈ {1, 2, 3}, be an open connected set with a Lipschitz boundary ∂Ω.

Let Ωi ⊂ Ω, i = 1, 2 be two non-overlapping subsets of Ω s.t. Ω1 ∪ Ω2 = Ω, Ω1 ∩ Ω1 = ∅,

and denote Γ := Ω1 ∩ Ω2. We assume Γ is a N -1 dimensional manifold and Γ ∩ ∂Ω = ∅.

We adopt the following usual notation: wi = w|Ωi , wΓ
i = limx→Γwi, and [w]Γ = wΓ

2 − wΓ
1

denotes the jump of w. We denote by νi the outward normal of Ωi on Γ, and define

ν := ν1.

2.1. Drift Diffusion

In the bulk semiconductor domains Ωi, i = 1, 2, the charge transport is described

by the drift diffusion system. This system consists of a Poisson equation solved for elec-

trostatic potential ψ and two continuity equations solved for electron and hole densities n

and p.

The stationary drift diffusion model is

−∇ · (εi∇ψi) = p− n+NT , (2.1)

∇ · Jn = R(n, p), (2.2)

∇ · Jp = −R(n, p). (2.3)

Here NT (x) = ND(x)−NA(x) is the given net doping profile including the donor ND and

acceptor doping NA. R(n, p) is a model for electron and hole generation and recombina-

tion, typically a rational function of carrier densities. εi denotes electrical permittivity.

4

Jn and Jp are the electron and hole currents defined by

Jn = Dn(−n∇ψ +∇n), (2.4)

Jp = −Dp(p∇ψ +∇p). (2.5)

Here Dn and Dp are the electron and hole diffusivities, respectively.

For analysis and computation it is convenient to introduce an alternative set of

variables. The Slotboom variables u, v are related to n and p by

n = δ2
ne
ψ u, (2.6)

p = δ2
pe
−ψ v. (2.7)

The scaling parameters δ2
n and δ2

p depend on the material and doping profile. In Slotboom

variables the continuity equations (2.2), (2.3) are self-adjoint, which is advantageous both

for analysis as well as for numerical simulation. We pay for this improvement in the

Poisson equation (2.1) which is then semi-linear.

Henceforth we will consider the system in Slotboom variables

−∇ · (εi∇ψi) = δ2
pe
−ψi v − δ2

ne
ψi u+NT := q(ψi, pi, ni), (2.8)

−∇ · Jn = R(ψi, ui, vi), (2.9)

−∇ · Jp = −R(ψi, ui, vi), (2.10)

Jn = Dnδ
2
ne
ψi∇ui, (2.11)

Jp = Dpδ
2
pe
−ψi∇vi. (2.12)

2.2. Heterojunction

We are interested in simulating charge transport in a semiconductor structure con-

sisting of distinct semiconductor materials connected by a heterojunction interface. A

5

(eV)

(eV)

ΓΩ Ω

ΩΩ Ω1 2

1 2

Γ

FIGURE 2.1: Top: schematic plot of potential across 1D interface region. Bottom: inter-
face region shrunk to a point resulting in discontinuous potential.

true heterojunction interface is a region of positive width on the angstrom scale. How-

ever, a typical device scale for many applications, e.g. solar cells, is that of microns.

Thus we cannot simulate transport in the heterojunction region with the drift diffusion

system. Instead we adopt the Thermionic Emission Model described in [18] where the

interface is treated as an idealized abrupt interface. As Figure 2.1 illustrates, this results

in discontinuities in the primary variables.

The Thermionic Emission Model thus consists of transmission conditions for the

primary variables across the idealized abrupt interface. These are a jump discontinuity

ψ4 in the potential and unusual Robin-like conditions relating electron and hole densities

across the interface.

6

[ψ]Γ = ψ4, (2.13)[
ε
∂ψ

∂ν

]
Γ

= 0, (2.14)

JΓ
n = a2

nn
Γ
2 − an1nΓ

1 , (2.15)

[Jn]Γ = 0, (2.16)

JΓ
p = ap1p

Γ
1 − a

p
2p

Γ
2 , (2.17)

[Jp]Γ = 0. (2.18)

Here the coefficients ani and api are, up to scaling, mean electron thermal velocities that

depend on the tempterature T and the sign of ψ4. The jump ψ4 must be calculated

at the angstrom scale in the heterojunction region. Typically this is accomplished via

Density Functional Theory. More details on the coefficients can be found in [12].

Note that the homogeneous jumps in the fluxes (2.14), (2.16), (2.18) are an assump-

tion based on observation of the shape of the flux across a heterojunction region. Due to

the loss of scale we have no a-priori reason to expect this homogeneity, and thus future

models may need to account for a non-homogeneous jump in fluxes.

Finally, the Thermionic Emission Model in Slotboom variables is

[ψ]Γ = ψ4, (2.19)[
ε
∂ψ

∂ν

]
Γ

= 0, (2.20)

JΓ
n = an2 (eψu)Γ

2 − an1 (eψu)Γ
1 , (2.21)

[Jn]Γ = 0, (2.22)

JΓ
p = ap1 (e−ψv)Γ

1 − a
p
2 (e−ψv)Γ

2 , (2.23)

[Jp]Γ = 0. (2.24)

For each equation in the drift diffusion system, the Thermionic Emission Model provides

a pair of transmission conditions. For the potential equation (2.8) we have (2.19) and

7

(2.20), for the equation for electron transport (2.9) we have (2.21) and (2.22), and for the

equation for hole transport (2.10) we have (2.23) and (2.24).

2.3. External Boundary Conditions

The system (2.8)-(2.12), (2.19)-(2.24) is completed by appropriate external bound-

ary conditions.

In the simulations in this work we use Dirichlet boundary conditions for the potential

equation (2.8),

ψ|∂Ω = ψD. (2.25)

and Robin boundary conditions for the equations for carrier densities, (2.9), (2.10).

To illustrate the derivation of the value ψD we restrict to 1 dimension, where Ω =

(a, b), and ∂Ω = {a, b}. Then in this case we have

ψD(a) = ψa, (2.26)

ψD(b) = ψb. (2.27)

To find ψa, ψb we solve an algebraic problem for the neutral-charge equilibrium values

ψTEa , ψTEb resulting from setting the quasi-Fermi potentials ψn and ψp to zero everywhere

in Ω and dropping the derivatives from (2.8). The quasi-Fermi potentials are an alternative

set of variables related to the carrier densities by Maxwell-Boltzmann statistics

n = NCe
ψ+χ−ψn , (2.28)

p = NV e
−ψ−χ+ψp−Eg (2.29)

where NC and NV are the conductive and valence band density of states, respectively, χ is

the electron affinity, and Eg is the bandgap, i.e. the energy required to excite an electron

from the highest energy valence band to the lowest energy conductive band.

8

The resulting system to solve for ψTEa reads

NV e
−ψTEa −χ−Eg −NCe

ψTEa +χ +NT |x=a = 0 (2.30)

with a similar equation for ψTEb . ψa and ψb are then set by

ψa = ψTEa + Va, (2.31)

ψb = ψTEb + Vb (2.32)

where Va and Vb are physically controlled external voltages.

For (2.9) and (2.10) we assume recombination velocity boundary conditions, which

are Robin type. These are specified using individual carrier currents via contact-specific

effective recombination velocities. In 1d we denote the effective recombination velocities

by vn,a, vn,b, vp,a, vp,b. Then the boundary conditions read

Jn · ν|x=a = −vn,a(n− n0)|x=a (2.33)

Jp · ν|x=a = vp,a(p− p0)|x=a (2.34)

Jn · ν|x=b = −vn,b(n− n0)|x=b (2.35)

Jp · ν|x=b = vp,b(p− p0)|x=b (2.36)

where n0, p0 are the carrier densities corresponding to the equilibrium values ψn = ψp = 0.

2.4. Well-posedness

Here we review the well-posedness analysis for the drift diffusion system following

[26].

9

2.4.1 Mathematical Background

Before proceeding we recall definitions of Lebesgue Lp(U) spaces and Sobolev spaces

W 1,p(U) [3]. For 1 ≤ p <∞, the space Lp(U) is the set of functions v defined on U s.t.(∫
U
|v|p
) 1
p

<∞, (2.37)

where integration is with respect to the Lebesgue integral. This space is equipped with

the norm

‖v‖Lp =

(∫
U
|v|p
) 1
p

. (2.38)

In the case that p = 2, L2(U) is a Hilbert space when equipped with the inner product

(u, v)L2 =

∫
U
v u. (2.39)

The space L∞(U) is defined as those functions v defined on U s.t. v is bounded

almost everywhere on U , with norm given by the essential supremum,

‖v‖L∞ = inf{K : |v| ≤ K a.e. on U}. (2.40)

For 1 ≤ p <∞ the Sobolev space W 1,p(U) is defined as

W 1,p(U) =

v ∈ Lp(U) :
∃g1, g2, . . . , gN ∈ Lp(U) s.t.∫

U v
∂φ
∂xi

= −
∫
U giφ ∀φ ∈ C

∞
c (U), ∀i = 1, 2, . . . , N

 , (2.41)

where C∞c (U) denotes the set of infinitely differential functions with compact support.

This space is equiped with the norm

‖u‖W 1,p =

(
‖u‖pLp +

N∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥p
Lp

) 1
p

. (2.42)

In the case that p = 2, we denote W 1,p by H1. H1 is a Hilbert space with the inner

product

(u, v)H1 = (u, v)L2 +

N∑
i=1

(
∂u

∂xi
,
∂v

∂xi

)
L2

. (2.43)

The associated H1 norm, is the same as the W 1,2 norm.

10

2.4.2 Single Material Domain

Following [[26], Sec 3.2] we consider the drift diffusion system in one material domain

U (bounded in RN , N ∈ {1, 2, 3} of class C0,1) with no heterojuntion in Slotboom variables

with mixed Dirichlet and homogeneous Neumann boundary conditions.

−∇ · (ε∇ψ) = q(ψ, u, v), x ∈ U, (2.44)

−∇ · (Dnδ
2
ne
ψ∇u) = R(ψ, u, v), x ∈ U, (2.45)

−∇ · (Dpδ
2
pe
−ψ∇v) = −R(ψ, u, v), x ∈ U, (2.46)

ψ|∂UD = ψD, u|∂UD = uD, v|∂UD = vD, (2.47)

∂ψ

∂ν
|∂UN =

∂u

∂ν
|∂UN =

∂v

∂ν
|∂UN = 0. (2.48)

We will be interested in the weak formulation of the system (2.44)-(2.48). We write

ψ = ψ0 + ψD, u = u0 + uD and v = v0 + vD and wish to find (ψ, u, v) ∈ (H1
0)3 such that∫

U
ε∇ψ0 · ∇φ =

∫
U
q(ψ0 + ψ)φ−

∫
U
ε∇ψD · ∇φ, (2.49)∫

U
Dnδ

2
ne
ψ∇u0 · ∇φ =

∫
U
R(ψ, u, v)φ−

∫
U
Dnδ

2
ne
ψ∇uD · ∇φ, (2.50)∫

U
Dpδ

2
pe
−ψ∇v0 · ∇φ =

∫
U
−R(ψ, u, v)φ−

∫
U
Dpδ

2
pe
−ψ∇vD · ∇φ, (2.51)

for all φ ∈ H1
0 .

We make the following assumptions:

(A1) The N − 1 dimensional Lebesgue measure of ∂UD is positive.

(A2) The Dirichlet boundary data satisfies

(ψD, uD, vD) ∈ (H1(U))3, (ψD, uD, vD)|∂UD ∈ (L∞(∂UD))3

and there is a K ≥ 0 s.t.

e−K ≤ inf
∂UD

uD, inf
∂UD

vD; sup
∂UD

uD, sup
∂UD

vD ≤ eK .

11

(A3) The recombination-generation rate R satisfies R = F (x, ψ, u, v)(uv − 1), where F ∈

C1 for all x ∈ U ; F ∈ L∞, ∇(ψ,u,v)F ∈ L∞, and F ≥ 0.

(A4) The mobilities Dn, Dp satisfy:

(i) Dn = Dn(x,∇ψ), Dp = Dp(x,∇ψ), Dn, Dp : U × RN → R.

(ii) 0 < Dn,0 ≤ Dn ≤ Dn,1 for some Dn,0, Dn,1 ∈ R.

(iii) 0 < Dp,0 ≤ Dp ≤ Dp,1 for some Dp,0, Dp,1 ∈ R.

(iv) Dn(x, y1)−Dn(x, y2)|+ |Dp(x, y1)−Dp(x, y2)| ≤ L|y1 − y2| for some L > 0.

(A5) The doping profile NT satisfies NT ∈ L∞(U).

Theorem 2.4.2.1 ([26], p. 35). Let assumptions (A1) − (A5) hold. Then the problem

(2.44)-(2.48) has a weak solution (ψ, u, v) ∈ (H1(U) ∩ L∞(U))3, which satisfies the L∞

estimates,

e−K ≤ u ≤ eK a.e. in U,

e−K ≤ v ≤ eK a.e. in U.

Proof of this theorem has two components. The system is decoupled by an iterative

procedure, resulting in a fixed point analysis for the so-called Gummel Map while existence

of solutions is demonstrated for each of the component equations independently.

For analysis of the component equations, the reader is refered to [[26], Sec. 3.2]. We

note that under physically admittable data it is well known that solutions to the system

are not unique. Under more severe restrictions on data solutions can be shown to have

H2 regularity [[26] p. Sec. 3.3].

The decoupling procedure is important for both analysis and computation, and is

used in the simulations in this paper. We describe this procedure, the Gummel Map, in

the next section.

12

2.4.3 Gummel Decoupling

One of the difficulties with the drift diffusion system is its coupled nature. The

right hand side of each equation depends on the primary variable of the other equations.

Additionally, in Slotboom variables the equations for carrier densities have dependence in

the differential operator on the electrostatic potential. A classical method of decoupling

the equations for analysis as well as so that each may be solved independently is called

the Gummel Map [8, 20, 26].

Let H := H1(U) ∩ L∞(U) with norm inherited from H1. The Gummel Map,

G : H2 → H2, is applied iteratively until a fixed point (u∗, v∗) is reached. The map

proceeds by: given (u0, v0) ∈ H2, for each k ≥ 0,

1. solve (2.44) with data (uk, vk),

−∇ · (ε∇ψk+1) = q(ψk+1, uk, vk) on U, (2.52)

ψk+1 = ψD on ∂UD, (2.53)

∂ψk+1

∂ν
= 0 on ∂UN (2.54)

for ψk+1 ∈ H.

2. Then solve (2.45) with data (ψk+1, uk, vk) iteration lagging the right hand side semi-

linearity,

−∇ · (Dne
ψk+1∇uk+1) = R(ψk+1, uk, vk) on U, (2.55)

uk+1 = uD on ∂UD, (2.56)

∂uk+1

∂ν
= 0 on ∂UN (2.57)

13

for uk+1 ∈ H and solve (2.46) similarly iteration lagging vk on the right hand side,

−∇ · (Dpe
−ψk+1∇vk+1) = R(ψk+1, uk, vk) on U, (2.58)

vk+1 = vD on ∂UD, (2.59)

∂vk+1

∂ν
= 0 on ∂UN (2.60)

for vk+1 ∈ H.

A fixed point corresponds to a weak solution (ψ∗, u∗, v∗) ∈ H3 of the drift diffusion system.

The Gummel Map can be shown to have a fixed point by the application of the

Schauder Fixed Point Theorem.

Theorem 2.4.3.1 (Schauder Fixed Point Theorem). Let X be a normed vector space,

and K ⊂ X a non-empty, compact, and convex set. Then given any continuous mapping

f : K → K there exists x ∈ K such that f(x) = x.

In our case X = H2 and K ⊂ X is a subset satisfying bounds on u and v guaranteed

by the analysis of the component equations of the drift diffusion system. Thus a fixed point

is guaranteed by showing that G is continuous and maps a non-empty, convex, compact

subset K into itself where K is determined by bounds on solutions to the component

equations.

14

3. NUMERICAL TECHNIQUES

In this section necessary tools for the simulation of the model presented in Section

2 are reviewed.

As Figure 3.1 illustrates, the continuum scale solver used in this work consists

of 3 nested loops to handle the coupled nature of the model, the nonlinearity, and the

TEM equations. The Gummel Map described in the previous section is the outer most

iterative loop and decouples the model. The first interior loop is the domain decomposition

algorithm for each decoupled equation. This handles the TEM model and is the subject

of the next chapter. Finally, each equation is nonlinear and must be solved iteratively by

Newton’s method. This chapter describes Newton’s method as well as the finite difference

discretization for the continuum scale model.

A brief overview of the computational model for the microscopic heterojunction

parameter calculation, Density Functional Theory, is given in the Appendix.

3.1. Finite Difference Discretization

In the numerical experiements in Chapter 5 the equations are discretized by centered

finite differences. Here a centered finite difference discretization is reviewed for the linear

Poisson equation.

−u′′ = f, x ∈ (a, b), (3.1)

u(a) = α, u(b) = β. (3.2)

We seek to approximate u on (a, b) by values Uj at grid points xj , j = 1, ...,M , where

a = x0 and b = xM+1. We will assume a uniform grid, so that xj+1−xj = h, j = 0, ...,M .

15

FIGURE 3.1: Illustration of continuum solver structure.

Replace u′′ in (3.1) by a centered finite difference approximation,

D2Uj =
1

h2
(Uj−1 − 2Uj + Uj+1) (3.3)

to obtain a set of algebraic equations

− 1

h2
(Uj−1 − 2Uj + Uj+1) = f(xj) for j = 1, 2, ...,M. (3.4)

Incorporating the boundary conditions we obtain a linear system

AU = F, (3.5)

16

1

h2

1

−1 2 −1

−1 2 −1

. . .
. . .

. . .

−1 2 −1

−1 2 −1

1

U0

U1

U2

...

UM−1

UM

UM+1

=

α

f(x1)

f(x2)

...

f(xM−1)

f(xM)

β

(3.6)

The values Uj are an approximation of the true solution u at grid points xj depending

on the width of the mesh h. Thus we expect error between Uj and u(xj) to shrink as

h → 0. In Chapter 5 convergence will be tested in the domain decomposition setting to

ensure that the introduction of the domain decomposition algorithm has no effect on the

order of convergence of the discretization. For that reason we review the expected order

of convergence for the centered finite difference approximation.

We begin by recalling Taylor expansions up to fourth order,

u(x+ h) = u(x) + hu′(x) +
h2

2
u′′(x) +

h3

6
u(3)(x) +

h4

24
u(4) +O(h5), (3.7)

u(x− h) = u(x)− hu′(x) +
h2

2
u′′(x)− h3

6
u(3)(x) +

h4

24
u(4) +O(h5). (3.8)

Then plugging (3.7)-(3.8) into (3.3) we have

D2u(x) =
u(x+ h)− 2u(x) + u(x− h)

h2

=
h2u′′(x) + 1

12h
4u(4) +O(h5)

h2

= u′′(x) +O(h2)

where O(h2) denotes the term whose size is controlled by h2. Note that this calculation

required u(x) ∈ C4.

This shows that the pointwise error |D2Uj − u′′(xj)| is controlled by h2. However,

17

this does not tell us about how the global error

‖E‖∞ = ‖U − u‖∞ = max
1≤j≤M

|Uj − u(xj)| (3.9)

is controlled by the mesh size h.

To obtain a bound on ‖E‖∞ we compute the local truncation error (LTE), and then

use stability to show that the global error can be bounded in terms of the LTE.

Replacing Uj by u(xj) in (3.4) we define the local truncation error τj by

τj =
1

h2
(u(xj−1)− 2u(xj) + u(xj+1)) + f(xj) for j = 1, 2, . . . ,M. (3.10)

Then assuming u is sufficiently smooth, we can use the Taylor expansions to obtain

τj =

[
u′′(xj) +

1

12
h2u′′′′(xj) +O(h4)

]
+ f(xj). (3.11)

Then we note that from the original differential equation, u′′(xj) + f(xj) = 0, thus we

have

τj =
1

12
h2u′′′′(xj) +O(h4). (3.12)

Since u′′′′ is independent of h, we have τj = O(h2) as h→ 0.

Define u to be the vector consisting of the true solution evaluated at grid points, so

that uj = u(xj). Then let E = U − u, and τ be the vector with components τj , the local

truncation error at xj . Next we subtract

AU = F + τ (3.13)

from

Au = F (3.14)

and consider the equation,

AhEh = −τh, (3.15)

18

where the superscript h denotes the dependence on h.

Solving (3.15) for Eh we have

Eh = −(Ah)−1τh. (3.16)

Thus,

‖Eh‖ ≤ ‖(Ah)−1‖‖τh‖. (3.17)

Then, if there is some constant K s.t.

‖(Ah)−1‖ ≤ K for sufficiently small h, (3.18)

we have

‖Eh‖ ≤ K‖τh‖ (3.19)

in whichever norm we choose.

The existence of such a K is referred to as the stability of the method.

In [[23], p. 20] it is shown that A is stable in both the 2-norm and the ∞-norm.

Thus we have

‖Eh‖∞ = O(h2). (3.20)

3.2. Newton’s Method

In Slotboom variables each component equation of the drift diffusion system is semi-

linear. Thus we need a method for solving nonlinear partial differential equations. For

this we use Newton’s Method [22, 23]. In describing Newton’s method we will consider a

nonlinear equation

G : Rk → Rk, (3.21)

G(x) = 0, (3.22)

19

e.g. the result of discretizing one of the equations in the drift diffusion system.

Newton’s method solves this equation iteratively by starting from an initial guess

x0 and proceeding for each k ≥ 0,

xk+1 = xk − J−1(xk)G(xk) (3.23)

until a stopping criteria is met, where J(x) is the Jacobian of G(x).

In 1d we can illustrate how Newton’s Method works by following the tangent line at

G(xk) from the point G(xk) to the x-axis. The Newton iterate xk+1 is located where the

tangent line crosses the x-axis. Figure 3.2 illustrates Newton’s Method in one dimension.

FIGURE 3.2: Illustration of Newton’s Method in one dimension. x denotes the solution
to G(x) = 0.

It is well known that Newton’s method is not globally convergent, and thus success

20

depends significantly on the choice of the initial iterate. However, there are conditions

under which Newton’s method can be guaranteed to converge.

Theorem 3.2.0.2 ([22] p. 71). Assume the equation G(x) = 0 has a solution x∗, that the

Jacobian J is Lipschitz continuous and is nonsingular. Then there are constants K > 0

and δ > 0 s.t. if xk ∈ Bδ(x∗) then the Newton iterate given by (3.23) satisifes

‖xk+1 − x∗‖ ≤ K‖xk − x∗‖2. (3.24)

The theorem says that there is a neighborhood about the solution in which Newton’s

method converges quadratically. We note that this neighborhood is, in practice, very

difficult to determine.

There is no reason to expect that the Gummel Map described in the previous section

will converge quadratically to a solution of the drift diffusion system. Thus the natural

question to ask is, if Newton’s method converges quadratically, why not solve the coupled

drift diffusion system directly with Newton’s method? Indeed, in [24, 37] the coupled

model is solved directly. However, whereas the range of initial guesses for which New-

ton’s method would converge for the fully coupled system may be frustratingly small and

difficult to find, the Gummel Map is much more forgiving. Thus when employing the

Gummel Map difficulties associated to initial guesses for Newton’s method are restricted

to the individual equations.

21

4. DOMAIN DECOMPOSITION

Domain decomposition methods provide a framework for solving a PDE indepen-

dently on multiple subdomains. Originally these methods were developed in the interest of

parallelization for PDE problems with smooth solutions that were too large to be solved on

a single processor. More recently, domain decomposition has developed as a technique for

solving problems with discontinuous coefficients or interfaces separating different materials

or physical models [4, 5, 9, 25, 31, 32, 33, 43, 44].

First we review the basic concepts of domain decomposition for the linear Pois-

son equation on Ω following [34]. This setup is then extended to present two algorithms

designed for the model for charge transport in semiconductor structures with heterojunc-

tions. Convergence analysis is performed for these algorithms.

4.1. Mathematical Background

The linear Poisson equation has no jumps or discontinuities but this background will

serve as a template for the more interesting problems related to semiconductor structures

with heterojunctions.

4.1.1 Continuous Formulation

We begin with the linear Poisson equation posed on the whole domain Ω:

−4φ = f, x ∈ Ω, (4.1)

φ = 0, x ∈ ∂Ω. (4.2)

We divide the domain Ω into two non-overlapping subdomains Ωi, i = 1, 2, (Fig. 4.1

shows examples) and Γ will denote the interface between them.

22

Ω Ω2Γ Ω

Γ

Ω2

FIGURE 4.1: Examples of dividing Ω in to subdomains.

Next we rewrite (4.1)-(4.2) in a multidomain formulation:

−4φ1 = f, x ∈ Ω1, (4.3)

φ1 = 0, on ∂Ω1 ∩ ∂Ω, (4.4)

φ1 = φ2 on Γ, (4.5)

∂φ2

∂ν
=
∂φ1

∂ν
on Γ, (4.6)

φ2 = 0 on ∂Ω2 ∩ ∂Ω, (4.7)

−4φ2 = f, x ∈ Ω2. (4.8)

Equations (4.5)-(4.6) are the transmission conditions for the problem. In a domain de-

composition setting we would like to solve the PDE independently on the two subdomains

Ω1 and Ω2. Clearly if we had a boundary condition for φi on Γ this would be a straight-

forward task. Instead, we have the transmission conditions (4.5)-(4.6). The difficulty in

domain decomposition lies in resolving these transmission conditions while solving the

PDE independently on the two subdomains.

For the class of methods known as iterative substructuring methods this is accom-

plished by iteratively solving a particular equation posed on the interface. The solution

of this equation will provide a boundary condition for the subdomain problems at the

interface such that the transmission conditions are satisfied.

23

Consider the problem

−4wi = f, x ∈ Ωi, (4.9)

wi = 0, on ∂Ωi ∩ ∂Ω, (4.10)

wi = λ, on ∂Γ. (4.11)

It is clear that for any λ the transmission condition (4.5) is satisfied by wi. However,

there is no reason to expect that (4.6) is satisfied for any particular λ. Clearly, though,

for λ = φ1|Γ = φ2|Γ where φ solves (4.1)-(4.2), (4.6) is satisfied. Next we describe an

equation that will provide a method of finding this correct λ.

For a linear or semilinear problem we can write wi = Jiλ+Pif where Jiλ solves the

problem

−4vi = 0, x ∈ Ωi, (4.12)

vi = λ, on Γ, (4.13)

vi = 0, on ∂Ωi ∩ ∂Ω, (4.14)

and Pif solves

−4vi = f, x ∈ Ωi, (4.15)

vi = 0, on Γ, (4.16)

vi = 0, on ∂Ωi ∩ ∂Ω. (4.17)

This is the standard splitting of the solution to (4.9)-(4.11) into parts responding to the

boundary data λ and the forcing term f .

Now define the operators Sλ and χ by

Sλ :=
2∑
i=1

∂Jiλ

∂νi
(4.18)

and

χ := −
2∑
i=1

∂Pif

∂νi
(4.19)

24

and consider the following Steklov-Poincaré interface equation

Sλ = χ, on Γ. (4.20)

If λ satisfies the Steklov-Poincaré interface equation (4.20) then wi = φi for i = 1, 2 [34].

In this paper we consider a class of methods known as iterative substructuring meth-

ods. These methods are designed to solve (4.20) iteratively, e.g. by a Richardson scheme.

The solution λ provides data for the solution to (4.1)-(4.2) along Γ which guarantees both

transmission conditions are satisfied when solving independent subdomain problems.

4.1.2 Algebraic Formulation

In this section we consider the linear Poisson equation (4.1)-(4.2) discretized by finite

differences. In this setting domain decomposition methods iteratively solve the Schur-

complement system, the discrete counterpart to the Steklov-Poincaré interface equation.

Consider the algebraic system resulting from a discretization of (4.1)

AΦ = F. (4.21)

Denote by Ai,j the parts of A corresponding to unknowns in domains i and j, and by Ai,Γ,

AΓ,i, and AΓ,Γ the parts of A corresponding to unknowns in along the interface in domain

i or purely along the interface. Then if we order the unknowns so that Φ = (Φ1,Φ2,ΦΓ)T ,

where Φi denotes unknowns in Ωi and ΦΓ denotes interface unknowns, we have
A1,1 0 A1,Γ

0 A2,2 A2,Γ

AΓ,1 AΓ,2 AΓ,Γ

Φ1

Φ2

ΦΓ

 =

f1

f2

fΓ

 . (4.22)

By block elimination we obtain the Schur-complement system

ΣΦΓ = Θ (4.23)

25

where

Θ := fΓ −AΓ,1A
−1
1,1f1 −AΓ,2A

−1
2,2f2, (4.24)

Σ := AΓ,Γ −AΓ,1A
−1
1,1A1,Γ −AΓ,2A

−1
2,2A2,Γ. (4.25)

4.1.3 Neumann-Neumann Algorithm

The algorithms developed in the next section are most closely related to the Neumann-

Neumann algorithm.

This is a well-known iterative substructuring method that solves independent Dirich-

let problems on subdomains while iteratively solving (4.20),(4.23).

Neumann-Neumann Algorithm

Given λ0, for each k ≥ 0,

1. For i = 1, 2 solve the subdomain problems

−4φk+1
1 = f, x ∈ Ω1, (4.26)

φk+1
1 = λ, on Γ, (4.27)

φk+1
1 = 0, on ∂Ω1 ∩ ∂Ω, (4.28)

for φk+1
1 and φk+1

2 .

2. Then solve in subdomains i = 1, 2,

−4vk+1
i = 0, x ∈ Ωi (4.29)

vk+1
i = 0 on ∂Ω ∩ ∂Ωi (4.30)

∂vk+1
i

∂ν
=

[
∂φ

∂ν

]
Γ

on Γ (4.31)

3. Update λ by

λk+1 = λk − θ
[
vk+1

]
Γ
. (4.32)

4. Continue with (1) unless stopping criterium
∥∥∥[∂φk+1

∂ν

]
Γ

∥∥∥ holds.

26

As it is shown in [34] the Neumann-Neumann algorithm can be analyzed as a

Richardson scheme for the solution of (4.20), and there exists a θmax > 0 s.t. if θ ∈

(0, θmax), the Neumann-Neumann algorithm converges to a solution of (4.1)-(4.2).

Also we note that in 1D it is easy to show that step two may be skipped, instead

updating λ by

λk+1 = λk + θ

[
∂φk+1

∂ν

]
Γ

. (4.33)

To see this, consider Ω = (−1, 1), Ω1 = (−1, 0), Ω2 = (0, 1). Then if vi solves

(4.29)-(4.31), vi is a linear funtion defined by

v1(x) =

[
∂φ

∂ν

]
Γ

(1 + x), (4.34)

v2(x) =

[
∂φ

∂ν

]
Γ

(x− 1). (4.35)

So

[
vk+1

]
Γ

= vk+1
2 (0)− vk+1

1 (0) (4.36)

= −2

[
∂φ

∂ν

]
Γ

. (4.37)

Hence we may avoid step 2 in the Neumann-Neumann algorithm by making this adjust-

ment.

The algorithms in the next two sections designed for the model for semiconductor

structures with heterojunctions are extensions of this algorithm. The algorithm for the

potential equation allows for discontinuities in the condition (4.5) while the algorithm

for the equations for carrier densities allow for a discontinuity whose value in domain 2

depends on the flux of the solution in domain 1.

4.1.4 Richardson Iteration

There are many types of iterative methods for the solution of linear systems of

structure similar to (4.20) [22]. The domain decomposition methods in this work can be

27

analyzed as Richardson schemes. Here we overview this iterative scheme for an equation

posed in Rk.

Let A : Rk → Rk, and b ∈ Rk, so that we consider the problem,

Ax = b. (4.38)

Write (4.38) as

x = (I −A)λ+ b, (4.39)

then define the Richardson iteration by: given x0 for each k ≥ 1 iterate

xk+1 = (I −A)xk + b. (4.40)

A theorem to prove that xk converges to the solution x of (4.38) is based on the

more general scheme

xk+1 = Mxk + c, (4.41)

where M is called the iteration matrix.

Theorem 4.1.4.1 ([22] p. 6). If ‖M‖ < 1 then the iteration (4.41) converges to

x = (I −M)−1c for all initial iterates x(0).

For (4.38) we have M = (I −A) and c = b so that if ‖I −A‖ < 1, the iteration

(4.40) converges to the solution x = (I− I+A)−1b = A−1b of (4.38) for all initial iterates

x0.

Clearly the interface equation (4.20) is not posed in Rk. Given that we would like

to analyze the convergence of algorithms designed to solve equations similar to (4.20),

this may seem problematic. However, a proof of this theorem does not rely on the finite

dimension of Rk. As we will see later in the context of the algorithms for the heterojunction

model, the convergence of these methods relies on the contraction property ‖M‖ < 1 as

well as the completeness of the vector space in question.

28

4.1.5 Complexity Comparison

It is well known that the Neumann-Neumann algorithm is mesh independent. That

is, as the mesh is refined and the number of computational nodes increases, the number

of domain decomposition iterations required to reach a given tolerance remains constant.

Here we analyze the relative computational complexity of solving (4.1)-(4.2) in a

single domain versus solving the problem with a mesh indepndent iterative substructuring

method like the Neumann-Neumann method.

LetN denote the number of computational nodes in the domain Ω, and for simplicity

assume N
2 = N0 is the number of nodes in each subdomain.

Suppose as well that the solver for the linear system resulting from a discretization

of the problems has O(N2) complexity.

Then if the domain decomposition algorithm requiresK iterations, we have 2KO(N2
0)

work done in the domain decomposition setting.

Then using N = 2N0, we note that we have O((2N0)2) = 4O(N2
0) in the single

domain case.

Thus we see that the domain decomposition algorithm will require less work when

K ≤ 2.

For anything but the simplest problems, this is unattainable. However, this calcu-

lation ignores the possibility of computing the subdomain problems in parallel, which is

a considerable advantage for computational time for the domain decomposition setting.

Additionally, in the case of the model for charge transport in semiconductor struc-

tures with heterojunctions including the thermionic emission model equations directly in

a single domain monolithic solver results in a change of the sparsity pattern of the ma-

trices in the linear systems to be solved, as well as the loss of symmetry. This affects

the choice of linear solver for the problem and in many cases affects the efficiency of the

solver. This further advocates for the use of domain decomposition, which resolves the

29

thermionic emission model at a level that does not effect the linear systems being solved.

4.2. DDM for Potential Equation

In the previous section we described the background for iterative substructuring

methods including transmission conditions and the Steklov-Poincaré interface equation

(4.20). We then introduced the Neumann-Neumann method, a method that can be ana-

lyzed as a Richardson scheme for (4.20).

In this section, we extend these techniques to the problem (2.8) with (2.19) and

(2.20). The method we develop will be based on the Neumann-Neumann method but will

allow for the non-homogeneous jump (2.19).

4.2.1 Continuous Formulation

Here we develop an algorithm to solve (2.8) with (2.19) and (2.20). Homogeneous

Dirichlet boundary conditions are assumed at the external boundary for simplicity of

exposition. Rather than solving this problem on the whole domain, we would like to

solve independent problems in subdomains Ω1, Ω2. The iterative substructuring method

described here is thus a method for finding a suitable λ defined on the interface Γ so that

(2.8) with (2.19) and (2.20) is equivalent to the problem

−∇ · (ε1∇ψ) = q1, x ∈ Ω1, ψ1|Γ = λ, (4.42)

−∇ · (ε2∇ψ) = q2, x ∈ Ω2, ψ2|Γ = λ+ ψ4. (4.43)

For any λ, the system (4.42)-(4.43) satisfies (2.19). However, there is no reason to expect

that (2.20) is satisfied by a solution to (4.42)-(4.43). Thus we seek the value λ which

guarantees (2.20) is also satisfied.

To develop the method for finding such a λ we recall the definitions of Jiλ (4.12)-

30

(4.14) and Pif (4.15)-(4.17) and write

ψ1 = J1λ+ P1q, ψ2 = J2λ+ J2ψ4 + P2q. (4.44)

For ψ1 this is the standard separation of the solution to (4.42) into components responding

to the boundary data λ and the forcing term q1. For ψ2 we are additionally separating

the response to the data λ+ ψ4 into components responding to λ and ψ4 distinctly.

Then define K and Υ by

Kλ := ε1
∂J1λ

∂ν
− ε2

∂J2λ

∂ν
, (4.45)

Υ := ε2
∂P2q

∂ν
− ε1

∂P1q

∂ν
+ ε2

∂J2ψ4
∂ν

, (4.46)

and consider the equation

Kλ = Υ. (4.47)

Lemma 4.2.1.1. Suppose λ satisifes the equation Kλ = Υ. Then a solution of (4.42)-

(4.43) also solves (2.8) with (2.19) and (2.20).

Proof. The proof of this lemma is a straightforward calculation. Assume λ satisfies (4.47)

and assume ψ satisfies (4.42)-(4.43) with this λ. Clearly (2.8) is satisfied for i = 1, 2.

Further, note that for any λ the condition (2.19)

[ψ]Γ = ψ4 (4.48)

is satisfied by construction. Thus it remains to check (2.20)[
ε
∂ψ

∂ν

]
Γ

= 0. (4.49)

To see this condition is satisfied we calculate, beginning with (4.47),

Kλ = Υ.

Recalling the definitions (4.45)-(4.46) we have

εΓ1
∂J1λ

∂ν
− εΓ2

∂J2λ

∂ν
= εΓ2

∂P2q

∂ν
− εΓ1

∂P1q

∂ν
+ ε2

∂J2ψ4
∂ν

.

31

Then we group terms by domain,

εΓ1

(
∂J1λ

∂ν
+
∂P1q

∂ν

)
= εΓ2

(
∂J2λ

∂ν
+
∂J2ψ4
∂ν

+
∂P2q

∂ν

)
,

thus

εΓ1
∂(J1λ+ P1q)

∂ν
= εΓ2

∂(J2λ+ J2ψ4 + P2q)

∂ν
.

Recalling (4.44) we conclude

εΓ1
∂ψ1

∂ν
= εΓ2

∂ψ2

∂ν

4.2.2 Algebraic Formulation

To construct the algebraic counterpart to (4.47) we consider the centered finite

difference discretization of (4.42)-(4.43). After reordering unknowns we have

A1,1 0 A1,Γ 0

0 A2,2 0 A2,Γ

AΓ,1 AΓ,2 A1
Γ,Γ A2

Γ,Γ

0 0 −I I

Ψ1

Ψ2

Ψ1
Γ

Ψ2
Γ

=

Q1

Q2

{QΓ}Γ

Ψ4

. (4.50)

The first two lines in this system are simply the discretization of the potential equation

in the bulk domains 1 and 2. In the third line, we define

{QΓ}Γ :=
Q1

Γ + Q2
Γ

2
. (4.51)

The last line is the algebraic counterpart to the TEM condition (2.19). Rewriting this

system we have four equations

A1,1Ψ1 + A1,ΓΨ1
Γ = Q1, (4.52)

A2,2Ψ2 + A2,ΓΨ2
Γ = Q2, (4.53)

AΓ,1Ψ1 + AΓ,2Ψ2 + A1
Γ,ΓΨ1

Γ + A2
Γ,ΓΨ2

Γ = {QΓ}Γ , (4.54)

Ψ2
Γ −Ψ1

Γ = Ψ4. (4.55)

32

Substituting (4.55) in (4.53)-(4.54) we have

A2,2Ψ2 + A2,Γ(Ψ1
Γ + Ψ4) = Q2, (4.56)

AΓ,1Ψ1 + AΓ,2Ψ2 + A1
Γ,ΓΨ1

Γ + A2
Γ,Γ(Ψ1

Γ + Ψ4) = {QΓ}Γ . (4.57)

Now using (4.52) with (4.56), (4.57) we solve for Ψ1, Ψ2,

Ψ1 = A−1
1,1Q1 −A1,1A1,ΓΨ1

Γ, (4.58)

Ψ2 = A−1
2,2Q2 −A−1

2,2A2,ΓΨ1
Γ −A−1

2,2Ψ4. (4.59)

Substituting (4.58) and (4.59) into (4.57) results in the algebraic counterpart to (4.47)

KhΨ1
Γ = Υh (4.60)

where

Kh := A1
Γ,Γ + A2

Γ,Γ −AΓ,1A
−1
1,1A1,Γ −AΓ,2A

−1
2,2A2,Γ (4.61)

and

Υh := (AΓ,1A
−1
1,1Q1 + AΓ,2A2,2Q2 + {QΓ}Γ) + (A2

Γ,Γ −AΓ,2A
−1
2,2)Ψ4. (4.62)

4.2.3 Algorithm

To find an appropriate λ and solve (4.42)-(4.43) we present a method that can be

analyzed as a Richardson scheme for (4.47).

Algorithm DDP to solve (2.8) with (2.19)

Given λ0, for each k ≥ 0,

1. Solve (4.42) for ψk+1
1 and (4.43) for ψk+1

2 .

33

2. Solve the following problem in subdomains i = 1, 2,

−∇ · (εi∇φk+1
i) = 0, x ∈ Ωi (4.63)

φk+1
i = 0 on ∂Ω ∩ ∂Ωi (4.64)

εi
∂φk+1

i

∂ν
=

[
εi
∂ψ

∂ν

]
Γ

on Γ (4.65)

3. Update λ by

λk+1 = λk − θ [φ]Γ (4.66)

4. Continue with (1) unless stopping criterium
∥∥∥[ε∂ψ∂ν]Γ

∥∥∥ holds.

Similarly to the Neumann-Neumann method, in 1D we may avoid step 2 by adjusting

the update of λ to

λk+1 = λk + θ

[
ε
∂ψ

∂ν

]
Γ

. (4.67)

4.2.4 Convergence Analysis

To show that algorithm DDP converges we will analyze the weak form of (4.47).

Step 3 of the algorithm will be analyzed as a Richardson iteration preconditioned by steps

1 and 2. This will be shown to be a contraction on a complete metric space and the

Banach Contraction Theorem will be applied to guarantee convergence.

34

Let γi : H1(Ωi)→ H
1
2 (∂Ωi) be the trace operator, and

Vi := H1(Ωi), (4.68)

V 0
i := {v ∈ Vi | γiv|∂Ω∩∂Ωi = 0} , (4.69)

V :=
{
v ∈ L2(Ω)

∣∣ v|Ωi ∈ V 0
i for i = 1, 2

}
, (4.70)

Λ := H
1
2 (Γ), (4.71)

(u, v)Ωi :=

∫
Ωi

u v, (4.72)

ai(u, v) :=

∫
Ωi

εi∇u · ∇v, (4.73)

First we characterize K as an operator from Λ to Λ′, where Λ′ denotes the space

of continuous linear functionals on Λ. Let µ ∈ Λ, multiply by µ, apply the divergence

theorem and note that both εiJiλ is divergence free in Ωi and Riµ|∂Ω∩∂Ωi = 0 for any

µ ∈ Λ.

〈Kλ, µ〉 =

∫
Γ

(
ε1
∂J1λ

∂ν1
+ ε2

∂J2λ

∂ν2

)
µ

=

∫
Γ
ε1
∂J1λ

∂ν1
R1µ+

∫
Γ
ε2
∂J2λ

∂ν2
R2µ

=

∫
∂Ω1

ε1
∂J1λ

∂ν1
R1µ+

∫
∂Ω2

ε2
∂J2λ

∂ν2
R2µ

=

∫
Ω1

ε1∇J1λ · ∇R1µ+

∫
Ω2

ε2∇J2λ · ∇R2µ

= a1(J1λ,R1µ) + a2(J2λ,R2µ)

Since Ri can be any possible extension operator, we take Ri = Ji in this case. Thus we

have

〈Kλ, µ〉 = a1(J1λ, J1µ) + a2(J2λ, J2µ). (4.74)

The fact that for each λ ∈ Λ, 〈Kλ, µ〉 is linear as a function of µ follows from the

linearity of integration. In the proof of the upcoming Theorem 4.2.4.2 continuity will be

shown. Thus as a function of µ, 〈Kλ, µ〉 ∈ Λ′ for each λ ∈ Λ.

35

Next we proceed similarly for the right hand side of (4.74), recalling the definition

of Piq (4.15)-(4.17) and applying divergence theorem

〈Υ, µ〉 = −
∫

Γ
ε2
∂P2q

∂ν2
µ−

∫
Γ
ε1
∂P1q

∂ν1
µ−

∫
Γ
ε2
∂J2ψ4
∂ν2

µ

= −
∫

Γ
ε2
∂P2q

∂ν2
R2µ−

∫
Γ
ε1
∂P1q

∂ν1
R1µ−

∫
Γ
ε2
∂J2ψ4
∂ν2

R2µ

= −
∫
∂Ω2

ε2
∂P2q

∂ν2
R2µ−

∫
∂Ω1

ε2
∂P1q

∂ν1
R1µ−

∫
∂Ω2

ε2
∂J2ψ4
∂ν2

R2µ

=

∫
Ω2

∇ · (ε2∇P2q)R2µ−
∫

Ω2

ε2∇P2q · ∇R2µ

+

∫
Ω1

∇ · (ε1∇P1q)R1µ−
∫

Ω1

ε1∇P1q · ∇R1µ−
∫

Ω2

ε2∇J2ψ4 · ∇R2µ

=

∫
Ω2

q2R2µ−
∫

Ω2

ε2∇P2q · ∇R2µ+

∫
Ω1

q1R1µ−
∫

Ω1

ε1∇P1q · ∇R1µ− a2(J2ψ4, R2µ)

=

2∑
i=1

[(qi, Riµ)Ωi − ai(Piq,Riµ)]− a2(J2ψ4, R2µ).

Linearity of 〈Υ, µ〉 follows from the linearity of integration. Continuity of ai(·, ·) terms

is demonstrated in the proof of Theorem 4.2.4.2. The continuity of the terms (qi, Riµ)Ωi

remain to be demonstrated. Let µ ∈ Λ,

|(qi, Riµ)Ωi | =

∣∣∣∣∫
Ωi

qiRiµ

∣∣∣∣
≤ ‖qi‖L2(Ωi)‖Riµ‖L2(Ωi)

≤ ‖qi‖L2(Ωi)‖Riµ‖H1(Ωi).

as long as qi ∈ L2(Ωi). Then since Ri : Λ→ V 0
i is continuous, there exists C > 0 s.t.

|(qi, Riµ)Ωi | ≤ C‖qi‖L2(Ωi)‖µ‖Λ.

So, 〈Υ, µ〉 ∈ Λ′.

And now we write the weak form of (4.47) as:

find λ ∈ Λ : 〈Kλ, µ〉 = 〈Υ, µ〉 ∀µ ∈ Λ. (4.75)

To prove convergence of Algorithm DDP we use the following lemma, contained in

a theorem from [34].

36

Lemma 4.2.4.1 ([34] p. 120). Let X be a Hilbert space and A : X → X ′ be an operator.

Suppose A can be split into A = A1 + A2, and that Ai is continuous and coercive with

continuity constant Ci and coercivity constant αi, i = 1, 2. That is,

|〈Aix, y〉| ≤ C‖x‖X ‖y‖X ∀x, y ∈ X and (4.76)

〈Aix, x〉 ≥ α‖x‖2X ∀x ∈ X. (4.77)

Define N = (A−1
1 +A−1

2)−1. Note that N is continuous and coercive since Ai is continuous

and coercive. Let αN denote the coercivity constant for N and let CN denote the continuity

constant for N. Further assume N satisfies the condition that there exists k∗ > 0 s.t.

〈Nλ,N−1Aλ〉+ 〈Aλ, λ〉 ≥ k∗‖λ‖2X ∀λ ∈ X. (4.78)

Then there exists a θmax given by

θmax =
k∗αN

CN

(
1
α1

+ 1
α2

)
(C1 + C2)2

(4.79)

s.t. for any 0 < θ < θmax, the operator Tθ = I − θN−1A is a contraction on the space X.

We also note that if Ai are symmetric, condition (4.78) is equivalent to the coercivity

of A [[34], p. 121].

We will also require the Banach Contraction Mapping Theorem. A proof of this

result can be found in any standard real analysis text, e.g. [36].

Theorem 4.2.4.1 (Banach Contraction Mapping Theorem). Let (X, d) be a complete

metric space, and let f : X → X be a contraction. That is, there exists 0 < K < 1 such

that d(f(x), f(y)) < K d(x, y) for all x, y ∈ X. Then there exists a unique fixed point

x0 ∈ X such that f(x0) = x0. Further, for any x ∈ X, limn→∞ f
n(x) = x0.

Theorem 4.2.4.2. There exists θψmax > 0 s.t. for any 0 < θ < θψmax, and for any initial

guess λ(0), Algorithm DDP converges to the solution λ of (4.47).

37

Proof. A proof of this theorem takes the following steps:

1. First we define an operator splitting for K, and show that Algorithm DDP is equiv-

alent to the following preconditioned Richardson scheme for (4.47),

(K−1
1 +K−1

2)−1(λk+1 − λk) = θ(Υ−Kλk). (4.80)

2. Next we show that

Np := (K−1
1 +K−1

2)−1 (4.81)

satisfies the criteria from Lemma 4.2.4.1 on the Hilbert space Λ.

3. Finally we conclude via application of the Banach Contraction Mapping Theorem

and Lemma 4.2.4.1 that the algorithm converges.

We will require the Poincaré Inequality.

Theorem 4.2.4.3 (Poincaré Inequality, [3] p. 290). Suppose that 1 ≤ p <∞ and U is a

bounded open set. Then there exists a constant C such that

‖u‖Lp(U) ≤ C‖∇u‖Lp(U) ∀u ∈W
1,p
0 (U). (4.82)

In particular, the expression ‖∇u‖Lp(U) is a norm on W 1,p
0 (U), and it is equivalent to the

norm ‖u‖W 1,p.

Step 1

We define the operator splitting of K by

K1λ :=
∂J1λ

∂ν
, (4.83)

K2λ := −∂J2λ

∂ν
. (4.84)

Recall that ψk+1
1 = J1λ

k + P1q and ψk+1
2 = J2λ

k + J2ψ4 + P2q, therefore,

φk+1
1 |Γ = K−1

1

(
∂J1λ

∂ν
+
∂P1q

∂ν
−
∂J2λ

k + J2ψ4
∂ν

− ∂P2q

∂ν

)
(4.85)

= −K−1
1 (Υ−Kλk). (4.86)

38

Similarly,

φk+1
2 |Γ = K−1

2 (Υ−Kλk). (4.87)

And so we have,

λk+1 = λk + θ(K−1
1 +K−1

2)(Υ−Kλk). (4.88)

Or equivalently,

Np(λ
k+1 − λk) = θ(Υ−Kλk). (4.89)

Step 2

To show that Np satisfies the criteria of Lemma 4.2.4.1, we must show that Ki is

continuous and coercive on Λ for i = 1, 2 and that Np satisfies condition (4.78).

To show that Ki is coercive we will require the trace inquality

Proposition 4.2.4.1 (Trace Inequality [34], p. 7). Let vi ∈ Vi, then there exists C∗i s.t.

‖vi|Γ‖Λ ≤ C∗i ‖vi‖H1(Ωi). (4.90)

In the weak setting we have

〈K1λ, µ〉 = a1(J1λ, J1µ), (4.91)

〈K2λ, µ〉 = a2(J2λ, J2µ). (4.92)

Then we calculate,

〈K1λ, λ〉 ≥ ε0‖∇J1λ‖2L2(Ωi)
(4.93)

≥ ε0C‖J1λ‖2H1(Ωi)
(4.94)

≥ ε0CC
∗‖J1λ‖2Λ. (4.95)

where C is the constant guaranteed by the Poincaré Inquality. Thus K1 is coercive with

α1 = ε0CC
∗. The calculation for K2 follows.

39

Next we calculate

〈K1λ, µ〉 ≤ ε1‖J1λ‖H1(Ω1)‖J1µ‖H1(Ω1). (4.96)

From well known estimates for elliptic boundary value problems [[34], p. 9] we know there

exists β > 0 such that

‖J1λ‖H1(Ω1) ≤ β‖λ‖Λ. (4.97)

Thus K1 is continuous with constant C1 = ε1β. The calculation for K2 follows.

Now we simply note that the Ki are clearly symmetric, and thus condition (4.78)

is equivalent to the coercivity of K. But the coercivity of K is a direct consequence of

the coercivity of the Ki. Thus condition (4.78) is satisfied, and the conditions of Lemma

4.2.4.1 are satisfied.

Step 3

Let θψmax be the constant guaranteed by Lemma 4.2.4.1. Let 0 < θ < θψmax. From

Lemma 4.2.4.1 we know that the operator

Tψθ := I − θN−1
p K (4.98)

is a contraction on Λ. Notice,

Np(λ
k+1 − λk) = θ(Υ−Kλk)

then solving for λk+1,

λk+1 = λk − θN−1
p (Kλk −Υ),

and applying (4.98),

λk+1 = Tψθ λ
k + θN−1

p Υ.

Then since θN−1
p Υ does not depend on λk, Tψθ a contraction implies

Gψθ λ = Tψθ λ+ θN−1
p Υ (4.99)

40

is a contraction on the Hilbert space Λ.

Now applying the Banach Contraction Mapping Principle we know that Algorithm

DDP converges to a fixed point, λ0 of the map Gψθ . Then we have

Gψθ λ0 = λ0,

then recalling (4.99)

Tψθ λ0 + θN−1
p Υ = λ0,

then recalling (4.98)

λ0 − θN−1
p (Kλ0 −Υ) = λ0,

then isolating the two free λ0 terms,

λ0 − λ0 = θN−1
p (Kλ0 −Υ),

so,

0 = Kλ0 −Υ.

Estimating θψmax directly from material parameters is a subject of ongoing research.

The coercivity and continuity constants depend on known material parameters, and using

optimal values for θ has a dramatic influence on the efficiency of this method [12].

4.3. DDM for Carrier Transport

In this section we extend the techniques developed in Section 4.1. to the problem for

electron and hole densities. The method developed here is again related to the Neumann-

Neumann method, but is designed to handle the unusual Robin-like transmission condition

(2.21) or (2.23), rather than the homogenous jump in the primary variable from the

background on the linear Poisson equation.

41

4.3.1 Continuous Formulation

Here we develop an algorithm to solve (2.9) with (2.21) and (2.22) or (2.10) with

(2.23) and (2.24). To this end we note that each problem for carrier transport in Slotboom

variables can be written in the following form, i = 1, 2,

−∇ · (ki∇ui) = fi, x ∈ Ωi, (4.100)

kΓ
1

∂u1

∂ν1
= a2u

Γ
2 − a1u

Γ
1 , (4.101)

kΓ
1

∂u1

∂ν1
= kΓ

2

∂u2

∂ν1
, (4.102)

u|∂Ω∩∂Ωi = 0. (4.103)

We note that homogeneous Dirichlet boundary conditions (4.103) are assumed at the

external boundary for simplicity of exposition.

Again k is data s.t. 0 < kmin < k < kmax on Ω for some constants kmin, kmax. We

also assume f ∈ L2(Ωi) for i = 1, 2 and ai are positive and bounded.

Rather than solving the problem on the entire domain, we would like to solve inde-

pendent problems in subdomains Ω1, Ω2. The iterative substructuring method described

here is thus a method for finding a suitable value λ defined on the interface Γ so that

(4.100)-(4.103) is equivalent to the problem

−∇ · (k1∇u1) = f1, x ∈ Ω1, u1|Γ = λ, (4.104)

−∇ · (k2∇u2) = f2, x ∈ Ω2, u2|Γ =
a1

a2
λ+

1

a2
kΓ

1

∂u1

∂ν1
. (4.105)

For any λ the solution of the system (4.104)-(4.105) satisifes (4.101). However, there is no

reason to expect that (4.102) is satisfied by a solution to (4.104)-(4.105). Thus we seek

the value λ which guarantees (4.102) is also satisfied.

To develop a method for finding such a λ, we write

u1 = H1λ+ P1f, u2 = H2λ+H2

(
1

a1
kΓ

1

(
∂H1λ

∂ν1
+
∂P1f

∂ν1

))
+ P2f, (4.106)

42

where u is the solution of (4.104)-(4.105). Here we recall the definition of Pif (4.15)-(4.17),

and define Hiλ as the solution of the problems

−∇ · (ki∇vi) = 0, x ∈ Ωi, (4.107)

v1 = λ, on Γ (4.108)

v2 =
a1

a2
λ, on Γ (4.109)

vi = 0 on ∂Ωi ∩ ∂Ω. (4.110)

For u1 this is the standard separation of the solution to (4.104) into components responding

to the boundary data λ and the forcing term f1. For u2 we additionally separate the

response to the data a1
a2
λ + 1

a2
kΓ

1
∂u1
∂ν1

into components responding to a1
a2
λ and 1

a2
kΓ

1
∂u1
∂ν1

distinctly. The multiplicative factor a1
a2

is included in the definition of H2λ on the boundary

data to simplify calculations.

Then define Ξ and Σ

Ξλ := kΓ
1

∂H1λ

∂ν
− kΓ

2

∂H2λ

∂ν
− kΓ

2

∂H2

(
1
a1
∂H1λ
∂ν

)
∂ν

, (4.111)

Σ := kΓ
2

∂P2f

∂ν
− kΓ

1

∂P1f

∂ν
+ kΓ

2

∂H2

(
1
a1
∂P1f
∂ν

)
∂ν

(4.112)

(4.113)

and we consider the equation

Ξλ = Σ. (4.114)

Lemma 4.3.1.1. Suppose λ satisfies the equation Ξλ = Σ. Then a solution to (4.104)-

(4.105) also solves (4.100)-(4.103).

Proof. The proof of this lemma is a simple calculation. Assume λ satisfies (4.114). Assume

u satisfies (4.104)-(4.105) with this λ. Clearly (4.100) is satisfied for i = 1, 2. Further,

note that for any λ the condition (4.101) is satisfied by construction. So, the only issue

43

to check is the condition (4.102). So we calculate, beginning with (4.114).

Ξλ = Σ.

Recalling (4.111)-(4.112) we have

kΓ
1

∂H1λ

∂ν
− kΓ

2

∂H2λ

∂ν
− kΓ

2

∂H2

(
1
a1
∂H1λ
∂ν

)
∂ν

= kΓ
2

∂P2f

∂ν
− kΓ

1

∂P1f

∂ν
+ kΓ

2

∂H2

(
1
a1
∂P1f
∂ν

)
∂ν

.

Then we group terms by domain,

kΓ
1

(
∂H1λ

∂ν
+
∂P1f

∂ν

)
= kΓ

2

∂H2

(
λ+ 1

a1

(
∂H1λ
∂ν + ∂P1f

∂ν

))
∂ν

+
∂P2f

∂ν

 ,

Recalling (4.106) we conclude

kΓ
1

∂u1

∂ν1
= kΓ

2

∂u2

∂ν1
.

4.3.2 Algebraic Formulation

To construct the algebraic counterpart to (4.114) we consider a finite difference

discretization of (4.104)-(4.105). After reordering unknowns, we have

A1,1 0 A1,Γ 0

0 A2,2 0 A2,Γ

AΓ,1 AΓ,2 A1
Γ,Γ A2

Γ,Γ

Aflux
1,Γ 0 a1I −a2I

U1

U2

U1
Γ

U2
Γ

=

F1

F2

{FΓ}Γ

0

. (4.115)

The first two lines of this system are simply the discretization of the the equations in the

bulk domains Ω1 and Ω2. In the third line we define

{FΓ}Γ :=
F1

Γ + F2
Γ

2
. (4.116)

The last line is the algebraic counterpart of the TEM equation (2.21) or (2.23), with Aflux
1,Γ

describing the discrete flux of the solution U1 as it approaches Γ. Rewriting this system

44

we have four equations

A1,1U1 + A1,ΓU
1
Γ = F1, (4.117)

A2,2U2 + A2,ΓU
2
Γ = F2, (4.118)

AΓ,1U1 + AΓ,2U2 + A1
Γ,ΓU

1
Γ + A2

Γ,ΓU
2
Γ = {FΓ}Γ , (4.119)

Aflux
1,Γ U1 + a1IU

1
Γ − a2IU

2
Γ = 0. (4.120)

Substituting (4.120) into (4.118) and (4.119) we have

A2,2U2 + A2,Γ

(
1

a2
Aflux

1,Γ U1 +
a1

a2
U1

Γ

)
= F2, (4.121)

AΓ,1U1 + AΓ,2U2 + A1
Γ,ΓU

1
Γ + A2

Γ,Γ

(
1

a2
Aflux

1,Γ U1 +
a1

a2
U1

Γ

)
= {FΓ}Γ . (4.122)

Now using (4.117) and (4.121), (4.122) to solve for Ψ1, Ψ2 we have

U1 = A−1
1,1F1 −A−1

1,1A1,ΓU
1
Γ, (4.123)

U2 = A−1
2,2F2 −

1

a2
A−1

2,2A2,ΓA
flux
1,Γ A−1

1,1F1 −A−1
1,1A1,ΓU

1
Γ +

a1

a2
A−1

2,2A2,ΓU
1
Γ. (4.124)

Finally substituting (4.123) and (4.124) into (4.122) gives

ΞhU
1
Γ = Σh, (4.125)

where

Ξh := AΓ,1A
−1
1,1A1,Γ −AΓ,2A

−1
1,1A1,Γ + a1

a2
AΓ,2A

−1
2,2A2,Γ + A1

Γ,Γ,

− 1
a2
A2

Γ,ΓA
flux
1,Γ A−1

1,1A1,Γ + a1
a2
A2

Γ,Γ,
(4.126)

and

Σh := {FΓ}Γ −AΓ,1A
−1
1,1F1 −AΓ,2A

−1
2,2F2 + 1

a2
AΓ,2A

−1
2,2A2,ΓA

flux
1,Γ A−1

1,1F1

− 1
a2
A2

Γ,ΓA
flux
1,Γ A−1

1,1F1.
(4.127)

4.3.3 Algorithm

To find an appropriate λ and solve (4.104)-(4.105) we consider a method that can

be analyzed as a Richardson scheme for (4.114).

45

Algorithm DDC to solve (4.100)-(4.103)

Given λ0, for each k ≥ 0,

1. Solve (4.104) for uk+1
1 and then solve (4.105) for uk+1

2 .

2. Solve the following problem in subdomains i = 1, 2,

−∇ · (k∇φk+1
i) = 0, x ∈ Ωi (4.128)

φk+1
i = 0 on ∂Ω ∩ ∂Ωi (4.129)

ki
∂φk+1

i

∂ν
=

[
k
∂ψ

∂ν

]
Γ

on Γ (4.130)

3. Update λ by

λk+1 = λk − θn
[
φk+1

]
Γ

(4.131)

4. Continue with (1) unless stopping criterium
∥∥∥[k ∂u

∂ν1

]
Γ

∥∥∥ holds.

Similarly to the Neumann-Neumann method and Algorithm DDP we may avoid

step 2 in 1D by adjusting

λk+1 = λk + θ

[
∂kuk+1

∂ν

]
Γ

. (4.132)

4.3.4 Convergence Analysis

To show that Algorithm DDC converges we will analyze the weak form of (4.114).

This analysis is very similar to that of Algorithm DDP. This is not surprising since both

methods are designed to be extensions of the Neumann-Neumann algorithm, and thus

have similar structures. However, the calculations do differ due to the difference in the

definitions of the interface equations, (4.47) and (4.114).

In this analysis the Richardson scheme in step 3 of the algorithm will be shown to

46

be a contraction on a complete metric space and the Banach Contraction Theorem will

again be applied to guarantee convergence.

We recall the definitions (4.68)-(4.73) and let Ri and R∗2 denote any possible con-

tinuous extension operators from Λ to V 0
i . Also we define the bilinear form

bi(u, v) :=

∫
Ωi

ki∇u · ∇v. (4.133)

First we characterize Ξ as an operator from Λ to Λ′. Let µ ∈ Λ, multiply by µ,

apply the divergence theorem, and note both that kiHiλ is divergence free in Ωi and

Riµ|∂Ω∩∂Ωi = 0 for any µ ∈ Λ.

〈Ξλ, µ〉 =

∫
Γ

k1
∂H1λ

∂ν1
+ k2

∂H2λ

∂ν2
+ k2

∂H2

(
1
a1
∂H1λ
∂ν

)
∂ν

 µ

=

∫
Γ
k1
∂H1λ

∂ν1
R1µ+

∫
Γ
k2
∂H2λ

∂ν2
R2µ+

∫
Γ
k2

∂H2

(
1
a1
∂H1λ
∂ν

)
∂ν

R∗2µ

=

∫
∂Ω1

k1
∂H1λ

∂ν1
R1µ+

∫
∂Ω2

k2
∂H2λ

∂ν2
R2µ+

∫
∂Ω2

k2

∂H2

(
1
a1
∂H1λ
∂ν

)
∂ν

R∗2

=

∫
Ω1

k1∇H1λ · ∇R1µ+

∫
Ω2

k2∇H2λ · ∇R2µ+

∫
Ω2

k2∇H2

(
1

a1

∂H1λ

∂ν

)
· ∇R∗2µ

=
2∑
i=1

bi(Hiλ, Riµ) + b2

(
H2

(
1

a1

∂H1λ

∂ν

)
, R∗2, µ

)
Since Ri and R∗2 can be any possible continuous extension operators, we will take

Ri = Hi and R∗2µ = H2

(
1
a1
∂H1µ
∂ν

)
in this case. These choices ensure symmetry of the

operators, which is useful in this analysis. Then we have

〈Ξλ, µ〉 =

2∑
i=1

bi(Hiλ,Hiµ) + b2

(
H2

(
1

a1

∂H1λ

∂ν

)
, H2

(
1

a1

∂H1µ

∂ν

))
. (4.134)

The fact that for each λ ∈ Λ, 〈Ξλ, µ〉 is linear as a function of µ follows from the

linearity of integration. In the proof of the upcoming Theorem 4.3.4.1 it will be shown

that Ξ is continuous. Thus for each λ ∈ Λ, 〈Ξλ, µ〉 ∈ Λ′.

Next we proceed similarly for the right hand side of (4.114), recalling the definition

of Pif and applying divergence theorem:

47

〈Σ, µ〉 = −
∫

Γ
k2
∂P2f

∂ν2
µ−

∫
Γ
k1
∂P1f

∂ν2
µ−

∫
Γ
k2

∂H2

(
1
a1
∂P1f
∂ν

)
∂ν2

µ

= −
∫

Γ
k2
∂P2f

∂ν2
R2µ−

∫
Γ
k1
∂P1f

∂ν2
R1µ−

∫
Γ
k2

∂H2

(
1
a1
∂P1f
∂ν

)
∂ν2

R∗2µ

= −
∫
∂Ω2

k2
∂P2f

∂ν2
R2µ−

∫
∂Ω1

k1
∂P1f

∂ν1
R1µ−

∫
∂Ω2

k2

∂H2

(
1
a1
∂P1f
∂ν

)
∂ν2

R∗2µ

=

∫
Ω2

∇ · (k2∇P2f)R2µ−
∫

Ω2

k2∇P2f · ∇R2µ

+

∫
Ω1

∇ · (k1∇P1f)R1µ−
∫

Ω1

k1∇P1f · ∇R1µ−
∫

Ω2

k2∇H2

(
1

a1

∂P1f

∂ν

)
· ∇R∗2µ

=

∫
Ω2

f2R2µ−
∫

Ω2

k2∇P2f · ∇R2µ+

∫
Ω1

f1R1µ

−
∫

Ω1

k1∇P1f · ∇R1µ− b2
(
H2

(
1

a1

∂P1f

∂ν

)
, R∗2µ

)
=

2∑
i=1

[(fi, Riµ)Ωi − bi(Pif,Riµ)]− b2
(
H2

(
1

a1

∂P1f

∂ν

)
, R∗2µ

)
.

Linearity of 〈Σ, µ〉 follows from linearity of integration. Continuity of the bi(·, ·) terms is

demonstrated in the proof of Theorem 4.3.4.1. In the analysis of Algorithm DDP we saw

that as long as fi ∈ L2(Ωi), the terms (fi, Riµ)Ωi are continuous. Thus 〈Σ, µ〉 ∈ Λ′.

Now we can write the weak form of (4.114) as:

find λ ∈ Λ : 〈Ξλ, µ〉 = 〈Σ, µ〉 ∀µ ∈ Λ. (4.135)

Theorem 4.3.4.1. There exists θumax > 0 such that for any 0 < θ < θumax, and for any

initial guess λ(0), Algorithm DDC converges to the solution to (4.114).

Proof. Similarly to the proof for Algorithm DDP, the proof of this theorem takes the

following steps:

1. First we define an operator splitting for Σ, and show that Algorithm DDC is equiv-

alent to the following preconditioned Richardson scheme for (4.114),

(Σ−1
1 + Σ−1

2)−1(λk+1 − λk) = θ(Σλ− Ξ). (4.136)

48

2. Next we show that

Nc := (Σ−1
1 + Σ−1

2)−1 (4.137)

satisfies the criteria from Lemma 4.2.4.1 on the Hilbert space Λ.

3. Finally we conclude via application of the Banach Contraction Mapping Theorem

that the algorithm converges.

Step 1

We define the operator splitting of Ξ by

Ξ1λ := kΓ
1

∂H1λ

∂ν1
(4.138)

Ξ2λ := kΓ
2

∂H2λ

∂ν2
+ kΓ

2

∂H2

(
1
a1
∂H1λ
∂ν

)
∂ν2

. (4.139)

Recall that uk+1
1 = H1λ

k + P1f and uk+1
2 = H2λ

k + H2

(
1
a1
kΓ

1

(
∂H1λk

∂ν + ∂P1f
∂ν

))
+ P2f

therefore,

φk+1
1 |Γ = H−1

1

(
∂H1λ

∂ν
+
∂P1f

∂ν
(4.140)

−
∂
(
H2λ

k +H2

(
1
a1
kΓ

1

(
∂H1λk

∂ν + ∂P1f
∂ν

)))
∂ν

− ∂P2f

∂ν

 (4.141)

= −H−1
1 (Σ− Ξλk) (4.142)

Similarly,

φk+1
2 |Γ = H−1

2 (Σ− Ξλk). (4.143)

And so we have,

λk+1 = λk + θ(H−1
1 +H−1

2)(Σ− Ξλk). (4.144)

Or equivalently,

Nc(λ
k+1 − λk) = θ(Σ− Ξλk). (4.145)

49

Step 2

To show that Nc satisfies the criteria of Lemma 4.2.4.1, we must show that Ξi is

continuous and coercive on Λ for i = 1, 2 and that Nc satisfies condition (4.78).

To show that Ξi is coercive we will again use the trace inquality. In the weak setting

we have

〈Ξ1λ, µ〉 = b1(H1λ,H1µ), (4.146)

〈Ξ2λ, µ〉 = b2(H2λ,H2µ) + b2

(
H2

(
1

a1

∂H1λ

∂ν

)
, H2

(
1

a1

∂H1µ

∂ν

))
. (4.147)

Then we calculate,

〈Ξ1λ, λ〉 ≥ k0‖∇H1λ‖2L2(Ω1) (4.148)

≥ k0C‖H1λ‖2H1(Ωi)
(4.149)

≥ k0CC
∗‖H1λ‖2Λ (4.150)

where C is the constant guaranteed by the Poincaré Inquality. Thus Ξ1 is coercive with

α1 = k0CC
∗.

To see that Ξ2 is also coercive, note that

b2

(
H2

(
1

a1

∂H1λ

∂ν

)
, H2

(
1

a1

∂H1λ

∂ν

))
≥ 0. (4.151)

So,

〈Ξ2λ, λ〉 = b2(H2λ,H2λ) + b2

(
H2

(
1

a1

∂H1λ

∂ν

)
, H2

(
1

a1

∂H1λ

∂ν

))
(4.152)

≥ b2(H2λ,H2λ). (4.153)

The calculation to show that b2(H2λ,H2λ) is coercive is identical to the calculation for

Ξ1. Thus we conclude that Ξ2 is coercive on Λ.

Next we calculate,

〈Ξ1λ, µ〉 ≤ k1‖H1λ‖H1(Ω1)‖H1µ‖H1(Ω1) (4.154)

50

From the well known estimates for elliptic boundary value problems [[34], p. 9] we know

there exists β > 0 such that

‖H1λ‖H1(Ω1) ≤ β‖λ‖Λ. (4.155)

Thus Ξ1 is continuous with constant C1 = ε1β. Again the calculation for Ξ2 follows.

Now we simply note that the Ξi are clearly symmetric, and thus condition (4.78)

is equivalent to the coercivity of Ξ. But the coercivity of Ξ is a direct consequence of

the coercivity of the Ξi. Thus condition (4.78) is satisfied, and the conditions of Lemma

4.2.4.1 are satisfied.

Step 3

Let θumax be the constant guaranteed by Lemma 4.2.4.1. Let 0 < θ < θumax. From

Lemma 4.2.4.1 we know that the operator

T uθ := I − θN−1
c Ξ (4.156)

is a contraction on Λ. Notice,

Nc(λ
k+1 − λk) = θ(Σ− Ξλk),

then solving for λk+1,

λk+1 = λk − θN−1
c (Ξλk − Σ),

and applying (4.156),

λk+1 = T uθ λ
k + θN−1

c Σ.

Then since θN−1
c Σ does not depend on λk, T uθ a contraction implies

Guθλ = T uθ λ+ θN−1
c Σ (4.157)

is a contraction on the Hilbert space Λ.

51

Now applying the Banach Contraction Mapping Principle we know that Algorithm

DDC converges to a fixed point, λ0 of the map Guθ . Then we have

Guθλ0 = λ0,

then recalling (4.157),

T uθ λ0 + θN−1
c Σ = λ0,

and recalling (4.156),

λ0 − θN−1
c (Ξλ0 − Σ) = λ0,

then isolating the two free λ0 terms

λ0 − λ0 = θN−1
c (Ξλ0 − Σ).

Hence

0 = Ξλ0 − Σ

Calculating θumax directly from material parameters is a subject of ongoing research.

The coercivity and continuity constants depend on known material parameters, and just

as with θψmax, using optimal values for θ again has a dramatic influence on the efficiency

of this method.

4.3.5 Alternative Algorithm

A more natural algorithm for the simulation of the equations for carrier densities is

one in which the subdomain solves involve a Neumann boundary condition at the interface

and iterates to satisfy (4.101). Here we present an algorithm with this structure that has

had promising performance on test problems.

52

In this setup we seek to find a value λ defined on the interface Γ so that (4.100)-

(4.103) is equivalent to the problem

−∇ · (k1∇u1) = f1, x ∈ Ω1, k1
∂u1

∂ν
= λ, (4.158)

−∇ · (k2∇u2) = f2, x ∈ Ω2, k2
∂u2

∂ν
= λ. (4.159)

To develop the method for finding λ, we define ui = Niλ+Mif where

−∇ · (ki∇Niλ) = 0, x ∈ Ωi, ki
∂Niλ

∂ν
|Γ = λ, (4.160)

−∇ · (ki∇Mif) = fi, x ∈ Ωi, ki
∂Mif

∂ν
|Γ = 0. (4.161)

Then define L and Y

Lλ :=

(
kΓ

1

∂N1λ

∂ν
+ a1N1λ− a2N2λ

)
|Γ, (4.162)

Y :=

(
a2M2f − a1M1f − k1

∂M1f

∂ν

)
|Γ. (4.163)

We then consider an algorithm that can be analyzed as a Richardson scheme for the

equation Lλ = Y ,

Algorithm DDN to solve (4.100)-(4.103)

Given λ0, for each k ≥ 0,

1. Solve (4.158) for uk+1
1 and (4.159) for uk+1

2 .

2. Update λ by

λk+1 = λk − θ

(
k1
∂uk+1

1

∂ν
− a2u

k+1
2 + a1u

k+1
1

)
|Γ (4.164)

3. Continue with (1) unless stopping criterium

∥∥∥∥(k1
∂uk+1

1
∂ν − a2u

k+1
2 + a1u

k+1
1

)
|Γ
∥∥∥∥

holds.

53

Convergence analysis and implementation for a true semiconductor structure is a

subject of ongoing research and so neither will not be presented in this work. The mixed

boundary value problems on the subdomains in this algorithm with true heterojunction

parameters are very ill-conditioned. Solving these subdomain problems accurately is a

matter of ongoing work.

54

5. NUMERICAL RESULTS

In this section we present results from numerical simulations. First, the domain

decomposition algorithms developed in this work are demonstrated on model problems

for the potential equation and the equations for carrier densities. Convergence studies

are performed and various performance aspects are discussed. These model problems are

useful for testing but do not have the diffulties associated with a true heterojunction

semiconductor such as coupled nonlinearity, widely discontinuous coefficients, and layer

behavior. These problems were designed to have solutions with similar qualitative behavior

to solutions to a true heterojunction problem.

Full semiconductor structures with heterojunctions are simulated in the section

following the model problems. More details of these simulations can be found in [7, 12].

5.1. Model Problems

5.1.1 Potential Equation

Here we present numerical results from the simulation of the following model prob-

lem,

−(εψ′1)′ = f1(x, ψ1), x ∈ (−1, 0), (5.1)

−(εψ′2)′ = f2(x, ψ2), x ∈ (0, 1), (5.2)

[ψ]0 = ψ4, (5.3)[
εψ′
]
0

= 0. (5.4)

This problem has the same form as the potential equation in the model for semi-

conductor structures with heterojunctions.

We discretize (5.1)-(5.2) by centered finite differences and solve (5.1)-(5.4) using

55

Algorithm DDP, while the subdomain problems are solved by Newton’s method.

The DDM algorithms developed in this paper add a third iterative loop to the full

simulation of heterojunction problems. With this in mind we would like to know how

this effects the computational complexity of the full solver. Many iterative substructuring

algorithms are known to be mesh independent, including the Neumann-Neumann method,

and so we check the number of DDM iterations performed at difference mesh sizes. Like

with the Neumann-Neumann method we observe mesh independence for Algorithm DDP,

thus we do not increase the computational complexity of the problem by using the domain

decomposition algorithm.

Table 5.1 presents the observed order of convergence and the number of DDM itera-

tions at each mesh size for this problem. As expected by the finite difference discretization,

we see order two convergence.

In these simulations we set

f1(x, ψ) = f2(x, ψ) = − cos(ψ)

(
1

x2 + 1
− (sin(ψ) + 2)

(
2x

(x2 + 1)2

))
, (5.5)

ε1 = ε2 = 1, ψ4 = −0.1. (5.6)

Figure 5.1 presents the solution of this problem. A good value for θψ was determined

experimentally to be 0.248.

N h l2 error Observed Order DD iterations

200 1e-02 1.77626e-06 - 6

400 5e-03 4.52010e-07 1.9744 6

600 3.33e-03 2.02026e-07 1.9861 6

800 2.5e-03 1.13961e-07 1.9902 6

TABLE 5.1: Observed order of convergence and DDM iterations for Algorithm DDP.

The efficiency of Algorithm DDP is strongly dependent on the choice of the relax-

ation parameter θψ. Table 5.2 shows the number of DDM iterations for varied values of

56

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

x

Mock Problem, Algorithm DDP

FIGURE 5.1: Solution to the model problem for the potential equation with Algorithm
DDP.

θψ. As the table shows, if the value is made too small, the method converges slowly, while

if the value is too large the method does not converge.

θψ Algorithm DDP iterations

0.1 45

0.2 15

0.248 6

0.9 diverged

TABLE 5.2: DDM iterations for various θψ for DDP.

57

5.1.2 Equations for Carrier Densities

Here we present numerical results from the simulation of the following model prob-

lem,

−(ku′)′ = r1(x, u), x ∈ (−1, 0), (5.7)

−(ku′)′ = r2(x, u), x ∈ (0, 1), (5.8)

ku′ = a2u2(0)− a1u1(0), (5.9)[
ku′
]
0

= 0. (5.10)

This problem has the same form as each of the equations for carrier densities in the

model for semiconductor structures with heterojunctions.

We discretize (5.7)-(5.8) by centered finite differences and solve (5.7)-(5.10) using

Algorithm DDC, while subdomain problems are solved by Newton’s method.

As we did with Algorithm DDP, we check the number of DDM iterations at various

mesh sizes for Algorithm DDC to ensure computational complexity is not increased by

the use of the algorithm. Again we observe mesh independence.

Table 5.3 presents observed order of convergence and DDM iterations for this prob-

lem. As expected by the centered finite difference discretization, the order observed is 2.

Also in our simulations Algorithm DDC is mesh independent. Figure 5.2 presents the

solution of this problem. In this case we set

r1(x, u) = r2(x, u) = − cos(u)

(
1

x2 + 1
− (sin(u) + 2)

(
2x

(x2 + 1)2

))
, (5.11)

k1 = k2 = a1 = a2 = 1. (5.12)

A good value for θu in this case was determined experimentally to be 0.47.

The efficiency of Algorithm DDC is strongly dependent on the choice of the relax-

ation parameter θu. Table 5.4 shows the number of DDM iterations for varied values of

θu. As the table shows, if the value is made too small, the method converges slowly, while

if the value is too large the method does not converge.

58

N h l2 error Observed Order DD iterations

80 0.0125 4.69017e-06 - 6

160 0.00625 1.26278e-06 1.893 6

320 0.00313 3.27393e-07 1.9475 6

640 0.00156 8.38261e-08 1.9656 6

TABLE 5.3: Observed order of convergence and DDM iterations for Algorithm DDC.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

x

u

Mock Problem, Algorithm DDC

FIGURE 5.2: Solution to the model problem for carrier densities with Algorithm DDC.

θu Algorithm DDC iterations

0.1 54

0.25 18

0.47 6

0.9 diverged

TABLE 5.4: DDM iterations for various θu for DDC.

5.2. Semiconductor Structures with Heterojunctions

Here we present results from the simulation of two semiconductor structures with

heterojunctions using the algorithms DDP and DDC. In these simulations the full solver

59

is used for the continuum scale. The equations are discretized with the finite difference

Scharfetter-Gummel discretization [26]. This is a centered finite difference approximation

that is designed to handle the layer behavior typical in a semiconductor device simulation.

The system is solved with the Gummel map as the outer loop, inside of which Algorithm

DDP solves the potential equation and Alrogithm DDC solves each of the equations for

carrier density. All subdomains problems are solved by Newton’s method.

Table 5.5 provides data for these two structures. In the simulations, Structure 1

consists of Material L1 in the left domain and Material R1 in the right domain. Structure

2 consists of Copper-Phosphorus-Silicon (CPS) in the left domain and Silicon (Si) in the

right domain.

property L1 R1 CPS Si

permittivity ε 10.0 10.0 15.1 [13] 11.9 [41]

electron affinity χ (eV) 5 5 4.05 4.05 [41]

band gap Eg (eV) 1.0 0.5 1.4 [13] 1.12 [41]

eff. electron density of states ÑC (cm−3) 5× 1018 5× 1018 3× 1019 2.8× 1019

eff. hole density of states ÑV (cm−3) 5× 1018 5× 1018 1.2× 1018 1× 1019

dopant charge density ÑT (cm−3) 1× 1016 −1× 1015 −6× 1017 [13] 1× 1015

electron diffusion constant D̃n (cm2/s) 2.0 2.0 2.6 [19] 37.6 [41]

hole diffusion constant D̃p (cm2/s) 1.0 1.0 0.5 12.9 [41]

constant photogeneration density G (cm−3/s) 1× 1017 1× 1020 1× 1021 1× 1018

direct recombination constant Rdc (cm3/s) 1× 10−10 1× 10−10 1× 10−10 1× 10−15

jump in potential ∆ψ (eV) -0.15 -0.01

TABLE 5.5: Material and Structure Parameters

Figures 5.3 and 5.4 show potentials and carrier densities, respectively, for both of

these structures. In Tables 5.6 and 5.7 DDM iterations are provided for each component

equation at each Gummel iteration. As these show, the DDM algorithms remain essentially

mesh independent when simulating a true semiconductor structure with a heterojunction.

Table 5.7 also shows how dramatically different the acceleration parameter θ for

Algorithm DDC can be with differing parameters. A good value for the equation for

60

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 5.6

 0 0.5 1 1.5 2 2.5

en
er

g
y

 (
eV

)

x (microns)

Structure 1 Potential
Structure 2 Potential

FIGURE 5.3: Simulation of Structures 1 and 2 Potentials

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 1e+18

 1e+20

 0 0.5 1 1.5 2 2.5

cm
-3

x (microns)

Structure 1 Electron Density
Structure 1 Hole Density

Structure 2 Electron Density
Structure 2 Hole Density

FIGURE 5.4: Simulation of Structures 1 and 2 Carrier Densities

61

DDP ψ, θψ = 0.0025

N GI 1 GI 2 GI 3 GI 4

201 1 14 10 4

401 2 12 9 5

601 3 11 12 3

TABLE 5.6: Number of iterations at each Gummel Iteration (GI) and parameter θψ for
Structure 1 and Algorithm DDP.

DDC u, θn = 2.5 DDC v, θp = 180

N GI 1 GI 2 GI 3 GI 4 GI 1 GI 2 GI 3 GI 4

201 6 2 1 1 5 3 1 1

401 5 2 1 1 8 4 1 1

601 3 2 1 1 8 4 1 1

TABLE 5.7: Number of iterations at each Gummel Iteration (GI) and parameters θn, θp
for Structure 1 and algorithm DDC.

electron density for Structure 1 was 2.5, while a good value for the equation for hole

density was 180. In fact, when these values are swapped, iterations for electron density

did not converge, while the run for hole density was stopped at 2000 iterations without

having converged.

This hightlights a key feature of the acceleration parameter. A good choice in each

case is θmax− ε for very small ε. With any value larger than θmax the algorithms does not

converge, while with values much smaller than θmax, the algorithm converges slowly.

62

6. CONCLUSIONS

In this work a model for charge transport in semiconductor structures with hetero-

junctions was presented. Analysis of the drift diffusion system was presented for a single

semiconductor material and numerical techniques necessary for simulation of the model

were presented.

The heterojunction model consists of a coupled system of partial differential equa-

tions posed in subdomains connected by unusual transmission conditions involving a jump

discontinuity in electrostatic potential and Robin-like internal boundary conditions at the

interface for the carrier densities. This setup lends itself naturally to a domain decom-

position approach. We proposed novel iterative substructuring methods and convergence

analysis was performed.

Finally we presented numerical results. First the domain decomposition algorithms

were tested on model problems with the same structure as the component equations of

the heterojunction model for which they were designed. In this setting convergence rates

and mesh independence were demonstrated. Second, we simulated realistic semiconductor

structures with heterojunctions.

In future work we would like to finish analysis and implementation of the more

natural alternative algorithm for the carrier densities.

Given the importance of the choice of acceleration parameter θ for each algorithm,

we also intend to implement methods for calculating optimal values directly from material

parameters.

Additionally we will extend these methods to the time dependent model for charge

transport in semiconductor structures with heterojunctions.

Finally, we are working to use the domain decomposition framework developed in

this work as a tool for extending the traditional well-posedness analysis for the drift

63

diffusion system in one semiconductor domain to the model for charge transport in a

structure with a heterojunction.

64

BIBLIOGRAPHY

1. R. E. Bank, D. J. Rose, and W. Fichtner. Numerical methods for semiconductor

device simulation. SIAM J. Sci. Statist. Comput., 1983.

2. C. Bernardi, Y. Maday, and A. T. Patera. A new nonconforming approach to domain

decomposition: the mortar element method. In H. Brezis and J. L. Lions, editors,

Nonlinear partial differential equations and their applications. Longman Scientific &

Technical, UK, 1994.

3. H. Brezis. Functional analysis, Sobolev spaces, and partial differential equations.

Springer, 2010.

4. Yanzhao Cao, Max Gunzburger, Xiaoming He, and Xiaoming Wang. Robin-Robin

domain decomposition methods for the steady-state Stokes-Darcy system with the

Beavers–Joseph interface condition. Numerische Mathematik, 117(4):601–629, 2011.

5. K. S. Chang and D. Y. Kwak. Discontinuous bubble scheme for elliptic problems

with jumps in the solution. Comput. Methods Appl. Mech. Engrg., 2011.

6. Z. Chen and J. Zou. Finite element methods and their convergence for elliptic and

parabolic interface problems. Numerische Mathematik, 1998.

7. T. Costa, D. Foster, and M. Peszynska. Domain decomposition for heterojunction

problems in semiconductors. (Submitted), 2013.

8. C. de Falco, J. W. Jerome, and R. Sacco. Quantum-corrected drift-diffusion models:

solution fixed point map and finite element approximation. J. Comput. Phys., 2009.

9. Marco Discacciati, Alfio Quarteroni, and Alberto Valli. Robin-Robin domain de-

composition methods for the Stokes-Darcy coupling. SIAM Journal on Numerical

Analysis, 45(3):1246–1268, 2007.

10. Eberhard Engel and Reiner M Dreizler. Density Functional Theory: An Advanced

Course. Springer, 2011.

11. Carlos Fiolhais, Fernando Nogueira, and Miguel AL Marques. A primer in density

functional theory, volume 620. Springer, 2003.

12. D. Foster, T. Costa, M. Peszynska, and G. Schneider. Multiscale modeling of solar

cells with interface phenomena. Journal of Coupled Systems and Multiscale Dynam-

ics, 2013.

13. D. H. Foster, F. L. Barras, J. M. Vielma, and G. Schneider. Defect physics and

electronic properties of cu3pse4 from first principles. Physical Review B, 2013.

65

14. Vivette Girault and Béatrice Rivière. DG approximation of coupled Navier-Stokes

and Darcy equations by Beaver-Joseph-Saffman interface condition. SIAM J. Numer.

Anal., 47(3):2052–2089, 2009.

15. Vivette Girault, Béatrice Rivière, and Mary F. Wheeler. A discontinuous Galerkin

method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes

problems. Math. Comp., 74(249):53–84 (electronic), 2005.

16. R. Glowinski and M. F. Wheeler. Domain decomposition and mixed finite element

methods for elliptic problems. In R. Glowinski, G. H. Golub, G. A. Meurant, and

J. Periaux, editors, First International Symposium on Domain Decomposition Meth-

ods for Partial Differential Equations, pages 144–172. SIAM, Philadelphia, 1988.

17. Pierre Hohenberg and Walter Kohn. Inhomogeneous electron gas. Physical review,

1964.

18. K. Horio and H. Yanai. Numerical modeling of heterojunctions including the

thermionic emission mechanism at the heterojunction interface. IEEE Trans. Elec-

tron Devices, 1990.

19. Vorranutch Itthibenchapong, Robert S. Kokenyesi, Andrew J. Ritenour, Lev N. Za-

kharov, Shannon W. Boettcher, John F. Wager, and Douglas A. Keszler. Earth-

abundant cu-based chalcogenide semiconductors as photovoltaic absorbers. Journal

of Materials Chemistry C, 1(4):657–662, December 2012.

20. J. W. Jerome. Analysis of charge transport. Springer-Verlag, 1996.

21. C. Johnson. Numerical solutions of partial differential equations by the finite element

method. Dover Publications, 2009.

22. C. T. Kelly. Iterative methods for linear and nonlinear equations. Society for Indus-

trial and Applied Mathematics, 1995.

23. R. J. LeVeque. Finite difference methods for ordinary and partial differential equa-

tions. Society for Industrial and Applied Mathematics, 2007.

24. Paul T Lin, John N Shadid, Marzio Sala, Raymond S Tuminaro, Gary L Hennigan,

and Robert J Hoekstra. Performance of a parallel algebraic multilevel preconditioner

for stabilized finite element semiconductor device modeling. Journal of Computa-

tional Physics, 228(17):6250–6267, 2009.

25. Q. Lu, M. Peszynska, and M. F. Wheeler. A parallel multi-block black-oil model in

multi-model implementation. SPE Journal, pages 278–297, 2002.

26. P. A. Markowich. The stationary semiconductor equations. Springer-Verlag Wien,

1986.

66

27. P.A. Markowich, C. A. Ringhoffer, and C. Schmeiser. Semiconductor equations.

Springer-Verlag Vienna, 1990.

28. V. Martin, J. Jaffré, and J. E. Roberts. Modeling fractures and barriers as interfaces

for flow in porous media. SIAM J. Sci. Comput., 2005.

29. F. Morales and R. E. Showalter. Interface approximation of darcy flow in a narrow

channel. Math. Methods Appl. Sci, 2012.

30. Ali Saada N. Frih, Jean E. Roberts. Modeling fractures as interfaces: A model for

Forchheimer fractures. Computational Geosciences, 2, 2008.

31. M. Peszynska. Multiphysics coupling of three-phase and two-phase models of flow in

porous media. Analysis and Simulation of Multifield Problems, 2003.

32. M. Peszynska, Q. Lu, and M. F. Wheeler. Multiphysics coupling of codes. Compu-

tational Methods in Water Resources, pages 175–182, 2000.

33. Malgorzata Peszyńska, Mary F. Wheeler, and Ivan Yotov. Mortar upscaling for

multiphase flow in porous media. Comput. Geosci., 6(1):73–100, 2002.

34. A. Quarteroni and A. Valli. Domain decomposition methods for partial differential

equations. Oxford Science Publications, 1999.

35. B. Rivière. Discontinuous Galerkin methods for solving elliptic and parabolic equa-

tions. Society for Industrial and Applied Mathematics, 2008.

36. Halsey Lawrence Royden and Patrick Fitzpatrick. Real analysis, volume 4. Prentice

Hall New York, 1988.

37. Konrad Sakowski, Leszek Marcinkowski, Stanislaw Krukowski, Szymon Grzanka, and

Elzbieta Litwin-Staszewska. Simulation of trap-assisted tunneling effect on character-

istics of gallium nitride diodes. Journal of Applied Physics, 111(12):123115–123115,

2012.

38. S. Selberherr. Analysis and simulation of semiconductor devices. Springer-Verlag,

1984.

39. R. E. Showalter. Monotone operators in Banach space and nonlinear partial differ-

ential equations, volume 49. AMS Bookstore, 1997.

40. R. E. Showalter. Hilbert space methods in partial differential equations. Dover Pub-

lications, 2010.

41. Simon Sze and Kwok Ng. Physics of Semiconductor Devices. Wiley-Interscience,

2006.

67

42. L. N. Trefethen and D. Bau III. Numerical linear algebra. Society for Industrial and

Applied Mathematics, 1997.

43. M. F. Wheeler, T. Arbogast, S. Bryant, J. Eaton, Q. Lu, M. Peszyńska, and I. Yotov.

A parallel multiblock/multidomain approach to reservoir simulation. In Fifteenth

SPE Symposium on Reservoir Simulation, Houston, Texas, pages 51–62. Society of

Petroleum Engineers, 1999. SPE 51884.

44. Y. Zhang, M. Peszynska, and S. Yim. Coupling of viscous and potential flow models

with free surface for near and far field wave propagation. International Journal of

Numerical Analysis and Modeling, 4(3):256–282, 2013.

68

APPENDIX

A Density Functional Theory

Here we review the computational model for the microscopic calculation of hetero-

junction parameters, Density Functional Theory.

Heterojunction parameters are determined by the quantum mechanics of electrons.

First principles methods solve a 3d quantum electron system having discrete atoms with

a characteristic spacing of 2-4 angstroms. DFT is a widely used, low cost first principles

method which solves the zero temperature, zero current ground state of a system [10, 11].

The local pseudopotential calculated by DFT is continuous at an interface, and can be

used with known material properties to obtain the change in the continuous electrostatic

potential ψ occuring very close to a heterojunction. The transport, scattering, and recom-

bination/generation processes involved in an active semiconductor device are not suitable

for handling by first principles calculation methods, and thus must remain in the realm

of macroscopic models.

The fundamental equation describing quantum behavior is the Schrödinger equa-

tion. However, the problem of an interacting N electron system remains computationally

intractable. Density Functional Theory, [10, 11], provides an efficient method of deter-

mining material properties from first principles by shifting focus from wave functions to

69

electron density, n(r). This is accomplished by application of the theory of Hohenberg

and Kohn to the formulation of a minimization problem in electron density equivalent to

the solution of the Shrödinger equation for the ground state.

We consider here the standard Hamiltonian, Ĥ = T̂ + V̂ee + V̂ext, of N interacting

electrons, ignoring spin for brevity. T̂ is the kinetic energy operator, V̂ee the Coulomb

interaction between electrons, and V̂ext the interaction of electrons with an external po-

tential, vext(r).

T̂ =
N∑
i=1

− ~2

2m
∇2
i , V̂ee =

N∑
i,j=1
i<j

e2

|ri − rj |
, V̂ext =

∫
vext(r)n(r) d3r

where ~ = h
2π with h the Planck constant, m is the electron mass, −e = −|e| is the charge

of the electron, and r̂j is the quantum mechanical position operator for electron j.

The solutions of the stationary Schrödinger equation

Ĥ|Ψn〉 = En|Ψn〉 (A.1)

are the many-electron wavefunctions |Ψn〉, with energy En. For the ground state |Ψ0〉

with energy E0, (A.1) is equivalent to the minimization problem

E = min
Ψ
〈Ψ|Ĥ|Ψ〉 (A.2)

In [17], Hohenberg and Kohn establish the existence of a density variational principle for

the ground state,

E = min
n

{
F [n] +

∫
vext(r)n(r) d3r

}
, F [n] = min

Ψ→n
〈Ψ|T̂ + V̂ee|Ψ〉 (A.3)

The solution to (A.3) is computationally a considerable improvement over the solution

of the Schrödinger equation; in (A.3), density is a function in R3, while for (A.1), Ψ is

posed in C3N . However, the functional F [n] is unknown and DFT requires approximate

solutions for F [n]. The Kohn-Sham equations provide a framework for the solution of the

minimization problem (A.3) as well as a basis for approximating density functionals.

70

For a system of N non-interacting electrons we may find F [n] by considering single

electron Shrödinger equations,(
− ~

2m
∇2 + ves(r) + vxc([n]; r)

)
ψk(r) = εkψk(r) (A.4)

where ψk, εk, denote the eigenstate and energy of a single particle, and ves(r) the electro-

static potential. The exchange-correlation potential vxc([n]; r) is the functional derivative

of the exchange correlation energy Exc[n] with respect to the electron density. Exc[n] is

the remainder of the functional F [n], after the kinetic energy of the N electrons, Tni[n],

and the Hartree energy U [n], have been subtracted:

Exc[n] = F [n]− Tni[n]− U [n] (A.5)

A solution to the Kohn-Sham equations (A.4)-(A.5) can be found iteratively for a

suitable choice of approximation of the exchange correlation energy.

B Code

B1 Algorithm DDP

Below find a matlab implementation of Algorithm DDP for a linear problem. The

setup here is easily extended to a nonlinear problem by employing nonlinear solvers in

place of the calls to bpsolve2.m.

% Solves

% -k_1 u_1’’(x) = f_1(x) on [a,c]

% -k_2 u_2’’(x) = f_2(x) on [c,b]

% u_1(a) = alpha, u_2(b) = beta

% [u]_c = Jd, [k u’]_c = 0

% with algorithm DDP

%% Setup

71

% User edits funddp.m with specifics of the problem to be solved.

funddp;

% Solver parameters:

% If vectors: g1, g2 are grids on domains 1,2 resp.

% If scalars, g1, g2 are the number of grid points on domains 1,2 resp.

% theta = relaxation coefficient

% count = # of D-D iterations

g1 = 30;

g2 = 30;

count = 0;

theta = 1/4;

p = @(x) 0*x;

% grid2 generates grid from g1, g2.

[h1,sx1,x1] = grid2(g1,a,c);

[h2,sx2,x2] = grid2(g2,c,b);

% Evaluate coefficient functions along grids x1, x2.

k1 = k1fun(x1);

k2 = k2fun(x2);

% Initialization for solutions U1, U2 on domains 1,2 respectively.

U1 = zeros(sx1,1);

U2 = zeros(sx2,1);

% Assemble linear systems.

[A1,F1] = assembly4(x1,sx1,k1,h1,bc1,1,rhs1,1,1);

[A2,F2] = assembly4(x2,sx2,k2,h2,1,bc2,rhs2,1,1);

[A3,F3] = assembly4(x1,sx1,k1,h1,bc1,2,p,1,1);

[A4,F4] = assembly4(x2,sx2,k2,h2,2,bc2,p,1,1);

%% Solve

72

while abs((3/(2*h1(sx1-1)))*U1(length(x1)) - (2/h1(sx1-2))*U1(length(x1)-1) ...

+ (1/(2*h1(sx1-3)))*U1(length(x1)-2) + (3/(2*h2(1)))*U2(1) - (2/h2(2))*U2(2) ...

+ (1/(2*h2(3)))*U2(3)) > 10^(-10) || count == 0

count = count + 1

% [U] = bpsolve2(A,F,sx,a,b) solves the linear system AU=F with length(U) = sx, and boundary

% data a and b.

[U1] = bpsolve2(A1,F1,sx1,alpha,lambda);

[U2] = bpsolve2(A2,F2,sx2,lambda - Jd,beta);

[P1] = bpsolve2(A3,F3,sx1,0,((3/(2*h1(sx1-1)))*U1(sx1) - (2/h1(sx1-2))*U1(sx1-1) ...

+ (1/(2*h1(sx1-2)))*U1(sx1-2)) - ((2/h2(2))*U2(2) - (3/(2*h2(1)))*U2(1) ...

- (1/(2*h2(3)))*U2(3)));

[P2] = bpsolve2(A4,F4,sx2,(3/(2*h1(sx1-1)))*U1(sx1) - (2/h1(sx1-2))*U1(sx1-1) ...

+ (1/(2*h1(sx1-3))*U1(sx1-2)) - ((2/h2(2))*U2(2) ...

- (3/(2*h2(1)))*U2(1) - (1/(2*h2(3)))*U2(3)),0);

lambda = lambda - theta*(P1(sx1) - P2(1));

end

B2 Algorithm DDC

Next find a matlab implementation of Algorithm DDC for a linear problem. The setup here is

easily extended to a nonlinear problem by employing nonlinear solvers in place of the calls to bpsolve2.m.

% Solves

% - (k1 u1’)’ = f1 on (a,c)

% - (k2 u2’)’ = f2 on (c,b)

% u1(a) = alpha, u2(b) = beta

% k1 u1’(c) = d2 u2(c) - d1 u1(c)

% k2 u2’(c) = k1 u1’(c)

% with algorithm DDC

%% Setup

73

% User edits funddc.m with specifics of the problem to be solved.

funddc;

% Solver parameters:

% If vectors: g1, g2 are grids on domains 1,2 resp.

% If scalars, g1, g2 are the number of grid points on domains 1,2 resp.

% theta = relaxation coefficient for dd algorithm

% count = # of dd iterations on the interface problem

ddcount = 0;

theta = .125;

% grid2 generates grid from g1, g2. h1,2 is vector of distances between

% grid points on domains 1,2 resp. sx1,2 are length of grids 1,2 resp.

% x1,x2 are grids on domains 1,2 resp.

g1 = 30;

g2 = 30;

[h1,sx1,x1] = grid2(g1,a,c);

[h2,sx2,x2] = grid2(g2,c,b);

% evaluate coefficient functions along grids x1, x2

k1 = k1fun(x1);

k2 = k2fun(x2);

% Initialization for solutions U1, U2 on domains 1,2 respectively.

U1 = zeros(sx1,1);

U2 = zeros(sx2,1);

% assembly.m assembles linear system

[A1,F1] = assembly4(x1,sx1,k1,h1,bc1,1,rhs1,1,1);

[A2,F2] = assembly4(x2,sx2,k2,h2,1,bc2,rhs2,1,1);

% DDP loop residual

ddres = 0;

74

%% Solve

while ddres > 10^(-10) || ddcount == 0

ddcount = ddcount + 1

% [U] = bpsolve2(A,F,sx,a,b) solves the linear system AU=F with length(U) = sx,

% and boundary data a and b.

[U1] = bpsolve2(A1,F1,sx1,alpha,lambda / d1);

U1p = k1(sx1)*((3/(2*h1(sx1-1)))*U1(sx1) - ...

(2/h1(sx1-2))*U1(sx1-1) + (1/(2*h1(sx1-3)))*U1(sx1-2));

[U2] = bpsolve2(A2,F2,sx2,(lambda + U1p) / d2,beta);

U2p = k2(1)*((-3/(2*h2(1)))*U2(1) + ...

(2/h2(2))*U2(2) - (1/(2*h2(3)))*U2(3));

lambda = lambda - theta * (U1p - U2p);

ddres = abs(U1p - U2p)

end

B3 Other Code

Here find the addtional files needed to run the code for Algorithms DDP, DDC. These include

grid2.m, which constucts a grid; assembly4.m, which constructs the linear system to be solved for a cen-

tered finite difference discretization of a variable coefficient Poissoin equation; bpsolve2.m, which solves

the subdomain problems; as well as funddp.m and funddc.m which provide problem definitions for the

solvers.

% grid2.m

function [h,sx,x] = grid2(g,a,b)

% Inputs: a = left endpoint, b = right endpoint.

% If g is a vector, producus vector h of distances between nodes of x.

% If g is scalar, produces uniform grid from a to b with mesh width g.

%

% Outputs: h = vector of distances between nodes.

% sx = # of nodes in grid x.

75

% x = grid.

if length(g) == 1

hs = (b-a)/g;

x = a:hs:b;

sx = length(x);

h = hs*ones(sx-1,1);

else

x = g;

sx = length(g);

h = zeros(sx-1,1);

for p = 1:sx - 1

h(p) = x(p+1) - x(p);

end

end

end

% assembly4.m

%

function [A,F] = assembly4(x,sx,k,h,bc1,bc2,rhs,bv1,bv2)

%

% assembly4.m assembles the linear system Ax = F for a centered finite

% difference discretization of the problem

% -(k u’)’ = f with Dirichlet, Neumann, or mixed boundary conditions.

%

% Inputs: x = grid

% sx = # nodes in grid

% k = vector of function k evaluated at grid points

% h = vector distances between nodes

% bc1 = 1 for Dirichlet, 2 for Neumann at left endpoint

% bc2 = 1 for Dirichlet, 2 for Neumann at right endpoint

% rhs = function handle for forcing term

76

% bv1 = boundary value for left endpoint

% bv2 = boundary value for right endpoint

%

% Outputs: A = centered FD matrix

% F = force vector

e = ones(sx,1);

A = spdiags([e e e], -1:1, sx, sx);

for p = 1:sx - 1

kt(p) = 0.5 * (k(p) + k(p+1));

end

for p = 2:sx-1

A(p,p-1) = -kt(p-1) / h(p-1); %#ok<SPRIX>

A(p,p) = kt(p-1)/ h(p-1) + kt(p) / h(p); %#ok<SPRIX>

A(p,p+1) = -kt(p) / h(p); %#ok<SPRIX>

end

if bc1 == 1

A(1,2) = 0;

A(1,1) = 1;

elseif bc1 == 2

A(1,1) = (-3 * k(1)) / (2*h(1));

A(1,2) = (2 * k(1)) / h(2);

A(1,3) = (-1 * k(1)) / (2*h(3));

end

if bc2 == 1

A(sx,sx-1) = 0;

A(sx,sx) = 1;

elseif bc2 == 2

A(sx,sx-2) = k(sx) / (2 * h(sx-3));

A(sx,sx-1) = (-2 * k(sx)) / h(sx-2);

77

A(sx,sx) = (3 * k(sx)) / (2 * h(sx-1));

end

F = zeros(sx,1);

F(1) = bv1;

F(2) = bv2;

for p = 2:sx-1

F(p) = ((h(p) + h(p-1)) / 2) * rhs(x(p));

end

end

% bpsolve2.m

function [U] = bpsolve2(A,F,sx,bv1,bv2)

%

% Solves the problem Ax = F, coming from a discretization

% of the problem -(k u’)’ = f, with boundary data bv1, bv2.

% sx = grid size.

% bv1 = boundary data at left end point.

% bv2 = boundary data at right end point.

F(1) = bv1;

F(sx) = bv2;

U = A\F;

end

% This script defines the parameters of the problem to be solved by ddp.m

% [a,b] is the domain, c is the interface

a = -1;

b = 1;

c = 0;

78

% Jd is the size of the jump discontinuity in function value at c,

% specifically Jd = U1(c) - U2(c)

Jd = 1;

% lambda0 = initial guess for condition at C for problem on

% Omega1

lambda = 1/2;

% -(k1 u’)’ = rhs1 on [a,c]

k1fun = @(x) 0*x + 1;

rhs1 = @(x) (2*x)/((x.^2+1).^2);

% -(k2 u’)’ = rhs2 on [c,b]

k2fun = @(x) 0*x + 1;

rhs2 = @(x) (2*x)/((x.^2+1).^2);

% alpha is the value of the boundary condition at a

% bc1 = 1 for Dirichlet, bc1 = 2 for Neumann

% beta is the value of the boundary condition at b

% bc2 = 1 for Dirichlet, bc2 = 2 for Neumann

alpha = 0;

bc1 = 1;

beta = .5;

bc2 = 1;

% This script defines the parameters of problem for ddc.m

% [a,b] is the domain, c is the interface

a = 0;

b = 1;

c = 0.5;

79

% lambda0 = initial guess for condition at C for problem on

% Omega1

lambda = 0;

% -k1u’’(x) = rhs1 on [a,c]

k1fun = @(x) 0*x + 1;

rhs1 = @(x) (2*x)/((x.^2+1).^2);

% -k2u’’(x) = rhs2 on [c,b]

k2fun = @(x) 0*x + 1;

rhs2 = @(x) (2*x)/((x.^2+1).^2);

% alpha is the value of the boundary condition at a

% bc1 = 1 for Dirichlet, bc1 = 2 for Neumann, bc1 = 3 for Robin

% beta is the value of the boundary condition at b

% bc2 = 1 for Dirichlet, bc2 = 2 for Neumann, bc2 = 3 for Robin

alpha = 0;

bc1 = 1;

beta = 1;

bc2 = 1;

% u1’ = d2 u2 - d1 u1 at c

d2 = 1;

d1 = 1;

