Scoring Shape Characters of Monocot Leaves

Yao Zhou
Department of EECS
Oregon State University
Corvallis, OR, 97330
zhouyao@onid.oregonstate.edu

Abstract

Biologists regularly collect images of leaves for their further studies. One such
biological study of leaves is scoring the phenomic characters of leaves for the
construction of the Tree of Life (ToL), i.e. the evolutionary lineage of taxa in
botany. There is an opportunity for computer vision to help biologists automate
this character scoring. In this master’s report, we describe an automatic system for
scoring shape characters of monocot leaves. This system uses computer vision to
speed up the current manual scoring process. Each leaf is processed using follow-
ing computational steps: Segmentation, Orientation Alignment and Scoring. We
developed two main frameworks for shape character scoring. One uses global leaf
descriptors and then applies a Support Vector Machine (SVM). The other matches
the leaf shape contour to exemplar shape contours using Dynamic Time Warp-
ing (DTW). Our evaluation shows that both frameworks give high performance
on scoring leaves. To the best of our knowledge, this is the first computer vision
system that addresses the problem of leaf shape character scoring.

1 Introduction

1.1 Motivation

Biologists collect large amounts of data on living organisms to infer their evolutionary histories.
Phenomic data are the fundamentals in the construction of the Tree of Life (ToL) [1]] which repre-
sents the evolution history of all organisms. Increasing amounts of data and advancing technologies
have dramatically expanded the usage of computer vision expertise in biology. One such usages
is scoring the phenomic characters of leaves for their further studies. Currently large numbers of
images are collected, but only a small number of them have been scored because manual scoring of
leaves is inefficient and costly. Therefore we explored the possibility of helping biologists to auto-
matically score leaf shape characters from images. We identified the computer vision problems that
are related to leaf scoring and proposed computer vision algorithms to solve them. No prior work
has addressed the same problem before. Because there are general research on shapes but not for
leaf contours, so we need to adapt these algorithms to suit our problem.

1.2 Problem Statement

Given a monocot leaf image, our objective is to correctly score the shape characters of the leaf.
We focus on scoring six shape characters: Leaf apex angle, Leaf apex curvature, Leaf base angle,
Leaf base curvature, Length-to-width ratio and Widest position. The shape characters have several
different states. For instance, Leaf base angle has four states: Acute, Obtuse, Straight and Reflex as
illustrated in FigurdI]

Acute Obtuse Straight Reflex

Figure 1: Four States of Leaf Base Angle. Acute: less than 90 degrees; Obtuse: between 90 and 180
degrees; Straight: 180 degrees; Reflex: greater than 180 degrees.

Scoring a character means identifying the correct state of each shape character of a monocot leaf. In
computer vision, this task can be represented as a multi-class classification problem for each shape
character. The multiple states of the character can be viewed as a set of classes.

1.3 Challenges

The images in the dataset have various image qualities. Some images are high resolution image
scans and other images are collected by biologists through cameras. Also the images have various
backgrounds, which may include specimen tags, a measuring gauge, immersion liquid as well as
inconsistent lighting conditions. The first challenge is how to build a preprocessing module which
can work on images with varying qualities. The second challenge is that the leaf specimens are under
different preservation conditions. Some specimen leaves are severely damaged: they may have
cracked into two parts or lost some tissues around their edge. Other specimen leaves are almost
transparent, and therefore hardly to be distinguished from immerse liquid and some have overlay
with specimen tags and measuring gauge. This substantial diversity of our real world dataset poses
a number of challenges, and we believe there are no off-the-shelf computer vision tools specifically
designed for this purpose. The third challenge is that we need to make sure the system we design
is a flexible framework so that each system module can be easily replaced by third-party modules.
This flexibility is required as shape characters are not the only category of characters that biologists
care about.

1.4 Related Work

Currently there is various software available for leaf species recognition [2}7,|14,]20] and general
object detection. Leaf species detection involves identifying the plant species from photographs
of their leaves. Usually the recognition process consists of several steps: Removing unqualified
leaves, separating the foreground and background and extracting features and comparing. However
our task is focused on scoring the leaf shape characters, which may have partial overlap with these
existing approaches to leaf species recognition. Some general object detections methods, such as
Discriminative deformable model (DPM) [9] or the classical Bag of Words (BoW) model [_8]], can
successfully recognize certain types of objects from images. However each approach in prior work
can only address one aspect of the challenges we listed.

To score characters of shapes, the existing contour shape techniques that exploit shape boundary
information are very promising. There are generally two different approaches for contour shape
representation and matching. One approach generates two sequences of points for two shapes
by sampling contours in a specified order, and their distance is calculated using a sequence
matching method such as Dynamic Time Warping (DTW). The second approach is a general
correspondence-based shape matching method that measures the similarity between shapes using
point-to-point mapping. When working with the correspondence methods, several type of relations
can be applied, including one-to-one mapping, one-to-many mapping and many-to-many mapping.
Generally speaking, all of these matching methods are time-consuming and too difficult to use by

people without expert knowledge of computer vision. Therefore we developed a system that has
two distinct frameworks to address these challenges while also being easy to use by biologists.

1.5 Overview of Approach
Our approach has two main stages:

e Preprocessing and Feature Extraction:
The first stage begins with foreground background segmentation, which serves the purpose of
separating the leaf out of the image. Next the leaf is rotated & aligned to canonical orientation
and then features extraction methods are applied to the leaf.

e Shape Character Scoring
The second stage is comprised of two basic frameworks for character scoring: One framework
uses Histogram of Oriented Gradient (HOG) features combined with a Support Vector Machine
(SVM) classifier. This is a generic method that has potential to be used on other characters, such
as vein characters. The second framework matches the leaf shape to exemplar shape contours
using DTW and uses K-Nearest Neighbour (K-NN) for scoring. The second framework is more
suitable for shape characters.

Input Canonical
Images Leaves Scores
Segmentation Rotation & Fea‘“.re Classification
Alignment Extraction
Preprocessing Character Scoring

Figure 2: Flow Block Illustration of Our Approach

2 Approaches

2.1 Preprocessing and Feature Extraction

Preprocessing plays an important role before we get to the shape character scoring stage. It serves
the purpose of cropping and putting the leaf into canonical orientation, which is leaf apex area on the
left side and leaf base area on right side. Preprocessing has two sub-modules: the first sub-module
is to segment the input image and separate the leaf from the background. The second module is
orientation alignment that puts every leaf into the canonical orientation. Having each leaf in the
canonical orientation makes it convenient for shape character scoring. Orientation alignment has
two separate steps as shown in Figure The first step is to compute a segmentation mask for
the leaf and then crop the leaf out of the original image. Then the leaf is rotated to the horizontal
position. The second step is orientation alignment that puts the leaf into the canonical orientation.

Alsdrw st erigoras
FHER

|||||||||||||nn||||.| :-||::|| "-||:|| |_|_|-| 1| | Ii |'|

Figure 3: One example of Segmentation & Rotation. Left most is the original input image with
cluttered background. Middle is the binary mask generated by CRF. Rightmost is the cropped and
rotated leaf area image with the background masked.

2.1.1 Foreground Background Segmentation

There are a wide variety of segmenting methods available in computer vision community. One
category of methods is unsupervised segmentation [5,|13L[15,/16] such as Normalized Cut [[18] and
Graph-based methode [[10]. An advantage of these methods is that they do not require an annotated
training set. Another category of methods is supervised segmentation which requires human anno-
tations before training the model, such as Conditional Markov Random Field (CRF) [11}/12]. We
use a CRF model for multi-class labelling with the CRF output mapped to a binary mask image (1
inside the mask, O for the rest). There are several reasons to do the segmentation in this way. Unsu-
pervised methods such as Normalized Cut can easily confuse the leaf area with specimen tags when
these two areas have similar color. Interactive segmentation methods can output a very good seg-
mentation image given multiple human interactions. However it requires substantial human labour
which is not available in our case since we have a large quantity of raw leaf images. Compared
with these methods, the CRF model is very promising. First, it is a supervised pixel-level labelling
method, and we can explicitly set up several region definitions in configuration files. In this way,
some easily-confused regions can be correctly separated. Second, training and using the model is
not costly. We can simply apply the trained model on unseen raw leaf images once the training is
finished. Compared with interactive segmentation methods, the CRF requires only a small amount
of human labor for the annotation.

2.1.2 Rotation

The first step of orientation alignment is rotation which will put the leaf into the horizontal position.
There are two cases: if the aspect ratio of the cropped leaf is larger than certain threshold \,., we fit
an ellipse to the binary mask image and then rotate the leaf to horizontal position based on its main
axis direction. In practice, we take the values of A, as 2. The second case is used when the aspect
ratio is smaller than)., namely, the leaf area is round shaped. In this case, the ellipse is no longer
a good leaf shape approximation. Therefore we apply edge detection to the leaf and then compute
Hough transform on these edges to find a set of mini directional line segments. We then compute
a directional histogram by counting how many mini line segments have fallen into each bin. The
directional bin containing the largest number of mini line segments defines the main axis and we
rotate leaf area based on it. The general rationale behind the second approach is to find the main
vein direction and rotate the leaf so that this direction is horizontal.

2.1.3 Orientation

After the leaf has been rotated to be horizontal, it is still not clear whether the leaf is in the canonical
orientation. We extract feature vectors from both ends of the leaf (Apex and Base) and then train
a binary classifier to recognize the leaf orientation. This binary classifier is trained based on the
feature vectors extracted from canonical leaves and label predictions are simply 1" or ”0”. Label
”1” means the leaf is already in canonical position and no more operations need to be done. Label
”0” means the leaf is positioned in the opposite orientation and it has to be rotated 180 degrees.

apex Base

patch patch

Figure 4: Example of extracting feature patches from leaf area image.

To train a classifier, we need the feature vectors to have all the same length. Therefore all leaf patches
cropped from the leaf are resized to squares of same size. In our implementation, all leaf patches
are resized to 512-by-512 pixels. Then we extract HOG [6] features on two square patches of each
leaf and concatenate them as one feature vector in the end. During the classifier training, one feature
vector represents one leaf. If this leaf is already on a canonical view, the feature vector extracted

from it is labelled as a positive instance, otherwise the extracted feature vector is labelled as negative
instance. For implementation purposes, we have also applied some common techniques to expand
the dataset size. This expansion is accomplished by simply flipping every leaf patch vertically. This
generates more Apex and Base patches.

After the Orientation alignment stage is finished, we can easily score the first two leaf shape char-
acters: Length-to-width ratio and Widest position. We fit a rectangle on the mask image and the
Length-to-width ratio is the outcome of rectangle length divided by rectangle width. For the second
shape character, we calculate the accumulated foreground pixel numbers column by column, then
the mask image is collapsed to an one dimensional vector v. Finally this vector v is discretized into
three bins and the score of Widest position character is the index of the bin that max(v) falls into.

2.1.4 Extracting Features
2.1.4.1 HOG features

The first framework is similar to the method we use in Orientation alignment stage — we use the
HOG features extracted from two square patches of the leaf. HOG is the feature descriptor used
widely in the computer vision community. It counts the occurrence of gradient orientation of a local
portion of image. More specifically, HOG decomposes an image into small square cells, computes
a histogram of orientated gradients in each cell, normalizes the histogram and returns the descriptor
for each cell. Concatenating all the descriptors of cells in an image as one vector gives an image
descriptor. This descriptor has been successfully applied in pedestrian detection problems(and many
others). HOG is a capable descriptor that describes local image appearance and shape and thus we
hypothesis that it can be a universal descriptor for all our character scoring tasks.

2.1.4.2 Shape feature

The second framework scores the leaf shape characters by using only shape features on the mask
image. There are multiple ways to properly describe shape features. We compute two descriptors:
Shape context [3]] and Beam angle [|17]].

Count the number of points
inside each bin, e.g.:

Count = 10

% Compact representation
of distribution of points

relative to each point

Figure 5: Example of shape context descriptor on one sampling point.

Shape context was originally proposed to describe shapes, and it can be used for measuring shape
similarity. The idea of shape context is to sample n points on the contour of shape. For each
sampling point p;, calculate n — 1 vectors by connecting p; to the n — 1 remaining sampling points.
Then the set of vectors can be discretized into a log-polar histogram, which still includes enough
information to describe the shape. The log-polar histogram is decided by two parameters: number
of bins of theta ny and number of bins of radius n,.. In our implementation, we take ng = 12 and n,
=5, therefore the total number of bins in one shape context descriptor is 60. The shape context of

point p; is defined as:
hi(k) = #{q # pi : (¢ — pi) € bin(k)} e9)

In the character scoring stage, we build the pairwise similarity matrix over the whole dataset and
shape context is an ideal descriptor for that purpose.

Beam angle is the second shape descriptor we use. The contour of the leaf can also be characterized
as a sequence of beam angle descriptors, which are also histograms at the sampling points along the

contour. For each sampling point p;, it calculates the angle 6 of a triplet (p;, p;—;, pi+x) with angle
vertex at p;. Here, j + k < n and n is the total number of sampling points along the contour. Since
the histogram on each sampling points includes all possible combination of triplets, beam angle is a
very powerful and discriminative descriptor. In the implementation, the total number of bins nya =
30. Also there is a special case that needs to be taken care of: when the angular bisector of a triplet
is on the opposite direction of mass center of the mask, we need to replace with 360 — 6.

Figure 6: Example of one beam angle triplet (p;, p;—;, pi+%) on point p;

2.1.5 Contour Smoothing

Before we generate the contour and extract features from it, we may elect to do the contour smooth-
ing first. The fuzzy boundary of the mask can be filtered by removing high frequency local com-
ponents. To design a low pass filter for removing the high frequency boundary, we transform the
contour into a one dimensional signal first. This transformation uses the center of mass as the origin.
Then beginning with the start direction (three o’clock for instance), it rotates the mask along with
certain angular step size and record the distance from the contour to the mass center. After the mask
is rotated 360 degrees, the one dimensional distance signal that has been recorded can represent this
two dimensional mask. Next, we remove the high frequency components using Fourier filtering.
We can either heuristically pick a frequency threshold to design a low pass filter for the signal or
choose the frequency threshold by considering how much energy we want to retain after filtering.
Recovering the two dimensional mask from the one dimensional signal is the reverse of the initial
step. The only difference is that we need to compensate for amplitude scaling after a Reverse Fourier

i
L 3l 2
AR AR

Figure 7: Two examples of smoothing leaf shape contours

b

3 Shape Character Scoring

For shape character scoring, we have developed two alternative frameworks: One is scoring using
SVM on HOG features. The second one is matching the leaf shape contour using DTW to exemplar
shape contours to build the pairwise distance matrix first. Then the K-NN classifier is applied for
final scoring.

3.1 Framework I: HOG plus SVM

Framework I of shape character scoring is similar to the method we use in the Orientation alignment
stage. We extract HOG features from two resized square patches (Apex and Base) of the leaf,
then concatenate these two feature vectors as one. The main difference between Framework I and
Orientation alignment is that in the scoring stage we train a multi-class SVM for each category of
shape characters. However the final feature vector we retrieved has very high dimension. In order to
speed up the training, we apply Principle Component Analysis (PCA) to reduce feature dimensions,
and this reduced-dimension vector is fed into the multi-class SVM.

3.2 Framework II: Shape plus DTW

Framework II scores the leaf shape characters in a different way such that only the mask image
is used for feature extraction and model training. To begin with, an Apex/Base patch is cropped
from the contour image and an open contour of Apex/Base is retrieved. Then points are uniformly
sampled along this open contour. The distance between two open contours is estimated by using the
standard Dynamic Time Warping (DTW) on the corresponding two sequences of shape descriptors.
By applying this procedure to every pair of images, a pairwise distance matrix D is built over the
whole dataset as shown in Figure[]. We expect the diagonal elements along the pairwise distance
matrix D will be 0, since the cost of between two exactly same contours is zero.

Final shape character scoring uses the K-NN classification algorithm on D to score the test leaves.
For instance, the ith row on D represents for the distances between ith leaf and the rest. Then based
on the choice of parameter K, K-NN assigns ¢th leaf the label that occurs most frequently among K
leaves nearest to itself. In other words, the output of K-NN is a class membership which is decided
by majority vote of K nearest neighbours.

DTW cost matrx of shape characher 4 ITW cost matrix of shape character §

OTW cost matrix of shape character &
| []
| | BX

Figure 8: Examples of pairwise distance matrix using beam angle descriptor. The instances in the
same class have been re-arranged and shown in color squares (Better view in color).

3.3 DTW Weight Learning

Dynamic Time Warping (DTW) is an algorithm for measuring the edit distance between two se-
quences even when the sequences are of different lengths. The two open contours of leaves are
usually not the same length, therefore DTW matching is ideal for our purpose. DTW works by
warping the time axis using dynamic programming until an optimal match between the two se-
quences is found. Consider two sequences | = {z1, 2, ...xm } and I = {y1, y2, ...yn }, Where x; is
the sampling point of one contour and y; is the sampling point of the second. For any two points
from [and ', we extract the features and define the cost ci; between these two features. Since
our two shape descriptors are both histograms, Chi-squared distance is a suitable measure for the
difference between x; and y;. The final cost of DTW matching of two contours is defined as:

1

_— » 2
|7Tll/| c] ()

(i,4)€my i€l jEV

Sprw iy =

where 7;; defines the optimal alignment of the two sequences and |r;;| is the length of the aligned
sequences.

In the original DTW matching, all sampling points are assumed to be equally important. However
this may not be the case for leaf shape character scoring. For example, the leaf apex curvature can
be approximated by several points around the leaf apex peak. Therefore the points in this area are
more important than others. If we can estimate the underlying importance of sampling points, the
accumulated DTW matching cost will become more accurate. So we proposed a weight learning
process to assign a weight to each sampling point.

For each open contour with n sampling points, we aim at learning a weight vector w of length
n. Based on the original pairwise distance matrix D, for each leaf we can find another leaf have
the same character state that has the largest DTW matching cost. We call it the Farthest Hit (FH).
Similarly, the leaf with a different state that has the smallest DTW matching cost is called the
Nearest Miss (NM). Our objective function is to maximize the margin between FH and NM w.r.t to
the weight vector w:

max } wi | 3, mean({eyh) =) mean({ca})

{wih 75 I'eNM I"eFH t 3)

st Jlwlla=1

where [a]; = maz(0,a) .

Each sampling point on current contour [may have multiple DTW matching points on contour !’ of
NM and multiple matching points on contour !’ of FH as well. The 2-norm of final weight vector w
is constrained to be equal to 1.

Apex of leaf ID: 5 Apex of leaf ID: 8
DTW matching DTW matching DTW matching DTW matching
of Farthest Hit of Nearest Miss of Farthest Hit of Nearest Miss

Figure 9: DTW matching of two leaves with their FH& NM respectively (Better view in color).

After the weight vector w of one contour [is learned, the cost of DTW matching between [and new
coming contour !’ is calculated as below:

Sprwar = Y wi mean({eij}) @)
i€l

4 Results

In this section, first we describe the dataset used for our experiments and introduce metrics for our
results evaluation. Then we show the qualitative results of weight learning. Finally, we will compare
the quantitative results of the approaches.

4.1 Dataset

Our dataset is part of the BisQue database developed by biologists who are working on leaf
characters research and it is available at: http://bovary.iplantcollaborative.org/
client_service/| by request. Specifically, it contains over 400 real world monocot leaves
which were originally selected by biologists in an attempt to cover the wide diversity of monocot
leaves. The monocot leaves diversity includes various leaf sizes, various leaf positions and direc-
tions, various lighting condition, leaf colors and background etc.

http://bovary.iplantcollaborative.org/client_service/
http://bovary.iplantcollaborative.org/client_service/

Input
Images Manually Manually ; ; Manually 200 leaf
B Segmentation Remove Rotation Remove (;II::;:::: Rermove images
before
372/410(90.7%; 302/320 (94.3%,
/410 {) 372 » 320 /320 | 302 276 252/276 (91.3%) 252 200 Scaring

Figure 10: Pipeline of segmentation, rotation, and orientation alignment.

Our system eliminates the unqualified leaves in each preprocessing stage as shown in Figure[T0] The
final 200 selected leaves are highly representative for scoring shape characters because they are intact
monocot leaves that including whole apex and base area, therefore no information is lost; They are
all straight flat leaves rather than spiral leaves, so it is much easier to extract features on the both
ends of them; They are not damaged by the immerse liquid, therefore the segmentation results are
more reliable. For segmentation stage, we manually annotated 40 images for training. These training
images are annotated by assigning a false color to each pixel based on the following rules: Leave
pixels are assigned green, specimen tag pixels are red, and other background pixels are blue. The
RGB value triplets of these regions’ definition are (0,255,0), (255,0,0), (0,0,255) respectively. For
the orientation alignment stage, we manually labelled all of the cropped leaves after segmentation
and rotation as follows: A leaf in the canonical orientation is labelled 1 and a leaf in the opposite
orientation is labelled 0. For the shape character scoring stage, we manually labelled six characters
according to rules given by our biology collaborators. In this thesis, we have converted the character
states into integer values.

4.2 Evaluation

We used several methods to evaluate our output. One is a confusion matrix, which is a table visual-
ization of the performance of an algorithm. In our result, each row of a confusion matrix represents
the instances in ground truth class and each column represents the instances in a predicted class. The
confusion matrix allows us to visualize how the algorithm is mispredicting. The perfect confusion
matrix should have only the diagonal elements filled, which means that no misprediction has been
made by the algorithm.

We also measure accuracy. The overall accuracy is defined as the percentage of number of correctly
predicted instances divided by total number of instances. Given a confusion matrix K, overall
accuracy is calculated as trace(K) divided by sum(K). Our dataset is unbalanced, which means
different states have widely varying number of instances. Therefore we also use compute class-wise
accuracy as an evaluation metric. Class-wise accuracy is the accuracy on each class separately. The
class-wise accuracy weighted by the proportion of images in each class is equivalent to the overall
accuracy.

4.3 Qualitative Results

Our system contains modules that serve the purpose of pre-processing the data before the final
scoring stage. The results of these intermediate modules are visualized here to help us gain a better
understanding the intuition behind the theory. Figure[TT|below are the learned DTW weight vectors
for two leaves. The first row shows two sets of leaf masks with and without contour smoothing.
The second row shows the extracted apex and base patches of the non-smoothed mask; The third
row shows the learned weight vector for the apex and base patches. Red and blue lines represent the
weight learned with and without contour smoothing. The weight vector of the first leaf puts larger
weights in the leaf peak area. This is reasonable because usually the apex angle can be decided
by the points in that area. After contour smoothing, the learned weights are more concentrated in
the middle of the curve. The second leaf is similar to the first leaf except that it has a more fuzzy
boundary. Therefore before contour smoothing, the weight vector learned for the base angle puts
larger weights on other points rather than on the base peak area. But after contour smoothing, the
learned weight vector has larger weights concentrated in the center of the curve, which is better.

Original mask Smoothed mask Qriginal mask Smoothed mask

=P q B |

BBEEE

e 800

Apex area Base area Base area

Apex area
50 100150200 50 100150200

Apex Angle Base Angle

0 x
100 100
15¢ 150

50 10015@00250 o 50 10085020050
Apex Angle . Base Angle

K Mo

Figure 11: Visualization of learned weight (with and without contour smoothing) on two leaves of
shape characters Apex angle and Base angle

4.4 Quantitative Results
4.4.1 Results of Framework I

In our final stage, leaf shape character scoring, the dataset we chose has 200 monocot images that
under different background and have six leaf shape characters. We compute HOG features and
perform SVM classification. We employed five-fold cross-validation to assess the performance of
the method. Within this, we employed 10-fold cross-validation to choose the optimal parameters
for the SVM. The summed confusion matrices of the five folds are presented in table [Il We see
that all characters have three states except the Leaf base angle, which has four states. Note also
that the number of instances in each state varies significantly, so the dataset is unbalanced for every
character. In table 1(c), we see that ’State 1’ is by far the most common in the dataset, and ’State
3’ is easily confused with *State 1°. In table 1(e), we see that ’State 2’ dominates the dataset, and
’State 3’ is confused with other states for most of the instances.

4.4.2 Results of framework I1

We applied out second framework to the same dataset. The shape descriptor we used in Beam angle,
and the results are scored by the K-NN classifier. Again, we employed 5-fold cross-validation to
compute classification accuracy. The accumulated results are shown in Figure We compare the
results under configuration: a). beam angle descriptors extracted directly from mask contours and
pairwise distance matrix constructed using DTW algorithm without weight learning; b). pairwise
DTW with weight learning; ¢). contour smoothing applied to the mask before Beam angle feature
extraction; d). both contour smoothing and weight learning. The results are given in Table[2]

In Figure [12] there are 16 confusion matrices: The rows represent the configurations a), b), c), d)
and the columns represent the different shape characters. To compare the results visually, we display
the 16 confusion matrices as color heatmaps. From the results, we observe that there are only subtle
differences between the tables. However we observe the confusion matrices with weight learning
and contour smoothing have a majority instances on their diagonals, which means this configuration
has decreased the number of states being mis-predicted.

5 System Implementation

Our team is currently building a system called AvatolCV, which will host our segmentation, orien-
tation alignment, and scoring algorithms. It is written in a wizard style to guide the user through a
series of steps for selecting either a remote or local dataset, and for choosing which algorithms to run.
AvatolCV has subsystems for user interface, question sequencing, data source selection, and algo-
rithm loading and execution, and results viewing. The data sources currently supported are BisQue
(http://bioimage.ucsb.edu/bisque) , Morphobank (www.morphobank.org) and a
properly formatted local file set. AvatolCV’s algorithm subsystem can detect and use algorithms
written in C, C++ and Matlab, with minor integration adjustments. Once the scoring algorithm com-

10

http://bioimage.ucsb.edu/bisque
www.morphobank.org

State 1 State 2 State 3 ‘ State 1 State 2 State 3
State 1 | 190(100%) 0 0 State 1 | 139(90%) 11(7%) 4(3%)
State 2 2(33%) 4(67 %) 0 State 2 7(17%) 33(81%) 1(2%)
State 3 0 125%) 3(75%) State 3 2(40%) 0 3(60%)
(a) Length-to-width ratio (overall accuracy: 98.5 £ (b) Widest position (overall accuracy: 87.5 + 4.6%;
1.7%; baseline accuracy: 95%). baseline accuracy:69.5%).
State 1 State 2 State 3 ‘ State 1 State 2 State 3
State 1 | 126(93%) 3(2%) 6(5%) State 1 | 116(92%) 10(8%) 0
State 2 12(29%) 28(67 %) 2(4%) State 2 1226%) 31(67%) 3(7%)
State 3 9(39%) 1(4%) 13(57 %) State 3 3(11%) 6(21%) 19(68 %)

(c) Leaf apex curvature (overall accuracy: 83.5 £ 5.1 (d) Leaf apex angle (overall accuracy: 84.1 +

%, baseline accuracy: 63%) 5.1%;baseline accuracy: 58%)
‘ State 1 State 2 State 3 ‘ State 1 State 2 State 3 State 4
State 1 | 31(78%) 9(22%) 0 State 1 | 32(80%) 8(20%) 0 0

State 2 2(2%) 135(96%) 2(2%) State 2 8(11%) 47(67%) 12(17%) 3(5%)
State 3 | 8(38%) 9(43%) 4(19%) State 3 2(4%) 1226%) 27(59%) 5(11%)
(e) Leaf base curvature (overall accuracy: 85.1 £+ State 4 0 1(2%) 5(12%) 38(86%)

4.9%; baseline accuracy: 67.5%) (f) Leaf base angle (overall accuracy: 72.0 & 6.2%; baseline ac-
curacy: 23.5%)

Table 1: Scoring results of six shape characters in confusion matrix. In each confusion matrix,
the class-wise accuracy of each state is the percentage numbers in the parenthesis of the diagonal
elements. The overall accuracy (with 95% confidence level) is shown in sub-caption. Baseline is the
the most frequent class

Apex curvature Apex angle Base curvature Base angle
Original framework I1 80.4% 85.4% 86.4% 76.4%
Weight learning 86.4% 88.9 % 87.9% 80.4%
Contour smoothing 81.4% 81.4% 86.1% 74.3%
Both 88.9% 86.0% 89.4% 74.4%
Framework I 83.5% 84.1% 85.1% 72.0%

Table 2: Overall accuracy of different configurations on four shape characters

pletes, the results viewing subsystem allows inspection of results. Scores accepted by the users can
be added to a local dataset or uploaded into a remote one. The development of AvatolCV is ongoing
at the time of writing this thesis.

AvatolCV’s framework is implemented in Java. The algorithm subsystem uses DARWIN [11] for
segmentation, VLFeat [19] for HOG feature extraction and LIBSVM [4] for SVM classification.
The remaining operations are all implemented in MATLAB. We run all our experiments on an ma-
chine with an Intel(R) Core(TM) i7-4700MQ CPU @ 2.4GHz and 8GB RAM. All images have
been resized so that the longer side of the image has 1000 pixels. The dataset contains 200 images.
The running time of segmentation training on 40 images is 45 minutes, and the running time of seg-
mentation testing on each image is around 25 seconds. The running time of orientation alignment is
around 15 minutes for the whole dataset. The most time-consuming steps are HOG feature extrac-
tion and PCA. The running time of scoring using the HOG plus SVM method is 22 minutes for each
character on the dataset. The running time of scoring using the contour plus K-NN method is 50
minutes for each character because beam angle extraction, DTW matching, and pairwise distance
matrix construction are all very compute-intensive.

11

Apex curvature Apex angle Base curvature Base angle

State1 State1 Statel

Statel
Sae2

State2 State2 State2

Criginal

Stated

Siatel Sme? Sialed Siatel Sme? Sialed Saei Stae? Siaed Shlel Stam? Sukd Sl

Statel Statel Statel

State2 State2 State2

Stated

Stated Stated

Sl Skk2 Sl Skisl Stz Stll Sbw2 Sld Sakd

Statel 08 0 6 Statel

State2 7 0 State2

Stated 1 3 : Stated|

Ste! Smk? Shkl Ste! Smk? Sakl Salel Stake? e

State!
State1 3 2 State1 3 0 2 Statel 3
Statnz
State2 2 o State2 3 State2 33]
states [3 : states Y 4 : States [7 Contour smoothing
Stated
Stalel Stake2 Skl Salel Swme? Sael Stale1 Stale? Stale3

+
Sate1 St Sted Shed

Low value High value

Figure 12: Confusion matrices of four shape characters over four different methods of pairwise
distance computation. In heatmaps, Red means high number of instances and Blue means low num-
ber of instances. The Red rectangles are marked out predictions showing severe mis-classifications
(Better viewed in color).

6 Conclusions and Future Work

We have described the system we designed to score shape characters of monocot leaves. The system
includes two stages: the first stage crops the leaf from image and puts it to a canonical orientation.
The second stage applies two frameworks for shape character scoring. One is employs SVM clas-
sifier on HOG features and the other matches the leaf shape contour to exemplar shape contours
using DTW to build the pairwise distance matrix. The K-NN is applied to score the characters.
Both frameworks have been evaluated on the real world leaves dataset using confusion matrix and
accuracy metrics.

The evaluation shows that the second framework has better performance in overall accuracy, espe-
cially for the configurations where the DTW weight learning step is employed. Contour smoothing
does not necessarily improve the results. In some cases, it appears to destroy the shape information
on Apex/Base peak, which is critical for shape character scoring. However as the first framework is
a universal method that can applied on many other categories of characters such as vein characters

12

Weight learning

Contour smoothing

Weight learning

and secondary vein characters, we may continue use first framework in further study of monocot
leaves.

Overall our approach enables the biologists to score the monocot leaves automatically and efficiently
with confidence in the accuracy of the system. At this point, the petiole of leaves may or may not
be present after segmentation. However the first framework needs HOG features from Apex/Base
patches without petiole and second method also only needs the contours of Apex/Base peak area
without petiole. For future work, we will try to develop an efficient algorithm to remove the petiole
before character scoring.

References

[1] Assembling, visualizing and analyzing the tree of life (avatol), http://avatol.org/
ngp/L
[2] Identify tree species by leaves: Treetrees, http://www.tree-app.com/.

[3] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape
contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2002.

[4] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (ACMTIST), 2011.

[5] Dorin Comaniciu, Peter Meer, and Senior Member. Mean shift: A robust approach toward fea-
ture space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),
2002.

[6] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In /IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2005.

[7] H. Tang David Corney, Jonathan Clark and Paul Wilkin. Automatic extraction of leaf characters
from herbarium specimens taxon. International Journal of Plant Taxonomy, Phylogeny and
Evolution, 2012.

[8] Li Fei-fei. A bayesian hierarchical model for learning natural scene categories. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 2005.

[9] P.E Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with dis-
criminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 2010.

[10] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient graph-based image segmentation.
International Journal of Computer Vision (IJCV), 59:2004, 2004.

[11] Stephen Gould. DARWIN: A framework for machine learning and computer vision research
and development. Journal of Machine Learning Research (JMLR), Dec 2012.

[12] Xuming He, Richard S. Zemel, and Miguel A. Carreira-Perpifian. Multiscale conditional ran-
dom fields for image labeling. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), 2004.

[13] Hossein Mobahi, Shankar Rao, Allen Yang, Shankar Sastry, and Yi Ma. Segmentation of nat-
ural images by texture and boundary compression. International Journal of Computer Vision
(IJCV), 2011.

[14] Arijit Biswas David W. Jacobs W. John Kress Ida Lopez Neeraj Kumar, Peter N. Belhumeur
and Joo V. B. Soares. Leafsnap: A computer vision system for automatic plant species identi-
fication. In The 12th European Conference on Computer Vision (ECCV), October 2012.

[15] Caroline Pantofaru and Martial Hebert. A comparison of image segmentation algorithms.
Technical report, 2005.

[16] Massimiliano Pavan and Marcello Pelillo. Dominant sets and pairwise clustering. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence (PAMI), 2007.

[17] Nadia Payet and Sinisa Todorovic. Matching hierarchies of deformable shapes. In 7th Inter-
national Workshop of GbRPR, 2009.

[18] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. /[EEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 1997.

13

http://avatol.org/ngp/
http://avatol.org/ngp/
http://www.tree-app.com/

[19] A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer vision algo-
rithms, 2008.

[20] Pengcheng Wu and Thomas Dietterich. Improving svm accuracy by training on auxiliary data
sources. International Conference on Machine Learning (ICML), 2004.

14

	Introduction
	Motivation
	Problem Statement
	Challenges
	Related Work
	Overview of Approach

	Approaches
	Preprocessing and Feature Extraction
	Foreground Background Segmentation
	Rotation
	Orientation
	Extracting Features
	Contour Smoothing

	Shape Character Scoring
	Framework I: HOG plus SVM
	Framework II: Shape plus DTW
	DTW Weight Learning

	Results
	Dataset
	Evaluation
	Qualitative Results
	Quantitative Results
	Results of Framework I
	Results of framework II

	System Implementation
	Conclusions and Future Work

