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Task time estimation is a core industrial engineering discipline. However, the 

process to collect the required data is manually intensive and tedious, thus 

making it expensive to keep the data current. Radio frequency signals have been 

used to automate the required data collection in some applications.  However, 

such radio frequency data is subject to systemic and random noise, leading to a 

reduction in the accuracy of the task time estimation.  This research investigates 

the use of a pattern recognition method, the k-nearest-neighbor algorithm, to 

improve the accuracy of task time estimation in a simulated assembly work area.   

The results indicate that the parameters of the kNN algorithm can be 

experimentally tuned to improve the accuracy and to dramatically reduce the 

necessary computational time and the costs of performing real-time task time 

estimation.  
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1. Introduction 

Task time estimation is important in manufacturing as it is one of the core elements of industrial 

engineering tasks such as workstation layout, capacity planning, cost estimation and line 

balancing.  However, traditional task time estimation techniques such as work sampling and 

time studies are time consuming and tedious. 

A novel approach to task time estimation involves monitoring the strength of a radio 

frequency (RF) signal within a wireless sensor network (WSN) to estimate an operator's 

position within a workstation in real-time and then use this position information to derive task 
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duration (Atichat, 2011).  A key part of this approach is to utilize a pattern recognition 

technique called location fingerprinting based on the k-nearest-neighbor (kNN) classification 

algorithm to analyze and classify the data generated by the WSN, and then use that processed 

data to estimate the task time at a specific location.  The location fingerprinting process consists 

of two phases: the offline data collection phase (or calibration phase), and the online data 

collection phase. 

Once all the new RF signals are assigned to estimated locations in the online data 

collection phase, the task times are estimated from those locations.  The results reported by 

Atichat (2011) indicated that the quality of the resultant estimated task times using this 

approach was sensitive to the k parameter of the kNN algorithm. Therefore, this study focuses 

on the pattern recognition phase by investigating the effects of several pattern recognition 

parameters on the accuracy of task time estimation. Different levels of these pattern recognition 

parameters were identified and tested via a designed experiment on offline and online datasets 

collected wirelessly in a simulated assembly area covered by a WSN. More specifically, this 

paper analyzes how using the kNN pattern recognition algorithm to classify WSN signals 

affects the accuracy and computational performance of task time estimation using those signals, 

and identifies a limitation of the kNN algorithm in detecting task transition events. The results 

obtained in this research show that the parameters of the kNN algorithm can be experimentally 

tuned to improve the accuracy of task time estimation and to dramatically reduce computational 

time. 

The remainder of this paper is organized as follows.  The rest of Section 1 describes the 

problem, related work and the research contribution.  Section 2 presents some background on 

the work that motivated this research.  The research methodology and experimental results are 

presented in Section 3.  Section 4 contains a discussion of the results, and the paper ends with 

conclusions and recommendations for future work in Section 5. 
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1.1  Problem Definition 

Location fingerprinting relies on the fact that an RF signal degrades (i.e., attenuates) with 

distance.  This phenomenon, referred to as free space loss, is modeled by the radio propagation 

model which expresses the RF signal power received by an antenna as a function of the signal 

power transmitted by another antenna (Ahson & Ilyas, 2011; Stallings, 2005): 

 

 

where Pr is the received signal power, Pt is the transmitted signal power,  is the wavelength of 

the RF signal, Gt and Gr are the transmitter and receiver gains, respectively, d is the distance 

between the transmitter and receiver, and n is a signal path loss coefficient which is determined 

by the environment and typically ranges from 2 to 6.  The received signal power, Pr, is generally 

reported by a surrogate measurement such as the link quality indicator (LQI) or the received 

signal strength indicator (RSSI). The strength of an RF signal transmitted from a source can 

then be measured (as the LQI or RSSI) at several receivers and the relative degradation in the 

power of the signal at each of the receivers is then used to estimate the location of the signal 

source relative to the receivers. 

The RF signal transmitted from a source encounters several forms of interference in its 

path to the receiver, which affect the measured strength and stability of the signal. For example, 

obstacles like walls and human bodies cause the RF signal to attenuate (i.e., lose signal 

strength), whereas signal reflection, scattering, and refraction result in losses due to the 

multipath effect.  Therefore, the signal measurement used in a location fingerprinting system 

has to be processed to compensate for the variation introduced by these sources of noise. 

This variation in location accuracy is compounded when the locations classified by 

location fingerprinting are used to estimate the duration of a transmitted signal at each of those 

locations.  The issue is that the key to task time estimation is the ability to accurately detect the 
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transition from one task to the next, which is represented by the transmitted signal moving from 

one location to another.  In an RF-based location fingerprinting system, there is no easy way to 

discriminate (from two consecutive signals in time) whether an apparent change in the source of 

the RF signal from one location to another is due to the signal transmitter moving from the first 

location to the next, or whether it is due to variation in a noisy signal environment. 

 To address the specific problem of location accuracy due to RF signal propagation 

variation and its resultant effect on task time estimation, the effects of various pattern 

recognition parameters on the accuracy of task time estimation were investigated in this 

research.  More specifically, experiments were conducted using different levels of the kNN 

classification algorithm that was used in location classification (the level of the k parameter), 

alternate methods of recording the offline fingerprinting data (the fingerprinting method), 

different methods for calculating the proximity of a new signal to existing signals in the offline 

database (the distance metric), as well as alternate formulations for detecting the transition of a 

signal transmitter from one task (as represented by a location) to the next (the segmentation 

algorithm). 

1.2 Related Work 

Related work in the area of wireless task time estimation can be aggregated into two main areas, 

i.e., work measurement and location fingerprinting. 

The most accurate manual work measurement methods involve time studies, but time 

studies are not effective at measuring the task times of non-cyclical or long tasks, like those in  

healthcare (Ben-Gal et al., 2010). In such situations, work sampling is the preferred work 

measurement method. Moreover, time studies are also subject to an “observer effect” where the 

time study subjects change their behavior due to being observed (Franke & Kaul, 1978). In such 

a situation, work sampling is again a less intrusive form of work measurement. However, work 

sampling often requires a large number of labor-intensive observations to meet the desired 

accuracy (Finkler et al., 1993).   



5 

 

Several examples exist in the literature where measurement and estimation techniques 

have been used to extract location information from RF signals. RADAR, developed at 

Microsoft Research, was the first RF-based technique for location estimation and user tracking 

(Bahl & Padmanabhan, 2000).  RADAR is built on top of the IEEE 802.11 Wireless Local Area 

Network (WLAN) standard, commonly known as WiFi.  In their experiments, the researchers 

used location fingerprinting to build an offline database of signal strengths received at three 

base stations from specific physical locations whose (x, y) coordinates they recorded. They then 

used a kNN algorithm to classify new signals in signal space according to the offline database 

and, by extension, to estimate the physical locations of the new signals.  This study was one of 

the first to provide localization via WiFi technology, and documented the impact of node 

orientations, the number of sampling data points, and the fact that signal strength was a stronger 

indicator of location than signal-to-noise (SNR) ratio. An accuracy of 80% was achieved in 

location estimation with a position error smaller than three meters. However, the kNN algorithm 

consumed significant amounts of computing power and time, which would prevent the 

implementation of this technology in a real-time tracking system (Honkavirta et al., 2009).  

Researchers have worked on improving the RADAR approach by using more access points 

during fingerprinting (Honkavirta et al., 2009; Jan & Lee, 2003) and by applying additional 

fingerprinting methods like weighted kNN, Bayesian filtering, and Kalman filtering (Honkavirta 

et al., 2009).  

Location fingerprinting has also been used with other RF technologies.  For example, 

SpotOn is a three-dimensional (3D) location sensor based on radio frequency identification 

(RFID) technology (Hightower et al., 2000). SpotOn utilizes an RSSI distance interpolation 

technique which includes a unique calibration technique that results in a high precision radio 

map between RSSI values and the distance between an RFID reader and the tag. In the 

calibration phase, the custom design of the SpotON RFID device allowed the researchers to 

fine-tune the RF signal level for both the readers and the tags to achieve a linear relationship 

between distance and RSSI in the radio map. This study claimed that the system can achieve 

very precise 3D location accuracy within a small area. However, a complete system has not 
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been made commercially available yet.  A two-dimensional (2D) location sensor system based 

on SpotOn demonstrated 2D location precision of 2-8 centimeters with more than 80% accuracy 

in a real inventory application (Ehrenberg et al., 2007). 

From the review of the work measurement literature, it is evident that the amount of 

data collected is one of the most important factors for both time studies and work sampling 

techniques. The increase in data points proportionally enhances the accuracy of the estimated 

time but is either expensive (time studies) or may not meet the accuracy requirements (work 

sampling). The location fingerprinting literature suggests wireless technologies can be used as 

the foundation for an automated method to collect the necessary data for work measurement 

applications. For example, the location of a person relative to certain areas in a workstation can 

be identified, so that the period of time spent by that person in these areas can be allocated to 

the appropriate positions. 

1.3 Research Contribution 

As documented above, several studies have addressed location accuracy of location 

fingerprinting systems, and have attempted to reduce the time required to convert a signal into a 

position. While some research has been published on identifying activities over a time horizon 

(Ward et al., 2006),  there is no current evidence of research employing the signal strength 

characteristics of WSN RF signals to support task time estimation applications. Moreover, time 

accuracy of a task time estimation system based on location fingerprinting has never been 

addressed. It is expected that this research would fulfill this gap in the body of literature. 

 

2. Background 

The following sections briefly describe the work that generated the data set analyzed in this 

research. 
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2.1 Wireless Sensor Network Design 

A WSN that used RF signals to transmit the location of an operator to beacons in a simulated 

assembly area was designed.  The WSN employed a tree network topology consisting of one 

centralization node, three beacon nodes and one or two tag nodes.  All six nodes were Jennic 

JN5139,  a 2.4-GHz low power wireless microcontroller compliant with the IEEE802.15.4 

ZigBee standard for wireless personal area networks (Jennic, 2008).  The centralization node 

received the signals from the three beacon nodes and communicated with the main computer 

through a universal asynchronous receiver/transmitter (UART) at a data rate of 115,200 bits per 

second (bps). 

The WSN was set up on the JenNet protocol stack.  The JN5139 microcontroller 

measures received power in terms of a link quality indicator (LQI) value on an integer scale that 

ranges from 0 to 255, where 255 represents the strongest signal. The LQI value is updated every 

time the module receives new data packets from other nodes.  

2.2 Simulated Assembly Area 

A simulated assembly area was constructed that consisted of three workstations setup in an area 

100 inches long by 180 inches wide. Each individual workstation was equipped with a beacon 

node, as depicted in Figure 1.  
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Figure 1: Layout of the simulated assembly area 

 

The centralization node was responsible for interfacing with a data collection computer 

and was placed in a central location (next to the main computer in Figure 1) for best line-of-

sight with the three beacon nodes.  The beacon nodes in the simulated assembly area collected 

the LQI data from the tags nodes during the offline and online data collection phases. The tag 

nodes were placed on the assembly operator, on the front only or on both the front and back, 

depending on the experimental treatment combination. The LQI data were then used to 

triangulate the location of the operator in signal space.  This location in signal space was then 

matched to a location in physical space using location fingerprinting and the kNN classification 

algorithm. 

2.3 Location Fingerprinting 

The specific method of data collection employed is referred to as location fingerprinting, and 

consisted of two phases: 
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1. The offline data collection phase (or calibration phase) where RF signals are 

transmitted from pre-determined locations and then stored in a database, and 

2. The online data collection phase where a new RF signal is assigned to a likely 

location, or classified, based on the offline database and pattern recognition 

algorithms. 

In these two phases, the location of the centralization node and the beacon nodes within 

the simulated assembly area were fixed. 

2.3.1 Offline Data Collection 

Since it was anticipated that the design characteristics of the WSN would influence the ability to 

accurately estimate individual task times, a 2
4
 factorial designed experiment was conducted, 

resulting in 16 treatment combinations.  The offline data were collected under all 16 treatment 

combinations.  The four specific WSN design factors investigated, together with the treatment 

levels, are shown in Table 1.  
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  Factors 

  (A) (B) (C) (D) 

  

Number 

of Tag 

Nodes 

Number of sample 

LQI values collected 

per site survey grid 

location and 

orientation 

Number of tag 

node orientations 

at each grid 

location 

Number of 

site survey 

grid 

locations 

Level 

+ 1 2,000 4 5 

- 2 6,000 8 9 

Table 1: Experimental controlled factors 

 

The number of tag nodes used in the offline data collection phase was either one or two.  

The justification for this was to investigate the effect of the tag node antenna’s radiation 

coverage.  The number of sample LQI values per site survey grid location and orientation was 

either 2,000 or 6,000.  This enabled the investigation of the effect of sample size per location.  

The number of tag node orientations at each site survey grid location was either four (i.e., 

North, East, West and South) or eight (i.e., North, NE, East, SE, South, SW, West, and NW).  

Finally, the number of site survey locations per treatment was either five or nine. Figure 2 and 

Figure 3 show the site survey positions in the simulated assembly area utilized for the five-

location treatment combinations and the nine-location treatment combinations.  Table 2 

describes how the site survey locations for each treatment level were assigned to one of three 

assembly workstations. 
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Figure 2: Positions of the five-location site survey 

 

 

Figure 3: Positions of the nine-location site survey 
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Number of Site 

Survey Grid 

Locations 

Locations 

associated with 

Workstation #1 

Locations 

associated with 

Workstation #2 

Locations 

associated with 

Workstation #3 

5 1, 2 3 4, 5 

9 1, 2, 3 4, 5, 6 7, 8, 9 

Table 2: Relationship between site survey locations and workstations 

 

During the offline data collection phase, a data collection software application utilized a 

wireless data packet counter feature which automatically forced the centralization node to stop 

receiving data packets once the required number of LQI sample values (i.e., 2,000 or 6,000) had 

been reached. The LQI values collected for each of the 16 offline templates were stored in a 

Microsoft® Access database. 

2.3.2 Online Data Collection 

The purpose of the online data collection phase was to generate LQI values that could be used to 

evaluate the effectiveness of each of the 16 offline templates in estimating the location of the 

operator within the simulated assembly area, so that individual task times could be calculated. 

To this end, the operator was equipped with a single tag node and allowed to move freely in the 

simulated assembly area to perform 20 runs of a job consisting of assembling a different Lego™ 

set at each of the three workstations. The Lego™ sets varied in their level of difficulty. 

In each online run, the operator started the job at a randomly selected workstation. Once 

the first Lego™ set assembly task was completed, the operator then randomly moved to the next 

workstation until all the Lego™ set assembly tasks were finished.  

LQI values with time stamps were automatically collected from the three beacons and 

sent to the main computer via the centralization node. It is important to note that the number of 

LQI values collected in each of the 20 runs were not always the same due to variability in the 
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communication speed between the nodes in the network. This problem was addressed by 

considering only the first ten LQI values reported by each beacon node within every second for 

a period of five seconds.  Each record consisted of a time stamp and the three LQI values 

sampled at that time from each of the three beacons.  

The time the operator spent at each workstation during each of the 20 online runs was 

recorded manually using a stopwatch. The manually recorded times were then stored in a 

spreadsheet and this ground truth data were later used as a baseline for measuring the ability of 

the WSN-based task time estimation system to estimate individual task times. 

 2.4 Location Estimation using kNN 

In order to estimate the amount of time the operator spent at each workstation of the simulated 

assembly area, the location of the operator had to be estimated first.  This was accomplished by 

using the kNN algorithm to classify (based on their LQI level) the RF signals received every 

five seconds by the beacons during the online runs. The kNN assigns a new signal to a location 

as follows: 

1. It compares the signal to all the reference measurements in the offline database and 

selects the k values that are closest to the one being reviewed. 

2. It then performs a vote of the locations within those k selections.  The new signal is 

assigned to the location with the majority vote. 

For example, suppose that k=3 was used, and that the strength of a new RF signal, s1, 

received by each of the three beacons from the operator’s tag in the simulated assembly area 

was measured to have an LQI of 100. In this case, the kNN algorithm would calculate the 

distance (in signal space) between s1 and all the other LQI measurements in the offline site 

survey database and select the three records with LQI values closest to 100 for inclusion into the 

majority voting step (see section 3.1.2 for details on how the distance between locations in 

signal space is calculated).  Suppose further that two of these three records were from location 

A and one was from location B.  Based on majority vote, the kNN algorithm would classify s1 
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as belonging to location A and would predict that the signal was transmitted from location A. 

2.5 Task Time Estimation  

After all of the raw online RF signals were classified by location, the amount of time spent at 

each location was calculated.  First, the total duration of a specific online run was determined by 

subtracting the last time stamp for that online run from the first time stamp.  Next, the classified 

locations for that online run were grouped by workstation according to the location-to-

workstation mapping shown in Table 2 and summed for each station. The amount of time the 

operator spent at each workstation was then estimated as a fraction of the total online run 

duration by dividing the number of locations assigned to a workstation by the total number of 

locations classified for the online run, and then multiplying this fraction with the total duration 

of the online run.  Finally, the resulting estimated task time per workstation per online run was 

compared to the associated ground truth task time measurement, and the prediction error was 

estimated according to the following formula: 

 

3. Research Methodology 

Figure 4 shows the three phases of the methodology followed in this research. The methodology 

started with three separate data collection phases. The data collected during the site survey 

phase populated the offline database. The data collected during the operator tasks phase 

populated the online database. Finally, the data collected during the time study phase populated 

the ground truth database.  The location estimation phase involved varying parameters of the 

kNN algorithm implemented as a Visual Basic application.  The task estimation phase was also 

accomplished using the same custom Visual Basic application. 

                 %𝐸𝑟𝑟𝑜𝑟 =   
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑡𝑎𝑠𝑘 𝑡𝑖𝑚𝑒𝑛 −𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑡𝑎𝑠𝑘 𝑡𝑖𝑚𝑒𝑛

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑡𝑎𝑠𝑘 𝑡𝑖𝑚𝑒𝑛
 ×  100                 (2) 
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The next sections describe several of the focus areas of this research in more detail, 

including location fingerprinting, distance metric, segmentation, the kNN algorithm parameters, 

and the blocking factors offline template, online run and workstation.   

 

 

Figure 4: Process for determining the Task Time Prediction Error of different WSN designs 



16 

 

3.1 Pattern Recognition Main Factors 

Prior results suggested that the pattern recognition method had a significant effect on the 

accuracy of task time estimation (Atichat, 2011).  Thus, the effects that some parameters of the 

kNN algorithm had on the accuracy of the task time estimation were further investigated via a 

designed experiment. During the course of this investigation, it was realized that the method of 

allocating time to each workstation, or segmentation, also deserved further investigation. The 

primary response variable in the experiment was percent error of the task time estimate.  A 

secondary response variable was the amount of computational time required to classify an 

online run.  The motivation for investigating this secondary response was that the kNN 

algorithm uses the entire offline site survey database to classify one new test sample and can 

therefore be expensive in terms of computational resources for large site survey databases 

(Bishop, 2006). Table 3 shows the pattern recognition main factors (and their levels) selected 

for the experiment. 

 

  Factors 

  (A) (B) (C) (E) 

  

Fingerprinting Distance metric Segmentation 

Level of k 

parameter 

Level 

+ Average LQI Weighted Euclidean 

Jumping 

Window 
1 

- Individual LQI Euclidean Proportional 3 

Table 3: Controlled design factors for the pattern recognition experiment 

 

3.1.1 Fingerprinting 

Fingerprinting, the first experimental factor of interest, refers to whether individual LQI 

measurements at a survey location are used as references in the site survey database or whether 
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a summary measure of central tendency (e.g., average, mode or median) is used instead.  The 

original work by Atichat (2011) used individual LQI measurements for the fingerprinting data.  

However, exploratory data analysis of the resulting offline database revealed wide variations in 

the signal strength by location.  These variations and the resulting overlap in received signal 

strength from adjacent (or even further apart) locations increased the likelihood of 

misclassification. Figure 5 below highlights this issue. 

 

Figure 5: Variation in the Site Survey LQI data for offline template 4, beacon 1 

 

The box-and-whiskers plot in Figure 5 aggregates all 40,000 recorded LQI data points 

from beacon 1 in offline template 4 (offline template 4 is the site survey treatment combination 

of one tag node, 2,000 LQI samples, four orientations, and five positions).  The overlap in 

interquartile range between the positions is very evident.  Yet, there is convincing evidence that 

the LQI values at the different locations are different (One-Way ANOVA F-test, p-value < 

0.0001). The Fisher’s Least Significant Difference (LSD) plot depicted in Figure 6 supports this 

evidence since the 95% confidence intervals of the different location means do not overlap at 

all.  Thus, a decision was made to investigate how the task time accuracy would change if this 
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signal strength variation was controlled by location.  As Table 3 shows, the two levels used for 

the experimental factor fingerprinting were the Average LQI and the Individual LQI at a survey 

location. 

 

Figure 6: Fisher’s LSD plot of the Average LQI for the Site Survey data for offline template 4 

(beacon 1) 

3.1.2 Distance metric 

The second factor of interest was the distance metric used in the kNN algorithm. A distance 

metric is required by the kNN algorithm to calculate the proximity of a new signal to the 

classified signals in the offline database. Equation 3 shows the equation typically used in the 

kNN algorithm to calculate the Euclidean distance: 

 

 

                                                          𝑑 𝑥, 𝑦 =    𝑥𝑘 − 𝑦𝑘 
2

3

𝑘=1

                                                      (3) 
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where d is the distance between two points x and y, each of which is described in signal space 

by a vector l = {l1, l2, l3} composed of three LQI readings from the three beacons, and k is an 

index to each reading in the vector l. However, the standard Euclidean metric assumes that each 

of the input variables are equally important, which gives them equal weights in the calculation 

of the Euclidean distance. This is not always appropriate. For example, consider Figure 5 again. 

If the LQI value measured by beacon 1 happens to be one of the outliers in position 5 in the 

box-and-whiskers plot, that LQI value will exert a disproportionate influence on the calculated 

Euclidean distance because of its magnitude. This will increase the likelihood of a 

misclassification.  A method for addressing this issue is to weigh the contribution of each 

variable in the Euclidean distance calculation by its “relative importance” (Hand et al., 2001; 

Mitchell, 1997).  The determination of “relative importance” is generally left to the judgment of 

the investigator.  Thus, it was decided that the effect of penalizing signals that were far from the 

mean LQI received by a beacon from a location should be investigated. A way to do this is to 

divide each LQI value by the standard deviation of all LQI values at that location. For 

computational reasons, this was implemented with the variance of the signal at the site survey 

location, and the distance metric becomes the weighted Euclidean distance, as follows:  

 

Where:  

 

 This weighted Euclidean distance was selected as a level in the distance metric factor, 

in addition to the standard Euclidean distance.  Figure 7 illustrates the effect of this 

standardization of the LQI measurement on the same 40,000 data points from the template 4 site 

survey plotted in Figure 5 without the standardization and it can be seen that the discrimination 

                                                     𝑑 𝑥, 𝑦𝑘𝑙  =   𝑤𝑘𝑙  𝑥𝑘 − 𝑦𝑘𝑙  
2

3

𝑘=1

                                                 (4) 

                       𝑤𝑘𝑙 =
1

𝜎𝑘𝑙  
2 , and 𝑙 =  

1,… ,5 for five − location treatments
1,… ,9 for nine − location treatments

                     (5) 
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between the five positions is magnified.  The Fisher’s LSD 95% confidence interval plots of the 

weighted Average LQI in Figure 8 further support this increased separation. 

 

Figure 7: LQI Standardized by the Standard Deviation for offline template 4 (beacon 1) 

 

 

Figure 8: Fisher’s LSD plots of the variance-weighted Average LQI for the standardized offline 

template 4, beacon 1 
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3.1.3 Segmentation 

Segmentation, the third experimental factor of interest, refers to the algorithm used to tally the 

task time from individual locations. Proportional segmentation means that the task time 

allocated to each workstation is proportional to the fraction of locations classified by the kNN 

algorithm as belonging to that workstation.  When the task times estimated by the proportional 

segmentation algorithm were analyzed, it was clear that these task times had an inherent source 

of error because the segmentation algorithm had no temporal awareness.  Figure 9, Figure 10, 

Figure 11, Figure 12 and Figure 13 illustrate this issue for one of the 20 online runs, selected for 

illustrative purposes. 

Figure 9 depicts the ground truth for online run 1, as measured with a stopwatch and it 

can be seen that the operator spent approximately 4 minutes and 15 seconds at location 3, then 

spent approximately 7 minutes and 55 seconds at location 1, and finally spent approximately 8 

minutes and 45 seconds at location 5. 

 

 

Figure 9: Online run 1 ground truth.  This was the actual time study task time measured with a 

stop watch at each location 3 (workstation 2), location 1 (workstation 1), and location 3 

(workstation 3) 

 

Figure 10 depicts the estimated location of the operator over time after classification by 

the kNN algorithm (using offline template 4) and it can be seen that the kNN algorithm did an 

excellent job of correctly classifying when the operator was in workstation 2 performing the 
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first task and in workstation 3 performing the third task (represented by location 3 for 

workstation 2, and locations 4 and 5 for workstation 3, according to Table 2).  However, the 

kNN algorithm had trouble with correctly classifying the operator’s stay in locations that 

corresponded to workstation 1, misclassifying roughly 50% of locations belonging to 

workstation 1 as belonging to workstation 2 (location 3). 

 

Figure 10: Online run 1 classified by the kNN algorithm using site survey template 4, k = 1. 

 

The proportional segmentation algorithm, which follows the kNN algorithm in the 

pattern recognition process for this experiment, has no way of accounting for what is clearly a 

gross misclassification of workstation 1 locations by the kNN algorithm.  These kNN 

misclassifications then directly translated into an incorrect prediction of estimated task times by 

the proportional segmentation algorithm and a resulting loss of task time accuracy. Figure 11 

further emphasizes this error propagation with a simple simulation of the effect on workstation 

2 task time estimation error of misclassifying workstation 1 locations by the kNN algorithm for 

misclassification rates from 10% to 50%.  In this example, the locations at workstation 2 (and 

workstation 3, which is not shown for brevity) were correctly classified by the kNN algorithm 

(i.e., they had 0% misclassification error).  The workstation 2 task time error shown in the graph 

in Figure 11 is entirely due to workstation 1 locations misclassified as workstation 2 locations.  

This task time estimation error at workstation 2 is roughly twice that at workstation 1.  This 

amplification is due to the approximate relative magnitude between the workstation 1 task time 

and workstation 2 task time. 
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Figure 11: The effect on Workstation 2 Task Time Estimation Error of Workstation 1 locations 

misclassified as Workstation 2 locations by the kNN algorithm 

 

To address this misclassification issue, a jumping window algorithm was developed 

which makes a second pass through the kNN algorithm classifications and classifies consecutive 

subgroups of the locations according to a plurality vote.  The subgroup selected for this 

experiment was five classifications or 25-second windows (since each kNN classification 

represents the location of the operator in a 5-second interval). From this point on, this algorithm 

will be referred to as the JWMV-5 segmentation algorithm.  This subgroup was selected to 

avoid ties (odd number of frames) and to detect a task transition within a minute of occurrence. 

The jumping window method is designed to reduce some of the noise in the first-pass kNN 

classifications. Figure 12 shows the effect of applying this algorithm to the same data set as 

Figure 10.  Figure 13 illustrates (via five figures) how the raw LQI values are processed by the 

JWMV-5 segmentation algorithm and demonstrates what differentiates the task time estimation 

problem from a location classification problem, i.e., the need to distinguish a transition by the 

mobile tag from one location to another on one hand, from random signal noise on the other 

hand. In other words, it is a sequential data classification problem, with noisy data masking the 

state transitions.  
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Figure 12: Online run 1 classified with the kNN algorithm using site survey 4, k = 1, and a 5-

frame jumping window algorithm 

 

Figure 13: Overall processing of online run 1 signals, from the three LQI readings at the three 

beacons, to the kNN classification in Figure 10, and finally to the jumping-window processed 

sequence in Figure 12 
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3.1.4 Level of k parameter 

The fourth factor of interest was the level of the k parameter used in the kNN algorithm.  This 

parameter controls how many neighboring reference RF signals in the offline database are taken 

into account by the algorithm during the classification of a new RF signal. The values of k = 1 

and k = 3 were selected for this experiment, taking into account the computational effort, the 

fact the Average LQI levels in the fingerprinting factor only had five or nine positions available 

for consideration as nearest neighbors, the desire to avoid ties (leading to a choice of odd-

numbered k’s), and literature findings suggesting that k = 1 can provide good results (Ripley, 

1996). 

3.2 Blocking Factors 

For this experiment, three blocking factors that contributed significantly to RF signal strength 

variation were also considered.  While important for the design of the WSN in the original 

problem, they were not considered relevant to the pattern recognition problem. Thus, they were 

controlled in the experiment but their results were not treated as significant.  These variables 

were the offline templates, the number of online runs, and the workstations.  They are now 

briefly described. 

Six offline templates (out of 16) were selected from the site survey database because 

they resulted in the best and worst task time error estimates in the prior work.  This subset of the 

original 16 offline templates was also selected to save time since it took 464 hours to re-classify 

the 20 online runs using the 16 templates and the kNN algorithm for the original WSN design 

experiment. Table 4 below summarizes the characteristics of the selected templates.  They 

formed the 6 levels of the categorical variable offline template. 
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Offline 

Template 

Factors 

(A) (B) (C) (D) 

Number of 

Tag Nodes 

Number of sample LQI 

values collected per grid 

location and orientation 

Number of tag node 

orientations at each 

grid location 

Number of site 

survey grid 

locations 

2 2 6,000 8 5 

3 1 6,000 4 5 

4 1 2,000 4 5 

6 2 2,000 8 5 

9 1 6,000 4 9 

13 1 2,000 4 9 

 

Table 4: Characteristics of the WSN design templates selected for the kNN effectiveness study. 

 

The next blocking factor included in the experiment was online runs.   Each estimate of 

task time accuracy resulted from classifying one of these online runs using the kNN algorithm 

under the selected offline template settings.  There were 20 online runs for which LQI readings 

and ground truth data were collected at the time the data in the offline database was collected, 

and it was intended that all of them would be used to evaluate pattern recognition parameters. 

So for this experiment, the 20 online runs were considered part of that single replication of the 

experiment.  The online runs were also considered random factors, leading to a mixed-model 

experiment with both fixed effects and this one random effect (i.e., online run). 

The third blocking factor was the workstation.  In the work performed by Atichat 

(2011), this factor had the strongest effect on task time accuracy of any of the factors.  So, it 

was decided to control for it in this experiment, using the three workstations as the three levels. 
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3.3 Experimental Setup 

The pattern recognition experiment consisted of computer runs that estimated the task times 

during the 20 online runs under the treatment combinations described in Sections 3.1 and 3.2.  

The experiment was run on a PC with an Intel® Core ™ i7 970 3.20GHz CPU, with 16 GB of 

RAM, and running the Microsoft Windows 7 Professional SP1 64-bit Operating System.  The 

offline site survey database was stored in a Microsoft Access database Version 14 (32-bit).  The 

kNN algorithm and the task estimation algorithms were encoded in a custom Microsoft Visual 

Basic application, developed using Microsoft Visual Studio 2010.   

3.4 Results and Analysis 

The statistical analysis of the experimental results was conducted using the StatGraphics 

Centurion XVI statistical software.  Table 5 and Table 6 show the results of the ANOVA 

performed on the experimental results. For brevity, only the significant two-way interactions are 

shown in Table 6, i.e., the table of means. As mentioned before, the offline template, online run, 

and workstation were considered blocking factors.  Therefore, any effects involving those 

factors were ignored.  However, the factor online run was also treated as a random effect, and 

because of the resulting randomization restrictions on the experiment, some of the F-ratios 

include this random variable in the denominator. Furthermore, as mentioned before, the data 

collection of the original experiment had one replication (when the offline data, the online data, 

and the ground truth data were collected).  This means that no estimate of the pure experimental 

error can be made from the data.  However, this issue was addressed by using the sparsity of 

effects principle (Montgomery, 2008).  This principle assumes that a system is usually 

dominated by main effects and low-order interactions.  Therefore, the results are reported for 

only the main effects and the two-factor interactions. The mean square errors of three-factor and 

higher-order interactions are pooled into the residual mean square error. 
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Source P-Value F-test denominator 

MAIN EFFECTS   

 A:Fingerprinting 0.0534 MSAF 

 B:Distance metric 0.0583 MSBF 

 C:Segmentation 0.0006 MSCF 

 D:Level of k parameter 0.3258 MSDF 

 E:Offline template 0.0000 MSEF 

 F:Online run   

 G:Workstation 0.0000 MSFG 

INTERACTIONS   

 AB 0.0000 MSE 

 AC 0.0065 MSE 

 AD 0.1582 MSE 

 AF 0.0000 MSE 

 BC 0.6365 MSE 

 BD 0.0044 MSE 

 BF 0.0000 MSE 

 CD 0.9634 MSE 

 CF 0.0011 MSE 

 DF 0.9784 MSE 

 DG 0.0048 MSE 

Adjusted R2 56.3091%  

Table 5: Multi-factor effect model ANOVA of estimated task time percentage errors based on 

kNN pattern recognition design factors 
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   Standard 

Error Level Count Mean 

GRAND MEAN 5760 40.1384 0.325325 

Fingerprinting    

2 (Avg LQI) 2880 36.3144 2.62588 

3 (LQI) 2880 43.9625 2.62588 

Distance metric    

1 (Euclidean) 2880 37.7754 1.65897 

2 (Weighted Euclidean) 2880 42.5015 1.65897 

Segmentation    

1 (Proportional) 2880 38.1121 0.696044 

2 (JWMV-5) 2880 42.1648 0.696044 

Level of k parameter    

1 2880 40.3602 0.310894 

3 2880 39.9167 0.310894 

Fingerprinting by Distance metric    

2          1 1440 37.3248 0.650649 

2          2 1440 35.304 0.650649 

3          1 1440 38.226 0.650649 

3          2 1440 49.6989 0.650649 

Fingerprinting by Segmentation    

2          1 1440 35.1731 0.650649 

2          2 1440 37.4557 0.650649 

3          1 1440 41.0511 0.650649 

3          2 1440 46.8739 0.650649 

Distance metric by Level of k parameter    

1          1 1440 37.0704 0.650649 

1          3 1440 38.4804 0.650649 

2          1 1440 43.6499 0.650649 

2          3 1440 41.353 0.650649 

 

Table 6: Table of Least Squares Means for %Error with 95.0 Percent Confidence Intervals 

 

The following conclusions can be drawn from the ANOVA results about the impact of 

the main effects on the task time estimation error: 

 There is convincing evidence that the segmentation algorithm (whether coarse-

grained proportional or a more fine-grained 5-frame jumping window) has a 
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significant effect on the accuracy of the task time estimate (F-tests, p-value << 

0.01). 

 There is suggestive, but inconclusive evidence that the fingerprinting method 

(whether averaged or not) and the distance metric (whether weighted for signal 

variance or not) have a significant effect on the accuracy of task time estimation (F-

test, 0.05 < p-value < 0.10). 

 There is no evidence that the level of the k-parameter levels selected for this 

experiment (i.e., 1 and 3) have a significant effect on the accuracy of task time 

estimates (F-test, p-value > 0.10). 

 Finally, there is convincing evidence that the following two-factor interactions have 

a significant effect on the accuracy of the task time estimate (F-tests, p-value < 

0.01): 

 Fingerprinting with distance metric 

 Fingerprinting with segmentation 

 Distance metric with level of the k-parameter 

 

The scope of population inferences from these findings is limited to the offline site 

survey, online run, and ground truth databases used for the experiment and cannot be 

generalized.  This is because the simulated assembly process was not randomly selected from 

the general population, and the model selection for the kNN algorithm did not utilize a 

randomization technique like cross-validation. Cross-validation separates model development 

and testing and seeks to find a model that minimizes error estimation (Hastie et al., 2008, sec. 

7.3). Limited causal inferences can be drawn from the findings because the order in which the 

online runs were performed was randomized. These findings will be further interpreted in 

Section 4. 

 

A second response variable of interest was the computational performance of the 

various kNN algorithm designs.  Figure 14 shows that the LQI fingerprinting treatments took as 
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long as 40 hours to classify the largest design template (with 480,000 site survey data points) 

and the predictive relationship was linear. Figure 15 shows that the average duration of the 

Average LQI fingerprinting treatments was about 44 minutes (0.732 hours). 

 

 

Figure 14: CPU time of the six LQI Fingerprinting splits of the experiment 

 

 

Figure 15: CPU time of the six Average LQI splits of the experiment. 
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4. Discussion 

This section discusses and interprets the results of the experiment. 

4.1 Task Time Estimation 

4.1.1 Effect of Fingerprinting 

There is suggestive but inconclusive evidence that the fingerprinting procedure based on 

Average LQI improved task time accuracy more than the fingerprinting procedure based on 

Individual LQI values.  A possible explanation is that Individual LQI values have a higher 

variance per location (i.e., 2,000 or 6,000 data points versus one data point for Average LQI).   

The higher variance per location increases the likelihood that adjacent locations can appear to 

be close to the new signal being classified, and hence increases the likelihood of 

misclassification.  A second possible explanation is that additional variation introduced by the 

two-tag offline templates (templates 2 and 6) masked the fingerprinting signal. 

4.1.2 Distance Metric 

Like the case for fingerprinting, there is suggestive but inconclusive evidence that the Euclidean 

distance metric improved task time accuracy more than the Weighted Euclidean distance metric 

used in this investigation.  Again, a possible explanation is that the error introduced by the two-

tag offline templates 2 and 6 masked the distance metric signal. 

4.1.3 Segmentation 

The proportional segmentation algorithm used in the original experiment is significantly more 

accurate in task time estimation than the JWMV-5 segmentation algorithm developed in this 

investigation.  One possible explanation for this unexpected result is that the 25 second voting 

window of JWMV-5 was selected arbitrarily, without optimizing model selection. 
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4.1.4 Level of k Parameter 

There is no significant difference in the task time accuracy that was attributable to the levels of 

the k parameter selected for this experiment. A possible explanation is that the parameter 

selection was not optimized with n-fold cross-validation. 

4.1.5 Two Factor Interactions 

The strongest effect in the entire experiment was the two-factor interaction between the 

fingerprinting method and the distance metric.  Figure 16 shows the nature of this interaction. 

The graph also includes 95% Fisher’s Least Significant Difference (LSD) confidence intervals 

on the % Error.  The graph shows that the effect of a weighted Euclidean distance metric 

(category 2) is very different when used with Average LQI fingerprinting (category 2) than 

when used with Individual LQI fingerprinting (category 3).  It is estimated that the difference in 

% Error task time estimation between the Euclidean and weighted Euclidean is 2% at the 

Average LQI level (95% C.I.’s 0.7% to 3.3%) and is -11.5% at the Individual LQI level (95% 

C.I.’s -12.7% to -10.2%). 

These results, together with the much faster computational time of the Average LQI 

splits in this experiment, indicate that in order to improve the task time estimation accuracy 

under the simulated assembly process conditions, the kNN algorithm should be used in 

conjunction with an Average LQI location fingerprinting method and a weighted Euclidean 

distance metric. 
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Figure 16: Fingerprinting by Distance metric interaction 

 

Figure 17 shows the effect of the two-factor interaction between fingerprinting and 

segmentation and indicates that the fingerprinting procedure that employed Average LQI 

(category 2) improves task time accuracy for both proportional segmentation (category 1) and 

JWMV-5 segmentation (category 2). 

 

Figure 17: Fingerprinting by Segmentation interaction 
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The third significant two-factor interaction in this experiment was that between the 

level of k parameter and the distance metric.  Figure 18 shows the nature of this interaction. 

 

Figure 18: Level of k parameter by Distance metric interaction 

 

For these limited model parameters, increasing the level of k improves task time 

estimation accuracy when used with a weighted Euclidean distance metric (category 2), but it 

makes the task time estimation accuracy worse when used with the Euclidean distance metric 

(category 1).  A plausible explanation is the possibility of a bias-variance trade-off.  The lower 

level of k (k = 1) increases model complexity which in turn increases the possibility of 

overfitting.  However, overfitting also results in increased variance. This is because the kNN 

algorithm with k = 1 is capable of fitting a model where every data point in the offline database 

is its own class. In effect, each data point can be a model parameter, resulting in the most 

complex model possible given the offline database. However, any online data points that do not 

coincide exactly with the points used to fit the model would result in variation. Furthermore, 

since the chances of the LQI values of the online data point coinciding exactly with the offline 

database LQI values is fairly low, this would result in increased deviation from the predicted 

locations, and hence increased variance. With the weighted Euclidean metric (category 2), the 

effect of LQI variation at a location has been normalized, so the overall variance in the model is 

greatly reduced and the task time estimation error is generally reduced.  With the Euclidean 
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distance metric, the LQI variation at a location is higher, and this higher variance, in 

combination with the increase likelihood of overfitting due to k = 1, could result in a higher 

overall experimental error and worse task time estimation accuracy. 

4.2 Computational Performance 

The computational performance of the kNN algorithm in this experiment was dramatically 

different between the Individual LQI and the Average LQI splits.  For the Individual LQI splits, 

the CPU time was a function of the number of site survey points in the classification problem 

(see Figure 14).  For the Average LQI splits, the CPU time was practically constant, regardless 

of the number of site survey point (see Figure 15).  The Average LQI runs were much faster, 

completing in an average of 45 minutes, whereas the Individual LQI runs ranged from 3.36 

hours to 40 hours.  

5. Conclusions and Future Work 

The results obtained in this research show that the parameters of the kNN algorithm can be 

experimentally tuned to improve the accuracy of task time estimation and to dramatically reduce 

computational time. More specifically, replacing LQI fingerprinting and the Euclidean 

distance metric with Average LQI fingerprinting and a weighted Euclidean distance 

metric, respectively, will significantly improve the accuracy of the estimates and reduce 

the computational effort from days to minutes. 

Additional significant effects that improved the accuracy of task time estimation 

included using Average LQI fingerprinting in conjunction with proportional segmentation, and 

using the Euclidean distance metric in conjunction with k = 1 in the kNN algorithm for location 

estimation. These findings should be further investigated with more robust model parameter 

estimation for the k parameter in the kNN. 

A third conclusion regards task time segmentation. The combination of the kNN 

algorithm and the proportional segmentation algorithm investigated in this research were not 
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very effective in detecting transitions from one task to the next, due to kNN misclassification 

errors and a lack of temporal awareness in the proportional segmentation algorithm. The attempt 

to introduce temporal awareness to task segmentation with the JWMV-5 segmentation 

algorithm was not effective, as it performed significantly worse on task time estimation 

accuracy than the baseline proportional segmentation algorithm.  Further investigation should 

be conducted on the optimal selection of the frame window size in the JWMV algorithm.  More 

broadly, several other pattern recognition algorithms like clustering, decision trees, neural 

networks and support vector machines are available in the machine learning domain and should 

be investigated for their effectiveness in accurately estimating the task time derived from 

location fingerprinting. Some techniques such as Hidden Markov Models, even have explicit 

temporal awareness (Bishop, 2006; Hand et al., 2001; Hastie et al., 2008; Mitchell, 1997).  

Incorporating least-squares or maximum likelihood techniques could also lead to estimates of 

the durations of sub-tasks within the measured tasks (Kim et al., 2008). 

Additionally, this research was conducted using classical design of experiments and 

statistical inference, to provide continuity with the WSN experiment that was the original 

motivation for the research.  Modern pattern recognition research and practice primarily uses 

Bayesian inference.  Bayesian methods enable a researcher to make hypotheses about a prior 

governing distribution with little or no data, then adapt those hypotheses based on new data as it 

is collected, resulting in a posterior distribution that is conditional on the newly acquired data.  

Many efficient pattern recognition algorithms use Bayesian methods, with validated inference 

tools.  As research into the use of pattern recognition algorithms in the estimation of task time is 

extended to include the full range of machine learning methods, the Bayesian approach to 

statistical inference will be more appropriate than the classical, or frequentist, approach. 

Finally, the results obtained in this research clearly show that task time estimation based 

on the monitoring of the strength of RF signals within a WSN is viable and with several positive 

managerial implications. First, it can lead to the improvement in the accuracy of time studies in 

non-cyclical or long tasks where traditional manual time studies and work sampling are not 

accurate enough due to limited data collection. Most importantly, it can lead to a reduction in 
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the cost of time studies. In fact, the true costs and trade-offs involved in using manual work 

measurements can easily be underestimated. For example, Finkler et al. (1993) found in one 

study that work sampling results differed from time study results (considered the “ground truth” 

reference) by 20% or more in eight out of 10 activities. Such a large error can have a significant 

impact on standard costs. On the other hand, the equivalent time study required 22 data 

collectors to measure the activities of eight subjects for a total of 13,000 minutes. Sustaining 

such a time study would be cost-prohibitive. These observations about manual work 

measurement methods drove the motivation to investigate automated methods for work 

measurement. 
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