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Abstract 

Projections of a drier, warmer climate in the U.S. Southwest would complicate 

management of the Colorado River system – yet these projections, often based on coarse 

resolution global climate models, are quite uncertain.  We present an approach to understanding 

future Colorado River discharge based on land surface characterizations that map the Colorado 

River basin’s hydrologic sensitivities (e.g., changes in streamflow magnitude) to annual and 

seasonal temperature and precipitation changes.  The approach uses a process-based macroscale 

land surface model (LSM; in this case, the Variable Infiltration Capacity hydrologic model, 

although methods are applicable to any LSM) to develop sensitivity maps (equivalent to a simple 

empirical model), and uses these maps to evaluate long-term annual streamflow responses to 

future precipitation and temperature change.  We show that global climate model projections 

combined with estimates of hydrologic sensitivities, estimated for different seasons and at 

different change increments, can provide a basis for approximating cumulative distribution 

functions of streamflow changes similar to more common, computationally intensive full-

simulation approaches that force the hydrologic model with downscaled future climate scenarios.  

For purposes of assessing risk, we argue that the sensitivity-based approach produces viable first-

order estimates that can be easily applied to newly released climate information to assess 

underlying drivers of change and bound, at least approximately, the range of future streamflow 

uncertainties for water resource planners. 
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1.  Introduction 

 The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment reported 

unequivocal evidence that climate change was occurring and global climate models (GCMs) 

showed general agreement that temperature will increase and runoff will decrease across the 

southwestern U.S. in the coming century (IPCC 2007; Bates et al. 2008).  These changes will 

make managing water supplies for human consumption and healthy ecosystems more 

challenging, yet notwithstanding the IPCC statement, there remains much uncertainty as to the 

nature of regional and local impacts (Vano et al. 2013).  A major challenge is that GCMs operate 

at coarse spatial scales (mostly around ~200 km x 200 km, although the resolution has been 

increasing over time) relative to the river basin scale where management decisions are made.  To 

respond to this scale mismatch, various approaches have been developed which translate global 

scale information to more local scales (Barnett et al. 2004; Wood et al. 2004; and others), 

although the extent these methods capture basin-specific hydrologic characteristics differs 

considerably (WWA 2008; Vano et al. 2013). 

In recent years, a common “end-to-end” approach to integrating climate information into 

management has been to use an ensemble of downscaled GCM output using methods such as 

those outlined in Wood et al. (2004), run through a hydrology model to generate streamflow 

sequences which are then used to explore future changes in reservoir operations (e.g., Payne et 

al. 2004; Christensen and Lettenmaier 2007; USBR 2011; and others) (Fig. 1, schematic on left).  

This approach, which we refer to as the “full-simulation approach”, is widely used and is 

generally the preferred approach for inferring local effects of climate change.  It is also useful 

because it provides sequences of future streamflows that are similar with respect to temporal 

aggregation and record length as the historical streamflow sequences that water managers often 
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use in planning studies.  It also allows managers to understand the nuances of future simulations 

(e.g., two-thirds of the 112 USBR (2011) simulations show streamflow declines while one-third 

show no change or increases (Harding et al. 2012)).  It does, however, require considerable 

computing and data management, as each scenario is its own realization, which might be viewed 

as only one ensemble member of many that provide a representation of possible future 

conditions.  Furthermore, each time new climate model runs are released the entire process has to 

be repeated (e.g., at the approximately five-year interval of the IPCC reports – the fourth 

Assessment Report (AR4) GCMs, generated through the Coupled Model Intercomparison 

Project (CMIP) results were made available around 2005 and AR5 models are becoming 

available as this paper is written). In most past studies, the end-to-end approach has used a single 

land surface model, but this ignores the uncertainty in the land-surface response simulated by a 

range of models, which can be considerable (see Vano et al. 2012).  

Although the linking of models is arguably an approach that encompasses best-available 

science, it often focuses more on data processing than underlying mechanisms that control 

hydrologic change. Models are imperfect representations of land-surface hydrologic processes, 

and thus each step of the modeling cascade requires decisions on how best to span space and 

time. Too often, there are so many modeling steps between the climate change projections and 

their potential impacts (each with unquantified uncertainties) that it is difficult to assess 

aggregate uncertainties and hard to judge which approaches are appropriate for which questions 

(Hamlet et al. 2010; Abatzoglou and Brown 2012).  These unquantified uncertainties result from 

various decisions including what models (e.g., GCMs, hydrology models) are used, what is the 

spatial resolution of the analysis, and what is and is not preserved in the downscaling of climate 

information (Vano et al. 2013).  Increased computing capacity has allowed scientists to generate 
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more scenarios, increasing the stream of data from one model to the next, but with this increase 

in volume, it has become harder to control the quality of the simulations.  The implementation of 

the end-to-end approach also requires bias-correction procedures that can be difficult to explain, 

and are therefore often viewed with skepticism by the water resource management community.    

We present here a sensitivity-based approach to scenario planning (Fig. 1, schematic on 

right) that leverages our best understanding of the hydrological processes within the atmosphere-

hydrosphere-biosphere continuum.  It can produce first-order estimates to help bound the 

uncertainties in estimated long-term hydrologic response to changes in climate forcings.  It can 

also provide complementary information to other downscaling approaches to help assess sources 

of uncertainties (e.g., whether streamflow change is more sensitive to precipitation (P) or 

temperature (T) change in a particular river basin).   The approach uses precipitation elasticity (!) 

and temperature sensitivity (S) as defined in Vano et al. (2012) to translate climate forcings into 

changes in streamflow, which can be used to generate cumulative distribution functions (CDFs) 

of future change.   This provides a simplified way of incorporating climate change information 

into planning by making the process less computationally intensive and more accessible, yet still 

based on physical processes.  That said, it is extremely important to match the nature of the 

management questions to be addressed with the temporal scale of the hydrologic sensitivities.  

For example, the ! and S we use here are average responses (e.g., they are descriptive of changes 

in mean streamflow) that do not capture extremes and therefore are not appropriate for 

management questions related to extremes.  This new approach is intended to help understand 

the range and central tendencies of annual-average basin-wide streamflow responses to long-

term annual and seasonal changes in P and T (30-year averages), providing a sense of expected 

changes prior to conducting more detailed end-to-end simulations.    
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2.  Site description 

 The Colorado River basin (map included as Fig. S1 in supplementary materials) has been, 

and will continue to be, an area of great interest with respect to projected climate change (Barnett 

and Pierce 2008; WWA 2008; Brekke et al. 2009).  The Colorado River and its tributaries are the 

primary water supply for much of the Southwest and provide an important source of electricity to 

the region through operation of numerous hydropower facilities (Fulp 2005).  The water 

resources of the basin are distributed according to water allocations set by the Colorado River 

Compact of 1922.  In retrospect, the allocations were based on a relatively wet period, before 

much was understood about the basin’s inter-decadal variability, resulting in the overallocation 

of water resources according to the best current estimates of the river’s average flows 

(Woodhouse et al. 2006).  Aggregate storage capacity of the Colorado River’s reservoirs is large 

(about four times the river’s annual naturalized flow; in contrast, the Columbia River’s reservoirs 

have a capacity of only about one-third of the mean annual flow).  The reservoir system, 

therefore, allows for carry over from wet to dry years, although multi-year sustained dry periods 

are problematic.  Because of the large storage capacity of the reservoir system, climate change 

implications on management are typically focused on annual (as contrasted with seasonal) 

responses, and the sensitivity-based approach we describe here is well suited to this basin 

characteristic. 

 As a result of drought and the resultant low reservoir levels in the 2000s, the Colorado 

River has been the focus of many studies that have attempted to estimate future streamflows 

(Vano et al. 2013).  The modeling framework we describe here builds on this previous work, 

including Christensen and Lettenmaier (2007), USBR (2011), and Vano et al. (2012).  In 
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particular, the USBR study reflects the interest of the basin’s water managers in understanding 

the nature of future streamflows.  As such, the basin provides an opportunity to evaluate the 

sensitivity approach’s usefulness, and we use the USBR (end-to-end) results to test our method.   

In developing the method, we performed comparisons between the full-simulation results of 

Christensen and Lettenmaier (2007) and the sensitivity-based approach for annual average runoff 

(surface runoff + drainage) from all 4518 grid cells in the basin (Table A1 and A2 in Christensen 

and Lettenmaier (2007)), as well as streamflow at Lees Ferry, and the outlets of the Green and 

Navajo Rivers, the results of which were qualitatively similar.   We focus on and show results for 

Lees Ferry, the primary control point for water allocation purposes in the basin (and which 

defines the Upper and Lower basins; see map Fig. S1 in supplementary materials), but our 

method can be applied to other locations within the basin.  We calculate sensitivities using routed 

streamflow, but these values differ little from sensitivities calculated using 30-year average grid-

cell runoff.  

 

3.  Methods 

We use precipitation elasticity (!) and temperature sensitivity (S) to represent the land-

surface response to precipitation (P) and temperature (T) change and then use these concepts to 

provide first-order estimates of future hydrological changes from GCM output.  This essentially 

creates a tool, equivalent to a nomogram, that can be used to bound future runoff change across 

the Colorado River basin.   

! (Eq. 1) is a measure of how an incremental (e.g., percentage) change in precipitation 

("P) results in a percentage change in streamflow (Q).  Similarly, S (Eq. 2) is a measure of how 

an incremental temperature increase ("T) results in a percentage change in Q.  
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        (1) 

      (2)
 

These sensitivities have been explored throughout the Colorado basin by Vano et al. 

(2012).  Values calculated here vary slightly from values reported there because we use a fixed 

(historical) reference for different increments of change.  In other words, we use a single 

reference (historical) and change the perturbation magnitude (0.1°C, 1°C, 2°C, 3°C).  In contrast, 

Vano et al. (2012) kept the perturbation magnitude constant (0.1°C), but calculated !  and S from 

different references (0°C, 1°C, 2°C, 3°C).  Therefore Vano et al. (2012) describes the local 

functions while Figure 2a&b show the integral (total change) of the local values.  Our motivation 

in so doing is that we want to infer hydrologic changes associated with the total changes in T and 

P as simulated by the GCMs (!TGCM and !PGCM) relative to historical values. We also calculated 

monthly S and ! in which we incremented T (by 0.1°C) and P (by 1%) for each month.  

To estimate streamflow sensitivities (!, S), we used the Variable Infiltration Capacity 

(VIC) macroscale hydrology model (Liang et al. 1994).  VIC has been used extensively at 

regional and global scales in numerous studies, mostly in off-line simulations where gridded 

surface P, T, wind speed, downward solar and longwave radiation, and vapor pressure (humidity) 

are prescribed (e.g., Nijssen et al. 2001; Christensen et al. 2004; Christensen and Lettenmaier 

2007; Elsner et al. 2010; and many others).  In this study we used VIC, as applied by Christensen 

and Lettenmaier (2007) and USBR (2011), although this same approach can be used with other 

land surface models.  We used the Maurer et al. (2002) historical gridded data set and vegetation 
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and soil parameter files as in Christensen and Lettenmaier (2007) and USBR (2011) all at one-

eighth degree latitude-longitude resolution.  We ran simulations from 1970-1999 using initialized 

conditions from Vano et al. (2012) and calculated hydrologic sensitivities for 1975-1999, 

although as tested in Vano et al. (2013) the period of analysis and dataset have little effect on 

hydrologic sensitivity values.  Sensitivity results are roughly equivalent if we use another 

historical dataset (e.g., Wood and Lettenmaier 2006) or averaging period. 

To estimate future streamflow changes with the sensitivity-based approach, we multiplied 

!PGCM and !TGCM changes (Fig. S2 in supplementary materials) by their related hydrologic 

sensitivity measures (", S) to estimate the long-term average percent change in streamflow (!Q) 

at a specific location and future time period.  GCM output (TGCM and PGCM) was regridded to a 

common 2° lat-lon grid (see Fig. S1) using the same approach as in Christensen and Lettenmaier 

(2007), then 30-year monthly averages for both historical and future periods were averaged 

spatially across the nine 2° latitude-longitude grids cells that encompass the area upstream of 

Lees Ferry.  These values were used to calculate the difference in T (!TGCM) and percent change 

in P (!PGCM) between the historical (1970-1999) and three future periods (2010-2039, 2040-

2069, 2070-2099). 

We first calculated !Q  according to Eq. 3, where !PGCM is the long-term average percent 

change in P and !TGCM is the difference in long-term average T between the future and historical 

GCM simulation. d(P,T)int is the interaction between P and T changes which was neglected, due 

to the additive nature of S and " in the Basin reported by Vano et al. (2012).   

 

"Qest =  !PGCM* " + !TGCM* S + d(P,T)int      (3) 

where: 
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!PGCM = (PGCMfut – PGCMhis)/PGCMhis  

!TGCM =TGCMfut – TGCMhis 

 

 To improve the performance of this sensitivity-based approach, we made three 

adjustments (Eq. 4) which account for: (1) variations in annual " and S values as a function of 

!PGCM and !TGCM respectively (Fig. 2a,b), (2) seasonal T by applying monthly !TGCM.mon and 

monthly Smon values (Fig. 2c, black line), and (3) seasonal P by applying monthly !PGCM.mon and 

monthly !mon (Fig. 2c, orange line).  Section 4.1 provides more details on these adjustments.   

 

! 

"Qadj _ est = (
mon=1

12

# "PGCM ,mon * ($mon *$ ("P)
#$mon

)) + ("TGCM ,mon * (
Smon * S("T )

#Smon
))

mon=1

12

# + d(P,T )int    (4) 

Full-simulation approach streamflow changes (!Qsim in Eq. 5) were calculated using routed, 

bias-corrected future streamflows from VIC model simulations (Qfut ) from Christensen and 

Lettenmaier (2007) and the USBR Colorado River Basin Water Supply and Demand Study (data 

provided by James Prairie, May 2012) and historical naturalized streamflows from USBR (2012) 

(Qobs).   

 

!Qsim =(Qfut –Qobs)/ Qobs       (5) 

 

We used the bias-corrected streamflows from the 22 “full-simulations” of Christensen 

and Lettenmaier (2007) (11 GCMs x 2 global emission scenarios) calculated for three future time 

periods to develop the adjusted estimation method (Eq. 3, Fig 3a (prior to adjustment) vs. Eq. 4, 

Fig 3b (post adjustment)).  In these figures, the abscissa values are percent changes from 
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Christensen and Lettenmaier (2007) calculated with Eq. 5 and the ordinate values are estimated 

streamflows using the sensitivity-based approach calculated with Eq. 3 and 4 respectively.  95% 

confidence intervals were estimated for predicted values.  We then used the USBR (2011) full-

simulation approach to test the adjusted estimation method, using the same 30-year time periods.  

The USBR study produced 112 monthly (mean) streamflows for three emission scenarios (A2, 

A1B, B1) (Fig. 3c).  These data were generated as part of the USBR Colorado River Basin Water 

Supply and Demand Study; see USBR (2011) and Harding et al. (2012) for details.  

 

4.  Results and Discussion 

 

4.1.  Development and testing of the sensitivity-based approach 

 Fig. 3a is our estimate of projected runoff change ("Qest, from Eq. 4) prior to adjustment.  

The calculation uses a single " and S ("=2.23, S=-6.47% per ºC, values generated from 1% "P 

and 0.01ºC !T differences applied to historical simulations respectively, Fig. 2a,b) value for 

Lees Ferry for 30-year annual average GCM estimates of P and T change (n=66, 2 emission 

scenarios by 3 time periods by 11 GCMs).  We focus on aggregate changes at Lees Ferry; as 

such it makes little difference if we apply grid cell changes or the aggregate since GCM 

prediction differences across the 9 grids are small.  Therefore, we opted to do the more 

straightforward basin-wide approach.  Each dot corresponds to a unique !Qsim (Eq. 5) from bias-

corrected streamflows taken from Christensen and Lettenmaier (2007).  The proximity of 

responses to the 1:1 line reflects how well the methods compare for the 66 simulations. The 

linear relationship between !Qest and !Qsim has a R2=0.58, which reflects considerable scatter, 

where !Qest is biased towards overestimating !Qsim (the y-intercept of the regression is -5.6%).  
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An extreme example of this bias is GFDL’s A2 scenario in 2070-2099, which simulates a decline 

in streamflow of -22% whereas the sensitivity-based approach estimates a -63% decline. 

We made three adjustments (below) to the sensitivity-based approach to reduce bias and 

scatter; the influence of each independently and in combination is noted in Table 1.   

Adjustment 1, !("P) and S("T): As !P and !T change, their sensitivities also change 

(Fig. 2a,b).  Therefore, instead of a single value for " and S, we varied the long-term annual 

changes according to !TGCM and !PGCM values based on two regression equations generated 

using VIC hydrology model simulations at different perturbations (Fig. 2a,b).  These 

perturbations were selected to cover the range of climate change projections (shown in Fig. S2 in 

supplementary materials).  At Lees Ferry, both "(!P) and S(!T), when calculated using a fixed 

(historical) reference, result in values that can be approximated with a linear equation (Fig. 2a,b).  

As mentioned in Section 3, these values can also be calculated by taking the integral of changes 

reported in Vano et al. (2012), which captures the instantaneous change function (tangent of the 

change) instead of the total change which is required for the method we use here. To get the total 

change, we calculated " and S as functions of !P and !T increments from the fixed historical 

values  (this captures the secant of the change, where changes can be taken directly from the 

figure without integrating) and also requires a smaller (half) number of simulations. 

Adjustment 2, Smon: Simulation experiments by Das et al. (2011) found that annual 

streamflow responses at Lees Ferry differ according to seasonal warming patterns, where greater 

decreases in annual streamflow occur for warming in the warm season, as opposed to warming in 

the cool season.  To capture this in our sensitivity-based approach, we apply T changes on a 

seasonal basis according to the values in Fig. 2c (black line), which were determined through 12 

model simulations where we perturbed a single month’s T by 0.1ºC in each simulation and 
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calculated how warming in that month affects annual S values.  These values when added 

together equal -6.46%, which is very close to -6.47%, the sensitivity for annual T changes of our 

unadjusted estimate.  We weight these values according to the long-term annual S("T) value as 

described in the preceding paragraph.  Seasonal S range from -0.10% in December to -1.14% in 

May, with warm season (April-September) sensitivities about three times higher than cool season 

(October-March) (Fig. 2c).  With this adjustment, GCMs that have more warming in the summer 

than the winter will have greater streamflow changes.     

 Adjustment 3, !mon:  this adjustment also accounts for seasonal changes, specifically how 

changes in monthly P ("Pmon) affect annual streamflow by applying monthly ! values.  Monthly 

! values (!mon; Fig 2c orange line) range from 0.09 in Jun and Aug to 0.27 in Mar, a seasonal 

pattern that coincides with monthly average precipitation (R2=0.39) which is also highest in Mar 

and lowest in Jun.  Because !mon is calculated as a 1% P change perturbation in each month, a 1% 

change in wetter months should have a greater effect on annual streamflow than a 1% change in 

drier months; accounting for "Pmon for individual GCMs improves the ability of the sensitivity-

based approach to capture full-simulation results (when applied independently of the other 

adjustment it increases the R2 from 0.58 to 0.70 and reduces the y-intercept from -5.6 to -1.5, 

Table 1).  An alternative would be to adjust "PGCM to coincide with the bias-corrected change 

applied in the bias-correction spatial disaggregation (BCSD) downscaling technique used in the 

full-simulation approach (Fig. S3).  This alternative adjustment improves results, but not as much 

as adjustment 3 and is not effective when monthly ! values are applied.  More details of this 

alternative approach are included in the supplementary materials.   

 When all three adjustments were applied, the ability to reproduce end-to-end results 

improved considerably (Fig. 3b). The R2 in the linear relationship between !Qest,adj and !Qsim 
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improved from  0.58 to 0.78, and, there was considerable improvement in the "Qest bias towards 

underestimation of !Qsim (y-intercept of the regression is -0.2% vs. -5.6%).  Also, the slope of 

the relationship was closer to one (see Table 1 for comparisons of each adjustment).  The GFDL 

A2 scenario in 2070-2099 (highlighted in Fig. S3, left panels) is an example of how an estimate 

can improve, from an unadjusted estimate of -63% to an adjusted estimate of -32%, which is 

considerably closer to the -22% projected using the full-simulation method.  The 95% confidence 

intervals for predicted values are within +12% and -13% of those from the full-simulation 

method (Fig. 3b).   

 We also evaluated the sensitivity-based approach using full-simulation results from 

USBR (2011), for which 112 simulations from three emission scenarios were available, totaling 

336 comparisons (36 A2, 39 A1B, and 37 B1 GCMs by three time periods each) (Fig. 3c). These 

values, which incorporate the three adjustments discussed above, also have a negative bias (y-

intercept of the regression is -1.7%) and slope of 1.0.  The 95% confidence intervals for 

predicted values are similar to those estimated from Christensen and Lettenmaier’s (2007) full-

simulation results; our estimated values were within +12% and -16% of the USBR (2012) full-

simulation values (Fig. 3c).   

4.2. Assessing risk with the sensitivity-based approach 

Water managers’ main interest in future streamflow projections is to assess risks 

associated with climate change.  To test whether sensitivity-based results provide similar 

ensemble distributions to full-simulation results, we compared the cumulative distribution 

functions (CDFs) of streamflows generated using both approaches.  In the development of the 

sensitivity-based approach (section 4.1), we combined time periods and scenarios; this is 

appropriate for testing how T and P change can be used to estimate streamflow change, where 
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each 30-year segment can be treated independently.  In practice, however, the particular emission 

scenario and (especially) the future time period are important considerations in planning – where 

planning horizons are typically several decades (hence the difference between emissions 

scenarios is usually less than the differences among GCMs).  Fig. 4 shows the CDFs for the two 

approaches using the USBR simulations (as in Fig. 3c) for three future time periods (columns) 

and three emission scenarios (rows). Differences between emissions scenarios become greater 

through time, becoming more pronounced in the mid 21st century (IPCC 2007); therefore in 

2010-2039 emissions scenarios have no noticeable influence.   

Across emission scenarios and future time periods, the ensemble range is captured well 

(Fig. 4).  The magnitudes of changes are similar in earlier periods, however the ensembles show 

more discrepancies between approaches further in the future and associated with more extreme 

emissions scenarios.  Discrepancies are most likely because at these more extreme values, 

linearization of the sensitivity-based approach breaks down and the sensitivity-based values, 

relative to the full-simulation, show greater streamflow declines.  Notably, in CMIP3 GCM 

output for the Colorado River basin, neither emission scenario nor time period are significant 

predictors for P but both are for T.  Therefore T is likely driving these discrepancies, which is 

also evident in Fig. 3d&e as !TGCM influences the magnitude of the regression more than !PGCM. 

From a climate risk standpoint, the agreement or lack thereof among the CDF is more 

important than whether the inferred changes associated with any specific GCM agree.  Fig. 4 

shows that in general, the distributions are consistent, especially at modest change levels (first 

30-year period in particular), although there is a bias in the sensitivity-based approach towards 

overestimating streamflow declines for periods farther in the future and/or for scenarios with 

large (in absolute value) T and P changes.   
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4.3. Added value of the sensitivity-based approach 

 In addition to providing a “shortcut” method for estimating future flows, the sensitivity-

based approach allows the influence of T and P changes to be segregated, and in so doing 

encourages better understanding of the factors that will drive changes in the hydrologic system.  

For instance, values of " and S can be used as evaluation tools.  As an example, Fig. 3d&e shows 

the same results as in Fig. 3c, where effects from P change (!PGCM) and T change (!TGCM) are 

plotted independently.  The plot shows that both !PGCM and !TGCM are important factors that 

will affect future streamflow changes at Lees Ferry.  On average, !PGCM contributes more to the 

slope (0.74 of 1.01), while !TGCM has a considerable effect on the total magnitude and some 

effect on slope (0.27).  

 The adjustments outlined in section 4.1 and supplementary materials highlight key 

elements that are important for prediction of the effects of climate change on streamflow:  a) how 

streamflow responds to both T and P changes at different reference conditions and b) the 

seasonal effects of T and P change, and c) how P changes are downscaled.  These elements 

suggest ways end-to-end prediction methods might be evaluated.  For example, do LSMs used in 

climate change studies accurately capture streamflow responses to changes in P and T (" and S 

values), and do the values change appropriately as the climate becomes drier and warmer?  How 

should downscaling methods capture P changes, especially when the GCM P seasonality does 

not match that of the historical?  For instance, the BCSD approach used in Christensen and 

Lettenmaier (2007) and USBR (2011) does not preserve the magnitudes of P change as predicted 

by the GCM, but rather captures the change relative to historical P in each season (see 

supplementary materials for more details).  This subtlety has little effect when future and 
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historical simulations have similar seasonal cycles, but when future seasonality differs from 

historical, it can affect projected P magnitudes.   

Values of ! and S can also be useful tools in evaluating model performance.  As 

demonstrated in Vano et al. (2012), these measures can be used to compare hydrologic model 

performance to other models and observations.  Spatial ! and S maps can help to identify 

locations where there is more uncertainty as well as areas more sensitive to future change, and 

imply locations that might be targeted for in situ observations.  While a body of research has 

evolved that estimates ! from observed streamflows (e.g., Schaake 1990; Dooge et al. 1992; 

Dooge et al. 1999; Sankarasubramanian et al. 2001; among others), methods for calculating S 

values from observations are less clear and arguably more challenging as they depend more on 

current conditions (which depend on prior weather conditions, e.g., snowpack).  A better 

understanding of observed S would be valuable in model evaluation, as it is a common input 

variable to land-surface hydrology models in climate studies.  This ultimately requires a better 

understanding of evaporative demand, which is the key driver for which T is just an index (see 

Dooge et al. 1992; Dooge et al. 1999).  Further research into how best to express these 

evaporative changes would be beneficial and could be done within this sensitivity framework.  

 

4.4.  Considerations for application of the sensitivity-based approach  

Our approach effectively uses a process-based macroscale land surface model to develop 

sensitivity maps (equivalent to a simple empirical model) to represent nonlinear hydrologic 

processes.  As such, the applicability of the approach depends on (1) departures from linearity of 

the underlying functions of T and P change, (2) the superposition of changes, (3) the physical 

context (location), and (4) the management context.  Linearity can be tested by comparing, for 
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instance, whether a 3°C change is predicted to have a similar effect to a 0.1°C change multiplied 

by 30, or a 30% change in P is predicted to have a similar effect to a 1% change multiplied by 

30.  Superposition can be evaluated as in Vano et al. (2012) where the sum of independent 

changes in streamflow from T and P perturbations are compared to changes in streamflow of a 

simulation where both T and P are changed. In locations where the differences between these 

comparisons are small, the sensitivity-based approach is more valid (see Vano et al. (2012) 

figure 10).  Additionally, superposition tests can be applied to seasonal changes; the sensitivity-

based method is more robust when annual streamflow changes from #T and #P applied in 

individual months (Fig 2c) add together to equal annual streamflow changes for the same #T and 

#P applied throughout the year.      

Physical context matters as different locations respond differently to P and T changes 

(resulting in different patterns in ! and S values). For example, in a comparison of four major 

western U.S. river basins (Colorado, Columbia, North and South Sierra), Das et al. (2011) found 

that annual changes in Colorado River discharge had the greatest declines to 3°C warming 

annually, and that warm season warming had the greatest influence on these annual changes.   

The applicability of the approach also depends on management concerns – the approach 

outlined here evaluates long-term annual responses, not seasonal responses or their temporal 

sequencing of changes.  In locations where the shape of the hydrograph is more important than 

annual flow values, the approach may not be appropriate.  This method could in principle be 

applied to a time sequence of changes, but it would change flows only by small increments, 

which nonetheless over time accumulate could have a large impact.  This is different from 

changing the sequencing of flows, which could have a more immediate impact.  In essence, this 

approach is adding the effect of climate change to a natural flow sequence – where the extent to 
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which you capture variability depends on the natural flow sequences used.  In other words, 

whether sensitivity perturbations are appropriate depends on the management system and 

specific questions the experiment is intended to address. 

 

5.  Conclusions 

  We have described a sensitivity-based approach that generates estimates of annual 

average future streamflow change and the dominant causal factors, without detailed simulations.  

The method uses a process-based model (VIC) to develop a simple empirical model (sensitivity 

values) and is especially appropriate for producing initial estimates of future streamflow to 

accompany alternative global model future projections of precipitation (P) and temperature (T), 

key drivers of land surface hydrology.   Our work shows that:   

 

•  The sensitivity-based approach produces plausible estimates of future annual mean streamflow 

change, which are mostly within ±15% of those estimated from a full-simulation approach. 

Performance of the sensitivity-based approach was improved by three adjustments: (1) 

accounting for varying P elasticity (") and T sensitivity (S) as a function of P and T changes, (2) 

incorporating monthly variations in S, and (3) incorporating monthly variations in !.  In test 

applications to predict future mean annual flows at Lees Ferry, the sensitivity-based approach 

produces estimates that consistently estimate larger streamflow declines (with an average bias of 

up to -2%, y-intercept in Fig. 3c).  Whether this tendency to overestimate declines, as seen in the 

CDFs of Fig. 4 where the blue line is typically above the gray line, is universal or unique to the 

Colorado River basin remains to be determined.   
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•  For purposes of assessing risk, the sensitivity-based approach produces viable initial estimates 

that can be used to bound future streamflow uncertainties for water management purposes.  The 

CDFs of ensemble GCM scenarios (e.g., Fig. 4) match well for the relatively near future (first 

three decades of the next century), however values further into the future and for severe 

emissions scenarios mostly overestimate the magnitude of future streamflow changes (mostly 

reductions in the case of the Colorado River system). 

 

•  The sensitivity-based approach helps to focus attention on the causal factors driving future 

change, and their relative importance, as contrasted with the full-simulation approach which 

tends to lead to a focus on managing ever-larger quantities of model output.  For example, the 

sensitivity-based approach facilitates evaluation of contributions from P and T change separately.   

While this can be done with the simulation approach as well, it further  compounds the data 

management problem, and in practice, often is not investigated. 

 

 The sensitivity-based approach should be appealing to water managers in that it is 

computationally efficient, and hence can be used to generate ensembles of hydrologic 

simulations, which can help in selecting a representative range of simulations for further 

analysis.  For example, it can be easily applied to newly released climate scenarios (e.g., from 

the Coupled Model Intercomparison Project 5th Assessment), and help provide context as to why 

results differ.  In the comparisons we report here, we used the Variable Infiltration Capacity 

(VIC) hydrologic model, but these methods are applicable to any other hydrology/land surface 

model, and can be used to better quantify uncertainty from hydrologic simulations of multiple 

models.   
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 The approach has limitations, and is best thought of as complementary to other 

approaches.  It is intended for evaluating long-term (e.g., 30-year) average annual changes and 

does not provide information on daily values, extreme events, or land cover change.  We have 

focused on annual responses, which are of greatest importance to management in the Colorado 

basin.  For other systems, seasonal responses are critical, and understanding how to best capture 

these responses is currently being investigated.    
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TABLE 
 
Table 1.  Sensitivity-based adjustments at Lees Ferry 
 

  Slope y-
intercept R2 

Prior to adjustments 1.08 -5.6 0.58 
only adjustment 1a 0.98 -4.4 0.63 
only adjustment 2b 1.13 -5.5 0.61 
only adjustment 3c 1.06 -1.5 0.70 

only altern. adjustmentdent 
adjustments 1 and 2 

1.02 
1.02 

-3.0 
-4.4 

0.60 
0.66 

adjustments 1 and 3 0.97 -0.3 0.75 
adjustments 2 and 3 1.12 -1.4 0.73 

all three adjustments 1.02 -0.2 0.78 
aadjustment 1: !("P) and S("T) 
badjustment 2: Smon 
cadjustment 3: !mon   
dalternative adjustment: "PGCMadj  (see supplemental materials) 
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FIGURES 
 

 
 
FIG 1  Schematic of two approaches.  The full-simulation approach produces a daily time series 
of future streamflow, whereas the sensitivity-based approach produces only a change in mean 
streamflow. 

!"#$%&'#()*+,-'
'./%!'0(##$0*+,'

!"#$%"&'"()%*+&&
,#-+"&./!',0&1!',2&

34-5#"#64&&
,#-+"&

78*85+&&
9*5+%):#;&

'./%!'0(##$0*+,-'
1(2+!0%3/+,'

!"##$%&'"#()*+,(--.*(/0, 12+%&)3&45$6(%27,(--.*(/0,

!"#$%"&'"()%*+&&
,#-+"&.</!',0&<1!',2&

78*85+&9*5+%):#;&&
=>%?6+&.<@$!"2&

34-5#"#6(=&&
A+?9(BC(B+9&.D0&A2&



 28 

 
FIG 2  Variable long-term annual and monthly precipitation elasticities (") and temperature 
sensitivities (S) at Lees Ferry from VIC simulations. Values in the tables correspond to points in 
the figures. Bold values are used for single " and S calculations prior to adjustments. (a) " 
calculated using Eq. 1 as a function of changing P at 70%, 80%, 90%, 101% and 110% of 
historical values.  (b) S calculated using Eq. 2, using 0.1, 1.0, 3.0, and 6.0 °C increases.  (c) S 
(black dots, left y-axis) and " (orange crosses, right y-axis) of annual streamflow to increases in 
temperature or precipitation respectively in each month.  For example, a 1°C increase in January 
results in a -0.14% decrease in annual flow. 
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FIG 3  Comparisons of predicted changes in Colorado River annual average discharge from the 
full-simulation and sensitivity-based approaches.  (a) Using full-simulation results from 
Christensen and Lettenmaier (2007) and a single value for " and S for the sensitivity-based 
approach (Eq. 3), (b) using Christensen and Lettenmaier (2007) and the adjusted sensitivity-
based approach (Eq. 4), (c) using USBR (2011) full-simulation results and the adjusted 
sensitivity-based approach (Eq. 4), (d) contributions of precipitation of panel c predicted 
changes, and (e) contributions of temperature of panel c to predicted changes.  95% confidence 
intervals in (b) and (c) indicate the two methods are within ±15%. 
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FIG 4  Cumulative distribution functions (CDFs) of 112 USBR simulations of streamflow 
change from sensitivity-based ("Qest_adj) and full-simulation ("Qsim) approaches by future time 
period and emission scenarios.  
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Supplemental Materials 
 

 
 
FIG S1.  Colorado River basin showing elevation for the 1/8° resolution of the hydrology 
model.  The resolution of the GCM output is approximately 2° resolution, which is 
indicated by the larger grid overlay. 
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FIG S2.  Temperature (!T) and Precipitation (!P) changes for GCMs used in 
Christensen and Lettenmaier (2007) 
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FIG S3  Two examples of the alternative adjustment (!PGCM adj).  Prior to adjustment (top 
panels) annual !PGCM is calculated directly from raw GCM output.  The adjustment 
calculates the % change in monthly GCM precipitation (middle panel) and applies this to 
the historical precipitation dataset (blue line lower panel, from Maurer et al. (2002) over 
the Colorado River basin), resulting in adjusted monthly values of future precipitation.  
From this, the annual !PGCM adj (bold values on figures) is calculated.  This adjustment 
has a large effect on GFDL A2 scenario, but little effect on CRNM B1 scenario, which 
relates to how well each GCM captures observed precipitation seasonality. 
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 4 

 
Alternative to adjustment three (!PGCM) 
 

We also tested an alternative approach to adjusting seasonal precipitation that 

focuses on !PGCM values instead of seasonal ! values as in adjustment 3 in section 4.1.  

This alternative adjusts monthly P changes to be a percentage of historical P (instead of 

from raw GCM output).  This is more consistent with downscaling methods in the full-

simulation approach, which adjusts GCM P values with historical precipitation using 

quantile mapping on a monthly (not annual) timescale.  We found that this alternative 

adjustment is less effective than adjustment 3 (Table 1).  However it requires no 

additional VIC simulations to calculate monthly ! values and highlights an aspect of P 

downscaling that may be of interest. 

The BCSD statistical downscaling approach used in Christensen and Lettenmaier 

(2007) adjusts P according to the probability distribution of historical observations (e.g., 

the Maurer et al (2002) gridded dataset), this adjustment, in essence, projects the 

percentage change between GCM future and GCM historical P values of each month onto 

historical observations.  We performed a simplified adjustment that mimics this bias-

correction step through a simple rescaling.  Instead of using the direct percentage 

differences between long-term annual future and historical GCM P as our !PGCM values 

(as in the unadjusted estimate), we calculated monthly percentage differences for GCM P 

and applied those (percent) differences to the historical observations to calculate a new 

estimate for future P.  Then, these two values (the historical observations and the new 

estimate for future P) were used to calculate !PGCM_adj, which was then multiplied by " as 

in Eq. 3.  In most cases, this adjustment had little effect on !P values.  In the 66 

adjustments performed, 51 made !P more positive, although most !P values (73%) 
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changed by less than 2%.  There were, however, a few cases where the changes were 

substantial.  These occurred mostly when the GCM P did not capture the observed 

seasonality.  For example, in GFDL’s A2 scenario P is greatest in the spring, not in the 

fall (Fig. S3, left panels), therefore a relatively small increase in average fall P in 2070-

2099 translates to a much larger increase in P when the percent difference is applied to 

the observed P, changing !P from -12.4% to -1.3%.   In contrast, in CRNM B1 scenario 

P has a seasonal cycle that is similar to climatology, and therefore the percent differences 

applied to historical observations does not change !P by much (-6.9% to -6.2%) (Fig. S3, 

right panels).  If the BCSD correction is not desired, this adjustment should not be 

applied. 

 




