

Engineering a Profiling System for a Robotic Oceanographic Surface Sampler

by

Robert J. Shannon

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of

the requirements for the

degree of

Honors Baccalaureate of Science in Electrical and Computer Engineering

(Honors Scholar)

Presented June 9, 2017

Commencement June 2017

AN ABSTRACT OF THE THESIS OF

Robert J. Shannon for the degree of Honors Baccalaureate of Science in Electrical and

Computer Engineering presented on June 9, 2017. Title: Engineering a Profiling

System for a Robotic Oceanographic Surface Sampler.

Abstract approved:___

Jonathan Nash

ROSS (Robotic Oceanographic Surface Sampler) is an autonomous boat,

equipped with oceanographic sensors, used for studying the ocean’s surface. One of

its advantages over traditional research vessels is its ability to sample near glaciers, an

area too dangerous for manned ships. In order to properly ascertain deep ocean heat’s

effect on glacial melt, it is necessary to take profiles to catalogue the water’s various

characteristics from the surface to the bottom of the glacier. My challenge was to

design and construct an electronic solution to enable remote sampling.

Key Words: Autonomous, CTD, Microcontroller, Profiling, Robotic

Corresponding e-mail address: rj_shannon@comcast.net

©Copyright by Robert J. Shannon

June 9, 2017

All Rights Reserved

Engineering a Profiling System for a Robotic Oceanographic Surface Sampler

by

Robert J. Shannon

A THESIS

submitted to

Oregon State University

Honors College

in partial fulfillment of

the requirements for the

degree of

Honors Baccalaureate of Science in Electrical and Computer Engineering

(Honors Scholar)

Presented June 9, 2017

Commencement June 2017

Honors Baccalaureate of Science in Electrical and Computer Engineering project of

Robert J. Shannon presented on June 9, 2017.

APPROVED:

Jonathan Nash, Mentor, representing Earth, Ocean, and Atmospheric Sciences

Jonathan Hurst, Committee Member, representing Mechanical Engineering

Matthew Shuman, Committee Member, representing Electrical and Computer

Engineering

Toni Doolen, Dean, Oregon State University Honors College

I understand that my project will become part of the permanent collection of Oregon

State University, Honors College. My signature below authorizes release of my

project to any reader upon request.

Robert J. Shannon, Author

Acknowledgements

 I would like to thank my mentor, Dr. Jonathan Nash, for his guidance,

feedback, and support and for welcoming me into his team. This opportunity and its

responsibilities helped me grow as an engineer, a scholar, and a person.

 I would also like to thank thesis committee members Dr. Jonathan Hurst and

Matthew Shuman for investing their time and expressing genuine interest in my

research.

 I want to thank my teammates Nick McComb, June Marion, Jasmine

Nahorniak, and Brendan (Onn Lim) Yong along with everyone else I collaborated

with during my time working on ROSS for cultivating a welcoming and fulfilling

work environment. It was a pleasure working with you.

 Additionally, I would like to thank Nick McComb for reaching out and

involving me with the project, Dr. Rebecca Jackson for teaching me the science

behind our research, and Cam Mullins for creating Figures One and Four of this

report. Lastly, I thank my parents, Michael and Nancy Shannon, for fostering my love

of learning and passion for engineering.

 Thank you all for involving yourselves in my undergraduate experience. You

have made it unforgettable.

Table of Contents

1. Introduction ... 1

1.1 The Goal ... 1

1.2 Why ROSS? .. 1

2. System Design ... 2

2.1 System Setup ... 2

2.2 Design Goals .. 3

3. The Technology ... 4

3.1 Electronic Speed Control ... 4

3.2 Encoder .. 4

3.3 Oceanographic Instrument .. 5

4. My Contributions ... 5

4.1 A-frame Detection ... 6

4.2 Command Script .. 6

4.3 Microcontroller Program ... 8

4.4 Wireless Data Download ...10

5. Conclusion ... 11

Works Cited ... 14

Appendices .. 15

Appendix A – Python Script ...15

Appendix B – Arduino Winch Control Program ...17

Appendix C – Wireless Data Download BASH Script ...25

1. Introduction

1.1 The Goal

How can one predict a glacier's melting rate given the surrounding water's

properties and the characteristics of its subglacial discharge? Glacial melting is a

function of the quantity of fresh water entering the ocean at the base of the glacier

coupled with the surrounding water's attributes. Fresh water streams into the ocean

via channels within the glacier. These streams conjoin and create a plume leading

away from the glacier's terminus (glacier’s leading edge). The fresh water mixes with

surrounding salt water, further driving the melting process. The extent to which the

water mixes influences the melting rate. Increased mixing brings the warmer salt

water into contact with the glacier, while less mixing results in an insulating layer of

fresh water. This process primarily occurs deep below the ocean’s surface, thus its

study requires a system capable of measuring far below the research platform.

1.2 Why ROSS?

Professor Jonathan Nash, Ph.D. in Physical Oceanography, along with his

team including June Marion, Nick McComb, Jasmine Nahorniak, Brendan (Onn Lim)

Yong, and myself, is developing robotic oceanographic surface samplers. These

robots, or ROSSs, are autonomous jet powered kayaks equipped with oceanographic

sensors. ROSS provides three primary advantages over traditional research vessels.

First, ROSS can collect data in parallel with multiple research vessels and other

ROSS platforms for a fraction of the cost of a fully manned ship. Second, ROSS,

unlike large research vessels, minimally disturbs the ocean’s surface. This allows

2

scientists to “obtain uncontaminated observations of the upper few meters of the

ocean, a region that is challenging to sample [1]”. Finally, ROSS can operate in

environments too dangerous to send manned vessels, such as a glacier face.

One of Dr. Nash’s fields of study is glacial melting and how its rate is affected

by deep ocean heat. In August of 2016, the team traveled to Petersburg, Alaska to

take data at the LeConte glacier. Manned boats cannot go within half a mile of the

terminus, thus ROSS’s third advantage comes into play. To prepare for this and future

deployments, I designed and implemented the electrical and electronic systems as

well as wrote software and firmware with the goal of creating a profiling system

capable of taking measurements at the bottom of the glacier face.

2. System Design

2.1 System Setup

 The profiling system, diagrammed in Fig. 1, consists of an electronically

powered winch equipped with a rotary encoder to measure sensor depth in revolutions

of line. This line is fed through the A-frame, a component which serves as a safety

measure and method for detecting when the oceanographic instrument returns to the

surface. It provides stability and protection when the instrument is out of the water

3

and guides the instrument back in when beginning a profile. The instrument is

weighted with approximately 10 lbs. of lead to increase its speed of descent.

2.2 Design Goals

Given this setup, I designed a system capable of acting upon user supplied

profiling commands, providing a method to control a profile’s depth and speed in

both directions. Under normal conditions, the winch begins a profile by slowly

lowering the instrument into the water, accelerates to the user defined “out speed”,

stops at the desired number of revolutions (up to 65,535), and returns at the user

defined “in speed” until it reaches a hard coded stopping distance. At this point, the

winch slows to a software defined “slowing speed”, preventing instrument damage.

Once the instrument pulls the A-frame upright, its position is maintained and the data

downloaded to ROSS’s onboard computer.

It was crucial the manner in which this behavior was implemented could

easily adapt to atypical commands. For example, in the case of an emergency, the

system needs to interrupt its current process and respond to a stop command. The

system would return to normal operation upon receiving new profile parameters.

Fig. 1 – ROSS’s profiling system monitors instrument position via sensors on the A-frame and Winch [5].

4

Additionally, the code needed to be written such that it could easily be expanded

upon.

3. The Technology

3.1 Electronic Speed Control

 The driving force behind ROSS’s profiling system is an electric Shimano

Tiagra 130 fishing reel (winch). Its brushless motor is driven by an electronic speed

control (ESC) which inverts DC power from two series 12V deep cycle batteries

(24V) to three-phase AC power based on a pulse width modulation (PWM) signal

from a microcontroller.

 An inverter uses PWM to emulate lower voltages by varying the output

voltage’s duty cycle. Sinusoidally increasing and decreasing the duty cycle achieves a

stepped sinusoid that appears as AC to a motor, as seen in Fig. 2. Manipulating the

ESC’s three sinusoidal outputs allows the user to control a motor’s speed and

direction.

3.2 Encoder

 The winch is augmented with a Model 15H Accu-Coder quadrature encoder to

determine how many revolutions of line have been let out. This type of encoder

rotates along a code disk marked with the pattern shown in Fig. 3. The two bands of

Fig. 2 – An ESC provides control over the winch’s speed and direction by varying its output based on input

received from a microcontroller [4].

5

alternating black and white stripes are 90 degrees out of phase from one another, thus

the sensor can derive direction based on which pattern’s signal is leading. The

number of times the encoder pulses can be converted into winch revolutions relative

to the point at which the count was set to zero.

 While the encoder can serve as the stopping condition when lowering the

sensor, it is unreliable when returning the sensor to the surface. The line may stretch

under tension, requiring additional revolutions. For this reason I designed an

independent system incorporating the Hall Effect as the primary stopping condition as

discussed in section 4.1.

3.3 Oceanographic Instrument

 While it can be adapted for other sensors, ROSS’s profiling system is intended

for use with RBR’s Concerto CTD. This instrument measures the water’s

conductivity, temperature, and depth, providing a profile of characteristics necessary

to determine the extent to which fresh and salt water mix along the glacier’s face.

4. My Contributions

My contribution to the winch profiling system is comprised of four

subsections: A-frame position detection, Python command script, winch control

Fig. 3- The encoder’s rotational motion generates a waveform from which the microcontroller can determine

instrument position in revolutions [3].

6

microcontroller program, and wireless sensor data transfer script. Together, these

components provide the user full control over profile characteristics, such as line out

speed, line in speed, and number of revolutions.

4.1 A-frame Detection

Magnets are positioned on the A-frame’s rotational axis such that one of two

Hall Effect sensors is activated when the frame is in the up or down position as seen

in Fig. 4. These sensors are solid state and detect magnetic fields in their proximity.

This means they will not produce a false positive in turbulent environments.

I designed a PCB, seen in Fig. 5, to mount the sensor integrated circuit, as

well as the necessary pull up resistors and decoupling capacitors. Their outputs are

routed to the microcontroller and serve as the winch’s primary inbound stopping

condition.

4.2 Command Script

 The Python script accepts four parameters at runtime: speed out, speed in,

depth, and emergency stop. If the stop value is zero, the code then reads in the

Fig. 5 – This PCB serves as the interface between the microcontroller and Hall Effect sensors.

Fig. 4 – Hall Effect sensors detect A-frame position and serve as the primary inbound stopping condition [6].

A-Frame down

A-Frame up
Rotational axis

Magnet

Sensor

7

remaining arguments. Both speeds are represented as single byte where 0 indicates no

movement and 254 represents maximum speed in the corresponding direction (255 is

reserved). The depth is represented with two bytes and thus ranges between 0 and

65,535 revolutions. In its May 2017 deployment, ROSS’s profiles averaged 400

revolutions (approximately 100 m).

The values are saved into an array and a checksum is derived by performing

the “exclusive or” operation on all five bytes. A serial port is then opened between the

computer and microcontroller and the character representing each byte is transmitted.

Emergency profile stops are represented using one of five integers. Three of

these values interrupt the current profile and dictate the winch’s behavior after

stopping. These are stop and hold position, return at half speed, and return at full

speed. The remaining two are used to initiate a motor start or stop, allowing the user

to start and kill the boat’s engine remotely. Fail-safes within the microcontroller code

ensure the engine cannot start unintentionally and prevent motor damage due to

accidental commands to start while already running.

To promote usability, script execution is abstracted using a graphical user

interface (GUI), designed by Oregon State University senior faculty research assistant

Jasmine Nahorniak, which allows the user to enter speed values as a percentage. The

GUI can also initiate an emergency profile interruption and remotely activate or

deactivate ROSS’s engine by automatically sending the corresponding packet at the

click of a button.

8

4.3 Microcontroller Program

 I selected the Teensy 3.2 for the system's microcontroller because it provides

several advantages over many alternatives. First, using the Teensyduino add-on, the

microcontroller can be programmed in Arduino. This abstracted C based language

provides access to a plethora of libraries, most notably, the Encoder Library which

has been optimized for interfacing between a microcontroller and quadrature encoder.

The Teensy's interrupt capable input pins allow the microcontroller to attain peak

performance when reading encoder output.

 Arduino code consists of two primary functions from which all additional

functions are called: setup, which runs once when the microcontroller is first powered

on, and loop, which executes repeatedly until the microcontroller loses power. I

designed my loop function to behave as a three-state finite state machine as seen in

Fig. 6. Each time loop executes, it runs the portion of code associated with the current

state which includes the logic for determining the subsequent state.

Fig. 6 - The microcontroller code continually iterates through three states, each of which is responsible for a

different task related to winch control.

9

The initial state checks the serial buffer to see if a new packet has been fully

received and, if so, updates the profile control variables. The following state

interprets the stop byte from the most recent command packet to determine what kind

of stop, if any, needs to be initiated or continued. It then manipulates the control logic

variables and adjusts the speed as necessary.

Speed changes are handled by my “changeSpeed” function (Appendix B: lines

178 through 248) which abstracts the process of sinusoidally accelerating the winch

from its current to the desired speed in the intended direction. Acceleration time can

be set in the microcontroller code corresponding to line 56 of Appendix B. This

acceleration pattern reduces motor wear, resulting in a more robust system.

Lastly, the FSM will either return to the initial state or first enter the

"Maintain" state. This last state is used once the sensor has returned to the surface and

the A-frame is in the upright position. In its current iteration, the profiling winch

relies on electromagnetic braking to hold its position. This does not always provide

enough torque to overcome the rotational force exerted by the A-frame. This state

utilizes the Hall Effect sensors to detect if the A-frame sags and returns it to the

upright position. This state’s necessity will decrease in future implementations

supplemented by a mechanical winch brake.

In between each state, the microcontroller checks to see if it has been

operating for more than one second since the last time it sent a status message. In

such cases the microcontroller transmits the following via serial:

10

• Whether or not it has received a corrupted command packet as

determined by comparing the calculated checksum to the transmitted

one

• Whether or not the system is ready to begin a new profile

• The sensor’s current direction of travel (up, down, or stationary)

• The sensor’s distance from its starting position in revolutions

4.4 Wireless Data Download

Wirelessly downloading the instrument’s data provides two major benefits:

data backup and sensor protection. While the sensor itself is costly, even more

valuable is the data stored on the device. If the line were to snap or the waterproof

enclosure became compromised, all data from that deployment would be lost.

Wirelessly downloading the data after each profile minimizes this risk.

 The alternative to wireless downloading involves opening the waterproof

casing and connecting to a laptop. This introduces opportunities for salt water to enter

the sensor or the O-ring to become damaged.

 The sensor’s manufacturer, RBR, only supports wireless downloading in the

form of a GUI on computers running a Windows operating system. ROSS’s onboard

computer runs Linux and thus requires a program that can be executed from the

command line. RBR provided two C programs, one of which downloads the binary

file storing the sensor’s data. The second parses binary data into human readable

characters when executed with the proper parameters.

 After collaborating with RBR’s software engineers, I was able to determine

the conditions necessary for each program to operate. I constructed a testing

11

apparatus to simulate a 3 meter profile (necessary for the sensor’s Wi-Fi module to

transmit) and wrote a BASH script to orchestrate the data download, parsing, and

storage process.

 The C program downloads all data stored on the sensor past a given memory

offset. In order to isolate individual profiles and expedite the download, my BASH

script calculates this offset based on the size of all previously downloaded data, saves

the profile’s binary data in a timestamped file, and appends the new data to a file

containing the combined data from each of the deployment’s profiles.

My script then passes the new binary file to the parsing program so the data

can be read. This requires the user to run my script with the number of sensor data

channels as the argument. In ROSS deployments, six data channels are utilized. These

are the measured channels: conductivity, temperature, and pressure, and the derived

channels: salinity, depth, and speed of sound.

5. Conclusion

Ultimately, I was successful in engineering a system capable of exhibiting

desirable profiling behavior given user input dictating out speed, in speed, and depth.

Its flexible design allowed for the addition and execution of non-profiling commands.

This behavior was demonstrated in field tests conducted in the Willamette River and

Yaquina Bay.

Although it is not yet implemented into ROSS’s standard operation, I verified

the data download and parsing capabilities using a testing apparatus I designed to

imitate a 3 meter profile.

12

Despite these successes, the profiling system’s initial iteration was unreliable.

The ESC (Mamba Max Pro) was not rated to draw the current necessary to repeatedly

lift the weighted CTD and overcome the force exerted by the A-Frame. In fact, the

lack of airflow within the watertight housing further reduced its current handling

capabilities.

In order to quantify the ESC’s limitations, I conducted a series of tests in

which I determined the maximum weight the winch could lift at various power levels.

Even at 100 percent power, the ESC could not reliably lift 17.5 lbs., thus, it proved

unable to meet our requirements.

I conducted the same tests with a replacement ESC (Mamba XL X) our

supplier provided. The results indicated the new ESC could lift up to 40 lbs. at full

power, suggesting it to be a viable replacement. ROSS’s successful Alaska

deployment in May 2017, using this ESC, corroborates this assertion.

Another shortcoming was the system’s tendency to let line out too fast,

causing it to tangle. This issue required the initial configuration be revised to meet

mission requirements. ROSS’s current iteration utilizes an augmented version of my

profiling system which uses PID to alter the winch’s speed in order to maintain line

tension, preventing tangling. My original code was expanded upon to accommodate

these changes, demonstrating its expandability. According to Jorian Bruslind, the

engineer in charge of implementing PID control, “…it was good that there was a

premade function that would take in an integer value and then ramp up the speed of

the winch to said integer value…all we had to do was have the PID constantly

monitor the resistance and then send the required speed to the [‘changeSpeed’]

13

function” [2]. Additionally, troubleshooting measures I included further facilitated the

transition to PID control. Data taken using this new system can be seen below in Fig.

7, which displays conductivity, temperature, and depth with respect to time.

I am proud to see ROSS’s progress and success. Moving forward, I will

continue to utilize not only the technical skills I developed, but also those in

communication and project management. This experience has been one of the

highlights of my undergraduate career and I am thankful to have had this opportunity.

Fig. 7 – This CTD data, collected during ROSS’s May 2017 Alaska deployment, illustrates the profiling system’s

ability to reach, and return from, depths of over 100 m at a steady rate.

14

Works Cited

[1] D. J. Nash, "ROSS: the Robotic Oceanographic Surface Sampler," Oregon State

University College of Earth, Ocean, and Atmospheric Sciences, [Online].

Available: http://makani.coas.oregonstate.edu/ross/Why_ROSS.html. [Accessed

6 September 2016].

[2] J. Bruslind, Interviewee, [Interview]. 15 May 2017.

[3] "Quadrature Encoder Fundamentals," National Instruments, 14 March 2016.

[Online]. Available: http://www.ni.com/white-paper/4763/en/. [Accessed 14

April 2017].

[4] Atmel Corporation, "AVR1607: Brushless DC Motor (BLDC) Control in Sensor

Mode using ATxmega128A1 and ATAVRMC323," [Online]. Available:

http://docs-

europe.electrocomponents.com/webdocs/0fa2/0900766b80fa22a1.pdf. [Accessed

20 April 2017].

[5] C. Mullins, Artist, Profiling System Layout. [Art]. 2017.

[6] C. Mullins, Artist, Magnet Position Relative to Hall Effect Sensor. [Art]. 2017.

15

Appendices

Appendix A – Python Script

1 from sys import argv

2 import serial

3 from time import sleep

4

5 def closeCheck():

6 if ser.isOpen() == False:

7 print "Port closed"

8 elif ser.isOpen() == True:

9 print "Port is still open"

10 ser.close()

11 closeCheck()

12

13 ser = serial.Serial(

14 port='COM30',\

15 baudrate=57600,\

16 parity=serial.PARITY_NONE,\

17 stopbits=serial.STOPBITS_ONE,\

18 bytesize=serial.EIGHTBITS,\

19 timeout= None) #Open serial port

20 ser.close()

21

22 parameters = [0,0,0,0,0,0,0]

23 stop = int(argv[4])

24

25 if stop == 0:

26 header = 255

27 speedOut = int(argv[1]) #Collect runtime parameters

28 speedIn = int(argv[2])

29 depth = int(argv[3])

30 upperDepthByte = depth >> 8

31 lowerDepthByte = depth & 0xFF

32 checksum = (((speedOut ^ speedIn) ^ upperDepthByte) ^

lowerDepthByte) #XOR all variables to create checksum

33 footer = 255

34 parameters = [header , speedOut, speedIn, upperDepthByte,

lowerDepthByte, checksum, footer] #Save parameters in array

35 elif stop == 1:

36 for x in range(len(parameters)):

37 parameters[x] = 0xAA

38 elif stop == 2:

39 for x in range(len(parameters)):

40 parameters[x] = 0xBB

41 elif stop == 4:

42 for x in range(len(parameters)):

43 parameters[x] = 0xCC

44 elif stop == 8:

45 for x in range(len(parameters)):

46 parameters[x] = 0xDD #remote start

47 elif stop == 16:

48 for x in range(len(parameters)):

16

49 parameters[x] = 0xEE #remote stop

50

51 print parameters

52

53 ser.open()

54 for x in parameters:

55 x = chr(x) #cast to char to make single bite

56 ser.write(x)

57 sleep(0.1)

58

59 ser.close()

60 closeCheck()

17

Appendix B – Arduino Winch Control Program

1 //Winch control version 2.0

2 //#define DEBUG //Uncomment to print debugging information via

serial

3 struct Winch_TYPE {

4 uint8_t currentSpeed;

5 uint8_t prevSpeed;

6 uint8_t currentDir; // UP,DOWN,STOP defined in enum

7 uint8_t prevDir;

8 uint8_t prevDesiredDir;

9 uint8_t prevDesiredSpeed;

10 } winch;

11

12 #include <Servo.h>

13 #include <Encoder.h>

14 #include <Timer.h>

15

16 Servo ESC; //Create ESC object

17 Encoder winchEncoder(3,2); //Create encoder object

18 Timer statusTimer; //Create a timer for sending status messages

19

20 enum{ //Assign integer values to each direction

21 UP,

22 DOWN,

23 STOP

24 };

25

26 enum{ //Assign integer values to each state

27 CHECK_BUFFER,

28 CONTROL_WINCH,

29 MAINTAIN

30 };

31

32 #define ENCODER_OPTIMIZE_INTERRUPTS

33 #define MAX_FORWARD 1910 //Maximum, minimum, and neutral pulse

widths in microseconds

34 #define NEUTRAL 1479

35 #define MAX_REVERSE 1048

36 #define REV(x) 3936*x //Converts revolutions into encoder pings

37

38 //Speed constants

39 #define SLOW_DIST 2 //Distance in revolutions from full upright

to begin changing winch speed in

40 #define LIFT_SPEED 65 //Speed for lifting the A-frame when

maintaining or returning after a profile

41 #define FAST_IN_SPEED 65 //Speed for returning fast AND

maintaining

42 #define SLOW_IN_SPEED 55 //Speed for returning slow AND

maintaining

43

44 //Define remote start/stop pins

45 #define remoteStartPin 5

46 #define remoteStopPin 6

47 #define remoteStartLED 7

48 #define remoteStopLED 8

18

49 #define startTime 750 //How long remote start is held HIGH in

milliseconds

50 //Define sensor pins

51 #define down 10//Hall Effect sensor indicating lowered position

52 #define downLED 13

53 #define up 11 //Hall Effect sensor indicating upright position

54 #define upLED 15

55

56 const double RAMP_TIME = 500; //Time it takes to change speed in

milliseconds

57 const float pi = 3.14159;

58 uint64_t t0 = 0; //Beginning time for speed change

59 int16_t speedDifference = 0; //Difference between desired and

current speed

60 int parameters[7];

61 int incomingByte = 0;

62

63 int state = CHECK_BUFFER;

64 int header;

65 int upperByte;

66 int lowerByte;

67 int checksum;

68 int buffSize = 0;

69 int speedOut;

70 int speedIn;

71 long long depth;

72 bool motorRunning = false;

73 bool depthReached = false;

74 bool halt = false;

75 bool returned = true;

76 bool dataCorrupted = false;

77 bool stopReturnFast = false;

78

79 void setup() {

80 // put your setup code here, to run once:

81 Serial1.begin(57600);

82 #ifdef DEBUG

83 Serial.begin(9600);

84 #endif

85 winch.currentSpeed = 100; //Initialize all struct values to

stationary

86 winch.prevSpeed = 100;

87 winch.currentDir = STOP;

88 winch.prevDir = STOP;

89 winch.prevDesiredDir = STOP;

90 winch.prevDesiredSpeed = 0;

91 //Set pin modes

92 pinMode(remoteStartPin, OUTPUT);

93 pinMode(remoteStopPin, OUTPUT);

94 pinMode(remoteStartLED, OUTPUT);

95 pinMode(remoteStopLED, OUTPUT);

96 pinMode(upLED, OUTPUT);

97 pinMode(downLED, OUTPUT);

98 pinMode(down, INPUT);

99 pinMode(up, INPUT);

100 //Initialize pin states

101 digitalWrite(remoteStartPin, LOW);

19

102 digitalWrite(remoteStopPin, HIGH);

103 digitalWrite(remoteStartLED, LOW);

104 digitalWrite(remoteStopLED, LOW);

105

106 statusTimer.every(1000, sendStatus); //Send a status message

every second

107

108 ESC.attach(9, MAX_REVERSE, MAX_FORWARD); //Connect ESC with

maximum and minimum puse width values

109 ESC.writeMicroseconds(NEUTRAL); //Start the winch in neutral

110 delay(5000); //Allow ESC to receive neutral signal for proper

amount of time

111 }

112

113 void loop() {

114 statusTimer.update();

115

116 switch(state){

117

118 case CHECK_BUFFER:

119 if(buffSize == 7) //Update parameters if the serial buffer

is full (new packet fully received)

120 updateParameters();

121 state = CONTROL_WINCH;

122 break;

123

124 case CONTROL_WINCH:

125 if(header == 0xCC){ //STOP:Halt

126 changeSpeed(0, STOP);

127 halt = true;

128 depthReached = true;

129 }

130

131 if(header == 0xAA){//STOP:Return at full speed

132 changeSpeed(0, STOP);

133 depthReached = true;

134 if(!digitalRead(up) == false) //Return the winch to its

upright position and maintian

135 changeSpeed(FAST_IN_SPEED, UP);

136 if(!digitalRead(up) == true){

137 changeSpeed(0, STOP);

138 winchEncoder.write(0);

139 }

140 }

141

142 if(header == 0xBB){//STOP:Return slower

143 changeSpeed(0, STOP);

144 depthReached = true;

145 if(!digitalRead(up) == false) //Return the winch to its

upright position and maintian

146 changeSpeed(SLOW_IN_SPEED, UP);

147 if(!digitalRead(up) == true){

148 changeSpeed(0, STOP);

149 winchEncoder.write(0);

150 }

151 }

152

20

153 if(header == 0xEE)//Stop the motor

154 remoteStop();

155 if(header == 0xDD)//Start the motor

156 remoteStart();

157 if(header == 255)//Take a profile - normal operation

158 takeProfile();

159

160 if(returned == true)

161 state = MAINTAIN;

162 else

163 state = CHECK_BUFFER;

164 break;

165

166 case MAINTAIN:

167 if(!digitalRead(up) == false)

168 changeSpeed(LIFT_SPEED, UP);

169 else{

170 changeSpeed(0, STOP);

171 winchEncoder.write(0);

172 }

173 state = CHECK_BUFFER;

174 break;

175 }

176 }

177

178 void changeSpeed(uint8_t newSpeed, uint8_t newDir){

179

180 //If we want to go UP

181 if(newDir == UP){

182 newSpeed = 100 - newSpeed;

183 //winch.currentDir = UP;

184 }

185 //If we want to go down

186 else if(newDir == DOWN){

187 newSpeed = 100 + newSpeed;

188 //winch.currentDir = DOWN;

189 }

190 //Else we want to STOP

191 else{

192 newSpeed = 100;

193 //winch.currentDir = STOP;

194 }

195 #ifdef DEBUG

196 Serial1.print("[Desired: ");

197 Serial1.print(newSpeed);

198 Serial1.print(" Current: ");

199 Serial1.print(winch.currentSpeed);

200 Serial1.println("]");

201 #endif

202

203

204 //Check if no change is needed (if we are going the desired

speed and direction)

205 if(newDir == winch.currentDir && newSpeed ==

winch.currentSpeed){ //If the command is to continue moving the

same speed and direction...

206 winch.prevSpeed = winch.currentSpeed;

21

207 winch.prevDesiredSpeed = newSpeed; //Next time we write a

new speed we know it will be at t0, the beginning of a speed change

208 winch.prevDesiredDir = newDir;

209 #ifdef DEBUG

210 Serial1.println("[REACHED END CASE]");

211 #endif

212 return; //...return without altering speed

213 }

214

215

216 //This will catch if we have gotten to this spot while the

previous call to the function was "no change requested"

217 if(winch.prevDesiredSpeed != newSpeed && winch.prevDesiredDir

!= newDir){

218 //If that's the case, then we want to initialize the

acceleration

219 t0 = millis();

220 speedDifference = newSpeed - winch.prevSpeed;

221 //Avoid errors comparing different data types. If the

difference is a negative value, make it slightly more negative. Same

for a positive speed difference.

222 if(speedDifference < 0)

223 speedDifference -= 1;

224 else if (speedDifference > 0)

225 speedDifference += 1;

226 }

227

228 uint64_t deltaT = millis() - t0;

229 winch.currentSpeed = (double)winch.prevSpeed +

(double)speedDifference*.5*(1-cos((pi*(double)deltaT)/RAMP_TIME));

//Accelerate sinusoidally

230 constrain(winch.currentSpeed, 0, 200); //Do not write above or

below the maximum pulse widths

231 uint16_t speedToWrite = map(winch.currentSpeed, 0, 200,

MAX_REVERSE, MAX_FORWARD); //Convert from sinusoid magnitude to

pulse width

232 ESC.writeMicroseconds(speedToWrite); //Write the scaled value

233 #ifdef DEBUG

234 Serial1.println(speedToWrite);

235 #endif

236 if(winch.currentSpeed == newSpeed)

237 winch.prevSpeed = newSpeed; //Set the starting point for the

next speed change

238

239 if(winch.currentSpeed > 100)

240 winch.currentDir = DOWN;

241 else if(winch.currentSpeed < 100)

242 winch.currentDir = UP;

243 else if(winch.currentSpeed == 100)

244 winch.currentDir = STOP;

245

246 winch.prevDesiredSpeed = newSpeed; //Next time we write a new

speed we know it will be at t0, the beginning of a speed change

247 winch.prevDesiredDir = newDir;

248 }

249

250 void serialEvent1(){

22

251 if(Serial1.available()){

252 parameters[buffSize] = Serial1.read();

253 buffSize++;

254 }

255 }

256

257 void updateParameters(){

258 header = parameters[0];

259 speedOut = parameters[1]; //Save array contents to

corresponding variables

260 speedIn = parameters[2];

261 upperByte = parameters[3];

262 lowerByte = parameters[4];

263 checksum = parameters[5];

264 buffSize = 0; //Reset buffer size and control variables

265 depthReached = false;

266 halt = false;

267 if(checksum == (((speedOut ^ speedIn) ^ upperByte) ^

lowerByte)){

268 upperByte = upperByte << 8;

269 depth = upperByte + lowerByte;

270 depth = REV(depth); //pings/revolution

271 speedOut = speedOut*100/254; //Scale from 0-254 to 0 - 100

272 speedIn = speedIn*100/254; //Scale from 0-254 to 0 - 100

273 dataCorrupted = false;

274 }

275 else{

276 depth = 0;

277 speedOut = 0;

278 speedIn = 0;

279 dataCorrupted = true;

280 }

281 }

282

283 void sendStatus(){

284 Serial1.print("STATUS ");

285 if(dataCorrupted == false){

286 if(returned == true){

287 Serial1.print("1 "); //Ready

288 }

289 else{

290 Serial1.print("0 "); //Busy

291 }

292 }

293 else{

294 Serial1.print("3 "); //Data corrupted

295 dataCorrupted = false;

296 }

297 Serial1.print("Dir ");

298 if(winch.currentDir == UP)

299 Serial1.print("up ");

300 else if(winch.currentDir == DOWN)

301 Serial1.print("down ");

302 else if(winch.currentDir == STOP)

303 Serial1.print("stationary ");

304

305 Serial1.print("Rev ");

23

306 long long pingsFromSurface = winchEncoder.read();

307 pingsFromSurface = pingsFromSurface/3936;

308 long revsFromSurface = (long) pingsFromSurface;

309 Serial1.println(revsFromSurface);

310 }

311

312 inline void remoteStart(){

313 if (motorRunning == false){ //Prevent remote start from

executing if motor already running

314 digitalWrite(remoteStopPin, LOW);

315 digitalWrite(remoteStartPin, HIGH);

316 digitalWrite(remoteStartLED, HIGH);

317 delay(startTime);

318 digitalWrite(remoteStartPin, LOW);

319 digitalWrite(remoteStartLED, LOW);

320 motorRunning = true;

321 }

322 }

323

324 inline void remoteStop(){

325 if(motorRunning == true){

326 digitalWrite(remoteStopPin, HIGH);

327 digitalWrite(remoteStopLED, HIGH);

328 motorRunning = false;

329 }

330 }

331

332 void takeProfile(){

333 if(depthReached == false){

334 //Can't use switches with current version of Aux Board

335 if(!digitalRead(down) == false){//Slowly let A-frame down

from upright position

336 changeSpeed(30, DOWN);

337 returned = false;

338 }

339 else if((winchEncoder.read() < depth)){

340 changeSpeed(speedOut, DOWN);

341 returned = false;

342 }

343 else if(winchEncoder.read()>= depth){

344 changeSpeed(0, STOP);

345 depthReached = true;

346 returned = false;

347 }

348 }

349 else if(depthReached == true && halt == false){

350 if(!digitalRead(up) == true){ //Stop when A-frame is in full

upright position

351 changeSpeed(0, STOP);

352 winchEncoder.write(0); //Account for line stretching -

reset after each cast

353 returned = true;

354 }

355 else if(winchEncoder.read() > 20000){ //change back to else

if

356 changeSpeed(speedIn, UP);

357 returned = false;

24

358 }

359 else if(winchEncoder.read() > 0){

360 changeSpeed(LIFT_SPEED, UP);

361 returned = false;

362 }

363 else if(!digitalRead(down) == false && !digitalRead(up) ==

false){ //Slow down when A-fram lifts up

364 changeSpeed(LIFT_SPEED, UP);

365 returned = false;

366 }

367 else if(winchEncoder.read() <= (-500*3936)){ //Winch will

stop if line snaps and can't engage sensors

368 changeSpeed(0, STOP);

369 returned = true;

370 }

371 }

372 }

25

Appendix C – Wireless Data Download BASH Script

1 #!/bin/bash

2

3 profileSize=$(wc --bytes <

/home/pi/CTD/LogFiles/combinedProfile.txt)

4 echo $profileSize

5

6 timeStamp=$(date +%Y%m%d%H%M%S)

7

8 ./logger2wifidownloader -offset=$profileSize -length=all >

/home/pi/CTD/LogFiles/placeHolder.txt

9

10 cat /home/pi/CTD/LogFiles/placeHolder.txt >

/home/pi/CTD/LogFiles/Profile-$timeStamp.txt

11 cat /home/pi/CTD/LogFiles/placeHolder.txt >>

/home/pi/CTD/LogFiles/combinedProfile.txt

12

13 cat /home/pi/CTD/LogFiles/combinedProfile.txt |

/home/pi/CTD/ParseReader/a.out 6 >

/home/pi/CTD/LogFiles/combinedParsedProfiles.txt

14 cat /home/pi/CTD/LogFiles/Profile-$timeStamp.txt |

/home/pi/CTD/ParseReader/a.out 6 >

/home/pi/CTD/LogFiles/parsedProfile-$timeStamp.txt

