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NOTATION

t: Time (s)

x, y, z: Position coordinates (m)

d(t, x): Vertical displacement (y direction) of the beam at time t,

position x (m)

v(t, x): Vertical velocity of the beam at time t, position x (m/s)

ḋ(t, x): Time derivative of d(t, x)

dx, dxx, dx..(t, x): Spatial derivatives (with respect to x) of d(t, x)

θ(t): Angular position of the hub at time t (radians)

ω(t): Angular velocity of the hub at time t (radians/s)

ρ(x): Density of the beam material at position x (kg/m3)

A(x): Cross sectional area of the beam (m2)

I(x): Cross sectional moment of inertia of the beam at point x (m4)

γ(x): Coefficient of Kelvin-Voigt damping at position x (Ns/m2)

E(x): Young’s modulus of beam at point x (N/m2)

J : Moment of inertia of the hub (Nm)

Im: Moment of inertia of the tip mass m (kg ·m2)

L: Length of beam (m)

Lm: Length of the tip mass (m)

m: Mass at tip of beam (x = L) (kg)

f(t): Disturbance force upon beam tip at time t (N)

n0: Hub friction (Nm/s)

ξ: Minmax parameter



Modeling and Control of a Biologically Inspired Compliant Structure

1 Introduction

Flapping flight is one of the most successful modes of animal locomotion. There are

over 1,200 species of bats, 10,000 species of flying birds, and millions of species of

flying insects [17]. The bat species specifically has found a unique balance between

skeletal weight, strength, and functionality. As seen in Figure 1.1(a), even a greatly

simplified schematic of a bat wing consists of many interconnected flexible bones.

These compliant bones take on a connected form similar to that of the human hand,

but taper towards the wing tip to reduce mass and exhibit much greater flexibility.

The longest digits routinely experience bending deflections up to 30% of their length,

respectively [14]. It is hypothesized that this flexibility, among other adaptations, is

the primary reason bats are able to perform with seemingly unequalled flight capabil-

ities in terms of both efficiency and aerodynamic performance [12]. This hypothesis

suggests that incorporating flapping flight and compliant structures into micro air

vehicle (MAV) design may lead to greater performance in such systems.

The multiple component structure (MCS) shown in Figure 1.1(b) was chosen

to approximate the physiology of the single bat wing shown in Figure 1.1(a) for the

purpose of investigating the characteristics and capability of typical control designs for

a simple hypothetical flapping system. The MCS consists of three coupled structures.

The first component is a rigid rotating actuator, through which a control input in

the form of torque can be applied. This component represents a shoulder. Attached

to the hub is a tapering rectangular Euler-Bernoulli beam of constant density, at

the tip of which is another rigid body with a prescribed mass and geometry. Beam

material parameters are consistent with bat wing bone geometry and physiology, and

include Young’s modulus and density estimates made by biologists in [12]. The tip

mass was included in an attempt to generalize the system to model more complicated
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structures, which may include an accelerometer sensor, allowing for the sensing of

beam tip oscillations.

(a) Simplified Bat Skeleton (b) Flexible Multiple Component System

Figure 1.1: Simplified bat skeleton and flexible hub/beam model

Throughout this discussion, keep in mind that the chosen model is greatly sim-

plified from any system that could achieve flapping flight. The purpose here is not

to design and control a real flying model, but rather to investigate the use of optimal

control theory in achieving flapping behavior in a simulated compliant system.

In this thesis, we pose the problem of achieving flapping behavior as a tracking

problem. We compare the solutions obtained from linear quadratic gaussian (LQG)

and H∞ control methodologies in terms of tracking performance and robustness to

disturbances, and thereby assess the potential of using such control schemes to control

a flapping structure. We also compare these to the Linear Quadratic Regulator (LQR)

solution.

In a flying system, there is always the possibility of a disturbance such as a gust

of wind, turbulence, etc. With this in mind, we model a disturbance force upon

the beam tip, which is always in the normal direction to the tip mass. We use this

force to compare and contrast the disturbance rejection capability of the previously

mentioned control schemes.

Relevant reviewed work involves fundamental methods applied to such flexible

systems, and includes the finite element method, optimal control theory, and flapping
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flight investigations. Finite element and optimal control theory are highly developed

and are presented in detail in respective textbooks. A few related studies that offer

deeper investigations into the theory of these topics are mentioned in the following

review.

In [3], Gibson and Adamian investigated a very similar problem involving linear-

quadratic-Gaussian (LQG) control of a flexible structure. Their model, however, did

not taper, nor did it utilize biologically inspired material parameters. Equations ap-

proximating the system were developed using Hermite splines. They showed that

the solution converged. They presented a guide to designing finite dimensional com-

pensators that approximate the optimal compensator, which is found by solving the

infinite dimensional Riccati equations. Furthermore, they stated that cubic B-splines

(the method used in this thesis) require a larger approximation to achieve the same

modal accuracy as Hermite splines.

Optimal control theory is very developed; almost every textbook on the subject

discusses LQR, LQG, and MINMAX or H∞ control. The control of flexible structures

similar to the model presented in this thesis has been a subject of particular interest,

especially in terms of vibration control. Much of the research conducted on vibration

control has been dedicated specifically to the control of beam vibrations through the

hub torque input. However, the author was unable to find a study in which flapping

behavior of the system is achieved using such optimal tracking schemes. Most studies

pertain to fluid-structure interaction of biological systems exhibiting flapping flight.

More specifically, a multitude of studies in this research area are dedicated to the

flight of insects, which is notoriously difficult to model and understand. Associated

researchers at Brown University and MIT are working towards an understanding of

such fluid-structure interactions during bat flight specifically [7, 8, 10, 11, 12, 13, 9,

15, 16, 17].
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We were also unable to find any studies pertaining to the control of flapping

beams with inhomogeneous parameters such as tapering geometry, and those with

biologically inspired Young’s modula and density.

Chapter two is a discussion of the physical model, the equations of motion of the

model, and a finite dimensional approximation to the system of partial differential

equations (PDEs) using the finite element method. In chapter three, we discuss the

control theory, and the formulation of achieving flapping behavior as the solution to a

tracking problem. Chapter four entails three generalized problems and the resulting

simulations used to verify and compare the control schemes used.
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2 Model Development

This chapter contains the mathematical model of the MCS depicted in Figure 1.1(b).

The equations of motion for this system were derived from the model for the more

complicated structure found in [6], which was reduced from two beams rigidly con-

nected to a single beam with tip mass, connected to a rotating hub. The resulting

system of equations consists of a PDE relating hub and beam dynamics, four initial

conditions for the hub and beam, and four boundary conditions relating hub/beam

and beam/tipmass geometry and dynamics at the ends of the beam, respectively.

2.1 The Model

The PDE relating hub/beam dynamics is written as an Euler-Bernoulli beam equation

with an additional inertial force term relating hub angular acceleration to beam mass

and position. The equation includes the physical beam parameters such as density

ρ(x) and the Kelvin-Voigt damping parameter γ(x). In general, these parameters

vary along the axial length of the beam. For our purposes, the density, Young’s

modulus, and Kelvin-Voigt damping parameters were fixed. Beam cross sectional

area was made so that the beam becomes narrower towards the tip, so that it tapers

in a manner similar to that found in bat bones. Thus, the terms A(x) and I(x) both

vary with respect to the position variable x.

The Euler-Bernoulli beam equation,

ρ(x)A(x)
(
d̈(t, x) + xθ̈(t)

)
+

[
γ(x)I(x)ḋxx(t, x) + E(x)I(x)dxx(t, x)

]
xx

= 0, (2.1)

has four associated boundary conditions. The first two of which relate hub/beam
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dynamics and a control input (torque on hub) at the point x = 0,

J0θ̈(t)− γ(0)I(0)ḋxx(t, 0)− E(0)I(0)dxx(t, 0) = u(t)− n0θ̇, (2.2)

and a cantilevered beam condition at x = 0,

d(x, 0) = dx(t, 0) = 0. (2.3)

Two additional boundary conditions state that the shear force and moment at the

end of the beam are equal and opposite to the moment and shear force on the mass

m, in which the center of mass of m is displaced from the beam tip by half of the

length of the mass (Lm

2
),

[
γ(x)I(x)ḋxx(t, x) + E(x)I(x)dxx(t, x)

]
x

∣∣∣∣
x=L

=

m

[
d̈(t, L) +

Lm

2
d̈x(t, L) + (L +

Lm

2
)θ̈(t)

]
+ f(t), (2.4)

[
γ(x)I(x)ḋxx(t, x) + E(x)I(x)dxx(t, x)

] ∣∣∣∣
x=L

=

J1

[
d̈x(t, L) + θ̈(t)

]
− Lm

2

[
γ(x)I(x)ḋxx(t, x) + E(x)I(x)dxx(t, x)

]
x

∣∣∣∣
(t,L)

.

(2.5)

The disturbance term f(t) enters the system dynamics through the boundary condi-

tion in equation (2.4).
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2.2 Resulting Finite Element Approximation

A MCS modeled by PDEs is an infinite dimensional system; thus while existence of

traditional optimal control schemes can be proven, they cannot be directly imple-

mented [6]. Therefore, the system must be approximated with a sequence of finite

dimensional control problems. The finite element method is appropriate for such a

system and has been shown to be convergent for this problem [6, 1]. Appendix A

contains a detailed derivation of the system of approximating ordinary differential

equations (ODEs). The resulting equations that approximate equations (2.1)-(2.5)

are

Ms ḃ + ns ω̇ = −D b−K a

Jω̇ = q T a + r T b + u(t)− n0ω

ȧ = b

θ̇ = ω, (2.6)

where w(t), u(t) ∈ R, and a(t), b(t), ns, q, r ∈ R(N). The above can be represented in

matrix form as




I 0 0 0

0 Ms 0 ns

0 0 1 0

0 0 0 J







ȧ

ḃ

θ̇

ω̇




=




0 I 0 0

−K −D 0 0

0 0 0 1

qT rT 0 −n0







a

b

θ

ω




+




0

0

0

1




u(t) + Fm f(t). (2.7)
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Let z be the column vector

z =




a

b

θ

ω




, (2.8)

and

Msys =




I 0 0 0

0 Ms 0 ns

0 0 1 0

0 0 0 J




, Asys =




0 I 0 0

−K −D 0 0

0 0 0 1

qT rT 0 −n0




, (2.9)

Bsys =




0

0

0

1




. (2.10)

Equation (2.7) can then be written as

ż =
[
M−1

sys Asys

]
z +

[
M−1

sys Bsys

]
u(t) +

[
M−1

sys Fm

]
f(t), (2.11)

or, in more compact notation,

ż = Az + B u(t) + F f(t) (2.12)

y = C z, (2.13)
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where the matrix C is determined by the sensed states. This matrix will have a

structure equivalent to that in equation (2.14). This structure results from designing

the system such that only hub angular position and velocity are sensed. C will be a

2× (2 N + 2) matrix where N is the number of finite element nodes chosen, and has

the form

C =




zeros(1, 2 N) 1 0

zeros(1, 2 N) 0 1


 , (2.14)

where the ones appear in the hub position and hub velocity state positions. A C ma-

trix that corresponds to the sensed state of beam tip velocity, resulting from placement

of an accelerometer at the beam tip, would take the form of the following 3×(2 N +2)

matrix:

C =




zeros(1, N) φ(L) 0 0

zeros(1, 2 N) 1 0

zeros(1, 2 N) 0 1




. (2.15)

From appendix (A), φ(L) ∈ RN is a vector with ith entry φi(L), corresponding to

the basis function values at those nodes. Thus, we may write the system as

ż = Az + B u(t) + F f(t) (2.16)

y = C z (2.17)

yout = Cout z, (2.18)

where

z =

[
a b θ ω

]T

, (2.19)
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and

Cout =




zeros(1, 2 N) 1 0

zeros(1, 2 N) 0 1


 . (2.20)

Matrix Cout is the controlled output matrix and returns only the hub angular position

and velocity when multiplied by the state vector z. We choose this output matrix

because our only objective is to achieve flapping behavior in the beam using these

control schemes. Beam vibration control is secondary and any apparent control is

merely a by-product of the coupling of hub and beam dynamics. Again, a complete

explanation and derivation of all these terms is found in appendix A.

The form of the system in (2.16) allows for immediate implementation of optimal

control. In the next chapter, we solve a general control problem for this system that

will be used for both the regulation and tracking problems.
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3 Flapping: An Optimal Control Tracking Problem

Linear quadratic control theory was used in this problem rather than ad-hoc meth-

ods or PID control schemes because it offers a concept of optimality and has a firm

mathematical background, having been used in similar studies such as Gibson and

Adamian [3] to great success. Linear quadratic control is a broad term encompassing

many control schemes. The specific optimal control schemes used in this work are Lin-

ear Quadratic Regulation (LQR), Linear Quadratic Gaussian (LQG), and MINMAX,

which is sometimes termed H∞ control.

These control schemes are similar, but LQG and MINMAX control contrast to

LQR control in that full state feedback for control is not necessarily assumed. This

is a more realistic control scheme since one rarely knows the full state of a system,

but rather only a few sensed states. LQG and MINMAX both utilize an optimal

estimator, the Kalman-Bucy filter, which rebuilds unknown states from sensed states

in a least squares sense. These control schemes are both logical choices for the problem

at hand, for while one cannot possibly place sensors along every position of the beam,

one could easily sense hub angular position and angular velocity, for example. Perhaps

it is also conceivable that an accelerometer be placed on the tip of the beam, such

that the velocity of the beam tip could be found by integrating such a signal in real

time.

3.1 The Tracking Problem

It is convenient to set the problem up in the form of a tracking problem before we find

our optimal control solution. By formulating the problem this way, we can describe

the desired system behavior as a mathematical function which our control law can
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then drive the system to exhibit. Specifically, flapping behavior can be represented

in the form of desired hub position/velocity.

We begin with the model presented at the end of chapter 2.2,

ż = Az + B u(t) + F f(t)

y = C z.

z = Cout z. (3.1)

Making the substitution x = z − zd, where zd is the desired function to track, it is

immediately apparent that ẋ = ż− żd, and so ẋ+ żd = ż. Making these substitutions

directly,

ẋ + żd = A (x + zd) + B u(t) + F f(t)

y = C x.

yout = Cout z. (3.2)

Since the matrix A, the functions zd, and żd are known, the problem then becomes

one of driving the tracking error x to zero, with the new system of equations written

as

ẋ = Ax + B u(t) + F f(t) + (Azd − żd)

y = C x,

yout = Cout z. (3.3)

Our control goal now is to find a general law, u(t), using LQG and MINMAX that

will induce a flapping motion in the MCS. These approaches can be used for achieving
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a variety of goals including: to further enhance the stability of an equilibrium point

(motionless beam and zero hub position), to reject a disturbance such as a force upon

the tip of the beam, to drive the hub to track a desired function zd 6= 0 prescribing

angular position and velocity, or a combination of these.

3.2 A Generalized Control Solution

The control problem can be stated succinctly as the following: Given a known distur-

bance d(t), and an unknown disturbance f(t), find the control u∗(t) and the “worst

case disturbance” f ∗d (t) such that (u∗, f ∗d ) = min
u

max
f

J(u, fd), where

J =

∫ tf

0

(xT Qx + uT R1u− ξ2fT
d R2 fd)dt , (3.4)

subject to the constraints

ẋ = Ax + Bu + F f + d (3.5)

y = C x (3.6)

yout = Coutx (3.7)

d = A zd − żd (3.8)

x(0) = z(0)− zd(0),
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where

Cout =




zeros(1, 2 N) 1 0

zeros(1, 2 N) 0 1


 (3.9)

Q = CT
outCout (3.10)

R1 = .001 (3.11)

R2 = I. (3.12)

In general, Q, R1, and R2 are weighting matrices. In this work, Q will be taken simply

to be CT
outCout where Cout is the controlled output matrix (see chapter 2.2). R1 is a

matrix that weights control inputs, but for this problem is a scalar coefficient that

weights the input torque on the hub. R2 is a weighting matrix for the disturbance

input to the system (in all cases presented here the identity matrix of proper size).

All of the optimal control schemes previously mentioned can be derived simulta-

neously, and differ only in terms of a coefficient that weights disturbance knowledge,

and state feedback assumptions. This coefficient will be referred to as ξ (see equation

3.4). When ξ = 0 we obtain LQG control because the disturbance terms are not

present in the control cost function and, consequently, are not present in the deriva-

tion of the optimal control law solution. One can refer to the following to aid in the

understanding of the relationship of these control schemes:

• ξ = 0 (No disturbance knowledge in cost function)

– Full State Feedback

∗ Linear Quadratic Regulation (LQR)

– Partial State Feedback (or noisy feedback)

∗ Linear Quadratic Gaussian (LQG)



15

• ξ > 0 (Weighted disturbance knowledge in cost function)

– Minmax Control and H∞ Methods

The detailed solution to this problem for the LQG case (i.e. ξ = 0) can be found

in most optimal control textbooks, including [2]. The author was unable to find a

general tracking problem solution identical to the one below, and for this reason it is

presented. This problem is identical to the general problems solved in textbooks, but

for the MINMAX case (i.e. ξ > 0), extra terms involving ξ are found in the solution

to the tracking problem.

The optimal solution (u∗, ξ∗) is a saddle point of the cost functional. If (x, u, ξ)

satisfies the differential equations, then

J =

∫ tf

0

(xT Qx + uT R1u− ξ2f(t)T R2f(t) + λT (Ax + Bu + F f(t) + d− ẋ))dt ,

which can be rewritten as

J = −λT (tf )x(tf )− λT (tf )d(tf ) + λT (0)d(0) + λT (0)x(0)

+

∫ tf

0

H(x, u, f(t), λ) + λT ẋ dt, (3.13)

where

H = xT Qx + uT R1u− ξ2f(t)T R2f(t) + λT (Ax + Bu + F f(t) + d)dt . (3.14)
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From calculus of variations, the necessary conditions for optimizers (saddle point) are

∂H

∂u
= 0

∂H

∂w
= 0

λ̇ = −
(

∂H

∂x

)T

λ(tf ) = 0 . (3.15)

Differentiating H(x, u, f(t), λ) with respect to u and solving for u yields

u = −1

2
R−1

1 BT λ . (3.16)

Repeating the process for w yields

w = −ξ2

2
R−1

2 DT λ . (3.17)

Now

λ̇ = −
(

∂H

∂x

)T

= −(2xT Q + λT A)T

= −2QT x− AT λ . (3.18)

We proceed with the assumption that λ = 2Πx + 2b, where b will be a feed forward

function to be found later. We choose this form because of experience and similarities

to the LQG and LQR derivations. Differentiating λ with respect to time,

λ̇ = 2Π̇x + 2Πẋ + 2ḃ, (3.19)
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equation (3.18) becomes

λ̇ = −2QT x− 2AT Πx− 2AT b . (3.20)

Substituting ẋ = Ax + Bu + D f(t) + d into equation (3.20) yields

λ̇ = 2Π̇x + 2ΠAx + 2ΠBu + 2ΠFf + 2Πd + 2ḃ. (3.21)

Replacing λ in equations (3.16) and (3.17) with the assumption λ = 2Πx + 2b and

simplifying yields

u = −R−1
1 BT Πx−R−1

1 BT b (3.22)

w = −ξ2R−1
2 DT Πx− ξ2R−1

2 DT b . (3.23)

Substituting u and w into equation (3.21) and comparing coefficients of x, b, ḃ, and

d yields the MINMAX Differential Ricatti Equation (MMDRE), and a differential

equation for b,

−Π̇ = ΠA + AT Π− ΠBR−1
1 BT Π + ξ2ΠFR−1F T Π + Q (3.24)

ḃ = − (
AT + ξ2ΠFR−1DT − ΠBR−1BT

)
b− Πd. (3.25)

Equation (3.24) is the general solution for Π(t). Setting Π̇ = 0 yields the steady state

regulator problem, in which the optimization time interval is infinite. This process

yields the algebraic Ricatti equation (ARE),

0 = Π̄A + AT Π̄− Π̄BR−1
1 BT Π̄ + ξ2Π̄DR−1F T Π̄ + Q, (3.26)
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where Π̄ denotes the steady state solution for Π(t). Thus the control problem for the

finite element system is written

ẋ(t) = Ax(t) + B u(t) + F f(t) + d(t)

y(t) = C x(t)

d(t) = Azd(t)− żd(t)

u(t) = −R−1
1 BT Π̄x(t)−R−1

1 BT b(t),

where b(t) is the solution to equation (3.25).

This system assumes full state feedback, which is not the case in this study. We

therefore introduce the concept of the LQG and MINMAX compensator. The theory

behind the following mathematics can be found in [2].

Let xc denote the estimated states found by application of the filter Ricatti equa-

tion solution P . The complete system, which does not assume full state feedback and

can estimate the system states from limited sensor output, is

ẋ(t) = Ax(t) + B u + F f(t) + d(t)

ẋc(t) = Axc(t) + B u− P C xc(t) + P y(t) + d(t)

y(t) = C x

yout = Cout xc

d(t) = Azd(t)− żd(t)

u(t) = −R−1
1 BT Π̄x(t)−R−1

1 BT b(t).

This system of equations can now be used to simulate a system driven to exhibit

flapping behavior using optimal control with only partial state feedback. For instance,
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choosing zd(t) = θd(t) = sin (t) would yield a system in which the hub actuator is

driven to a periodic motion in θ, which results in a “flapping” beam as a bi-product

of this desired hub angle. A variation of this proposed simulation is presented in the

next chapter.



20

4 Simulations and Results

This chapter introduces the problems and respective simulation results. Four distinct

problems will be stated and solved (see list below).

• Uncontrolled System (u(t) = 0)

• Regulation with Tip Force Disturbance

• Tracking (Flapping)

– No Disturbance

– Tip Force Disturbance

The uncontrolled case will act as a basis for comparison as to the effect a tip force

can have upon the system, as well as the noticeably different result that occurs when

optimal control is introduced. A brief comparison between an aluminum beam and a

bone beam will be made to emphasize how the difference in rigidity results in different

behavior as expected. The regulation (stabilization) problem will demonstrate the

success of LQG and MINMAX at rejecting unknown disturbances. The tracking

simulations section will demonstrate the effectiveness of LQG and MINMAX when

tracking a desired function (described below).

Functions chosen to describe varying parameters are considered an approximation

to bat bone physiology scaled to the size of micro air vehicles (wing length on the

order of 30 centimeters).

The chosen beam density is a crude approximation to real bat bone density. It

was found by treating the bones as perfectly cylindrical and simply finding the ratio

of mass to volume. The density found for the longest bone in the bat wing was used

so that the cylindrical measurement error was minimized. The density used, 1450

kg/m3, is stated in Table 4.1 along with the other beam parameter values.
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Table 4.1: Beam Parameters

ρ (kg/m3) E (Nm2) γ (Ns/m2) Width/Thick@Hub(cm) @Tip(cm)

Aluminum 2700 7.0× 1010 1.219× 106 1.0 .5

Bone 1450 2.3× 1010 1.219× 107 1.0 .5

4.1 Model Problems

This section introduces four model problems used to evaluate and compare several

control schemes using these varying bone-like parameters. Each problem either in-

troduces a disturbance similar to that of a gust of wind (force on the tip) and/or

tracking a function, in order to show how a controller would react to a real distur-

bance of force on such a system. Both the simple regulation scenario and the more

complicated tracking scenario, in which it is desired that the hub/beam system exhibit

a certain behavior, are exposed to varying disturbances.

An example of a gust profile is shown in Figure 4.1. Choosing this function,

f(t) = 10 e−2(t−4)2 , while seemingly arbitrary, is nonetheless appealing to intuition as

to what the force from a gust of wind might look like. The force is negligible except

for a period of approximately two seconds, during which it quickly rises and falls to

a maximum magnitude of ten Newtons.
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Figure 4.1: Tip force profile

4.2 Uncontrolled without a Disturbance

To illustrate the difference in deflection between aluminum and a bone-like material,

we chose the initial deflection to be the first mode of a beam with a constant cross

sectional area (taken directly from [4]).

d0(x) =
1

2
(coshβnx− cosβnx− σn(sinhβnx− sinβnx)) (4.1)

where σn = 0.7341 and βn = 1.87510407/L. This initial deflection allows for beam

deflection and vibrations to be evident. The initial hub displacement, θ(0) = 0, hub

velocity, ω(0) = 0.1, and forcing, f(t) = 0, are chosen so that the first uncontrolled

problem exhibits variations in hub position due to beam vibrational feedback. Pa-

rameters for each beam are shown in Table 4.1. The initial hub angular velocity was

chosen to be 0.1 rad/s in this problem to fully introduce the physics of the system.

Thus there will be beam vibrations and hub velocity present with no control input,
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just damping in the system.

The tapering of the beam along with the low Young’s modulus and density con-

tribute to increased flexibility. The tip deflection of each is shown below in Figures

4.2(a) - 4.2(b).
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Figure 4.2: Uncontrolled beam tip deflection

As expected, the bone beam oscillates slower than the aluminum beam. Also, the

bone dynamics are damped quicker by the larger Kelvin-Voigt damping constant (see

Table 4.1).

The system can rotate fully about the hub as will be made apparent in the next

section. Figures 4.3(a) - 4.3(b) represent that angle.
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Figure 4.3: Uncontrolled hub angular position

Note in Figures 4.3(a) - 4.3(b) the position is asymptotically approaching some

value; this is consistent with the initial hub position and velocity with damping

present. Also associated with the hub is rotational velocity, displayed in Figures

4.4(a) - 4.4(b). In this problem, the initial angular velocity was 0.1 rad/s. The hub

friction is readily apparent due to the decrease in hub rotational velocity.
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Figure 4.4: Uncontrolled hub angular velocity

Figures 4.5(b)-4.5(a) are surface plots of the system. The beam position is rotated

to incorporate hub position. The circles on each end represent the bounds of beam
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rotation and aid with visualization. The hub position is represented as a thick line in

the center from which the beam extends. The tip mass is not present in the image.

(a) Aluminum (b) Bone

Figure 4.5: Uncontrolled system surface plot

In these simulations, no tip force disturbance was present. The next section

demonstrates the effect of such a force on the system.

4.3 Uncontrolled in the Presence of a Disturbance

In the previous simulation, there was no force acting on the beam tip. To demonstrate

the result of a gust force upon the tip mass of an uncontrolled system we use the

disturbance

f(t) = 10e−2 (t−4)2 .

For an uncontrolled beam we would intuitively expect a force on the tip to bend

the beam due to the shear force, causing an increasing hub angular velocity during

the force duration. This velocity decreases afterwards due to hub friction and beam

damping.
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The tip deflection remains unchanged except for the effect of the force on the tip,

which bends the beam during a small time interval.
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Figure 4.6: Uncontrolled/disturbed: Tip deflection

Both the hub velocity and position increase due to the force, with hub velocity

decreasing due to hub friction. These result in the hub eventually approaching a final

position.
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Figure 4.7: Uncontrolled/disturbed: Hub angular position
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Figure 4.8: Uncontrolled/disturbed: Hub angular velocity

The effect of a tip force upon the system is best visualized with the following

surface plot (Figure 4.5(b)). The result is a spinning hub and beam, only slowed by

friction.

(a) Aluminum (b) Bone

Figure 4.9: Uncontrolled/disturbed: Surface plot

The above simulation demonstrates the success (at least intuitively) of the model.

In the next section, a control torque at the hub is used to attenuate the beam rotation
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observed in the uncontrolled case. From this point on, we will drop the aluminum

beam counterpart and focus solely upon controlling the more flexible bone beam.

It is also apparent from the above that there is little difference between an alu-

minum beam and bone beam at this scale in terms of reaction to disturbances like the

one chosen here. The only obvious difference is in the frequency of beam vibrations

(Young’s modulus and Kelvin-Voigt constant) and overall weight of the system.

4.4 Regulation in the Presence of a Disturbance

The previous simulation demonstrated what a gust force disturbance can do to such

a system. In the following, we include the effects of a disturbance force on the beam

tip centered at time t = 4, but with a control input at the hub.

First, note the tip deflection in Figure (4.10). At four seconds the beam expe-

riences a tip forcing like that shown in Figure (4.1). Like the uncontrolled case in

section 4.3, the system begins to rotate.
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Figure 4.10: Controlled/disturbed: Tip deflection

The following panel of figures (Figures 4.11(a)-4.11(c)) illustrates the differences

between the control schemes in terms of applied control. Notice the similarities be-
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tween LQR and LQG.
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Figure 4.11: Controlled/disturbed: Control exerted by hub

Note that LQR applied more torque than the other schemes, for the same control

parameter set. The most important difference is the time at which LQR applied

this force. It is almost immediately after the gusting force is exerted on the tip.

MINMAX and LQG both lag a little in applying control. This difference may be due

to the partial state feedback of MINMAX and LQG versus the full state feedback of

LQR.

Surface plots of each simulation are shown below in Figures 4.12(a)-4.12(c). No-
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tice the substantial differences between each in terms of recovery time and overall

disturbance effect. LQG does substantially better than MINMAX in terms of total

angular position; the latter rotating over π/2 radians further from the zero position.

(a) MINMAX (b) LQG

(c) LQR

Figure 4.12: Uncontrolled/disturbed: Hub angular position/velocity

All the control schemes drive the system back to the desired position (θ = 0),

MINMAX (henceforth referred to as MM) takes several seconds longer to reject this

disturbance. We hypothesize that one reason MM is less successful than LQG is the

way the disturbance enters the control derivation. The MM control law is built using
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the force matrix F (see appendix A), limiting the knowledge of the disturbance solely

to the effect such a disturbance would have upon the tip of the beam. It was not

investigated how to overcome this limitation.

4.5 Tracking without a Disturbance

Flapping behavior can be considered a tracking problem. In a system designed for

flapping flight, it is probably desired that the wing follow a specified trajectory and

with a given frequency. In this section, we change our desired function for hub angular

position θ(t) from zero to a specified periodic function θd(t) that describes the desired

hub angle θd(t). We then solve the control problems in the same way we did for the

regulation case.

Henceforth LQR will be omitted in the results shown in this section. The solution

to the LQR problem is not of interest since it relies on unrealistic assumptions. The

corresponding LQR simulations can still be found in appendix B for each respective

problem.

The control solution to the tracking problem is represented in Figures 4.13(a)-

4.13(b) as the torque applied at the hub.
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Figure 4.13: Tracking: Control torque

The control in the figures above drives the system to exhibit the behavior shown

in Figures 4.14(a)-4.16(b). Notice the discrepancy between the actual and desired

hub positions in this set of figures. This is an artifact of limiting the available torque

on the system by heavily weighting the terms involving control in the cost function

(see matrix R1 in Equation (3.4)).
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Figure 4.14: Tracking: Hub angular position

This could be improved by allowing for more control in the cost function (see R1

matrix in equation (3.4)) as shown briefly in Figures 4.15(a) and 4.15(b), in which
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R1 = 0.001 versus R1 = 0.01 in all other simulations. We will retain the less powerful

control as a standard.
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Figure 4.15: Tracking: Hub position tracking with greater control

This control shown in Figure 4.13(a) and 4.13(b) drives the system to exhibit the

overall behavior shown in Figures 4.16(a) - 4.16(b).

(a) MINMAX (b) LQG

Figure 4.16: Tracking: System surface plot

The next section will introduce a disturbance and compare the control schemes in

their ability to reject a gusting force on the wing tip.
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4.6 Tracking in the Presence of a Disturbance

Subjecting the flapping hub/beam system to a tip force disturbance identical to that

in subsection 4.4, we notice a similar difference between MM and LQG in rejecting

the disturbance, with LQG performing better again. In Figure 4.17(a), MM takes

several seconds longer than LQG to correct the rotation caused by the disturbance.

(a) MINMAX (b) LQG

Figure 4.17: Tracking/disturbed: System surface plot

This system response is associated with the control inputs shown in Figures 4.18(a)

and 4.18(b) below.
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Figure 4.18: Tracking/disturbed: Control

Why does MM not perform as well as LQG? This question may be answered intu-

itively by considering the structure of the mathematical system in equation set (3.27).

While the hub is fully capable of attenuating beam harmonics, as is investigated in

[5], we have chosen a sensor output matrix C that does not grant us direct access

to those states, since some beam vibrations are attenuated due to their direct influ-

ence upon the hub position. This association contrasts to the disturbance matrix F

introduced in chapter 2.2, which is only directly associated with the tip of the beam.
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5 Conclusions

In this study, we investigated the use of optimal control theory to achieve a periodic

flapping behavior in a multiple component structure consisting of a rotating hub

actuator, a flexible beam, and a prescribed tip mass. More specifically, we achieved

this desired behavior by solving an optimal tracking problem. Both LQG and MM

control theories were used to achieve the behavior, and a comparison and contrast of

the implementation and performance of each was discussed.

We solved four model problems, beginning with the uncontrolled case. We saw

that when the system experiences a disturbance, such as a force upon the tip, the

hub and beam are sent into a spiralling behavior that is only slowed by friction in the

hub and beam material damping.

In the next model problem, we studied regulation. This was a problem in which

we wished to drive the system to zero state conditions. We introduced a disturbance

on the tip, and unlike the uncontrolled case which spiraled out of control, the system

was driven back to the zero position by the hub actuator, and the beam vibrations

were also eliminated in less time than they would have with material damping only.

For the final two problems, we solved the tracking problem necessary to drive

the system to flapping behavior. We first defined flapping behavior as a periodic

function at the hub, which causes the beam to follow a path that traces out a circular

arc with a specified angle - a flapping behavior that appeals to intuition. Both MM

and LQG were successful in achieving this behavior. With the introduction of a

disturbance however, MM took substantially longer to regain control. Of course,

with a much deeper investigation into tuning the parameters used in the computing

of the control law, we may find a better control scheme. The knowledge gained here

is that, while MM delivers robustness against a disturbance up to a certain threshold,
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LQG performs better even though it is entirely ignorant of the disturbance and the

way it can enter the system dynamics.

Exploring the structure of the system may offer an explanation as to why MM

performed worse. The structure of the disturbance matrix F in the system equations

effectively disconnects the disturbance from the hub. The disturbance affects the

entire system through the coupled nature of the finite element components, and is

therefore still physically realistic. The issue is that, in the computation of the MM

controller, the disturbance matrix is completely different from the input matrix B.

Thus, the worst case disturbance that MM is capable of rejecting has little to do with

the disturbance in hub rotation. In fact, the presence of the disturbance terms in

the MM system are having a detrimental effect on the feed-forward tracking terms.

These ideas, and the fact that LQG performs comparably well to the optimal LQR

controller, lead us to conclude that while LQG has no robustness margins, it will

nonetheless be a better choice than MM and may be capable of performing in such a

flapping system.

For the problem of designing a flapping system, a control scheme that is simple,

computationally fast, and can estimate the system states through very few measure-

ments will likely be the best candidate. Both LQG and MM optimal control schemes

are likely candidates for a system that balances design and controlled behavior, and

one that will exhibit robustness against gusting wind conditions. The ease of imple-

mentation and performance of LQG presented here leads us to conclude that it is the

best choice. The fact that it required only two sensed states corresponding to the

hub is an indication of a good choice for an estimation and control scheme for this

system.

Of course this is only the beginning in designing such a system. Future work

should include building the hub/beam system and studying the performance of con-
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trol schemes again. A more complete look into the nature of flapping flight is also

necessary for this investigation. Future work could also include the addition of more

complicated structures such as coupled flexible beams and/or flexible membranes such

as that found in bats. The question of how to model these structures effectively is

one of great importance and interest. These are just a few of the many possible areas

for future work.
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A Finite Element Derivation

In this portion of the appendix, we present the finite element method used to approx-

imate the solution to the PDE in equation (2.1). We use cubic B-splines for basis

functions. Also, for compactness, we rewrite individual parameters as combined func-

tions varying in x, and drop dependence on x and t when unambiguous. For example,

in equation (2.1), ρ(x)A(x) is rewritten as ρA(x), which will be further simplified as

ρA. It is assumed throughout this derivation that all parameters may vary in x, so

that no loss of generality occurs.

We begin by finding the weak form of the equations by multiplying equation (2.1)

by test function φ = φ(x) and integrating from x = 0 to x = L,

∫ L

0

(ρA)[d̈ + xθ̈] φ dx +

∫ L

0

(γ Iḋxx + E I dxx)xx φ dx = 0. (A.1)

We must balance the spatial derivatives of the unknowns and the test function φ(x)

by integrating equation (A.1) by parts twice in the second integral,

∫ L

0

(ρA)
[
ḋ + xθ̈

]
φ dx +

∫ L

0

(γ Iḋxx + E I dxx) φxx dx +

([
γ Iḋxx + E I dxx

]
x
φ−

[
γ Iḋxx + E I dxx

]
φx

) ∣∣∣∣
L

0

= 0. (A.2)

This introduces additive boundary terms, which can be simplified by choosing φ(0) =

0 and φx(0) = 0, eliminating the terms evaluated at x = 0 and guaranteeing the

test functions satisfy the geometric boundary conditions. Therefore, the weak form
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of equation (2.1) is

∫ L

0

(ρA)
[
ḋ + xθ̈

]
φ dx +

∫ L

0

(γ Iḋxx + E I dxx) φxx dx +

([
γ Iḋxx + E I dxx

]
x
φ−

[
γ Iḋxx + E I dxx

]
φx

) ∣∣∣∣
x=L

= 0. (A.3)

The boundary condition terms can then be further simplified using equations (2.4-

2.5) and made to include the tip mass and disturbance tip force dynamics. Recall

equation (2.5),

[
γ(x)I(x)ḋxx(t, x) + E(x)I(x)dxx(t, x)

] ∣∣∣∣
x=L

=

J1

[
d̈x(t, L) + θ̈(t)

]
− Lm

2

[
γ(x)I(x)ḋxx(t, x) + E(x)I(x)dxx(t, x)

]
x

∣∣∣∣
(t,L)

.

(A.4)

From equation (2.4),

[
γ(x)I(x)ḋxx(t, x) + E(x)I(x)dxx(t, x)

]
x

∣∣∣∣
x=L

=

m

[
d̈(t, L) +

Lm

2
d̈x(t, L) + (L +

Lm

2
)θ̈(t)

]
+ f(t). (A.5)

Substituting equation (A.5) into equation (A.4) and rearranging, we obtain

[
γ(x)I(x)d̈xx(t, x) + E(x)I(x)dxx(t, x)

]
x

∣∣∣∣
x=L

=

Lm

2

(
m

[
d̈(t, L) +

Lm

2
d̈x(t, L) + (L +

Lm

2
)θ̈(t)

]
+ f(t)

)

−J1(d̈x + θ̈)− Lm

2
f(t). (A.6)

After substituting these terms back into equation (A.3), we find the simplified weak
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form of the system equations is the set of second order equations

∫ L

0

(ρA)
[
ḋ + xθ̈

]
φ dx +

∫ L

0

(γ Iḋxx + E I dxx) φxx dx

+

(
m

[
d̈(t, L) +

Lm

2
d̈x(t, L) + (L +

Lm

2
)θ̈(t)

]
+ f(t)

)
φ(L)

−Lm

2

(
m

[
d̈(t, L) +

Lm

2
d̈x(t, L) +

(
L +

Lm

2

)
θ̈

]
+ f(t)

)
φx(L)

+J1(d̈x + θ̈)φx(L)− Lm

2
f(t)φx(L) = 0, (A.7)

and

J0θ̈(t)− γ I(0)ḋxx(t, 0)− E I(0)dxx(t, 0) = u(t)− n0θ̇. (A.8)

To build the finite element system of ordinary differential equations, convert the above

equations to first order form (i.e. let v(t, x) = ḋ(t, x) and ω(t) = θ̇(t)). Rearranging,

we arrive at the weak form for the combined beam/hub system of equations which

includes the beam/hub interaction equation,

∫ L

0

(ρA) [v + xω̇] φ dx +

∫ L

0

(γ Ivxx + E I dxx) φxx dx

+

(
m

[
v̇(t, L) +

Lm

2
v̇x(t, L) + (L +

Lm

2
)ω̇(t)

]
+ f(t)

)
φ(L)

−Lm

2

(
m

[
v̇(t, L) +

Lm

2
v̇x(t, L) +

(
L +

Lm

2

)
ω̇

]
+ f(t)

)
φx(L)

+J1(v̇x + ω̇)φx(L)− Lm

2
f(t)φx(L) = 0, (A.9)

equations governing the hub physics,

J0ω̇(t) = γ I(0)vxx(t, 0) + E I(0)dxx(t, 0) + u(t)− n0ω,
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and two equations created by the first order substitution,

∫ L

0

ḋ φ dx =

∫ L

0

v φ dx (A.10)

θ̇(t) = ω(t). (A.11)

We now introduce the following series approximations to the continuous functions

found in equations (A.9) - (A.11):

dN(t, x) =
N∑

j=1

aj(t) φj(x) , vN(t, x) =
N∑

j=1

bj(t) φj(x)

(v̇N)(t, x) =
N∑

j=1

ḃj(t) φj(x) , (v̇N)x(t, x) =
N∑

j=1

ḃj(t) φ′j(x).

(A.12)

Substituting the approximations from (A.12) into the integral terms of equation (A.9),

approximating φ(x) with φ(x) = φi(x), and simplifying while grouping terms yields

N∑
j=1

[∫ L

0

(ρ(x)A(x))φj(x)φi(x) dx

]
ḃj +

[∫ L

0

xφi(x) dx

]
ω̇ +

N∑
j=1

[∫ L

0

(γ(x)I(x))φ′′j (x)φ′′i (x) dx

]
bj +

[∫ L

0

E(x)I(x) φ′′(x) dx

]
aj

+BC terms, i = 1...N . (A.13)

Simultaneously performing the same substitutions in the additive boundary condition

terms in equation (A.9) and grouping like terms in ḃ, ω̇, and f(t), we find

(
mM1 + m

Lm

2
+ J1 M3 −m

Lm

2
M4 −m

(
Lm

2

)2

M3

)
ḃ(t)

+

(
m(1 +

Lm

2
)φ(L) + J1φ

′(L)−m
Lm

2

(
L +

Lm

2

)
φ′(L)

)
ω̇(t)

+

(
φ(L)− Lm

2
φ′(L)

)
f(t), (A.14)
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where the matrices M1-M4 are defined as:

[M1]{ij} = φi(L)φj(L) [M2]{ij} = φ′i(L)φj(L)

[M3]{ij} = φ′i(L)φ′j(L) [M4]{ij} = φi(L)φ′j(L).
(A.15)

Constructing new matrix Mm, and vectors wm and Fm as

Mm =

(
mM1 + m

Lm

2
+ J1 M3 −m

Lm

2
M4 −m

(
Lm

2

)2

M3

)

wm =

(
m(1 +

Lm

2
)φ(L) + J1φ

′(L)−m
Lm

2

(
L +

Lm

2

)
φ′(L)

)

Fm =

(
φ(L)− Lm

2
φ′(L)

)
,

the dynamics resulting from the boundary conditions in equations (A.13) - (A.14)

can thus be written in matrix-vector form as

Mm ḃ(t) + wm ω̇(t) + Fm f(t). (A.16)

Furthermore, let

Mij =

[∫ L

0

(ρ(x)A(x))φj(x)φi(x) dx

]
, Dij =

[∫ L

0

(γ(x)I(x))φ′′j (x)φ′′i (x) dx

]

Kij =

[∫ L

0

E(x)I(x) φ′′(x) dx

]
, ni =

[∫ L

0

xφi(x) dx

]
,

(A.17)

and

Ms = M + Mm

ns = n + wm .

The matrix form of equation (A.13), including boundary condition dynamics terms,
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can then be written as

Ms ḃ(t) + ns ω̇(t) = −D b(t)−K a(t)− Fm f(t).

Equation A.8 becomes

J0ω̇ =
N∑

j=1

[
E(0)I(0)φ′′j (0)

]
aj +

[
γ(0)I(0)φ′′j (0)

]
bj + u(t)− n0ω.

Let

q = E(0)I(0)φ′′(0) , r = γ(0)I(0)φ′′(0),

then

J0ω̇ = q T a + r T b + u(t)− n0ω,

where T denotes vector transpose. Following the same substitution procedure, equa-

tion (A.10) becomes

N∑
j=1

[∫ L

0

φj φi dx

]
ȧj =

N∑
j=1

[∫ L

0

φj φi dx

]
bj.

Let M0 be the matrix with ij components

M0
ij =

[∫ L

0

φj(x) φi(x) dx

]
,

then

N∑
j=1

M0
ij ȧj =

N∑
j=1

M0
ij bj

M0
ij ȧj = M0

ij bj

ȧj = bj.
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Thus we obtain the finite element differential equations

Ms ḃ + ns ω̇ = −D b−K a

Jω̇ = q T a + r T b + u(t)− n0ω

ȧj = bj

θ̇ = ω. (A.18)

The above can be represented in state space form as




I 0 0 0

0 Ms 0 ns

0 0 1 0

0 0 0 J







ȧ

ḃ

θ̇

ω̇




=




0 I 0 0

−K −D 0 0

0 0 0 1

qT rT 0 −n0







a

b

θ

ω




+




0

0

0

1




u(t) + Fm f(t). (A.19)

Let z be the column vector

z =




a

b

θ

ω




, (A.20)
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and

Msys =




I 0 0 0

0 Ms 0 ns

0 0 1 0

0 0 0 J




, Asys =




0 I 0 0

−K −D 0 0

0 0 0 1

qT rT 0 −n0




, (A.21)

Bsys =




0

0

0

1




. (A.22)

Equation (A.19) can then be written as

ż =
[
M−1

sys Asys

]
z +

[
M−1

sys Bsys

]
u(t) +

[
M−1

sys Fm

]
f(t), (A.23)

or, in more compact notation,

ż = Az + B u(t) + F f(t) (A.24)

y = C z. (A.25)

Where the matrix C is determined by what states we are able to sense. This matrix

will take one of two forms throughout the discussion. In the first form, only hub

angular position and velocity are sensed. C would then be a 2 × (2 N + 2) matrix

where N is the number of finite element nodes chosen, and has the form:

C =




zeros(1, 2 N) 1 0

zeros(1, 2 N) 0 1


 , (A.26)
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where the ones appear in the hub position and hub velocity state positions. A C ma-

trix that corresponds to the sensed state of beam tip velocity, resulting from placement

of an accelerometer at the beam tip, would take the form of the following 3×(2 N +2)

matrix:

C =




zeros(1, N) φ(L) 0 0

zeros(1, N) zeros(1, N) 1 0

zeros(1, 2 N) 0 1




. (A.27)

Recall that φ(L) is a vector with ith entry φi(L), corresponding to the basis function

values at those nodes.
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B Simulations

This is a compilation of all simulations performed that were used or mentioned in

this thesis. They are grouped in the following manner.

• Uncontrolled

– Uncontrolled Aluminum

– Uncontrolled Bone

– Uncontrolled Aluminum with Disturbance

– Uncontrolled Bone with Disturbance

• Regulation

– Bone with Disturbance

• Tracking

– Bone with Disturbance
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Aluminum - No Disturbance

0 1 2 3 4
−0.1

−0.05

0

0.05

0.1

Time (s)

T
ip

 D
ef

le
ct

io
n 

(m
)

0 1 2 3 4
0

0.05

0.1

0.15

0.2

Time (s)

H
ub

 A
ng

ul
ar

 P
os

iti
on

 (
ra

di
an

s)

0 1 2 3 4
0

0.05

0.1

0.15

0.2

Time (s)

H
ub

 A
ng

ul
ar

 V
el

oc
ity

 (
ra

di
an

s/
s)

Figure B.1: Uncontrolled aluminum undisturbed
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Bone - No Disturbance
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Figure B.2: Uncontrolled bone undisturbed
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Aluminum - Disturbance
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Figure B.3: Uncontrolled aluminum disturbed
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Bone - Disturbance
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Figure B.4: Uncontrolled bone disturbed
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Regulation
Bone - Disturbance
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(b) MINMAX Hub Position
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(d) LQG Hub Position
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(f) LQR Hub Position

Figure B.5: Regulation bone disturbed - Control and hub position
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(a) MINMAX Hub Velocity
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(b) MINMAX Tip Deflection
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(c) LQG Hub Velocity
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(d) LQG Tip Deflection
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(e) LQR Hub Velocity
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Figure B.6: Regulation bone disturbed - Hub velocity and tip deflection
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(a) MINMAX Surface (b) LQG Surface

(c) LQR Surface

Figure B.7: Regulation bone disturbed - Surface plot
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Tracking
Bone - Disturbance
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(b) MINMAX Hub Position
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(d) LQG Hub Position
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Figure B.8: Tracking/disturbed: Bone beam control and hub position
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(a) MINMAX Hub Velocity
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(b) MINMAX Tip Deflection
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(c) LQG Hub Velocity
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(d) LQG Tip Deflection
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(e) LQR Hub Velocity
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Figure B.9: Tracking/disturbed: Bone beam hub velocity and tip deflection
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(a) MINMAX Surface

(b) LQG Surface (c) LQR Surface

Figure B.10: Tracking/disturbed: Surface plots


