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ON TEMPERATE FUNDAMENTAL SOLUTIONS WITH SUPPORT

IN A NONSALIE,IT CONE

INTRODUCTION

In this paper we prove a sufficient condition for a p x q (p < q)

system of constant coefficient partial differential operators P(D) to

have a temperate fundamental solution with support in R x F when 7 is

a closed, convex, salient cone. A temperate fundamental solution of such

a system isa qxp matrix K of temperate distributions such that

P(D)K = I. This can be considered as a partial extension of the result

of Enqvist.

Ehrenpreis (1954) and Malgrange (1955) independently proved that

every constant coefficient partial differential operator has a fundamental

solution. Since then, conditions for existence of fundamental solutions

with special properties have been studied. For an early survey, see

Hormander (1957).

We are interested in the location of the support of the fundamental

solution. This question has been studied by several researchers, including

Smith, Petersen (1975) and Enqvist (1976), among others.

One application of our result concerns the following overdetermined

Cauchy problem:

Let X be in the interior of the dual cone of 7 and let H be the

closed half-space determined by (0, X), i.e. H = R x fx R111<x,X» 01.

Suppose w c D'(R11+1) with supp (P(D)tw) C H and P(D)tw in a suitable

convolution algebra. Does there exist u c V' (R1) with supD(u) C H

and P(D)tu = P(D)tw?



2

If P(D) has a temperate fundamental solution with support in R x F,

the answer is yes. For details, see Lancaster-Petersen (1980).

This paper can be viewed as one long proof of the result initially

indicated. The method of proof is a modification of proofs by HOrmander

(1969) and Petersen (1975, 1976). The paper divides into four parts.

Chapters One through Four form the first part. In Chapter One we

prove that the specialization of an exact sequence of matrices of poly-

nomials is exact off a proper variety. In Chapter Two, we show that an

exact sequence of matrices of polynomials is exact over the sheaf EO of

germs of Cw functions holomorphic in some of the variables. We prove

the existence of partitions of unity with polynomial growth conditions in

Chapter Three. Chapter Four is the Weierstrass Preparation and Division

Theorems with polynomial dependence on parameters and with estimates.

The second part, Chapter Five, consists of several lemmas in which

we construct local solutions of systems of polynomial equations with

smooth dependence on a parameter and with estimates. These are similar to

Lemmas 1 and l' of Petersen (1975).

In the third part, Chapter Six, we solve the Cauchy-Riemann and co-

boundary equations with smooth dependence on parameters and with weighted

L2 estimates. Solutions of the Cauchy-Riemann equations with smooth de-

pendence on parameters, but without estimates, were established by

B. Weinstock.

In the last part, we use the results of Chapters Five and Six and a

Hilbert resolution to find global solutions of a system of polynomial

equations with smooth dependence on a parameter and with estimates. We

then find fundamental solutions as indicated earlier.



CHAPTER ONE

SPECIALIZATION OF HILBERT RESOLUTIONS

In this chapter, we prove a "specialization" result for exact

sequences of C [C,z]-homomorphisms which will be used later. A weaker

result would suffice for the purposes of this paper, but this result is

aesthetically appealing. The proof is a modification of an argument from

unpublished lecture notes of Aldo Andreotti.

Throughout this paper z = (z1, zn) will denote an n-tuple in

-
Cn, = (z1, z C' wille u will denote the first n - 1 coordinates

of z, and = c will denote an m-tuple. E will be in Cm

in this chapter (in later chapters it will be in either Cm or Rm).

C [E,z1 denotes the polynomial ring C Em, zl, zn],

C [z] the polynomial ring C [z1, zn] , both over the complex field

C. C(, z) denotes the field C(1, S11,z1, .
zn)

of rational

functions in E Em' z' zn.

Lemma 1.1 If P isa pxq matrix over C[ , z] then there exists

a proper (complex) algebraic variety V in Cm so that if

f e C [11q, and P(0, .)f = 0, then there exists F E C [,z]cl such

that PF = 0 and F(,,), ) = f.

Proof: The proof is by induction on n. Let p be the rank of P over

the field C(, z). Interchanging rows and columns, we may assume that

if M is the principal p x p minor (i.e., upper left hand corner) of

P, then det M 0 and det M has largest degree in z, say 11, among

all p x p minors of P. We may assume, by a unitary transformation in

3



the z-coordinates, that

that all minors of order p + 1 in the matrix

-R.-
1

Ri

have zero determinant, for i = 1, p, since P has rank p. Con-

sider the minor given by the first p columns and the jth column

-R! P..
1 13

R1 Pij

R' P .

P PL.

N=

4

det M(,

where a e CIV

det NI of degree

and HI 1.

coordinates also

Let P=

Then M= (Pi'

Let D = det M

case n = 0, V

z) = a()z11 + lower order

and a 0. (Let H be the

u in z and pick n 6 Cn

Rotate On so n (0, ...,
by z.)

= [

P1 ...Pq]
and P'=

... P:3).

= det(P1 ' P') and V' =
p

= c Cn1D() = 01 is the required

terms

0,

f

z-homogeneous

in
zn

term of

so that H(., 0

1) and denote the new

= [Pi ... p].

e CnIa() = 01. (In

variety.) Notice



where R! = (Pjl, Pjp).

Expanding by minors about the first row, we see

0 = det N = E( -1)k+1 Pik Lkj + (-1)P p. .D

where Lk. = det with the kth column omitted.

R' P
P

Setting Lkj = (-1)k+p+1 frkj we see

R. L.

L.

= [P ... P. ]

iq

0

=0

where D is the jth component, for p + 1 <j < q._ _
Thus we have q - p vectors in ker P. Collecting these into a matrix,

we get

5

D 0

0 D

which is a q x (q - p) matrix over C z] with rank q - p. More-

over, if V' (or V if n = 0), then D(, ) 0 and so C()Z,.)

has rank q - p. By the choice of M, each L.. has degree < in z.

L.

L.
P3



so f - C(0)A =

o = Mgo)

eP
0

0

P(0)4) = P(o)f - P(0) C(0)A = 0, so

[ao

= (1). Let 0= e
1

Since M(0) is nonsingular and )0 = 0, 0 = 0.

Thus f = C(Eo)A . Let F() = C()A .

Ap+1

A
-

6

Of course, PC = 0.

(i) Now assume n = 0. Suppose 0 V, f Cq, and P(0)f = 0.

Let A. =f./D( ) for j = p + 1, ..., q and A =
j j 0

Then C(0)A =

D(C0) A0+1

D(y A,
_



(ii) Assume n > 0 and assume inductively that the lemma has been

proved in dimension n - 1. Suppose Eo 4 V', f C[z]q and

P(E0, .)f = 0. We now use the division algorithm relative to

zn to divide fj by D(E0, .). Recall D(E, z) = +

lower order in
zn.

f. = D(0'E )A. + Q. j = p + 1, ..., q.
3

where A., 6. c C[z] and the degree of 6. in
zn

is < p.
J J

(Note that A. contains powers of a(0E ) in its denominator.)

C(E0, -)A =

D(E0, )Ap+1

D(0, .)A
0 q

Define 0 = f - C(o, *)A =

p+1

6
q

Notice P(E0, .)0 = P(E0, )f - P(0, )C(0, = 0

i.e., 0 e ker P(E0, ). Considering just the first p rows of

C C[z]cl .

7

If we set A=
Ap+1

we see



D(0, )ej (1 < j < p) has degree < 2p in zn and so ej

has degree < u in zn for all j = 1, ..., q.

We have shown that if V' and P(10, )f = 0, then

f = C(0, )A +

where A e C[z]q-P, 0 E C[z]cl and each component of 8 has

degree < p in zn. If we write

1)(, z) = z(71(' z') .
+ a z')

Z+1 '

0(z) ' z11-11(1) (z') p (z1)
n

where z' = ai is a pxq matrix over C[E,z1],

8

P(0, -)0 we obtain

M(0, *)

By Cramer's Rule,

-(P'*)
p+1 0

if 1 < j < p,

q 0
)) p+1

D(Eo, )ej = det (Pi(E0, -) v

= E eiCii .)

P'(0, ))

L=p+1

(with v in the jth place)

where Cij = - det (Pi ... Pi ...
.thi(Pi n place) which

isa pxp cofactor of P and so has degree in z< u. Thus



and. E IC[Z]q, then the condition P( .)f = 0 becomes(1)3
0'

P(Eo, = 0 and this is equivalent to

01(0, .)(1)]. =

12(0' .)(P1 .)(P2 =

etc.

If we define tp = al

0

a1

0

a (p + 24p x pq matrix over CE, z'j and apply the induc-

tion hypothesis, we can find a proper (complex) algebraic

variety W C Cm so that the lemma holds for tp. We set

V = V' LIW. If V, then we can find

(7)'i
e CE, z']q(1 <j < p) so that, if we set_ _

=
4)].

(1)u

then 4 = 0 and 74;(0, -) = =



Define H(C, z) = z1V-,171(C,z') + + c C[C,z]g and

F = CA + H E CE, Z]q PF = 0 and F(0, ) = f.

Theorem 1.1 If C[C, jrz C[C, 11(1 ,P C[ , ZIP is exact, there

exists a proper (complex) algebraic variety V in Cm so that if

Co 4 V, then

r Q(Cny ) P(C )
zi

C[ z] cl CI z] P

is exact.

Proof: Clearly P(C, ) Q(C, -) = 0 for all C E Cm.

Let V be the variety determined in the previous lemma. Now assume

C0
Et

V'
f E C[z]q, and

P(C0'
.)f = O. By the previous lemma, there

exists F E C[C, 0 so that PF = 0 and F(CO3 ) = f. By exact-

ness, there exists G e C[C, z]r so that QG = F. Now set

g = G(Co, .) e C[z]r. Then Q(Co, )g = F(Co, -) = f.

10



11

CHAPTER TWO

Exact Sequences

In this chapter we prove that if

C[E, z]r C[E, z]q P C[E, ZIP

is exact, where P and Q are matrices of polynomials, then, if we

consider P and Q as maps of q-tuples and r-tuples respectively of

functions C in UxWCRMxCn with W convex (and U and W open)

and holamorphic in W, this new sequence is also exact. We also introduce

some notation that we will use throughout this paper.

We denote the coordinates in Rm by El, ..., Elm and in Cn by

z1
=

x1
+ iy

' zn = xn + iyn . We will use the following notation:

EE = sheaf of germs of C functions in Rm x Cn

EO = sheaf of germs of Cm functions in e x Cn which are holomorphic in

zi, zn

EE(I)q)=
sheaf of germs of C forms of type (p,q) relative to

zi, zn

AO = sheaf of germs of real-analytic functions in Rm x Cn which are

holomorphic in z
zn

CO = sheaf of germs of holomorphic functions in Cm 4- n

If k is a nonnegative integer, we denote by EkE, Ek0, etc., the sheaves

which are k times continuously differentiable in all variables and Cm

(or holomorphic, etc.) in zi, zn .

We will denote the stalk of a sheaf at 0 (for example) by subscript,

e.g., EED, and similarly for germs. For a short discussion of sheaves,

see Chapter 7 of Hormander (1966).
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F (V, S) denotes the continuous sections of the sheaf S over V. Thus

F (J x W, EE) = x W).

Def: Let R be a commutative ring with identity and B be a right

R-module. B is R-flat if and only if it satisfies one of the following

equivalent conditions:

The functor B is exact.

B I B is injective, for every finitely generated left

R-ideal I.

If al, .) a ER; bl, ..., bp E B, and a.b. = 0 , thenp i=1 1 1

thereexist.ER and f. E B (i = 1, ..., p,j = 1, ..., q) suchrlj
)

q
thatZa.r.=0(j=1

i
,...,q)andb.=E f.r. .

j=1 i li

(i) and (ii) are equivalent by Theorems 3.53 and 3.54 of Rottman.

(iii) (ii) If a = E b. 0 a. E Ker(B 0 I B)33 )

i.e. b.a. = 0
j ) 3

then a=Eb.0a. =ZZfr. a. =Ef (s)Ea.r. = 0 .

j ) j zZjZ ) z ) )2,

(i) (iii) Define a morphism RP R by (c1, . c ) c.a.

1=1

and let K be its kernel. Then 0 K RP R is exact. By (i),

0 B K B RP B R is exact; thus 0 B K BP B is

P
exact. Notice B0 K iB s defined by b' (c1, cp)

(b'c
b'cp)

and BP B is defined by (b' b')
l'

Ea.bt..
i=1 1 1
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Now
(lb1, bp)

is in the kernel of this last map, so there exists

B1, ..., Bq E K and fl, fq E B so that

ct

bp).
j=1 3

If we write Bj = (r1j, rpj), then bi = .E r..f. and
3=1 13 3

B. E K implies E a.r.. = 0 .

i=1
13

Lemma 2.1 EE is flat over A00.
0'

Proof: Suppose al, aP E A00, bl, bP E EN, and K albi= O.

i=1

We may extend a1, aP to holamorphic germs (by power series) and

apply Oka's theorem (Theorem 6.4.1 of Hormander (1966)). Then there

i Pexists rE
A00

i = 1, p, j=1, q such that E a r = 0
i=1

and if
u1

P
, upEA00 and E a u. = 0 then there exists

i=1 1

v. E AO j = 1, ..., q such that u. = r v..
0 1 j=i 3

P i iIfwe expand E a b in formal power series about the origin, then
i=1

P i i
E a b = 0 (in the formal power series ring) for e near the origin.
i=1 e e

The formal power series ring is flat over the convergent power series ring,

so bi = E rij sj for some formal power series sj, j = 1, ..., q . By
e e

Malgrange's theorem (Theorem 1 of Malgrange (1960)),

q
b- = E

j=1
forsomet.EEE,j = I, ..., q .

3

Notice that this proves FE is flat over AO, i.e., BE is flat over AO
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at each point of 0 x Cn. We do not know if EkE is flat over AO.

Lemma 2.2 Let U be open in km and W open and convex in Cn. If

f E r x w,
EE(p,q+1))

and f = 0 in U x W, then there exists

u E r (u x w,
EE(10q))

such that Tu = f in U x W.

Recall that T denotes the Cauchy-Riemann operator in Cn only.

Proof: Let P be a matrix of polynomials over C[x,y] =

C[xl, yl, xn, yn] such that the matrix of partial differential

operatorsobtainedbyreplacingby and v . by in P,
'3 Dy

which we denote P(D(x,y)), represents the map

T: Cm (Cn) Cm (e).
(12,q) (p,q+1)

where we identify (p,q)-forms with (n) (n) vectors of C functions.
P

Let Q be the matrix of polynomials over C[x,y] such that

Q(D(x,y)) represents the map

C(p,q+1)(Cn) C(p,c0.2)(Cn).

Then

C[x YJA C[x, Y]B C[x, y]C is exact.

Now consider P and Q as matrices over C[,x,y] (which are

independent of F, = D. Then

C[,x,y]A ) C[,x,y]B C[E,.,x,y]C

is exact. Notice Q(D(x,y))f = 0, since --9-f = 0.

By the Malgrange-Ehrenpreis theorem (Malgrange (1963)), there exists



g.Er(11.xW)Asuclithatp(0(x,y))g7...-f
if U. is open and convex

3 3 3

inU.Thusin U. x W. Let (u.1 be an open cover of U
g3 3 3

consistingofconvexsetsandx.a.partition of unity of U
7

subordinate to U.. Define u = E x.g. E C (U x W) Then u = f
j 3 3(P,q)

in U x W.

Weinstock (1973) proves this lemma for W a domain of holomorphy

and q = p = 0, i.e., for (0,1)- forms.

Corollary 2.1 Let U and W be as in Lemma 2.2 and let k be a non-

negative integer. There exists an integer N (independent of k) such

that:

k+N k+N
If f E r x W, E

E(p,c14.1))
and -5-f = 0 in U x W, then there

exists u E r(u x w,
EkEkPg))

such that Tu = f in U x W.

Proof: The proof of Lemma 2.2 is still valid if we use the version of

the Malgrange-Ehrenpreis theorem in Hormander (1966).

Lemma 2.3 Suppose U is open in km and W is a convex, open set in

Cn. Then

r(u x W, EO)r Q
, r (1.1 x iv, E0)q----E-----)- F (U x W, EO)P

is exact if C[C, z]r Q C[C, C[, z]P is exact.

Proof: Let Q0 = Q, ro = r, and let N3} be a resolution of Q (which

need not be finite); that is, C[, z]cl Q , ... C[C, z]cl --11-)-

C[C, z]P is exact. By Lemma 7.6.3 of HOrilander (1966)

r.

----)- 00 3 > 00q POOP

is exact. Since we can identify A00 and 000, we see

15



r.

AO 3 A0c1 AOP

is exact. Since EE is flat over AO,

r.

EE 3 '"<... "<EEcl P EEP

is exact. By a partition of unity argument, we se,e. that

r. ,j

r(u x w, EE) r(u x w, EE)cl P

is exact. This is clearly true for
EE(p,q)

also.

Suppose f E r(u x w, E0) with Pf = 0. Then there exists

u E r (u x W, EE)r

such that

Qu = f in U x W.

Then Q u = Tf = 0 and so Tu = Q u, in U x W for some

u1
E F(U x W, BE (1))

1
Now

Q1Tul= TQ1u1 = u = 0,

so u1 = Q2 u2 in U x W

r2for some
u2

E CCU x W,
EE(0,2))

.

r.
Inductivelywefin.du.Er x BEW, W) 3

with Qiu. =
uj -1

. When j = n, un = 0.

rnBy Lemma 2.2, there exists
vn-1

E r x W, BE
(0, n-1))

such that
un

=
vn-1.

Now

16



Qn
un

=
un-1

and Qn u Qnvn-1
.Qn

vn_l

so -a- (un..1 -
Qn vn_i) 0

Thus un-1 - Qnvn-1 =n-2 for some E r(U x W,
EE(0, n-2)

,rContinuing in this manner we find vl e rcu x w, EE(0,1))
2

with

(u1 - Q2 v1) = 0 .

rlSo u1 - Q2 v1 =
vo

for some
vo

E r(u x w, EE) .

Now Q1u1 = Ql(ul - Q2v1) = Qiv

and Q1u1 = .

So -a-(u - Qlvd= 0 i.e., u - Q1v0 E r(u x W, EO)r.

and Q(u - Q1v0) = Q u = f .

Corollary 2.2 If f E r(u x W, EE)r with -5" Qf = 0 , then there

exists g E F(U x W, EO)r such that Qg = Qf.

1
Proof: Let u = f in the previous proof. Then g = u - Q v0 = f - Q1v0.

17



CHAPTER THREE

A PARTITION OF UNITY

We will eventually need special partitions of unity with polynomial

growth and so we prove a suitable result in this chapter.

Let {Udj = 1, ..., Z} be a finite open cover of Rm x C. We

define

B(t) = {(C, Z.) E RM x
1 1 < t, 1z1 < t},

suP1(dist ('z),z) c

D(t) = inf (d(, z)1(' z) E B(t) - B(t - 2)1, and

d(t) = min (1, D(t)}

for t e R, = E Rm, and z = (z1, zn) e Cn. By nr

we mean the (topological) boundary of the set V. Notice that d(, z) is

thedistancefromtotheboundaryofthesetU.which contains

z) and whose boundary is furthest from (E z).

If V C Rm x Cn, then V(z) denotes (E, E Rm1(, z) E V}.

Lemma 3.1 There exist constants Ca > 0 for each m-multi-index a such

that,foreachzce,thereexistsapartitimofunitY{1).}0f Rm13

subordinate to (U.(z)1j = 1, ..., Z} so that

Ipaqii(U1 < Ca(1 17,1)1a12(d(t))-1a1(21al+m)-1

if (, Z) E B(t) - B(t - 2).

13
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Proof: We assume z c Cn is fixed and we obtain constants
Ca

independent

of z (and of t). For 1 < j < Z, t > o, r E R, define

K(j, t, r) = {E E z) E Ui n B(t) and dist ((E, z), > 2-1-1

L(j, t, r) = K(j, t, r) - K(3, t-2, r).

Notice that if 2-r < D(t), then {L(j, t, r)lj = 1, ..., Z} is an open

cover of B(t)(z) - B(t - 2)(z) = (E c Rml(E, z) c B(t) - B(t - 2)1.

Define r(t) by 2-r(t) = d(t)/2. Notice 4.1.,(j, t, r(t))1j=1, Z,

t = 1, 2, 3 ...1 is a locally finite open cover of Rm with intersection

number < 2t consisting of relatively compact sets. Let x(t, j) be the

characteristic function of L(j, t, r(t)) and define f E r(R) by

f(s) = lexp (1/s) s < o

0 s > o

Let p(E) = Cf(1E12 - 1) with C picked so that fm p()g = 1; p is a

mollifier. Define

= C2m(r(t)+1)f(22(r(t)+1) lc12 1) and w(t,j) = x(t,j) * pt.
pt(E)

Notice supp (w(t,j)) C closed 2-(r(t)+1) - nbhd of L(j,t,r(t) C U(z)

and w(t,j)(E) = 1 if E c L(j,t,r(t)) - 2-(r(t)+1)nbhd of n(j,t,r(t)).

If E e Rm, then for some positive integer q, (E,z) E B(q) - B(q-2)

and d(E,z)
d(q) 21-r(q)

and so, for some 1 < j < Z,

E L(j,q,r(q)) - 2-(r(q)+1)nbhd of n(j,q,r(q)); then w(q,j)(E) = 1.
co

Define @= .E E w(q
3=1 q=1

,j). e E C(R) and e > 1, since



if (C,z) E B(t) - B(t - 2), since then t < max {W 2, lzl 21.

20

{supp (0/(q,j))1j = 1, ..., Z, q = 1, 2, 3, ...} is locally finite, has

intersection number < 32., and consists of compact sets. Define

CO

= q1 w(ct'i)/e
j = 1, ..., Z.

= 1, ..., 2.} is a partition of unity subordinate to {U.(z)}11)3

and it remains to estimate liftp.(C)1.

By Leibniz's formula,

CO

< ((a3) 1Da-k(c1,3)(1){0-1)()1- q1

where I is the sum over all m-multi-indices S such that S < a.

13<c(

Note

D8(01) = I(-1)aa:(D6)1/8°4-1

where is the sum over all mb-multi-indices y = (yi, yb)

(b = lal) with yi <
1b' 'l

+ + yb = o is the number of

1-t 111

nonzero yj, and (D8)1 = D -8 D -e. Here D =

y.)1..... (3111) ijm
and Do8 = 1 (0 = (0, ..., 0) E zm).\a

Also 1D514(t,j)()1 = 1x(q,j) * Dapt(W

< volume of L(j,t,r(t)) max 1D5p (C)1Lt t

< C2m(r(t)÷1)r(t)m(t+1) I al 21131(2r(t)+3) max If(k) (s)I
o<k<lel_ _
-1<s<0

l, 1 1 1 -2
< C'245 +2m

' LII lzi 4- 1)1 d(t) mllog2(d(t)) - 2Im
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Clearly C'a is independent of t, j, and z.

2 0. 0

So lAp.()1 < C" E E E ID"w(q,j)(E,Wal since 6 = E E w(q,j)>1
3 $<a j=1 q=1 j=1 q=1

1 12
<C (1 +

1
1

d(q) -(21al+m)laHl
a

(since {supp (w(q,j))1 has intersection number < 3t).
Ca

depends

on 2., n, m.

Weldlibeinterestedinthecasewhere{U).0=1, 2,1 is a semi-

algebraic open cover of Rm x Cn and we want a partition of unity with

polynomial growth.

Lerma 3.2. Let. {U. 1j=1, ..., 2} be a (real) semi-algebraic open cover
3

of Rm x Cn. Then there exist constants C' > 0 and an integer N > 0
a

such that, for each z c Cn, there exists a partition of unity
{tpj}

of

R7 5;111)m-climate to U.(z)1 such that

IDay01 < + W + IzONIal2+N

for each m-multi-index a.

Proof: Let {Ipil be the partition of unity obtained in the previous

lemma; we assume z E Cn has been fixed. We consider Cn as R2n. If

U is (real) semi-algebraic (i.e., U = {(, x, y) 6 Rm+2n1P(E,-, x, y) = 0,

Q(E x, y) < 01 with P and Q polynomials) then {(11, z) E Rm+2N+11

= dist ((c, z), DU)) is a (real) semi-algebraic set.

Since the supremum (and so infimum) of a semi-algebraic collection

of semi-algebraic sets is semi-algebraic, {(t, d(t))1t > 01 is semi-

algebraic. Then, by the Seidenberg-Tarski theorem, the following
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sets are semi-algebraic: {(t,d(t), p)It > 0, 0 < pd(t) < 11 and

M = {(t, p) 1t > 0, 0 < pd(t) < 1}.

Let Mt = (111(t, 11) E = (1110 < p < d(t)1} and

p(t) = sup p = sup d(T)-1. Notice lim D(t) = d(0,0) > O. Thus
ptMt O<T<t t4-0

lim d()-1 = max(1,1/d(0,0)}. 11 is nondecreasing and finite. By Lemma 2.1
T+0

(HEirmander, 1969, p. 276), there exists a rational number a > 0 and a

constant A > 0 so that

p(t) = ATa(1 + o(1)) as t

Then there exists a constant C > 0 depending on p so that

p(t) < Cta t > 0

Let N' be an integer with N' > a, say N' = Eaj + 1. Then

d(t)-1 < p(t) < C(l+t)N' if t > o. If (,z) E B(t) - B(t-2),

then t < max {10 + 2, 1z1 + 2} < 10 + 1z1 + 2, so

-1
d(t) < C(3 W 1z1)N' <C'(1 4-1E,1+ 17-1)N'

Using the estimates of the previous lemma, we see

Ipaqii()1 < Ca(1+1E,1+1,z1)1a12(d(t))-1a1(21al+m)-1

< C'(1+10 +1z1)Nla -+N

where N = 1 + ZN' + mN' and C' = C C'. In the first line,
a, a

t E (max 1z11, max {10, 1z11 + 2) is arbitrary.-



Corollary 3.1. Lemma 3.2 is true with the estimate

Ipc'y)1 < 4C;(1 + +

Proof: Computation using the inequality (a + b)2 < 2(a2 + b2).
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CHAPTER FOUR

THE WEIERSTRASS THEOREMS

In this chapter we prove a version of the Weierstrass Preparation

and Division theorems with bounds and with parameters. There are several

methods of proof of the Weierstrass theorems. Here we modify the proof

based on Cauchy's theorem.

If P E CE, z], then we define

P'()(z:r) = sup 11)(,z414)1 = sup 11)(,z+rw)1.

1141<r lwl<1

An m-multi-index is an m-tuple a = (al, ..., am) of nonnegative integers.

The length at of an m-multi-index (al, ..., am) is a, + +
am.

< a means 13. < a. for j=1, m and < a means 13 < a and 13 a.

We continue to use the notation of Chapters 1 and 2. Thus

r(u x W, EO) denotes the set of Cc° functions on U x W which are

holomorphic in W, r(u x W, AO) denotes the set of real-analytic functions

on U x W which are holomorphic on W, and F(U x W, Ek0) denotes the set

of Ck functions on U x W which are holomorphic in W.

Lemma 4.1 Let U be a connected open subset of Rm and C > 0. Let

P E CI, z], s c (0, 1), and r > 0. Assume P(, -) 0 if U.

Let z e Cn and assume P()(z:r) < C inf

1T-Znf=rs

?4

P(E-z1,T)I for each e U.

Leto c U and let N+ be the number of roots of the polynomial

T 13(, Z1, T) which satisfy IT - zn < rs. Then there exists a

number s', o < s' < 1, depending only on a, n, and C where a is the



degree of P in z, such that the polydisc

A = {w E 01114j1 < s' j=1,...,n-1, IwnI < s} is contained in the unit

ball B = {14 e < 1} and so that the following properties hold:

A. There exist unique functions P and P- so that P = PP- in

U x (z + rA) with P, c F(U x Cz rA), AO) such that:

P+ and P- are polynomials in wn, P4-(,-) and P-(C,-)

are bounded in z+ rA and P-(,w) 0 if wez+r-E

and e U.

p+ as a polynomial in wn is monic, has degree N+ in
wn,

and for each E U and w' E Z/ rA', all roots of the

polynomial T P+g, w', T) satisfy IT - ZnI < rs, where

w' = (.41,...,wn_i) and

A' e Cn-1= 1'w. < s'I

31
j=1,...,n-11.

25

(iii) There exists a constant C1 > 0 depending only on u, n, and

C so that -1-5'()(z:r) < C rN inf P(,)1 and
z+rA

sup < Cir-N+is"(C)(z:r).
z+rA

B. If f e r(u x (z + rA), EO) and f(,-) is bounded in z + rA

for each E U, then f = Pg + h where g, h E F(U x (z+rA),E0),

h is a polynomial in wn of degree < N+ and there exists a

constant C' > 0 depending only on u, n, and C so that

sup 111{)1 + P'{)(z:r) suplg(,)1 <C' suPlf(,*)1.
z+rA z+rA z+rA

Moreover, there exist nonnegative integers Nk depending on x,
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n, and k and constants Kk depending on X, n, m, k, C, and

the top order terms of P such that

p.,(-1\14-(k+1)
< Kk(1

)(z:r)
and the

1Dap- c,w)rN+(k+1)
same inequality for

2 2 2 Nk -N4-(k+1
ID°1-1(&,w)1 < Kk(1+1z1 +izI +r ) P(&-)(z.. r)

r-N÷(10-1) E sup 1121f(,)1
a<a z+rA

and the same inequality for 1Dag(,w)I

for every m-multi-index a of length lal = k and for E U,

W E Z + rA.

C.. If f E r(u x (z+rA), Ek0) and f(,.) is bounded in z + rA

for each E U, then f = Pg + h where g, h c,r(u x (z+rA),Ek0),

h is a polynomial in wn of degree < NI+ and there exist

constants C, N, and M depending on P, k, and C so that

24.1z124.r2)N 1-5()(z:r)-Mr-M
IDah(E,w)I < C(1+W

. E sup 1E0f(,.)1
a<a z+rA

for E U, w Z + rA and lal < k. The same estimate is true

with g in place of h.

a

()mal
3Here De = (-2) and x is the total degree

'" 3rn
3E1

of P.

Proof: Let Q(E,w) = P(E, z + rw). We can expand Q in powers of w,

i.e., Q(E,w) = a (E)WY(-y n-multi-indices). Then

Y

P(,w) = (w-z)/r) = a (&-)(w-z)-Yr-IYI

Yl<u
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Since any two norms on the finite dimensional vector space P(11,n)

(polynomials in C[ z] = az1, zn] of degree < p) are equivalent,

there exists a constant
C0

> 0 depending only on i and n so that

C01 Q()(0:1) < E A (0
IYHP Y

< CoQ()(0:1).

Notice that -Q-()(0:1) 0 if E U since P(,.) 0 if e U and

that the coefficients a ()/()(0:1) of Q(,w)/&()(0:1) vary in the

compact set [-Co, Co] depending only on p and n. By a compactness

argument, we can find d > o depending only on p, c and n, and s'

depending only on C, n, and s so that, if

s' j=1, ..., n-11, D = {T E CIITI < s},

and A = x D, then A C B and IQ(,w)1 > &()(0:1)/2C, if

E U, WI E A' and - sl < 6. (Note that the hypothesis becomes

IQ(, 0, wn)I > Z(C)(0:1)/C if IwnI = s.) By Rouche's theorem and the

fact that U x A' is connected, we see the polynomial T WE, WI, T)

has exactly N+ roots with ITI < s - 6 if E U and wf E pl.

Denote these roots by T,(1 w') for j=1, N+.

N+
Define Q+(, w) = II

(wn
- Tj(E, w')) for E U, WI E LI and

j=1

N+

P+(, w) = n (w -z - rr.(&, (w' - z')/r)) for E, E U, w' E z' + rA'.j=1 n n j

1
Set a(E, w'J, = 2Tri

a4Q (, T)
oZn

Q(, w', T) dT
for i = 0, 1, 2, ..

Since Q does not vanish on U x A' x 3D, eZ is holomorphic on an open

neighborhood of U x A' in Cm+11. By Cauchy's integral formula,
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0(, w') = E (T.C, w')) and the coefficients of powers of
wn

in Q+
j=1

are elementary symmetric polynomials of (T1(E, w'), T w')).

Since the elementary symmetric polynomials are polynomials with rational

coefficients of the "power sums" rk(x) = E x., we can find rational
j=1 )

coefficients
b2, a

(a are N + 1-multi-indices) so that, with

ao
,N"

a -N= e .0

N+

Q+(E, w) = E I bt
a (e(E, 14'))awz' for 0 < t < N+, lal <

2, a

N+,
, n

and so Q+ is holomorphic in a neighborhood of U x A' x C. Similarly,

'P is holomorphic in a neighborhood of U x (z' + rA') x C and

+
w) =EEb e(E, - z')/r)a(wn - zn) r-NT -" .

La Z'a

Define P- = P/P+ on U x (z' + rAl) x C. For each U and

w' E 21 rA', T P-(E, 14f, T) is a polynomial in T.

By Cauchy's integral formula

P_(E, w) =
1)(, w', T)

dT
r3D P+(E, w', T)(T - wn)

if
wn e zn

+ rD, so P- is holomorphic on a neighborhood of U x (z + rA).

Since IT( w')1 < s - d (by the choice of 6), we see

1Q+(, w)I ' (114111 6 - s)N if c U, w' E A', w > s - 6, and

IP (E, 14)1 > (114 -z 1-r(s-d)) if E eU,w' E z' rA',1w -z 1>r(s-6).n n n n
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Then IP-(E, w)I < (r)N+ sup 11)(,.)1 ifIwn - znI = rs and by the
z+rA

maximum principle,

1P-(, w)1 < (rd)-N 1-3()(z:r) if w E Z + rA, e U.

Since the roots of Q+(E, w', T) satisfy ITI < s < 1 and the coeffi-

cients of T -4- 1Q+(, w', T) are elementary symmetric polynomials in the

roots, there is a constant C" depending only on u and n so that the

coefficients of powers of T are bounded by C". So there exists a con-

stant C" depending only on u and n so that sup IQ+(E,W,T)I < C".

lil<1

Since P+(,w) = rN Q+(,(w-z)/r) if e U and w' c z' +

sup 1121+(, w', T)I < Cu'rN
1T-zni<r

i.e., 1134-g,w)1 < C"'rN4- if E U and w e z + rA. Thus

1P-g,w)1 1P(,w)lr-N4-/C" > -F(E)(z:r) r/2CC" if e U,

w' e z' + rA', and Iwn - zni
= rs, and so, by the maximum principle for

1/P-, we see

113-(,w)I > -1()(z:r)r-N /2CC" if E U, w e z + rA.

This proves A if we set C1 maximum of 2CC" and 6-N

If s - 6 < p < s, E U, W' E + rA' and wn - znI < rp, define

f(,14',T)(P+(E,14',7) - P+(,w',wn))

11('w) - 271
dT

IT-1=r10 P+(,w1,T)(T-wn)Zn



E
and g(

-

1 f(,W,T)E,w) - dT

2TriP(E,W,wn) P+(.,-,w',T)(T-wn)

These integrals are independent of p since P1-(E,W,T) has no roots

in IT - zni > r(s - (5). Clearly, g, h E r(u x (z rA), EO) and

f = Pg + h in U x (z + rA). For each E E U, WI C ZI rA',

P+(,w',T) P(,w',wn)
T - W

is a polynomial in T (and in wn) of degree < N+, so h is a poly-

nomial in
wn

of degree <

N+

As before, if Q+(E,w1,T) = I dn(E,W)Tz, then Idi(E,w')1 <C"
Z=0 ;

if E E U and WI E AI and so

Q+(E,14',T) Q+C,wf,wn) N+

< C" I I C pN -1
T W n 2

z=1 j=1

for
lwn

< p, 1T1 = p, and p > S - 6. So if < P, Hr= P, P > s-6,

and w' c A' C U, then

P+(E,z'+rw',zn+rT) - P+(,z'+rw1,zn+rwn)

zn
+ rT -

(zn + rwn)

N+ +

r (Q - Q Ct:04/tywn)) 1 N-1
_< C2(rp)r(T - wn)

where
C2

depends on and C" and so on and n.
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By the definition of h, we see that

In(,w)1 sup Ifg,')1C2(1-P)N+-1/(Iwn-zn1 - r(s-6))N
z+rA

1 r
21T JIT-zni =rp

if s - 6 < p < s, w' E z' + rA', 1wn - zn1 < rp, and E E U. Thus

1h(E,w)1 <C2 sup 1f(E,.) lim sup (rp)N+( wn-zn1 - r(s-6))-N+
z+rA

C2
-N4-

sup 1f(,.)1
z+rA

= C3 sup 1f(,-)1
z+rA

-N+
where

C3 = C26
depends on p, n, and C. Since Pg = f - h, we have

sup 1P(E,')11g()1 <
z+rA

1dT1

(C3 + 1) sup
z+rA

Also, 1P(E,w)1 > ii'()(z:r)/2C (by choice of 6) when c U, w' c z' + rA',

and
1114'11

- zn1 - rs1 < rd, so, by the maximum principle, we see

sup 1g(E,.)1 < 2C(C3+1)17)-(r,)(z:r)-1 sup 1f(,-)1.
z+rA z+rA

Let C' = C3 + 2C(C3 + 1).

Recall 131-(,w) = E E bz a(6(,(141-z1)/r)'(wn-zn)r
i=o lal<N

and 1Q(E,(wf-z')/r,T)1 > Z-(E)(0:1)/2C = -15()(z:r)/2C if E E U,

WI E ZI rA',
wn

E zn+ rD, and 1T1 = S.
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N+(k+1)(i+w2+ z124.1.2)N"

32

From the definition of ez, it is clear that if y is an m-multi-index,

Iii = k, and DY = (441 (33,_ )Ym then
'1 /

16Yezg,w1)! _< (2C)1Y1+1-13(E)(z:r)-1Y1-1C4sZ+1

(1+1E12+Izt+rw'12 + Izn12 + r2s2)(IY1+1)(X-1)/2

IY1-1(1+1E,2+1z121.r2)(1Y1+1)(X-1)/2< C06()(z:r))

where C depends on k, A, n, C, and the top order part of P, if e U
4

and w' E A'. Since P()(z:r) < C(14-1E12+HI2+r2)A/2, we see that there

exists a nonnegative integer N' depending on A, n, and k so that

p+(E,w)1 < K,T;()(z:r)-N1-(k+1)(1+1 12.4.1z12+r2)N'

if IY1 _< k, U, and w z + rA, and where K' depends on A, k,

n, C, and the top order part of P.

Recall P- = P/P+. If y = k, e U, w' E Z' rA', and

lwn - zn
= rs, then

ID1P-(,w)1 < Kfl(rd)-N+(k+1)13g)(z:r)-

and since DYP-(E,*) is holomorphic

lpyp-(z,.)1 /c,1")(z:r)-N+(k+l)r-N1-(k+1)0..i.w24.1z124.r2)N"

if E E U, w E Z rA.

From the definition of g and h and the estimates on P+ and P-,

we see that there exist constants K K2 > 0 and nonnegative integers



N1, N2
so that

N,+

r(EAz:r)IDYh(E,w)
-< K1kr-N

(k+1);-_, ,-N (k+1)(14-1E12+r2÷1z12) -Lk

E sup ID'f(,Z,-)1
B<y z+rA

if E e U, w e z + rA, and y= k. Similarly for a with K , etc.

-k

Now let N = maximum of N', N", Ni , N2 and let Kk = maximum of K',
'k

K", K1 , K2 .

1 k

Notice C. is essentially the same as B. as far as the proof is

concerned.
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CHAPTER FIVE

LOCAL EXISTENCE THEOREMS

In this chapter we prove a version of Lemma 1 of Petersen (1975)

depending on one parameter. We would prefer to establish the follow-

ing lemmas for any number of parameters, but the method of proof breaks

down if m > 1. We are only interested in taking derivatives in the

3
parameter E, and so we introduce the notation D = -z for this chapter.

Lemma 5.1 Let P bea pxq matrix over C{, w], let m= 1, and let

B be the open unit ball in C. There exist a polynomial a e CW and

t E (0, 1) such that:

If E > 0, then there exist constants Ck > 0, and nonnegative

integers Mk and Nk, for k = 0, 1, 2, ..., so that if z E Cn,

0 < r < E, and u e r(R x (z + rB), E0) then there exists

V E r(R x (7. rtB), E0)cl with Pv = aPu in R x (z + rtB) and

sup IDkv(&,*)1 < Ck(l+r )(1+1z124-W2+r2)Nk sup 1DiPu(E:,*)1
z+rtB Z=o z+rB

for every k = 0, 1, ... and E R.

Here Ck, M, and N depend on k and P.

Proof: The proof is by induction on n and p.

(i) n = 0, p = 1. P = (P1,
Pct)

and we may assume P/ 1 0.

Leta=PleCW
' v1

=Pu,v.=0, j = 2, ..., q and
3

V = (v1, vq). Then Pv = P/Pu = aPu and the estimates

are clearly true.
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(ii) Let n > 0 and p > 1 and assume inductively that we have

proved the lemma for all n' < n and p' < p.

Consider P1 f
= -Pll' Pig).

By hypothesis, there exists

a polynomial a' E C[V and there exist constants Ci, non-

negative integers and N' t' E (0,1) and
k'

v' c r(R x(v-rt'B),Eo)q so that P1v' = a'P1v in R x (z+rt'B)

and

IDkvi(c,-)1 < C/'((l+r )(14-1 12+1zI2+r2)Nk

E sup ID'Q'Flu('')1
9..=o z+rB

for E R.

Let CI,zir cmzig C[Ez] be exact.

By Lemma 2.3

F(R x (z+rt'B),E0)r F(R x (z+rt113),E0)q

1

F(R x (z+rt1B),E0) is exact. Let

f E F(R x (z+rt'B),E0)r so Qf = - v'.

Consider the equation PQg = PQf, which is a system of

p - 1 equations. By the induction hypothesis, there exist

a" E CfV,CNj, and t" 6 (0,1) and there exists

g E r(R x (z+rt't"B), EO)r such that PQg = a"PQf = a"P(a'u-v')

in R x (z+rt't"B) with the estimates. Set v = Qg + a"v',

t = t't" and a = a'a".

(iii) Let n > 1 and p = 1 and assume inductively that we have

proved the lemma for all n' < n and p' c m
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P = (P1, Pq) We may assume Pq X 0 and the degree

of P in w is u = maximum of the degrees of P in w.

We may write P = bA , where b c CE ] , Aq E C[ 04] , and

A (,.) g 0 for E C.

Let K CB - (01 C Cn be a finite set such that its image

under the evaluation map B P(u,n)' is a basis for P(p,n)',

where P(p,n) is the finite dimensional C-vector space of

polynomials in C[w] of degree < p and P(u,n) is its dual.

Let {1,(e) le c K} C P(u,n) be the dual basis of P(p,n).

Then

A (,w)= IeEK Aq('e)L(e)(w) and

-A- (E)(z:r) < C maxIA (Z,z+re)I
eEK q

where C depends only on u and n.

Let V(e) = ((,w) c R x Cr) such that

IA (Z,w + re)I > 1/2 max IA (,w + re')}. (V(e)le E Kl is an
e'EK q

open cover of R x Cn and, if (0,,,) c V(e), then

A (&)(w:r) < 2CIA (, w + re) I. Define
q

fe(T) = A(, w + re T) c CET] , a polynomial in T C C. fe

has a < p roots, which we call T1, Ta. We divide

(1/2 - 1/8u, 1 + 1/8u) into 2u + 1 equal intervals and let

si =1/2+Tibetheirlilidpoints.(1TWj=1, ..., a} can

intersect at most 2a < 2u of these intervals. So for each

R, there exists 2. E (0, ..., 20, such that

Isi - > i" for each j=1, . , .

36



Define V(e,i) = {(,w) E V(e)IA (Fw + rse) # 0 for all

S E C with IsI rl 22.-1 1 2t+11

L2 8u ' 2 8u

{V(e,i)Ie E K, 2=0, ..., 20 is an open cover of R x Cn

consisting of semi-algebraic sets. If (,w) E V(e,t),

()(w:r) < 2C(Bu+1) inf IA (,w+rseT)I
ITI=1 q

TEC

Assume now that z E Cn is fixed and (,z) e V(e,t). We

make a unitary change of coordinates and so assume that

ATh(z:r) < 2C(8u+1) inf 1A,(,z',T)I
IT-znI=rs

where s = Iskel. Define W = W(e,t) = V(e,i)(z).

We apply Lemma 4.1 to the polynomial Aq and we find

s' c (0,1),

A={wEcnIlw.l< s' j=1, n-1,
114nI

< sl,

A+, A- E r(w (z rA), AO),

and g,h e r(w x (z rA), E0) such that A = A+A- and

u =Ag+h in Wx (z + rA) and we have the estimates from

the Lemma. Also, h is a polynomial in wn of degree

+
where N is the number of roots of the polynomial

T Aq(r,Iz'T) in IT- znI < rs.

By the same argument as on page 197 of Hermander (1966), we

37
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and fl, fq_i are polynomials in wn of degree < N+ < p.

Thus
Aq fq

is a polynomial in
wn

(of degree < p + N+) and,

by Lemma 7.6.9 of HOrmander (1966),
Aq fq

is a polynomial in
wn

(of degree < p).

By Lemma 3.2, there exist C functions tp(e', 9.,1) on R

(e' E K, 2=0, ..., 2p) such that supp(1.1)(e',Z1)) C W(e',2.1)

2U

and E 4)(e', Z') = 1 on R. Set f! = 4)(e, Z)A f. and
e'EK Z.=o

h' = 11./(e, Z)A-h. Then

P f' + . . + P f' + A f' = h'11 q-1 q-1 q q

and f!, h are polynomials in
wn

of degree < p. Also, the

support of these functions is contained in W(e, Z) x (zT+rA')x C.

This equation is equivalent to a system of 2p equations in the

coefficients (of powers of
wn)

of the f! on the left and of

h' and zeros on the right and in the variables (, w').

By the induction hypothesis applied to this system, we can

find a polynomial a2 c CP.,1 , constants C1 > 0 and t1 (0,1),

nonnegative integers M1 and N1 and, for j=1, q,

Z=0, ..., 2p, Fjz E F(R x (zi+rs't, B), E0)2p such that the

2p

functions F.(,w) = E F. (,14')w2, satisfy
Z=0 3Z

PP + +P Fq-1 + AF
1 1 q-1 q q = a2h'

and, if a is a nonnegative integer < k,
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q 2p -M
E E sup lpcIF *) I < C1 (l+r

1)(1,1 12+1z,r2+1.2)N

'j=1 Z=o
z'+rs't1

B'

2p
E sup ID 511i(E, *)

z=o z'+rs'B'

-1
2p

where B' is the unit ball in Cl and hi(E,w) = E hz(E,W)wn.
L=0

Now set vi(e,Z) = alFj/A j < q and vq = a2t1)(e,Z)g +Fq/A-.

Set a(e,Z) = a1a2. Then

Pv(e,Z) = a1(P1F1 + + AqFq)/A- + ala211)(e,2)Aqg

= a(e,Z)1,b(e,Z)u.

We made a unitary change of coordinates in Cn earlier, and

now we make the inverse coordinate transformation; this does not

affect a(e,Z) or 11)(e,Z), which depend only on E.

Set a =a(e,Z) and
eEK, Z=o,..., 2p

2p
v = I av(e,Z)/a(e,Z). a E C[ 1 and v E F(R x (z+rtB),E0)q

eEK Z=o

where t = min {se, s'(e,9)t1(e' e E K, Z=o, 20. Then

Pv = Ze,i aPv(e,Z)/a(e,Z) = Ee,2a4)(e,Z)u = au.

We will estimate v now. Let

A
ct

(E,w) = E a ()wY =
bY

(E)(w - z)Y. Now
Y Y Y

b (E) = (w) zw-Y aw(). Here a and w are n-multi-indices
w>1

of length < p. There exists Co > 0 depending only on p and

n so that

1A
21y1A ()(z:r) < lb ()1 r < CA ()(z:r).

o q Y Y o q
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Since 0 < r < E, E2(11-171) > r2(11-171) and so

r2Iy1 > E-2 (U-1Yr2 .

1) u 1Y1If B> 1, r2 > E-2 11/-2u , and if

0 < E< 1, r21Y1 > r2ij, if 1y1 < u. Thus there is a constant_ _ _

C1
depending on u, n, and E so that

3 (z:r) >

C1r

2u lb ()12

Let b() = lb (E)12 and

IY1<U Y

c ( ,w) = I ( )ww- Yaw() I 2. These are real polynomials

on R and R2n+1, respectively, and C(E ,z) = b().

A (E,' ) g 0 and c(E ,w) 0 for real E and w e Cn. (Notice

c(E ,w) = bvi(E) and bw(E) 0.) By a result of B. Petersen using

Lemma 2.1 of Hormander (1969) , p. 276, there exists a constant

C2 > 0 and a rational number A so that

Ic(E,w)1 > C-21 min (1,
1 (,w)1A1 E R, w Cn.

Thus I< C2 max (1,
1 (F., ,w)1 . In the unit ball in

R x Cn, c has a positive lower bound. Thus, if H=rnax{ 0,4 X] }

-1 2
c(,w) < C3(1 + (w)1 2)H/2 < C3(1 + + 2)L,

-1 2 L
where L = 1 +[H/2] . So b() < C., (1 + 1E1 + 1z1-)

Notice C., depends on A . Thus

(z:r) >
C1

C-1 r214(1 + IV 2 + I z 2)-1' .

N+
Recall that on W(e ) , ,w) > C4r- (z :r) for

w E z + rtB, from Lemma 4.1 (since tB C A). The estimate of

D 11014 follows from the e a estimates of g,F. , etc.
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Lemma 5.2 Let P bea pxq matrix over C[F,,w], m=1, and B be the

open unit ball in Cn. There exist a polynomial b E CW and t 6 (0,1)

such that, if E > 0, then there exist constants Ck > 0 and nonnegative

integers Mk and Nk such that:

If z Cn, 0 < r < E, and u c (F(R x (z + rB), E0))q, then there

exists v E r(R X (Z rtB), E0) such that Pv = bPu in R x (z + rtB)

and if (I) is any continuous real-valued function on z + /11, then

r
f-(/)-
J ID v('')I 2 e

Nke dz+rtBV .< Ckea(1 + 1E12)
k

JrID2Pu(,)12e-(1)dV
Z=0 z+rB

where a = sup icp(w') - (w")1 and .0(w) = log (1 + 11412).

z+rB

Proof: The proof is in Petersen (1974) and uses one of Peetre's inequali-

ties. The proof in Petersen (1974) does not involve parameters, but the

proof still works in this case.

Definition: If t c (0,1) satisfies the conclusion cf this lemma, we say

t is good for P.

Lemma 5.3 Let U be an open, connected subset of Rm, z c Cn, r > 0,

s E (0,1), C > 0, and p and k be nonnegative integers. Suppose

Pl, Pq E C[Fw] all have degrees in w = (wl, wn) < p,

P (,.) ,E 0 and ()(z:r) <C inf z', T)1 for F, 6 U.

1T-zn1=rs
Then there exists s' (0,1) depending only on p, n, s, and C such

that ker (P) C F(U x (z + rp), Ek0)q is generated by those of its

elements which are polynomials in wn of degree < p.



Here A = {14 6 ell 114.1 < SI j < q, Iwnl < s} and

Cq) E r(u x (z rA), Eko)ci c.P. .

j=1 3 3

Proof: This is a straightforward application of Lemma 4.1 and Lemma 7.6.9

of HEirmander (1966).

Lemma 5.4 Let B be the unit ball in C and U be open in R. Let

cWwIr Cf ,w]cl P C[ ,w113

be exact with in = 1. Then there exists a polynomial b 6 C[] and a

constant t e (0,1) such that:

If z e Cn, r > 0, k is a nonnegative integer and

f e r(u x (z rB), Ek0)cl with Pt = 0, then there exists

g E r(u x (z rtB), EkO)r such that Qg = bf in U X (z + rtB).

Proof: The proof is by an Oka induction and the second and third cases

are very similar to (ii) and (iii) of the proof of Lemma 5.1. The poly-

nomial b comes only from the proof of the first case, which we present.

(i) n= O. Let E bea qxq matrix over C(c) so that S= EQ

is the unique reduced row echelon matrix of Q. Notice that

Qg' = f iff Sg' = Ef. Let be the rank of Q (over C()).

Then there exists a permutation ki < < k,:;1. < < Zs

of(1,...,rlsothatS..=Oifj<k.and S. = 6...
13 1

ikj
13

Then define g' by gi. = E E. f and 0 = E E.,f if i >p.41 Z=1 =1 14 1

By Theorem 1.1, we can solve Q()g' = f(E) and so

SVg' = E()fM, for off a proper variety. S(F,)gi ()
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is a reduced row echelon matrix, so the last q - 11 rows are

zero, and thus the second condition in the definition of g'

is satisfied. Now let b be the least common denominator of the

entries of E and g = bg'. Now Sg = bEf, so Qg = bf.

Lemma 5.5 Let P and B be as in Lemma 5.1. There exist a polynomial

a 6 CIV and t 6 (0,1) such that:

If E > 0 and k is a nonnegative integer, then there exist C > 0

and nonnegative integers NI and N so that if z E Cn, 0 < r < E, and

U c F(R x (z + rB), Ek0)q, then there exists v E F(R x (z+rtB), Ek0)q

with Pv = aPu and

sup IDv(,) 1 < C(l+r-m)(1+ W2+lz
z+rtB

for E R and Z=0, k.

Proof: The proof is the same as that of Lemma 5.1 except that we use

Lemma 5.4 in (ii) rather than Lemma 2.3.

Lemma 5.6 Let P bea pxq matrix over C[ ,14] ,m= 1, and B be the

open unit ball in C. There exists a polynomial b c CEFJ and t e (0,1)

such that, if E > 0 and k is a nonnegative integer, then there exist

constants C > 0 and M and N nonnegative integers such that:

If z E Cn, 0 < r < E, and u E F(R x (z + rB), Ek0)q, then there exists

v E r(R x (z rtB), Ek0)q such that Pv = bPu in R x (z + rtB) and

if (I) is any continuous real-valued function on z + r-B, then

Z
rM r 2 a 2 N r

Jz+rtBIL)
e dV < Ce (1+W )

jz+rB
E DJ Pu )! dV

3=0

2 N+r-)E sup 1DiPu(E,.)!

j=o z+rB
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for e R and 2=0, k where 8(w) = log (1 + 11412) and

a = sup lq)(141)- gw)1.
z+rB

Proof: The proof is the same as Lemma 5.2 and the proof in Petersen (1974)

(without parameters) works in this case.

Definition If t c (0,1) satisfies the condition of Lemma 5.6, we say

that t is good for P. For a given P, t is independent of k and the

two definitions of good for P agree.
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CI-IAPTER SIX

SOLUTIONS OF THE CAUCHY-RIEMANN AND COBOUNDARY EQUATIONS

In this chapter we solve -ii(E-) = -) with weighted L2-

estimates in the z variables and smooth dependence on The proof

of this result is a modification of some arguments of L. Hormander (1965).

We then solve the coboundary equation 5c' = c with estimates and smooth

dependence on parameters.

We will use the notation of Hormander (1966, 1965) and some special

notation. Suppose U is open in Rm and W is open in
On.

If p

and q are nonnegative integers and cp is a measurable function of W,

2
then L(p,q)(U, W. cp) denotes the set of continuous functions from U

2
to L(p,q)(W, (0). L2

)

(p) is the Hilbert space of (p, q)-forms
(P,q

whose coefficients are square integrable with respect to e-c1V and has

the norm c
fw lce-

where
1c12 lc !2.

la1=P 151N

Let b be a nonnegative integer or +co. L2
Pq)(U,

W, ¢, b) denotes

2
the subset of

L(p,q)(U,
W, ¢) consisting of those functions which are

2
Cb functions as mappings from U to

L(p,q)(W,
¢)

represents the Cauchy-Riemann operator in On (i.e., in the z

variables only). D. represents the partial derivative with respect to

and if a is an m-multi-index, a = (al, ..., am),

Da = Dal .Dm.
1

Let W be an open set in Cn with C2 boundary; that is, there

n
exists a real function p E C-(C) such that W = tz Cn p(7.) < 0},
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= (z e Cn1p(z) = 0} and dp 0 on DW = the boundary of W. W is
n n

pseudo-convex (or Levi-convex) iff E E w.71, > 0 when
j=1 k=1 azju'k 3

zeM,E....1(z)hr.--.0 and w = (.41, wn) 6 C. If W is open
j=1 azj

in Cn, W is pseudo-convex iff there is a continuous plurisubharmonic

function u in W such that W C C: W for all c c R, where
c

= {z WIU(7.) < C}.

A function u defined in an open set W C Cn is plurisubharmonic

iff

u is upper semicontinuous, and

for z and w e Cn, the function T U(7. TW) is subharmonic

in the part of C where it is defined. A C2 function u defined in an

open set W C Cn is strictly plurisubharmonic iff

n n 2
u(z)

j=1 k=1 Dzj3Tk 1(

for z e W and w e Cn, w O.

Lemma 6.1 Let U be open in R. Let W be a bounded open set in Cn

with a C2 pseudo-convex boundary, let ci5 c C- be strictly plurisub-

harmonic in a neighborhood of W, and let eK c C(W) be the lowest eigen-

( 32(I)

value of the matrix
Dzj"lc

)

Suppose f e Lfp,q)(U, W, 1) such that q > 0,

) = 0

,2 -(15-K
fwlf(, ) e aV < .7

and fwiDif(E -)12 -4)dV < 00 for j=1, m and c U.
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2
Then there exists u L(p,q_1)(U, W, 0) such that 5u(,-, = f(, -)

and q -)12e-g5dV < -)12e*KdV

for all U.

Proof: We will use the notation and results of Hdrmander (1965). Let

2
A be the operator on L(p,q)(W, 0) defined by

Ah = AT eK/2 h c L2(13,q)(W, 4)).

A is bounded and self-adjoint. Let S and T be as defined in Hormander

(1965, p. 99). For h dom (T*) n dom(S),

lAh 112 < IIT*h II2c5 11ShIl

As in the proof of Theorem 1.1.4 of Hormander (1965), we see

l(f(, .) Ilh(, -)110 IIT*gll

for all c U and g dom(T*), where f(E -) = A*11(, .). Define

2F() E (1,(p,q)(W, I))/ by FW(k) = (f(, -), g)0 where

k = T*g + k2, k2 c R(T*)I. R(T*) is closed since A has a positive

lower bound (Hormander, 1965). Therefore, F(ç) is well defined for

e U and

11F() lh()11
ile-K/2f11/ v6i

Let fkz = T*a ) be an orthonormal basis of R(T*) in L2 01 0) and(p ,

2
define u() E L'(p,q-1) 01 0) by

u() = E F(F,)( kz) kz = -), gzyz



111-4)(')11(2, = i1F()( kz) 12 < fwifCC, .)12edV/q

It remains to show that u E L2pq-1)(U, W, ¢) where u(C, -) = u(C)(.),

since Tu(C, ) = f(C, ) by construction.

2
Now the map C (f(C, ), g) is C1(U) if g L(p,q-1) 0).

Also,sinceSisclosed, c, ) = 0 for C e U, so by Theorem 2.2.1

of Hormander(1965),D.f(C,.)=Tw.(C)(.), where
3

2
w.(C) e L(p,q-1)CW, (P) rN(T)1 for each C c U and 1 < j < m. There

exists C > 0 depending only on T so that 11wilIcb < CI1Twillq)

(Theorem 1.1.1 (HOrmander, 1965)).

From Taylor's Theorem, we see

1(f(c, f(°, ), gzY

1 m
= (D.f(tC + (1-t)e, )(C. - C?), g ) dt

o j1
1

= 3
3 3

1 m

< (f1 2 (w (t+ (1-t)e), kz)cp12dt)1/2 IC -

o j=1 J

Then E I(f(C, ') f(°, *),a )oz (1)

1 in

Jr I2 (w.(tC + (1-t)°), kz)2(151 dt1 - 02
2 0 j=1 3

1 m
E lea.(tC + (1-t)°), k ) 12 dt1C

o j1 cp
= 3

2

m

1 o
111,1-(t (1-t)e)

j 3

c I, 02

2
Icp dt1F, - e 2

where the next to last inequality is by Parsavel's relation and C1
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depends on T, f, and C° (for -I < I say). Thus

Ilu(C, *) u(e, *)112(1) = E l(f(C, f(e, ), gz)(p12 <C1

implies u is continuous as a map from U to L2
(p,q-1)(11 (i))-

Lemma 6.2 Let U, W, (1), and K be as in the last lemma. Suppose b

is a nonnegative integer or +. and f c L2
Pq)(U,

W, (1), b+1) (q > 0)

-cp-K
with -5f(C, .) = 0 and IwIDaf(C, -)12e dV < .... for C c U and all

m-multi-indices a with lal < b + 1. Then there exists

u E L2 (p,c1_1)(U, W, b) such that -Tu = f and

q Dau(C, - ) I < Jr 1 Daf(c, ) 2e - (P-1(dV
w

for all m-multi-indices a with lal < b.

Proof: We will prove this by induction on b. We may assume b = 1 and

prove the lemma in this case, since the choice of u is independent of b.

Let {kz = T*gd and u(C, ) = E(f(c, -), gz)1( be as in the
2.

previous lemma. Then

l(f(C + he., ) - f(c, ) - hy(c, .), gz)qsi

1

=
Ii(hD.f(C + thej, .) - hDjf(C, .), gzyt1

2- OD.f(E; + sthe., .)th, g ) dsdt1 1111

Th.12, 1 1(w.i
010 Jj(C

+ sthe.' ), k2, ) dstdt1
3

11
2

< !hi (I I w..(C + sthe. ),
kZ

) 12dst2dt)1/2
33o o
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), w..(E, E N(T)i. Thus
JJ JJ

Zi(f( + he ) - f(E, ) - 11.D.f(, ), o) 12

11
< Esr Jr 1(w. .(E + sthe., .), k ) 12dst2dt 11114

.Q. o o JJ 3 2,

,1 r1

j
-- -

i 1

Iwii(
,E, + sthe. , -)112t2dsdt 11114 < c11114

J00

by Parsavel's relation and Theorem 1.1.1 of Hormander (1965). Thus

limilu(E + h) - -

.)11cl)/11-11
= o

h-oo j=1

where wj(E, ) = /:(Djf(E, ), gz)(1)kz c 4)). Then

u e L2 (p,q_1)(U, W, 0, 1), -) = ), g9.)q5kz , and

-) = f(E, ). Similarly, q I-1:11Dju(E,.)12e-gcldV = q fw1wi(E,)12e-(1)dV

<f1)1-f(, -)12e-'15-KdV .

3

Theorem 6.1 Let W be a pseudoconvex open set in Cn, a C2

plurisubharmonic function on W, and eK E C(W) be a lower bound for the

plurisubharmonicity of cp. Let U be open in Rm, and p and q be

nonnegative integers with q > O.

2
Suppose f c

L(Pc1)(U,
W, O, co) with -9-f(, .) = 0 and

,

fwiDaf(E, )12edV <

for Ec U and all m-multi-indices a. Then there exists

2
u E L(p,q_1)(U, W, (1), m) such that 7U(E, ) = f(E, .) and

q IwIDau(,-)12e-dV < fwiDaf(E,.)12e-4-KdV

for all E e U and all m-multi-indices a.

SO
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2Proof: Notice L(p,q-1)(U, W, co) = Cm(U, Lfp,q_1)(W, ()). Let

a e Cm(W) be a strictly pseudoconvex function on W such that

WM = {z 6 W1a(z) < M} is relatively compact in W (Theorem 2.6.11 of

Hormander (1966)) and for almost all M, Wm has Cm pseudoconvex boundary

(Hormander, 1965). Then, by Lemma 6.2, there exists

g c L2pq-1)(U, W, (0, co) such that - gz(E, -) = f(E, ) in U x Wz

and q f 1Daa (E, -)12e-15dV_<
Iw -)12e-q5-KdV, for all E c U,

w

m-multi-indices a, and 2=0, 1, 2, ..., where Wz = W, , {MZ=0, 1, ...}
is an increasing sequence of reals, and M co as .. We extend

2
gz by zero outside Wz, so fgZ1Z=0, 1, 2, '..1 C C (j, L(p,q-1)CW, (p)).

Notice this sequence is bounded in C(U, Lfp,c1_1)(W, (0)). Let

1} be an orthonormal basis of L2(1),c1_1)(W, (0). Notice that

((gzC-, -),tc).(-))b 1Z=0, 1, ...} is bounded in Cm(U), a Frechet-Montel
g

(1)space, for each j=1, 2, ... . Then there exists a subsequence (gz

of fg } such that (a°(1), ) a1 E C(U). Similarly, there exists
Z 1 4)

(s)a subsequence {g of ia(s-1)} such that

(s)
(g2. ' 4)S)cP--.'aS e Cm(U),

for s = 2, 3, ..

Let u(E, ) = We claim that u E nU, L2(p,c1 1)(W4))
j J 3

and u(E, -) is in the weak closure of (gz(E, -)1 for each E E U.

Set vt(E, = 4)(E,-) Now (vz(E, -), qij)(1) -4- .(u(E, -), ¢j)(0 as

Z -0- co, for j=1, 2, ..., and so if S is the subspace generated by

itpdj=1, 2, ...1 then (v (E, -), -4- (1(E, -), ¢) as 2. -0- w for all
Z (1)

c S. Now let A c L-pq-1) (W, ¢). Since S is dense in 1,-(p,q-1)(W, ¢),(,
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if E > 0, there exists IP E S so that 11A - 1014) < E. For some 2. > 0,

1(vtg, *), 'P)(1) - (u(, *), 11(t,1 < E,

where 2, depends on of course. Then

1(/2,g, ) - u(, *),

i(vzg, ) - u(, *), 4))1 1(v2,(E, '), A - 1PY + 101(, ),A -0951

e C()iin - 4)14 C()11A 1P11gb

(1 + 2C())c

where C() = IIf(, -)110.K. Now let e---0. Then vz(E, -) converges

2
weakly (in L(p,q_/)CW, (0)) to u(, -), for c U. Thus -5.1.4,-) = f(,-)

in U x W, by standard arguments.

Now Dagz(,-) = (Dag(), 4)j) = Daa.,g)tpi. By Parsavel's
j Jx,

relation,

qEiDaaz
. ()I2 < liDaf(,')1142)+K for all E U and m-multi-

j

indices a. Thus,

zIpaa.()12 < sup q ZI1Pa2,g)12 < IlDafg,')Iic2p+K

3 j

so "Dau(,-)" defined by T Daaj()4)j Lfp,c1-1)(W4), for each U

anda.ileclainthatp.u, -), defined as the limit of a difference
3

quotient, exists and is continuous. This will show that

... 2
u C C (U, L(p,q_1)(W, (1))) (i.e., the proof will be clear).



u(+te.,-) - u(,-)

11
I.

El.u(E-)11,
cP,

(a (+te )
I aZ()) - Da)) lp 112

Z

= 11E (D.a ) - D.a ())4) 11-
Z 3 2"

j Z Z

(by the Mean-Value Theorem, where is between and + te.)
3

2 Zj Z 2
= ZD.a

)()4)z11(I)Z 2"

(where ei is between and e)

< (e.j)121 -12
2, 3 Z 3

< It 12 Z1D2a (e))12
Z

j2.

--C2,X1t12

where C2 sup max 11Daf(V, 12 and X is a compact subset of
4,A c..)( lal<2

co+K

U containing a neighborhood of Thus u E C(U, L2
pq-1)(W4)) and

u is differentiable. A similar argument shows u E Ci(U, L2cp,q_1)(W,(0))

and Du is differentiable. Now11Dau(,.) 1,2 Elpaa.(012
11,4) ji j

11Daf(E;,-)1124)+K
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for all E U and all a.

Theorem 6.2 Let W, eK, U, p, and q be as in Theorem 6.1. Let b

be a nonnegative integer.

Suppose f E L-
Pq)(U,

W, b+2) with .f(E.-.) = 0 and
(,
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fw!Daf(,.)12e-(1)-1( dV <

for E e U and lal < b + 2. Then there exists u E Lfp,q_1)(U, W,cp, b)

such that .1_1(E,-) = f(E,) and qfwIDU(E,-)12e-cipdV < fw1Daf(E,-)12e-4)-KdV

for E e U and lai < b.

Proof: We modify the proof of Theorem 6.1 as follows:

We note that the inclusion of Cb+1 (U) into Cb(U) is compact and

2
the sequence (gz} is bounded in Cb+1(U, L(p,(1_1)(W,q5)) The proof

then follows.

Suppose W is a domain of holomorphy in Cn, fW j > 1} is an open

cover of W, and U is open in Rm. If s is a nonnegative integer and

b is either a nonnegative integer or +w, then Cs(U,(W.),Z
(P,q),ct),b)

denotes the set of all alternating s-cochains c = (ca) (where a is an

2
(s + 1)-multi-index) with

Ca L-(pq)
CU,

Wa'
cp, b) and -5Ca(E,-) = 0

,

for E E U. Here W = W n
Was.

We define the coboundary opera-"1
tor ((5) in the usual manner (Petersen, 1975; Hbrmander, 1965).

Lemma 6.3 Let W be a domain of holomorphy in Cn, U be open in Rm, and

(W.Ij > 1) be an open cover of W with the properties of Lemma 5 of
3

Petersen (1976) (and A, B and a as in the lemma). Let cl) be a C2

strictly plurisubharmonic function in W and let eK be a continuous

lower bound for the plurisubharmonicity of 4) with K < L on W, for

some real L. Let b be a nonnegative integer.

If s is a positive integer, then for each c CS(U, (W.), p,c1)4+K,b+2s)

with 6c(E,-) = 0 for E c U, there exists

c' c Cs-1(Uj) Z(p,q), b)



55

such that Sc'(,)- = c(,.) and

C11Dac(,*)11q).4.1(

for E U and lal < b. Here 1,b(z) = - log d(z) = - log(minfl,dist(z,3w)l)

and C is a constant depending on A, B, a, L, and b.

Proof: The proof is essentially the same as the proof of Theorem 6 of

Petersen (1976) with the lemmas here replacing those in Petersen (1976)

as necessary. Note that the lemma is true with b = co if we

replace C by Cs.

Lemma6.4LetW,U,(W.)be as in Lemma 6.3 and let p be a C2 pluri-

subharmonic function in W. Suppose s is a positive integer, b is a

nonnegative integer, and q > 0.

If c c Cs(U, (Wi), b + 2s) such that 6c(,-) = 0 for

C E U, then there exists

c' E CS-1(U, (W.), Z(pq) 274) + 20, b)3

such that dc'(,-) = c(,.) and

liDac'(E,*)11cp+211)+28 < CI IDc(,) 14)

if E U and a is an in-multi-index with 1a1 < b. Here

e(z) = log(l +1z12), 11)(z) = -log d(z), and C depends only on A, B, a, m,

n, and b.

Proof: The proof is essentially that of Corollary 7 of Petersen (1976).

Note that Lemma 6.4 is true with k = if we replace C by C.



CHAPTER SEVEN

GLOBAL EXISIENCE AND FUNDAI\ENTAL SOLUTIONS

In the chapter we prove an existence theorem with estimates similar

to Theorem 1 of Petersen (1975). Using the division theorem we prove,

under certain conditions, the existence of temperate fundamental solutions

with support in R x F, where F is a closed, convex, salient cone. A

simple counterexample of the converse is provided.

If P isa pxq matrix over C[ ,z] we define Cs(U,(Wi) ,R(P)

to be the set of alternating s-cocycles c = (ca) with Pca = 0 in

U x Wa = U x
(Wao

n n
Was),

and

ca c F(U x
Wa,

Eb0)q n L2(U, Wa, ¢, b) .

If f E F(U x W, Eb0) and V C C W, then f c L00)(U, V, Z(0,0), ¢, b)

for any locally (lower) bounded measurable function ¢ on W. Conversely,

if f c L200)(U V Z(00), , b) for some plurisubharmonic function ¢
4)

on W, then f F(U x V, Eb0). (The proof of this last comment follows

from Theorem 2.2.3 of Hormander (1966) and the fact that ¢ is upper

semi-continuous).

Lemma 7.1 Let m = 1, U be open in R, W a domain of holomorphy in Cn,

j>1
and (1v.) be a collection of open covers of W with the

3 Z=0, ..., 3n + 3

properties of Lemma 2 of Petersen (1975). Let L > 0 and ¢ be a C-

56

plurisubharmonic function in W with ¢ (z) - ¢ < L if z E W and

lz - wl < d(z).
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0
9' -Suppose P isa pxq matrix over C[E, z] and Q X

n is

a Hilbert resolution of P (as matrices over C[ E, z]) with t 6 (0, 1)

good for (20, Q2. so that t satisfies the condition of Lemma 5.4.

There exists a polynomial a 6 C[E] (independent of t) and a nonnegative

integer E such that:

If s > 1, b is a nonnegative integer, and c Cs(U, (W.), R(P),(1),b +
3

with 6c(E, ) = 0 (E 6 U), then there exist nonnegative integers M and

N, C > 0, and

CI E Cs-1(U, Oa.
3n+3

), R(P), (/) + NO, b) with

Sc'(,E ) = a(E) c(E, )

and lID2. c' (E,')11(12)+mp+Ne< C(1 + W2)M IID)c(Z, ')112
(I)

for E 6 U
j=o

and 2. = 0, ..., b. Here M and N are nonnegative integers depending on

P and b, C is a constant depending on P, b, and L, and 4 and 6

are as before; ky(z) = - log (d(z)) and e(z) = log (1 +

Proof: The proof is essentially the same as the proof of Theorem 3 of

Petersen (1975). However, we take three times as many refinements as in

Petersen (1975). One set is due to Lemma 5.4. The other is required

since f e r(u x' Eb0) may not be in L-(U,
Wa'

b) but is in
a

L2(U, W2.+1
a

, b).

Theorem 7.1 Let m= 1,P bea pxq matrix over C[E, z] ,U open in

R, and W a domain of holomorphy in Cn. There exists a polynomial

b c C [E] such that the following holds:

Let b be a nonnegative integer, 4 as in Lemma 7.1, and

u c r(u x W, Eb+E0)q (where 2 is from Lemma 7.1). Then there exists
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v e F(U x W, Eb0)q such that Pv = bPu in U x W and

f 141D2V(, -)12e--M4)-NedV < C(1 + 1Ci2)N `2" )12e-dV
j=o -

for C e U and 2. = 0, ..., b. Here M and N are nonnegative integers

depending only on P and b and C is a constant depending on P, b,

and L.

Proof: The proof is essentially the same as that of Theorem 1 of Petersen

(1975).

Let r be a closed, convex, salient cone in Rn and let

r+ = {x e Rn1 <x, y> > 0 if y e Fl be its dual cone. Salient means that

r contains no one-dimensional subspaces, which is equivalent to the

+
interior

ro
of F being nonempty. Suppose m = 1 and P = (P1,. ..P)

is a q-tuple of polynomials in C[C, 11 . If

u e r(R x iRn), E0)cl and cp is a C2 plurisubharmonic function

on W = r+ iRn with f1411)21pu(, -)12e-g5dV < co for 2. = 0, k +

and (z) - c(w)I <. L if z e W and lz - w1 < d(z), then by Theorem

7.1, there exists v e F(R x (Fo + iRn), Ek0)q such that Pv = bPu and

-M-2N
ITY417(' z)I < C()(1 lz12)N+n+1 d(z) for e R and 2 =

where b e C[C], M, N, and C are from Theorem 7.1 and

C(C) =-nnn22n+N+M L 2 N
e C(1 + 1W)

i=o
DZP-u(, *)1120-

Then D2.v( -) is the Laplace transform of a temperate

distribution T2'.(C) E S'(Rn) with support in F, for 2. = 0, k, and

wedefineT.:R---0-vF
by T() = To(C) j = 1, ..., q. Here the Laplace

3 3 3

transform is as in Petersen (1972); defined folmally by
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-<z X>L(f)(z) = I e f(x) dx. We let F denote the Fourier transform in
Rn

S'. Then, if x e r+0,

4 -<x,>
'*> (E), F(f)) = ( v.(E, x + i.), f(.))

dr, dE j

= (Dv(, x + i), f(.))

= ( e-<x'.>T(E), F(f))

if f " and() has compact support. -1.111s y We define

- .
. 1

as the limit of a difference quotient, e<x
>
DT() = e-<x >

T.(E)

on 1;H(Rn)ifxer+0,andsoaT(E)=TI:(V as distributions. Since

1
T.(E) e S', DT. (E) e S'. Then

3

1:127.(E) = T51:(E) e S'(Rn), for 2. = 0, k, and the map

(m), f) e Ck (R) if f c S(Rn).

By the division theorem (Atiyah, 1970), there exists G e S'(R)

with GA = 1 in S'(R) if A e C[E] (a 0). (Of course, this is

trivial in the case of one variable.) C is continuous with respect to

some-norm 11 11H,I on S(R), so G e .51 C S', where SH,, is the

Banach space determined by
1 I IIH,/.

Theorem 7.2 Suppose m = 1 and Q = (IQ Q q) is a q-tuple over
'

c[, which is not identically zero. Let F be a closed

convex, salient cone in Rn.

IfQ.(z)=a()Pg,z)forj=1,...,q(aandP.poly-

nomials) such that P =
(P1, Pq)

has no common zeros in R x (F++iRn),

then Q(- iD, D) has a temperate fundamental solution S = (S1, S )



with support in R x F. Here Qj(- iD, D) is the partial differential

aoperatorobtainedbyreplacingEby,-4andz.by
3

+
Proof: Let ui, e F(R x (Fo + iRn ), EE) such that Pu' = 1, which

we may find by a partition of unity argument. By Corollary 2.2, there

exist u . e r(R x (r+ iRn), E0) with Pu = 1. Let A = ab,

where b is given in Theorem 7.1 (for P), let G c S'(R) so that

GA = 1, and pick H, I (nonnegative integers) so that G E S1. Let

k = H and define S. on S(Rn+1) by

g) = (G, (T.(E), F
o -

(g)(E,.)))
3 -

where
F0

is the partial Fourier transform in the E-variable. Here

Crj(E), Fo(g)(, )) e S (in fact, rapidly decreasing) and we

applyGtothismap.(FremtheestimtesonDv.we see that T.(E)

is continuous with respect to a fixed norm on S(Rn), for all E e R, j<q,

and < Thus S. is well-defined and a short computation shows that

Si is continuous with respect to a norm on S(Rn+1) (depending on the

normswithrespecttowhichG,T.,and
F0

are continuous) and so

S.ES'(Rn+l)forj=1,...,c1.ThesupportofS.is contained in
3

R x r, since Fo is the Fourier transform in E alone and supp(Tj(E))c F.

TheLaplacetransformofT.(E) is v.(E, .), so the Laplace trans-
./

form of P(E, D)T(E) (EAT. (E) is P(E,.)v(E,.) = b(E). Thus
j=1 3

P(C, D)T(E) = b(E)d e Si(Rn). Suppose g S(R). Then

D)S, g) = E (Q.(-iD, D)S., g)
j=1 3

= ( S., Q.(-iD, D)*g)
j J J

60



= E(G,(T.(), F-1 D)*g)(,-)))
o 3

= (G, (T() )
0

= (aG (EP.(, D)Tj(), F-01(g)(,)) ))

= ( aG, ( b()6, F-01g(,.)) )

-1
= (GA,

Fo
(g)(E,0))

= (1, F-01(g)(.,0) )

= g(0, 0)

-1 -1
since if f S(R), then f(0) = ( 6, f ) = ( F0(6), Fo (f) ) = (1, Fo (f)).

Here Q).(- iD, D) is the partial differential operator on Rn+1 obtained

a 9 9
by replacing by - and 7c. by in Qi(- iD, D) and

D) is the partial differential operator on Rn obtained by re-

placing by in P(, D).
9xj 3x.

Notice that the converse of Theorem 7.2 is not true, even if q = 1

(see Enqvist, 1976). If we set T = [0,+ 00) and Pl(E z) = and

z) = z + - 1, then S = (H 0 6, 0) is a temperate fundamental

solution of P =
(P1, P2)

with supp(S) = R x0}, where H is the Heavy-

side function. Notice F, = 0, z = 1 is a common zero of P.

Theorem 7.3 Suppose P isa pxq matrix over (2[, zl, -n] (with

m = 1) and F is a closed, convex, salient cone in an with p < q. If

there is a polynomial a c Cp:1 so that P(, z) = a()R(F z) and R

+
has rank p in R x (F + iRn ), then P(- ID, D) has a temperate funda-

mental solution with support in R x r.

61
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P(- iD, D) has a temperate fundamental solution means that there is

aqxp matrix E over S'(RI1+1) so that P(- iD, D)E = SI where I

is the p x p identity matrix.

Proof: The proof of the sufficiency of the Lemma on page 248 of Lancaster

and Petersen (1980) is still valid if we replace F by R x F. The

theorem then follows from Theorem 7.2.

Notice that we only require that there is a polynomial a c CE such

that det M(E z) = a()Q(, z) E CI, z] for each p x p submatrix M

of P and the 1 x(q) system (Q P) has no common zeros in

+ . n
Q. submatrix of Pand J is a

0

p-multi-index (see Lancaster and Petersen 1980)).
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