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ON TEMPERATE FUNDRAMENTAL SCLUTIONS WITH SUPPORT

IN A NONSALIENT CONE
INTRODUCTION

In this paper we prove a sufficient condition for a p x q (p < q)
system of constant coefficient partial differential operators P(D) to
have a temperate fundamental solution with support in R x I' when T is
a closed, convex, salient cone. A temperate fundamental solution of such
a system is a q x p matrix K of temperate distributions such that
P(D)K = &8I. This can be considered as a partial cxtension of the result
of Enqvist.

Ehrenpreis (1954) and Malgrange (1955) independently proved that
every constant coefficient partial differential operator has a fundamental
solution. Since then, conditions for existence of fundamental solutions
with special properties have been studied. [For an carly survey, sce
Hormander (1957).

We are interested in the location of the support of the fundamental
solution. This question has been studied by several researchers, including
Smith, Petersen (1975) and Enqvist (1976), among others.

One application of our result concerns the following overdetermined
Cauchy problem:

Let X be in the interior of the dual cone of T and let H be the

™
=

closed half-space determined by (0, A), 1.e. H =R x {x
Suppose W € D‘(Rn+l) with supp (P(D)tw} Ct and P(D)rw in a suitable
convolution algebra. Does there exist u ¢ D'(Rn+1) with supp(u) CH

and P(D)%u = P(D) w?



If P(D) has a temperate fundamental solution with support in R x T,
the answer is yes. For details, see Lancaster-Petersen (1980).

This paper can be viewed as one long proof of the result initially
indicated. The method of proof is a modification of proofs by Hormander
(1969) and Petersen (1975, 1976). The paper divides into four parts.

Chapters One through Four form the first part. In Chapter Cne we
prove that the specialization of an exact sequence of matrices of poly-
nomials is exact off a proper variety. In Chapter Two, we show that an
exact sequence of matrices of polynomials is exact over the sheaf E0Q of
germs of C” functions holomorphic in some of the variables. We prove
the existence of partitions of unity with polynomial growth conditions in
Chapter Three. Chapter Four 1s the Weierstrass Preparation and Division
Theorems with polynomial dependence on parameters and with estimates.

The second part, Chapter Five, consists of several lemmas in which
we construct local solutions of systems of polynomial equations with
smooth dependence on a parameter and with estimates. These are similar to
Lemmas 1 and 1' of Petersen (197S).

In the third part, Chapter Six, we solve the Cauchy-Riemann and co-
boundary equations with smooth dependence on parameters and with weighted
L2 estimates. Solutions of the Cauchy-Riemann equations with smooth de-
pendence on parameters, but without estimates, were established by
B. Weinstock.

In the last part, we use the results of Chapters Five and Six and a
Hilbert resolution to find global solutions of a system of polynomial
equations with smooth dependence on a parameter and with estimates. We

then find fundamental solutions as indicated earlier.



(HHAPTER ONE

SPECIALIZATION OF HILBERT RESOLUTIONS

In this chapter, we prove a ''specialization'' result for exact
sequences of C [£&,z] -homomorphisms which will be used later. A weaker
result would suffice for the purposes of this paper, but this result is
aesthetically appealing. The proof is a modification of an argument from

unpublished lecture notes of Aldo Andreotti.

Throughout this paper z = (zl, ceey zn) will denote an n-tuple in
Cn, z! = (zl, ey Zn-l) € Cn_1 will denote the first n - 1 coordinates
of z, and ¢ = (El, cee Em) will denote an m-tuple. & will be in ct

in this chapter (in later chapters it will be in either " or Rm).

Cl&,z] denotes the polynomial ring C [51, v, Em’ Zys e zn],
C[z] the polynomial ring C [zl, e, Zn]’ both over the complex field
C. C(&, z) denotes the field C(gl, e Em’ SRIEREY zn) of rational
functions in El’ ceey Em’ 205 sres 20

Lemma 1.1 If P is a p x q matrix over C [&, z] then there exists
a proper (complex) algebraic variety V in ™ so that if EO £V,
feC [z]q, and P(go, -)Jf = 0, then there exists F e C [g,z]q such

that PF =0 and F(EO, -} = f.

Proof: The proof is by induction on n. Let p be the rank of P over
the field C(&, z). Interchanging rows and columns, we may assume that
if M 1is the principal p x p minor (i.e., upper left hand corner) of
P, then det M # 0 and det M has largest degree in =z, say u, among

all p x p minors of P. We may assume, by a unitary transformation in




the z-coordinates, that

det M(E, z) = a(E]zz + lower order terms in AN

where a ¢ C[§] and a # 0. (Let H be the z-homogeneous term of
det M of degree u in 2z and pick n ¢ ¢ so that H(-, n) #0
and |n| = 1. Rotate c® so n=+ (0, ..., 0, 1) and denote the new

ccordinates also by z.)

let P =TR] =[P ... P and P'=[R] =[P} ... 2].
UQ R
p Lo
Then M = (Pl' . Pé).
Let D =det M=det(P;' ... P1) and V' ={E¢ cMa(g) = 0}. (In
case n=0, V={f¢ Cn|D(£) = 0} 1is the required variety.) Notice

that all minors of order p + 1 in the matrix

"R,
1

&l

LR
p
have zero determinant, for i =1, ..., p, since P has rank p. Con-
sider the minor given by the first p colums and the jth column
N = rRi Pij

Rl Py




where Rj = (le, R Pjp).
Expanding by minors about the first row, we see

0 =det N =3(-1)"p L+ (1P RyD

where E%j = det 'Ri Plj with the kth column omitted.

R' P

L0 pJ-
Setting ij = (-l)k+p+l E%j we see
R, L J=¢(P.....P. 1 [L.]=0
b ] il 1q j
L . L .
PJ o)
D D
L 0 [_0_

. .t .
where D 1s the j h component, for p + 1< j < q.
Thus we have q - p vectors in ker P. Collecting these into a matrix,

get

which is a q x (q - p) matrix over C[&, z] with rank q - p. More-
over, if £ ¢ V' (or £ ¢V if n =10), then D(, ) # 0 and so C(%,-)

has rank q - p. By the choice of M, each L.lj has degree <y in :z.



Of course, PC = 0.

(i) Now assume n = 0. Suppose &9 £V, fe Cq, and P(go)f = 0.

-

= i = 1 =
Let Aj fj/D(SO) for j=p+1, ..., g and A (Ap+l

Lq
Then C(EA = B 1 = [« 7
D(EO) Ap+l p+l
f
D(gy) Aq i Lq
so - Clgln = 'el‘ = 9. Let 0 = (el'
8 8
P L Al
0
[0 |

Since M(SO) is nonsingular and M(go)e =0, 8 = Q.
Thus f = C(EO)A . Let F(&) = C(&)A .



(ii) Assume n > 0 and assume inductively that the lemma has been
proved in dimension n - 1. Suppose EO ¢V, feclzl9 and
P(SO, *)Jf = 0. We now use the division algorithm relative to
z to divide fj by D(EO, *). Recall D(§, z) = a(E)zﬁ +

lower order in Zn'
f. = D(E,, *)A. + 8, j=p0+1, ..., q.
5 = Do IRy 8] q

where Aj’ ej € Clz] and the degree of ej in Z is < yu.

(Note that Aj contains powers of a(&o) in its denominator.)

- -

If we set A = Ap+l we see
A
L a4
C(EO’ -)A = ~ * 7]
D(&g» Mgy
LR
Define © = f - C(§,, *)A = T+ ] et .
91
0
L a ]

Notice P(EO, ‘)@ = P(Eo) ')f - P(Eo) ')C(Eo) 'jA =0

i.e., © ¢ ker P(g,, +). Considering just the first p Trows of
0



P(EO, -)@ we obtain

DR - _
M(EO’ .) e\l = - p5+l(go: ') R PC'J(EO, ')) 9p+l = V.
0 6

L P La

By Cramer's Rule, if 1 <j <p,

D(gy, +)8; = det (PI(§), *) -~ v ... P'(§, )

q
z 8,C '(E ) ')
g=p+1 272370

(with v 1in the ij- place)

' ' ! 3 .th :
where Clj = - det (Pi ... P2 e Pp) (P2 in j— place) which
is a p x P cofactor of P and so has degree in :z < u. Thus
D(EO, -)ej (1 <j <p) has degree < Zpy in z and so ej

has degree < u 1in z for all j =1, ..., q.

We have shown that if EO £ V' and P(EO, «)f = 0, then
f = C(Eo: ')A + 0

where A e C[z]9P, 0 ¢ ([z]? and each component of © has

degree < u in z. If we write
2 ' '
Pg, 2) =z oy(g, 2') + ... +0,.,(E 2)
o(z) = ¥l (@) + L+ e (2D
a4 ... y

where z' = (zl,...,z ), oj 1s a pxq matrix over C[&,z'],

n-1



and d:J. € C[z]q, then the condition P(go, )f = 0 becomes

P(go, )@ = 0 and this is equivalent to
Ol(goy ’)¢l =0

02(50) ')¢l + Ol(goy ']¢2 =0

etc.
If we define ¢ = [o i
0
Il
9
, .
i ‘5z+1_

a (u+ 2)p xuq matrix over C[g, z'] and apply the induc-
tion hypothesis, we can find a proper (complex) algebraic
variety W C C™ so that the lemma holds for y. We set
V=V'UW. If EO ¢ V, then we can find

T{:‘j € C[E, z’]q(l <J=< u) so that, if we set

~ M~
¢— ¢l

~

*,

. -

then q)$=0 and 5(&0, <) =¢ = 1




Define H(E, z) = zﬁ-l$i(£,z') .o+ 5@(5,1') e Cl£,219 and

F=Ch+HeCE, 2% PF=0 and F(g,, +) = £.

Theorem 1.1 If (g, 21T Q azg, 214 —73——-C[£, z]P  is exact, there
exists a proper (complex) algebraic variety V 1in " so that if
EO ¢V, then

QEq, ) P(E,, *)
qaf — 0 © g0

lz)P

1s exact.

Proof: Clearly P(g, -) Q(§, ¢) = 0 for all ¢ ¢ c™

Let V be the variety determined in the previous lemma. Now assume

EO ¢V, fe C[z]q, and P(EO, -)f = 0. By the previous lemma, there

exists Fe C[g, 219 so that PF =0 and F(g,, *) = f. By exact-
ness, there exists G e Cl &, 21T so that QG = F. Now set

g =Gy *) e Clz]T. Then gy, )8 = Fgy, +) = £



CHAPTER TWO

Exact Sequences

In this chapter we prove that if

C[E) Z]r—g_-P C[E) Z]q_p——' C[E) Z]p

is exact, where P and Q are matrices of polynomials, then, if we
consider P and Q as maps of g-tuples and r-tuples respectively of
functions C. in U x W - R" x ¢® with W convex (and U and W open)
and holomorphic in W, this new sequence is also exact. We also introduce

some notation that we will use throughout this paper.

We denote the coordinates in R" by El’ cee, am and in C! by

zy =X ¢ iyl, ceey T XY iyn . We will use the following notation:

EE = sheaf of germs of c*® functions in R" x C"

EO = sheaf of germs of C~ functions in R* x ¢" which are holomorphic in
Z)s cees g

EE(p Q = sheaf of germs of c® forms of type (p,q) relative to
Zys oees 2

AQ = sheaf of germs of real-analytic functions in R" x " which are
holomorphic in 21y - I

00 = sheaf of germs of holomorphic functions in At

If k 1s a nonnegative integer, we denote by EkE, EkO, etc., the sheaves

which are k times continuously differentiable in all variables and c”
(or holomorphic, etc.) in 290 cees 2
We will denote the stalk of a sheaf at 0 (for example) by subscript,

e.g., EEO, and similarly for gemms. Tor a short discussion of sheaves,

see Chapter 7 of HSrmander (1966).

11



I' (V, S) denotes the continuous sections of the sheaf S over V. Thus

I (UxW, EE) = C (U xW.

Def: Let R be a comutative ring with identity and B be a right
R-module. B is R-flat if and only if it satisfies one of the following
equivalent conditions:

(1) The functor B @'R is exact.

(ii) B® I — B is injective, for every finitely generated left

R-ideal I.
(1ii) If ayy coey apER; bl’ e, prB, and Elaibi = 0, then
there exist rij € R and fj €B(1=1, ..., p,j =1, ..., q) such
that ga.r..=0 (j=.l, ..., q) and b. = %f.r..

jo1 L 1] i j=ljlj

(i) and (ii) are equivalent by Theorems 3.53 and 3.54 of Rottman.

(iii) = (i11) If a = Z;bj®ajEKer(B®I—>B]

J
i.e. Z b.a. =0
- 03]
J
then a =2 b.®a. =22Z2fr. ®a.=2f ®Za.r. =10 .
. . 2732 2 . L
j J ] j J J 2 j J ]
. . . P P
(1) = (i1ii) Define a morphism R — R by (cl, R cp) ---»Eciai

1=1

and let K be its kernel. Then 0 — K — RP — R 1s exact. By (i),

0 —+B®K—>BOR — B®R is exact: thus 0 — B® K — BY — B is

exact. Notice B® K — B is defined by b' ® (¢, ..., c)) —
1 1 P 3 3 ! 1 —

(b Cy ., b cp) and B — B 1is defined by (bl, e, bp)

D

Z a.b

i=1 * 71
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Now (bl, cee, bp) is in the kermel of this last map, so there exists
Bl’ e, Bq € K and fl’ e, fq € B so that

>f ®B (b b)

: :— (by, ..., b J.
j=lJ J L P
- 3
If we write Bj = (rlj’ e, rpj)’ then bi =55 rijfj and
p

B. € K implies Z a.r..=0.
J j=1 1 1)

Lemma 2.1 EE. 1is flat over AOO.

0

. 1 p 1 p Sl

Proof: Suppose a™, ..., a” € AOO, b™, ..., b¥ & EEO, and Z a'b = 0.
i=1
We may extend al, cee, a® to holomorphic germs (by power series) and
apply Oka's theorem (Theorem 6.4.1 of Hormander (1966)). Then there
: ij : : P i ij
exists r’’ € AOO i=1, ..., p, j=1, ..., q such that Za'r™~ =0
i=1
and if u,, ..., U€A0, and Z a’u. = 0 then there exists
1 p 0 j=1 1t
qij
v. €A0, j =1, ..., q such that u. = Zr-v..
j 0 1oy=1 J

p [
If we expand 2 a'b’ in formal power series about the origin, then
i=1

p . .
z a; b; = 0 (in the formal power series ring) for e near the origin.
i=1

The formal power series ring is flat over the convergent power series ring,
SO bé =2 réj si for some formal power series SJ, i=1, ..., q. By
Malgrange's theorem (Theorem 1 of Malgrange (1960)),

o
[
1]
W 4.0

r*) t. for some t. € EE,j =1, ..., q .
j=1 J J

Notice that this proves EE 1is flat over AOQ, i.e., EE is flat over AO
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n

at each point of R" x . We do not know if EkE 1s flat over AOQ.

Lemma 2.2 Let U be open in R and W open and convex in ct.oIf
fE€T (UxW, EE(p,q+l)) and 3 f =0 in U x W, then there exists

u€r (UxW, EE such that 3 u=f in U x W.

(P,QJ)

Recall that 3 denotes the Cauchy-Riemann operator in c only.

Proof: Let P be a matrix of polynomials over C[x,y] =

C[xl, Y s cres Xy yn] such that the matrix of partial differential
operators obtained by replacing xj by 5;- and yj by 5;- in P,
j j

which we denote P(D(x,y)), represents the map

) (€ —

‘v, q+l) (.

(p,

where we identify (p,q)-forms with (2) (g) vectors of C functions.

Let Q be the matrix of polynomials over C(C[x,y] such that

Q(P(x,y)) represents the map

Closar) ©) = Clp,q02) €

Then
t t
Clx, y]A ., Clx, y]B _r Clx, y]C is exact.
Now consider P and Q as matrices over C[&,x,y] ({(which are
independent of & = (gl,..., gm)). Then
A Qt B pt C

C[€)XJY] _&_’ C[ny))’] _— C[g )XJY]

is exact. Notice Q(D(x,y))f = 0, since 3f = 0.

By the Malgrange-Ehrenpreis theorem  (Malgrange (1963)), there exists
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g€ c°°(UJ. « WA such that P(x,Y)g,
in U. Thus §gj = f in Uj x W. Let {Uj}’ be an open cover of U

consisting of convex sets and xj a partition of unity of U

£ if Uj is open and convex

subordinate to Uj' Define u = ? xjgj € Cm(p’qJ(U x W). Then 3u = f
in U x W.
Weinstock (1973) proves this lemma for W a domain of holomorphy

and q=p =20, i.e., for (0,1)- forms.

Corollary 2.1 Let U and W be as in Lemma 2.2 and let k be a non-

negative integer. There exists an integer N (independent of k) such

that:
If f€T (U xW, Ek+N E%;?q+l)J and 3f =0 in U x W, then there
exists u € I'(U x W, EkE%p g)) such that Bu = f in U x W.

Proof: The proof of Lemma 2.2 1is still valid if we use the version of

the Malgrange-Ehrenpreis theorem in HOrmander (1966).

Lemma 2.3 Suppose U 1is open in R" and W is a convex, open set in

Cn. Then
rUuxwW, ) —& L wxw, 0% 1 wxw, g0)P
is exact if C(C[g, z]r;——jl———+ Clg, z]q————li——+ Clg, z]p is exact.

Proof: Let Q0 = Q, r, =T, and let {Qj} be a resolution of Q (which
]
need not be finite); that is, — C[g, z]% 2 ... 8 ¢re, 219 2

Clg, z]P is exact. By Lemma 7.6.3 of Hornander (1966)

S T B S e

is exact. Since we can identify AOO and OOO, we see



T. j
—n0 ) &Rt B P

is exact. Since EE 1is flat over AQ,

T, j
— ), R, ppd P gD

is exact. By a partition of unity argument, we sez that

T. j
—rUxW, ) ) -, 8, ruxw, p)% B

is exact. This is clearly true for EE(p Q) also.

Suppose f € I'(U x W, EO)q with Pf = 0. Then there exists
WET (UxW, EE)T
such that
Qu=1£f in U x W.

Then Q3 u=3f =0 and so 5 u

#

Qu, In UxW for some

T
1
u, €Ir{U x W, EE (0’1)) . Now

1

1- = A1 ==
Q9 u; = 9 Q uy = 9 3du=70,

so Ju, = Q2 u, in UxW

)
for some u (0’2)) .

ZE (U x W, EE

T.
Inductively we find u; &I (U x W, EE . ) J

. J = 1 = Y =
with Q uj d uj_1 . When j =n, 3 u, 0.

T
: n
By Lemma 2.2, there exists v, ; €T (U x W, EE 0, n—l))

such that u_ = v . Now
n n-1

16
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T I =
SO 9 (un_l - Q Vn_l) =0 .

iel —_

T
. = n-1
Q Vil S 9 Vo) for some Voo ET(U x W, EE(O, n-Z)J

Thus u 4

T
Continuing in this manner we find v, € T (U x W, EE(O 1)] 2 with

1
5'(u1 - Q2 vi) = 0.

2 = N
So up - Q vy = ) Vo for some Vg € I'(UxW, EE) ~.

Now Qhu, = Qty; - szl) =3 Qv

and Qlu1 = 3u .
= 1 . 1 T
So 3(u - Qvy=0 i.e.,u-Q vy ET(U x W, EO) .

and Qu - leo) =Qu-=1.

it

Corollary 2.2 If f ET(U x W, EE)" with 3 Qf = 0 , then there

exists g € T(U x W, EO)" such that Qg = Qf.

Proof: Let u =f in the previous proof. Then =u - leo =f - leo.

Vo]
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CHAPTER THREE
A PARTITION OF UNITY

We will eventually need special partitions of unity with polynomial

growth and so we prove a suitable result in this chapter.

il

m
Let {Uj|j 1, ..., 2} be a finite open cover of R x C%. We

define

B(t) = ((5, 2) e ‘" x ™ |g] <t, |z| < t},

d(g, 2) = swl(dist (€, 2), UI|(E, 2) e U},
]
inf {d(g, z)| (&, z) € B(t) - B(t - 2)}, and

D(t)

d(t) = min {1, D(t)}

m —
for teR §=(§, ..., §)eR, and z= (2, ..., 2) ¢ c". By v
we mean the (topological) boundary of the set V. Notice that d(&, z) is
the distance from (£, z) to the boundary of the set Uj which contains
(¢, z) and whose boundary is furthest from (§, z).

If vcC R™ x Cn, then V(z) denotes {¢ ¢ le(g, z) € V}.

Lemma 3.1 There exist constants Ca > (0 for each m-multi-index o such

that, for each z e C%, there exists a partition of unity {wj} of R"

subordinate to {Uj(z)’j =1, ..., 2} so that
2
IDal‘UJ(E)‘ —<'C0.(l + |g] + |ZD|0.| (d(t))'|°‘|(2|0‘|+m]-l

if (&, z) € B(t) - B(t - 2).
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Proof: We assume z ¢ C" is fixed and we obtain constants Ca independent

of z (and of t). For 1 <j <2, t>o, reR, define

KG, t, 1) = {€ € R (&, 2) ¢ Uy NB(r) and dist ((€, 2), 3U;) > 2’

L(j, t, r) = K({G, t, r) - K(3, t-2, 1).

Notice that if 2% < D(t), then {L(j, t, r)|]j =1, ..., &} 1is an open

cover of B(t)(z) - B(t - 2)(z) = {§ ¢ Rm|(£, z) € B(t) - B(t - 2)}.

Define r(t) by 2 7Y =d(e)/2. Notice {L(j, t, r(t)|i=l, ..., 2,
t=1, 2,3 ...} is a locally finite open cover of R" with intersection
number < 2% consisting of relatively compact sets. Let x(t, j) be the

characteristic function of L(j, t, r(t)) and define f ¢ Cw(R) by

f(s) = Jexp (1/s) s <0

0 s >0

Let p(&) = Cf(|£|2 - 1) with C picked so that S (E)dE = 1; 0 is a
R

mollifier. Define

2(r(t)+1)

o () = 2T e €l - 1) and w(t,3) = x(t,§) * o,.

Notice supp (w(t,j)) € closed 2-(r(t)+l) - nbhd of L(j,t,r(t) € Uj(z)

and w(t,3)(€) =1 if £e L(j,t,r(0)) - 22T Dania of aL(,t,r(0).
If £ e R™ then for some positive integer q, (£,z) € B(q) - B(q-2)

and d(g,z) > d(q) > 21-T(@ 4pg so, for some 1 < j <&,

£ e L0,a,r@) - (@D ibnd of aL(5,q,7(@)); then w(a,j)(E) = 1.

(=]

z El w(q,j). 8 ¢ Cm(Rm) and 6 > 1, since

fi = .
Define 6 81 g2
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{supp (w(q,j))|ji =1, ..., &, q=1, 2, 3, ...} 1is locally finite, has

intersection number < 3%, and consists of compact sets. Define

q)J = q‘_.‘l w(q,j)/8 1=1, ... L

{wjlj =1, ..., &} 1is a partition of unity subordinate to {Uj(z)}

and it remains to estimate [Dawj(g)l.

By Leibniz's formula,

o«

0@ < B 3 (5) P v@n@pie hel

where 2 is the sum over all m-multi-indices § such that B < a.

B<a
Note
Pl = 2(-1)%: (08) /6!
Y
where § is the sum over all mb-multi-indices Yy = (Yl, cee Yb)
(b= [8]) with vy, < ... <y, vp* - * Y, = 8, 0 1is the number of
Y Y Y;
nonzero Yj’ and (De)Y =D le ...D°. Here DI =
3 Vil 3} Yim 0 m
agl> o L. agm and D6=1 (0= (0, ..., 0) ez).
Atso [DPw(t,5) (@] = |x(a,5) * Do, (8)]
< volume of L(j,t,r(t)) - max IDBot(E)f
el t .
(k)
m(r(t)+1) m 18] 18] (2r(t)+3) max [ (s) |
-1<s<0
| . -
< et B gy oz e Bl a0 B M 10g @) - "

if (£,z) € B(t) - B(t - 2), since then t < max {{g| + 2, [z]| + 2}.



Clearly Cé is independent of t, j, and =z.
2 ] ! L R
So lDSwj(E)I f_C; r I I |DBW(q’J)(5)‘la| since 8 = £ I w(q,j)>1
Bf_a J=l q=l J=l q:l -

2
<C 1+ lg] + ’z!)|a| d(q)_(2|“1+m)|a[—l

(since  {supp (w(q,j))} has intersection number < 3g). Ca depends

on ¢, n, m.

We will be interested in the case where {Uj|j=l, ..., 2} 1is a semi-
algebraic open cover of R" x ¢ and we want a partition of unity with

polynomial growth.

Lemma 3.2. Let {Uj[j=l, ..., &} be a (real) semi-algebraic open cover
of R™ x C®. Then there exist constants C&_z 0 and an integer N > 0
such that, for each z ¢ Cn, there exists a partition of unity {wj} of

R™ subordinate to {Uj(z)} such that

a|2+N

)N

a 1
D79 (8)] < CLL+ [g] + |z
for each m-multi-index «o.

Proof: Let {wj} be the partition of unity obtained in the previous

2n

lemma; we assume 2z € c" has been fixed. We consider C" as R If

m+2n

U 1is (real) semi-algebraic (i.e., U= {(g, x, ¥) ¢ R [P, x, y) =0,

Q(Z, x, y) < 0} with P and Q polynomials) then {(u, &, z) ¢ Rm+2N+l'

p = dist ((g, z), aU)} 1is a (real) semi-algebraic set.

Since the supremum (and so infimum) of a semi-algebraic collection
of semi-algebraic sets is semi-algebraic, {(t, d(t))|t > 0} is semi-

algebraic. Then, by the Seidenberg-Tarski theorem, the following




sets are semi-algebraic: {(t,d(t), w)|[t >0, 0 < pd(t) <1} and

M= {(t, |t >0, 0<upd(t) <1}.

Let M, = {u|(t, W e M = (0 <u<d® ™} and
u(t) = sup u = sup d(t) L. Notice lim D(t) = d(0,0) > 0. Thus
ueMt 0<t<t t40

lim d(r)-l = max{1,1/d(0,0)}. ¢ is nondecreasing and finite. By Lemma 2.1
T+0

(Hormander, 1969, p. 276), there exists a rational number a > 0 and a

constant A > (0 so that
u(t) = Ara(l +0(l)) as t — = .
Then there exists a constant C > 0 depending on u so that
u(t) < cte? t >0
Let N' be an integer with N' > a, say N' = [a] + 1. Then
-1 N' . —————

d(t) ~ < u(t) < C(1+t) if t>o0. If (&,z) € B(t) - B(t-2),

then t <max {[g| + 2, |z| + 2} < |g| + |z] + 2, so

dyt <ci gl + 2N <cra g+ 2DV

| A

Using the estimates of the previous lemma, we see

2
IDij(EH iCa(1+|€l+lz|)|°‘| ey 1ol @lalsm)-1
2
< C&(1+|g|+|zg)N(a| +N
where N =1+ 2N' + mN' and C& = Cac" In the first line,

te (max {|&], |z]}, max {|&]|, |z|} + 2) is arbitrary.




Corollary 3.1. Lemma 3.2 is true with the estimate

0 SRR
D%, ()] <4y + [g]” - 122 NJal S0 /2

2 2

Proof: Computation using the inequality (a + b)z < 2(a” +b7).

23



CHAPTER FOUR

THE WEIERSTRASS THEOREMS

In this chapter we prove a version of the Weierstrass Preparation
and Division theorems with bounds and with parameters. There are several
methods of proof of the Weierstrass theorems. Here we modify the proof
based on Cauchy's theorem.

If PeClg, z], then we define

P(E)(z:1) = sup |P(E,z+w)| = sup [P(g,z+1) .

w<r Iw|<1
An m-multi-index is an m-tuple a = (al, Cee, am) of nonnegative integers.
The length |a| of an m-multi-index [al, . am) is @ ot
B < a means Bj_i oy for j=1, ..., m and B <a means B < a and B # a.

We continue to use the notation of Chapters 1 and 2. Thus
r{U x W, E0) denotes the set of C® functions on U x W which are
holomorphic in W, T'(U x W, A0) denotes the set of real-analytic functions
on U x W which are holomorphic on W, and T(U x W, EkO) denotes the set

of Ck functions on U x W which are holomorphic in W.

Lemma 4.1 Let U be a connected open subset of R™

and C > 0. Let
Peclg, z],se (0, 1), and T > 0. Assume P(§, «) $0 if £ e U.

Let z e C" and assume 5(5)(z:r)‘i C inf |P(&,2',7t)| for cach £ ¢ U.

|-z |=Ts

Let EO e U and let N be the number of Toots of the polynomial
T + P(EO, z', 1) which satisfy |t - zni < rs. Then there exists a

nunber s', o < s' < 1, depending only on ., n, and C where u 1is the
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degree of P in 1z, such that the polydisc
A={we Cn||wj| <s' j=1,...,n-1, |wn| < s} 1is contained in the unit

ball B = {we C"||w| < 1} and so that the following properties hold:

A. There exist unique functions P and P~ so that P = P'P" in
Ux (z+718) with P', P e T(Ux (z+ ra), AO) such that:
(1) P* and P are polynomials in W P+(£,-) and P (&,-)

are bounded in z + rA and P (§,w) #0 if wez+r &

and & e U.
(1i1) P* as a polynomial in W, 1s monic, has degree N* in W
and for each &£ € U and w' g z' + rA', all roots of the

polynomial T + P+(€, w', T) satisfy |t - znl < rs, where

v o=
w (wl""’wn-l) and
at = fw e V] < st 3=l 001,
(iii) There exists a constant C1 > 0 depending only on yu, n, and
+
C so that P(§)(z:r) < C;7" inf |P7(5,+)| and
z+TA

+
- -N ~
sup [P7(&,9)| < Cyr 7 P(E)(z:iT).
z+TA
B. If fel{UXx(z+14), EO) and f(§,*) 1is bounded in =z + rA
for each & € U, then f =Pg+ h where g, he I'(U x (z+rA),E0),
h 1is a polynomial in W of degree < N and there exists a

constant C' > 0 depending only on u, n, and C so that

sup |h(E,*)] + P(E)(z:1) sup|g(&,*)| < C' sup|f(E,+)].
z+1h z+TA Z+TA

Moreover, there exist nomnegative integers Nk depending on A,
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n, and k and constants K, depending on A, n, m, k, C, and
p

the top order terms of P such that

N

DT () | < K (1 + ()% [z 5Ty K B (i) N (KHD)

and the

+
same inequality for |DGP'(g,w)rN (k+l){;

Ny o N s
lDah(E’w)“E Kk(1+‘£‘2+izlz+r2) k p(g)(z:r) N (k 1)

+
. r"N (k+l) ) sup |DBf(£,-]|

B<o z+TA
and the same inequality for |[D%(g,w)|

for every m-multi-index o of length |a| =k and for ¢ ¢ U,

w e 2zt TA.

C. If £ eTU x (z+ra), EkO) and f(g,.) 1is bounded in z + rA
for each £ ¢ U, then £ = Pg + h where g, h € T(U x (z+rA),EkO),
h 1is a polynomial in w of degree < N and there exist
constants C, N, and M depending on P, k, and C so that

ID%h(g,w)| < C1+|g| 2+ 2 2+rD)N Ple) (i) MM

- T sup |DPE(g,.)]|
B<a Z*TA

for £ e U, wez+1rpa and la| < k. The same estimate is true

with g in place of h.

0.1 [0
3 5 \" .
Here D* = (§E_> ...(-———> and ) 1is the total degree
1

of P.

Proof: Let Q(,w) =P, z + tw). We can expand Q 1in powers of w,.

i.e., QE,Ww) = X a (g)ﬁy (y n-multi-indices). Then
v | <u |
P(E,w) = QE, (w-2)/1) = T a @) wYr vl
Y[ <

{

o
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Since any two norms on the finite dimensional vector space P(u,n)
(polynomials in ([ z] = C[zl, ces, zn] of degree < y) are equivalent,

there exists a constant CU > 0 depending only on p and n so that
CREO:) < = |AE)] < CREO:D.
lv]<u

Notice that Q(£)(0:1) # 0 if g e U since P(£,-) #0 if £ e U and
that the coefficients aY(g)/G(g)(o:l) of Q(g,w)/Q(£)(0:1) vary in the
compact set [-CO, CO] depending only on u and n. By a compactness
argument, we can find 6 > o depending only on u, ¢ and n, and s'
depending only on C, p, n, and s so that, if

A' = {w' e Cn-ljjwj\ < s' j=1, ..., n-1}, D = {1 ¢ C||x| < s},
and 4 =4' xD, then ACB and |Q(,w)| > Q(£)(0:1)/2C, if
gelU, w ea' and [[wn| - s| < &. (Note that the hypothesis becomes
|Qg, 0, wn)l_i 5(5)(0:1)/C if |wn| = s.) By Rouche's theorem and the
fact that U x A' 1is connected, we see the polynomial t - Q(g, w', 1)

has exactly N* roots with 1| <s -6 1if £eU and w' €A'.

+

Denote these roots by Tj(g, w') for j=1, ..., N .
+
+ N
Define Q (g, w) = II (wn - Tj[g, w')) for £e¢eU, w A" and
3=1
+ N+
PE,w=n (W -z -7r.(6 (W -2z')/1r)) for geU, w ez'+ A",
j:l n n J
) ot aiQ &, w', 1)
‘ = n -
Set az(g, w') Zni'[. G drt for ¢ =0, 1, 2,

Since Q does not vanish on U x A' x 3D, ez 1s holomorphic on an open

neighborhood of U x A' in cmn, By Cauchy's integral formula,

-
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+

81(5, w') = (Tj[g, w'))l and the coefficients of powers of W in Q

J

LI\ =4

1

are elementary symmetric polynomials of (Tl(g, W', ..o, T (8, W)
N

Since the elementary symmetric polynomials are polynomials with rational

+

N
coefficients of the ''power sums' rk(x) = Z x?, we can find rational
j=1
coefficients b,  (a are N + l-multi-indices) so that, with
a o
g% = eoo - . -eaf )
N

fm,m=§szJMawwﬂﬁ,mroingﬁ|M5N2
a

and so Q+ is holomorphic in a neighborhood of U x A' x C. Similarly,

P+ is holomorphic in a neighborhood of U x (z' + rA') x C and

\I+
)ZTA "Q/

P&, w =ZTb 8, (' - z')/D%w, - 2z

2a Lo
Define P =P/P' on U x (z' + rA') x C. For each £ ¢ U and
w'ez'+TA', T »P (£, w, 1) is a polynomial in .

By Cauchy's integral formula

PT(E, w) = 5ir Pe, W'y 1) dr
vl Josp PY(E, w', 1) (t - W)

if woezZ ¥ D, so P is holomorphic on a neighborhood of U x (z + ra).

Since |rj(g, w')| < s -8 (by the choice of §), we see

4+
(Jwy| + 6 - Y if feU, W ea, jw | >s -3¢, and

Q7 (g, W

| v

+
(|wn-zn|—r(s-6))N if EeU,w' € 2" + rA',Iwn-anzr(s-é).

1P (g, W)

v




. +
Then [P (&, w)| < (ré)‘N sup |P(E,*)| if {wn -z | =rs and by the
Z+TA

maximum principle,
- -N+~ '
|P (&, w)| < (r8) " P(E)(z:r) if we z + 1A, £ e U.

Since the roots of Q+(£, w', T) satisfy |t| <s <1 and the coeffi-
cients of 1 -~ Q+(£, w', T) are elementary symmetric polynomials in the

roots, there is a constant C" depending only on p and n so that the

coefficients of powers of T are bounded by C'". So there exists a con-
stant C"' depending only on u and n so that sup |Q+(§,w',r)| < C"'.
T]<1 -

+
Since P+(£,w) = rN Q+(£,(w—z]/r) if £€eU and w' e 2" + 1A' |

+
sup \P+(£, w', 1) < C”'rN
|t-z_|<r
n
+
ie., [PPGEw)| <C'rY if £eU and we z+ A, Thus

+

+
P g > [PEw [N o > By jaet ifge U,
w' e z' + TA', and |wn - znl = 15, and so, by the maximum principle for

1/P7, we see

[P (&,w)

+
> P(&)(z:r)r'N J2CC"'* if £ e U, we z + TA.

+
This proves A if we set C, = maximm of 2CC"' and sN

If s-8<p<s,EeU,w €z'+rA and Iwn - znf < rp, define

1 £(E,w' T (PN (8w ,T) - PT(E,W W)
h(g,w) = Ll

lr-znl=rp P+(£,w',r)(r~wn)

dr




and g(g,w) = L ]ﬁ £(E.w', 1) dr .

= — _
2miP (g, w' W ) -2 [=Te PO(g,W", 1) (tow)

These integrals are independent of p since P+(g,w',r) has no roots
in |t - zn]_z r(s - §). Clearly, g, he I'(U x (z + rA), EO) and

f=Pg+hin Ux (z+rA). Foreach £ e U, w' gz'+ 1A',

PI(E W, 1) - PT(E W W)

T - W
n

is a polynomial in t (and in wn) of degree < N+, so h 1is a poly-
nomial in W of degree < NT.
+ N+ 2
As before, if Q (§,w',T) = Z dg(g,w')r , then ]dl(g,w')| <"
2=0 ~ -

if £eU and w' e A' and so

+ + +
Q (EJW')T) - Q (E,W',W ) N £ I — +_
| T - W e B YTQ JW%'f.Cva '
n 2=1 j=1 -
for |w | <p, |t| =p,and p>s-3. Soif |w [ <o, 1] =p, p>s-g,

and w' e A', £ ¢ U, then

+ +
P (g,z'+rw',zn+rr) - P (E,z'+rw',zn+rwn)
+ rT - + W
Zn T Czn nj

M Qw0 - QW v )

(T - W)

n

+
] < CZ(TQ)N =

where C2 depends on py and C' and soon p and n.



By the definition of h, we see that

+ +

|[h(g,w)| < sup If(E,-)ICZCro)N '1/([wn-zn| - r(s-é))N
: Z+TA

1

27 Ir-znl =71p |dr|

if s-8<p<s,w ez'+ 1A', |wh - znl <T1p, and & e U. Thus

ot +
Ih(g,w)| < C, sup |£(,%) lim sup (r)" (Jw -z | - r(s-8)) ™
- nn
Z+TA p>s
_\I+
<Cy 87 swp |f(g,*)]
Z+TA

= C3 sup |£(&,*)|
Z+TA

+

where C3 = CZG-N depends on u, n, and C. Since Pg = f - h, we have

sup \P(E;')llg(g:')l _<_ (C3 * l) sup \f(g)')l
Z+TA Z+TA

Also, |P(g,w)| > E(E)(z:r)/ZC (by choice of &) when £ € U, w' € z' + rA',

and \[wn - zn[ - rs| < ré, so, by the maximum principle, we see

sup |g(€,)| < 0(C+DPE) (i) ! sup €2,
Z+TA Z+TA

Let C' = C3 + ZC(C3 + 12.
+ N o
Recall P (§,w) =2 X b (6, (w'-2")/T) " (Ww_-2_)
2=0 |Cf.‘iN+ /Q,U. n n

2 N1
T

and |Q(&, (w'-2")/r,T)| > Q(£)(0:1)/2C = P(£) (z:1)/2C if £ e U,

whez' +TA", W oez + 1D, and |t| = s.
n
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From the definition of 62, it is clear that if vy 1s an m-multi-index,

Y Y,
- A CER S N I
Y| = k, and D <351) e (agm ) then

2+1

'DYGQ(E,w')I (ZC)]Y|+15(E)(z:r)-|Y|-1C4s

I A

celgl B zrene 2 o [z (2w x2sh (VD012

6B (i) 11 L 2z ety (VI -1 /2

[

where C! depends on k, A, n, C, and the top order part of P, if & ¢ U

4
A2

and w' € A'. Since 5(5)(z:r)_§ C2(1+IEI2+|zlz+r2) , we see that there

exists a nonnegative integer N' depending on A, n, and k so that

0P W | < KBE) (2N KD g 22| B t)N

if |yl <k, &£eU, and we z+ rd, and where K' depends on A, k,
n, C, and the top order part of P.
Recall P~ =P/P*. If |y| =k, EcU, w €2' + rA', and

[wn - zn[ = rs, then
+ +
1P, w) | < Kk es) ™ DBy 2oy ™ D (g 20 Zerdy!

and since D'P (£,+) 1is holomorphic

0P (g, )| < KB(E) (zim) N DN D) (g 24 4 20Ty

if £§eU, we z + 1A,
From the definition of g and h and the estimates on P and P,

we see that there exist constants Kl’ K2 > 0 and nonnegative integers



Nl’ N2 so that

C+ - + Nl
DhEw] < & o FDBE @™ C D g4g) 2?3 K
k

-z osup 0Pz,
B<y z+TA

if £eU, wez+rd, and [y| = k. Similarly for g with K, , etc.
“k

Now let Nk = maximum of N', N', Nl s N2

and let Kk = maximm of X',
k

k

KK, K, .
L7

Notice C. 1is essentially the same as B. as far as the proof is

concerned.
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CHAPTER FIVE

LOCAL EXISTENCE THEOREMS

In this chapter we prove a version of Lemma 1 of Petersen (1975)
depending on one parameter. We would prefer to establish the follow-
ing lemmas for any number of parameters, but the method of proof breaks

down if m > 1. We are only interested in taking derivatives in the

[
a

parameter £, and so we introduce the notation D = = for this chapter.

o€

Lemma 5.1 Let P be a p x q matrix over C[g, wl, let m =1, and let
B be the open unit ball in C®. There exist a polynomial ae C[£] and
t € (0, 1) such that:

If E > 0, then there exist constants Ck > 0, and nonnegative
integers Mk and Nk’ for k=0,1, 2, ..., so that if z ¢ Cn,

0 <r<E, and ue I'(Rx (z + TB), EO)q then there exists

veTl(Rx (z+rtB), E0)@ with Pv=2aPu in R x (z + rtB) and

Mk 2, 2 k X 2
sup DV, )| < C (Irr ) (A+|z] Peg| % I sup [D7Pu(g,-)]
z+1tB =0 z+rB
for every k=0, 1, ... and £ € R.

Here Ck’ M, and N depend on k and P.

Proof: The proof is by induction on n and p.

(i) n=0,p=1. P = (Pl, cee, Pq) and we may assume P1 0.
Let a = P1 e Clg], vy = Pu, Vj =0, 3j=2, ..., q and
v = (Vl, ceey vq). Then Pv = Plpu = aPu and the estimates

are clearly true.




(ii) Let n >0 and p > 1 and assume inductively that we have
proved the lemma for all n' <n and p' <p.

Consider P1 = (P , qu). By hypothesis, there exists

11
a polynomial a' e C[£] and there exist constants Ci, non-
negative integers Mﬁ and Nk, t' e (0,1) and

v' ¢ I'(R X(Z+Tt'B),EO)q so that Plv' = a'Plv in R x (z+rt'B)

and
- N
leV'(E’.)‘ icll((l*‘r Mk)(l*”glz'*"le"’rz) k
k
. T sup [D'Plue, )|
2=0 z+T1B
for £ e R.

1
Let C[E,z]r-—-—g———-c[g,z]q N Clg,z] be exact.

By Lemma 2.3

I(R x (z+rt'B),E0)"—2—T(R x (z+rt'B),E0)%

pl

(R x (z+rt'B),E0) 1is exact. Let

fel(Rx (z+rt'B),EO)r so Qf =a'v - v'.

Consider the equation PQg = PQf, which is a system of
p - 1 equations. By the induction hypothesis, there exist
a" e Clg], Cﬁ, N%, Ni, and t" ¢ (0,1) and there exists
g e (R x (z+#rt't"B), E0)T such that PQg = a"PQf = a''P(a'u-v')
in R x (z+rt't"B) with the estimates. Set Vv = Qg + a''v',

t=1t't" and a = a'a'".

(iii) Let n>1 and p =1 and assume inductively that we have

proved the lemma for all n' <n and p' < .
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P = (Pl, cees Pq). We may assume Pq Z 0 and the degree
of Pq in w 1is u = maximum of the degrees of P in w.
We may write Pq = bAq, where b e Cl&], Aq e C[&,w], and
Aq(E,-) £ 0 for £ e C.

Let KCB - {0} C ™ be a finite set such that its image
under the evaluation map B -~ P(u,n)' 1is a basis for P(u,n)',
where P(u,n) 1is the finite dimensional C-vector space of
polynomials in C[w] of degree < u and P(u,n)' is its dual.
Let {L(e)|e € K} CP(u,n) be the dual basis of P(u,n).

Then

AEM) = 2y A (6,0l and
A (8)(z:1) < C max|A_(&,z+re) |
9 eek 4
where C depends only on u and n.

Let V(e) = {(§,w) € R x ¢” such that

|A (§,w+ Te)| > 1/2 max |A (E,w + re')|}. {V(e)|le € X} 1is an
q e'EK q

open cover of R x ct and, if (&,w) € V(e), then
Ké(g)(w:r) < 2C|Aq(£, w + re)|. Define

fe(T) = Aq(S, w+ ret) € Cl1], a polynomial in T ¢ C. fe

has o <y roots, which we call Tys oees T We divide
(/2 - 1/8u, 1 + 1/8u) into 2u + 1 equal intervals and let

~ 3 .
s, =1/2+ e be their midpoints. {[Tj||3~1, ..., O} can

intersect at most 20 < 2u of these intervals. So for each

£ ¢ R, there exists & ¢ {0, ..., 2u}, such that

ls, - |rj[! > X for each j=1, ..., o .

L Su




Define V(e,%) = {(E,w) ¢ V(e)]Aq(g,w + rse) # 0 for all

. 1 22-1 1 22+1]
s ¢ C with |s]| ¢ L§—+ R }
{V(e,2) |e € X, 2=0, ..., 2u} 1is an open cover of R x C°

consisting of semi-algebraic sets. If (g,w) € V(e,2),

A (€)(w:r) < 2C(Buw+1)™ inf  |A_ (E,w+Ts et)|.
q - ‘=l q Z
teC
Assume now that z ¢ C° is fixed and (£,2) € V(e,8). We
make a unitary change of coordinates and so assume that
A(E) (z:1) < 2C(8w+D)™ inf A (5,2',1)]
It-z_|=rs &
n
where s = lsze|. Define W = W(e,2) = V(e,2)(z).
We apply Lemma 4.1 to the polynomial Aq and we find
s' € (0,1),

A={we Cnllel <s' j=1, ..., n-1, |wn| < s},

AT, AT e TW x (z + 1A), AD),

and g,h e T(W x (z + rvA), EO) such that Aq =aA"A7 and

u = Aqg +h in Wx (z + rA) and we have the estimates from

the Lemma. Also, h 1is a polynomial in v of degree < N
where N' is the number of Toots of the polynomial

T > Aq(i,z',r) in  |t- zn| < Ts.

By the same argument as on page 197 of Hormander (1966), we

see Plfl + L, F pq-lfq-l + Aqfq = h where fj e T(W x(z+ra) ,E0)
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and £ f are polynomials in W of degree < N < u.

17 777 "g-1
Thus Aqfq is a polynomial in Wy (of degree < u + N+) and,
by Lemma 7.6.9 of Hormander (1966), Aéfq is a polynomial in w_
(of degree < y).

By Lemma 3.2, there exist C”  functions y(e', £') on R

(e' € K, 2=0, ..., 2u) such that supp(¥(e',2')) CW(e',2")

2H
) ' Yy = t o= -
and o1 2K 2'§o Y(e', ') =1 on R. Set fj Y(e, LA fj and

h' = ¥(e, A h. Then

1 t / | - '
PIE ¢ o+ Py AfL=h

and fé, h' are polynomials in W of degree < u. Also, the
support of these functions 1s contained in W(e, £) x (z'+rA')x C.
This equation is equivalent to a system of 2u equations in the
coefficients (of powers of wn) of the fj on the left and of
h' and zeros on the right and in the variables (&, w').

By the induction hypothesis applied to this system, we can

find a polynomial a, € Cl&l, constants C, > 0 and t, € (0,1),

1
nonnegative integers M, and N and, for j=1, ..., q,
2=0, ..., 2u, F., € I(R x (z'+rs't, B), EO)*" such that the

jL
. X 2 .
functions Fj(g,w) = 50 Fjl(g’w )wn satisfy

PFy + ...+ B Fo g+ AF = ah

and, if o 1s a nonnegative integer k,

| A
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H

42
p4 0

-M
sup DR (5, ) | <C (Ler Dy(us g |Bezr | Bert)Y
1 %o z'+rs'tlB' J

J
u

D) sup [DShi(E,j
%=0 B<a z'+rs'B'

. 2y
where B' is the unit ball in C" % and h'(Ew) = I hy(Ew ).
=0

Now set vj(e,l) = ale/A— j <q and v, =a,(e, g +Fq/A-.

q

Set af(e,l) = a,a,. Then

Pv(e,2) = aj(PF + ... ¢ Aqu)/A' + alazw(e,Q)Aqg

a(e, Yv(e,Yu.

We made a unitary change of coordinates in c? earlier, and
now we make the inverse coordinate transformation; this does not

affect a(e,?) or V¥(e,%), which depend only on E.

Set a = HesK, 9=0,..., 2u a(e,?2) and
24
v= 2 I av(e,)/a(e,?). aeCl&]l and v e I'(R x (z+rtB),E0)
eek L=0
where t = min {sie, s’(e,l)tl(e,l)le € X, 2=0, ..., 2u}. Then

Pv = Ee,l aPv(e,2)/a(e,) = Zé’zaw(e,l)u = au.

We will estimate Vv now. Let
AGEW =Za (Ew =Zb (E)w - 2)T. Now
q’ Y 'y Y Y

b.(§) = Z (w) 7Y 4 (). Here o and w are n-multi-indices
Y w>Y Y w
of length < u. There exists CO > 0 depending only on yu and

n so that

R @ En <3 b @ <X @@,
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2 (- [ -
Since 0 < r < E, g2 e[y > Ly g o)
N O R T R A > BT ang if

2|yl _2u

0<E<1,r > ™", if |y| < u. Thus there is a constant

Cl depending on u, n, and E so that

A®ED2 g T el

1 ly|<u

Let b(E) = I I%&HZ and

RERST
- wy w-Yy 2 . .
c(&,w) IY%EU 'wgy (Y>w aw(£)| . These are real polynomials
on R and R2n+l, respectively, and C(g£,z) = b(g).

Aq(E,') 0 and c(E,w) #0 for real £ and we ch (Notice
c&,w) = bw(E) and bw(E) # 0.) By a result of B. Petersen using
Lemma 2.1 of Hormander (1969), p. 276, there exists a constant

C2 > 0 and a rational number X so that

-1

2L omin (1, €Wl e R, we OO

lcE,w)] > C

Thus |[c(€,w)] '15 C, max {1, [ €,w)] . In the unit ball in
R % Cn, ¢ has a positive lower bound. Thus, if H=max{0,{A]},

2\L

2.\H/2 2
W2 cca+ g e wHh,

cew e+ Em)

-1 2 2,\L
where L =1+ [H/2]. So b() < Cs(l *lglT oz )T

Notice C3 depends on Aq. Thus

e > cCt e e gt et

+
Recall that on W(e,l), Aé(&,w]‘z cr N

s RA(E)(::r) for

weE z + rtB, from Lemma 4.1 (since tBC A). The estimate of

Dkv now follows from the various estimates of g,Fj,A-, etc.
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Lemma 5.2 Let P be a p xq matrix over (C{g,w], m=1, and B be the
open unit ball in c". There exist a polynomial b e C[g] and t e (0,1)
such that, if E > 0, then there exist constants Ck > 0 and nonnegative

integers Mk and Nk such that:

If z ¢ Cn, 0<r<E,and ue (F'(Rx (z + rB), EO])q, then there
exists v e T(R x (z + rtB), EO)q such that Pv = bPu in R x (z + rtB)
and if ¢ is any continuous real-valued function on z + rB, then

erf 05v(e, ) [%e N av < c el |g|2)Nk
z+1tB
3 ID*Pue, -) | %e tav

2=0 “z+TrB

where a = sup |¢(W') - ¢(w')| and '8(w) = log (1 + |w‘2).

z+71B
Proof: The proof is in Petersen (1974) and uses one of Peetre's inequali-
ties. The proof in Petersen (1974) does not involve parameters, but the

proof still works in this case.

Definition: If t € (0,1) satisfies the conclusion cf this lemma, we say

t 1is good for P.

Lemma 5.3 Let U be an open, connected subset of Rm, z € Cn, T >0,

s e (0,1), C>0, and u and k be nonnegative integers. Suppose

Pl’ cey Pq e C[E,w] all have degrees in w = [wl, cey wn) < W,
P (g,-) £0 and P (&) (z:r) <C inf P (g, z', 1)| for £ eU.
q q - |T'Zn|=TS q

Then there exists s' e (0,1) depending only on u, n, s, and C such
that ker (P) CT(U x (z + ra), EkO)q is generated by those of its

elements which are polynomials in wo of degree < y.
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Here A={w€Cn||wj| <s' j<aq, |wn[ < s} and

. ka3
P:(cy, ..., ¢ ) eTU x (z + rA), ET0) + ¥ c.P.

Proof: This is a straightforward application of Lemma 4.1 and Lemma 7.6.9

of Hormander (1966).

n .
Lemma 5.4 Let B be the unit ball in ¢ and U be open in R. Let

Clg,w] P

T

e wl " —2 qe,m?

be exact with m = 1. Then there exists a polynomial b ¢ C[Z] and a
constant t ¢ (0,1) such that:
If z¢ Cn, r > 0, k 1s a nonnegative integer and

fel(Ux (z+1B), EX0)? with Pf = 0, then there exists

geT(Ux (z+ rtB), Eko)r such that Qg =bf in U x (z + rtB).

Proof: The proof is by an Oka induction and the second and third cases
are very similar to (ii) and (iii) of the proof of Lemma S.1. The poly-

nomial b comes only from the proof of the first case, which we present.

(1) n=0. Let E bea qx q matrix over C(g) so that S = EQ
is the unique reduced row echelon matrix of Q. Notice that

Qg' = £ 1iff Sg' = Ef. Let u be the rank of Q (over C(g)).

Then there exists a permutation k1 < ... < ku, A< e < g
of {1, ..., r} so that Sij =0 1if j < ki and Sik. = éij'
f b : f d : f
Then define g' by g, = Z E. and 0= X E. 1f 15y

Ki =1 22 g=1 %2

By Theorem 1.1, we can solve QE)g'E) = f(¢) and so

S€)g'€) = EEIEE), for g off a proper variety. S(z)g'(x)
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is a reduced row echelon matrix, so the last q - yu TOWS are
zero, and thus the second condition in the definition of g’
is satisfied. Now let b be the least common denominator of the

entries of E and g =bg'. Now Sg = bEf, so Qg = bf.

Lemma 5.5 Let P and B be as in Lemma 5.1. There exist a polynomial

ae &g and t € (0,1) such that:

If E>0 and k 1is a nonnegative integer, then there exist C > 0
and nonnegative integers M and N so that if z ¢ Cn, 0<r<E, and
Ue T'(Rx (z + rB), EkO)q, then there exists v e I'(R x (z+rtB), EkO)q
with Pv = aPu and

g M 2., 2. 2N % j
sup [DV(E, )| < C(l+r ) (1+[g] “+[z]"+r")" I sup |D’Pu(g,-)
z+1tB j=0 z+rB

for £ e R and 2=0, ..., k.

Proof: The proof is the same as that of Lemma 5.1 except that we use

Lemma 5.4 in (ii) rather than Lemma 2.3.

Letma 5.6 Let P be a px q matrix over ([g,w, m=1, and B be the
open unit ball in c". There exists a polynomial b e d&] and t e (0,1)
such that, if E > 0 and k 1is a nonnegative integer, then there exist
constants C> 0 and M and N nonnegative integers such that:

If z¢ Cn, 0<r<E,and ue r'{Rx (z + rB), EkO)q, then there exists

veT(Rx (z+rtB), EX0)? such that Pv = bPu in Rx (z + rtB) and
if ¢ is any continuous real-valued function on =z + rB, then

M N

-y =N 2
o v, 2 My < cePare DY S,

2 .
J 2.9
Z+Tt ji | D’Pu(g, )| “e P av
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for £ e R and 2=0, ..., k where 68(w) = log (1 + |w|2) and
a= sup |o(w') - dwW)]|.
z+1B
Proof: The proof is the same as Lemma 5.2 and the proof in Petersen (1974)

(without parameters) works in this case.

Definition If t e (0,1) satisfies the condition of Lemma 5.6, we say
that t is good for P. For a given P, t 1is independent of k and the

two definitions of good for P agree.
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CHAPTER SIX

SOLUTIONS OF THE CAUCHY-RIEMANN AND COBOUNDARY EQUATIONS

In this chapter we solve 3u(Z,-) = £f(&, ) with weighted L2
estimates in the =z variables and smooth dependence on §&. The proof
of this result is a modification of some arguments of L. Hormander (1965).
We then solve the coboundary equation d&c' = ¢ with estimates and smooth
dependence on parameters.

We will use the notation of Hormander (1966, 1965) and some special
notation. Suppose U 1is open in R" and W is open in ct.oIf p
and q are nonnegative integers and ¢ 1s a measurable function of W,

then L%p q)(U, W, ¢) denotes the set of continuous functions from U

to )(W, ¢). LZ

L W, is the Hilbert space of , -f
(2,9 (p,q)( ¢) 1s the Hilbert space of (p, q)-forms
whose coefficients are square integrable with respect to e-¢dV and has
- 2 2
the norm IICIIi =y |c|2e ¢dV, where |c|® = Z z [Ca 8}“
lal=p [B|=aq ™’
2

Let b be a nonnegative integer or +w. (U, W, ¢, b) denotes

L(p,q)

the subset of L%p q)(U, W, ¢) consisting of those functions which are
’ 2

cP functions as mappings from U to L(p q)(w, ¢)

o represents the Cauchy-Riemann operator in ct (i.e., in the =

variables only). Dj represents the partial derivative with respect to

Ej and if o 1is an m-multi-index, a = (al, ey am),
a a
a 1, . m
D™ =D .. = D

Let W be an open set in c" with C2 boundary; that is, there

2 .
exists a real function p € C“(Cn) such that W= {z ¢ Cn|p[z) < o},
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W= {z¢ Cnlp(z) =0} and dp # 0 on oW = the boundary of W. W is

n n 2
pseudo-convex (or Levi-convex) iff £ X § o(z) W.W, > 0 when
‘2] k=] 9%:92 j k—
j=1 k=1 "%j "7k
n ap.
z e W, Z 551 (z)wj =0 and w = (wl, ce, wn) e C". If W is open
j=1 %

in Cn’ W is pseudo-convex iff there is a continuous plurisubharmonic
function u in W such that W, S CSW for all c € R, where
W, = {z € Wlu(z) < c}.

A function u defined in an open set W S(fl is plurisubharmonic

iff

(a) u 1is upper semicontinuous, and

(b) for z and we Cn, the function t - u(z + t™w) 1s subharmonic
in the part of C where it is defined. A C2 function u defined in an

open set W C " is strictly plurisubharmonic iff

j=1 k=1 °%3°% J

for z e W and we Cn, w# 0.

Lemma 6.1 Let U be open in R® Let W be a bounded open set in ct
2

with a C2 pseudo-convex boundary, let ¢ € C° be strictly plurisub-

harmonic in a neighborhood of W: and let eK e C(W) be the lowest eigen-

82
value of the matrix ——Q—=-
az.azk
Suppose f ¢ L2 (U, W, ¢, 1) such that g > 0,
(p,q)
3f(E, ) =0,

IW|f(g) ')12€_¢_Kdv < 2,

and /, [DS£(C, 1% %V < » for jel, ..., m and £ e U.
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Then there exists u ¢ L%p q-l)(U’ W, ¢) such that 7Ju(z, ) = f(g, )
and q 7 Ju(e, % v < 1 j£(e, (% Ry

for all £ ¢ U.

Proof: We will use the notation and results of Hormander (1965). Let

A be the operator on L%p q)(w, ¢) defined by
K/2 2

Ah = L W, ¢).

e he L gy o)

A 1is bounded and self-adjoint. Let S and T be as defined in H&rmander

(1965, p. 99). For h ¢ dom (T*) N dom(S),
2 %112 2
[anl|2 < 1Tal|] + |1sn])2

As in the proof of Theorem 1.1.4 of H6rmander (1965), we see

f y h y T*g
| (£(g, *) g)¢| < |lh(g, *) l¢ | ll¢

for all &£ € U and g e dom(T*), where f£(g, -) = A*h(g, .). Define

F(©) & (L, 0, 00" by FE)() = (£(g, +), ), where

k = T*g + kZ’ k2 3 R(T*)l. R(T*) 1is closed since A has a positive
lower bound (HS6rmander, 1965). Therefore, F(g) 1is well defined for

£ e¢U and

F@I < [Ih@ 11, = (172 /.

Let {k)z = T*gz} be an orthonormal basis of R(T*) in L%p,q)(w’ ¢) and

define u(g) ¢ L%p’q_l)(W, 9) by

u€) = Z FE)(k,)) k, = Z(f(g, -}, g,) K
N A T 27972

for £ ¢ U. Notice



48

Hu@ T = FIF@ (k) 1P g leE, )%™

— Tyl dv/q

2
(p,Q'l)
since Bu(g, *) = f(§, +) by construction.

It remains to show that u e L (U, W, ) where u(g, -) = u(€)(-),

2 ,
(p.a-1) % )

Also, since S 1is closed, SD.f(§, ) = 0 for £ ¢ U, so by Theorem 2.2.1

Now the map £ > (£(5, ), @), is ctw) if gel

J
of Hoérmander (1963), Djf(g, ) = ij(g)(-), where
1

wj(g) e L )CW, $) NN(T)™ for each £eU and 1< j <m. There

2
(P,Q‘l

exists C > 0 depending only on T so that E_C||ij||¢

s
(Theorem 1.1.1 (Hormander, 1965)).

From Taylor's Theorem, we see

(£, =) - £GE°, -), gy,

LI £ © °
ljfo I 050 ¢ e, e - ), gy, a

| A

Al om o 2 \1
(J[ | T (eg + (1-0)E%), k), |%de)? g - €°).
o j=1 J ¢

Then I |(£(&, ) - £°, +), ¢

2
)
9 2N

1 m o) 2 0,2
<z | 2 Gy (t8 + (1-1)E7), k), | " defe - &7
2740 =1 I

1
< X Jr
“ 2o j

m 1
z ~/~ | |w. (tg + (l—t)EO)I{; dt|g - go\z
j=1lJ o J

0,2
C,le - &7

a3

+ (1-+1£° 2 _ 02
. [ (wy (t& + (1-0)87), k), |" defe - &7

I A

A

where the next to last inequality is by Parsavel's relation and Cl




depends on T, f, and go (for |g - go} <1 say). Thus

[uce, +) - uC®, 17 = GO GBI AN TN

implies u 1s continuous as a map from U to L%p q-l](w’ ¢) .

Lerma 6.2 Let U, W, ¢, and K be as in the last lemma. Suppose b

is a nonnegative integer or +» and f ¢ L%p q)[U, W, ¢, b+l) (q > 0)

with 3£(z, ©) =0 and 7 D% (g, )% N av <= for £eU and all
m-multi-indices o with |a] <b + 1. Then there exists

2
L
Y& *p,q-1

q 0%, )% v < [ 0%, )% Ry

)(U, W, ¢, b) such that Ju =f and

for all m-multi-indices o with |a| < b.

Proof: We will prove this by induction on b. We may assume b =1 and

prove the lemma in this case, since the choice of u 1s independent of b.

Let {k2 = T*gz} and u(g, ) = f(f(g, ), g2)¢k2 be as in the

previous lemma. Then

|(f(€ + hej: ‘) - f(gx ') = }IDJf(E! '): gl)‘b[

1
ijo(hbjf(s + they, -) - BDE(E, 1), g,) dt|

[{]

101
| (D*£(c + sthe,, +)th, g,).dsdt| |h]
o) o j 2’9

2 1l
[N [fojo[wjj(g + sthej, 7, kl)(deLdtI

lhlz(JleFl w..(E + sthe., +), k)| dst?dt)”
| o) o 33 ] 29

]

(I
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2 L
‘ ) = Tw.. . .. . N(T)™.
where DJf(E, ) TwJJ(E, ), wJJ(E, ) € N(T) Thus

7‘(f(€ + he ] ) - f(E) ) = hDJf(E, 'j) g
%

< ! v sthe.. <. k) 12dstlde 1nl%
<z I(wjj(s sthe;, ), k,),["dst"dt |h|
¥ o~ o

Dol

1,1 ,
< ,( -f | |w.. (g + sthe., -)][“tzdsdt [h|4 < C|h|4
= JoJo M j 3 ~

by Parsavel's relation and Theorem 1.1.1 of HSrmander (1965). Thus

lim| [u(g + h) - u(g) - E hw, (€, )I|¢/|h| =
h+o j=1
where wj(g, -) = E(Djf(g, -3, gz) k £ LE - l)(w ¢). Then

2

W . = . . [o4
uely -y W 0, 1), Dou(g, +) f(DJf(E, ), gy)yk, » and

a-1
- ) - . 2 -6 - 2~
Su(g, +) = £(¢, ). Similarly, q £ [Du(E, )] %™V = q 7w (g, |%e Py

< 7,ID;ECE, SIS

Theorem 6.1 Let W be a pseudoconvex open set in Cn, d a C2

plurisubharmonic function on W, and eK ¢ C(W) be a lower bound for the
plurisubharmonicity of ¢. Let U be open in Rm, and p and q be
nonnegative integers with q > 0.

Suppose f ¢ L )(U, W, ¢, ») with 3f(g, ¢«) = 0 and

(p,q

112670 Kgy <

S [D £, -

for £ ¢ U and all m-multi-indices «. Then there exists

L%p’q_l)(U, W, ¢, ») such that Bu(z, ) = £(£, -) and

q £ |0%(E, )| %e v < s 0REE, )| e Kay

for all £ ¢ U and all m-multi-indices «.
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2

Proof: Notice L% (p,q-1

)(U W, 9, =) =C (U, L J(W, $)). Let

,q-1
o€ Cm(W) be a strictly pseudoconvex function on W such that
= {z € Wo(z) <M} is relatively compact in W (Theorem 2.6.11 of

Hormander (1966)) and for almost all M, “&I has C” pseudoconvex boundary

(Hormander, 1965). Then, by Lemma 6.2, there exists
2 2 = _ . 2
g, € L(p,q—l)(U’ W", ¢, ») such that agz(g, ) = f(g, ) in U =xW

- 7 ~h-K
and q /f,|D%g, (¢, )| %e bav < s, 0%, )] %e *Ray, for all € e,
W

m-multi-indices a, and 2=0, 1, 2, ..., where Wt {M2|2=0, 1, ...}

‘V
N ’
) 124

is an increasing sequence of reals, and M2 +o as L > «. We extend

: 2 ) . 2
g, by zero outside W™, so {g2|2-0, 1, 2, ...} CC(, L(p,q-l)(w’ 6)) .

Notice this sequence is bounded in Cm(U, L2

(p,q-1) (T #)). Let

(Wj'j.i 1} be an orthonormal basis of L% )(W ¢). Notice that

»q-1
{(gz(-, ), wj("))¢|2=0, 1, ...} is bounded in C”(U), a Frechet-Montel

(1)
g )

, w1)¢ >a) € Cm(U). Similarly, there exists

space, for each j=1, 2, ... . Then there exists a subsequence {g

(1)

of {gz} such that (g,

a subsequence (s)} of {O(S 1)} such that

(g(s), by~ ag € W,

for s =2, 3, ...

et u(g, ) = 2 a;()y;(-). e claim that u e C°(U, L% o1
j )

and u(g, ¢) 1is in the weak closure of {gz(g, «)} for each £ ¢ U.

y (1,6))

= (2 -
Set vz(gx J g (E)'J' Now [VQ(EJ ')) ‘JJJ](D g .(U'(Q) ')) ‘JJJ)(b as

2 » o, for j=1, 2, ..., and so 1if S 1is the subspace generated by
{wj|j=1, 2, ...} then (v (g, -), w) >~ (u(g, <), w)¢ as 2 »» for all

GeS. Nowlet Ace LE ¢-1)®, ). Since S is dense in L%p,q_l)(w, 5),
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if € > 0, there exists ¥ € S so that [[|A - 1Pl|qb < €. For some 2 > 0,
|(V2(E, ), W)¢ - (uE, -J, W)¢| <€,
where £ depends on &, of course. Then

|(V2(€, .) - U(E) .)) )\)(bl

I A

[(VQ(E, ') - U(E) .)) lp)‘bl + ‘(Vl(gx .)) A - IP)¢| + ‘(U(E) '))A —lp)d)’
e+ CEIIn-wlly« CEIIr - wll,

A

i

(1 + 2C(&))e

where C(§) = ||f(g, ')\l¢+K‘ Now let €—=0. Then v,(§, *) converges

weakly (in L%p q-l)(w’ $)) to u(g, *), for & e U. Thus Ju(g,-) = £(&,-)
in U x W, by standard arguments.

Now Dag2(6,°) = ? (Dagl(i,'), Wj)¢wj = ? Daajl(E)wj. By Parsavel's
J J

relation, q ?[Daajl(i)lz_j IIDaf(E,')||2

J o+K for all £ ¢ U and m-multi-

indices . Thus,

q Z[0%, ()] < sup q Z[D%a, ©1* < | 0%, | 1z,
] ] L j i bk
) TN 1 : Q& 2 ‘
so "D u(g,*)" defined by ; D aj(g)wj > L[p,q-l)(w’¢)’ for each £ € U

J

and o. We claim that Dju(E, -}, defined as the limit of a difference

quotient, exists and is continuous. This will show that

2

uecC (U, L(p,

q_l)(w, ¢)) (i.e., the proof will be clear).



U(E"’te.,') - U(E, ')
| ——

2
- D.u(g, ) 115
J(t' ]‘1613

(ay(Evte,) - a,(8))
b) 2 - yA
1z ( - Dj3,(5)) v, 1

1 1 2
= Hi (Djag(g ) - Djag(g))wzl '¢

(by the Mean-Value Theorem, where gl is between £ and ¢ + tej)

2 8.2 2
= | |Z D C - .
IIQDJaQ(a V(&5 - g u
(where glj is between £ and gl)
2 85128 2
Z|D; .- E.
< ZI0a, 6 [lgf - g
2 2 i+ ,2
< [el” Zinja, @)
2
< G xltl
| where C, . = sup max | |D*£(g", ')||i+K and X 1is a compact subset of

X geX |af<2
2

U containing a neighborhood of &¢. Thus u e C(U, L(p g-1

)(W,¢)) and

u 1s differentiable. A similar argument shows u e Cl(U, L%p q_l)(w,¢))

2
¢

i

and Dsu is differentiable. Now |[D%u(g,:)|] z|D°‘aj(g)|2

J
| |D*£(g, )]
q

2
¢+

i A

for all £ ¢ U and all «.

K

Theorem 6.2 Let W, ¢, e, U, p, and q be as in Theorem 6.1. Let b

be a nonnegative integer.

Suppose f ¢ L%p q)[U, W, ¢, b*2) with 3Jf(g,.) = 0 and




2 -6-K

5D (E, ) |%e dV <

for £ e U and |a| <b + 2. Then there exists u ¢ L2 q-l)(U’ W,6, b)

such that 3u(g,-) = £(g,*) and as [D%u(e,- )% %V < 7, D% (e, - ) %e™ ¢ gy
for £eU and [a] <b.
Proof: We modify the proof of Theorem 6.1 as follows:
We note that the inclusion of Cb+l (U) 1into Cb(U) is compact and
b+1 2

the sequence {gl} is bounded in C° “(U, L (0.q- l)(w ¢)). The proof

then follows.

Suppose W 1is a domain of holomorphy in Cn, {Wj‘j.i 1} 1s an open
cover of W, and U 1is open in R". If s isa nonnegative integer and
b 1is either a nonnegative integer or +«, then CS(U,(Wj),Z(p’q),¢,b)
denotes the set of all alternating s-cochains c = (ca) (where o 1is an
(s + 1)-multi-index) with C € L' )(U Wa, ¢, b) and Sta(g,.) =
for £ ¢ U. Here Wa = WOL1 n...N Was. We define the coboundary opera-
tor (&8) 1in the usual manner (Petersen, 1975; Hérmander, 1965).
lemma 6.3 Let W be a domain of holomorphy in C%, U be open in Rm, and
(Wj|jlz 1) be an open cover of W with the properties of Lemma 5 of
Petersen (1976) (and A, B and a as in the lemma). Let ¢ be a Cz
strictly plurisubharmonic function in W and let eK be a continuous

lower bound for the plurisubharmonicity of ¢ with K<L on W, for

some real L. Let b be a nonnegative integer.

If s 1is a positive integer, then for each ¢ ¢ CS(U (w ), Z ,0+K,b+2s)

(p,a)

with &c(§,-) =0 for & e U, there exists

¢t e cSThu, (M), Zey yr @+ 20, B)



such that 6c'(§,*) = c(§,*) and
[10% €, [yagy < CHDPC(E, ) 1oy

for £ €U and |a| <b. Here (z) = - log d(z) = - log(min{l,dist(z,3w)})

and C 1is a constant depending on A, B, a, L, and b.

Proof: The proof is essentially the same as the proof of Theorem 6 of
Petersen (1976) with the lemmas here replacing those in Petersen (1976)
as necessary. Note that the lemma 1s true with b =« if we

replace C by Ca's.

Lemma 6.4 Let W, U, (Wj) be as in Lemma 6.3 and let ¢ be a C2 pluri-
subharmonic function in W. Suppose s 1is a positive integer, b is a

nonnegative integer, and q > 0.
If ce C°(U, (V)5 Z(p qy»®s B ¥ 25) such that &c(g,7) = 0 for

£ € U, then there exists

¢t e ¢S, (45, Z(y oy & * 20+ 20, b)

(p,q
such that &c'(§,*) = c(&,*) and
a ' ° o .
11D (&, ) [ yuppene < CHID (&,
if £eU and o« is an m-multi-index with |a| < b. Here
6(z) = log(1l +|zlz), $(z) = -log d(z), and C depends only on A, B, a, m,

n, and b.

Proof: The proof is essentially that of Corollary 7 of Petersen (1976).

Note that Lemma 6.4 is true with k = « 1if we replace C by Ca'



CHAPTER SEVEN

GLOBAL EXISTENCE AND FUNDAMENTAL SOLUTIONS

In the chapter we prove an existence theorem with estimates similar
to Theorem 1 of Petersen (1975). Using the division theorem we prove,
under certain conditions, the existence of temperate fundamental solutions
with support in R x ', where T 1s a closed, convex, salient cone. A
simple counterexample of the converse is provided.

If P is a p x q matrix over C([£,z] we define CS(U,(Wj),R(P),¢,b)
to be the set of alternating s-cocycles c¢ = [ca) with Pca =0 1in
U x Wa =U x U%}O n...nNn Was), and

ba A 12 q
c, e TUxW , B0 nL W, W, ¢, ).

If felT(UxW, E°0) and VCCW, then fe L u, Vv, z b)

2
(0,0) (0,0)* *

for any locally (lower) bounded measurable function ¢ on W. Conversely,

2
(0,0

on W, then f ¢ I'(U x V, EbO). (The proof of this last comment follows

if fel )(U, vV, Z(O 0)° ¢, b) for some plurisubharmonic function ¢
from Theorem 2.2.3 of Hormander (1966) and the fact that ¢ is upper

semi-continuous) .

Lemma 7.1 Let m =1, U be open in R, W a domain of holomorphy in Cn,

A 3>1 . -

and (W§)£=O’ R W be a collection of open covers of W with the
o]

properties of Lemma 2 of Petersen (1975). Let L >0 and ¢ be a C~

plurisubharmonic function in W with |¢(z) - ¢(w)| <L if zeW and

lz - w] < % d(z).
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Suppose P 1is a p x q matrix over ([f, z] and QO, ce e, QQ is

a Hilbert resolution of P (as matrices over C[&, z]) with t e (0, 1)
2

r

good for QO, ..., Q" and so that t satisfies the condition of Lemma 5.4.

There exists a polynomial a € C[g] (independent of t) and a nonnegative
integer E such that:
If s>1,b 1s a nonnegative integer, and C ¢ CS(U, (W?), R(P),$,b + E)

with Sc(§, ) = 0 (£ € U), then there exist nonnegative integers M and

N, C> 0, and

¢t e S, (w§“+3), R(P), ¢ + My + No, b)  with

Sc'(g, *) =a(&) clg, )

2 .
N 2\M J 112 -
and |[D” c'(g, )||¢+Nw+Ne-5 C(1 + [g]7) jEOIID c(g, )||¢ for £eU
and £ =0, ..., b. Here M and N are nonnegative integers depending on

P and b, C 1is a constant depending on P, b, and L, and % and 6

are as before; y(z) = - log (d(z)) and 6(z) = log (1 + Iz[z).

Proof: The proof is essentially the same as the proof of Theorem 3 of
Petersen (1975). However, we take three times as many refinements as in

Petersen (1975). One set is due to Lemma 5.4. The other is required

since f e I'U x Wi, EbO) may not be in LZ(U, Wi, ¢, b) but is in
L, W e, b,

Theorem 7.1 Let m=1, P bea p xq matrix over (&, z], U open in
R, and W a domain of holomorphy 1in C". There exists a polynomial
b € C[&] such that the following holds:

Let b be a nonnegative integer, ¢ as in Lemma 7.1, and

ue (U xW, Eb+EO)q (where E is from Lemma 7.1). Then there exists



velUxW, EbO)q such that Pv = bPu in U x W and

Ze-¢-Mw'NedV.i C(l + [g|2)N R> fw|Dqu(E, -)|2e'¢dv

1
s DvE, )]
J=0
for £ e¢U and 2 =0, ..., b. Here M and N are nonnegative integers
depending only on P and b and C 1is a constant depending on P, b,

and L.

Proof: The proof is essentially the same as that of Theorem 1 of Petersen

(1975).

. . n
Let I be a closed, convex, salient cone in R and let

r' = {x e RY| <x, y>> 0 if y e '} be its dual cone. Salient means that

[ contains no one-dimensional subspaces, which is equivalent to the

+
interior FO of I’ being nonempty. Suppose m =1 and P = (Pl,...Pq)

10 zn] . If

ue (R x (F; + iRn), EO)q and ¢ is a C2 plurisubharmonic function

is a q-tuple of polynomials in C[g, z

on W =0+ iR with J [D'Pu(g, )% av <= for =0, ..., k+E

and |9(z) - ¢()| <L if zeW and |z - w| <3 d(z), then by Theoren
7.1, there exists v € I'(R x (F; + iRn), EkO)q such that Pv = bPu and

|2)N+n+l -M-2N

ID*v(E, 2)] < CEYQA + |z d(z) for £eR and & =0,...,k,

where b e C[g], M, N, and C are from Theorem 7.1 and

k
- N 2.1 2
ce) = v W2 Nele « gAY T pteuce, )3

=0
(Petersen, 1975). Then Dlvj(g, +) 1s the Laplace transform of a temperate
distribution T?(E) £ 3'(Rn) with support in T, for £ =0, ..., k, and

we define TJ.:R-—>SI', by Tj(g) =T?(g) j

1, ..., q. Here the Laplace

transform is as in Petersen (1972); defined formally by
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L()(z) = -<Z’X>f(x) dx. We let F denote the Fourier transform in

o
S'. Then, if x ¢ F;,

_<x’

(%7 1,0, FE) = gg (5, x + 1), £0))

il

( va(g, x + 1), £(+))

( e‘<x">T}(g), F(£))

if fe S and F(f) has compact support. Thus, if we define DTj(g)

X "> T%(a)

<X,

as the limit of a difference quotient, e "> DTj(EJ = e

on D'(Rn) if x¢ F+, and so DT.(g) = T%(g) as distributions. Since
0 J J

T%(E) e S', DTj(E) g S'. Then

D’l'rj(g) = T?(E) e S'(RM, for £ =0, ..., k, and the map
Eew (TE), £) ¢ CS(R) if fe SEY.

By the division theorem (Atiyah, 1970), there exists G ¢ S'(R)
with GA=1 in S'(R) if A e Cfg] (A #0). (Of course, this is
trivial in the case of one variable.) G 1is continuous with respect to

on S(R), so Geg S/, ; CS', where S

g1s is the

some ‘norm | |

i, 1 H,I

Banach space determined by || ||H I

Theorem 7.2 Suppose m =1 and Q = (Ql, R Qq) is a q-tuple over
aeg, 200 e zn] which is not identically zero. Let T be a closed,
convex, salient cone in RT.

If Qj[E, z) = a(E)Pj(E, z) for j =1, ..., 0 (a and Pj poly-

nomials) such that P = (P . Pq) has no common zeros in R X (F;+iRn),

l)

then Q(- iD, D) has a temperate fundamental solution S = (Sl, ce, Sq)
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with support in R x T'. Here Qj(- iD, D) 1is the partial differential

operator obtained by replacing & by. - 15% and Zj by 83
j

Proof: Let ui, R ué e T(R x [F; + ian, EE) such that Pu' = 1, which

we may find by a partition of unity argument. By Corollary 2.2, there

exist ul,

where b 1s given in Theorem 7.1 (for P), let G e S'(R) so that

Uy e TR x (r; + iR™, E0) with Pu=1. Let A = ab,

GA =1, and pick H, I (nonnegative integers) so that G ¢ Sé‘I. Let

k=H and define S, on SRy by

(S., g)

j (G) (Tj(g)) Fo(g)(gx')))

where FO is the partial Fourier transform in the §g-variable. Here
£ — (Tj(g), Fo(g)(g, )) ¢ SH,I (in fact, rapidly decreasing) and we
apply G to this map. (From the estimates on Dlvj, we see that T?(g)

is continuous with respect to a fixed norm on S(Rn), for all & ¢ R, j«<q,
and 2 < k.) Thus Sj is well-defined and a short computation shows that
Sj is continuous with respect to a norm on S(Rn+l) (depending on the
norms with respect to which G, Tj’ and FO are continuous) and so

Sj £ S'(Rn+l) for j =1, ..., q. The support of Sj is contained in

R x I', since FO is the Fourier transform in £ alone and supp(Tj(E))C T.

The Laplace transform of Tj(i) is vj(g, -}, so the Laplace trans-

q
form of P(g, D)T(E) = . Pj(E,DJTj(E) is P(&,-)v(g,+) = Db(g). Thus
J=

P(g, D)T(§) = b(E)S§ ¢ S‘(Rn). Suppose g ¢ S(Rn+l). Then

@Q(-ib, D)S, g) =

J

= ? ( Sj) Qj(-iD) D)*g)

q
1 (Qj(-lD) D)Sj) g)



01

-1 ) *
;z;(c, (T5(8), F,H (1D, D) &) (5,7)))

r -l .
;{:(G, (T,68), a®P; (5.0 FyH @) (5, )

(a6, (2p;6 DTy ®, Pl En))

( aG, (b(g)s, Félg(a,-)) )

(Ga, F ') (£,0))

(1, Fyh () (-,0))
g(0, 0)

since if £e S(R), then £(0) = (&, £) = ( F (e, F(‘)l(f) ) = (1, F(‘)l(f)).

*
Here Qj(- iD, D) is the partial differential operator on Rn+l obtained
i 9 -2 3 -2 - iD. D)
by replacing T by 5E and axj by axj in Qj( iD, D) and
*
Pj(g, D) 1is the partial differential operator on R" obtained by re-

by - =0 in P(g, D).

placing X

2
IX .
J
Notice that the converse of Theorem 7.2 is not true, even if q = 1
(see Enqvist, 1976). If we set T = [0,+=) and P (¢, 2) = ¢ and
P,(&, z) =z+§&-1, then S= (H®S§, 0) is a temperate fundamental

solution of P = LPl, P7) with supp(S) = R x{0}, where H 1is the Heavy-

side function. Notice £ =0, z =1 1is a common zero of P.

Theorem 7.3 Suppose P 1is a p x q matrix over C([%, Zys e zn] (with

m=1) and T 1is a closed, convex, salient cone in R with p<q. If
there is a polynomial a e¢ C[§] so that P(g, z) = a(§)R(§, z) and R
has rank p in R x (Fg + iRn), then P(- iD, D) has a temperate funda-

mental solution with support in R x T.
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P(- iD, D) has a temperate fundamental solution means that there is

n+l

aqxp matrix E over S'(R ) so that P(- iD, D)E = SIp where Ip

is the p x p identity matrix.

Proof: The proof of the sufficiency of the Lemma on page 248 of Lancaster
and Petersen (1980) is still valid if we replace T by R x I'. The

theorem then follows from Theorem 7.2.

Notice that we only require that there is a polynomial a ¢ C[£] such
that det M(Z, z) = a(§)Q(g, z) € C[g, z] for each p x p submatrix M

of P and the 1 x(g) system (Qj| |J| = p) has no cormon zeros in

R x (FB + iRn), where Qj is a p xp submatrix of Pand J 1is a

p-multi-index (see Lancaster and Petersen 1980)).
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