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Turbulent flows over rough surfaces are encountered in many engineering and geo-

physical applications. Flows of this nature, due to their increasing technological

interests, have been a subject of rigorous investigation in recent years. Of the

particular interest to the oceanographic community is the study of turbulent oscil-

latory flow over rough surfaces, representative of sediment-bed in a coastal environ-

ment. In particular, formulation of predictive criteria for onset of sediment motion

requires detailed knowledge of the dynamics of the near-bed turbulence structure

and resultant variations in the magnitudes and time-scales of the destabilizing

drag and lift forces on sediment grains. The primary objectives of this work are (i)

to quantify, using high-fidelity numerical experiments, sediment grain–turbulence

interactions and (ii) provide data on the temporal variations in the magnitude of

drag and lift forces on sediment grains, the time-scales associated with these vari-

ations, and their correlations with the near-bed turbulence in an oscillatory flow

environment.

To this end, particle-resolved direct numerical simulations (DNS) are performed

to investigate the behavior of an oscillatory flow field over a bed of closely packed

fixed spherical particles for a range of Reynolds numbers in transitional and rough



turbulent flow regime. Presence of roughness leads to a substantial modification of

the underlying boundary layer mechanism resulting in increased bed shear stress,

reduction in the near-bed anisotropy, modification of the near-bed sweep and ejec-

tion motions along with marked changes in turbulent energy transport mechanisms.

Characterization of such resulting flow field is performed by studying statistical

descriptions of the near-bed turbulence for different roughness parameters. A

double-averaging technique is employed to reveal spatial inhomogeneities at the

roughness scale that provide alternate paths of energy transport in the turbulent

kinetic energy (TKE) budget. Spatio–temporal characteristics of unsteady particle

forces by studying their spatial distribution, temporal auto-correlations, frequency

spectra as well as cross-correlations with near-bed turbulent flow variables are

reported. Intermittency in the forces by means of impulse is also investigated.
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〈ũ2〉; (b,e) spanwise 〈ṽ2〉; and (c,f) wall-normal 〈w̃2〉 component of
dispersive Reynolds stress. Symbols represent: •, Ps; �, (−Pm);
�, (−Pw); I, viscous dissipation; N, pressure work. Only selected
terms are plotted. Panels (a,b,c) are for the gravel and (d,e,f) are for
the sand case. All the terms are normalized by u4

τ,max/ν. The dash-
dot line at (z − zb)/D = 0.3 in (a,b,c) and at 0.15 in (d,e,f) shows
roughness crest level for the gravel and the sand particle, respectively.112

D.4 Budget at a decelerating phase (ωt = 6π/10) of (a,d) streamwise
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DNS study of Particle-bed–Turbulence Interactions
in Oscillatory Flows

Chapter 1: Introduction

A river or sea bed is made up of sediment particles that are in close contact with

each other and retain the form of the bed through collision and cohesive forces

(Fredsøe & Deigaard, 1992). Shear stresses exceeding a critical threshold can strip

the particles from the bed, suspend them in the fluid and deposit them elsewhere

(Drake et al., 1988). Prediction of onset of sediment erosion and interactions

of sediment bed with oscillatory turbulent flows are the two long-standing issues

governing sediment transport in coastal environments.

Computations of sediment-laden flows typically employ simplistic quasi-steady

models to study sediment transport, in particular, onset of sediment erosion (Bag-

nold, 1966; Fredsøe & Deigaard, 1992; Nelson et al., 2000; Nino et al., 2003).

Historically, these models are based on (i) Shields parameter, θ = τ̄w/(ρp − ρ)gD

(Shields, 1936), which is the ratio of average bed shear stress (τ̄w) to the stabilizing

settling force due to gravitational acceleration (g). Here, ρp and ρ are sediment and

fluid densities, respectively and D is the average particle size. The mean bed-load

particle flux is then obtained as a function of particle size and bed shear stress; (ii)

Sleaths parameter, S = (−dp/dx)/(ρp − ρ)g (Sleath, 1995; Flores & Sleath, 1998;

Sleath, 1999), incorporates pressure-gradient at the peak of the cycle and is used

in wave-induced sediment transport models. Laboratory observations have tried to

quantify onset of erosion based on exceeding the Shields or Sleaths parameters be-

yond a critical value. However, these models are deterministically based on mean

values of the destabilizing forces, and do not consider effects of particle shape, bed

arrangements, and more importantly, multi-scale interactions between turbulent
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flow and sediment particles. More accurate descriptions can be developed using

stochastic models by measuring or directly computing the probability of particle

entrainment based on stochastic flow properties (Einstein, 1950; Mingmin & Qi-

wei, 1982; Cheng & Chiew, 1998; Papanicolaou et al., 2002; Cheng & Law, 2003;

Wu & Chou, 2003; Wu & Kuo-Hsin, 2004; Hofland & Battjes, 2006). Knowing the

probability distributions of lift and drag forces on the particles under which parti-

cle dislodgement can take place is critical in developing such stochastic models. In

many instances, as computations or measurements of drag and lift forces are not

straightforward, these models often assume Gaussian or log-normal distribution

for near-bed velocity fluctuations to correlate instantaneous hydrodynamic forces

on particles to the near-bed flow.

Research hypothesis and objectives: The proposed research builds upon

the following main hypothesis: the dynamics of near-wall turbulence structure and

resultant variations in the magnitudes and time-scales of the destabilizing drag

and lift forces on sediment grains are critical in formulating predictive criteria for

onset of erosion. The numerical experiments are therefore designed to resolve this

central hypothesis.

The main objectives of the proposed work is to conduct high-fidelity particle-

resolved direct numerical simulations for a range of Reynolds numbers to obtain

detailed data on coherent structures, Reynolds stresses, turbulent kinetic energy

budget, and correlate wall-layer dynamics to the drag and lift forces on the particle-

bed in an oscillatory turbulent flow. Investigation of the stochastic nature of par-

ticle forces by quantifying their higher-order statistics will also be carried out. To

ascertain confidence in the simulations, results of the present analyses are com-

pared against the data in the literature whenever possible.

Intellectual merit: The novelty of this research is in the development and use

of a fully-resolved simulation approach based on first principles, without requiring

models for drag and lift forces, to study particle-bed–turbulence interactions in

oscillatory flows. This work will, for the first time, provide data on the temporal

variations in the magnitude of drag and lift forces on the bed of fixed sediment
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grains, the time-scales associated with these variations, and their correlations with

near-bed turbulence in oscillatory flow environment. Any such measurements are

extremely difficult to obtain from experiments and novel numerical methodologies

are therefore necessary to provide detailed flow characteristics.

Outline of the thesis: The thesis is structured as follows. Chapter 2 presents

DNS results of oscillatory flow field over a rough-bed of closely packed fixed spher-

ical particles for a range of Reynolds numbers in transitional and rough turbulent

regime. Characterization of near-bed turbulence in terms of mean velocity distri-

bution, Reynolds stress variation, turbulent kinetic energy budget, near-bed flow

structures and their anisotropy along with probability distribution functions of

velocity and pressure perturbations are reported. In chapter 3, statistical descrip-

tions of hydrodynamic forces are reported. The spatial and temporal structure

of unsteady drag and lift forces on the particle-bed are investigated. Focus is

given on characterizing unsteady forces in terms of spatial distribution, temporal

auto-correlation, force spectrum, higher-order force statistics and intermittency as

well as cross-correlations with measurable flow variables. In chapter 4, flow dy-

namics inside the roughness sublayer has been studied in detail by employing a

double-averaging technique. In order to characterize modulation of the near-bed

turbulence as it governs the nature of inner–outer layer interactions along with gen-

eration of drag on the roughness elements, the focus is given analyzing alternate

pathways of kinetic energy transport mechanisms resulting from spatial inhomo-

geneities at the roughness scale. Finally, concluding remarks are given in chapter

5. Some additional supporting material is provided in the appendices.
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Chapter 2: DNS study of particle-bed–turbulence interactions in an

oscillatory wall-bounded flow
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Abstract

Particle-resolved direct numerical simulations (DNS) are performed to investigate

the behavior of an oscillatory flow field over a rough-bed, corresponding to the ex-

perimental setup of Keiller & Sleath (1976) for transitional and turbulent flows over

a range of Reynolds numbers (95–400) based on the Stokes-layer thickness. It is

shown that the roughness modulates the near-bed turbulence, produces streamwise

horse-shoe structures which then undergo distortion and breaking, and therefore

reduces the large-scale anisotropy. A fully developed equilibrium turbulence is ob-

served in the central part of the oscillation cycle, with two-component turbulence

in the near-bed region and cigar-shaped turbulence in the outer region. A double-

averaging of the flow field reveals spatial inhomogeneities at the roughness scale

and alternate paths of energy transport in the turbulent kinetic energy (TKE)

budget. Contrary to the unidirectional, steady flow over rough beds, bed-induced

production terms are important and comparable to the shear production term. It

is shown that the near-bed velocity and pressure fluctuations are non-Gaussian, a

result of critical importance for modeling of incipient motion of sediment grains.

2.1 Introduction

Turbulent flows over rough surfaces have been a subject of rigorous investigation

owing to their increasing technological interests in engineering and geophysical ap-

plications (Raupach & Thom, 1981; Raupach et al., 1991; Jiménez, 2004). There

has been considerable work done on stationary, unidirectional turbulent flows over

rough surfaces clearly identifying the effects of roughness elements on near-bed

turbulence as increased bed shear stress, reduction in near-bed anisotropy, and

marked changes in turbulent energy transport mechanisms (Krogstad et al., 1992;

Krogstad & Antonia, 1994; Krogstad et al., 2005; Ikeda & Durbin, 2007; Chan-

Braun & Uhlmann, 2011; Yuan & Piomelli, 2014b; Kempe et al., 2014). Presence of

roughness was also shown to greatly influence near-bed sweep and ejection motions
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(Krogstad et al., 1992, 2005). In many practical applications, such as, sediment

transport in coastal flows, blood flow circulation, intake of a combustion cham-

ber and so on, the flow conditions are mainly unsteady/non-stationary in nature.

However, such detailed findings pertaining to turbulence modulation by rough-

bed under oscillatory flow conditions have not been well documented. In order to

improve the understanding of the mechanisms that lead to the onset of sediment

erosion under coastal conditions, detailed knowledge of sediment-bed-turbulence

interactions is necessary. Impact of near-bed sweep/ejection events on the onset of

sediment motion can be significant and should be accounted for in the development

of probabilistic models predicting sediment erosion. These models often assume

Gaussian or log-normal distribution for near-bed velocity fluctuations (Einstein,

1950; Papanicolaou et al., 2002). It is hypothesized that the near-bed flow dy-

namics, roughness effects, and flow through porous regions lead to non-Gaussian

velocity fluctuations, and higher-order turbulence statistics, such as kurtosis and

skewness, are necessary for better predictions (Wu & Kuo-Hsin, 2004).

Present understanding of oscillatory boundary layer over rough surfaces is

mainly based on experimental investigations of Keiller & Sleath (1976); Jonsson &

Carlsen (1976); Sleath (1987); Jensen et al. (1989), including more recent studies

of Chen et al. (2007); Dixen et al. (2008); Mujal-Colilles et al. (2014); Corvaro

et al. (2014). Keiller & Sleath (1976) first reported velocity measurements close to

the rough-bed sinusoidally oscillating in its own plane. Jonsson & Carlsen (1976)

later reported velocity measurements, but not turbulence, for fully turbulent os-

cillatory flow over a rough-bed. However, most detailed experimental studies of

sinusoidally oscillating flow over rough beds are those of Sleath (1987) and Jensen

et al. (1989). Sleath (1987) presented the measurements for velocity and near-

bed turbulent intensities for moderately high Reynolds numbers, whereas Jensen

et al. (1989) further expanded the research by carrying out experiments at higher

Reynolds numbers and wider range of particle diameters. In essence, all these

studies reported a common conclusion that the presence of roughness elements

significantly affects near-bed turbulence by increasing turbulent intensities and
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Reynolds stresses. Beyond this, however, due to experimental limitations these

studies did not present detailed analysis of near-bed turbulence structure. On

the other hand, owing to the enormous computational cost in resolving individ-

ual roughness elements and complexities in handling flow unsteadiness, perform-

ing detailed numerical investigations of these flows at high Reynolds numbers is

still a challenge and very few numerical investigations have been reported so far

(Fornarelli & Vittori, 2009; Ding & Zhang, 2010). However, none of these studies

presented detailed characterization of near-bed turbulent flow dynamics.

This paper is therefore oriented towards fundamental understanding of roughness-

turbulence interactions in symmetric, sinusoidally oscillating turbulent flow over

a range of Reynolds numbers. To the best of our knowledge, no such detailed

characterization of near-bed turbulence in oscillatory flows over rough surfaces by

means of DNS has been reported to date. The outline of the paper is as follows:

the computational setup and methodology are presented in § 2. In § 3, simulation

results are presented; followed by main conclusions in § 4.

2.2 Methodology

2.2.1 Computational setup and simulation parameters

The computational domain, shown in Fig. 3.1, consists of a doubly periodic box (in

x and y directions) with a smooth no-slip wall at z = 0 and a slip wall at z = 30δ,

where δ =
√

2ν/ω is the Stokes-layer thickness, ν is the kinematic viscosity, ω

= 2π/T is the oscillation frequency and T is the period of the wave. Rough-bed

made up of hexagonal pack of fixed spherical roughness elements is considered cor-

responding to the experimental configuration of Keiller & Sleath (1976). As shown

in Fig. 3.1, x, y and z are, respectively, the streamwise, spanwise and wall-normal

directions and u, v and w are the velocity components in those directions. The in-

plane domain length is 24.1δ and 13.9δ in the streamwise and spanwise directions,

respectively. The roughness element diameter normalized with the Stokes-layer

thickness is, D = d/δ = 6.95, equivalent to the gravel-type roughness (Sleath,
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Figure 2.1: (a) Close-up view of the computational domain and boundary con-
ditions. (b) A harmonic pressure forcing is imposed that results in a streamwise
velocity component U∞ sin(ωt) far from the bed.

1987).

The dimensionless parameters of the problem to completely characterize the

flow are outlined in Table 4.1, consist of the Reynolds number based on Stokes-

layer thickness, Reδ = U∞δ/ν, and the effective roughness Reynolds number, k+
s

= uτ,maxks/ν. Here, U∞ is the amplitude of the free-stream velocity, ks is the

Nikuradse roughness size and uτ,max is the maximum friction velocity in a flow

cycle. The corresponding particle Reynolds number, ReD = U∞D/ν and Reynolds

number based on the wave amplitude, Rea = U∞a/ν are also given in Table 4.1.

Here, a is the amplitude of wave oscillation given by, a = U∞/ω. Figure 2.2 maps

the different cases on a regime diagram (a/ks −Rea map) for oscillatory flow over

roughness elements showing the laminar, transitional, and rough turbulent regimes.

The cases studied in this work span a broad range of Reynolds numbers, starting

from transitional, where incipient vortex formation around the spheres leads to

strong vertical velocities at Rea = 4510, up to fully turbulent, very rough regime,

Rea = 80000.

Table 4.1 tabulates the parameters and spatial resolutions used in this study.
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Figure 2.2: Delineation of different flow regimes for oscillatory flow illustrating
previous studies (Jonsson & Carlsen, 1976; Kemp & Simons, 1982; Sleath, 1987;
Jensen et al., 1989; Krstic & Fernando, 2001; Chen et al., 2007; Dixen et al., 2008;
van der A et al., 2011) and present cases. Symbols represent: •, Reδ = 95; �,
Reδ = 150; �, Reδ = 200; N, Reδ = 400.
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Reδ Rea ReD k+
s Nx Ny Nz Nz/D a/ks Regime

95 4510 660 315 120 80 460 160 3.4 transitional
150 11250 1042 400 136 100 556 200 5.4 very rough turbulent
200 20000 1390 478 184 120 664 240 7.2 very rough turbulent
400 80000 2780 745 208 152 832 300 14.4 very rough turbulent

Table 2.1: Computational parameters and grid resolution details. k+
s is computed

using maximum value of the friction velocity in a flow cycle. Present study assumes
low Froude numbers.

Uniform grids, although not cubic, are used in the region surrounding the roughness

bed (giving roughly around 160 to 300 points in the wall-normal direction per

particle diameter) and grids are stretched in the wall-normal direction (above z =

10δ) using a hyperbolic tangent function. In all the cases, ∆x+ and ∆y+ are less

than 5 and 3, respectively, and ∆z+ < 1 in the near-bed region (up to z = 10δ).

Around 15 flow cycles per case are computed to obtain statistical convergence.

A systematic grid refinement study was performed to obtain optimum grid spac-

ing, confirming a nearly second-order accuracy of the solver as shown in Ghodke

et al. (2014b). Present grid resolution was chosen as the there were no discernible

differences in the flow statistics of finest and current grid (see Appendix A). In

addition, energy spectra were analyzed for different grid resolutions keeping the

Courant number (CFL) close to 0.5 for time-accurate calculations. The stream-

wise and spanwise energy spectra (not shown) illustrated the adequacy of the

computational grid to resolve the smallest scales of turbulence. The domain size is

verified to be sufficiently large by calculating two-point spatial velocity correlation

functions, in both streamwise and spanwise directions, by doubling the domain.

The correlations showed no effect of domain size, and confirm the adequacy of the

domain size to accommodate the largest turbulent structures (see Appendix B).

Vertical size of the domain is chosen such that all turbulent statistics decay to
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zero at almost half the vertical height. Increasing the vertical extent of the do-

main showed no effects on the near-bed flow statistics (see Appendix A). Similar

computational domain sizes were used in the previous work by Fornarelli & Vittori

(2009); Ding & Zhang (2010).

2.2.2 Validation study

The numerical solver used in this work is based on a co-located grid, fractional time-

stepping, finite volume algorithm based on energy conserving principles and has

been developed and validated thoroughly for a range of canonical and complex tur-

bulent flows (Mahesh et al., 2006; Moin & Apte, 2006; Apte et al., 2003, 2009a,b).

This solver was further extended to incorporate fictitious domain method to handle

arbitrary shaped immersed objects without requiring the need for body-fitted grids

(Apte et al., 2008; Apte & Finn, 2013). The fictitious domain approach facilitates

solution of freely moving particles for a wide range of fluid-particle density ratios,

although the particles are held fixed in the present study. The solver is fully vali-

dated for a range of test cases including flow over a cylinder and sphere for different

Reynolds numbers, flow over touching spheres at different orientations, flow devel-

oped by an oscillating cylinder, laminar and turbulent flow through porous media,

among others. The details of the algorithm as well as very detailed verification and

validation studies have been published elsewhere (Apte et al., 2008; Apte & Finn,

2013). In addition, the solver was also used to perform direct one-to-one compari-

son with a body-fitted solver with known second-order accuracy for steady inertial,

unsteady inertial, and turbulent flow through porous media (Finn & Apte, 2013).

The details of this comparison focused on issues such as grid resolution needed

near the wall, issues related to touching spheres and contact points, quality of

solution compared to the body-fitted solver, comparison with experimental work

of Suekane et al. (2003) on flow through a packed array of half spheres, and es-

tablishing the grid resolution requirement per particle diameter for predicting the

unsteady flow-field in packed porous beds within 5% uncertainty based on the grid

convergence index (GCI). Turbulent flow at pore Reynolds number of 600 was also
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computed in the same configuration and compared with the body-fitted approach

to obtain good predictive capability of the present fictitious domain solver. This

same solver was also used to study turbulent flow in a randomly packed bed of

51 spheres capturing complex porescale flow features in agreement with published

data.

In addition, in order to verify and validate the solver for the specific case

under investigation, oscillatory flow over a particle-bed corresponding to Reδ = 95

case is validated against experimental data of Keiller & Sleath (1976). Figure 2.3

shows variation of (a) normalized peak fluid-frame resultant velocity magnitude

UR, and (b) phase at which this peak velocity is recorded, plotted at various

heights above the roughness crest for Reδ = 95. Data from the experimental work

of Keiller & Sleath (1976) along with recent simulations of Fornarelli & Vittori

(2009); Ding & Zhang (2010) are also plotted. Existing literature pertaining to

this topic frequently uses an alternative frame of reference, consistent with that

of the classic experiments conducted by Keiller & Sleath (1976), which features

an oscillating particle-bed in a fixed fluid-frame. Figure 2.3 is presented in the

fluid-frame to be consistent with this convention. As seen in Fig. 2.3, current

simulations data are generally in a better agreement with the experimental work

of Keiller & Sleath (1976), suggesting the present choice of parameters is able to

provide accurate descriptions of the oscillatory flow phenomena. Note that, the

vertical trends in both the plots starting at around (z − zc)/δ = 0.5 are artifacts

of the near-bed incipient ejection motions resulting in strong vertical velocity and

are well captured in the current simulations. Additional comments are provided

in Appendix C.

2.3 Results and discussion

Majority of the results presented below are for Reδ = 400, which is in the fully

turbulent, very rough regime. Similar trends are observed for other turbulent

flow conditions Reδ = 150 and 200. Following Mignot et al. (2009), a double

averaging procedure is employed for the analysis described below that decomposes
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Figure 2.3: For Reδ = 95, variation of (a) normalized peak fluid-frame resultant
velocity magnitude UR, and (b) phase at which the peak velocity is recorded,
plotted at various heights above the roughness crest location zc normalized by the
Stokes-layer thickness δ. UR is the resultant velocity magnitude of streamwise and
vertical velocity components. Symbols represent: •, (Keiller & Sleath, 1976); �,
(Ding & Zhang, 2010); �, (Fornarelli & Vittori, 2009); N, present data.

a flow quantity, φ into double average 〈φ〉 (where, overbar and brackets respectively

denote phase and homogeneous spatial averages), the spatial disturbance of the

phase-average φ̃ and the turbulent fluctuation φ′,

φ(x, y, z, ωt) = 〈φ〉(z, ωt) + φ̃(x, y, z, ωt) + φ′(x, y, z, ωt) (2.1)

2.3.1 The mean flow field and Reynolds stresses

Figure 2.4 shows profiles of double-averaged streamwise velocity in wall units,

u+ = 〈u〉/uτ , plotted against A(z − zb)/ks in a semi-log plot; where zb is the

zero-displacement plane (Dixen et al., 2008). The logarithmic law for flow over a

rough-bed can be written as,

〈u(z, ωt)〉 =
uτ
κ

ln

(
A(z − zb)

ks

)
, (2.2)
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with the von Karman constant κ = 0.41 and A = 30 as given by (Raupach &

Thom, 1981). As discussed in Dixen et al. (2008), the zero-displacement plane zb

and Nikuradse’s equivalent roughness ks were determined by fitting the double-

averaged velocity profile to the log-law given by Eq. 2.2. The values of zb =

0.7D and ks = 2d, are in a good agreement with the literature (Sleath, 1987;

Jensen et al., 1989; Dixen et al., 2008). As seen in Fig. 2.4, significant portion

of the velocity curve that follows the log-law given by Eq. 2.2 is present from

early-acceleration until mid-deceleration phases, i.e. from 2π/10 until 7π/10. This

is due to the fact that late deceleration phases are characterized by absence of

near-bed turbulence production as discussed later; during this period new laminar

boundary layer starts to develop in the reverse direction, and continues to grow

until early acceleration phases after which local friction velocity is large enough

to trigger the turbulence. For ωt = 8π/10, velocity close to the bed is therefore

negative due to the near-bed flow reversal. Also, it is interesting to note that some

portion of the velocity curve at this phase seem to follow log-law, although with

the larger value of the slope, resulting in the departure from universal value of von

Karman constant κ = 0.41.

Double averaged profiles of the Reynolds stresses and TKE normalized by U2
∞

are plotted in Fig. 2.5. From early-acceleration until late-deceleration phases (ωt

= 2π/10 up to 8π/10), presence of near-bed turbulence is evident as seen in Fig.

2.5. Reynolds stresses and TKE increase away from the effective bed location

(z − zb)/D = 0 and peak close to the roughness crest level (z − zb)/D = 0.3, and

decay to zero further in the outer region above (z − zb)/D > 1. The streamwise

component of the Reynolds stress 〈u′2〉 contributes most to the TKE and peaks at

the roughness crest location. On the other hand, as a consequence of the near-bed

turbulent motions, Reynolds shear stress 〈u′w′〉 peaks slightly above the crest level.

To validate the numerical predictions and to further verify adequacy of the

computational domain, grid resolution and rigid body treatment, boundary layer

thickness, δ′, and maximum friction factor, fw,max = 2 (uτ,max/U∞)2, were calcu-

lated. Here, boundary layer thickness δ′ is defined as the elevation of maximum
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Figure 2.4: Phase evolution of double-averaged streamwise velocity profile normal-
ized by uτ for Reδ = 400. The dash line represents the log-law.

overshoot in the streamwise velocity at a peak phase (Jensen et al., 1989) measured

from zb. Following Yuan & Piomelli (2014a), the friction velocity uτ is given as,

u2
τ = −Ft/ρA (2.3)

where, A is the horizontal area and Ft is the total streamwise drag acting on the

roughness elements along with that on the smooth-wall and is computed explic-

itly in the solver by integrating viscous and pressure forces in the flow direction.

Alternatively, uτ can also be computed by fitting the mean velocity profile to the

log-law as briefly described in Dixen et al. (2008); the latter yielding approxi-

mately same values as those obtained by the former method for the flow under

consideration. Figure 2.6 shows phase variation of the friction velocity for range

of Reynolds numbers in terms of dimensionless friction factor defined as, fw =

2 (uτ/U∞)2. Consistent with Jensen et al. (1989), the evolution of friction factor

and free-stream velocity are not in phase. However, as a result of increased mo-

mentum transfer due to turbulence, this phase delay decreases with the increase
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Figure 2.5: Phase evolution of double-averaged Reynolds stress and TKE for Reδ =
400. Symbols represent: •, TKE; �, streamwise Reynolds stress 〈u′2〉; �, spanwise
Reynolds stress 〈v′2〉; I, wall-normal Reynolds stress 〈w′2〉; N, Reynolds shear
stress 〈u′w′〉. The dash-dot line at (z − zb)/D = 0.3 shows roughness crest level.
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in Reynolds number.

Figure 2.7 (a) and (b), respectively, show variation of the normalized bound-

ary layer thickness, δ′/ks, and maximum friction factor, fw,max with the roughness

parameter a/ks for various Reynolds numbers. The present predictions show very

good match against the experimental data (Jonsson & Carlsen, 1976; Sleath, 1987;

Jensen et al., 1989; Dixen et al., 2008). With increase in Reynolds number, rough-

ness parameter a/ks also increases, resulting in turbulent and rough bed conditions.

Period-averaged turbulence intensities for various values of a/ks corresponding to

different values of Reynolds numbers are also plotted in Fig. 2.7(c),(d) and com-

pared with Sleath (1987). The numerical data tends to collapse onto a unique

curve with increase in Reynolds number, confirming Sleath’s observation. It can

also be seen that, increase in a/ks results in decrease in streamwise intensity,
√
u′2,

and increase in the wall-normal intensity,
√
w′2. If compared with fully turbulent,

smooth wall case from Jensen et al. (1989) (test no. 10 for Reδ ≈ 3300, not shown

here), it is observed that for the present rough-bed cases, the ratio of wall-normal

and spanwise turbulent intensities to streamwise component is higher than that in

the smooth-wall case of Jensen et al. (1989). These results indicate the tendency

of the roughness elements to redistribute the energy from streamwise to spanwise

and wall-normal components, more so at the peak phase and therefore, decrease

the overall large-scale near-bed anisotropy as also observed by Sleath (1987) in

oscillatory flows.

2.3.2 Turbulent kinetic energy budget

TKE budget is studied to analyze the role and relative importance of different

terms involved in energy transport mechanisms. Following Mignot et al. (2009),

double-averaged TKE budget equation for flow over roughness with streamwise-
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Figure 2.6: Phase variation of the friction factor fw. Symbols represent: •, Reδ =
95; �, Reδ = 150; �, Reδ = 200; N, Reδ = 400.

spanwise homogeneity is given as,

∂〈u′iu′i〉/2
∂t

= −〈u′iw′〉
∂〈ui〉
∂z︸ ︷︷ ︸

Ps

+

−
〈
ũ′iu
′
j

∂ũi
∂xj

〉
︸ ︷︷ ︸

Pw

−〈u′iu′j〉
〈
∂ũi
∂xj

〉
︸ ︷︷ ︸

Pm


− ∂

∂z

〈u′iu′iw′〉/2︸ ︷︷ ︸
Fk

+ 〈ũ′iu′iw̃〉/2︸ ︷︷ ︸
Fw

− 1

ρ

∂

∂z
〈p′w′〉+ ν

∂2

∂z2
〈u′iu′i〉/2− 〈ε〉 (2.4)

where, the eight terms on the right side are, respectively, shear production

term, Ps, that represents the work of double-averaged velocity against double-

averaged shear; wake production term, Pw, is the work of wake-induced velocity

fluctuations against the bed-induced shear; Pm is the work of the bed-induced

velocity fluctuations against double-averaged shear; ∂Fk/∂z is turbulent transport,

whereas, ∂Fw/∂z is the bed-induced turbulent transport followed by the sixth term

of pressure transport and the seventh term of viscous transport of TKE. The last

term on the right represents viscous dissipation. Note that the terms Pm, Pw and

Fw arise as a result of spatial heterogeneity at roughness element length scale.

Figure 2.8(a) and (b) respectively, show variation of production/dissipation terms
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Figure 2.7: Variation with a/ks of (a) normalized boundary layer thickness δ′/ks;
(b) maximum wave friction factor, given as, fw,max = 2 (uτ,max/U∞)2; (c) peak
period-averaged streamwise and (d) wall-normal turbulence intensity. Symbols
represent: •, Reδ = 95; �, Reδ = 150; �, Reδ = 200; N, Reδ = 400. The proposed
relation (dotted line) between δ′/ks and a/ks in (a) is based on Sleath (1987) and
is slightly modified to accommodate lower a/ks values from Dixen et al. (2008).
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and TKE transport terms.

As seen in Figure 2.8(a), peak in the shear production, Ps, is seen just below the

crest of the particle at 0.98D, a result of formation of shear layers near the crest.

Dissipation peak is observed slightly below the production peak at 0.96D. The

ratio of peak production to dissipation rate in the cycle is around 1.9. Variation

of transport terms plotted in Fig. 2.8(b) shows that, the excess energy generated

in the vicinity of the crest of the roughness elements is transported away mostly

by turbulent diffusion and pressure transport, along with small amount of viscous

diffusion. Also, pressure transport is significant mostly below the crest of the

particle. These findings are consistent with the existing literature on unidirectional

flows (Raupach et al., 1991; Finnigan, 2000; Mignot et al., 2009; Yuan & Piomelli,

2014b).

Contrary to the earlier studies of unidirectional flows; however, bed-induced

production terms, Pm and Pw, are far from negligible and peak at around same

location as Ps. Figure 2.8(c) shows important pathways and energy transfer mech-

anisms observed in the present work. It is interesting to note that the wake pro-

duction term, Pw, is negative close to the roughness crest (see II in Fig. 2.8(a)),

indicating the conversion of TKE to the wake kinetic energy (WKE) which is given

as 1
2
〈ũiũi〉. At this location, streamwise component of the Reynolds stress, 〈u′2〉,

contributes most to the TKE and is typically associated with near-bed turbulent

structures of length scales larger than the roughness scale. Work of these large-

scale structures against the pressure drag results in effective transfer of energy from

TKE to WKE, therefore resulting in negative peak in the production term, Pw.

On the other hand, secondary positive peak in Pw is seen just above the effective

bed location at (z − zb)/D ≈ 0.1 (see I in Fig. 2.8(a)), indicating conversion of

WKE to TKE. At this location, all three normal components of Reynolds stress are

comparable and are associated with turbulent scales smaller than the roughness

size; therefore resulting in conversion of WKE to TKE giving a positive peak in

Pw.

Further away from the particle crest, for (z− zb)/D > 0.5, all the terms except
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Figure 2.8: For Reδ = 400 at peak phase, variation of (a) production and dissipa-
tion terms; symbols represent: •, Ps; �, Pm; �, Pw; I, viscous dissipation; and (b)
transport terms; symbols represent: I, turbulent transport; N, viscous transport;
�, pressure transport. Bed-induced turbulent transport is negligible and is not
plotted. The dash-dot line at (z−zb)/D = 0.3 shows roughness crest level. All the
terms are normalized by u4

τ,max/ν; (c) schematic representation of energy transfer
mechanisms. Dashed arrow path is not studied in this work.



22

Figure 2.9: Phase evolution of the structure parameter, a1 = 〈u′w′〉/2k for Reδ =
400. Here, k is the TKE. The dash-dot and dash lines show roughness crest level
at (z − zb)/D = 0.3 and the value a1 = 0.15, respectively.

shear production Ps and dissipation 〈ε〉 decay to zero, establishing equilibrium

outer layer where the rate of production balances the rate of dissipation. The

presence of local equilibrium is also evident from Fig. 2.4 as the flow in this

region obeys the logarithmic law. Another measure to effectively quantify the

presence of local equilibrium is the Townsend structure parameter, a1 = 〈u′w′〉/2k
(Townsend, 1961). As shown in Fig. 2.9, it was found that a1 ∼ 0.15, similar to

the logarithmic layer for steady, unidirectional flows, in most of the fluid column

over an entire oscillation cycle, confirming the presence of equilibrium turbulence

and validating the approximate self-similarity in the log-law region for oscillatory

flows over rough-bed.

2.3.3 Near-bed turbulence structure

Instantaneous near-bed flow structures are plotted in Fig. 4.1(a) in the form of

λ2-iso-surfaces (Jeong & Hussain, 1995) for the peak phase. There exists a complex

forest of highly densed near-bed structures, slightly inclined with respect to the

rough-bed. Contrary to the presence of near-wall horseshoe vortex structures in

canonical smooth-wall flows, turbulent structures in this case appear to be “bro-

ken”. This could be due to the fact that, presence of roughness elements typically
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Figure 2.10: For Reδ = 400 at peak phase (a) instantaneous iso-surfaces of the
λ2−parameter colored by u′/U∞. The flow direction is the positive x-direction;
(b) the anisotropy invariant map. Here, ξ = (IIIb/2)1/3 and η = (−IIb/3)1/2,
where IIb and IIIb are, respectively, second and third principal invariants of the
Reynolds stress anisotropy tensor. Symbols represent: ◦, (z − zb)/D . 0.1; �,
0.1 < (z − zb)/D . 0.8; 4, (z − zb)/D > 0.8.
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energizes wall-normal fluctuations as discussed earlier, that in turn distort these

near-bed streamwise structures and cause flow isotropization near the bed; a phe-

nomenon evident from these broken structures. The presence of these structures

was speculated by Keiller & Sleath (1976); Sleath (1987); however, were not visu-

alized based on the experimental data. To further quantify this tendency of flow

isotropization and study the “shape” of near-bed turbulence, local anisotropy in

the Reynolds stresses by constructing the anisotropy invariant map (also known as

Lumley’s triangle) (Choi, 2001) is quantified, which contains all the possible turbu-

lent states. As seen in Fig. 4.1(b), the data reveals following observations: close to

the effective bed location, for (z− zb)/D . 0.1, two-component type of turbulence

is present as wall-normal fluctuations are much weaker compared to streamwise

and spanwise ones. Further above this region, 0.1 < (z− zb)/D . 0.8, wall-normal

fluctuations gain in strength as discussed earlier, decreasing near-wall anisotropy

and the turbulent state crosses over from upper to the lower branch of the triangle

(note that the data in this region is almost parallel to η axis indicating reduction

in the anisotropy). Further away from the particle crest (z − zb)/D > 0.8, the

roughness effects are not pronounced and the cigar-shaped structures dominate,

as streamwise fluctuations stay significantly larger than spanwise and wall-normal

ones.

Quadrant analysis (Wallace et al., 1972) is also performed to understand the

near-bed turbulence structure. Figure 2.11(a) shows phase variation of the quad-

rant contributions towards the Reynolds stress from ejection, sweep, inward and

outward motions collected at a spatial location very close to the roughness crest. In

general, significant contributions come from sweep and ejection motions, whereas,

contributions from inward and outward motions are minimal. The wall-normal dis-

tributions of the quadrant contributions at peak phase are plotted in Fig. 2.11(b),

which shows that the sweep motions are more significant below the roughness crest

and ejection motions play important role above the crest level. On the other hand,

overall contributions from inward and outward motions throughout the fluid col-

umn remain insignificant. Fig. 2.11(c) shows instantaneous iso-surfaces of the
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Figure 2.11: For Reδ = 400 (a) Phase variation of the quadrant contribution at a
location close to the roughness crest; (b) spatial variation of the quadrant contribu-
tion plotted at peak phase. Symbols represent: •, outward; I, ejection; �, inward;
�, sweep. Here, Q indicates quadrant number; (c) instantaneous isosurfaces of the
λ2−parameter at peak phase colored by ejection (red) and sweep (blue) motions.
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Figure 2.12: For Reδ = 400 at a peak phase, PDF of normalized by standard devia-
tions; (a) streamwise velocity and (b) pressure fluctuations. DNS data, recorded at
around 0.5D above the effective bed location zb, is represented by histograms and
solid line represents fourth-order Gram-Charlier distribution (Eq. 3.2). Skewness
= −0.93, flatness = 3.5 for velocity, whereas skewness = −0.54 and flatness = 4.5
for pressure fluctuations.

λ2−parameter (Jeong & Hussain, 1995) colored by indicator function for ejections

(red) and sweep (blue) plotted for peak phase, confirming that the upper portion of

the near-bed structures relate much closely to the ejection, whereas lower portion of

these structures are due to sweep motions. Based on these results, question arises

as to what is the distribution of the near-bed flow variables and if an assumption

of Gaussian distribution is valid. The probability-density function (PDF) of the

near-bed (a) velocity and (b) pressure fluctuations in the region above the rough-

bed at a peak phase for Reδ = 400, are plotted in Fig. 2.12. As hypothesized, these

distributions are highly non-Gaussian, and the PDFs fit well with the fourth-order

Gram-Charlier model, given by,

fGC4(ψ′) =
exp(−ψ′2/2)√

2π

[
1 +

Sψ′

3!
(ψ′3 − 3ψ′) +

Fψ′ − 3

4!
(ψ′4 − 6ψ′2 + 3)

]
, (2.5)
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Figure 2.13: Schematic representation (not to scale) to show important near-bed
processes.

where ψ′ is the normalized fluctuating flow variable, Sψ′ and Fψ′ are skewness and

flatness of its distribution, respectively. The data are recorded at around 0.5D

above the effective bed location zb. The choice of this location is based on the

high values of correlation between flow parameters and destabilizing hydrodynamic

forces on roughness-bed as reported by Ghodke et al. (2014a), a subject presently

under investigation. Similar distributions are observed for all other Reynolds num-

bers under consideration. The peaked-ness as well as the long positive tails of such

distributions can play critical role in destabilizing the particle-bed and therefore

should be included in probabilistic models for onset of erosion. Equation 3.2 facil-

itates incorporation of higher-order flow statistics describing the effect of near-bed

bursting phenomena into such models.

2.3.4 Summarizing near-bed oscillatory turbulence

A schematic view summarizing important near-bed flow features of oscillatory

turbulent flow over a rough-bed is shown in Fig. 2.13.

Although the statistics of turbulent oscillatory flow differ significantly from that
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of unidirectional flow, the nature of near-bed processes in oscillatory flow is almost

the same as that in unidirectional flow; especially in regards to significant contri-

bution from ejection and sweep motions and reduction in large-scale anisotropy.

As indicated in Fig. 2.13, quadrant analysis revealed dominance of sweep motions

below the roughness crest and ejection motions above the crest level. Ejections

are therefore responsible for flux of TKE away from the wall, whereas sweeps will

cause energy diffusion towards the wall. These sweep-burst cycles therefore, may

directly influence the sediment particle entrainment and deposition in coastal flows.

Similar observations were also reported by Krogstad et al. (1992); Yuan & Piomelli

(2014b) in their study of unidirectional flow.

Also, as in the case of steady flows, presence of roughness is seen to greatly

influence these near-bed turbulent structures by redistribution of the energy from

streamwise fluctuations to spanwise and wall-normal, causing near-bed flow isotropiza-

tion and therefore resulting in overall reduction of large-scale anisotropy. Again,

these observations are consistent with the unidirectional steady flow literature

(Krogstad & Antonia, 1994; Antonia & Krogstad, 2001; Ikeda & Durbin, 2007;

Yuan & Piomelli, 2014b).

Despite the similar nature of these near-bed flow motions, there exist some

differences in the elementary processes that maintain the turbulence production

in oscillatory flows. Contrary to the unidirectional flows, bed-induced production

terms due to spatial inhomogeneity are comparable to the shear production term.

Present data for the gravel-type roughness also indicates energy transfer from WKE

to TKE and also from TKE to WKE; latter typically found absent in unidirectional

flows (Raupach & Thom, 1981; Raupach et al., 1991; Mignot et al., 2009).

Furthermore, unlike unidirectional flows, all of these important near-bed pro-

cesses are pronounced for a range of phases in a flow cycle, more so, close to the

peak phase for high Reynolds number oscillatory flows. In other words, depend-

ing on the friction velocity, turbulence is present only in a part of the oscillation

cycle followed by flow re-laminarization. Such time varying nature of near-bed

turbulence in oscillatory flows greatly affects destabilizing forces on particle-bed,
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a subject of future investigation.

2.4 Conclusions

Particle-resolved DNS of transitional and turbulent oscillatory flows over a rough-

bed were performed. Double averaging technique is employed to study spatial

heterogeneity at roughness length scale.

Characterization of oscillatory flow in terms of mean velocity distribution,

Reynolds stress variation, TKE budget, near-bed flow structures and PDF dis-

tributions of velocity and pressure perturbations is reported.

(i) Double-averaged streamwise velocity followed logarithmic law from early-

acceleration until mid-deceleration phases (ωt = 2π/10 to 7π/10), indicating the

presence of fully-developed equilibrium turbulence; also confirmed by the uniform

value of structure parameter (a1 ≈ 0.15) and the ratio of shear production to

dissipation rate close to unity in this region.

(ii) The spatial inhomogeneity at roughness length scale introduced additional

production and transport terms in double-averaged TKE budget. Contrary to

the unidirectional, steady flows over rough beds, bed-induced production terms,

both Pm and Pw, for the present gravel-type roughness, were comparable to the

shear production terms, Ps. Negative peak in Pw at the roughness crest level

was observed and could be attributed to the conversion of turbulent kinetic en-

ergy to wake kinetic energy as a result of work of large-scale structures associated

with 〈u′2〉 at this location against pressure drag of roughness elements. Secondary

positive peak in Pw is observed close to the effective bed location, indicating the

conversion of wake kinetic energy to turbulent kinetic energy of scales smaller than

roughness length scale at this location. Bed-induced transport term was found to

be negligible.

(iii) Increasing the effective roughness energized wall-normal fluctuations while

dampened the streamwise ones. This led to break-up of streamwise near-bed struc-

tures and caused reduction in large-scale anisotropy. As a result, broadly two sep-

arate regions, a near-bed region of two-component turbulence and an outer region
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of cigar-shaped turbulence were observed.

(iv) Quadrant analysis showed dominance of ejection and sweep type motions

over inward/outward interactions. The wall-normal distributions of the quadrant

contributions showed that the sweep motions are more significant below the rough-

ness crest and ejection motions play important role above the crest level.

(v) The PDF distributions of the velocity and pressure fluctuations showed a

non-Gaussian behavior that followed a fourth-order Gram-Charlier distribution,

indicating importance of higher-order turbulence statistics. This finding is espe-

cially critical for the development of probabilistic models of sediment erosion.
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Abstract

A numerical investigation of unsteady hydrodynamic forces on the particle-bed

in an oscillatory flow environment is performed by means of direct numerical sim-

ulations (DNS). Statistical descriptions of drag and lift forces for two particle sizes

of diameter 375 and 125 in wall units corresponding to the large size gravel and

the small size sand particle, respectively, in a very rough turbulent flow regime are

reported. Characterization of unsteady forces in terms of spatial distribution, tem-

poral auto-correlation, force spectrum as well as cross-correlations with measurable

flow variables is carried out. Based on the concept of impulse, intermittency in

drag and lift forces is also investigated.

Temporal correlations show drag and lift to be positively correlated with a time-

delay, that is approximately equal to the Taylor micro-scale related to the drag/lift

fluctuations. The force spectra for drag and lift reveal roughly two scaling regions,

−11/3 and −7/3; former typically represents turbulence–mean-shear interactions,

whereas latter indicates dominance of turbulence–turbulence interactions. Particle

forces are strongly correlated with streamwise velocity and pressure fluctuations

in the near-bed region for both flow cases. In comparison to the gravel case, the

spatial extent of these correlations is 2− 3 times larger in homogeneous directions

for the sand particle, a feature that is reminiscent of longer near-bed structures

typically found in the sand case.

It is shown that the distributions of drag (lift) fluctuations, in particular,

peaked-ness and long tails match remarkably well with fourth-order Gram-Charlier

distributions of velocity (pressure) fluctuations. Furthermore, it is demonstrated

that the intermittency is larger in the case of lift force compared to that for the

drag. Distributions of impulse events are heavily and positively skewed and are

well described by General extreme value distribution.
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3.1 Introduction

Essential to the study of sediment transport is the criterion for onset of erosion,

as it defines the threshold conditions for initiation of the sediment motion, also

known as incipient motion and is often used to set a lower bound in the models to

predict the transport of sediment particles. The prediction of such erosion onset

to describe threshold of bed mobility has attracted many researchers in the past

(Bagnold, 1966; Fredsøe & Deigaard, 1992; Sleath, 1995; Flores & Sleath, 1998;

Cheng & Chiew, 1998; Sleath, 1999; Nelson et al., 2000; Papanicolaou et al., 2002;

Nino et al., 2003; Cheng & Law, 2003; Wu & Chou, 2003; Wu & Kuo-Hsin, 2004;

Hofland & Battjes, 2006).

These flows are typically turbulent in nature and to study the dynamics of

particle-bed mobility, it is important to understand the complex interactions be-

tween turbulence and sediment grains. Turbulent flow induces fluctuating forces

on the particle-bed, that if exceed a critical threshold, can strip the particles off the

bed, suspend them in the fluid and deposit them elsewhere. Furthermore, Diplas

and co-workers (Diplas et al., 2008; Valyrakis et al., 2010; Celik et al., 2010, 2013)

introduced the concept of impulse and indicated that, along with the temporal

bursts in drag or lift forces above a critical threshold, the duration over which

they act are also critical in predicting the onset of erosion. On the other hand,

the presence of particles is also seen to greatly affect the structure of the near-

bed turbulence, indicated by increased bed shear stress, reduction in the near-

bed anisotropy, and marked changes in turbulent energy transport mechanisms

(Krogstad et al., 1992; Krogstad & Antonia, 1994; Krogstad et al., 2005; Ikeda

& Durbin, 2007; Chan-Braun & Uhlmann, 2011; Yuan & Piomelli, 2014b; Kempe

et al., 2014; Ghodke & Apte, 2016). As a result of interdependence, the prediction

of erosion onset, therefore, often requires linking destabilizing hydrodynamic forces

on the particle-bed to the turbulent motion of fluid around it.

Several studies have been reported so far to provide indirect estimation of hy-

drodynamic forces on the particle-bed using local pressure measurements (Rosen-

thal & Sleath, 1986; Hofland et al., 2005; Hofland & Battjes, 2006; Schmeeckle
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et al., 2007; Dwivedi et al., 2010; Detert et al., 2010; Amir et al., 2014). However,

owing to the experimental difficulties, detailed spatial structure and temporal char-

acteristics of the fluctuating hydrodynamic forces on the particle-bed yet remain

elusive. Recently, Chan-Braun & Uhlmann (2011) reported spatio–temporal char-

acteristics of particle forces in an unidirectional, steady open-channel flow in the

low Reynolds number regime by means of DNS. Although, such fully-resolved simu-

lations can provide high-fidelity data of particle forces without requiring any ad hoc

models, generally are extremely challenging and require enormous computational

cost for large Reynolds number turbulent flows in the rough regime.

Alternative approaches for estimating particle forces to predict erosion onset

include use of statistical tools. Based on theoretical derivations, statistical data

of particle forces are calculated indirectly by assuming a cross-correlation with

Gaussian or log-normal near-bed velocity fluctuations (Einstein, 1950; Cheng &

Chiew, 1998; Papanicolaou et al., 2002; Cheng & Law, 2003; Wu & Chou, 2003; Wu

& Kuo-Hsin, 2004; Hofland & Battjes, 2006). However, recent studies show that

the near-bed flow dynamics, roughness effects, and flow through porous regions

lead to non-Gaussian velocity fluctuations and higher-order turbulence statistics

such as kurtosis and skewness are necessary for better predictions (Wu & Kuo-

Hsin, 2004; Ghodke & Apte, 2016). Moreover, it is also unclear, whether, up to

what spatial extent such cross-correlations of forces with near-bed turbulent flow

exist.

Most of the aforementioned studies pertaining to this topic are reported for

unidirectional, steady flows. However, detailed information of spatio–temporal

characteristics of the hydrodynamic forces on the particle-bed in an oscillatory,

non-stationary turbulent flow representative of coastal environment has not been

documented. The scope of the present paper is to analyze, by means of numerical

experiments, spatial structure and temporal characteristics of unsteady hydro-

dynamic forces on the rough-bed made up of hexagonal pack of fixed spherical

particles in a symmetric and sinusoidally oscillating flow for Reynolds numbers in

the turbulent rough regime. To study the effects of roughness size, particles of
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diameters 375 and 125 wall units, former corresponds to large size gravel particle

while latter represents smaller sand particle, are studied. Statistical descriptions

of drag and lift forces on the particle-bed along with their cross-correlations with

near-bed turbulent motions are also reported. Based on the concept of impulse,

investigation of critical threshold of drag and lift forces is carried out. To the best

of our knowledge, no such detailed characterization of unsteady hydrodynamic

forces on the particle-bed in an oscillatory flow environment using DNS has been

reported to date. The outline of the paper is as follows: the flow configuration and

methodology are presented in § 2, simulation results are presented in § 3, followed

by main conclusions in § 4.

3.2 Flow configuration

The overall flow configuration is similar to the setup of oscillatory flow over a layer

of spherical particles studied in Ghodke & Apte (2016). As shown in Fig. 3.1, x, y

and z are, respectively, the streamwise, spanwise and wall-normal directions and

u, v and w are the velocity components in those directions. The computational

domain shown in Fig. 3.1 consists of a doubly periodic box in streamwise and

spanwise directions. The rough-bed is formed by a single layer of hexagonal pack

of fixed spherical particles that are touching each other. A smooth no-slip wall is

located at z = 0 and a slip wall at z = 45δ, where δ =
√

2ν/ω is the Stokes-layer

thickness, ν is the kinematic viscosity, ω = 2π/T is the oscillation frequency and

T is the period of the wave. In this notation, hydrodynamic force components in

the streamwise x-direction and wall-normal z-direction are denoted as drag and

lift force, respectively. Considering an instantaneous value of the variable φ, its

fluctuation with respect to phase and spatial average over wall-parallel planes is

defined as, φ′ = φ−〈φ〉. Here, an overbar and brackets, respectively, denote phase

and homogeneous spatial averages. Note that, in the context of double-averaging,

the fluctuating quantity φ′ includes contribution from spatial disturbance resulting

from flow inhomogeneity at the roughness length scale (Ghodke & Apte, 2016).
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Figure 3.1: Close-up view of the computational domain and boundary conditions
for (a) gravel and (b) sand case. A harmonic pressure forcing is imposed that
results in a streamwise velocity component U∞ sin(ωt) far from the bed.

The dimensionless parameters to characterize the flow are outlined in Table

3.1. To study the effects of particle size on spatio–temporal characteristics of force

statistics, two sizes of particle diameter normalized by the Stokes-layer thickness,

D = d/δ, corresponding to the large size gravel (D = 6.95) and small size sand

particle (D = 2.68) are studied. Figure 3.2 maps the different flow cases on a

regime diagram (a/ks−Rea) for oscillatory flow over roughness elements depicting

the limits of laminar, transitional, smooth turbulent and rough turbulent regimes.

Present case of the gravel (a/ks = 14.4) and the sand particle (a/ks = 50) at given

Reynolds numbers correspond to very rough turbulent regime, latter approaching

the limit of rough turbulent regime. Table 4.1 also tabulates the flow parameters

and spatial resolutions used in this study. As described in Ghodke & Apte (2016),

uniform grids, although not cubic, are used only in the region surrounding the

particles giving roughly around 100 to 300 points in the wall-normal direction

per particle diameter, and the grids are stretched in the flow normal direction

above z = 8δ(6δ) for the gravel (sand) using hyperbolic tangent function typically
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Figure 3.2: Delineation of different flow regimes for oscillatory flow illustrating
previous studies (Jonsson & Carlsen, 1976; Kemp & Simons, 1982; Sleath, 1987;
Jensen et al., 1989; Krstic & Fernando, 2001; Chen et al., 2007; Dixen et al., 2008;
van der A et al., 2011) and present cases. Symbols represent: N, Reδ = 400
(gravel); I, Reδ = 545 (sand).
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used in boundary layer and channel flow calculations (Kim et al., 1987; Moin &

Mahesh, 1998). Around 15 flow cycles per case are computed to obtain statistical

convergence.

As indicated in Fig. 3.1, the flow domain is around 48δ(56δ) long in the flow

direction, 28δ(32δ) wide in the spanwise direction and 45δ in the wall-normal

direction for the gravel (sand) case. Compared to Ghodke & Apte (2016), larger

domains are used in the present study to incorporate more particles in order to

obtain sufficient samples for force statistics. Vertical size of the domain is chosen

such that all turbulent statistics decay to zero at almost half the vertical height

for large Reynolds number sand case under consideration. See Appendix A and

Appendix B for details.

The numerical solver based on fictitious domain algorithm (Apte & Finn, 2013),

that facilitates solution of freely moving particles for a wide range of fluid-particle

density ratios is used, although the particles are held fixed in the present study.

The solver is fully validated for a range of test cases including flow over a cylinder

and sphere for different Reynolds numbers, flow over touching spheres at different

orientations, flow developed by an oscillating cylinder, laminar and turbulent flow

through porous media, among others. The details of the algorithm as well as very

detailed verification and validation studies have been published elsewhere (Apte

et al., 2008; Apte & Finn, 2013). In addition, present configuration of oscillatory

flow over rough-bed is also validated against experimental data of Keiller & Sleath

(1976) for the gravel particle at Reδ = 95 as shown in Ghodke & Apte (2016). In

particular, variation of peak velocity magnitude and the phase at which this peak

velocity is recorded, plotted at various heights above the roughness crest are shown

to agree reasonably well with experimental work of Keiller & Sleath (1976). Other

numerical predictions or parameters such as friction factor and boundary layer

thickness for the gravel particle over a range of Reynolds numbers, Reδ = 95−400,

also show good comparison with experimental data, further confirming adequacy

of the computational domain, grid resolution and rigid body treatment (Ghodke

& Apte, 2016).
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3.3 Results and discussion

In this section, spatio–temporal characteristics of unsteady drag and lift forces on

the particle-bed are presented. To begin with, differences in the near-bed flow

structures in the gravel and the sand case are discussed.

3.3.1 Flow structures

As noted in Table 3.1, the amplitude based Reynolds number (Rea) in the sand case

is almost two times larger than that in the gravel case. On the other hand, effective

roughness Reynolds number (k+
s ) in the gravel case is almost three times higher

than that in the sand case. As a result, there exist some discernible differences

in the elementary processes that govern the near-bed turbulence in the gravel and

the sand particle case.

For the gravel-type roughness, a/ks is smaller (large roughness size) compared

to that for the sand particles. The size of the individual gravel particle is large

enough to cause vortex shedding that is in a way also responsible for triggering the

turbulence much earlier in the flow cycle (Ghodke & Apte, 2016). Contrary to this,

as a result of large a/ks value (smaller roughness size) of the sand-type roughness,

the near-bed flow exhibits an unsteady inertial behavior in the early acceleration

cycle, until the local friction velocity is large enough to trigger the turbulence.

This behavior is evident from Fig. 3.3 where product of instantaneous streamwise

(u) and wall-normal (w) velocity is plotted for (a) gravel and (b) sand case. The

significant vortex shedding along with sweep-bursts motions in the gravel case

result in strong cross-correlation signal uw from the beginning of the flow cycle.

However, as shown in Fig. 3.3(b), such cross-correlation is significant for the sand

case only from peak phase to late deceleration phases where inertial effects play

an important role in triggering the turbulence.

To further elucidate the near-bed flow behavior, instantaneous flow structures

in the form of λ2-iso-surfaces (Jeong & Hussain, 1995) are plotted at the peak phase

in Fig. 3.4 for (a) gravel and (b) sand particle. For the gravel-bed, there exists
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(a) (b)

Figure 3.3: Variation over a half cycle of the normalized product of instantaneous
streamwise (u) and wall-normal (w) velocity plotted for (a) gravel and (b) sand
case.

a complex forest of highly densed near-bed structures that appear to be broken

and are slightly inclined with respect to the horizontal direction. The disruption

of these flow structures is an artifact of energized wall-normal velocity fluctuations

in the gravel case that in turn distort the streamwise structures resulting in flow

isotropization, as already discussed in Ghodke & Apte (2016). On the other hand,

presence of larger elongated horseshoe structures that span over more than few

particles diameter in the flow direction along with the small-scale broken structures

is clearly evident in the sand case shown in Fig. 3.4 (b). Contrary to the gravel,

these structures appear to be less broken, suggesting lower degree of near-bed flow

isotropization in the sand case. Such near-bed structures could play a significant

role in influencing spatio–temporal characteristics of hydrodynamic forces on the

particle-bed. Detailed quantification of the near-bed turbulence structure in the

gravel and the sand particle case is a subject of future investigation.

3.3.2 Particle-bed force history

In the following, nature of unsteady forces on the particle-bed is analyzed. Figure

3.5 shows phase variation of instantaneous drag/lift forces on each particle (thin
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black lines) plotted along with the average force on the particle-bed (thick red

line). For the illustration purpose, data for 4 cycles are plotted. Figure 3.5 (a) and

(b), respectively, show drag (CD) and lift (CL) coefficient in the gravel case and

Fig. 3.5 (c) and (d) show that in the sand case. Phase variation of the streamwise

velocity far from the bed is also shown for the reference. Contrary to unidirectional

flows, average force on the particle-bed in oscillatory flows varies over a cycle. As

seen in Fig. 3.5 (a) and (b) the variability of the instantaneous forces on each

sphere from the average value is significant throughout the entire cycle for large

diameter gravel case. On the other hand, such variability of the instantaneous

forces is significant only from late acceleration up to early deceleration phases for

the sand particle case as shown in Fig. 3.5 (c) and (d). Such differences in the

force history for the gravel and the sand case are mainly a result of different nature

of the near-bed turbulence in both flow cases as discussed earlier.

To further elucidate the differences in the nature of gravel and sand particle

forces, phase variation of the average force on the particle-bed in both flow cases

is discussed in detail. Figures 3.6 shows variation over a cycle of the normalized

phase-averaged force on the particle-bed in the streamwise (CD, coefficient of drag)

and wall-normal (CL, coefficient of lift) direction for the gravel- and sand-type

roughness. Phase variation of the streamwise velocity far from the bed is also

shown for the reference.

Unlike drag, sign for the lift force is the same whether the flow is in the positive

or negative x-direction and has a period of half the forcing function. In the case of

gravel shown in Fig. 3.6 (a), both drag and lift coefficients peak earlier in the flow

cycle, respectively exhibiting the phase-lag of ωt = 0.87 and 0.34 with the free-

stream velocity. In comparison, as a result of increased Reynolds number Rea in

the sand case, reduced phase-lag of respectively, ωt = 0.080 and 0.086 for drag and

lift with the free-stream velocity is observed as shown in Fig. 3.6 (b). Note that,

the phase-lag between drag and lift force also decreases as the Reynolds number

is increased as in the sand case.

As seen in Fig. 3.6 (b), there exist sharp spikes in the drag and lift records
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(a) (b)

(c) (d)

Figure 3.5: Variation over several cycles of the normalized instantaneous drag, CD
plotted in (a,c) and lift, CL plotted in (b,d) for each particle in the flow setup.
Panels (a,b) are for the gravel case and panels (c,d) are for the sand case. Thick
red line indicates average value of the force. Here, Ci = Fi/(0.5ρApU

2
∞) is the

instantaneous force on a particle, i stands for drag or lift, Ap is the area of a
particle. Phase variation of the streamwise velocity far from the bed is shown by
( ).
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(a) (b)

Figure 3.6: Variation over a cycle of the normalized phase- and spatially-averaged
drag, CD ( • ) and lift, CL ( I ) for (a) gravel and (b) sand case. Here,
Ci = 〈Fi〉/(0.5ρAbU2

∞) is the normalized phase- and spatially-averaged force on
the particle-bed, i stands for drag or lift, Ab is the total projected area of the
particle-bed. Phase variation of the streamwise velocity (not to scale) far from the
bed is shown by ( ). Arrows in (b) indicate spikes in the drag and lift record for
the sand case.

for the sand case, however, such distinct spikes are absent in the gravel case. As

a result of significant vortex shedding along with sweep-burst motions, there is no

clear demarcation of onset of turbulence that may result in distinct spikes in the

drag and lift forces on the gravel-bed. Contrary to this, occurrence of sweep-bursts

motions resulting into sudden transition to turbulence close to the peak velocity

phase results in distinct spikes in the drag and lift record in the sand case. Note

that, the phase instant of these spikes in Fig. 3.6 (b) matches clearly well with

spikes in the uw signal for the sand case shown in Fig. 3.3 (b).

Table 3.2 summarizes the particle-bed force statistics for the gravel and the

sand-type roughness. In both the cases, the net lift and drag coefficients remain

positive and their magnitude is decreased as the Reynolds number is increased.

The higher-order moments such as skewness and kurtosis of drag/lift fluctuations

over several half flow cycles are also reported in Table 3.2. In both flow cases,

skewness values of drag and lift forces are positive, indicating that the positive

events of drag and lift are more likely to occur than the negative ones. Moreover,
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Case CD,max CL,max CD,avg CL,avg SD′ SL′ KD′ KL′

Gravel 0.036 0.026 0.013 0.012 0.12 0.0012 4.8 4.4
Sand 0.015 0.0087 0.0062 0.0041 0.56 0.018 8.3 7.8

Table 3.2: Force statistics for the particle-bed of gravel and sand-type roughness.
Here, CD,max (CL,max) and CD,avg (CL,avg) respectively show maximum and period-
averaged value of the drag (lift) force coefficient over a half flow cycle; SD′(SL′) and
KD′(KL′) respectively denote skewness and kurtosis of the drag (lift) fluctuations
over a half flow cycle.

high values of kurtosis of drag and lift fluctuations indicate large intermittency in

the force-field that results in longer tails of rare but strong events. With increase

in Reynolds number (sand case) such extreme events become stronger, resulting

in higher values of kurtosis. Take a note that, kurtosis values in the sand case are

almost two times larger than that in the gravel case. Such extreme force events

might play an important role in destabilizing the particle-bed. Similar observations

were reported by Chan-Braun & Uhlmann (2011) in their study of unidirectional

flow over a rough-bed.

3.3.3 Spatial distribution of the forces

After studying phase variation of the drag/lift forces, their distribution on the

particle surface needs to be investigated. In the following, spatial distribution at

a peak phase of the phase-averaged drag and lift force on the gravel and the sand

particle is plotted in Fig. 3.7. Here, Fig. 3.7 (a), (b) show isometric view and

Fig. 3.7 (c), (d) present top view of the particle. Panels (a,c) and (b,d) show force

distribution on the gravel and the sand particle, respectively. Note that, the drag

and the lift force plotted in Fig. 3.7 indicate phase- and spatially-averaged forces.

Therefore, the spheres shown in this figure do not represent a particular particle

but rather show an averaged force-field on any particle in the setup. As shown in
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Figure 3.7: Spatial distribution of the phase- and spatially-averaged drag (FD) and
lift (FL) force at a peak phase normalized by their respective standard deviations
for the gravel (a,c) and the sand (b,d) particle. Here, D and L, respectively, denote
drag and lift force. The direction of the flow is indicated by an arrow. Sizes of the
particles are not to scale.
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Fig. 3.6, average forces on the particle at the peak phase in both flow cases are

positive, however, local drag/lift force can either be positive or negative depending

on the direction of the local velocity near the particle surface.

For both gravel and sand case, there exists a region of strong positive drag

near the top of the sphere, a result of maximum strain in the streamwise velocity

component at this location. Also, owing to the pronounced curvature effects due

to larger particle size, a region of smaller positive drag is also present in the front

and aft side of the gravel as seen in Fig. 3.7 (a,c); however, is clearly absent in the

sand case shown in Fig. 3.7 (b,d).

The small patches of weak positive drag found especially in the case of gravel

are artifacts of pore-scale flow features and are dominant mainly in the larger size

particle-bed. Furthermore, variation of the drag force in the wall-normal direction

reveals the location of the effective level at which the bulk drag force is exerted,

also called zero-displacement plane. In the present study, this zero-displacement

plane is found to be located at 0.7D (0.85D) for gravel (sand) particle. This

further indicates that the total drag force is distributed on a larger area of the

upper hemisphere of the gravel compared to that in the case of the sand particle.

The spatial distribution of the lift force also shows some discernible differences

between the gravel and the sand particle. As shown in Fig. 3.7 (b,d), the lift

force of positive magnitude is distributed mostly in the top portion of the upper

hemisphere of the sand particle and is a result of lower values of pressure due to

flow acceleration near the particle crest. On the other hand, lift distribution in the

case of gravel particle shows larger positive magnitudes on the side and aft region

of the particle as shown in Fig. 3.7 (a,c). This could be attributed to the combined

effects of enhanced three-dimensionality of the boundary layer and shielding effects

in a hexagonal arrangement of the particles along with the complex pore-scale flow

in the gaps between the particles. As a result, lower pressure regions are mainly

observed on the side and aft portion of the gravel particle that contribute positively

to the lift. In comparison to the sand case, these effects are more pronounced for

the large diameter gravel particle due to strong curvature effects.
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3.3.4 Temporal correlations of the forces

In the following, temporal characteristics of the force fluctuations on the gravel

and the sand particle-bed are studied. Time scales of drag and lift fluctuations in

both flow cases are obtained from their respective temporal auto-correlations. In

addition, cross-correlation of drag and lift fluctuations is also reported to reveal

their interdependence on each other.

Following Chan-Braun & Uhlmann (2013), three-dimensional correlation func-

tion given as,

Rφ′ψ′(∆x,∆y, z,∆t) =

1

NcNp

Nc∑
i=1

Np∑
j=1

φ′(xp,j, yp,j, zp,j, ti) ψ
′ [(xp,j + ∆x), (yp,j + ∆y), z, (ti + ∆t)]

(3.1)

is defined, where the sub-index p refers to the particle position, and Np and

Nc are the number of particles and flow cycles, respectively. Using this function,

temporal auto-correlation at zero spatial separation can be calculated by setting φ′

= ψ′ and ∆x = ∆y = 0 in Eq. 3.1. Figure 3.8 shows variation of auto-correlation

function of drag (solid line) and lift (dashed line) fluctuations for (a) gravel and

(b) sand particle case.

In the case of gravel, auto-correlation functions for drag and lift exhibit lo-

cal minima of small negative values (drag: −0.066 at ∆tU∞/d = 3.1 and lift:

−0.039 at ∆tU∞/d = 2.9). For the sand case, the local minimum in the drag

takes positive value (0.087 at ∆tU∞/d = 2.1) and that for the lift takes nega-

tive value (−0.024 at ∆tU∞/d = 3.2). Chan-Braun & Uhlmann (2013) in their

DNS study of unidirectional flow over a rough-bed also observed such local minima

in drag/lift auto-correlations. They argued that the minimum peak in drag/lift

auto-correlations might be linked to the effects of pressure; analogous to a pro-

nounced minimum of negative value of pressure auto-correlation on a smooth wall

in a turbulent channel flow. The present results also show similar trends, however,
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(a) (b)

Figure 3.8: Temporal auto-correlation of ( ) drag and ( ) lift fluctuations for
(a) gravel and (b) sand case plotted as a function of separation in time. Only small
fraction of the signal in which non-negligible correlation exists is plotted.

values of local minima are typically 3− 4 times smaller than the ones reported by

Chan-Braun & Uhlmann (2013). It should be noted that the unidirectional flow

study reported by Chan-Braun & Uhlmann (2013) falls under hydrodynamically

smooth and transitional regime, whereas Reynolds numbers in present cases are

dramatically higher and fall under very rough turbulent regime.

Using temporal auto-correlation function, two different time scales, integral (tl)

and Taylor micro-scale (tλ) for drag and lift fluctuations are calculated. The inte-

gral time scale, defined as the integral of the auto-correlation, is computed in the

integration domain within which value of auto-correlation function monotonically

decreases and goes to zero (here, ∆tU∞/d ∈ [0, 15]). The short-time behavior of

the auto-correlation function can be quantified using Taylor micro-scale (tλ), de-

fined by the zero-crossing of the parabola osculating the correlation function at

zero separation.

Table 3.3 tabulates integral time scales and temporal Taylor micro-scales of

drag/lift fluctuations for the gravel and the sand case and the following observa-

tions could be noted comparing both flow cases: (i) integral time scales of force

fluctuations for the gravel are typically smaller than that for the sand particle

when scaled in outer units. This could be attributed to the different nature of the
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Case Outer F ′D F ′L Inner F ′D F ′L

Gravel tlU∞/d 0.97 1.49 tlu
2
τ/ν 48.8 75.1

Sand tlU∞/d 8.44 3.32 tlu
2
τ/ν 92.7 36.4

Gravel tλU∞/d 0.86 0.91 tλu
2
τ/ν 44.9 46.7

Sand tλU∞/d 1.18 1.38 tλu
2
τ/ν 13 14.6

Table 3.3: Integral time scale (tl) and temporal Taylor micro-scale (tλ) of drag
and lift fluctuations for gravel and sand case. Time scales are non-dimensionalized
using inner units (ν/u2

τ,max) and outer units (d/U∞).

near-bed turbulence in both flow cases. The broken streamwise structures of the

time scale ∼ d/U∞ in the gravel case are responsible for inducing drag/lift fluctu-

ations on the gravel particle, resulting in integral time scales almost close to unity

when scaled in outer units. On the contrary, presence of elongated streamwise

structures of the size several particle diameters results in larger values of integral

time scales of force fluctuations in the sand case. (ii) As a result of significant flow

isotropization, Taylor micro-scales of drag/lift fluctuations for gravel particle are

almost comparable to their integral time scales, suggesting the absence of large

separation of scales. In the case of sand, small scale drag/lift fluctuations are

dominated by small scale turbulent motions of the time scale ∼ d/U∞, typically

resulting in Taylor micro-scales of the order of unity when scaled in outer units.

(iii) As a result of large effective roughness Reynolds number (k+
s ) in the gravel

case, time scales of force fluctuations for the gravel particle are typically 2−3 times

larger than that for the sand when scaled in inner units. In general, these results

indicate that the small diameter sand-bed typically exhibits force fluctuations of

the longer duration as that compared to the gravel-bed under investigation.

To further understand the behavior of particle-bed forces, temporal cross-

correlation function of drag and lift fluctuations is computed. This would help

to investigate if drag and lift fluctuations are correlated in time and get affected

by similar near-bed flow structures. Phase-averaged cross-correlation is calculated
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by setting φ′ = F ′D, ψ′ = F ′L and ∆x = ∆y = 0 in Eq. 3.1 and is plotted in

Fig. 3.9. For no shift in time (∆t = 0), the cross-correlation is very small and

the drag and lift fluctuations are weakly correlated. The cross-correlation reaches

maximum value 0.45 (0.48) for separation in time ∆tU∞/d = 0.86 (1.08) for gravel

(sand) case, indicating that the drag and lift fluctuations, on an average, are pos-

itively correlated with each other. This suggests that the positive fluctuation in

the drag (result of stagnation pressure) corresponds to the simultaneous positive

fluctuation in the lift (result of streamline contraction). It is also interesting to

note that the time-lag of maximum value of correlation function approximately

matches Taylor micro-scale of drag and lift fluctuations (cf. Table 3.3). Further-

more, as shown in Fig. 3.9, the cross-correlation takes the minimum value −0.39

(−0.45) for separation in time ∆tU∞/d = −0.73 (−0.98) for gravel (sand) case.

For larger negative separation times, the correlation function for sand increases

from minimum value to reach zero, whereas, correlation for gravel again becomes

positive before going to zero. In comparison to previous unidirectional flow stud-

ies (Hofland, 2005; Dwivedi, 2010; Chan-Braun & Uhlmann, 2013; Amir et al.,

2014), there exist significant differences in the present case in terms of flow condi-

tions, particle Reynolds number, particle shape and arrangement, methodologies

for the flow data measurements, etc; however, it is promising to see that the over-

all behavior of the cross-correlation function, i.e. local maximum (minimum) for

positive (negative) separation remains identical. Also, the maximum values of the

cross-correlation function between 0.12 to 0.55 were reported in these studies and

interestingly, present values for gravel and sand case also fall well within this range.

Such behavior of the cross-correlation of drag and lift fluctuations seems to be very

robust and is conjectured to be the effect of a strong influence of the pressure field

on the particle-bed forces. This interpretation is in favor of a model approach

proposed by Hofland (2005) based on a convected frozen pressure field.
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Figure 3.9: Temporal cross-correlation of drag and lift fluctuations plotted as a
function of separation in time for the gravel ( ) and the sand ( ) case. Only
small fraction of the signal in which non-negligible correlation exists is plotted.

3.3.5 Spectra

To understand the spectral content of drag and lift fluctuations, their frequency

spectra R̂φ′φ′(f) are investigated. Due to the finite nature of the signal, modified

periodogram method of Welch (1967) with 50% overlap and applying a Hamming

window to the original signal is employed. Here, spectra are averaged for all

the particles and flow cycles and are normalized by integral of spectra over all

the frequencies. Figure 3.10 shows normalized spectra of drag (solid line) and

lift (dashed line) fluctuations for (a) gravel and (b) sand case. It can be seen

that in both gravel and sand case, a reasonably good collapse of spectra for drag

and lift fluctuations is observed, with the largest spectral contributions at lower

frequencies. Also, all spectra display roughly two scaling regions, −11/3 and −7/3

in the mid- and high-frequency regions, respectively. Earlier, George et al. (1984)

performed spectral analysis of turbulent pressure fluctuations in a homogeneous

constant mean-shear flow and reported the presence of −11/3 and −7/3 scaling

in the pressure spectrum when turbulence–mean-shear and turbulence–turbulence

interactions dominate, respectively. Interestingly, present data of oscillatory flow

over rough-bed also reveal similar scaling for drag and lift fluctuations.
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(a) (b)

Figure 3.10: Spectra of drag ( ) and lift ( ) fluctuations for (a) gravel and (b)
sand case.

In comparison to the gravel, −11/3 scaling region for the sand case extends

little further up to higher frequencies (≈ 600Hz) suggesting wider range of scales

are dominated by turbulence–mean-shear interactions. On the other hand, as a

result of significant flow isotropization in the case of the gravel, it is possible that

the turbulence–turbulence interactions play equally important role exhibiting−7/3

scaling for much higher frequencies (≈ 100Hz). Recently, Hofland (2005); Detert

et al. (2010) in their unidirectional flow studies showed that the turbulent wall

pressure spectra exhibit −7/3 scaling, whereas Amir et al. (2014) reported the

presence of −11/3 scaling region. Contrary to these laboratory studies where only

pressure spectra were analyzed, present results provide spectral energy content

of total drag and lift fluctuations. Nevertheless, it is interesting to see that the

present data for the gravel and the sand case typically exhibit similar behavior as

that observed in unidirectional studies, and therefore indicating universal nature

of the force fluctuations on the roughness-bed.
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3.3.6 Particle forces and turbulent flow-field correlations

The aim of this investigation is to shed light on the role of near-bed flow features

that are responsible for inducing unsteady fluctuating forces on the particle-bed.

As noted earlier, computations or measurements of drag and lift forces on the

particle-bed are not straightforward. Instead, they are calculated indirectly by as-

suming a cross-correlation with near-bed velocity fluctuations. In this context, two

questions arise as to what is the distribution of the near-bed velocity and to what

spatial extent it is cross-correlated with unsteady forces on the particle-bed. To

answer the former, Ghodke et al. (2014a,b) showed the probability-density func-

tion (PDF) of the near-bed velocity and pressure fluctuations in the region above

the particle to be non-Gaussian and follow fourth-order Gram-Charlier distribution

model given by,

fGC4(ψ′) =
exp(−ψ′2/2)√

2π

[
1 +

Sψ′

3!
(ψ′3 − 3ψ′) +

Kψ′ − 3

4!
(ψ′4 − 6ψ′2 + 3)

]
, (3.2)

where ψ′ is the normalized fluctuating flow variable, Sψ′ and Kψ′ are skewness and

kurtosis of its distribution, respectively. To answer the latter, evaluation of the

spatial extent of the cross-correlation between forces on the particle-bed and the

streamwise velocity and pressure fluctuations is carried out in a similar manner

as done by Chan-Braun & Uhlmann (2013) for unidirectional steady flow. To

this end, three-dimensional correlation function given by Eq. 3.1 is computed by

taking φ′ as the force-field of the fluctuating drag/lift and ψ′ as the flow variable

fluctuations. Note that, the local three-dimensional force-field on a particle is

considered for the calculations. As per Eq. 3.1, the correlation function Rφ′ψ′ is

averaged for all the particles and around 15 flow cycles in each case. Here, Rφ′ψ′ is

normalized by using maximum friction velocity uτ,max and ρu2
τ,max as characteristic

scales for velocity and pressure fluctuations, respectively and by using standard

deviation of the respective force fluctuations. As a result, the correlation is not

bounded by unity. The maximum and minimum values of the correlations, Rφ′ψ′ ,
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Correlation Gravel Sand

max (min) max (min)

(F ′D, u′) 1.13 (-1.39) 2.03 (-0.63)
(F ′L, p′) 1.33 (-12.42) 1.93 (-11.61)

Table 3.4: Maximum (minimum) amplitude of the correlation between particle
force and the flow field, Rφ′ψ′ , in the case of the gravel and the sand particle at
the peak phase. Here, Rφ′ψ′ is normalized by using maximum friction velocity
uτ,max and ρu2

τ,max as characteristic scales for velocity and pressure fluctuations,
respectively and by using standard deviation of the respective force fluctuations.

are given in Table 3.4.

In the following, cross-correlations of drag with velocity fluctuations (F ′D–u′)

and lift with pressure fluctuations (F ′L–p′) at the peak phase are presented. This

choice is based on the following considerations. In the given setup of closely-

packed bed, lift is expected to be strongly dependent on the near-bed pressure

distribution. Also, for a smaller size sand particles viscous force (which is mainly

related to streamwise velocity) is predominant contributor in the drag over the

pressure. In this context, drag (lift) is cross-correlated with velocity (pressure)

fluctuations. Take a note that, drag and lift fluctuations, on an average, are

positively correlated with a time-lag (cf. Fig. 3.9) and therefore, given correlation

fields should suffice for complete description of the flow field at the peak phase.

Figure 3.11 shows iso-contours of correlation function of drag and velocity fluc-

tuations for gravel (a,b) and sand (c,d) particles plotted at a peak phase. Planes at

zero spanwise shift (∆y = 0) and zero streamwise shift (∆x = 0) are shown in Fig.

3.11 (a,c) and (b,d), respectively. Close-up view of the domain where significant

correlations exists is presented. As shown in Fig. 3.11 (a), drag is positively cor-

related with velocity fluctuations at around one diameter distance upstream and

downstream from the gravel particle. Spanwise view shown in Fig. 3.11 (b) reveals

the presence of “wing-shaped” positive correlation between drag and velocity fluc-
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tuations. As shown in Fig. 3.11 (c,d), similar shape of the correlation is observed

in the case of sand particle. However, in comparison to gravel, the spatial extent

of the correlation is typically 2 − 3 times larger in both streamwise and spanwise

directions for the sand particle. As discussed earlier, this could be attributed to

the presence of longer near-bed flow structures found in the case of sand-bed. On

the contrary, as a result of significant flow isotropization in the gravel case, only lo-

cal flow structures around the particle are responsible for inducing hydrodynamic

forces on the particle. Also, take a note that, in comparison to the sand case,

“wing-shaped” correlation in the gravel case appears to be more inclined to the

x-axis, a consequence of energized wall-normal motions as discussed in (Ghodke &

Apte, 2016). Such “wing-shaped” correlations were clearly absent in the case of

square arrangement of particles studied by Chan-Braun & Uhlmann (2013). This

is attributed to the complex shielding effects due to hexagonal packing of the bed

that result in disruption of the typical pattern of high-speed/low-speed streaks

found in the square arrangement of the particles.

As seen in Fig. 3.11 (a,b), there exists a region of negative correlation between

drag and velocity fluctuations just above the crest of the gravel particle, however,

in the case of sand-bed the correlation is positive at this location as shown in

Fig. 3.11 (c). It is conjectured that such region of negative correlation in the

gravel case is an artifact of local near-bed flow deceleration before the end of the

peak phase and is typically less predominant in the high Reynolds number sand

case, a behavior also evident from phase-lag between particle forces and outer flow

as discussed in § 3.3.2. These effects are attributed to the oscillatory nature of

the flow and were not seen in unidirectional flow study (Chan-Braun & Uhlmann,

2013).

Figure 3.12 presents iso-contours of correlation function of lift and pressure

fluctuations for gravel (a,b) and sand (c,d) case plotted at a peak phase. Overall

shape of the correlation is similar for gravel and sand particles. In both the cases,

negative correlation between lift and pressure fluctuations is observed in the region

above the particle crest, indicating negative fluctuation in the pressure results in
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positive fluctuation in the lift. This region extends up to 1D distance upstream

and downstream in the streamwise direction from the gravel and the sand particle

center as shown in Fig. 3.12 (a,c). Similar to Fig. 3.11 (b,d), the presence of

“wing-shaped” positive correlation between lift and pressure fluctuations for both

gravel and sand case is clearly evident in Fig. 3.12 (b,d). Again, the overall shape

of this correlation is comparable for the gravel and sand particle, although little

wider for the latter as shown in Fig. 3.12 (d).

In summary, presence of such regions of significant correlations between forces

on particles and turbulent flow field around them further provides the evidence

of the direct link between near-bed flow structures and unsteady hydrodynamic

forces on the roughness-bed.

3.3.7 Particle force distributions

In order to further explore the possibility of influencing probabilistic models for

sediment incipient motion, it would be of interest to analyze the PDF of near-

bed flow parameters and relate it with the hydrodynamic forces on the particles.

Given the high correlation of particle forces with the near-bed flow parameters, it

is expected that they follow similar distribution as that of the velocity and pressure

fluctuations. In that case, statistics of forces on the particle-bed could be obtained

by using the information of measurable near-bed flow variables.

To this end, PDFs of drag and lift fluctuations are constructed for the gravel

and the sand case. Also, pressure and velocity data are collected in the regions

of high correlations as shown in Fig. 3.11 and Fig. 3.12 and their higher-order

moments such as skewness and kurtosis are used to build a fourth-order Gram-

Charlier distribution given by Eq. 3.2. Figure 3.13 show PDFs of (a,c) drag and

(b,d) lift fluctuations represented by histograms for the (a,b) gravel and (c,d) sand

case plotted at a peak phase. PDFs of (a,c) velocity and (b,d) pressure fluctua-

tions constructed by using fourth-order Gram-Charlier distribution are also plot-

ted (solid line). In both the cases, PDFs of drag (lift) fluctuations, in particular,

peaked-ness and long tails match remarkably well with fourth-order Gram-Charlier
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distributions of velocity (pressure) fluctuations. These findings imply that the dis-

tribution of hydrodynamic forces on the particle-bed is influenced by near-bed flow

structures and can be constructed through higher-order flow statistics, further re-

emphasizing the need of incorporating the effects of near-bed bursting phenomena

into probabilistic models for onset of erosion.

3.3.8 Concept of impulse

Diplas and co-workers (Diplas et al., 2008; Valyrakis et al., 2010; Celik et al., 2010,

2013, 2014) introduced the concept of impulse indicating the importance of both

magnitude and duration of fluctuating hydrodynamic forces on sediment erosion.

Although such approach hold promise in accounting for the intermittent dynamics

of turbulent flows, there are certain difficulties in describing such a criterion. For

example, detecting the peak events to calculate impulse from the time signal of

a force history requires a priori specification of a threshold/critical value of the

force. It is difficult, however, to determine the correct choice of such a threshold

that is best suited to predict the incipient motion. Present investigation deals

with fixed particle-bed and it is not possible to detect the peak events resulting in

particle erosion. Nevertheless, to shed some light on the topic, statistical analyses

to provide brief description of intermittency in fluctuating forces by means of

counts and duration of peak events, impulse magnitude and their PDFs for a range

of threshold conditions are provided. Such characterization of force intermittency

might serve as a useful tool in making reasonable choice of a threshold criterion.

Consider a sample time history of the drag force (FD) on a gravel particle as

shown in Fig. 3.14. In this case although period-averaged drag force (dashed line)

on the particle is less than the specified threshold (dash-dot line), the instantaneous

force exceeding the threshold for a long duration could still possibly result in

particle dislodgement (Diplas et al., 2008). As shown in Fig. 3.14, such extreme

force events are identified when the instantaneous force value exceeds the threshold

and duration of such events (tI1 , tI2 , tI3 , etc) are also computed. Based on this,

impulse on a particle for a given duration is calculated using
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Figure 3.13: PDF normalized by standard deviations at a peak phase: (a,c) drag
(velocity) fluctuations and (b,d) lift (pressure) fluctuations represented by his-
tograms (solid line). Panels (a,b) and (c,d) are for gravel and sand, respectively.
PDFs of velocity and pressure fluctuations (solid line) are constructed by using
forth-order Gram-Charlier distribution (Eq. 3.2).
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Impulse = I (φ > φthr) =

∫
tI

φ dt, (3.3)

where φthr is the specified threshold value of the variable φ. Implementing this

procedure for gravel- and the sand-bed, number of such peak force events, their

duration and impulse magnitude are calculated for various threshold conditions

(0 ≤ φthr/σφ ≤ 5). Subsequently, averaging is carried out for number of particles

and flow cycles. Note that, change in the sign of the drag force after flow reversal

is taken into consideration while identifying peak force events.

Figure 3.15 (a) and (b) show average number of intervals, NI , of peak force

events per flow cycle for the gravel and the sand particle, respectively. In both flow

cases, number of intervals for the lift force are typically larger than that for the drag

force, indicating higher intermittency in the lift. In the case of gravel-bed, number

of intervals NI initially increase (more rapidly for the lift) with increase in the

threshold, indicating the presence of relatively low-magnitude and high-frequency

local peaks. Note that, these local peaks are otherwise counted as a single peak for

small threshold values under present peak-detection scheme as represented in Fig.

3.14. With further increase in the threshold value, NI for drag and lift begins to

decline gradually isolating extreme force events. As shown in Fig. 3.15 (a), peak

value NI for the lift is almost two times higher than that for the drag. Therefore,

in comparison to the drag, number high-frequency peak events is typically more

in the case of lift. Moreover, peak in the magnitude of NI for drag (lift) is seen

at φthr/σφ ≈ 1(2). This further shows that, on an average, extreme events in the

lift force for the gravel particle also have higher magnitudes as that compared to

those in the drag.

In the case of sand-bed, this behavior is more intricate. Consistent with the

gravel case, NI for the lift in the sand case initially increases rapidly with increase

in the threshold indicating the presence of low-magnitude local peaks; however, NI

for the drag decreases slowly exhibiting a local maximum close to φthr/σφ ≈ 0.6.

Based on the Fig. 3.15 (b), two observations for the sand case can be drawn as
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follows. First, similar to the gravel case, peak in the NI for the lift is almost

1.5 − 2 times higher than that for the drag. And second, both the peaks are

observed at around same threshold value (φthr/σφ ≈ 0.6). Former suggests that

the lift data consists of more number of high-frequency peak events than those

found in the drag, whereas latter indicates that the peaks in the lift and drag force

have comparable magnitudes.

Furthermore, all the profiles for NI in both gravel and sand case exhibit a

recognizable change in the slope after which the drop in the value of NI is more

gradual (e.g. after φthr/σφ ≈ 1 in the sand case). Such flattening of profiles can

be interpreted as the presence of well pronounced isolated peaks in the drag and

lift forces on the particle-bed.

Figure 3.16 (a) and (b) respectively show variation of average duration, tI , of

peak force events per flow cycle for the gravel and the sand particle. In the case

of gravel-bed, time duration of lift is typically 1.5 − 2 times higher that of the

drag force. This corroborates Fig. 3.15 (a) and (b) suggesting the presence of

more number of high-frequency peak events in the lift that results in larger time

duration as that compared to drag, albeit for the sand particle this difference in

drag and lift duration is indeed smaller. In both gravel and sand case, average

time duration decreases with increase in the threshold value. Also, take a note of

sudden change in the slope of the profiles shown in Fig. 3.16 (a) and (b). As the

threshold value increases, it is evident that the change in the tI is more gradual.

This further provides the evidence of presence of pronounced isolated peaks in drag

and lift forces.

Based on this, an average impulse on a particle per flow cycle is calculated

using Eq. 3.3 and is plotted in Fig. 3.17 (a) and (b) for the gravel and the sand

case, respectively. Consistent with the earlier observations, impulse based on the

lift force is higher than that based on the drag. With increase in the threshold,

impulse related to the lift for gravel (sand) particle is seen to decrease, however

that of the drag almost stays constant up to the threshold value of 1 (0.7). It is

possible that impulse is dominated by few local events that get detected until this
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Figure 3.14: Representative time history ( ) of the drag force (FD) on a gravel
particle. Period-averaged drag force ( ) along with the specified threshold,
φthr/σφ = 1 ( ) are also indicated. Local peaks in FD exceeding the threshold
are detected as shown. The widths of the local peaks indicate their duration tI .

threshold value. Again, the profiles of average impulse show very gradual decrease

for high threshold values. For the illustration purpose, the distribution of impulse

events at a threshold value φthr/σφ = 1 is plotted in Fig. 3.18 for (a) gravel and

(b) sand particle. All distributions are heavily and positively skewed and are well

described by General extreme value distribution.

Based on these results, it is reasonable to suggest that using a threshold value

φthr/σφ > 1.5 (2) for drag and lift in the case of gravel (sand) particle might

be sufficient to identify well pronounced peak events. As noted earlier, present

study considers the roughness-bed made up of fixed particles and therefore it is

only conjectured that these events could possibly result in particle dislodgement,

a subject of future investigation. Nevertheless, these results are typically in agree-

ment with recently reported unidirectional studies (Chan-Braun, 2012; Celik et al.,

2014). For example, Celik et al. (2014) used threshold value based on the pres-

sure, φthr/σφ = 2, for the D+ values in between 330−440. Distribution of impulse

events reported by Celik et al. (2010, 2013, 2014) also showed highly skewed nature

similar to that observed in Fig. 3.18.
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(a) (b)

Figure 3.15: Variation with threshold values for (a) gravel and (b) sand, of average
number of peak force events, NI , experienced by a particle per flow cycle. The
lines indicate drag ( ) and lift ( ).

(a) (b)

Figure 3.16: Variation with threshold values of average time duration of peak force
events, tIU∞/d, for a particle per flow cycle. Line styles and panels are same as in
Fig. 3.15.
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(a) (b)

Figure 3.17: Variation with threshold values of average impulse, I, for a particle
per flow cycle. Here, FR = ρu2

τ,maxAsU∞/d, where As is the projected area of a
single spherical particle given by πd2/4. Line styles and panels are same as in Fig.
3.15.

3.3.9 Summarizing implications of flow oscillations

Oscillatory nature of the near-bed turbulence governs overall structure of hydro-

dynamic forces on the particle-bed. The near-bed flow depending on the Reynolds

number is typically out of sync with the external pressure gradient, resulting in

early deceleration of local flow in the vicinity of the particle-bed. Consequence of

this, drag and lift record shows phase-delay with the free-stream velocity. Further-

more, contrary to unidirectional flows, turbulence is present only in some part of

the oscillation cycle. In present investigation, especially for the sand case, sudden

occurrence of turbulence followed by flow relaminarization is evident, former pro-

vides favorable conditions for dislodgement of the particles whereas latter typically

offers stability to the particle-bed. Such behavior of near-bed flow also greatly in-

fluences spatial structure of the forces on the particles resulting in local patches

of positive/negative forces. As a result, strong non-Gaussian behavior of both

fluctuating near-bed flow and force statistics is observed in oscillatory flows.

On the other hand, although the overall structure of turbulent oscillatory flow

differ significantly from that of unidirectional flow, there are some similarities
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Figure 3.18: Distribution of impulse normalized by standard deviations at a thresh-
old φthr/σφ = 1 for (a,c) drag force and (b,d) lift force represented by histograms.
Panels (a,b) and (c,d) are for gravel and sand, respectively. Solid line represents
General extreme value distribution.
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in the characteristics of drag/lift forces that appear to be robust. For example,

cross-correlation of drag and lift depicts qualitatively similar variation as that

observed in other unidirectional studies, albeit with differences in the amplitudes

of maxima and minima. In addition, scaling regions observed in force spectra as

well as distribution of impulse events suggest universal nature of force fluctuations

on the particle-bed.

3.4 Conclusions

Present investigation focused on studying spatial and temporal structure of un-

steady hydrodynamic forces on the particle-bed subjected to oscillatory flow envi-

ronment. Two particle sizes of diameter 375 (125) in wall units corresponding to

gravel (sand) particle in a very rough turbulent flow regime are studied. Charac-

terization of unsteady drag and lift forces in terms of spatial distribution, temporal

auto-correlation, force spectrum as well as cross-correlations with measurable flow

variables were carried out. The implications of selecting a certain threshold crite-

rion for erosion onset based on the intermittency in the unsteady forces were also

reported.

Time history of phase-averaged drag and lift force showed discernible differences

between the gravel and the sand case. In the case of gravel, both drag and lift

coefficients peak earlier in the flow cycle exhibiting phase-lag with the free-stream

velocity. Conversely, as a result of increased Reynolds number, Rea, this phase-lag

is considerably reduced in the case of sand particle. The small phase-lag between

drag and lift typically observed for the gravel particle was also seen to decrease in

the case of sand. Moreover, presence of sharp spikes in drag and lift records were

detected for the sand particle but were absent in the gravel case. Such distinct

spikes were attributed to the sudden occurrence of turbulence close to the peak

phase in the sand case.

In both gravel and sand case, the period-averaged lift and drag coefficients

remained positive. The higher-order moments such as skewness and kurtosis of

drag and lift fluctuations were found to exhibit strong non-Gaussian behavior. For
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both flow cases, skewness values of drag and lift fluctuations were positive. High

values of kurtosis indicated large intermittency in the forces that resulted in longer

tails of rare but strong events. Also, kurtosis values in the sand case were almost

two times larger than that in the gravel case, indicating larger intermittency in the

forces for the former case.

Spatial distribution of the forces revealed region of strong positive drag near

the top of the sphere, along with small patches of weak positive drag in the front

and the aft portion of the particle; latter only present in the case of gravel-bed.

Lift force of positive magnitude was observed mostly in the top portion of the

upper hemisphere of the sand particle, a result of lower values of pressure due to

flow acceleration near the particle crest. In the case of gravel-bed, positive lift

force was mostly distributed on the side and the aft region of the particle. This

was found to be the effect of enhanced three-dimensionality of the boundary layer

and shielding effects along with the complex pore-scale flow in the gaps between

the particles, all typically more pronounced in the case of large diameter gravel

particle.

The time scales of drag and lift fluctuations were studied by means of temporal

auto-correlation functions. The broken near-bed structures of the size comparable

to the gravel resulting from flow isotropization governed the time scales of fluctu-

ating forces on the gravel-bed. As a result, integral and Taylor micro-scales of drag

and lift fluctuations on the gravel particle were of the order unity when scaled in

outer units. Conversely, as a result of large Reynolds number (Rea) and small size

of particles, streamwise structures were more energetic and longer in length in the

case of sand particle. This resulted in larger separation of scales causing disparity

in integral and Taylor micro-scales in the case of sand-bed, former typically 4− 8

times larger than latter when scaled in outer units.

Cross-correlations between drag and lift were also studied. In both gravel and

sand case, drag and lift, on an average, were positively correlated with a time-

delay which was approximately equal to the Taylor micro-scale related to drag/lift

fluctuations. Such behavior of the cross-correlation function appears to be very
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robust as it is in general agreement with previously reported experimental studies

that dealt with different flow conditions, particle Reynolds number, particle shape

and arrangement, etc.

The spectral content of drag and lift fluctuations was examined by plotting

their frequency spectra. In both gravel and sand case, a reasonably good collapse

of spectra for drag and lift fluctuations was observed, with the largest spectral

contributions at lower frequencies. Two scaling regions, −11/3 and −7/3 in the

mid- and high-frequency regions, respectively were observed for all the spectra;

former typically represents turbulence–mean-shear interactions, whereas latter in-

dicates dominance of turbulence–turbulence interactions. In comparison to the

gravel, −11/3 scaling region for the sand case was present up to higher frequen-

cies suggesting wider range of scales were dominated by turbulence–mean-shear

interactions. Again, present data for the gravel and the sand case exhibit sim-

ilar behavior as that observed in previously reported unidirectional studies, and

therefore indicates universal nature of the force fluctuations on the roughness-bed.

Three-dimensional cross-correlation function between drag (lift) and velocity

(pressure) revealed the direct link between flow parameters and force fluctuations.

Drag force was well correlated with the streamwise velocity fluctuations upstream

and downstream of the particle center in the streamwise direction, along with the

wing-shaped positive correlation in the spanwise direction for both flow cases. In

comparison to the gravel case, the spatial extent of drag–velocity correlation was

2−3 times larger in homogeneous directions for the sand particle, a feature that is

reminiscent of longer near-bed structures typically found in the sand case. Addi-

tionally, negative drag–velocity correlation was observed just above the gravel crest

and was argued to be an effect of local near-bed flow deceleration before the end of

the peak phase. The pressure fluctuations were anti-correlated with the lift force in

the regions around the gravel and the sand particle when plotted in the zero span-

wise shift plane. The wing-shaped positive correlation in the spanwise direction

was also observed for lift–pressure fluctuations in both gravel and sand case. In ad-

dition, PDF distributions of drag (lift) fluctuations, in particular, peaked-ness and
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long tails matched remarkably well with fourth-order Gram-Charlier distributions

of velocity (pressure) fluctuations.

Finally, characterization of impulse generating force events was carried out by

studying the number and average duration of such events. In both flow cases,

higher intermittency was found in the lift force as that compared to the drag. The

magnitude of impulse showed gradual decrease for large threshold values, indi-

cating the presence of isolated well pronounced peaks in the particle-bed forces.

Distributions of impulse events for both flow cases were heavily and positively

skewed and were well described by General extreme value distribution. Such sta-

tistical analyses of force intermittency is especially critical for better specification

of a threshold value in erosion models.
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Abstract

Effects of roughness on the near-bed turbulence characteristics in oscillatory flows

are studied by means of particle-resolved direct numerical simulations (DNS). Two

particle sizes of diameter 375 and 125 in wall units corresponding to the large size

gravel and the small size sand particle, respectively, in a very rough turbulent flow

regime are reported. A double-averaging technique is employed to study the nature

of the wake field, i.e., the spatial inhomogeneities at the roughness length scale.

This introduced additional production and transport terms in double-averaged

Reynolds stress budget, indicating alternate pathways of turbulent energy transfer

mechanisms. Budgets of normal components of Reynolds stress reveal redistri-

bution of energy from streamwise component to other two components and is

attributed to the work of pressure in both flow cases. It is shown that the large

diameter gravel particles significantly modulate the near-bed flow structures, lead-

ing to pronounced isotropization of the near-bed flow; while in the sand case,

elongated horseshoe structures are found as a result of high shear rate. Effect of

mean shear rate on the near-bed anisotropy is significant in the sand case, while it

is minimal for the gravel-bed. Redistribution of energy in the gravel case showed

reduced dependence on the flow oscillations, while for the sand particle it is more

pronounced towards the end of an acceleration cycle.

4.1 Introduction

Interactions between rough surfaces and turbulent structures have been, and con-

tinue to be, a long standing topic subjected to rigorous investigation. Several

pioneering studies identifying the effects of roughness elements on the near-bed

turbulence have been reported so far (Raupach & Thom, 1981; Raupach et al.,

1991; Jiménez, 2004).

Presence of roughness can lead to a substantial modification of the underlying

boundary layer, resulting in increased bed shear stress, reduction in the near-bed
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anisotropy, modification of the near-bed sweep and ejection motions along with

marked changes in turbulent energy transport mechanisms (Krogstad et al., 1992;

Krogstad & Antonia, 1994; Krogstad et al., 2005; Ikeda & Durbin, 2007; Yuan

& Piomelli, 2014b; Ghodke & Apte, 2016). Presence of roughness is also seen to

provide alternate paths of energy transport as a result of spatial inhomogeneities

in the flow arising from the local effects of the individual roughness elements. A

double-averaging technique has been widely used, in particularly for vegetation

canopies, to study such effects (Raupach & Thom, 1981; Raupach & Shaw, 1982;

Finnigan, 2000; Nikora et al., 2001) and has been recently extended to study uni-

directional flows over sediment-bed (Mignot et al., 2009; Dey & Das, 2012). As a

result of spatial inhomogeneities in the wake of the roughness, total kinetic energy

has an additional contribution known as “wake kinetic energy” (WKE), generated

from the work of mean flow against the pressure drag of roughness elements (Rau-

pach & Shaw, 1982). Double-averaging method has been proven to be a useful

tool that potentially offers new insights into understanding such paths of energy

transfer mechanisms; from mean kinetic energy (MKE) to turbulent kinetic energy

(TKE), from MKE to WKE and subsequently the bi-directional exchange between

TKE and WKE (Yuan & Piomelli, 2014b; Ghodke & Apte, 2016). In order to

characterize modulation of the near-bed turbulence as it governs the nature of

inner–outer layer interactions along with generation of the drag on the roughness

elements, it is important to analyze energy transport mechanism in detail.

While many attempts to investigate such turbulence characteristics have been

based on laboratory studies, obtaining some of the terms related to pressure and

small-scale energy dissipation is extremely challenging. On the other hand, owing

to the enormous computational cost in resolving individual roughness elements,

performing detailed numerical investigations of these flows at high Reynolds num-

bers is still a challenge and very few numerical investigations studying spatial

inhomogeneities have been reported so far (Coceal et al., 2006; Yuan & Piomelli,

2014b). Furthermore, most of the aforementioned studies pertaining to this topic

are reported for unidirectional, steady flows. However, detailed information of the
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effects of roughness on the near-bed turbulence in oscillatory, non-stationary flows

yet remain elusive.

As a first step towards fundamental understanding of such flows, detailed simu-

lations studying effects of gravel-type roughness on the oscillatory turbulence have

been recently reported in (Ghodke & Apte, 2016). Presence of roughness was shown

to alter near-bed TKE transport mechanism, resulting in reduction of large-scale

anisotropy. Supplementing (Ghodke & Apte, 2016), present investigation aims to

study several other aspects of the interactions between rough-bed and oscillatory

turbulence; in particular, effects of size of the roughness elements, redistribution of

energy between normal components of Reynolds stress as well as budgets of WKE

to understand the energy transfer between the wake and the turbulence, among

others. To the best of authors’ knowledge, such detailed characterization is the

first of its kind and may have direct relevance to applications such as sediment

transport in coastal flows. The outline of the paper is as follows: the computa-

tional setup and methodology are presented in § 2. In § 3, simulation results are

presented followed by main conclusions in § 4.

4.2 Computational setup

In the present notation x, y and z, respectively, denote the streamwise, spanwise

and vertical directions and u, v and w denote the velocity components in those

directions. Viscous length of the problem is defined by Stokes-layer thickness δ =√
2ν/ω, where ν is the kinematic viscosity, ω = 2π/T is the oscillation frequency

and T is the period of the wave. The rough-bed is made up of a single layer

of hexagonal pack of fixed spherical particles that are touching each other. To

study the effects of particle size on turbulence characteristics, two sizes of particle

diameter normalized by the Stokes-layer thickness, D = d/δ, corresponding to

the large diameter gravel (D = 6.95) and the small diameter sand-type roughness

(D = 2.7) are studied. Based on (cf. Fig. 2) from Ghodke & Apte (2016), both

gravel and sand case correspond to very rough turbulent regime; latter approaching

the limit of rough turbulent regime.
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The dimensionless parameters to characterize the flow along with grid resolu-

tion details are summarized in Table 4.1. As described in Ghodke & Apte (2016),

uniform grids, although not cubic, are employed only in the region surrounding the

particles and the grids are stretched in the flow normal direction above z = 8δ(6δ)

for the gravel (sand) using hyperbolic tangent function. For both the cases, grid

sizes in the streamwise and spanwise directions, on an average, are less than 8 and

6 wall units, respectively with ∆z+ < 1 in the near-bed region and were shown to

be adequate to capture near-bed flow features (Ghodke & Apte, 2016). Moreover,

the present grid resolutions in wall units are also comparable to the values used in

existing DNS studies on rough-wall turbulent boundary layers (Coceal et al., 2006;

Ikeda & Durbin, 2007; Cardillo et al., 2013; Yuan & Piomelli, 2015). Around 15

flow cycles per case are computed to obtain statistical convergence.

The computational domain similar to (Ghodke & Apte, 2016) consisting of a

doubly periodic box in x- and y-directions is used. The flow domain is around

24δ(28δ) long in the flow direction, 14δ(16δ) wide in the spanwise direction and

45δ in the wall-normal direction for the gravel (sand) case. Vertical size of the

domain is chosen such that all turbulent statistics decay to zero case at almost

half the vertical height for large Reynolds number sand case under consideration.

The numerical solver based on fictitious domain algorithm (Apte & Finn, 2013),

that facilitates solution of freely moving particles for a wide range of fluid-particle

density ratios is used, although the particles are held fixed in the present study. The

solver is fully validated for a range of test cases and the details of the algorithm

as well as very detailed verification and validation studies have been published

elsewhere (Apte et al., 2008; Apte & Finn, 2013). In addition, current flow con-

figuration for the gravel particle is validated against experimental data of Keiller

& Sleath (1976) for Reδ = 95 to show very good agreement as reported in Ghodke

& Apte (2016). Other numerical predictions such as friction factor and boundary

layer thickness for Reynolds numbers in the range Reδ = 95−400 for the gravel-bed

also show good comparison with experimental data, further confirming adequacy

of the computational domain, grid resolution and rigid body treatment (Ghodke
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& Apte, 2016).

4.3 Results and discussion

4.3.1 Double averaging approach

Following Raupach & Shaw (1982); Mignot et al. (2009), a double averaging proce-

dure is employed for the analysis described below that decomposes a flow quantity,

φ into double average 〈φ〉 (where, overbar and brackets respectively denote phase

and homogeneous spatial averages), the spatial disturbance φ̃ (also known as the

wake fluctuation) of the phase-average quantity and the turbulent fluctuation φ′,

φ(x, y, z, ωt) = 〈φ〉(z, ωt) + φ̃(x, y, z, ωt) + φ′(x, y, z, ωt) (4.1)

Note that, φ̃ is a measure of velocity scale of the wake field and is an artifact

of spatial heterogeneity resulting from roughness elements. This term is otherwise

absent in smooth wall flows. Such spatial disturbance in the velocity field results

in additional stresses in the vicinity of the roughness elements given by, 〈ũiũj〉 and

are called form-induced or dispersive stresses.

4.3.2 Near-bed flow structures

To elucidate the turbulence modulation by roughness elements, instantaneous near-

bed flow structures are visualized for the gravel and the sand particle case. As noted

in Table 4.1, the amplitude based Reynolds number (Rea) in the sand case is almost

two times larger than that in the gravel case. On the other hand, effective roughness

Reynolds number (k+
s ) in the gravel case is almost three times higher than that in

the sand case. As a result, there exist some differences in the elementary processes

that govern the near-bed turbulence structure in the gravel and the sand case.

The large size of the gravel particle plays an important role in forming and then

breaking the streamwise structures (Ghodke & Apte, 2016). On the other hand,
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inertial effects play an important role in triggering the turbulence in small diameter

sand case. This behavior is depicted in Fig. 4.1 that shows instantaneous near-bed

flow structures in the form of λ2-iso-surfaces (Jeong & Hussain, 1995) plotted at

the peak phase for (a) gravel and (b) sand particle. For the gravel-bed, there exists

a complex forest of highly densed near-bed structures that appear to be broken

and are slightly inclined with respect to the horizontal direction. The disruption

of these near-bed structures is attributed to the tendency of the gravel particles to

energize the wall-normal velocity fluctuations that in turn distort the streamwise

structures and cause flow isotropization, as already discussed in (Ghodke & Apte,

2016). As seen in Fig. 4.1 (b), the presence of larger horseshoe structures that

span over more than few particle diameter in the flow direction is clearly evident

in the sand case. Contrary to the gravel, these structures appear to be less broken,

suggesting lower degree of near-bed flow isotropization in the sand case. Further

quantification of flow isotropization for the gravel and the sand particle in terms

of variation of Reynolds stresses along with their budgets and non-dimensional

structure parameters will be discussed in the following sections.

4.3.3 Reynolds and dispersive stresses

Figure 4.2 shows profiles of double-averaged Reynolds stress normalized by u2
τ,max,

plotted against wall-normal distance for (a,b,c) gravel and (d,e,f) sand case; where

zb is the zero-displacement plane (it is the effective level at which the bulk drag

force is exerted on the roughness). Based on the variation of drag force in the

wall-normal direction, the zero-displacement plane is located at 0.7D(0.85D) for

the gravel (sand) particle. Profiles at three phases in a flow cycle, representing

(a,d) acceleration, (b,e) peak and (c,f) deceleration phase are plotted.

In both flow cases, all components of Reynolds stress increase away from the

effective bed location, peak close to the roughness crest level, and decay to zero

in the outer region away from the roughness crest. In agreement to canonical

wall-bounded flows, the streamwise component 〈u′2〉 increases away from the wall

at much faster rate. Some discernible differences are observed in the near-bed
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turbulence statistics between two flow cases. As shown in Fig. 4.2 (d,e,f), the

peak value of 〈u′2〉 at all the phases in the sand case is significantly higher than

〈v′2〉 and 〈w′2〉. On the contrary, the disparity between peak values of 〈u′2〉, 〈v′2〉
and 〈w′2〉 is significantly smaller in the gravel case shown in Fig. 4.2 (a,b,c). This

could be attributed to the effect of particle size and indicates the tendency of the

gravel particle to redistribute more energy from streamwise to spanwise and wall-

normal stresses, as also reported in Ghodke & Apte (2016). It is also worth noting

that the fraction of energy redistributed from streamwise to other two components

in the sand case shows some dependence on the flow oscillations, while for the

gravel particle it remains almost identical as shown in Fig. 4.2 (a,b,c); quantitative

measure of this characteristic will be presented later. As seen in Fig. 4.2 (a,b,c),

all the components of Reynolds stress in the gravel case decay to zero at a distance

(z − zb)/D ≈ 1 away from the effective bed level. Conversely, as a result of high

Reynolds number (Rea) and presence of larger wall-inclined horseshoe structures,

Reynolds stresses decrease at much slower rate away from the crest and remain

significant until (z − zb)/D ≈ 2 in the sand case.

Wall-normal profiles of the dispersive stresses, 〈ũiũj〉, normalized by u2
τ,max are

plotted in Fig. 4.3 for (a,b,c) gravel and (d,e,f) sand case. Overall variation of

the dispersive stresses is almost same as that of Reynolds stresses shown in Fig.

4.2. The region with non-negligible dispersive stress 〈ũiũj〉, known as roughness

sublayer, is smaller for the gravel as that compared to the sand particle with the

thickness of approximately 0.5D and 2D above the zero-displacement plane in the

former and the latter case, respectively.

4.3.4 Budgets of Reynolds and dispersive stresses

The total kinetic energy in the turbulent flow over roughness elements, 1
2
〈uiui〉,

may be decomposed into three parts as follows,

1

2
〈uiui〉 =

1

2
〈ui〉〈ui〉+

1

2
〈ũiũi〉+

1

2
〈u′iu′i〉 (4.2)
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(c)(b)(a)

(f)(e)(d)

Figure 4.2: Profiles of double-averaged Reynolds stress at various phases in a flow
cycle for (a,b,c) gravel and (d,e,f) sand case. Symbols represent: �, streamwise
Reynolds stress 〈u′2〉; �, spanwise Reynolds stress 〈v′2〉; I, wall-normal Reynolds
stress 〈w′2〉; N, Reynolds shear stress 〈u′w′〉. All the terms are normalized by
u2
τ,max. Panels show (a,d) acceleration, (b,e) peak and (c,f) deceleration phase.

The dash-dot line at (z − zb)/D = 0.3 in (a,b,c) and at 0.15 in (d,e,f) shows
roughness crest level for the gravel and the sand particle, respectively.
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(b) (c)

(f)(e)(d)

(a)

Figure 4.3: Profiles of double-averaged dispersive stress at various phases in a flow
cycle for (a,b,c) gravel and (d,e,f) sand case. Symbols represent: �, streamwise
dispersive stress 〈ũ2〉; �, spanwise dispersive stress 〈ṽ2〉; I, wall-normal dispersive
stress 〈w̃2〉; N, shear component of the dispersive stress 〈ũw̃〉. All the terms are
normalized by u2

τ,max. Panels show (a,d) acceleration, (b,e) peak and (c,f) deceler-
ation phase. The dash-dot line at (z− zb)/D = 0.3 in (a,b,c) and at 0.15 in (d,e,f)
shows roughness crest level for the gravel and the sand particle, respectively.
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where, terms on the right-hand side are, respectively, the MKE, the WKE and

the TKE.

Schematic representation illustrating various energy transfer mechanisms and

their pathways can be found in Fig. 8 from Ghodke & Apte (2016) and is again

presented here in Fig. 4.4 for the sake of completeness. As reported by Finnigan

(2000), conversion of MKE to the fine-scale TKE takes places in two ways. In the

first pathway, the energy goes through the entire energy cascade process converting

MKE to TKE and subsequently into heat. In the second alternate pathway (shown

in Fig. 4.4 by dashed arrow), the work of mean flow against pressure drag converts

MKE to WKE, and WKE then generates TKE of scales smaller than the roughness

elements through a process called ‘short-circuited’ energy cascade (Raupach et al.,

1991). Furthermore, as indicated in Fig. 4.4, bi-directional interactions between

TKE and WKE can be explained as follows: eddies of all scales larger than the

roughness elements work against the pressure drag and lose their TKE to WKE.

At the same time, WKE generates TKE of scales smaller than roughness elements

through aforementioned short-circuited energy cascade. Take a note that, physical

processes represented in this bi-directional exchange involve action on the turbulent

eddies rather than the mean flow.

The budget of TKE for the gravel case was reported in (Ghodke & Apte, 2016)

where important processes governing TKE–WKE interactions were discussed. In

addition, to further explain the phenomenon of redistribution of energy among nor-

mal components of Reynolds stresses and illustrate the relative importance of the

various processes involved, budgets of normal Reynolds stresses along with normal

dispersive stresses are studied here. Based on Raupach & Thom (1981); Mignot

et al. (2009); Yuan & Piomelli (2014b), double-averaged normal Reynolds stress

budget equation for flow over roughness with streamwise-spanwise homogeneity is

given as,
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Figure 4.4: Schematic representation of energy transfer mechanisms and their
pathways. Dashed arrow path indicates short-circuited energy cascade. Conversion
of energy into heat is not illustrated.

∂〈u′αu′α〉
∂t

= −2〈u′αw′〉
∂〈uα〉
∂z︸ ︷︷ ︸

Ps

+

−2

〈
ũ′αu

′
j

∂ũα
∂xj

〉
︸ ︷︷ ︸

Pw

−2〈u′αu′j〉
〈
∂ũα
∂xj

〉
︸ ︷︷ ︸

Pm


− ∂

∂z
〈u′αu′αw′〉︸ ︷︷ ︸
Tt

− ∂

∂z
〈ũ′αu′αw̃〉︸ ︷︷ ︸
Tw

−2

ρ

〈
u′α

∂p′

∂xα

〉
︸ ︷︷ ︸

Παα

+ν
∂2

∂z2
〈u′αu′α〉 − 〈εαα〉 (4.3)

where, the eight terms on the right-hand side are, respectively, shear production

term, Ps, that represents the work of double-averaged velocity against double-

averaged shear; wake production term, Pw, is the work of wake-induced velocity

fluctuations against the bed-induced shear. This term represents the net exchange

of energy between TKE and WKE; Pm is the work of the bed-induced velocity
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fluctuations against double-averaged shear; Tt is turbulent transport, Tw is the

bed-induced turbulent transport; Παα is the pressure work followed by seventh

term of viscous transport. The last term on the right 〈εαα〉 represents viscous

dissipation rate of 〈u′2α 〉. Note that the terms Pm, Pw and Tw arise as a result of

spatial heterogeneity at roughness element length scale.

Figure 4.5 shows variation of various terms in the budget equation of (a,d)

streamwise, (b,e) spanwise and (c,f) wall-normal components of Reynolds stress

plotted at a peak phase. Here, panels (a,b,c) show variation in the gravel and

(d,e,f) present that in the sand case. The results for gravel and sand case are

presented only for the peak phase in a flow cycle. Similar trends albeit with

different maxima and minima are observed for rest of the turbulent phases and are

presented in Appendix D. Also note that, the quantitative comparison of budget

terms in the gravel and the sand case is not reported here as the level of turbulence

at peak phase is different in both the cases. Nevertheless, trends discussed here

sufficiently elucidate near-bed turbulence characteristics in both flow cases.

As the flow accelerates, standing vortices around the spherical particle begin

to form in the streamwise direction; as a result, shear layers start emanating from

the upper hemisphere of the particle causing peak in the shear production Ps,uu

and viscous dissipation εuu close to the roughness crest in both flow cases as shown

in Fig. 4.5 (a,d). Consistent with the TKE budget reported in Ghodke & Apte

(2016), there exists a negative peak in the wake production term Pw,uu close to

the roughness crest, indicating the conversion of TKE to WKE. At this location,

streamwise component of the Reynolds stress, 〈u′2〉, contributes most to the TKE

and is typically associated with near-bed turbulent structures of length scales larger

than the roughness scale. These large-scale structures work against the pressure

drag and lose their TKE to WKE, resulting in the negative peak in Pw,uu. As

expected, shear production is almost zero in the budgets of 〈v′2〉 and 〈w′2〉, with

the only non-negligible production term as the wake production. In both gravel

and sand case, Pw,vv shows positive peak below the roughness crest indicating

conversion of WKE to TKE. At this location, turbulent scales associated with
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spanwise Reynolds stress are smaller than the roughness size; therefore converting

WKE to TKE through short-circuited energy cascade. Wake production in the

budget of 〈w′2〉 in negligible in comparison with Pw,uu and Pw,vv for both flow

cases. Another production term Pm is slightly positive for both gravel and sand

in the streamwise Reynolds stress budget, however is negligible otherwise. In the

outer part of the roughness sublayer, all the terms except shear production and

dissipation decay to zero, establishing equilibrium outer layer where the rate of

production balances the rate of dissipation. Consistent with the gravel case (c.f.

Fig. 8) from Ghodke & Apte (2016), net wake production in the TKE budget for

sand case (not shown) also exhibits two peaks; positive below the roughness crest

and negative close to the crest; indicating transfer of energy from WKE to TKE

in the former and TKE to WKE in the latter.

Apart from production and dissipation, another important term in the budget

of normal Reynolds stress is the term of pressure work. In both gravel and sand

case, pressure work Π11 is almost equal to viscous dissipation and acts a dominant

sink term in the budget of 〈u′2〉. Conversely, Π22 and Π33 are typically positive and

serve as source terms in the balance of 〈v′2〉 and 〈w′2〉, respectively. Peak in Π22 is

seen close to the crest in the case of gravel particle and near the zero-displacement

plane in the case of sand particle as shown in Fig. 4.5 (b) and (e), respectively. In

both gravel and sand case, Π33 exhibits two positive peaks; one is located below the

roughness crest, while second is above the crest. Magnitudes of these two peaks

in the sand case are almost same, however, for the gravel particle, peak in Π33

below the roughness crest is almost two times higher than the one above the crest.

Presence of these peaks could be attributed to the turbulence–wake interactions

in the vicinity of the roughness crest resulting in more enhanced intensification of

wall-normal fluctuations, along with increased p′ intensity resulting from significant

wake-related terms (the second and fourth term) in the source of the p′ Poisson

equation (Yuan & Piomelli, 2015) given as,
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∇2p′ = −2
∂〈ui〉
∂xj

∂u′j
∂xi
− 2

∂ũi
∂xj

∂u′j
∂xi
− ∂2

∂xi∂xj
(u′iu

′
j − 〈u′iu′j〉)−

∂2ũ′iu
′
j

∂xi∂xj
(4.4)

As foreshadowed earlier, the positive pressure work terms in both flow cases indi-

cate the tendency of roughness to redistribute energy from streamwise to spanwise

and wall-normal fluctuations, resulting in homogenization of the near-wall turbu-

lence.

Following Raupach & Thom (1981); Yuan & Piomelli (2014b), double-averaged

dispersive Reynolds stress budget equation for flow over roughness with streamwise-

spanwise homogeneity is given as,

∂〈ũαũα〉
∂t

= −2〈ũαw̃〉
∂〈uα〉
∂z︸ ︷︷ ︸ePs

+

2

〈
ũ′αu

′
j

∂ũα
∂xj

〉
︸ ︷︷ ︸

−Pw

+ 2〈u′αu′j〉
〈
∂ũα
∂xj

〉
︸ ︷︷ ︸

−Pm


− ∂

∂z
〈ũαũ′αw′〉︸ ︷︷ ︸eTt

− ∂

∂z
〈ũαũαw̃〉︸ ︷︷ ︸eTw

−2

ρ

〈
ũα

∂p̃

∂xα

〉
︸ ︷︷ ︸eΠαα

+ν
∂2

∂z2
〈ũαũα〉 − 〈ε̃αα〉 (4.5)

where, the eight terms on the right-hand side are, respectively, shear production

of WKE, P̃s; wake production term, −Pw; −Pm is the work of the bed-induced

velocity fluctuations against double-averaged shear; T̃t is turbulent transport of

WKE, T̃w is the transport due to wake; Π̃αα is the pressure work followed by

seventh term of viscous transport and the last term of viscous dissipation rate of

〈ũ2
α〉. Note that the terms Pw and Pm appear with opposite signs in the budgets

of TKE and WKE.

Figure 4.6 shows variation of various terms in the budget equation of (a,d)

streamwise, (b,e) spanwise and (c,f) wall-normal components of dispersive Reynolds

stress plotted at a peak phase. Again, panels (a,b,c) show variation in the gravel



91

(a
) lo
ss

ga
in

(b
) lo
ss

ga
in

(d
)

(c
)

lo
ss

ga
in

lo
ss

ga
in

(e
)

(f
) lo
ss

ga
in

lo
ss

ga
in

F
ig

u
re

4.
6:

B
u
d
ge

t
at

a
p

ea
k

p
h
as

e
(ω
t

=
5π
/1

0)
of

(a
,d

)
st

re
am

w
is

e
〈ũ
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and (d,e,f) present that in the sand case. As expected, terms in the dispersive

stress budget equation are significant mostly in the vicinity of the crest of gravel

and sand particle. As shown in Fig. 4.6 (a,d), the shear production term, P̃s, rep-

resenting the work of the mean flow against the bed-induced stress is significant

only for 〈ũ2〉 and it peaks below the roughness crest in both flow cases. Wake

production of the WKE (−Pw,uu) in the gravel case peaks close to the roughness

crest and is almost of the same magnitude as the shear production term P̃s,uu. On

the other hand, interestingly, wake production (−Pw,uu) in the sand case peaks

close to the roughness, however, exceeds the shear production term P̃s,uu. This is

presumably due to elongated streamwise structures in the sand case resulting in

large amount of TKE being converted to WKE in comparison to the production

of WKE through P̃s,uu. This suggest that the process of short-circuited energy

cascade is less dominant in the sand case. Consistent with normal stress budget,

pressure work terms Π̃22 and Π̃33 in both flow cases are typically positive and act

as dominant sources below the roughness crest in the balance of 〈ṽ2〉 and 〈w̃2〉,
respectively.

4.3.5 Turbulence structure

To further understand the behavior of the near-bed turbulence, large-scale an-

iostropy and its response to flow oscillations, dimensionless parameters that rep-

resent flow structures in turbulent shear flows are examined. As reported by Lee

et al. (1990), near-wall structures that influence the anisotropy in the turbulent

boundary layer are primarily attributed to the effects of mean shear rate. There-

fore, to examine the effects of shear rate on the development of near-bed anisotropy

in the present flow cases, the shear-rate parameter S∗ given as,

S∗ =
Sq2

2ε
, (4.6)

where, S = 2(SijSij)
1/2 is the mean strain rate, Sij = (∂〈ui〉/∂xj +∂〈uj〉/∂xi)/2 is

the strain-rate tensor, q = 〈u′iu′i〉1/2 is a measure of turbulent velocity scale and ε
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is the dissipation rate of TKE is calculated. The shear-rate parameter S∗ signifies

the ratio of turbulence and the mean deformation time scale and quantifies the

importance of the mean shear against the shear of the turbulence on the near-bed

flow structures. Take a note that, S∗ ≈ 10 is regarded as a lower threshold for

observing near-bed horseshoe structures (Lee et al., 1990). Figure 4.7 compares the

shear-rate parameter S∗ in the gravel and sand case. To examine the effects of flow

oscillations, variation at three phases in a flow cycle, i.e. acceleration, peak and

deceleration phase is plotted. As shown in Fig. 4.7 (a), the shear-rate parameter

in the gravel case attains its maximum, S∗max ≈ 12, at the gravel crest level and

interestingly, does not show any dependence on the flow oscillations. Further away

from the gravel crest, in agreement with the conclusions of Lee et al. (1990), S∗

is close to 5, which implies that elongated coherent structures cannot form. Small

difference in S∗ values in the inner and outer layer highlights the incompetence

of the mean shear to affect the turbulent eddy shape and the Reynolds stress

anisotropy in the gravel case. In the case of sand-bed shown in Fig. 4.7 (b), S∗

peaks just above the particle crest and takes the maximum value of 30 towards the

end of an acceleration cycle at ωt = 4π/10, eventually decreasing to S∗max ≈ 12

later in the flow cycle. Consistent with Lee et al. (1990), S∗ attains the value

between 4 to 5 in the outer part of the roughness sublayer. Contrary to the gravel

case, shear-rate parameter for the sand particle shows some dependence on the

flow oscillations, especially in the vicinity of the roughness crest. Large values

of S∗ in the vicinity of the sand particle crest indicate the existence of longer

streamwise structures as also visualized in Fig. 4.1 (b). This also implies that the

response time of the turbulence in that region is typically higher, and its shape is

significantly modified by stretching of the vortex elements leading to the state of

1D turbulence on the Lumley’s triangle (Choi, 2001).

Following (Yuan & Piomelli, 2015), the ratio of turbulence time scale and that

of the bed-induced (wake) strain given by,

S∗w =
Swq

2

2ε
, (4.7)
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(a) (b)

Figure 4.7: Variation of the shear-rate parameter S∗ inside the roughness sublayer
for (a) gravel and (b) sand case. Symbols represent variation at: •, acceleration
phase 4π/10; �, peak phase (5π/10); �, deceleration phase (6π/10). The dash-dot
lines at (z−zb)/D = 0.3 in (a) and 0.15 in (b) show roughness crest level for gravel
and sand, respectively.

(b)(a)

Figure 4.8: Variation of S∗w inside the roughness sublayer for (a) gravel and (b)
sand case. Symbols are same as in Fig. 4.7.
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(a) (b)

Figure 4.9: Variation of the energy-partition parameter K∗ inside the roughness
sublayer for (a) gravel and (b) sand case. Symbols are same as in Fig. 4.7.

where, wake strain Sw is approximated as 〈ũ2〉1/2/D is also plotted in Fig. 4.8.

Similar to S∗, the variation of S∗w in the gravel case reveals no dependence on the

flow oscillations. As seen in Fig. 4.8 (a), maxima in the S∗w are found just below

the gravel crest with overall values inside the roughness sublayer less than one.

In the sand case, S∗w peaks much away from the particle crest showing reduced

dependence on the flow oscillations with overall values of the order of one. These

results indicate that the wake strain rate is not sufficient to change the near-bed

aniostropy in both flow cases.

In addition, the anisotropic nature of the near-bed structures is also quantified

by calculating energy-partition parameter (Lee et al., 1990) given as,

K∗ =
2u′2

v′2 + w′2
(4.8)

where, K∗ is a measure of high concentration of TKE in the streamwise component

of the normal Reynolds stress. Note that, K∗ = 1 in the isotropic turbulence and

according to Lee et al. (1990), the near-bed elongated streaks are known to exist

when K∗ > 5.

Figure 4.9 (a) and (b) shows variation of K∗ inside the roughness sublayer for

gravel and sand particle, respectively. Consistent with earlier observations, K∗ in
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the gravel case shows no differences for various phases in a flow cycle and takes

values of the order one. This indicates the absence of elongated streaky structures

and further corroborates the observation of near-bed flow isotropization in the

gravel case. Conversely, in the case of sand particle, K∗max ≈ 33 towards the end of

an acceleration cycle (ωt = 4π/10), eventually decreasing to K∗max ≈ 10 at the peak

phase (ωt = 5π/10). This reduction in the value of K∗max with flow acceleration

is attributed to the intensification of near-bed bursting phenomenon close to the

peak phase, leading to enhanced redistribution of the energy from streamwise to

other two components of the normal Reynolds stress. However, in comparison to

the gravel case, the extent of near-bed flow isotropization is typically less for the

sand-bed.

4.4 Conclusions

A numerical study of oscillatory turbulent flow over a bed of closely packed spheri-

cal particles of diameter 375 (125) in wall units, corresponding to the gravel (sand)

particle, in a very rough turbulent flow regime is carried out. Detailed character-

ization of the near-bed turbulence by employing double-averaging technique is

reported.

It was shown that the roughness leads to a wake field that in turn results in

dispersive stresses in the vicinity of the particle-bed. In the case of gravel, such

bed-induced stresses were significant mostly in the vicinity of the particle crest,

while for the sand case, their effect was seen to penetrate up to the distance of 2D

above the particle-bed.

The spatial inhomogeneity at roughness length scale introduced additional pro-

duction and transport terms in double-averaged Reynolds stress budget. In both

flow cases, negative peak in the wake production term Pw,uu is observed close to

the roughness crest and was attributed to the conversion of TKE to WKE as a

result of larger turbulent scales that are associated with 〈u′2〉 at this location. In

addition, positive peak in the wake production Pw,vv of spanwise component of

the Reynolds stress was observed close to the effective bed location, indicating
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the conversion of WKE to TKE of scales smaller than roughness length scale at

this location. The pressure work term in the budget of 〈u′2〉 for both gravel and

sand case remained negative and worked as a dominant sink. On the other hand,

intensified turbulence–wake interactions led to positive pressure work in the bud-

gets of 〈v′2〉 and 〈w′2〉, resulting in redistribution of energy between components

of Reynolds stresses. In both flow cases, bed-induced transport term was found to

be negligible.

For the grave-bed, amount of WKE converted from TKE (through −Pw,uu) is of

the same order as that received from MKE (through P̃s,uu). On the contrary, pres-

ence of elongated streamwise structures in the sand case resulted in augmentation

of the wake production term −Pw,uu that is larger compared to shear production

term P̃s,uu. This therefore suggests that the process of short-circuited energy cas-

cade is less dominant in the sand case.

The large size of the gravel particles was seen to play an important role in

forming and then breaking the streamwise structures, leading to isotropization of

the near-bed flow; while in the sand case, elongated horseshoe structures formed

as a result of high shear rate. Small values of the shear-rate parameter in the

gravel case highlights the incompetence of the mean shear to affect the turbulent

eddy shape and the Reynolds stress anisotropy. Contrary to this, large shear-

rate parameter in the sand case indicated the importance of mean strain rate in

modifying the shape of the near-bed turbulence.

Variation of the normal components of the Reynolds stress showed fraction of

energy from streamwise component being redistributed to other two components,

more so for the gravel case as that compared to the sand. As also evident from

energy-partition parameter, redistribution of energy in the gravel case showed no

dependence on the flow oscillations, while for the sand particle it is more pro-

nounced towards the end of an acceleration cycle.
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Chapter 5: Concluding remarks

A detailed conclusion section is provided in each of the preceding chapters. In

this section, salient features of the present investigation are reiterated in a more

general perspective.

The work is motivated by the fact that lack of accurate criteria for onset of

sediment erosion under oscillatory turbulent flow conditions remains one of the

biggest hurdles in developing better predictive models for coastal sediment trans-

port. These flows are typically turbulent in nature and to study the dynamics

of particle-bed mobility, it is important to understand the complex interactions

between turbulence and sediment grains. Several studies have investigated steady,

unidirectional flow (representative of stream and river environments) over sediment

beds, however, such detailed findings pertaining to oscillatory turbulent flows have

not been well documented. Main focus of the study was, therefore, to perform

detailed characterization of the turbulent flow field along with statistical analyses

of unsteady hydrodynamic forces on the particle-bed subjected to oscillatory flow

environment.

Particle-resolved direct numerical simulations were performed to investigate

the behavior of an oscillatory flow field over a bed of closely packed fixed spherical

particles for a range of Reynolds numbers in transitional and rough turbulent

regime. The presence of particles was seen to greatly affect the structure of the

near-bed turbulence, indicated by increased bed shear stress, energized sweep-

burst motions, non-Gaussian flow distribution and marked changes in turbulent

energy transport mechanisms. It was also reported that the roughness facilitates

redistribution of energy from more energetic streamwise structures to other two

components of the Reynolds stress, therefore, severely modifying the shape of the

near-bed turbulent structures resulting in reduction in the near-bed anisotropy.

A double-averaging technique of the flow field revealed spatial inhomogeneities
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at the roughness scale and alternate pathways of energy transport mechanism. The

presence of wake field in the vicinity of the roughness elements resulted in addi-

tional bed-induced stresses that act like source or sink terms in the turbulent kinetic

energy balance. As a result, the wake field promotes pronounced inner–outer layer

interactions in turbulent boundary layer.

Statistical descriptions of unsteady hydrodynamic forces on the particle-bed,

their temporal correlations as well as cross-correlations with near-bed turbulent

flow field were reported. Near-bed turbulent flow structures were found to be re-

sponsible for governing the time scales of fluctuating forces on the particle-bed,

therefore, substantiating the presence of the link between near-bed structures and

unsteady hydrodynamic forces on sediment particles. The spectral content of drag

and lift fluctuations was examined to reveal roughly two scaling regions for the

mid- and high-frequency range, identical to other unidirectional flow cases. This

therefore, indicates universal nature of the force fluctuations on the roughness-bed.

Based on the concept of impulse, intermittency in the drag and lift forces was also

investigated. Typically, intermittency in the lift force was found higher as that

compared to the drag, also evident from higher kurtosis values for the lift. More-

over, the implications of selecting a certain threshold criterion for erosion onset

based on the intermittency in the drag and lift forces were also discussed. These

finding will hopefully provide better understanding of the oscillatory turbulence

over roughness elements.
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Appendix A:

Table A.1 tabulates the parameters used to perform grid resolution study for Reδ =

400. Uniform grids are used in the region surrounding the roughness bed (up to z

= 10δ) and grids are stretched in the wall-normal direction (above z = 10δ) using

a hyperbolic tangent function. Case C1 represents current simulation parameters,

while case C2 is finer grid resolution. To limit the computational requirements in

case C2, grid points are clustered up to z = 8δ region with around 375 points per

particle diameter. Furthermore, appropriateness of vertical extent of the domain

was also tested by running case C3 with the increased domain height of 45δ (grid

resolution in the near-bed region is kept same as that of case C1).

As seen in Fig. A.1, velocity profile is unchanged even after increasing the

number of grid points (case C2), therefore, confirming the adequacy of the present

grid resolution (case C1). It can also be seen that, increasing the vertical extent

of the domain (case C3) has no impact on the near-bed velocity distribution.

In addition, the normalized boundary layer thickness, maximum friction factor,

and also the maximum values of period-averaged turbulence intensities showed no

discernible impact of increasing the number of grid points.

Case Nx Ny Nz Nz/D Height

C1 (present) 208 152 832 300 30δ
C2 250 180 832 375 30δ
C3 208 152 832 300 45δ

Table A.1: Grid resolution study for Reδ = 400.
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Figure A.1: For Reδ = 400, phase evolution of normalized double-averaged stream-
wise velocity profile. Symbols represent: −, C1 (present grid resolution and do-
main); •, C2 (refined grid resolution); �, C3 (present grid resolution and larger
domain).
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Appendix B:

The domain size in the periodic directions is verified to be sufficiently large by

calculating two-point spatial velocity correlation functions, in both streamwise

and spanwise directions, by doubling the domain. Figure B.1 and Fig. B.2 show

two-point velocity spatial correlation functions for the gravel and the sand case,

respectively. The correlations showed no significant effect of the domain size, and

confirm the adequacy of the present domain to accommodate the largest turbulent

structures.
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(a) (b)

(c) (d)

Figure B.1: Two-point velocity spatial correlation functions for the gravel case
(Reδ = 400) along (a,c) streamwise direction and (b,d) spanwise direction. Panels
(a,b) and (c,d) show correlations in the small and large domain, respectively. Lines
represent: ( ), streamwise velocity; ( ), spanwise velocity; ( ), vertical velocity
component. Plots span half the computational domain.
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(a) (b)

(c) (d)

Figure B.2: Two-point velocity spatial correlation functions for the sand case (Reδ
= 545) along (a,c) streamwise direction and (b,d) spanwise direction. Panels (a,b)
and (c,d) show correlations in the small and large domain, respectively. Lines
represent: ( ), streamwise velocity; ( ), spanwise velocity; ( ), vertical velocity
component. Plots span half the computational domain.
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Appendix C:

In addition to validation shown in Fig. 2.3, instantaneous velocity data at several

points above the sphere crest for Reδ = 95 is plotted in Fig. C.1 and can be

compared against (c.f. Fig. 2) from experimental work of Keiller & Sleath (1976).

Figure C.1 is presented in the fluid-frame to be consistent with experimental con-

vention. The plot should therefore approach a sinusoidal profile in the limit as βz

(normalized height with β = 1/δ) approaches zero. It should be noted that, our

overall values are similar in magnitude at various phases compared to the exper-

iments, however, the data of Keiller & Sleath (1976) features fluctuations in the

limit (βz < 0.4) which are not present in the simulations. Test have been con-

ducted with refined meshes and larger domains without observing much change in

the magnitudes of these high frequency oscillations. Brief explanation conjecturing

the reasons for this small discrepancy is given as following.

As noted earlier, experiments by Keiller & Sleath (1976) were performed by

oscillating the rough-bed in still water, whereas, present simulations corresponds

to oscillatory fluid flow over a fixed bed. In theory, such change in reference frame

can have some small effects and differences. For example, when a body moves in an

otherwise still water, there will be no pressure gradient created by the acceleration

of the outer flow and therefore Froude-Krylov force will be absent. However, when

the body is stationary and the fluid oscillates, Froude-Krylov force will be non-zero

owing to the axial pressure gradient created by the acceleration of the outer flow.

Changing the frame of reference to facilitate the comparison with experimental

data only accounts partially for these effects. For example, data of Keiller & Sleath

(1976) do not show any significant oscillations for location away from the bed (z/δ

= 2.29). In contrast to Keiller & Sleath (1976), present simulation data employs

oscillatory flow over a fixed bed and predicts higher oscillations (with magnitudes

on the order of 0.1U∞) in the velocity measured at a location away from the bed
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Figure C.1: For Reδ = 95, variation of normalized fluid-frame velocity over a cycle,
plotted at various heights above the roughness crest location.

(z/δ = 2.29); which may potentially be attributed to the way harmonic motion is

imposed, either on fluid (or body) and resultant presence (or absence) of additional

axial pressure gradients due to Froude-Krylov force.
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Appendix D:

Figure D.1 and Fig. D.2 show variation of various terms in the budget equation

of (a,d) streamwise, (b,e) spanwise and (c,f) wall-normal components of Reynolds

stress plotted at accelerating (ωt = 4π/10) and decelerating (ωt = 6π/10) phase,

respectively. Here, panels (a,b,c) show variation in the gravel and (d,e,f) present

that in the sand case.

Figure D.3 and Fig. D.4 show variation of various terms in the budget equation

of (a,d) streamwise, (b,e) spanwise and (c,f) wall-normal components of dispersive

Reynolds stress plotted at accelerating (ωt = 4π/10) and decelerating (ωt = 6π/10)

phase, respectively. Again, panels (a,b,c) show variation in the gravel and (d,e,f)

present that in the sand case.
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