

AN ABSTRACT OF THE THESIS OF

Morgan Shirley for the degree of Master of Science in Computer Science presented
on June 7, 2017.

Title: On the Structure of Unconditional UC Hybrid Protocols

Abstract approved:

Mike Rosulek

Two parties, Alice and Bob, hold inputs x and y respectively. They wish to
compute a function f of their inputs. In an ideal world, f(x,y) could be calculated
by sending the inputs to a trusted third party. In the absence of such a third party,
Alice and Bob are required to communicate directly. Alice would like the real-world
computation of f to reveal no more about her input x to Bob than he could have
deduced from the ideal-world interaction. In addition, Alice would like this guarantee
to hold even if Bob cheats at the protocol. Bob would like the computation to have
the same properties with regards to security against malicious Alice.

If both parties have unlimited computation power, such a feat is impossible for all
but the simplest f. We introduce a trusted third party that can compute for Alice
and Bob a different function g. If f can be computed in this modified model, we say
that f reduces to g.

Some ¢, which we call complete, have a special structural property that allows

all f to reduce to g. These reductions are well-studied. Unfortunately, if g does not

have this structural property, we do not fully understand reductions to g. This thesis
describes our work in characterizing this landscape.

In particular, we show that if f reduces to g by some deterministic protocol
or by a randomized protocol with a strict sub-logarithmic bound in the number of
communication rounds, then we can shorten these protocols to use only a single call
to g. In addition, we give a combinatorial property of f and g that is present if and
only if this single-call protocol is possible. We also show an example of f and g where
a randomized and potentially super-logarithmic protocol is required for f to reduce
to g. This example hints at a direction for future investigation towards the complete

characterization of these reductions.

©~Copyright by Morgan Shirley
June 7, 2017
All Rights Reserved

On the Structure of Unconditional UC Hybrid Protocols

by
Morgan Shirley

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of

Master of Science

Presented June 7, 2017
Commencement June 2017

Master of Science thesis of Morgan Shirley presented on June 7, 2017.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Morgan Shirley, Author

ACKNOWLEDGMENTS
Thanks, Mike, for asking me hard questions and teaching me how to be precise. I've
really enjoyed working with you.

Thanks to everyone else who has supported me, and in particular my family. It’s
nice to be able to get away from work for a while, whether it’s on a sight-seeing
vacation or just a quiet night out. Having these things to look forward to really kept
me going. A special thanks to anyone who sat through me explaining this research to

them — I really enjoy this stuff, and it’s nice to be able to talk about it with people.

TABLE OF CONTENTS

Page
Introduction 1
1.1 Examples of Secure Function Evaluation 1
1.2 Security 2
1.3 Cryptographic Complexity 8
1.4 Overview of Results L 11
Preliminaries 16
2.1 UC Security 16
2.2 Properties of g-Hybrid Protocols for Incomplete g 20
Reducibility Characterization 23
Instantaneous Protocols 29
4.1 Frontier Basics 29
4.2 Our Frontiers 30
4.3 Properties of the Frontiers 33
4.4 Securely Truncating a Protocol 42

Collapsing Protocols to a Single Call to ¢ 45

TABLE OF CONTENTS (CONTINUED)

Page

6 Tightness of the Characterization 53
6.1 Unilateral Functions 53
6.2 Deterministic / Logarithmic-Round Protocols 5]
6.3 Round Complexity and Parallel Callstog 57

7 Conclusion 59

Bibliography 60

Figure

LIST OF FIGURES

Page
Example SFE functions. 4
A decomposable function with six rectangles. 6
The AND and OR functions. 10
A real-world interaction in the UC framework. 17
A dummy protocol interaction in the UC framework. 18
An ideal-world interaction in the UC framework. 19
Examples of bad embeddings. 23
Unilateral functions violating the main theorem. %)

Functions violating the main theorem via a superlogarithmic-round

protocol. L 55

1 Introduction
Consider two parties, Alice and Bob. Alice holds a secret input = and Bob holds a
secret input y. Alice and Bob wish to evaluate some two-input function f on z and
y securely. This means that neither party should learn more about the other party’s
secret input than they could have inferred from seeing the output f(z,y). This
guarantee ought to hold even if one of the parties is acting maliciously by deviating
from whatever agreed-upon protocol the parties are using. This problem is called
2-party secure function evaluation (or SFE).

In this thesis, we only consider SFE when Alice and Bob are allowed unlimited
computational power. That is, every result is information-theoretic in nature. We

also only consider functions with finite input ranges.

1.1 Examples of Secure Function Evaluation

The following are two illustrative examples of 2-party secure function evaluation.

1.1.1 The Millionaire Problem

Andrew Yao first introduced the idea of SFE by considering the Millionaire Prob-
lem [Yao82]. Alice and Bob are both millionaires, and they want to determine which

of them is richer. However, they do not wish to share any further information about

their net worth. The only piece of information that should be shared is a single bit
— 0 if Alice is richer, and 1 if Bob is richer.
In this instance of SFE, Alice’s net worth is x, Bob’s net worth is y, and f is

simply the less-than operator (<).

1.1.2 Satellite Collisions

Two countries are spying on each other using surveillance satellites. Neither country
wishes the other to know the locations of their satellites for obvious reasons. However,
both countries realize that it would be incredibly costly if a satellite from one country
was to collide with a satellite from the other.

In this instances of SFE, the locations and trajectories of the countries’ satellites
are r and y, and f is a function that alerts the countries if a collision is likely to

occur.

1.2 Security

Note that in both of the above examples, each party will learn something about the
other party’s input. In the Millionaire Problem, if Bob has 7 million dollars and the
output reveals that Alice’s wealth is less than his, he learns, for example, that Alice
does not have 8 million dollars. In the satellite collision problem, finding no collisions

reveals that there are certain places where the other country’s satellites cannot be.

These pieces of information would have been learned no matter how the function
evaluation was performed!

In the ideal world, the two parties would have access to a trusted third party. A
perfectly secure way of evaluating f would be for Alice to send = to the third party,
Bob to send y to the third party, and for the third party to announce f(z,y) publicly.
This clearly leaks only information that the parties could learn from examining the
output, as no communication actually occurs between Alice and Bob.

In the real world, there is no such third party. Instead, Alice and Bob must
communicate with each other directly. This interaction is secure if anything they can
do in the real world could have been done in the ideal world. It turns out that most
functions cannot be securely evaluated in the real world without further assumptions!
What sorts of assumptions are required to compute a given function in the real world?
This is the question that this thesis investigates.

It can be useful to picture functions as matrices, where the rows are inputs in X,
the columns are inputs in Y, and the entry in row x and column y is f(z,y). Figure 1
shows three functions in matrix form. Each has some characteristic that affects the
assumptions necessary to securely evaluate that function. These properties will be

considered in this thesis.

1 2 2 23
1 2.2
1112 21 1 1]5]3
111 112 2 1[4 4
(a) Complete (b) Decomposable (¢) Neither complete
P nor decomposable

Figure 1: Example SFE functions.

1.2.1 Semi-Honest Security and Decomposable Functions

One often-studied restriction on the secure function evaluation model is to force the
parties to strictly adhere to a commonly-agreed-upon protocol. They can still try
to learn as much as they are able about the other party’s input, but they cannot
deviate from the set of allowed actions. This model is called semi-honest, or honest-
but-curious.

Beaver & Kushilevitz [Bea89, Kus89] give an exact characterization of secure
function evaluation in the semi-honest model: only functions that are decomposable

are securely computable.

Definition 1. A function f : X XY — Z is decomposable if either of the following

are true:
e f is constant
e f may be partitioned into two decomposable functions. FEither:

— 3P, Q that partition Y, whereVx € X, Vy € P, Vy € Q, f(x,y) # f(z,v)

and fp: X X P = Z and fo: X X Q = Z are decomposable, or

— 3P, Q that partition X, whereVy € Y, Vo € P,Va' € Q, f(x,y) # f(2,y)

and fp: PxY — Z and fo : Q XY — Z are decomposable

Out of the functions in Figure 1, only Figure 1(b) is decomposable.
An algorithm for securely computing decomposable f in the semi-honest model is

as follows:

e If f is constant, return that constant value.

e Otherwise, f may be partitioned along X or Y. If it is partitioned along X,
then Alice announces whether she has an input in P or an input in (). If it is

partitioned along Y, Bob announces whether he has an input in P or an input

in Q.

This real-world protocol does not leak any information that would not be revealed
in the ideal-world protocol. To understand why, we must consider the rectangles of

decomposable functions.

1.2.2 Rectangles

For an SFE function f, define the following:

recty(z,y) = {2’ | f(z,y) = f(o",)} x {¢' | flz,y) = flz,9)}

We refer to recty(z,y) as a rectangle of f. Intuitively, rects(x,y) is the largest pair
of partitions X’ C X and Y’ C Y where x € X’ and y € Y.

The protocol described above for computing decomposable functions is semi-
honestly secure because all it does is narrow down the possibilities of rectangles that
may contain the correct output. Since the correct rectangle is already revealed by
the output f(z,y), no extra information is leaked by revealing that same information
slowly.

Note that different rectangles may have the same value! Figure 2 shows a function
with only four output values. However, it has six rectangles. There are two rectangles

with value 1, and two rectangles with value 4.

|
|

Figure 2: A decomposable function with six rectangles.

1
2
2

4 4
3 3
11

>~

An important point is that the parties can distinguish between two rectangles of
the same value, and indeed between any two rectangles, in a decomposable function.
This is because, in decomposable functions, an input will only contain a single rect-
angle of a given value. In fact, this property is not unique to decomposable functions.
Figure 1(c) is not decomposable but still has rectangles that behave nicely. The fact
that Figure 1(a) does not have rectangles with this property is what makes it complete

for reductions — these terms will be defined later.

1.2.3 Malicious Security

Decomposability only guarantees semi-honest security. If one party, called the adver-
sary, is allowed to arbitrarily deviate from the agreed protocol, then certain events
might occur in the real world that would be impossible in the ideal world. This event
is called an attack. Security under these conditions is called malicious security.

One attack against decomposable functions is the input-switching attack. The
basic idea is that when a party reveals which partition contains their input, they have
revealed information about their input without locking in an output. This may allow
an adversary to switch its input based on that piece of information. For example, in
Figure 2, there is no way in the ideal world for Bob to guarantee that the output is
either 2 or 4. However, in the real world, he can simply wait until Alice announces
whether she has the top input or the bottom two inputs. If she has the top input,
Bob can use one of his rightmost two inputs to force the output to be 4. Otherwise,
Bob can use his leftmost input to force the output to be 2.

It turns out that if both parties are allowed unlimited computational power and
no further assumptions, only very simple functions are computable with malicious
security. In the security model considered in this thesis, UC security, the only func-
tions that can be evaluated with malicious security without further assumptions are

those where f(x,y) is constant over either = or y (that is, any change to x or y has

no affect on the output) [CKLO03].!

1.3 Cryptographic Complexity

As we have seen, different functions f have different inherent complexities. Constant
functions can be securely realized in the presence of computationally unbounded ma-
licious adversaries, but the function in Figure 1(b) cannot. Similarly, Figure 1(b)
can be securely realized in the presence of computationally unbounded, semi-honest
adversaries, but the function in Figure 1(c) cannot. In this sense, nondecompos-
able functions have inherently more “cryptographic complexity” than decomposable

functions, which in turn have more complexity than constant functions.

1.3.1 Reductions

Another way to compare the complexity of functions is to use a reduction. We say
that f reduces to g if there is a secure protocol for f in the presence of a trusted
third party that can compute g. The model where calls to ideal g are allowed is
called the “g-hybrid model”. Analysis of reductions can reveal some very fine-grained
complexity distinctions.

This thesis uses a framework called UC security [Can01]. We write f E g to denote

that there is a UC-secure protocol securely realizing f against unbounded adversaries

'In different models, less restrictive classes of functions are allowed. For example, in standalone
security [MPR09] more functions may be computed under malicious security.

in the g-hybrid model. UC security will be defined in Section 2.1.

After defining a notion of reducibility, the most natural step is to identify which
objects are complete for the reduction. A function g is complete (under C) if f C g
for all f. Otherwise we say that g is incomplete.

Kilian [Kil88] was the first to consider completeness of SFE functionalities, proving
that the oblivious transfer function? is complete. Although the result pre-dates the
UC model, a later variant of the construction [Kil89] is likely to achieve UC security
— 1i.e., oblivious transfer is complete under the C reduction that we consider in this
work.

Later work characterized exactly which functions are complete (with respect to
malicious, unconditional security): for symmetric SFE (where both parties receive
the same output) [Kil91], for asymmetric SFE (where only one party receives output)
[Kil00], and even for randomized SFE functions [MPR12, KMPS14]. This thesis

focuses on symmetric SFE.

1.3.2 Complete Functions

Theorem 1 ([Kil91]). Let f be a deterministic 2-party SFE. f is complete if and

only if v, 2" € X, y,y' €Y : f(z,y) = f(x,y) = f(2',y) # f(2',y).

The proof of this is somewhat involved, and is omitted here.

2In oblivious transfer, one party has multiple pieces of information. The goal is for the other
party to learn some subset of that information. The party that holds the information may not
discover what subset is being transferred, and the party that is receiving the information cannot
learn anything about any information not in the transferred subset.

10

One way to visually identify a complete function from its matrix representation
is to look for what is called an AND-minor (sometimes an OR-minor). Consider the

matrix representations of the AND and OR functions in Figure 3.

00 01
0 1 11
(a) AND (b) OR

Figure 3: The AND and OR functions.

These are minimal examples of complete functions. AND(0,0) = AND(0,1) =
AND(1,0) # AND(1,1), and OR(1,1) = ORr(0,1) = OR(1,0) # OR(0,0). A function
contains an AND-minor if you can remove all but two rows and all but two columns
from its matrix representation and be left with the AND function (perhaps with some
rotation and re-labeling of outputs). Note that a similarly-defined OR-minor is equiv-
alent: OR contains an AND-minor and vice-versa.

The function in Figure 1(a) contains a number of AND-minors, one of which is
highlighted. Therefore, it is complete. The other functions in Figure 1 do not contain

AND-minors, and therefore are incomplete.

1.3.3 Incomplete Functions

When one or both of f, g are complete, the question of f C g is simple to answer. If
g is complete, then f C ¢g. If f is complete but ¢ is not, then f IZ g.
The goal of this line of work is to therefore understand when f C g, for f and

g which are incomplete.

11

Write f C g if f C g but ¢ Z f. Prabhakaran & Rosulek [PRO8] gave an
example of four functions that satisfy f; C fo T f3 C fs. Maji, Prabhakaran &
Rosulek [MPR09] extended this result to show an infinite strict hierarchy f; C fo C
--- C f; C ---, and also showed an example of a pair of functions that are incom-
parable under the reduction: f Z g A g £ f. The same authors in [MPRI10] later
proved several results of the form “f reduces to g with polynomial-time UC security
if and only if one-way functions exist” and “f reduces to g with polynomial-time
UC security if and only if semi-honest OT protocols exist”. These results imply that
f £ g (against unbounded adversaries).

These results hint at a rich landscape of complexity with respect to the C reduc-
tion, but fall well short of revealing the entire picture. First, they are not complete
characterizations, but give only necessary conditions for f C g. Second, the tech-
niques in these works apply only to f and g that are decomposable. This leaves a
gap in our understanding: functions like Figure 1(c) are neither decomposable nor

complete.

1.4 Overview of Results

A function f is unilateral if there exists an input y* for one of the parties (by symmetry,
Bob) such that f(-,y*) is a constant function. That is, by choosing input * Bob can
unilaterally fix the output of f.

This thesis shows a complete characterization of when f C g for a natural class

12

of protocols. This class excludes unilateral f — in Section 6.1 we consider why this
exclusion is necessary.

Say that f embeds in g if f appears as a submatrix of g, subject to some other
restrictions (essentially, the other parts of g can’t “interfere” with the f-submatrix

— the formal definition is in Chapter 3).

Theorem 2. The following are equivalent, when f and g are incomplete and f is

non-unilateral.

1. f C g via a (worst-case) logarithmic-round protocol

2. f E g via a deterministic protocol

3. f £ g via a deterministic protocol consisting of a single call to g and no addi-

tional communication.

4. f embeds in g

1.4.1 Technical Approach

The most involved part of the main theorem is proving (1) = (3) and (2) = (3).
Intuitively this involves “compressing” an arbitrary protocol for f C g into a single
call to g.

The first step is to show that every secure protocol for f C g can be transformed

into one with the following instantaneous property:

13

e With overwhelming probability, the protocol terminates immediately following

some call to g.

e Strictly before this terminal call to g, the protocol transcript leaks negligible

information about either party’s inputs.

The main technical tool is that of frontier analysis, which was introduced in [MPR09]
and extended in [MOPRI1]. A frontier in the protocol is simply the collection of
partial transcripts where some statistical condition is true for the first time. Roughly
speaking, we define two frontiers for each party: one expressing “the first time the
simulator is likely to extract” (the simulator is a feature of the UC-security model, and
is defined in Section 2.1) and another for “the first time honest parties can reliably
predict the final output.” We then argue that these frontiers must all be reached
simultaneously, with overwhelming probability. As such, these events can happen
only as the result of a call to g. Furthermore, the protocol can be safely truncated
after reaching the frontiers (since both parties can already predict the final output).
The result of truncation is a protocol with the “instantaneous” property described
above.

Next, we show that a protocol with this instantaneous form can be compressed
to a single call to g. Whereas the previous step applies for any protocol, for tech-
nical reasons we are only able to compress protocols that are deterministic or have

logarithmic (worst-case) round complexity.

14

1.4.2 Tightness of the Characterization

Our main theorem does not apply to super-logarithmic-round, randomized protocols.
We show that this limitation is inherent, and that there is actually a qualitative
difference in the power of super-logarithmic, randomized protocols! In Section 6.2 we

demonstrate a specific pair f and g with the following properties:

1. f does not embed in g. Hence, by the classification theorem, f [£ g via any

deterministic protocol or (randomized) logarithmic-round protocol.

2. f E g via a randomized protocol whose ezpected round complexity is constant,
but whose worst-case round complexity is w(log k), where x is an adjustable
security parameter of the protocol. Interestingly, this protocol still has the

instantaneous property described above.

This example paints a truly bizarre picture about the structure of some UC hybrid
protocols. We have a secure protocol for f, which leaks no information about the
parties’ inputs before suddenly revealing all of f(x,y) in a single call to g. Yet any
attempt to compress the protocol to just the “meaningful” call to g results in an
insecure protocol! Somehow, the fact that the round complexity has the potential to
be w(log k) seems to be vital for security.

To the best of our knowledge, this is the first example of a round-complexity

lower bound in the information-theoretic setting that is not constant in the security

15

parameter. Almost all previous work characterizing f C g focuses on the case where
g is complete. In this setting, all protocols can achieve constant rounds: f can be
realized in constant rounds from oblivious transfer [[PS08], which itself can be realized
in constant rounds from any complete g [KMQ11].?

The main theorem also does not characterize f T g when f is unilateral. This
restriction is inherent. In Section 6.1, we demonstrate an example pair of unilateral
and incomplete functions f, g where f [Z g by any protocol consisting entirely of a
single call to g. Yet we show a protocol for f C ¢ consisting of a single call to g
plus one additional message from one party to the other. Intuitively f has several
unilateral inputs, and the extra protocol message is required to convey which one was

chosen.

3This argument results in a protocol with O(dy) rounds, where d; is the multiplicative depth of
a circuit realizing f. It is indeed a major open problem to give a protocol with asymptotically fewer
rounds. Since in our setting g is incomplete, our goal is not to securely realize all f from g. Instead,
we consider a fixed f and g, and hence dy is a constant with respect to the security parameter.

16

2 Preliminaries
The following is a rigorous definition of 2-party SFE.

A 2-party SFE task is a deterministic function f : X x Y — Z. We identify f
with an ideal functionality. This ideal functionality is essentially the “trusted third
party” from above. The ideal functionality waits for input z € X from Alice and
input y € Y from Bob. If no party is adversarial, the functionality gives output
f(z,y) to both parties. If any party is adversarial, the functionality gives f(z,y)
to the adversary and waits for a command (DELIVER, b) from the adversary, where
b e {0,1}. If b = 0, the functionality gives output L to the honest party; if b = 1, the

functionality gives f(x,y) to the honest party. Hence, we consider security with abort

— the functionality does not guarantee fairness of output delivery.

In the real world, the parties interact through some protocol 7. At each step of
the protocol, the parties send some information (or, if allowed, make calls to some
ideal functionality g). Either of these things become a part of the transcript of the

current protocol execution.

2.1 UC Security

The UC security framework was introduced by Canetti [Can01]. An execution in the

framework begins with an environment Z (an arbitrary interactive Turing Machine)

17

that chooses inputs for both of the parties. The parties interact with each other, and
an ideal functionality for some function ¢, according to a protocol m. The parties
eventually give an output to the environment, who outputs a single bit. Throughout
the entire interaction, there is an adversary A (an arbitrary interactive TM) who
interacts arbitrarily with the environment. The adversary may also choose to corrupt
one of the parties, which causes the party to come under complete control of the
adversary. In that case, the party may deviate from the protocol. In this work we
consider only static corruption, where the adversary must choose to corrupt a party
before the protocol begins.

Figure 4 shows the basic structure of a UC execution.

~N 7

zZ

Figure 4: A real-world interaction in the UC framework.

Given the description above, EXEC[T, g, .4, Z, 17| denotes the probability that the

environment outputs 1, when « is the security parameter of the protocol.

18

A particular protocol of interest is the dummy protocol Tgymmy. In this protocol,
each party receives an input from the environment and sends it directly to the ideal
functionality. When the ideal functionality delivers an output, the party gives it
directly to the environment as output.

Figure 5 shows the structure of Tqummy. When f reduces to g, there is a protocol
7 that uses ideal calls to g (the “real” world) whose behavior (in terms of output
distribution and input leakage) looks very similar to Tgummy Which uses an ideal call

to f (the “ideal” world).

Al — —| B

~N L7

Z

Figure 5: A dummy protocol interaction in the UC framework.

In the ideal world there exists a simulator S that interacts with the corrupted
party. The adversary and the simulator carry out protocol m between each other,
where S plays the part of both the honest party and the ideal functionality g. How-
ever, the simulator doesn’t have access to the honest party or its input! It can only
run Tgummy With the honest party, with ideal functionality f. Figure 6 shows the
structure of this interpretation of an ideal world.

The security arises from the fact that the simulator only communicates with the

19

il e

Al —| Z

Figure 6: An ideal-world interaction in the UC framework.

honest party via a single call to ideal f. This means that everything in the simulated
transcript prior to the call § makes to ideal f must be independent of the honest
party’s input, and everything after that call must not affect the honest party’s output.
We call this event the extraction, as S must “extract” enough information about the
input of A in order to correctly call f.

The formal definition of reduction relies on this interpretation of the ideal and

real worlds.

Definition 2. The simulation error of a protocol 7 is the mazimum (supremum,) over

all environments Z, adversaries A, and simulators S of the following:

EXEC[T, g, A, Z, 1%] — EXEC[Tdummy, f,S, Z,1"]

Definition 3. We say f reduces to g, and write f T g, if there exists a protocol
that has a simulation error which is negligible in the security parameter k.

We write f Ty g if furthermore w has the following property: the parties make

20

only one call to g and exchange no other messages.

2.2 Properties of g-Hybrid Protocols for Incomplete g

Fix a 2-party protocol 7, and let ¢ be a partial transcript (i.e., a prefix of a com-
plete protocol transcript). We use Pr,[t|xy]| to denote the probability of obtaining a
protocol transcript with prefix ¢, when both parties run the protocol honestly with
respective inputs x and y.

Write t as a sequence of messages t = (my, ..., mg). Suppose Alice sends the odd-
numbered messages. Then the choice of the odd-numbered (resp. even-numbered)
messages depends only on the previous messages and z (resp. y), but not on y (resp.

x). We can therefore write:

k
Pre[t|zy] = H Pry[mi|zy, my -+ -m;_i]

i=1
= < H Prn[mi|$>m1 o 'mi71]> (H Pl‘n[mi‘%ml o 'mi71]>
7 odd 1 even
def
= Pr[t]z] Prr[t|y] (%)

Here we are defining Pr, [t|z] and Pr,[t|y] to be equal to the parenthesized quantities.
Essentially, Pr.[t|z] is the probability that Alice behaves consistently with ¢ when her

input is z.

21

In the g-hybrid model. A similar property also holds when the parties can call
an ideal functionality ¢ (i.e., protocols in the g-hybrid model), but only when ¢ is
imcomplete.

When parties invoke g, its output is added to the joint transcript. This is equiv-
alent to adding rect,(Z, §) to the transcript, where and § were the inputs that the

parties gave to this instance of g. Let X x Y be a particular rectangle in ¢, then:

Prlrect,(,7) = X x Y] = Pr[i € X|Pr[j € Y]

Alice’s choice of depends only on her f-protocol input and the transcript so far;
similarly y depends only on Bob’s input and the transcript so far. Hence, even

protocols in the g-hybrid model satisfy the product property (x).

Stateless parties/adversaries. The “standard” way of defining a protocol is to
have each party initially choose a random tape. Then each party’s behavior is a
deterministic function of the random tape, their input, and the transcript so far.
One way to interpret the product property (x) — for protocols in the g-hybrid
model for incomplete g — is that Alice’s view (including her private randomness) is
independent of Bob’s view (including his randomness), given the transcript.
Therefore, any g-hybrid protocol m can be purged of stateful randomness in the
following way. At each step, a stateless party can (1) sample a random tape condi-

tioned on it being consistent with their private input and transcript so far; (2) use

22

that (ephemeral) random tape to choose the next move in the protocol; (3) discard
the ephemeral random tape. Note that this transformation may require exponential
time, but we consider all parties to have unbounded computation.

Importantly, this transformation also applies to adversaries — that is, without
loss of generality we consider only stateless adversaries. The ability to consider only
stateless adversaries is perhaps the fundamental property of incomplete g used in this

thesis.

23

3 Reducibility Characterization

We define the combinatorial condition at the heart of our main theorem. Intuitively,
f embeds in g if one can identify a submatrix of g that “looks like” f. Of course, the
outputs of f might be renamed relative to g. Such a submatrix property suffices for
a semi-honest protocol for f using g, where parties simply use the subset of inputs
of g that comprise the f-submatrix. However, such a protocol need not be secure in
the presence of malicious adversaries, because other inputs of g may “interfere” with
the f-submatrix. There are two main things that can go wrong. An example of each

is shown in Figure 7.

1 3 1 35
f1: 14Z146 = g1, f2: ;il;‘g’i = g2
2 4 247

Figure 7: Examples of bad embeddings.

Note that f; appears as the white submatrix of g;. But when a corrupt column-
player cheats and uses the shaded column of g;, he completely learns the row-players
input. Yet no column of f; legally allows this.

Similarly, fo appears as a submatrix of g;. Consider a corrupt column-player who
uses the shaded column of gy. There is no single input for f, that “explains” the
effect of this behavior for all possible inputs of the row-player. Concretely, there is

no input of fy that guarantees an output in {2, 3}.

24

The requirements for embedding are formalized in the following definition:

Definition 4. For two functions o and we say that o leaks no more than (5

if B(y) = BY) = aly) = ay’) for all inputs y,y'. We say that o refines [if
Bly) € {aly), L} for all inputs y.
Let f : X XY — Z and g : X xY — Z. Without loss of generality, assume

f(z,y) = recty(x,y) and g(x,y) = recty(x,y). We say that f embeds in g if:

1. (f appears as a submatriz in g) There exist two injective mappings, A : X — X

and B:Y — Y, and a third mapping, C : 7 — ZU{L}, such thatVx € X,y €

Y f(z,y) = Cl9(A(z), B(y))).

2. (security guarantees) There exist mappings A:X > X and B:Y — Y such

that the following hold:

(a) (g doesn’t reveal too much information)
o for all7 € X, g(Z, B(-)) leaks no more than f(g(/x\),)

o for allGe Y, g(A(),7) leaks no more than f(-, B(7))

(b) (there are no ambiguous g-inputs)
e for allZ € X, f(A(@),) refines C(g(Z, B(-))).
o for all GEY, £, BF)) refines C(a(A(),).

To understand this definition, it helps to see how the mappings A, B, C, fAl, B relate

to a secure protocol demonstrating f C; ¢:

25

Lemma 3. If f embeds in g, then f Ty g via a deterministic protocol. This proves

(4) = [(1) N (2) N (3)] of Theorem 2.

Proof. Let f embed in g, with associated mappings as in Definition 4. The protocol

for f is as follows:
e Alice sends input A(z) to g where z is her f-input.
e Bob sends input B(y) to g where y is his f-input.

e The parties both output C(z) where z is the output they receive from g (they

output L if g gives output L).

Correctness follows from the first condition of Definition 4. Due to the symmetry in
the definitions/protocol, we show security only against a malicious Alice.

Suppose Alice sends input ¥ to g. In the real protocol, Alice’s view will consist of
g(Z, B(y)) and Bob’s output will be C(g(Z, B(y))). In the ideal world, the simulator

will do the following:

e The simulator sends z* = A(%) to the ideal f, and obtains output f(z*,y),

which is C'(g(A(z*), B(y))

~—

e The simulator does not know Bob’s input y but can choose any 3’ such that
f(z*,y') = f(z*,y). The simulator can give g(Z, B(y')) to Alice as her simulated
view. From part 2a of Definition 4, we have that this is identical to the real

view ¢(Z, B(y)).

26

e The simulator checks whether C(g(7, B(y))) = L, and if so sends (DELIVER, 0)
to f. In this case, Bob’s real and ideal outputs will both be L. Otherwise, it

sends (DELIVER, 1) to f and Bob will receive output f(z*,y).

Bob’s ideal output is f(z*,y) = C(g(A(z*), B(y))). From condition 2b of Definition 4,

this matches the real output C'(g(z, B(y))). O

Lemma 4. For non-unilateral f, if f &1 g via a deterministic protocol with simula-

tion error less than 1, then f embeds in g. This proves (3) = (4) of Theorem 2.

Proof. During the deterministic protocol, Alice and Bob both map their f-inputs to
g-inputs and then immediately terminate the protocol, meaning that they were each
able to map the g-output to the same f-output. The input maps are A and B in the
embedding. The output map is C in the embedding.

By symmetry, we only consider security against a malicious Alice.

Clearly, A is injective. If it is not, then choose some pair (z,2z’) where A(x) =
A(z"). Choose y so that f(z,y) # f(2',y) — since f is not unilateral, such an input
exists. Consider two environments — they ask the parties to honestly run the protocol
with inputs x,y and 2,y respectively, and return 1 if the output is correct. In the
real world, in both cases the parties will return the same output, so one of them is
incorrect. Therefore, one of the environments has simulation error 1.

Because this protocol is UC-secure, there must be some method by which the

simulator takes the parties’ g-inputs and translate them to f-inputs upon extraction.

27

Call these mappings for Alice and Bob Aand B , respectively. It suffices to show
that these mappings satisfy 2a and 2b of Definition 4. We show that if the mappings

violate Definition 4, then the simulation error of the protocol is 1.

(2a) Assume that A violates part 2a. That is, there exists an Z where it is not the
case that g(z, B(-)) leaks no more than f(;l(f), -). In particular, there is some pair
(y,y') where f(A(Z),y) = f(A(Z),y) but g(Z, B(y)) # 9(Z, B(y')).

Counsider two environments:

e Adversary Alice uses input Z, honest Bob uses input y, return 1 if Alice’s view

is 9(7, B(y))-

e Adversary Alice uses input 7, honest Bob uses input 3/, return 1 if Alice’s view

is g(7, B(y))-

In the real world, both environments output 1 with probability 1. In the ideal
world, the simulator’s view in both environments is f(A(Z),y) = f(A(Z),y'). Since
the simulator is deterministic, it must give the same simulated g-output for both en-
vironments. However, ¢(Z, B(y)) # g(Z, B(y/)), so in at least one of the environments

the probability of outputting 1 is 0. Therefore, the simulation error is 1.

~

(2b) Assume that A violates part 2b. Then there exists some T and y where
C(g9(Z,B(y)) € {f(A(@),y), L}. Consider the environment in which corrupt Al-

ice uses g-input and honest Bob uses input y, and the environment outputs 1 if

28

Bob’s output is C'(g(Z, B(y))). The environment outputs 1 with probability 1 in the
real world. But in the ideal world, Bob’s output is either f(ﬁ(ﬂf),y) or L. This

environment demonstrates a simulation error of 1. O

29

4 Instantaneous Protocols

In this chapter we show how to transform any secure protocol in the g-hybrid model
into one that has an “instantaneous” property (described further in Section 4.4). The
results in this section apply to arbitrary protocols. Later in Section 5 we give further

transformations that are restricted to deterministic or logarithmic-round protocols.

4.1 Frontier Basics

Recall Pr,[E|zy] denotes the probability of event £ when the protocol is run honestly
with inputs = and y. Following Section 2.2, we write Pr,[€|zy] = Pr.[€|x] Pr:[E]y].
Specifically, if ¢ is a partial protocol transcript, we write Pr,[t|xy] to refer to the
probability of generating a transcript that has ¢ as a prefix.

We write Pr,[€|tzy] to denote the probability that event £ happens, given that
the parties run with inputs x and y, and conditioned on ¢ occurs as a prefix. More
formally, the probability considers what happens when the parties run the protocol
honestly with inputs x and y, but are initialized with ¢ as the partial transcript.

Let F' be any set of partial protocol transcripts, with the property that if t € F,
and t is a prefix of ¢, then ¢’ € F'. In other words, F describes an event in the protocol
that happens and does not “unhappen.” In this case we call F' a frontier, using the

terminology of [MPR09].

30

It is sometimes helpful to associate the frontier F' with its set of prefix-minimal
elements, as these represents transcript where some condition happened for the first
time. Let first(F') denote the prefix-minimal elements of F'.

If F'is a frontier, we use notation Pr,[F|zy] to denote the probability that F' is

encountered when running the protocol honestly on inputs z and y. More formally:

def
Pr.[Flay] = Ztefirst(F) Prr[t|zy]

Finally, if F' and G are two frontiers, then “F' < G” denotes the event “either F

happens strictly before G, or F' happens and G never happens.” More formally,

def
Pr [l < Glzy] = Ztefirst(F\G) Pre[t|zy]

4.2 Our Frontiers

Our analysis relies on two types of frontiers that we introduce:

FyR ot captures the first time that the simulator extracts with reasonable probability,
in an ideal-world interaction involving a corrupt Alice running honestly on input

x.

F§ ot captures the first time that Alice’s output becomes relatively fixed, in the

following sense. If the parties continue with honest behavior from such a point

31

in the protocol, and Alice has input z, then Alice has only one likely output,

no matter what Bob’s input is.

We define such a frontier for every input x. We also define analogous frontiers with
respect to Bob.
We have already defined Pr,[-|zy] notation with respect to an honest execution

of the protocol on inputs x,y. Since Fy . refers to probabilities in an ideal-model

ext
interaction, we introduce notation to differentiate between the probabilities in real
and ideal interactions. We write Pragm|- |2y to refer to probabilities induced by
an ideal-model interaction among malicious Alice running the protocol honestly on
input x, the simulator for corrupt Alice, and ideal honest Bob with input y. Prg.sm
is defined analogously.

While frontiers have been used before to prove lower bounds about UC protocols
[MPRO09, MOPR11], one novel aspect of our approach is to define a frontier explicitly
in terms of the simulator’s behavior. This choice appears to simplify the technical

arguments about frontiers happening in a particular order. Previous work defined

frontiers only in terms of the protocol’s real-interaction.

Definition 5. At some point in an ideal interaction between corrupt Alice and the

simulator, the simulator will at some point “extract” by sending an input to the ideal

f. Define:

oa(t,) dof Pra sim[stmulator has already extracted|txy|

32

That is, oa(t,z) is the probability that the simulator has extracted, given that the

transcript so far ist. We define og analogously.

Note that before the simulator extracts, its view is perfectly independent of y
in the ideal interaction. Its decision to extract, and hence the probability oa(t, z),
depends only on x and not on y.

Note that as the transcript evolves, the probability of extraction cannot change
as a result of a message sent by Alice. It can only change as a result of a message

generated by the simulator, hence an output of g or a simulated Bob-message.

Definition 6. Given a secure protocol ™ with security error e, define the following

for all inputs x,y:

Foa = {t [oalt,x) > 4/¢}
Fioe = {t | 05(t,y) > 4/¢}

Prrfout f(x,y)ltxy],
Faow=1{t1Vy,y": f(z,y) # f(z,y) = min < 1—+e}

Prrlout f(z,y)|tzy']
\ J

Pr.out f(z,y)|tzy],
Fl o = {t | V2.2' s f(2,y) # f(',y) = min R P!

| Prafout (@)ty |

Here Prr[out z|tzy] refers to the probability that honest parties output z when starting

the protocol at partial transcript t and running honestly with inputs x and y.

To understand F}y ., observe that for ¢t € Fy . there is at most one output that

33

can be induced with probability at least 1 — y/e. It may be the case that no valid
output can be induced with this probability, in which case only L output is likely
from starting point ¢.

Note that if € is a negligible function of the security parameter, then /€ is a larger

function but also still negligible.

4.3 Properties of the Frontiers

We now show that, roughly speaking, all the frontiers that we have defined must occur
simultaneously, with overwhelming probability. Note that all lemmas hold with the

roles of Alice and Bob reversed.

Lemma 5. For all x,y: Pr[F3 .. < Fj .|yl < 24/e.

Proof. Let bad = first(Fi ., \ Fp.), Whose probability we wish to bound. A partial
transcript ¢ € bad represents a situation where there is reasonable probability that

a simulator would have extracted an effective input for Alice (¢t € Fx.,), but in

ext
the protocol Alice can still induce two different outputs for Bob, each with good
probability (¢ ¢ Fg). Intuitively, the simulator has extracted prematurely. This

event should be rare.

Consider the following strategy for corrupt Alice and environment:

e Run the protocol with input y for honest Bob, and Alice initially behaving

semi-honestly with input x.

34

e If the protocol transcript avoids bad, then the adversary gives up and the envi-

ronment outputs 0.

e Otherwise, when the partial transcript reaches t € bad for the first time, then the
properties of bad guarantee that there are two values zg, 1 such that f(xg,y) #

f(z1,y) and Pr[out f(z.,y)|tx.y] > 1 — /e for both ¢ € {0,1}.

e The adversary sends xg,r; to the environment, who chooses a random c¢ <
{0,1}.

e The adversary switches strategies to run the protocol honestly with input z..
The environment outputs 1 if Bob’s eventual output is f(z.,y). Otherwise the

environment outputs 0.

Let succ denote the event that the environment outputs 1.
In the real interaction, the environment outputs 1 only when the transcript hits
bad and the adversary is successful in forcing Bob’s output, which happens with

probability at least 1 — /e by the properties of bad. So:

Pr,[succ] > Pr,[bad|zy](1 — \/e)

In the ideal interaction (between the adversary and simulator), Bob’s output is
now determined differently, as the output of the ideal f. There are two ways the

environment outputs 0: (1) when the simulated transcript avoids bad; (2) when the

35

transcript reaches bad but the simulator has already extracted. In the latter case, the
environment’s choice of ¢ is independent of the simulator’s extraction, so with further

probability at least 1/2 the honest Bob will not output f(z.,y). So:

Prasim[succ] < (1 — (4v/€)/2) Prasim[bad|zy]

From the security of the protocol:

| Pr,[succ] — Pragm[succ]| < €

| Pr,[bad|zy| — Pragm[bad|zy]| < €

Hence:

¢ > Pr,[succ] — Pragm|succ]
> Prr[bad|zy](1 — v/€) — (1 — 2V/€) Praim[bad|zy]
> Prr[bad|zy](1 — v/€) — (1 — 2\/€)(Prx[bad|zy] + €)
— Pr,[bad|y] /e — €(1 - 2,/6)

> Pr,[bad|zy]\/e — ¢

36

Solving for Pr,[bad|zy]:

2
Pr,[bad|zy] < 766 = 2/e O

Next we show that Fj _, is a point at which the honest parties can predict their

eventual output.

Definition 7. Fix x and let t € F}. Then there is at most one value z such that

out*

Jy : Prr[out z|zyt] > 1 — \/e. Let guessy(t,z) denote this value z, and note that the

value could be L. We extend the notation guess,(t,z) = L in the case thatt & F3.

out*

Lemma 6. For z # L define G* = {t | guess,(t,x) = z}. Then for all z,y:

Pr [Gf@9)|zy] > 1 — ¢/2. Intuitively, upon reaching F% ., Alice can predict her

eventual output with error at most €/2.

Proof. Define bad = FZ_ .\ G/®Y . Intuitively, these are the places in the protocol

where guess, (t,x) # f(x,y).

From the correctness of the protocol, we have:

€ > Pr,[output not f(z,y)|zy]

> Z Pr.[t|zy] Pr,[out guess,(t, z)|txy]
tefirst(bad)

> 3 Proftlay)1 - Vo) = (1 - Pr,[Ge0 ey (1 - Vo)

tefirst(bad)

37

Solving for the probability expression:

Pr [GT@Y) |zy] > 1 — Tz > 1—¢/2 O

Lemma 7. For all x,y, if x is not a unilateral input for f, then Pr[F% .. < Fx o |

xy] < 16e.

Proof. Let bad = first(Fy . \ Fi..), Whose probability we wish to bound. A partial
transcript ¢ € bad represents a situation where Alice can predict what the output will

be (t € Fx.,), but the simulator probably has not extracted yet (¢t ¢ Fx). This

ext
event should be rare, since in the ideal world Alice can gain no information about the
f-output before the simulator extracts.

Let x,y be given in the premise of the lemma. Since x is not a unilateral input, let

y' be such that f(z,y) # f(z,y’). Consider the following interaction with a corrupt

Alice and environment:

e Alice initially runs the protocol honestly with input . The environment ran-
domly chooses input y* < {y,y'} for Bob. If the transcript avoids bad then the

adversary gives up and the environment outputs 0.

e Otherwise, if the partial transcript reaches t € bad, there is a unique z =
guessy (t, z) such that Pr;[out z|tz] > 1 — y/e. The adversary reports z to the

environment.

38

e The environment outputs 1 if z = f(x, y*).

Let succ denote the probability that the environment outputs 1.
In the real interaction, the environment outputs 0 only if the transcript avoids

bad or if guess, (¢,) is incorrect. By the union bound and Lemma 6,

Pr,[-succ] < Pr[=bad|zry*] + Pr [-Gf@¥)|zy*] < 1 — Pr[bad|zy*] + €/2

In the ideal interaction, the environment outputs 0 in the following (mutually
exclusive) scenarios: (1) the simulated transcript avoids bad; (2) the transcript reaches
bad and the simulator has not yet extracted. In the latter case, the adversary’s view
is independent of the environment’s choice of y*, and so the environment outputs 0

with further probability at least 1/2. Hence:

Pra_sim[—succ] > Pragm|[—bad|zy*] + Prasm|[bad A no extract|zy*|/2
> 1 — Prasim|[bad|zy*] + Prasim[bad|zy*][(1 — 4+/€) /2

=1- PrA_Sim[bad|xy*](% + 2\/E)

39

Combining;:

€ > Pr[succ] — Pra_gim|[succ]
> Pr.[bad|zy*| — €/2 — Pra.gim|bad|zy*] (2 + 2\/e)
> Pr.[bad|zy*] — ¢/2 — (Pr,[bad|zy*] + €)(5 + 21/€)

= Prz[bad|zy] (5 — 2v/€) — (1 — 2V/e)
Solving for the probability expression:

€2-2y6) 2

Pry[bad|zy] < So— VO o 2 g

C—2/) “1/i-

Since Pr,[bad|xy*| is the average of Pr.[bad|zy|] and Pr,[bad|zy'], it follows that

Pr,[bad|zy] < 16e. O

Lemma 8. For all z,y, if y is not a unilateral input, then Pr.[Fh . < Fi .lzy] <

B-out
18 /e.

Proof. By a union bound,

Prﬂ' [FBy-out < FK—out|xy] S Prﬂ' [FBy-out < Fg-ext|xy] + Prﬂ' [Fé/-ext < F/j-\v-outlxy]
< 16€ 4 2v/€ < 18+y/e O

Lemma 9. For all z,y, if neither x nor y are a unilateral input, then Pr [F§.,. <

40

F/Z\c-extlxy] < 34\/E

Proof. By a union bound,

Pr,[F}

B-out

< F/:\c-ext|xy] < Prﬂ[Fy

B-out < Fé/—ext|xy]

+ PrW[FBy—ext < FK_OUJZL’?J]
+ Prﬂ'[FK—out < Fﬁx\—ext|‘ry]

< 166 + 2/ + 16€ < 34/ O

Lemma 10. Let F' be any frontier in the protocol. For all x,y,1/,

Pr; [F < FZ—ext"%‘y] — Pr; [F < FZ—ext’a:y/] < 6\/E

Proof. Let G = F\ F} . The main idea is that in the ideal interaction with corrupt

Alice, it is unlikely that the simulator has extracted before the protocol has reached
G. Conditioned on the simulator not yet extracting, the transcript is completely
independent of Bob’s input.

Consider running the ideal interaction and halting it when the transcript reaches

either ' or Fy _ .. Halting at this point is sufficient to determine whether the event

ext*

F < F} . happened. We obtain two interactions depending on whether Bob is given
input y or /. In the terminology of Bellare-Rogaway [BRO6], these are two identical-
is

until-bad games, where the “bad” event is that the simulator extracts but F3 .,

41

not immediately reached. By the definition of F} _ ., the bad event happens with

ext’
probability at most 4,/e. This probability of the bad event bounds the distinguishing

bias between the two games.

Then applying the security of the protocol we have:

Prﬂ’ [F < F/Q-\c-extlxy}_ Prﬂ [F < FK—ext|'Iy/]
S PrA-Sim[F < FX-ext|xy] - PrA-Sim[F < FX-ext|‘Tyl] + 2e

< dyJe+2e < 6y/e O

Lemma 11. For all z,y',y, none of them unilateral, PrW[ngout < FR oy < 424/e.

Proof. Let bad = first(FByjout \ F§..), whose probability we wish to bound. We

partition bad into two parts: bad; = bad N F . and bady = bad \ F

ext*®

Since bady C Fi . \ Fy,,. (i-e., the event F¥ . < F§ .. is true for these tran-

out B-out

scripts), Lemma 5 implies that

Pr,[bad;|zy] < 2+/€.

Since bady happens strictly before the Fy ., event, Lemma 10 implies that

Pr,[bads|zy] — Pry[bads|zy']| < 64/€.

42

Since bady C FY_ .\ FZ_., Lemma 9 implies that

Pr,[bady|xy’] < 344/e.

Putting everything together, we have:

Pr,[bad|zy] < Pr,|bad;|zy] + Pr,[bads|zy]
< 2v/€ + Pr,[bads|zy/] + 6+/€
< 2/€ + 34v/e + 64/€

= 42\/¢ O

4.4 Securely Truncating a Protocol
Lemma 12. Let w be a secure protocol for f in the g-hybrid model. Define ©' to be
the following:

e On input x for Alice and y for Bob, both parties run m honestly on their given

Mnputs.

e When the protocol transcript t reaches Fi _ . for any %, or reaches F g_out for

any 1y, the parties terminate the protocol.

o Alice outputs guess,(t,x) and Bob outputs guessg(t,y).

Then the truncated protocol 7' is also a secure protocol for f.

43

Proof. Let € denote the simulation error of 7. First, we argue that 7’ is correct.
Alice’s output is guess, (¢, x), which differs from the correct answer f(x,y) only in the

following events:

e t ¢ ¥ . because the protocol reached reached Fi¥ . and terminated strictly

before reaching FY . for 2’ # x. By Lemma 8, this can happen only with

out

probability O(y/e).

o t & Fy . because the protocol reached reached Fy . and terminated strictly

before reaching Fy .. By Lemma 11, this can happen only with probability

O(v/e).

o t € Y . but guessy(t,z) # f(x,y). By Lemma 6, this can only happen with

probability O(e).

As for security, the only difference between 7 and 7’ is that 7’ truncates early based on
some condition. But this condition is public and independent of either party’s private
inputs. Hence the simulation for 7’ works as follows. It simply runs the simulator
for m but terminates the protocol when the transcript reaches the public termination
condition.

Overall 7' is a secure protocol with negligible simulation error O(y/e). O

Observe that the new protocol 7’ has the “instantaneous” property discussed in

Section 1.4. Importantly for our purposes in the next section, with overwhelming

44

probability 1 — O(4/€) the protocol terminates on a transcript that is both in Fg_ .
and F§ .. Such a transcript must end with a message produced by the simulator in

both ideal interactions (i.e., when either party is corrupt). Hence the last protocol

message must be an output of g, with overwhelming probability.

45

5 Collapsing Protocols to a Single Call to g
We complete our main theorem with the following lemmas.

In order to collapse a protocol to a single round, we use two important properties
of instantaneous protocols. First, by Lemma 12 we can consider only protocols that
end with a call to g. Second, by Lemma 10 before the final call to g the parties’

inputs do not have a noticeable effect on the distribution of transcripts.

Lemma 13. For all f and g there is a constant cy 4 such that if f &, g via a protocol
m with simulation error €, then f Ty g via a deterministic protocol ©" with simulation

error at most cy 4.

Proof. Since m consists of only one call to g, the only choices Alice, Bob, and the

simulator can make in the protocol are:

The mapping of Alice’s f-input to her g-input

The mapping of Bob’s f-input to his g-input

The mappings of either party’s g-input to a suitable f-input in the simulator

The mapping of the g-output to an f-output

The only ways that randomness can manifest in the protocol are in the choice of these

mappings.

46

Let c¢f4 be the number of possible combinations of such mappings based on these
random coins. This is certainly a constant, although it is perhaps very large.

Select the mapping combination that was most likely to be chosen in 7. Consider
the deterministic protocol 7’ constructed by locking in these choices at the start of
the protocol. The probability that Alice, Bob, and the simulator in 7 match the
behavior of 7’ is at least 1/cy,. Then, if the simulation error of 7’ is d, the simulation
error of 7 must be at least 0/cy,. Therefore, if 7 has simulation error €, then 7’ must

have simulation error at most cy 4e. []

Given a protocol 7 with a strict upper limit of r rounds, trunc(r,) is the protocol
constructed by truncating 7 after r — ¢ rounds, outputting L if 7 was not finished.
Note that trunc(r,0) = 7.

Let R be the transcripts of trunc(m,) which are r — ¢ — 1 rounds (that is, there is

one action to go in the protocol) but have not terminated yet.

Lemma 14. If 7 has simulation error €, then for all x,y,y" and all i:

Pr [Rlry]— Pr [Rl|zy]| < 6ve
trunc(m,z) trunc(m,z)
Proof. By Lemma 10 we know that this is true in trunc(m,0) = 7, as these R tran-

scripts are strictly before F3 Truncating doesn’t change simulator extraction

ext*

probabilities, as the simulator for trunc(7,) just runs the simulator for = up until the

truncated transcript. Therefore, the lemma still holds with respect to trunc(mw,7). O

47

Lemma 15. If a protocol 7 is not e-secure against malicious Alice, then there is an

environment ENV for m with the following properties:

1. ENV chooses inputs for Bob uniformly at random

2. Pr.[ENV outputs 1] > § + V-

3. Prasim|ENV outputs 1] < % - ﬁ

Of course, a symmetrical lemma holds for protocol 7 that is insecure against

malicious Bob.

Proof. Take an environment ENV, for which 7 has simulation error €. Construct ENV

as follows.

Choose Bob’s input y* uniformly at random.

Let p(y) be the probability that ENV, chooses y. Let pmax be the maximum

p(y).-

Flip a coin with probability 1 — (p(y*)/Pmax). If it comes up heads, abort and

return 0.

Otherwise, run ENV,.

Note that ENV = ENV, conditioned on ENV not aborting. We abort with probabil-
ity at most (|Y'|—1)/|Y| (as we never abort for the y where p(y) = pmax). (|Y|—1)/|Y|

is a constant. The simulation error of ENV is therefore at least ¢/|Y|.

48

At this point, possibly invert the output of ENV such that Pr,[ENV outputs 1] is
greater than Pra_gm[ENV outputs 1]. This will not affect the simulation error.

The probability of ENV returning 1 in the real or simulated environments differs
by €/|Y], and is centered around some constant p. That is, the probabilities are at
least p+ 0 and at most p — 0 respectively, where § = ¢/(2|Y'|). Perform the following
operations to ensure that the probability is centered around 1/2 as required by the

lemma.

1. If p > 1/2, run normally with probability %. Otherwise, return 0.

2. if p < 1/2, run normally with probability ﬁ. Otherwise, return 1.

This will “normalize” the average of the probabilities in the real and ideal world

to 1/2. This might shrink ¢ slightly — up to a factor of 2. The minimum value of ¢ is

£
Ay

as required by the lemma. O]
Define gy = /2 and &; = (52nc)e;—1 = (52nc)’eq where ¢ = ¢y, is the constant

defined in Lemma 13 and n is the maximum of | X| and |Y].

Lemma 16. If trunc(m, i) has simulation error at most €; then either f embeds in g

or trunc(m, i + 1) has simulation error at most €;41.

Proof. Consider any partial transcript ¢ where the next action in trunc(m,) is for the
parties to make a call to g. Let protocol m; be defined as follows: the parties “fast-
forward” to t by imagining the transcript up to that round. They then complete the

call to g and exit immediately afterwards.

49

If there is any 7; with simulation error less than 1/c¢ (call such a t good), f embeds
in g: by Lemma 13, there exists a single-round deterministic protocol for f in a g-
hybrid world with simulation error less than 1. Then, by Lemma 4, f embeds in
g.

Assume that there is no good t in round r — ¢ — 1 of trunc(w,4) (that is, in R).
We wish to bound the probability Preunc(r,q)[R|zy] for all z,y in this case. Note that
some t € R may have simulation error when run against one malicious party but not
the other. Let R 4 be those t which have unacceptable simulation error against Alice,

and let Rp be similarly defined for Bob. Then:

Pr [Rlzy] < Pr [Ralzyl+ Pr [Rp|zy]

trunc(m,z) trunc(m,i) trunc(m,i)

Consider, then, the probability Preunc(rq)[Ralzy]. A symmetric argument will
work for Rz, and therefore we can use these to get a bound on the overall probability
Priunc(r,i) [R]2y].

For each ¢ in R, consider m;. The simulation error is at least 1/¢, so by Lemma 15

we can construct an environment ENV, satisfying:
1. ENV; chooses inputs for Bob uniformly at random

2. Pr., [ENV, outputs 1] > £ + ﬁ

3. Prasim-for-r, [ENV; outputs 1] < & — 11/

2 4|Y|e

50
Fix a particular z and y. Consider the following attack:

e Alice runs on x, and the environment chooses input y* for Bob uniformly at

random.

e If the parties reach ¢t € R, let ENV; sample an input for Bob. If it samples y*,
run ENV,, possibly allowing Alice to change her input maliciously. Otherwise,

output 0.

The probability that during this attack we output 1 is the probability that we
reached R times the probability that ENV; chooses input y* times the probability

that ENV, succeeds at its attack given y*. These probabilities are independent.

1
Z Z Pr [tlzy” —Pr[ENVt returns 1|y”]

trunc(m,i) ‘Y‘
teER A

If we eliminate the summations, we get the following expression:

1 1
Pr R
(trunc(rﬂ,z)[A’xy]) (4‘Y‘C>

By Lemma 14 we can replace y* with the input for Bob we desire to bound

probability against, y, with a small change in probability of reaching a transcript.

The probability the environment outputs 1 in the real world is therefore at least:

1 1
P _ S
(trunc(rw,i)[RA|xy] 6\/E> (2 + 4‘Y‘C)

o1

By a similar series of arguments, the probability the environment outputs 1 in the

ideal world is at most:

1 1
P R 6 - —
(A—sim—for—tl;unc(mi)[A|l’y] + \/E) (2 4|Y|C)

Because the simulation error of trunc(m,i) is &;, the above expression is at most

the following value:

< Pr [RA|xy]+6\/E+5i> <1 !)

trunc(m,i) 2 B 4|Y|C

We know that, because trunc(m, i) has a simulation error of ¢;, the difference
between the output probabilities in the real and ideal worlds is at most ¢;, which

means that, in particular:

1 1 1
> Pr [Ralayl—o —12vF—6; (= — ——
i = trunc(rﬂ,i)[A|xy]2’Y’C \/g c <2 4’Y’C>

1
= Pr [Rulzy] < (|Y|c+ 5) g + 24|Y |ev/e

trunc(m,i)

= Pr [Ralzy] < (26]Y|c)e;

trunc(m,i)

Recall that this is only against malicious Alice. We get the following bound

without restricting which party is adversarial:

52

Pr [R\xy] S (52‘}/‘6) € = &i+1

trunc(m,z)

Truncating directly before R, then, will only increase the simulation error to

Eit1-]

Lemma 17. If, for incomplete and non-unilateral f and g, f T g via a protocol with
strict upper bound on number of rounds r = O(log k), then f embeds in g. This proves

(1) = (4) of Theorem 2 (stated in Section 1.4).

Proof. trunc(m,0) has simulation error ¢ which is surely less than e.

Either f embeds in g or we can apply the argument in Lemma 16 up to r — 1
times. If r = O(log k), then we are left with a 1-round protocol trunc(m,r — 1) with
simulation error €, = (52nc)?0°¢%) /e = poly(k)x ™) = k=) which is negligible.

Then f C; g, which by Lemma 4 means that f actually does embed in g.]

Corollary 18. If f C g via a deterministic protocol (of any number of rounds) then

f embeds in g. This proves (2) = (4) of Theorem 2 (stated in Section 1.4).

Proof. Deterministic protocols have zero simulation error (without loss of generality).
Therefore, the same reasoning as in the previous proof applies but without any error

accumulating with each round. O

23

6 Tightness of the Characterization
In this section we discuss why our main characterization does not extend (without
modification) to consider unilateral functions or superlogarithmic-round, randomized

protocols.

6.1 Unilateral Functions

In Figure 8 we give f and g which are unilateral (similar examples can be constructed
in which ¢ is non-unilateral). Bob is the column-player and thus has 2 unilateral
inputs labeled B and C.

First, we argue that f [Z; g. Suppose for sake of contradiction that such a protocol
exists. Consider the simulator for a corrupt Bob who chooses his f-input uniformly
at random and runs the protocol semi-honestly. The only message that the simulator
sees is Bob’s input to ¢, after which the simulator must extract an output to send
to f. The simulator gets only one bit of information about Bob’s input, while there
are 3 possibilities for it to send to f. It follows that with constant probability the
simulator must extract the wrong input, and this error will be evident in the output
of f.

However, there is a simple protocol for f using g: Alice sends her f input directly

to g. If Bob has f-input A, he should choose g-input A’. In this case, the parties

o4

will see that the g-output is in {0,1} and they terminate with this as their f-output.
Otherwise, if Bob has f-input B or C', he should choose g-input B’. In this case, the
parties will see that the g output is 2, and then Alice will wait for Bob to send a plain
message containing either “2” or “3.” Alice takes this message to be her output.

It is simple to see that this protocol is secure against a malicious Alice. For a
malicious Bob, the simulator does the following. If Bob chooses g-input A’, then the
simulator extracts Bob’s ideal f-input as A and simulates the g-output to equal the
ideal f-output. If Bob chooses g-input B’, then the simulator gives 2 as the simulated
g-output, then waits for a message from Bob (either “2” or “3”) and uses this as the
extracted ideal f-input. The reason the simulation is secure is that in the second
case (Bob chooses g-input B’), the fact that this is a unilateral input means that
the simulator doesn’t need to know Alice’s input to perfectly simulate the g-output.
Hence the simulator can delay extraction until the second protocol message, where
intuitively Bob resolves which unilateral input he has.

Hence, we have f C g via a protocol consisting of a single call to g, plus (in
some cases) one extra message. It is a deterministic, constant-round protocol, and
yet f [Z1 g. This example shows that our classification does not extend to unilateral

functions.

5}

A12A12B1 2
3A43A44B3

6 5A65A5 6B

C12D12D1 2

ABC A R égg 3C43D44D3
02 3 0 2 CEE 6 5C6 5D5 6D
123 12 Cl14E1441E
7 g f 6 C26E2EG©G6 2
35C35E5E3

g

Figure 8: Unilateral functions Figure 9: Functions violating the main theorem via
violating the main theorem. a superlogarithmic-round protocol.

6.2 Deterministic / Logarithmic-Round Protocols

Consider the functions f and g in Figure 9. We first claim that f does not embed
in g. Any embedding would map 3 f-columns into 3 distinct g-columns.! For any 3
columns of g, there exists a row for which these columns have distinct entries — this
is simple (albeit time-consuming) to verify. However, there is no row in f that has
three distinct values. Hence the embedding would contradict rule 2a of the embedding
definition. Concretely, any candidate protocol for f C; g would allow a corrupt row-
player to learn the column-player’s input in its entirety, which is not allowed by f.
However, there is a protocol for f that uses g. We group the rows and columns of
g into groups of three, as distinguished by the dotted lines in the figure. Associate the
first row of f with the first row group of ¢, etc. Similarly, associate the first column

of f with the first column group of g, etc. The protocol for f is as follows:

!Perhaps columns are mapped to rows if the roles of Alice and Bob are swapped during the
embedding. The analysis is the same for this scenario.

26

Alice chooses a g-input from the row group associated with her f-input, uni-

formly at random.

Bob chooses a g-input from the column group associated with his f-input,

uniformly at random.

They call g with their selected g-inputs.

If the output of the g-call was in {A, B, C, D, E}, terminate the protocol with

that output. Otherwise, repeat (with fresh random choices for the g-inputs).

The correctness of this protocol is clear. By only sending g-inputs in the group
associated with their f-inputs, each party restricts any terminating output of g to be
one that was possible given their f-input.

To see that the protocol is secure, consider the following simulation. Suppose
corrupt Alice chooses some g-input (row). With probability 1/3, the simulator decides
that the protocol will terminate at this round. It converts the g-input to an f-input
(according to its row group), sends that f-input to the ideal f, then simulates the
g-output as the ideal f-input. With probability 2/3, the simulator decides that the
protocol will continue. Note that in any row, there are 2 non-terminal g-outputs (for
example, in the second row only 3 and 4 are possible), which are equally likely no
matter which column group Bob has selected. The simulator simply chooses one of
these two with equal probability as the simulated g-output. Then the same process

repeats.

57

The parties’ inputs will “match” by giving a terminal output with probability 1/3,
meaning that the expected number of rounds is 3. The probability that the protocol
continues for at least r rounds is (2/3)". We can get a protocol with a strict upper
bound on round complexity by having the parties simply abort after some limit r
number of rounds. If we set this limit as (k) = w(log k), then the correctness of the
protocol suffers by an amount (2/3)“(1°8%) = =) which is negligible. However, the

simulation is still perfect, and the protocol is secure.

6.3 Round Complexity and Parallel Calls to g

Our model encompasses protocols that make only a single call to g in each round.
Requiring sequential calls to g is without loss of generality with respect to security,
since in the UC model it cannot be guaranteed that calls happen in parallel. The
adversary can without loss of generality schedule all the calls sequentially (learning
the output of one before choosing an input to the next), resulting in a protocol in our
model.

However, when considering round complexity, it is more realistic to allow protocols
that make parallel calls to g. Although the adversary can schedule these parallel calls
in sequence, we still consider the round complexity as that required by the honest
parties. Most of our technical results apply to such protocols. More formally, consider
protocols where at each step the parties may call n parallel instances of g, where n

is agreed-upon by both parties. All of our results in Section 4.3 and most of the

o8

results in Section 5 apply to such protocols. In particular, we can collapse any f C g
protocol of O(log k) rounds to a single-round protocol that may make many parallel
calls to g but uses no additional communication.

To extend our results, it suffices to show that such a protocol (many parallel
calls to g, no additional communication) implies that f embeds in g. We have been
currently unable to extend this step. The way we currently extract an embedding
from a single-call protocol (Lemma 4) works by derandomizing the protocol, crucially
using the fact that the number of possible actions in the protocol is constant. This
property is not true when a protocol makes, say, O(k) parallel calls to g.?

In this section we gave a w(log k)-round protocol for specific f using specific g.
We point out that this particular protocol cannot be made constant-round by making
all the g-calls in parallel. The simple attack is to split the g-calls into two groups
and use different effective inputs in both (e.g., Alice uses inputs from the first row-
group in half of the calls, and second row-group in the other half). With very good
probability, this attack leaks as much as evaluating f on two inputs. In particular,
Alice can learn Bob’s input in its entirety from this attack.

We conjecture that there is no O(log x)-round protocol for this f using this g,

even when the protocol allows unlimited parallel calls to g in each round.

2Qur results hold as stated for protocols that call at most O(log k) instances of g in parallel at a
time, where the number of possible actions is polynomial in .

29

7 Conclusion
When we first began the research for this thesis, we hoped to fully characterize when
f E g for 2-party secure function evaluations. While we were unfortunately unable
to do this, we did manage to fully describe a significant subset of function reductions.
Furthermore, the counterexamples we discovered during this process will help direct
further research in this area.

For example, it seems likely that there is some clever way to extend our embedding

result to include unilateral functions. Define trim(f) to be the result of removing all

but one of the unilateral inputs for each party. Then let us write f C;, ¢ when there
exists a secure protocol for f that uses one call to ¢ and at most one additional
message. We conjecture that, if f is unilateral, then f Ty, g if and only if trim(f)
embeds in g.

The realm of randomized, worst-case super-logarithmic protocols seems like a more
formidable obstacle to a full characterization. We were able to generate a number of
function pairs with the same form as the example in Figure 9. Frustratingly, for some
of these pairs, f actually did embed in g, meaning f C; g! Future work down this
path might include determining when the randomized protocol is necessary. Another
interesting question is whether or not there are other forms of f and ¢ for which

f Z1 g but f C g by a randomized protocol.

60

Bibliography

[Beal9]

[BROG]

[Can01]

[CKLO3]

[IPS08]

[Kil88]

[Kil89)]

Kil91]

[Kil00]

[KMPS14]

Donald Beaver. Perfect privacy for two-party protocols. In Joan Feigen-
baum and Michael Merritt, editors, Proceedings of DIMACS Workshop on
Distributed Computing and Cryptography, volume 2, pages 65—77. Amer-
ican Mathematical Society, 1989.

Mihir Bellare and Phillip Rogaway. The security of triple encryption and
a framework for code-based game-playing proofs. In Serge Vaudenay, edi-
tor, FUROCRYPT 2006, volume 4004 of LNCS, pages 409-426. Springer,
Heidelberg, May / June 2006.

Ran Canetti. Universally composable security: A new paradigm for cryp-
tographic protocols. In 42nd FOCS, pages 136-145. IEEE Computer So-
ciety Press, October 2001.

Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations
of universally composable two-party computation without set-up assump-
tions. In Eli Biham, editor, EUROCRYPT 2003, volume 2656 of LNCS,
pages 68-86. Springer, Heidelberg, May 2003.

Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryp-
tography on oblivious transfer - efficiently. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 572-591. Springer, Heidel-
berg, August 2008.

Joe Kilian. Founding cryptography on oblivious transfer. In 20th ACM
STOC, pages 20-31. ACM Press, May 1988.

Joe Kilian. Uses of Randomness in Algorithms and Protocols. PhD the-
sis, Department of Electrical Engineering and Computer Science, Mas
sachusetts Institute of Technology, 19809.

Joe Kilian. A general completeness theorem for two-party games. In 25rd
ACM STOC, pages 553-560. ACM Press, May 1991.

Joe Kilian. More general completeness theorems for secure two-party
computation. In 32nd ACM STOC, pages 316-324. ACM Press, May
2000.

Daniel Kraschewski, Hemanta K. Maji, Manoj Prabhakaran, and Amit
Sahai. A full characterization of completeness for two-party randomized
function evaluation. In Phong Q). Nguyen and Elisabeth Oswald, editors,
EUROCRYPT 2014, volume 8441 of LNCS, pages 659-676. Springer, Hei-
delberg, May 2014.

[KMQI11]

[Kus89]

[MOPR11]

[MPRO9]

[MPR10]

IMPR12]

[PROS]

[Yao82]

61

Daniel Kraschewski and Jorn Miiller-Quade. Completeness theorems with
constructive proofs for finite deterministic 2-party functions. In Yuval
Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 364—-381. Springer,
Heidelberg, March 2011.

Eyal Kushilevitz. Privacy and communication complexity. In 30th FOCS,
pages 416-421. IEEE Computer Society Press, October / November 1989.

Hemanta K. Maji, Pichayoot Ouppaphan, Manoj Prabhakaran, and Mike
Rosulek. Exploring the limits of common coins using frontier analysis of
protocols. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCYS, pages
486-503. Springer, Heidelberg, March 2011.

Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Complexity of
multi-party computation problems: The case of 2-party symmetric secure
function evaluation. In Omer Reingold, editor, T'CC 2009, volume 5444
of LNCS, pages 256-273. Springer, Heidelberg, March 2009.

Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Cryptographic
complexity classes and computational intractability assumptions. In An-
drew Chi-Chih Yao, editor, ICS 2010, pages 266-289. Tsinghua University
Press, January 2010.

Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. A unified char-
acterization of completeness and triviality for secure function evaluation.
In Steven D. Galbraith and Mridul Nandi, editors, INDOCRYPT 2012,
volume 7668 of LNCS, pages 40-59. Springer, Heidelberg, December 2012.

Manoj Prabhakaran and Mike Rosulek. Cryptographic complexity of
multi-party computation problems: Classifications and separations. In
David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS, pages 262—
279. Springer, Heidelberg, August 2008.

Andrew Chi-Chih Yao. Protocols for secure computations (extended ab-
stract). In 23rd FOCS, pages 160-164. IEEE Computer Society Press,
November 1982.

	Introduction
	Examples of Secure Function Evaluation
	Security
	Cryptographic Complexity
	Overview of Results

	Preliminaries
	UC Security
	Properties of g-Hybrid Protocols for Incomplete g

	Reducibility Characterization
	Instantaneous Protocols
	Frontier Basics
	Our Frontiers
	Properties of the Frontiers
	Securely Truncating a Protocol

	Collapsing Protocols to a Single Call to g
	Tightness of the Characterization
	Unilateral Functions
	Deterministic / Logarithmic-Round Protocols
	Round Complexity and Parallel Calls to g

	Conclusion
	Bibliography

