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Conventional soil maps represent a valuable source of information about soil 

characteristics, however they are subjective, very expensive, and time-consuming to 

prepare. Also, they do not include explicit information about the conceptual mental 

model used in developing them nor information about their accuracy, in addition to the 

error associated with them.  

Decision tree analysis (DTA) was successfully used in retrieving the expert 

knowledge embedded in old soil survey data. This knowledge was efficiently used in 

developing predictive soil maps for the study areas in Benton and Malheur Counties, 

Oregon and accessing their consistency. A retrieved soil-landscape model from a 

reference area in Harney County was extrapolated to develop a preliminary soil map for 

the neighboring unmapped part of Malheur County. The developed map had a low 

prediction accuracy and only a few soil map units (SMUs) were predicted with 

significant accuracy, mostly those shallow SMUs that have either a lithic contact with 

the bedrock or developed on a duripan. On the other hand, the developed soil map based 

on field data was predicted with very high accuracy (overall was about 97%).  



 

 

 
Salt-affected areas of the Malheur County study area are indicated by their high 

spectral reflectance and they are easily discriminated from the remote sensing data. 

However, remote sensing data fails to distinguish between the different classes of soil 

salinity. Using the DTA method, five classes of soil salinity were successfully predicted 

with an overall accuracy of about 99%. Moreover, the calculated area of salt-affected 

soil was overestimated when mapped using remote sensing data compared to that 

predicted by using DTA. Hence, DTA could be a very helpful approach in developing 

soil survey and soil salinity maps in more objective, effective, less-expensive and 

quicker ways based on field data. 
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Development of Predictive Mapping Techniques for Soil Survey and Salinity 

Mapping 
 

CHAPTER 1 

 

General Introduction 

 
Conventional soil maps represent a valuable source of information about soil 

characteristics and are the most popular form of soil inventory.  Soil survey maps are 

developed in the conventional way in three steps according to Wilding (1985) and Cook 

et al. (1996). First, available data (aerial photographs, geology, vegetation, etc.) is 

studied and soil-profile properties are described at visited locations. Second, a 

conceptual soil-landscape model is developed based on the interpretation of the 

collected field data to infer soil spatial variations. Third, the conceptual model is 

applied to the survey area to predict the spatial distribution of soils at unvisited 

locations. This process is labor-intensive, expensive, time-consuming, and sometimes 

impractical in inaccessible areas. Almost less than 0.001% of a typical soil survey area 

is actually observed due to the high cost of a typical soil process (Burrough et al., 1971). 

Producing a soil map in the conventional way takes several years to be compiled and 

published, and most efforts required teams of individuals 5 to 15 years to complete. As 

a result, many areas world-wide still do not have a soil survey map which represents the 

core foundation for landscape management and sustainability.  

Conventional soil mapping (CSM) techniques have been criticized in the 

scientific literature for being subjective and qualitative in character, where soil maps are 
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developed based on a mental model developed by the soil surveyors. Unfortunately, 

most of the knowledge involved in creating that model is undocumented and 

unavailable (Hudson, 1992). Also, soil survey maps do not have information about their 

accuracy (Burrough et al., 1971; Hudson, 1992). Spatial patterns among soil map units 

have been captured and displayed as a dasymetric or area-class maps with discrete 

boundary lines between them. Two problems follow from this approach (Burrough, 

1986): First, the lines drawn on the soil survey maps may not accurately depict the 

boundaries between map units, where the boundaries between soil map units are often 

diffused, not sharp (Mark and Csillag, 1989) leading to locational errors. Second, the 

inferred homogeneities do not exist for many physical and chemical attributes that 

affect environmental modeling and soil management. In response to these criticisms, 

new mapping techniques have been developed called predictive or digital soil mapping. 

Predictive or digital soil mapping (PSM or DSM) techniques can be defined as 

the development of a numerical or statistical model of the relationship among 

environmental variables and soil properties, which is then applied to a geographic data 

base to create a predictive map (Franklin, 1995; McBratney et al., 2000). Also, a new 

field has been added to soil science called Pedometrics, (Webster, 1994) defined as the 

application of mathematical and statistical methods for the study of soils. The main goal 

of PSM techniques is to utilize the wealth of available data, which have been collected 

for decades, in studying the spatial distribution of soils in more objective, effective, 

less-expensive, and faster ways. Much of the driving force behind this is to support 

resource managers and decision makers with the critical information required for soil 

management and sustainability.  
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Technological advances of the last few decades have created a tremendous 

potential for improvement in the way that soil maps are produced (McKenzie et al., 

2000). PSM techniques have been developed as a result of the remarkable development 

in computational power, data acquisition technology (e.g., remote sensing, 

spectroradiometers, etc.), digital elevation models (DEMs), spatial statistics (e.g., 

geostatistics, neural network, fuzzy logic, classification and regression trees), and 

geographic information system (GIS). All of these factors result in a significant 

development in the methods used in producing soil and natural resource maps.  

Remote-sensing data represent an integral part of digital soil mapping. They 

provide valuable information about the soil physical (e.g., particle size distribution and 

surface roughness), chemical (e.g., salt content, clay content, organic matter content, 

iron-oxide content, and surface mineralogy), and biological (e.g., vegetation types, 

density, and strength) properties in a spatially continuous manner across the landscape. 

Remote-sensing data have been intensively used in environmental research in the last 

few decades. Recently, great improvements have been made in remote sensors and their 

spatial and spectral resolutions. Satellite images are now available at a spatial resolution 

of less than one meter pixel size (i.e., IKONOS and QuickBird), which provides fine-

scale digital representation of the earth’s surface. Hyperspectral remote sensors (i.e., 

AVIRIS) acquire detailed information about vegetation and soil properties, which has 

the potential of significantly improving data input in predictive soil and natural resource 

mapping models. Furthermore, many recent studies also have been carried out in 

Australia on the possibility of using certain remote sensors (e.g., gamma radiometrics 

and electromagnetic sensors) in studying subsurface soil properties (IAEA, 1991).  
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Remote sensing data have been successfully used in mapping vegetation cover. 

However, their use in mapping soils and their properties was limited to areas that have 

low or sparse vegetation, such as in arid and semi-arid environments. The complex 

illumination structure caused by terrain, cloud interference and atmospheric attenuation, 

and/or reflectance from vegetation made it difficult to directly use images in the visible 

and infrared parts of spectrum to map soils in all parts of the study area (Dobos et al., 

2006). The first and longest application of remote sensing in mapping soil units was 

through aerial image-interpretation and image processing (ca.1930 onwards). Remote 

sensing data also have successfully been used in mapping soil salinity for decades 

(Singh et al., 1977; Manchanda, 1984; Sharma and Bhargawa, 1988; Csillag et al., 1993; 

Joshi and Sahai, 1993; Moreau, 1996; Khan et al., 2001; Spies and Woodgate, 2005; 

Sethi et al., 2006). 

Active remote sensors that operate in the microwave portion of electromagnetic 

spectrum also represent a valuable source of information in PSM techniques. They work 

under all conditions, such as poor visibility due to cloud covers or dust storms. Also, 

they work at any time of day or night, providing a significant advantage over the 

passive remote sensors that operate in solar-illuminated areas using the visible and near-

infrared portions of spectrum. Synthetic aperture radar (SAR) is an example of active 

remote sensor. It has been used in producing high-resolution DEMs and mapping soil 

salinity and soil moisture content (Metternicht, 1998; Narayanan and Hirsave, 2001). 

Light detection and ranging (LiDAR) is another system similar to active remote sensing 

systems, but it uses pulses of laser light rather than microwave energy to illuminate the 

surface. LiDAR has revolutionized the survey and mapping world (Roy et al., 1993). 
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LiDAR data have been used in producing a highly accurate, very fine resolution DEM. 

Also, LiDAR data have been used in mapping watersheds, coastal zones, flooding risks, 

forestry, and geological hazards (Mosaic Mapping Systems Inc., 2001; Haugerud et. al., 

2003). 

Development of soils is controlled by the way in which water moves through 

and over the landscape. This water movement is largely controlled by surface 

topography. DEMs provide valuable information about terrain attributes (i.e., elevation, 

slope, aspect, and surface curvature), which have a significant impact on soil-forming 

factors and processes (McKenzie et al., 2000). DEMs and terrain attributes derived from 

them represent the most common set of variables used in predictive soil mapping 

(Moore et al., 1993; Gessler et al., 1995; Skidmore et al., 1996; Scull et al., 2005). 

Spatial statistical methods have significantly developed over the past few 

decades, moving from geostatistics (i.e., Kriging and CoKriging) to more sophisticated 

methods such as fuzzy logic and decision and regression tree analysis. Each of these 

advances in geostatistics has successfully been applied to PSM. Geostatistical analyses 

were initially used in soil science for the purpose of spatial interpolation of soil 

properties from intensive soil observations collected over small areas. A long applied 

technique, ordinary kriging, has been used in soil mapping (Odeh et al., 1992; Burrough 

et al., 1992) and salinity mapping (Bourgault et al., 1997). Major limitations to the 

application of kriging are: 1) the assumption that stationarity in data must be met by the 

field-sampled data sets, requiring great amounts of data to define the spatial 

autocorrelation and  2) the necessity for simple, flat terrain as only two dimensions [x, y] 

not [z], are statistically supported.  Univariate geostatistics (e.g., ordinary and universal 
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Kriging) have been modified to accept secondary data (i.e., Cokriging). Cokriging is 

the multivariate extension of kriging, where available secondary data such as terrain 

attributes can be included in the prediction (Odeh et al., 1995). Still, the complexity of 

soil-forming and surficial processes and large survey areas obviate these statistical 

techniques. 

Neural network is a recently developed technique that has been used in PSM. 

These techniques attempt to build a mathematical model that hypothetically works in an 

analogous way to the human brain (McBratney et al., 2000). Predicting continuous 

functions, such as soil hydraulic properties, represents the most common application of 

neural networks in DSM (e.g., Minasny and McBratney, 2002). Neural networks also 

were in predicting the probability of soil map classes from soil environmental variables 

(Zhu, 2000). 

The concept of fuzzy logic was first introduced by Lotfi Zadeh in 1965. Fuzzy 

logic represents an alternative to Boolean logic. It provides an alternative conceptual 

paradigm within PSM research. The use of this theory has increased greatly in the last 

few years, making it an important component of PSM. It allows a partial class 

membership to a variable in contrast to traditional crisp or binary logic. According to 

crisp logic, a soil sample is either completely type A or it is not at all type A. On the 

other hand, fuzzy logic provides membership values ranging from zero-ital 

nonmembership to one-ital total membership within predictive soil models to express 

degrees of similarity. Fuzzy logic is useful in soil mapping because of the contiguous 

and complex nature of the soil across the landscape (Zhu et al., 2001; Sunila1, 2004). 

Many recent studies have been published on the application fuzzy logic to infer the 
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membership of a soil to particular classes on the basis of environmental variables, such 

as parent material, elevation, aspect, gradient, profile curvature and canopy coverage 

(Zhu et al. 1996; Burrough et al., 1997; De Gruijter et al., 1997; McBratney and Odeh, 

1997; Zhu, 1997; Bui et al., 1999; Zhou et al., 2004; Scull et al., 2005). 

Decision and regression trees have also been widely used in producing 

predictive soil maps. Prediction of soil classes (discrete or categorical values) is called a 

decision tree or a classification tree, whereas prediction of continuous soil attributes is 

called a regression tree. Classification and regression trees are machine or inductive 

learning methods where a set of automatically constructed rules are built up based on 

training dataset (i.e., data mining).  A constructed decision tree consists of nodes (each 

representing an attribute), branches (each representing the attribute value), and leaves 

(each representing a class). A decision tree is built based on selecting the attribute that 

minimizes the amount of disorder in the sub-tree rooted at a given node. A training 

dataset is used to discover or exploit the unknown relationships between the predictor 

variables and the predicted variable. The theory behind this approach is based on the 

assumption that all the required information to establish soil predictions is contained in 

the data and can be extracted if a sufficient amount of training data can be collected 

(Dobos et al., 2006).  

Decision and regression trees have many advantages over linear models and 

other PSM methods.  Regression trees have the ability to address the nonlinear 

relationships between some soil properties, require no prior assumptions about the data, 

and they can use both categorical and continuous data for prediction of discrete soil 

classes or continuous soil attributes. One of the great advantages of tree models is that 
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they are easy to interpret when compared to methods like generalized linear models 

(GLMs), generalized additive models (GAMs), and neural networks (Clark and 

Pregibon, 1992). Prediction rules developed by decision and regression trees can be 

extrapolated to map soil properties or classes in similar landscapes (Venables and 

Ripley, 1994; Hansen et al., 1996; Huang et al., 2002). Because of these factors, 

decision and regression trees have been widely used in developing predictive soil maps 

over large areas (Hansen el al., 1996; Bui et al., 1999; Zhou el al., 2004; Scull et al., 

2005). Also, they have been used to develop landcover and other natural resource maps 

(Friedl and Brodley, 1997; Friedl et al., 1999; Xian et al., 2002; Herold et al., 2003).  

Geographic information systems (GIS) are computer-based systems for 

collecting, storing, analyzing and managing data and associated attributes which are 

spatially referenced to the Earth. Advances in GIS provide great assistance to the 

techniques used in producing maps. Data are represented in GIS using two data models: 

vector and raster. Vector data model is used to represent discrete features that can be 

identified using sharp boundaries such as state counties. Conversely, the raster data 

model is used to represent continuous numeric values (e.g., elevation, slope, and aspect) 

and continuous categories (e.g., vegetation types).  Raster model also known as the 

field-view representation, is suitable for representing continuous spatial variations in 

soil properties across the landscape (Goodchild, 1992).  It facilitates the integration of 

many environmental data and the sampling of data layers. Also, it is suitable for spatial 

analysis and modeling (Burrough and McDonnell, 1998). 

Resolution of data stored in raster format depends on the grid cell size, where 

the smaller the grid size the higher the resolution and vice versa. Grid size or resolution 
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can be changed based on the details that need to be acquired. That is why the raster 

data model is most commonly used in PSM and other environmental resource mapping. 

Although vector data can be converted into a raster grid, they still inherit some of their 

original properties after conversion, such as the discrete boundaries. An example of this 

is the digitized version of a paper soil map. PSM techniques result in significant 

changes in soil data modeling from the dasymetric or area-class map, because the raster 

grid allows a better representation of the spatial variability in soil properties across the 

landscape.  

Performance of the prediction methods is usually tested based on the root mean 

square error (RMSE) (McBratney et al., 2000). Descriptive and discrete-multivariate 

statistics described by Jensen (1996) are also used to assess the agreement between the 

existing and predicted soil classes or properties. Descriptive statistics include the 

calculations of the Overall, the Producer’s and the User’s accuracies in the error data 

matrix. Overall accuracy is calculated by dividing the total number of correctly 

predicted pixels by the total number of pixels in the error matrix. Producer accuracy, a 

measure of omission or exclusion errors, shows how successful the model is in 

prediction. It is calculated by dividing the total number of correctly predicted pixels of 

an individual category by the total number of pixels given to that category from the 

reference data.  User accuracy, a measure of commission or inclusion errors, shows how 

well these map predictions are represented in reality. It is calculated by dividing the 

total number of correctly predicted pixels of a category by the total number of pixels 

that were actually classified in that category. Discrete-multivariate statistics, such as 

Kappa analysis (Cohen, 1960) are also very commonly used in evaluating predictive 
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and image classification maps (Jensen, 1996; Mather, 2004). Kappa coefficient is 

used to measure the accuracy or the agreement between the predicted and present 

categories in the reference data (Congalton, 1991).  

Although several approaches have been used in PSM, continuous testing and 

developing of these methods over a wider variety of landscapes is very important, 

especially where the spatial distribution of soils is more complex (Scull et al., 2003). 

Some methods could be successful under certain environments, whereas others could 

fail (Scull et al., 2003). Also, the impact of the environmental variables that have been 

used as predictors of soil properties could change from one environment to another (e.g., 

rainy forests and dry deserts). Therefore, future studies should be continued to 

determine which methods and environmental attributes provide optimal results, and 

understand the appropriate environments for application.   

 

The goal of this dissertation is to: 

• retrieve soil-landscape model from old soil survey data using data mining 

techniques; 

• evaluate environmental variables according to their significance in predicting 

soil map units in different landscapes; 

• evaluate the consistency or uncertainty of conventional soil maps and facilitate 

their transition and update processes by use of predictive soil mapping; 

• extrapolate models retrieved from published soil survey data to produce 

predictive soil maps for areas with similar landscapes; 
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• embed soil-surveyor knowledge in data-mining models to produce instant 

predictive soil maps and direct the soil survey plan based on mapping accuracy; 

• compare the efficiency of conventional and predictive mapping techniques in 

producing soil salinity maps over large areas.  

These objectives are studied in detail in the next three chapters of this dissertation. The 

three subject chapters are intended for publication in scientific journals. A summary 

chapter closes the dissertation. 
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Abstract 

Conventional soil maps represent a valuable source of information about soil 

characteristics; however, some errors are associated with them. Common amongst 

errors are inaccurate boundaries, misidentified inclusions, and uncertainty with soil map 

units. This work aims to find a practical approach to handle these errors through using 

decision-tree analysis (DTA) as a predictive soil-mapping technique. In this technique 

the spatial relationships between known taxonomic classes and soil map units (SMUs) 

and their formative environmental variables are extracted and used in developing a 

predictive soil-landscape model. The predictive soil map differs from the original 

digitized area-class representation in that each soil map unit is predicted as a continuum 

or pixel by pixel. A comparison between the original and predicted soil taxonomic 

classes and soil map units was carried out to assess the original map consistency and the 

model efficiency. Study of a 278 km2 region of Benton County, Oregon, shows a high 

correlation between predicted and original taxonomic classes and SMUs. In this study, 

six models were used to predict soils based on taxonomic class (soil orders, suborders, 

great groups, and subgroups) and soil components (major soil map units and all soil 

map units) in the study area. The developed digital soil maps provided valuable 

information about the prediction accuracy of each soil map unit and the areas where 

there is low confidence in predicting them. The predictive model of soil orders yields 

the highest prediction accuracy (90%), followed by soil suborders (85%), great groups 

(81%), subgroups (79%), major soil map units (78%) and all soil map units (74%), 

respectively. All of the predicted soil maps revealed similar characteristics between 

them, where the majority of taxonomic classes and/or SMUs that represent greater areal 
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extent have the highest prediction accuracy compared with those representing lesser 

extent. Results quantitatively reveal errors common to conventional soil maps. 

Confidence in the boundaries between taxonomic classes or SMUs had the greatest 

misclassification errors of all recognized elements in the mapping area. Also, the 

inclusion between soil map units was obvious especially among those representing 

smaller areas. The misclassification error was also higher among SMUs or classes at 

lower slope areas in the Willamette Valley. In these locations there are many delineated 

soil map units, whereas there is little or no significant change in terrain attributes and 

most of the environmental variables used in developing the prediction models.  

Keywords: Accuracy assessment, predictive soil mapping, pedometrics, decision-tree 

analysis  

 

2.1. Introduction  

Digital soil maps are now the de facto reference with valuable information used 

by resource managers and decision makers. With the change to digital format and GIS 

from graphical techniques comes the opportunity to readily assess the reliability, 

accuracy, precision and meaning of a whole host of data, from inputs to processing to 

final products. Therefore, advancing new techniques to minimize uncertainty and 

accumulated errors in final map products is an important step. Conventional soil 

mapping techniques are very expensive, labor-intensive and time-consuming practice 

which are prove to a suite of errors,  including incorrect labels, inclusions, and 

inaccurate class boundaries (Ehlschlaeger and Goodchild, 1994).   
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Traditionally and for the foreseeable future, spatial patterns have been 

captured and displayed as dasymetric maps with discrete boundary lines between soil 

map units, which implies homogeneity within such area-class map units. Two problems 

follow from this approach (Burrough, 1986): First, the lines drawn on the soil survey 

maps may not accurately depict the boundaries between map units. Boundaries between 

soil maps units are often diffused, not sharp (Mark and Csillag, 1989) leading to 

location errors. Second, the inferred homogeneities do not exist for many physical and 

chemical attributes that affect environmental modeling and soil management.  

Conventional soil survey methods have been criticized for being too qualitative 

and subjective in character (McBratney et al., 2000; Qi and Zhu 2003; Scull et al., 2003; 

Prima et al., 2006), largely because soil boundaries are manually delineated on the basis 

of the mental soil-landscape model developed by a local soil expert. Complexity in 

spatial relationships between soils and their environmental variables may not be 

recognized because of scaling differences within the soil survey. Even in projects where 

there is scaling mismatch, soil surveyors may have a limited view over large areas of 

the spatial relationships that exist between all of the soils in their legend and the 

respective environmental factors.  

Quantitative soil-landscape models are developed to describe, classify and 

analyze the spatial distribution patterns of soils using more objective, effective and less 

expensive means collectively called predictive or digital soil mapping techniques 

(McBratney et al., 2000; McBratney et al., 2003; Scull et al., 2003). Digital soil 

mapping (DSM) can be defined as the creation and population of spatial soil 

information by the use of field and laboratory observational methods coupled with 



 

 

21
 

spatial and non-spatial soil inference systems (McBratney and Lagacherie, 2004). 

DSM, while de rigueur for soil survey in Australia and Canada (McBratney et al., 2003; 

MacMillan et al., 2005), is just now being institutionalized in the USA (USDA-NRCS, 

2007).  

Spatial variability represents a very important factor in mapping soils and other 

natural resources and has been subject of recent research. Study of soil variability has 

been approached by numerical classification, multivariate statistical methods, 

continuous (fuzzy) classification, geostatistics, fractal methods, mathematical 

morphology, and chaos theory (Burrough, 1993). Variability studies give consideration 

to the reliability or uncertainty associated with soil information; therefore they are an 

integral part of soil science. Soil information derived from soil maps should include an 

expression of uncertainty or variability, especially when used by soil managers and 

decision makers. Most soil maps developed using conventional methods have transect 

level and local assessments of reliability information (Soil Survey Division Staff, 1993), 

yet not equally over the entire study area. Soil maps developed using digital methods 

can have uncertainty assessment of one degree or another equally over the entire study 

area. 

This paper reports on a method of assessing the uncertainty associated with soil 

maps which are produced by traditional soil survey techniques. To do so, we first used 

decision-tree analysis to retrieve the spatial relations between soil map units of a 

digitized conventional soil map and their environmental variables, and, second, we 

developed a predictive soil map of the study area using digital soil mapping techniques. 

We present our analysis of a reported technique – decision-tree (e.g. Hansen et al., 1996; 
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Scull et al., 2005) –  and present potential uses thereof such as in updating soil 

surveys and in joining soil surveys for regional (e.g. MLRA) compilations and 

management. 

 

2.2. Materials and methods 

2.2.1. Description of the study area  

Recent completion of the Benton County, Oregon, soil survey (USDA-NRCS, 

2004a) affords a local, newly compiled updated soil survey map for this study. We 

chose a 278 km2 area of maximum range in soil-forming factors across the county, an 

area that includes two 7.5 minute quadrangles called Flat Mountain and Greenberry.  A 

soil map of the study area was clipped from the digitized (conventional) soil map of 

Benton County, Oregon (SSURGO database developed by USDA-NRCS, 2004). The 

study area encompasses 100 soil map units that represent Alfisols, Andisols, Inceptisols, 

Mollisols, Ultisols and Vertisols. Tables 2.1 and 2.2 show the map symbols and names, 

percentage of the area covered and taxonomic classification for some of the major-

SMUs in the study area (refer to the Tables A.2.1 and A.2.2 for the complete list and 

descriptions).  

The study area includes five different ecological regions: Prairie Terraces, 

Valley Foothills, Mid-Coastal Sedimentary, Willamette River and Tributaries Gallery 

Forest, and Volcanics (Clarke and Bryce, 1997) that compose this boundary area 

between the A2 and A4 regions of the Major Land Resource Areas (MLRA) (USDA, 

2006). Dominant geology in the study area consists of alluvial deposits, lacustrine and 

fluvial sedimentary rocks, (tuffaceous) siltstone and sandstone, mafic intrusions, and 
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volcanic flows (Walker et al., 2003). Elevation varies from 63 to 831 m ( =197 m) 

and slope ranges from 0 to 50o ( =7.29o).  Climate in the study area is humid 

Mediterranean, with mean annual precipitation (MAP) varying from 1092 mm on the 

valley floor to 2362 mm at peak elevations ( =1503 mm), and Xeric to Udic (local 

aquic) soil moisture. Mean annual temperature (MAT) varies from 4oC in the winter to 

27 oC in the summer ( = 17 oC), and Frigid to Mesic soil temperature.  

Vegetation present in the area is: Oregon white oak (Quercus garryana), 

Douglas fir (Pseodotsuga menziesii), western hemlock (Tsuga heterophylla), grand fir 

(Abies grandis), ponderosa pine (Pinus ponderosa), Oregon ash (Fraxinus oregona), 

and black cottonwood (Populus trichocarpa). This is in addition to agricultural crops 

and pastures on the low-relief areas of the Willamette Valley (Kagan and Caicco, 1992). 

 

2.2.2. Data sources and management  

Environmental variables that were integrated in the soil prediction model (Table 

2.3), include MAP from (1961 to 1990, 1:200,000, USDA-NRCS, 1999), geology (1: 

500,000, USGS, 2003), and vegetation of Oregon (1:250,000; Kagan and Caicco, 1992) 

(Fig. 2.1). Terrain attributes (elevation, slope gradient, aspect, and plan and profile 

curvatures) were derived from the digital elevation model (DEM) of western Oregon 

(10 m cell size) using ArcGIS software (Fig. 2.2). Solar radiation (direct, diffuse, and 

globe) for the summer solstice, equinox and winter solstice was derived from the using 

the solar analyst ArcView extension developed by Fu and Rich (1999).  Landscape 

position was classified by the DEM-derived Topographic Position Index (TPI) (Weiss, 

2001; Jenness, 2005).  
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Processing of a Landsat ETM+ image (path 46 and row 29; acquired 

September 25, 2000) yielded the Normalized Difference Vegetation Index (NDVI) 

(Rouse et al., 1973) and the Soil Adjusted Vegetation Index (SAVI) (Huete, 1988). 

These indices were used to identify vegetated areas and to distinguish between 

vegetation and soil background (Fig. 2.3).  

Data layers are represented using the raster data model, which is more suitable 

for representing continuous spatial variations, data sampling, and data modeling.  

Accordingly, all data were converted to raster data of 30 m cell size.  

 

2.2.3. Significance of the environmental variables 

Three methods were used to select the most significant variable in predicting 

SMUs. First, Principal Component Analysis (PCA) of the Landsat ETM+ bands reduces 

the dimensionality of the dataset and identifies new typically meaningful underlying 

variables. Second, Tasseled Cap Transformation (TCT) analysis (Kauth and Thomas, 

1976) derives from imagery an enhanced discrimination function between soil and 

vegetation. TCT provides three indices: soil brightness index (Brightness), green 

vegetation index (Greenness), and soil and vegetation moisture (Wetness).  The first 

two indices (Brightness and Greenness) contain most of the scene information (95 to 

98%) (Jensen, 1996).  Third, winnowing attributes function in the See5 Program was 

used to sort environmental variables according to their significance in predicting SMUs, 

where decision trees and rulesets constructed by the See5 (Quinlan, 2001) do not 

generally use all of the input attributes. This function in the See5 program was used to 

pre-select a subset of the input attributes based on their significance in predicting SMUs 
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or groups in the study area. Only the environmental variables or attributes that 

provide predictive information were used in constructing the decision trees.  

 

2.2.4. Sampling strategy 

Soils are analyzed in this study as members of four groups based on taxonomic 

classes (soil order, suborder, great group, and subgroup) and two groups of soil map 

unit components, major-SMUs and all-SMUs to develop six prediction models. Soil 

orders group consists of 11 map classes; six soil orders, four complexes of soil orders, 

and one class for areas of open water. Soil suborders have 16 classes (10 individual 

suborders, five complexes of suborders, and one class for areas of open water). Soil 

great groups consist of 25 map classes (15 individual great groups, nine complexes of 

great groups, and one class for areas of open water). Soil subgroups have 41 map 

classes (25 individual subgroups, 15 complexes of subgroups, and one class for areas of 

open water). Major-SMUs refer to SMUs that have a combined polygon area of 0.45% 

or more of the study area. They include 48 SMUs and cover a total of about 91% of the 

study area. 52 SMUs represent a total of about 9% of the area and are included with 

major-SMUs for the all-SMUs (100 total SMUs) analysis. A full description of each 

studied group, its classes, and their given codes is provided in the Appendices. 

Studied groups in the area of interest were randomly sampled based on their 

representative areas using the Classification and Regression Tree (CART) module 

designed by Earth Satellite Corporation (2003). The resulting output data matrix 

consists of about 90,000 random sample points as training data and about 30,000 

random points as test data. Each random sample has information about the current SMU 
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or soil group and the different environmental variables at this point. An overview of 

the different sources of geodatabases and the analytical methods is illustrated in Figure 

2.4. 

 

2.2.5. Decision-tree analysis (DTA) 

Decision-tree analysis is a predictive model that correlates several independent 

variables with direct or indirect relations to a certain subject or phenomenon, and then 

uses those in predicting that subject or dependent variable. Decision-tree analysis is the 

approach used in this study, applying the See5 program to develop prediction models 

(Breiman et al., 1984; Quinlan, 1993). Two advanced features in the See5 program 

called boosting and cross-validation were used to improve classification accuracy. With 

the boosting function, the program develops a sequence of decision trees; each 

subsequent tree attempts to fix the misclassification errors in the previous one. Each 

decision-tree makes a prediction and the final prediction is a weighted vote of the 

predictions of all trees (Freund and Schapire, 1996). This function often improves 

classification accuracy and reduces over-fitting of decision trees (Friedl et al., 1999; 

Moran and Bui, 2002). Cross-validation is designed to obtain a more reliable estimate 

of predictive accuracy assessment using a limited number of reference data samples for 

both training and accuracy assessment (Michie et al., 1994). For f-fold cross-validation, 

the training dataset is divided into f subsets of roughly the same size and class 

distribution. Predictive accuracy estimates are derived by using each subset to evaluate 

the classification developed by using the remaining training samples. Mean estimates 

represent the accuracy of the classification using all reference samples.  
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Prediction models for the taxonomic groups and SMUs were generated using 

about 75% of the random samples for training and about 25% of the samples for testing 

the model. The same number of the environmental variables (28 variables) was 

integrated in developing the six soil prediction models.  

 

2.2.6. Models evaluation 

Descriptive statistical methods (Jensen, 1996) were used to evaluate the 

agreement between the existing and predicted groups.  In these methods, the overall 

accuracy is computed by dividing the total number of correctly predicted pixels in each 

SMU or taxonomic classes by the total number of pixels in the error matrix.  

Assessments for each SMU or group involved calculations of the producer’s accuracy 

and the user’s accuracy. Producer accuracy, which measures the exclusion errors, shows 

how successful the model is in prediction. User accuracy, a measure of inclusion errors, 

shows how well these map predictions are represented in reality. 

In order to evaluate the accuracy of the six soil prediction models, both the 

actual and predicted soil maps were randomly sampled to collect about 30,000 points.  

As a starting assumption and condition for our analysis, the soil survey map of Benton 

County is deemed perfectly accurate.  We recognize the improbability of this, as have 

other workers (Webster and Oliver, 1990; Brannon and Hajek, 2000; Rossiter, 2001) 

especially given the target accuracy for such SSURGO-certified maps are on the order 

of 75% (Soil Survey Division Staff, 1993). Henceforth, it is the apparent accuracy of 

the prediction models we report in this evaluation. 
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2.3. Results 

2.3.1 Potential of the environmental variables 

PCA on the subsetted Landsat ETM+ image revealed that the first four bands 

represent 99.86% of the variations within the images (Table 2.4). The first band, which 

covers the blue range of spectrum, has the highest eigenvalue and represents 88.66% of 

the image variations. On the other hand, bands 5 and 7 have the lowest eigenvalues and 

represent less than 0.5% of the variations within the images.  

Preliminary results of the See5 winnowing option show that elevation, 

vegetation, geology, precipitation and slope gradient represent the most significant 

variables in predicting SMUs in the reference area. These variables are followed in 

significance by Landsat ETM+ bands 1, 3 and 4, slope aspect, landform, greenness, 

brightness, and NDVI. However, the remaining variables have very little contribution in 

predicting SMUs in the reference area. The surface curvature variables (pan and profile 

curvatures) did not show any significant effect on predicting SMUs or groups, which 

agrees with results obtained by Bui et al. (1999).  

 

2.3.2. Model evaluation  

Our model for soil orders successfully predicted all 11 classes (Fig. 2.5). It has 

the highest prediction accuracy compared with prediction models for other area-class 

groups of soils (Table 2.5). Prediction accuracy was enhanced by using a 10-fold 

boosting (14.2% and 11.6% of misclassification error without and with boosting, 

respectively) based on evaluating the test data. The prediction model of soil suborders 

(16 classes) came second in order of model accuracy (18.4% and 15.7% of 
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misclassification error without and with boosting, respectively).  A comparison 

between the actual and predicted soil suborders is illustrated in Figure 2.6. Our model 

for soil great groups successfully predicts 24 groups out of 25. The unpredicted group 

(#27) is a complex of two soil great groups (Haploxerepts and Haploxerolls) and 

represents about 0.02% of the study area.  

Our models for great groups, subgroups, and major-SMUs were efficiently 

predictive of all subject map units (Table 2.5). The predictive model of all-SMUs 

predicts 96 out of the 100 SMUs in the study area. The four unpredicted SMUs (51, 106, 

114, and 119) represent only 0.04% of the studied area. Misclassification error of the 

all-SMUs model was the highest (32.8% and 28.1% without and with boosting, 

respectively) compared with the other models.   

We noticed that the prediction accuracy was further enhanced by about 2% by 

using the majority filter in ArcGIS (3x3 kernel with eight neighboring cells) for all but 

predicted soil maps for soil suborders. In this case, the accuracy increased by less than 

1% (0.62%). Filtering the generated soil maps removes scattered pixels in the soil 

prediction maps and improves the visualization of the output maps. The filter also clips 

out areas that are less than the minimum SMU size. With further field study, these 

outliers may be proved or disproved as inclusions or other SMU components.  

Although the obtained results showed that soil orders have higher prediction 

accuracy than major or all-SMUs, predicting SMUs is more valuable. More information 

is associated with SMUs compared to soil taxonomic classes, although the latter are 

valuable for small-scale applications.  
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2.4. Discussion 

2.4.1. Decision tree analysis and predicted soil map 

Decision-tree analysis yields prediction models that exhibit consistent patterns 

regarding traditional soil survey maps and their taxonomic derivatives (e.g., distribution 

of soil suborders). As a general rule, based on our observations: the greater the map unit 

extent (area), the greater certainty or accuracy of the prediction.  Ultisols and Mollisols, 

for example, are the dominant soils in the study area (37.7 and 26.7% of the area, 

respectively (Table A.2.3)) and show the highest user accuracy (98.6 and 92.6%, 

respectively) (Table 2.6). A map complex of Inceptisols and Mollisols has the smallest 

area (0.02%) and was not predicted in the filtered image. Vertisols represent 0.09% of 

the area and were correspondingly predicted with a low accuracy (28.6%). 

Inclusion errors among suborders, which are represented by the calculated user 

accuracy, show the same trend as soil orders (Table 2.7). Humults is the most dominant 

soil suborder in the study area (37.7% of the area) and has the highest user accuracy 

(98.7%). Aquolls represent 0.09% of the area and have the lowest prediction accuracy 

(15.4%). Suborder 17 a complex of Xerepts with Xerolls, has the smallest area and was 

predicted with an accuracy of 40.0%. Moreover, user accuracies for soil great groups, 

subgroups, major-SMUs and all-SMUs showed the same trend, which led us to posit the 

general rule (Table 2.8).  

This trend could be due to the fact that these SMUs or groups are represented in 

the training sample based on their area when the randomized sampling technique is used. 

Those units covering larger areas are represented by a larger number of sampling points 

than those representing smaller areas. Consequently, these larger units are well 
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characterized, whereas smaller units are poorly characterized in the output data 

matrix. Friedl and Brodley (1997) also reported that the decision-tree algorithm has a 

tendency to penalize classes with fewer observations in the training data. Another 

contributing factor could be the inconsistency in scale between the environmental data 

and the soil map. Geologic data, for example, have the coarsest scale (1:500,000); the 

soil map has a scale of (1:24,000), and the DEM and terrain attributes have a resolution 

of 10 m. Therefore, SMUs representing smaller areas are not well identified or 

discriminated from the input data. Also, the smaller units could be misclassified by the 

soil experts who developed the original soil map of the study area, where there are too 

many SMUs (e.g., 100 SMUs) in such a small area.  

There are some exceptions for every rule; some SMUs or groups have higher 

prediction accuracies although they represent smaller areas and vice versa. This could 

be related to the strength of the relationships between the predicted unit and the 

environmental variables used in developing the prediction models. In other words, if the 

SMU or group has certain unique properties such as specific type of geology, vegetation 

or landform, it could be easily retrieved from one or more of the prediction variables. 

For example SMUs 109, 75, 148, 150, 174, and 119 represent small areas that comprise 

from 0.02 to 0.13% of the total area, they predicted with higher accuracies (100.0, 94.7, 

90.5, 85.1, 62.5, and 60.0%, respectively).  

There are some poorly predicted SMUs representing large areas. Soil map units 

177, 8, 49, 157, 50, 154, and 29 cover relatively large areas and range between 0.4 and 

3.5% but they were predicted with lower accuracy (39.4, 40.2, 44.3, 30.1, 36.2, 30.1, 

and 25.2%, respectively). 
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2.4.2. Uncertainty associated with conventional soil maps 

Obtained results emphasize two of the most common issues associated with 

conventional soil mapping techniques: inaccurate boundaries and inclusions of soil map 

units. The confidence map derived from the prediction model of all-SMUs shows a 

relatively high misclassification error at the boundaries (Figures 2.7 and 2.8) and it also 

illustrates inclusions among SMUs. The error likely corresponds to imprecise traditional 

methods which may not accurately depict the boundaries between map units (Burrough, 

1986). Zylman et al. (2005) also reported that erosional areas and transitional zones 

between soil map units display the greatest amount of variation in the SSURGO data. 

This work could help in reducing these location errors at the boundaries among SMUs 

by stratifying the sampling technique according to prediction confidence.  We 

recommend that this work go parallel with the traditional field work for two reasons. 

First is to test the concurrent field or true accuracy. Second is to direct the sampling 

efforts to these locations where there are high misclassification errors to enhance their 

mapping accuracy. By doing this, the large number of samples required in the 

conventional soil survey can be reduced significantly.  The same technique can be used 

to enhance and facilitate the update processes of soil survey data where most of the 

available data are outdated.  

We found that the misclassification accuracies were high between the SMUs at 

low-slope to level areas in the Willamette Valley. This could be due to the relatively 

insignificant variations between most of the environmental variables used in developing 

the prediction models, especially terrain attributes on those areas, whereas there are 

many delineated SMUs. This agrees with the results obtained by Scull et al. (2005) who 
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found higher accuracies in predicting soil great groups in mountain areas compared to 

those in basin areas of the Mojave Desert, California. Misclassification error was high 

in areas that have a complex of more than one soil map unit or soil group in the study 

area. High misclassification errors also were found in deeply incised areas or drainage 

channels where surficial processes are active and soil development is correspondingly 

weak.  

 

2.5. Conclusion  

Soil-landscape models used in mapping soils can be successfully extracted using 

decision-tree analysis. The retrieved model can be used to assess the consistency of the 

original soil map. Also, it could be very helpful in transferring these digitized soil maps 

into more objective digital maps and facilitating the update process in soil survey. The 

decision-tree approach is flexible to train where environmental variables vary from one 

landscape to another. It can effectively minimize the large amount of field data required 

in conventional soil survey and consequently reduce the expenses and the time used in 

producing these maps. 

Prediction accuracy of the developed models monotonically increases with 

increasing area of individual map units of area-class maps of soil taxa and soil map unit 

components. This trend depends on the number of classes (i.e., details) in each group, 

the proportional area of each class, and the accuracy and scale of contributing 

environmental variables.  Soil orders had the highest prediction accuracy followed by 

soil suborders, great groups, subgroups, major and all soil map units, respectively.  Map 

units that have a large areal extent and/or are well identified by more than one of the 
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environmental variables were predicted with higher accuracies.  On the other hand, 

map units representing smaller areas or that poorly identified from the integrated 

variables were poorly predicted or entirely unpredicted. Selecting the appropriate model 

depends on the details that one wants to be retrieved from the generated soil map. Soil 

taxa maps would be useful in developing the preliminary soil maps at small scales 

(large areas) where detailed information is not necessarily required. Predicting soil 

subgroups and soil map units could be very valuable under larger scales (small areas) 

where more detailed knowledge about soil characteristics is required.  

The predicted soil maps also revealed the common errors associated with the 

conventional soil maps: inaccurate boundaries and inclusions, especially between soil 

map units that cover small areas.  
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Table 2.1. Map symbols and names of SMUs in the study area of Benton County, 
Oregon and their relative areas as percentage. 
 

Map 
Symbol Map Unit Name % 

1 Abiqua silty clay loam, 0 to 3 percent slopes 0.10 
8 Amity silt loam, 0 to 3 percent slopes 4.24 
9 Apt-McDuff complex, 5 to 30 percent slopes 1.92 
10 Apt-McDuff complex, 30 to 50 percent slopes 0.29 
12 Awbrig silty clay loam, 0 to 2 percent slopes 2.81 
13 Bashaw clay, 3 to 12 percent slopes 0.05 
17 Bellpine-Jory complex, 2 to 12 percent slopes 4.53 
18 Bellpine-Jory complex, 12 to 20 percent slopes 6.83 
19 Bellpine-Jory complex, 20 to 30 percent slopes 7.68 
20 Bellpine-Jory complex, 30 to 60 percent slopes 10.79 
21 Blachly-Kilowan complex, 5 to 30 percent slopes 0.42 
22 Blachly-Kilowan complex, 30 to 60 percent slopes 0.24 
23 Bohannon-Preacher complex, 30 to 60 percent slopes 3.96 
24 Bohannon-Preacher complex, 60 to 90 percent slopes 1.56 
27 Burntwoods-Oldblue complex, 30 to 60 percent slopes 0.81 
(Refer to Table A.1.1 for a complete list of soil map units)  

 

Table 2.2. Soil taxonomic classification of soil series in the study area.  
 
Soil Name Taxonomic Classification 
Awbrig Fine, smectitic, mesic Vertic Albaqualfs 
Burntwoods Medial-skeletal over loamy-skeletal, mixed over isotic, frigid 

Typic Fulvudands 
Blachly Fine, isotic, mesic Typic Dystrudepts 
Bohannon Fine-loamy, isotic, mesic Andic Dystrudepts 
Oldblue Fine-loamy, isotic, frigid Andic Dystrudepts 
Preacher Fine-loamy, isotic, mesic Andic Dystrudepts 
Kilowan Fine, isotic, mesic Typic Dystrudepts 
Amity Fine-silty, mixed, superactive, mesic Argiaquic Xeric Argialbolls 
Apt Fine, isotic, mesic Typic Haplohumults 
McDuff Fine, isotic, mesic Typic Haplohumults 
Bellpine Fine, mixed, active, mesic Xeric Haplohumults 
Jory Fine, mixed, active, mesic Xeric Palehumults 
Bashaw Very-fine, smectitic, mesic Xeric Endoaquerts 
(Refer to Table A.1.2 for a complete taxonomic classification list of soil names) 
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Table 2.3. Environmental data used in developing the soil prediction model.  

Variables Data source Resolution 
(Scale) 

Type of Data 
 

Landsat ETM+  
(bands 1, 2, 3, 4, 5,  
and 7) 

USGS-EROS Data Center 
(2000) 

30 m Continuous  

NDVI Derived from the Landsat 
image (Rouse et al., 1973) 

30 m Continuous  

SAVI Derived from the Landsat 
image (Huete, 1988)  

30 m Continuous  

Tasseled Cap 
Transformation 
(Brightness, 
Greenness, and 
Wetness) 

Derived from the Landsat 
image (Kauth and Thomas, 
1976) 

30 m 
 

 
 
Continuous 

Elevation (DEM) 
Slope gradient 
Slope aspect 
Surface curvature 
Profile curvature 
Plan curvature 

USGS-EROS Data Center 
(1999) 
 

30 m 
 

Continuous  

Landform 
classification 

Derived from the DEM 
(Jenness, 2005) 

30 m 10 classes 

Solar radiation 
(in WH/m2) 
(Diffuse, direct, and 
Globe radiation) 

Drived from the DEM 
(Fu and Rich, 1999)  
 

30 m 
 

Continuous 

Geology USGS (2003) 1:500,000 7 classes 
Vegetation Kagan and Caicco, 1992 1:250,000 6 classes 
Mean annual 
precipitation  

USDA-NRCS (1999) 1:500,000 26 classes 

Ecological regions  (Clarke and Bryce, 1997)  1:250,000 5 classes 
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Table 2.4. Results of principal component analysis of the Landsat ETM+ image 
(bands 1, 2, 3, 4, 5, and 7). 
 
PC Min Max Mean Stdev Eigenvalue Percent (%) 
1 47 195 63.27 11.75 3512.09 88.66 
2 28 177 49.63 15.42 339.71 97.24 
3 20 200 49.18 26.56 79.02 99.23 
4 18 193 90.50 19.00 24.93 99.86 
5 9 214 71.23 39.63 4.32 99.97 
6 8 203 45.28 30.80 1.20 100.00 
 

Table 2.5. Misclassification errors and prediction accuracy of training and test data 
without and with the use of boosting in See5 program for the six prediction models and 
calculated accuracies with and without using the majority filter. 
 

Without Boosting 
 

With Boosting 
 Group 

Name Training  Testing  Training Testing 

Un-
filtered 

map 

Filtered 
map 

Orders 11.6 
(88.4) 

14.2 
(85.8) 

7.0 
(93.0) 

11.6 
(88.4) 89.00 90.02 

Suborders 15.0 
(85.0) 

18.4 
(81.6) 

10.6 
(89.4) 

15.7 
(84.3) 84.59 85.21 

Great 
groups 

19.7 
(80.3) 

25.3 
(74.7) 

13.9 
(86.1) 

21.2 
(78.8) 79.05 81.22 

Subgroups 20.9 
(79.1) 

27.1 
(72.9) 

15.2 
(84.8) 

22.7 
(77.3) 77.41 79.43 

Major-
SMUs 

23.2 
(76.8) 

29.4 
(70.6) 

17.1 
(82.9) 

24.6 
(75.4) 75.61 77.71 

All-SMUs 25.9 
(74.1) 

32.8 
(67.2) 

19.8 
(80.2) 

28.1 
(71.9) 72.05 74.17 
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Table 2.6. Confusion matrix of soil Orders. 
 

Orders 1 2 3 4 5 6 7 8 9 10 11 User 
Accuracy

1 3967 1  753 209      1 80.45 
2  1637 79  183   2 19   85.26 
3 1 38 1535  194   14 33   84.57 
4 480   7006 71 2 3  2   92.62 
5 60 14 34 32 10591   2 4  5 98.59 
6    16 9 10      28.57 
7    51   35     40.70 
8  6 39 4 26   202    72.92 
9  74 142  117   9 555   61.87 
10     7     0  0.00 
11 10   3 99      157 58.36 

Producer 
Accuracy 87.80 92.49 83.93 89.08 92.05 83.33 92.11 88.21 90.54 0.00 96.32 90.02 
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Table 2.7. Confusion matrix of soil Suborders. 

Sub- 
orders 1 3 4 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 3016 13    16 53 323         
3 5 1173    7 35 59 229       3 
4   1585 115     204    21 3   
6   35 1423     134   1 38 21   
7     57    92        
8 202 7    247 123 172 1        
9 69 68    14 1758 432 31  1      
10 506 61    23 252 3528 73  5 1 1 1   
11 1 61 9 26 2  10 16 10656    5 1  11 
12        14 8 4       
13       15 27   39      
14        4 5   30     
15   98 140     140    518 5   
16   11 35     26    1 168   
17     2    1      2  
18  16      7 86       176 

Producer 
Accuracy 79.4 83.8 91.2 81.8 93.4 80.5 78.3 77.0 91.2 100 86.7 93.8 88.7 84.4 100 92.6 

User 
Accuracy 88.16 77.6 82.2 86.1 38.3 32.9 74.1 79.3 98.7 15.4 48.2 76.9 57.5 69.7 40.0 61.6 
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Table 2.8. User accuracy of soil great groups, subgroups, major and all soil map units 
in the study area. 
 

Great groups 
 

Subgroups 
 

Major soil map 
units All soil map units 

GG User 
accuracy SG User 

accuracy SMU User 
accuracy SMU User 

accuracy 
1 88.37 1 92.40 8 42.30 1 45.45 
4 85.81 5 85.87 9 75.67 8 40.24 
6 84.36 6 71.60 12 44.25 9 67.87 
8 84.30 8 87.99 17 84.33 10 31.25 
9 74.07 13 63.89 18 76.10 12 54.97 
10 56.34 19 48.89 19 73.61 13 0.00 
11 37.47 20 42.90 20 83.43 17 81.48 
12 50.16 21 31.75 23 71.01 18 68.03 
13 75.37 22 49.37 24 73.95 19 71.68 
14 75.31 23 53.71 40 91.15 20 83.48 
15 68.38 24 60.87 48 54.23 21 36.54 
16 91.88 25 84.22 49 50.35 22 61.76 
17 62.12 26 28.11 50 40.74 23 66.42 
18 83.61 27 69.01 52 60.23 24 67.91 
19 25.00 28 39.41 53 95.09 27 79.66 
20 63.54 29 46.42 56 82.04 28 55.81 
21 67.50 31 71.62 57 77.33 29 25.20 
22 81.28 32 73.05 61 73.43 30 69.09 
23 72.31 33 80.75 68 77.08 32 68.89 
24 64.64 34 43.11 86 94.32 33 53.66 
25 50.00 36 69.57 87 51.72 36 58.82 
26 19.05 38 67.83 90 93.06 37 81.25 
27 0.00 40 92.69 91 83.55 38 30.00 
28 92.86 41 81.18 94 77.86 40 85.20 
29 75.87 42 58.62 95 74.68 46 58.33 

Total 81.22  79.43  77.71  74.17 
(Refer to Tables A.2.3 and A.2.4 for a complete accuracy assessment of the all groups) 
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Figure 2.1. Environmental data used in developing soil prediction models: a) Geology, b) Vegetation, c) Precipitation, and d) 
Ecological regions. 

a) 

c) d) 

b) 
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Figure 2.2. Terrain attributes developed from the digital elevation model (DEM): a) Elevation, b) Aspect, c) Slope, and d) Classified 
landforms. 

a) 

c) d) 

b) 
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Figure 2.3. Landsat ETM+ and solar radiation data: a) False color composite of Landsat ETM+ image, b) SAVI index, c) Direct 
radiation, and d) Diffuse radiation.

a) 

c) d) 

b) 
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Figure 2.4. An overview of sources of geodatabases and the analytical methods 
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Figure 2.5. A comparison between the a) actual and b) predicted soil orders in the study area.  
The codes refer to: 1. Alfisols; 2. Andisols; 3. Inceptisols; 4. Mollisols; 5. Ultisols; 6. Vertisols; 7. Water; 8. Complex of 1 and 3; 9. 
Complex of 2 and 3; 10. Complex of 3 and 4; and 11. Complex of 1 and 5. 

a) b) 
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Figure 2.6. A comparison between the a) actual and b) predicted soil suborders in the study area. 
The codes refer to: 1. Aqualfs; 2. Udalfs; 3. Xeralfs; 4. Udands; 5. Aquepts; 6. Udepts; 7. Xerepts; 8. Albolls; 9. Aquolls; 10. Xerolls; 
11. Humults; 12. Aquerts; 13. Water; 14. Complex of 2 and 5; 15. Complex of 4 and 6; 16. Complex of 2, 5, and 6; and 18. Complex 
of 3 and 11. 

a) b) 
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Figure 2.7. The boundaries between SMUs in the study area overlaid on the confidence data layer.
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Figure 2.8. The influence of topographic and slope profiles on the prediction accuracy 
of soil orders. 
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Abstract 

Data mining techniques are studied to recover knowledge from geodatabases in 

order to improve updates of existing soil maps and to help in developing a preliminary 

soil map for neighboring unmapped areas. Decision tree, one of the most widely used 

inductive learning methods, is used to retrieve the expert knowledge embedded in the 

soil-landscape model used by the Harney County, Oregon soil survey (ca. 1975-2003). 

The extracted model was extrapolated to develop a preliminary soil map for adjacent 

area in Malheur County, Oregon. Field data were used to test the prediction accuracy of 

the generated map. Also it was trained to develop a second model to produce another 

soil map for the study area in Malheur County.  Spatial environmental data of geology, 

vegetation, precipitation, terrain attributes (elevation, slope, aspect and surface 

curvature), landforms, solar insolation and Landsat TM data at a resolution of 30 m 

were used to predict soil map units. Model efficiency was tested by making a 

comparison between the predicted and the present soil map for the reference area.  

Results show that 45 Soil Map Units (SMUs) out of 46 were successfully predicted with 

an over all accuracy of 92%. Prediction accuracy for the preliminary soil map of the 

unmapped area extrapolated based on the soil-landscape model of the reference area 

was very low. Few SMUs were predicted with significant accuracy, mostly those 

shallow SMUs that have either a lithic contact with the bedrock or developed on a 

duripan. On the other hand, the developed soil map based on field data was predicted 

with very high accuracy. The overall accuracy of that map was about 97%.  Decision 

tree proved to be a powerful tool in retrieving the spatial relations between SMU and 
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the environmental variables. Also, it could be a very helpful approach in developing 

soil maps in more objective, effective, less-expensive and fast ways based on field data.    

 

Keywords: Predictive soil mapping, Decision tree, Pedometrics, Soil-landscape models  

 

3.1. Introduction 

There is a growing demand for accurate and multi-resolution soil data in order to 

sustain agricultural and environmental development. Producing soil survey maps in the 

traditional way is an expensive, labor-intensive, and time-consuming process. 

Consequently, many areas worldwide still do not have soil maps. Also, updating of 

existing soil maps takes more than 15 years. This is in addition to errors associated with 

conventional soil survey maps such as inclusions and inaccurate boundaries (Burrough, 

1986; Ehlschlaeger and Goodchild, 1994). However, locational errors are not only 

restricted to errors by experts but they also occur as a result of the nature of soils, where 

soil varies gradually at the boundaries. Accordingly, the boundaries between SMUs are 

often diffused not sharp (Mark and Csillag, 1989).  

Traditional soil survey maps are developed based on an empirical model derived 

from the inductive reasoning of the field observations. This model is called the soil 

landscape model which is based on the interchangeable relationships between soils and 

their environmental variables. Unfortunately, the information about the soil landscape 

model used in developing soil survey maps is not well documented. Recently, different 

methods of inductive learning (i.e., decision tree, fuzzy logic, neural network) have 

been used to retrieve most of the information about the soil-landscape model used to 
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create the soil maps (Zhu et al., 2001; Moran and Bui, 2002; Scull et al., 2003).  

These methods incorporate different environmental variables including geology, 

vegetation, and terrain attributes to predict the soil mapping units. Most of these data 

are available nowadays in digital form through geodatabase clearinghouses.  

Decision-tree analysis (DTA) of spatial data is an approach widely used in 

natural resource mapping and it has potential for land cover mapping problems using 

remote sensing data (Friedl and Brodley, 1997; Friedl et al., 1999; Xian et al., 2002; 

Herold et al., 2003). It also has been successfully used in developing predictive soil 

maps for large areas (Hansen el al., 1996; Bui et al., 1999; Zhou el al., 2004; Scull et al., 

2005). Decision tree analysis is used in this study for these reasons: 1) it is a non-

parametric method for analyzing hierarchical relationships between variables; 2) it deals 

with the nonlinear relationships between some soil properties; 3) it handles both 

continuous and categorical variables; and 4) it develops interpretable prediction rules 

that can be extrapolated to similar landscapes (Venables and Ripley, 1994; Hansen et al., 

1996; Huang et al., 2002). It is economically wise to benefit from the existing soil maps 

20 or more years old and/or less-intensive field data in updating or generating 

preliminary soil maps for unmapped areas that developed under the same soil forming 

conditions. 

The objectives of this study are to retrieve the spatial relations between soil map 

units (SMUs) and their environmental variables in a reference area (Harney County, 

OR); develop a soil prediction model; predict SMUs for a neighboring unmapped area 

(Malheur County, OR) and, finally, test the model efficiency and evaluate the prediction 

accuracy of the predicted soil map.   
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3.2. Materials and methods 

3.2.1. Description of the study area  

Two areas were used in this study (Fig. 3.1). One is the reference area (about 

977 km2), located in the south-eastern part of Harney County. Second is an adjacent 

unmapped area (about 1160 km2), located in Malheur County, Oregon, USA. Soil map 

of the reference area was clipped from the digitized soil map of Harney County 

(SSURGO database developed by USDA-NRCS, 2004b). There are 46 SMUs in the 

reference area; their map symbols; names; representing areas and taxonomic 

classification are present in Tables 3.1 and 3.2. 

The common landforms in the area consist of rock pediments, alluvial fans, fan 

remnants, and playas. Most of the soils in the study area are developed on volcanic 

parent materials (basalt and andesite, tuffaceous sedimentary rocks, welded tuffs), 

lacustrine deposits and fluvial sedimentary rocks (Clarke and Bryce, 1997). Elevation 

varies from 1175 m to 2079 m ( =1307 m) and slope ranges from 0 to 59o ( = 2.83o). 

Mean annual precipitation (MAP) varies from 178 mm on low-leveled areas to 838 mm 

on high elevations ( = 238.5 mm), soil moisture regime is mainly aridic. Minimum 

annual temperature is about 0oC and the maximum annual temperature is about 17oC. 

Aridisols is the most dominant soil order in the studied area, however there are some 

areas with weakly to slightly developed soils (Entisols and Inceptisols) and moderately 

developed soils (Mollisols).   

 Wyoming big sagebrush (Artemisia tridentata wyomingensis) represents the 

most prevalent vegetation in the studied area. It occurs on flat areas as well as gentle 

and steep slope areas. Shadscale saltbush (Atriplex confertifolia), greasewood 
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(Sarcobatus vermiculatus), black sagebrush (Artemisia nova), basin big sagebrush 

(Artemisia tridentata tridentata), and low sagebrush (Artemisia arbuscula arbuscula) 

also are dominant in some areas. 

 

3.2.2. Data collection and preparation  

Soil-forming factor model developed by Jenny (1941) represents the theoretical 

basis for this study, just as it has for many digital soil mapping research (Bui et al., 1999; 

Mckenzie and Ryan, 1999; McBratney et al., 2000; McBratney et al., 2003; Henderson 

et al., 2005; Zhou et al., 2004; Scull et al., 2005). Accordingly, environmental variables 

or attributes that have significant influence on soil development were integrated in 

developing the soil prediction models. Environmental variables used in this work are 

represented in Table 3.3.  Terrain attributes (elevation, slope gradient, aspect, and plan 

and profile curvatures) were derived from the digital elevation model DEM of south and 

south east Oregon (10 m cell size) using the ArcGIS software Package (Fig. 3.2). 

Classified landforms were derived from the DEM using Topographic Position Index 

(TPI) (Weiss, 2001; Jenness, 2005). Solar insolation data were calculated during the 

summer solstice, equinox and winter solstice from slope gradient and aspect using the 

ArcView solar analyst extension (Fu and Rich, 1999). Study area covers parts of two 

Landsat TM images (P42R30 and P42R31) acquired on August 17, 2005 (Fig. 3.3).  

Images were processed to calculate the Normalized Vegetation Index (NDVI) (Rouse et 

al., 1973), Soil Adjusted Vegetation Index (SAVI) (Huete, 1988), Brightness, 

Greenness, and Wetness indices (Kauth and Thomas, 1976). Vegetation indices were 

used to distinguish between the densely and sparsely vegetated areas. Landsat Bands (1, 
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2, 3, 4, 5 and 7) and band ratios (b3/b1, b3/b4, b5/b3, and b5/b7) were also calculated 

and combined in the prediction model. Band ratios were used to interpret soil properties. 

For example, band ratio 3 to 1 is known to reflect iron content (Rowan et al., 1977). 

Band ratio 5 to 7 is found to have a strong correlation with clay minerals content in 

areas where vegetation is absent (Riaza et al., 2000). Band ratio 5 and 4 gave 

differences between iron oxide dominance and hydroxyl with areas of high oxides 

giving brighter pixels due to stronger absorption of the band 4. Other data include MAP 

from 1961 to 1990 (1:200,000, USDA-NRCS, 1999), geology (1: 500,000, USGS, 

2003), historic vegetation (1:100,000, Tobalske, 2002) and Landfire vegetation (USFS, 

2006) maps of Oregon.  

Data sources were projected to UTM Zone 11, Datum NAD 83 and clipped to 

cover both the reference and the unmapped areas.  Data layers were represented using 

the raster data model with 30m cell size. Vector data were recoded and converted to 

raster data. All raster data layers were created or converted to Imagine file format, so as 

to be sampled using the CART model under ERDAS imagine (Earth Satellite 

Corporation, 2003). Soil map units in the reference area were randomly sampled for all 

environmental variables to obtain the output data matrix for decision tree analysis. The 

output data matrix consists of 72,545 random sample points as training data and 24,718 

random points as test data. 
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3.2.3. Decision tree analysis  

Decision tree approach (Breiman et al., 1984; Quinlan, 1993) was used to 

retrieve the soil-landscape model used in producing the soil map of the reference area. 

Retrieved model was then used to develop a prediction of the reference soil map. After 

analysis and adjustments, prediction model was extrapolated to the neighboring 

unmapped area in Malheur County to generate the preliminary soil map. 

Decision tree analysis was carried out using the See5 program (Quinlan, 2001).  Soil-

landscape models were retrieved using 10 of boosting1 to enhance the prediction 

accuracy (Friedl et al., 1999; Moran and Bui, 2002). Classifying observations in the 

training dataset may not be expressed as a function of the attribute values. These 

observations could occur as a result of either an error in the attribute values or the 

attributes do not provide sufficient information to classify the object.  As a result, 

continuous division of the training dataset until all subsets contain members of a single 

class may be impossible. Although this division could be possible, it may be inadvisable. 

Dealing with such a problem is to allow the tree to grow up and then remove 

unimportant portions by pruning it (Quinlan, 1990; Eklund et al., 1998). In pruning 

function a subtree is replaced by one of its branches or by a leaf, which is very common, 

resulting in a smaller tree but with greater accuracy. Developed tree was pruned by 35% 

to reduce over-fitting of decision trees. Decision tree produced by See5 program was 

applied using the CART model under ERDAS image (Earth Satellite Corporation, 2003) 

to develop the predicted soil maps. 

                                                 
1 In boosting, a sequence of decision trees is developed; each subsequent tree attempts to fix the 
misclassification errors in the previous one. Each decision tree makes a prediction and the final prediction 
is a weighted vote of the predictions of all trees. 
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3.2.4. Field Work 

Field data were used in this work to evaluate the prediction accuracy of the 

predicted soil map extrapolated from the reference area for the unmapped area in 

Malheur County.  A random sampling technique was used in the beginning to select 

sampling locations, although it was difficult or undesirable to reach all these locations 

(De Gruitjer, 2000).  However, we tried to get as close as possible to the sampling 

location using the dirt road map that we developed for the area from the digital ortho 

quads (DOQ) (USGS, 2000-2001). About 210 soil profiles (Fig. 3.4) were described 

and classified using established methods (USDA-NRCS, 2002).  

Field data also were used in developing a predictive soil map for the unmapped 

area in Malheur County. To accomplish this, each sampling location in the field data 

was assumed representative and buffered using a stratified buffer based on the 

topographic and geologic properties at that location. Buffered locations were randomly 

sampled and used to train the predictive model.  

 

3.2.5. Model Evaluation 

Both simple-descriptive and discrete-multivariate statistics (Jensen, 1996) were 

used to evaluate the predictive maps of the reference and the unmapped areas. 

Descriptive statistics include producer’s accuracy, user’s accuracy and overall accuracy.  

Overall accuracy is computed by dividing the total of correctly predicted SMUs by the 

total number of pixels in the error matrix.  Producer’s accuracy measures the exclusion 

errors and user’s accuracy measures the inclusion errors were calculated for each SMU.  
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Kappa analysis (Cohen, 1960) a discrete multivariate technique, was used to 

measure the agreement between the model predicted SMUs and the real SMUs. Kappa 

is computed from (Mather, 2004): 
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where N is the total number of sites in the error matrix, r is the number of rows in the 

matrix, xii are the diagonal entries of the error matrix, xi+ and x+i  indicate the sum of 

row i and the sum of column i of the error matrix, respectively. The K value is a 

measure of agreement or accuracy. It varies from zero to one, where zero indicates no 

agreement and one indicates total agreement (Congalton, 1991). Kappa equals zero 

when the estimates and field data are statistically independent. 

Model efficiency was tested first by making a comparison between predicted 

and present SMUs in the Harney County reference map. The efficiency test was 

performed with about 50,000 random sample points of the soil map of the reference 

area, and it was assumed that this map is accurate. Accuracy of the predictive soil map 

produced for the unmapped area, in all iterations, was tested using field observations.  

 

3.3. Results 

3.3.1 Predictor variables and their significance  

Although there were many input variables used as predictors (Table 3.3), not all 

of them have a significant influence in predicting SMUs in the reference area. 

Accordingly, input variables were arranged by their predictive significance using the 
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“Winnow Attributes” function in the See5 program. Preliminary results showed that 

only 21 variables have significant influence in predicting SMUs in the reference area. 

Historic vegetation, geology, elevation, ecological habitat, precipitation, slope gradient, 

distance from rivers, slope aspect, greenness index, and NDVI were the most significant 

variables, which agrees with Jenny’s model. Those variables were followed by Landsat 

band 1, land fire vegetation, classified landforms, wetness index, diffuse radiation in 

equinox, Landsat bands 7, 5 and 4, diffuse radiation in winter solstice, and Landsat 

bands 3 and 2, respectively.  Only variables with significant influence in predicting 

SMUs were integrated in this study to the retrieve soil-landscape model; all others were 

omitted.  

 

3.3.2. Predictive soil map of the reference area in Harney County 

Soil map of the reference area was successfully produced using decision tree 

analysis (Fig. 3.5), as demonstrated by a low (0.5%) misclassification error within the 

training data of about 150,000 cases. Further, the misclassification error within the 

validation data of about 50,000 cases was 8.4%, again a value below our initial error 

threshold of 10%.  

Agreement between the predicted and present SMUs in the reference area was 

tested using the producer’s accuracy, user’s accuracy, overall accuracy and Kappa 

statistics. About 50,000 random sampling points were used to create the confusion 

matrix and calculate the prediction accuracy. Forty-five SMUs were predicted out of 46 

SMUs in the reference area. Overall accuracy was about 92% and the Kappa coefficient 

was 0.91 (Table 3.4).  Producer’s accuracy varied from 54.97 to 100%, with an average 



 

 

64
of 89.85%. User’s accuracy ranged between 54.61 and 99.42%, with an average of 

89.04%.  

 

3.3.3. Predictive soil map of the of the unmapped area in Malheur County 

3.3.3.1. First map derived from the reference map  

Soil-landscape model retrieved from the reference area was extrapolated to 

develop a preliminary soil map for the adjacent unmapped area in Malheur County (Fig. 

3.6). Confidence in predicting SMUs is inversely related with distance from the 

reference area (Fig. 3.7).  

Comparing field data with the predicted soil map for the unmapped area in 

Malheur County shows that most SMUs were not predicted correctly.  However, few of 

these SMUs were predicted with significant confidence. For example, SMUs 21, 23, 24, 

73, and 259 were predicted with accuracy of 67, 67, 42, and 89%, respectively. SMUs 

21, 23, and 24 (Atlow, Atlow- rock outcrop complex, and Atlow and Skedaddle 

complex) are shallow soils to bedrock formed in residuum from chert, argillite, shale, 

altered rhyolitic tuff and andesite.  Mostly, they are located on mountain and hill 

summits, crests, shoulders and sideslopes. Soil map unit 73 which is a “complex” of 

Deppy and Tumtum soil series is also a shallow soil to a duripan. It is developed in 

alluvium derived from volcanic rocks. Soil map unit 259 or playa (alkali flat or sabkha) 

is bare soil with white evaporates. 
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3.3.3.2. Second map derived from the field data 

  Because the results obtained from the first map were not satisfactory, we 

produced a second soil map derived from the collected field data (Fig. 3.8).  In this 

version, all SMUs in the developed map were predicted with accuracies higher than 

81% except for SMUs 152 and 288 (accuracies of 46 and 33%, respectively). Overall 

accuracy of SMUs in the unmapped area was 97.38% and the Kappa coefficient was 

0.97.  Producer’s and user’s accuracies are represented in Table 3.5. Producer’s 

accuracy varied from 87.10 to 100%, with an average of 97.38%. User’s accuracy 

ranged between 33.33 and 99.92%, with an average of 88.70%.  

 

3.4. Discussion 

Observations from the predicted soil map of the reference area show a consistent 

pattern in prediction accuracy among SMUs based on the representative areas. Soil map 

units that represent larger areas were predicted with higher accuracy compared to those 

representing smaller areas (Table 3.4). On the other hand, SMUs (e.g., 36, 249 and 283) 

represent proportionally smaller areas and were predicted with lower accuracies.  

Smaller SMUs are represented by fewer numbers of sampling points when the 

randomized sampling technique is used due to their small areas.  As a result, they are 

poorly characterized in the output data matrix and they also penalize by the decision 

tree algorithm (Friedl and Brodley 1997; Elnaggar and Noller, 2007). However, 

prediction accuracy of all SMUs in the reference map was greater than 50% except for 

SMU 137. Soil map unit 137 (Hackwood) represents the smallest SMU in the reference 
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map (covers only 7 pixels (6300m2)), which could be the main reason for it not being 

well predicted.  

Soil map units predicted with higher accuracy could be a result of their 

association with distinct features in the input data such as certain types of geology or 

vegetation which make it from easy them to be distinguished from the other SMUs. 

Playas, for example, have unique properties that could be well identified by more than 

one variable such as geology, vegetation, terrain attributes (elevation, slope and aspect), 

Landsat images and indices (bands (1, 2 and 3), brightness, greenness, and wetness). In 

contrast, SMUs are predicted with lower confidence because: 1) it was hard to 

discriminate them from the input data; 2) they share some properties with other SMUs; 

or 3) they are integrated in soil complexes.  Soil map unit 21 is Atlow, where SMUs 22, 

23, 24, 245, 300, 301, and 302 are complexes of Atlow with other SMUs and those 

share some, but not all, of its properties.  

Scale inconsistency among the input data could be another factor causing 

significant reduction in prediction accuracy (Bui et al., 1999; Zhou et al., 2004; Scull et 

al., 2005). Geologic data have a scale of 1:500,000, whereas soil map has a scale of 

1:24,000. When we started our field work, we found this coarse-scale geologic data to 

be one of the main reasons for having an overlap among SMUs and misdelineation of 

their boundaries.  Coarse-scale data have great influence on the misclassification of 

smaller SMUs.  

Prediction accuracy of the preliminary soil map derived from the reference area 

was very low when evaluated using the field data. This could be due to one or more of 

these factors: First, the reference map and the other environmental data, especially those 
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area-class maps such as geology and vegetation maps, were treated as accurate maps 

in this work. This could be a wrong assumption, where the soil map of the reference 

area goes back to 1975 to 1977 and it has not been updated until now. Also, it does not 

have information about their accuracy or the empirical model used in producing it. 

Second, predictor variables with coarser scales could result in misallocation, inclusion 

and overlapping errors as mentioned before. Third, environmental variables that cover 

the study area in both counties may not be developed using a seamless approach. 

Seamless approach means data are continuous across the political or artificial 

boundaries and data are mapped using the same criteria and the same mapping scale. 

Fourth, the study area may be less represented by the sampling points (either the 

number of the sampling points or their distribution) because of the accessibility problem.  

It was noticed that soil map units predicted with higher accuracy are mostly 

shallow soils such as Altow. This could be because they are in a direct contact with 

their bedrock or parent material. Once these parent materials are located it is easy to 

predict SMUs developed on them.  Playa was the other SMU predicted with high 

confidence, which also could easily be distinguished from the input data.  

One of the most important pieces of information revealed from the confidence 

map of the unmapped area was the relationship between the prediction confidence of 

SMUs and their distances from the reference area.  This indicates that the extrapolated 

soil-landscape model works well in neighboring areas which may share similar 

environmental conditions. 

Results of using field data in developing soil map for the unmapped area in 

Malheur County are significant.  Here, field data more accurately reflect relevant 
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information about soil properties and their formative environment. However, fewer 

soil map units (21 SMUs) were predicted in the unmapped area. This could be due to 

the limited number of sampling points, and/or the uneven distribution of these points.  

Confidence mapping shows the model to be poor in predicting SMUs located at 

high elevation areas (i.e., mountain ridges and mesas) where there are no sampling 

points. Low confidence was found in predicting SMUs in areas that have significant 

changes in slope (narrow valleys). This could be due to the higher activity of surficial 

processes (erosion and deposition) at these locations which result in weakly developed 

soils (Elnaggar and Noller, 2007). Also, low confidence was found at low-elevation 

areas and along the boundaries between SMUs.  This could be related to the coarser 

scale of some environmental data, where small details in soil topography and geology 

could not be supported by these data. Also, it could be inherited from the locational 

errors associated with area-class maps (i.e., geology) used in the prediction model.  

 

3.5. Conclusion 

Decision tree can be a helpful approach in retrieving soil-landscape models 

embedded in old soil survey maps. Under certain circumstances, retrieved models can 

be extrapolated to develop preliminary maps over areas having similar landscapes. By 

using decision tree analysis, a wide variety of environmental variables can be integrated 

and mined to predict the spatial distribution of soils and their properties.  

Results show that using decision tree analysis in developing predictive soil maps 

from field data provides better results compared to extrapolating retrieved soil-

landscapes models from reference areas. These results could be very helpful in reducing 
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the great amount of field data required in the conventional soil mapping techniques. It 

could significantly help in reducing the great amount of time consumed in developing 

soil maps in the traditional ways and facilitate their updates. The most important goals 

are producing soil maps in more objective, quantitative and less-expensive ways, and 

providing information about accuracy of the developed maps which are not available in 

current soil maps.  

Results also revealed that field conditions could restrain collecting more 

representative data. Therefore, new sampling techniques should be developed to 

facilitate the process of collecting and testing soil properties under field conditions. 

These techniques should take in consideration field accessibility problems and also they 

should not significantly impair the accuracy assessment of the results.  

Certain points should be considered to enhance the results of using the decision 

tree approach in predictive soil mapping. First, assuming that available soil survey maps 

and environmental data reference areas are accurate could be untrue for some areas. 

Accordingly, we recommend that soil maps and all other data integrated in predictive 

soil mapping techniques should be evaluated in advance for accuracy or their accuracy 

should be certified. Second, extrapolating retrieved soil-landscape models has spatial 

limits. They should be applied to neighboring areas that experience similar 

environmental conditions and topography. 
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Table 3.1. Map symbols, names and percentages of SMUs in the reference area. 
 
Symbol Map Unit Name Area 

(%) 
4 Alvodest silty clay loam, 0 to 3 percent slopes 7.16 
5 Alvodest-Playas complex, 0 to 2 percent slopes 0.35 
21 Atlow very stony loam, 5 to 30 percent slopes 0.88 
22 Atlow-Rock outcrop complex, 5 to 30 percent slopes 1.49 
23 Atlow-Rock outcrop complex, 30 to 50 percent slopes 1.15 
24 Atlow-Skedaddle complex, 5 to 30 percent slopes 14.17 
36 Berdugo silt loam, 0 to 3 percent slopes 0.23 
40 Boravall-Playas complex, 0 to 3 percent slopes 0.94 
45 Brabble-Calderwood complex, 5 to 25 percent slopes 1.26 
69 Davey sandy loam, 0 to 8 percent slopes 3.72 
70 Davey-Oreanna complex, 0 to 8 percent slopes 1.17 
72 Deppy very gravelly loam, 5 to 15 percent slopes 1.46 
73 Deppy-Tumtum complex, 5 to 15 percent slopes 11.46 
76 Dixon gravelly fine sandy loam, alkali, 0 to 2 percent slopes 1.19 
77 Dixon gravelly sandy clay loam, 3 to 15 percent slopes 1.69 
78 Dixon-Droval complex, 0 to 2 percent slopes 2.33 
86 Droval loam, 0 to 3 percent slopes 4.29 
93 Enko loamy sand, 2 to 8 percent slopes 2.93 
96 Enko-Catlow association, 2 to 20 percent slopes 0.69 
103 Felcher-Rock outcrop complex, 40 to 70 percent south slopes 1.53 
131 Goldrun-Alvodest complex, 0 to 12 percent slopes 7.13 
137 Hackwood gravelly loam, 20 to 35 percent slopes 0.00 
152 Kerrfield loam, 3 to 20 percent slopes 1.04 
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Table 3.1. Map symbols, names and percentages of SMUs in the reference area 
 (Continued). 

Symbol Map Unit Name Area 
(%) 

 165 Langslet silty clay, 0 to 2 percent slopes 0.09 
178 Lonely-Robson association, 5 to 25 percent slopes 1.01 
182 Madeline very stony loam, 15 to 40 percent south slopes 0.47 
192 McConnel cobbly sandy loam, 3 to 8 percent slopes 4.58 
216 Nevador very gravelly sandy loam, 3 to 12 percent slopes 2.53 
235 Norad silt loam, 0 to 1 percent slopes 0.05 
245 Olac-Atlow complex, 2 to 10 percent slopes 0.20 
248 Outerkirk sandy loam, 1 to 4 percent slopes 0.40 
249 Outerkirk sandy loam, silty substratum, 2 to 6 percent slopes 0.32 
250 Outerkirk-Defenbaugh association, 1 to 4 percent slopes 0.04 
251 Ozamis silt loam, 0 to 1 percent slopes 1.58 
256 Pernty-Rock outcrop complex, 30 to 70 percent south slopes 0.23 
259 Playas 9.92 
272 Raz-Brace complex, 2 to 20 percent slopes 0.42 
282 Rio King loam, 1 to 6 percent slopes 0.67 
283 Rio King-Droval complex, 0 to 2 percent slopes 0.08 
288 Robson-Fourwheel complex, 3 to 30 percent slopes 0.98 
291 Rock outcrop and Rubble land, 20 to 60 percent slopes 0.53 
300 Skedaddle-Atlow-Rock outcrop complex, 5 to 30 percent 

slopes 
1.90 

301 Skedaddle-Atlow-Rock outcrop complex, 30 to 50 percent 
slopes 

3.00 

302 Skedaddle-Rock outcrop complex, 40 to 70 percent slopes 0.71 
312 Spangenburg silty clay loam, thick surface, 0 to 2 percent 

slopes 
0.66 

334 Tumtum cobbly loam, 4 to 15 percent slopes 1.39 
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Table 3.2. Taxonomic classification of soils series in the reference area of Harney 
County.  
 

Soil Name Taxonomic Classification 
Alvodest Fine, montmorillonitic, mesic Sodic Aquicambids 
Atlow Loamy-skeletal, mixed, mesic Lithic Xeric Haplargids 
Berdugo Fine, montmorillonitic, mesic Xeric Paleargids 
Boravall Fine, montmorillonitic (calcareous), mesic Aeric Halaquepts 
Brabble Fine-loamy, mixed, mesic Xeric Haplodurids 
Brace Fine-loamy, mixed, frigid Xeric Argidurids 
Calderwood Loamy-skeletal, mixed, mesic Lithic Xeric Haplocambids 
Catlow Loamy-skeletal, mixed, mesic Durinodic Xeric Haplocambids 
Davey Sandy, mixed, mesic Xeric Haplocambids 
Defenbaugh Fine-loamy, mixed, mesic Typic Haplocambids 
Deppy Loamy, mixed, mesic, shallow Argidic Argidurids 
Dixon Fine-loamy over sandy or sandy-skeletal, mixed, mesic Xeric 

Haplocambids 
Droval Fine, montmorillonitic, mesic Sodic Aquicambids 
Enko Coarse-loamy, mixed, mesic Durinodic Xeric Haplocambids 
Felcher Loamy-skeletal, mixed, mesic Xeric Haplocambids 
Fourwheel Fine, montmorillonitic, frigid Vertic Paleargids 
Goldrun Mixed, mesic Xeric Torripsamments 
Hackwood Fine-loamy, mixed Pachic Cryoborolls 
Kerrfield Coarse-loamy, mixed, mesic Durinodic Xeric Haplocambids 
Langslet Fine, montmorillonitic, frigid Xeric Aquicambids 
Lonely Fine-loamy, mixed, frigid Xeric Haplocambids 
Madeline Clayey, montmorillonitic, frigid Lithic Argixerolls 
McConnel Sandy-skeletal, mixed, mesic Xeric Haplocambids 
Nevador Fine-loamy, mixed, mesic Durinodic Xeric Haplargids 
Norad Fine-silty, mixed, mesic Xeric Haplargids 
Olac Loamy-skeletal, mixed, mesic Lithic Xeric Haplargids 
Oreanna Fine-loamy over sandy or sandy-skeletal, mixed, mesic Typic 

Haplocambids 
Outerkirk Coarse-loamy, mixed, mesic Durinodic Haplocalcids 
Ozamis Fine-loamy, mixed, mesic Fluvaquentic Endoaquolls 
Pernty Loamy-skeletal, mixed, frigid Lithic Argixerolls 
Raz Loamy, mixed, frigid, shallow Xeric Haplodurids 
Rio King Coarse-loamy, mixed, mesic Aridic Haploxerolls 
Robson Clayey-skeletal, montmorillonitic, frigid Lithic Xeric Haplargids 
Skedaddle Loamy-skeletal, mixed, nonacid, mesic Lithic Xeric Torriorthents 
Spangenburg Fine, montmorillonitic, mesic Xeric Paleargids 
Tumtum Loamy, mixed, mesic, shallow Typic Argidurids 
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Table 3.3. Input data integrated in developing soil prediction models and their 
properties. 
  

Variables Data source Resolution 
(Scale) 

Type of Data 
 

Landsat TM  
(bands 1, 2, 3, 4, 5,  
and 7) 

USGS (2005) 30 m Continuous  

NDVI Derived from the Landsat 
image (Rouse et al., 1973) 

30 m Continuous  

SAVI Derived from the Landsat 
image (Huete, 1988)  

30 m Continuous  

Tasseled Cap 
Transformation 
(Brightness, 
Greenness, and 
Wetness) 

Derived from the Landsat 
image (Kauth and Thomas, 
1976) 

30 m 
 

 
 
Continuous 

Terrain attributes 
(elevation, slope, 
aspect, and surface,  
profile and plan 
curvatures) 

Derived from the DEM 
(USGS-EROS Data Center, 
1999) using AcrGIS 
 

10 m 
 

Continuous  

Landform 
classification 

Derived from the DEM 
(Jenness, 2005) 

30 m 10 classes 

Solar radiation 
(in WH/m2) 
(Diffuse, direct, and 
Globe radiation) 

Drived from the DEM 
(Fu and Rich, 1999)  
 

30 m 
 

Continuous 

Geology USGS (2003) 1:500,000 15 classes 
Historic vegetation Tobalske (2002) 1:100,000 18 classes 
Landfire vegetation USFS (2006)  30 m 34 classes 
Mean annual 
precipitation  

USDA-NRCS (1999) 1: 200,000 14 classes 

Ecological habitat Clarke and Bryce (1997)  1:250,000 9 classes 
*Distance from 
streams 

Created using multi-ring 
buffer in ArcGIS 

1:24,000 7 classes 

*Distance from streams = (<300, 300-900, 900-1800, 1800-2700, 2700-3600, 3600-
4500, and 4500-6000m) 
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Table 3.4. Producer’s, user’s, overall accuracy and Kappa coefficient for predicted 
soil map units in the reference area. 
 

Producer's Accuracy User's Accuracy SMU 
Predicted Total % Predicted Total % 

4 3208 3482 92.13 3208 3705 86.59 
5 94 171 54.97 94 116 81.03 
21 414 437 94.74 414 425 97.41 
22 699 720 97.08 699 723 96.68 
23 532 573 92.84 532 556 95.68 
24 6414 6868 93.39 6414 6697 95.77 
36 83 106 78.30 83 152 54.61 
40 439 466 94.21 439 527 83.30 
45 610 614 99.35 610 630 96.83 
69 1668 1830 91.15 1668 1783 93.55 
70 564 575 98.09 564 574 98.26 
72 707 731 96.72 707 970 72.89 
73 5363 5583 96.06 5363 5556 96.53 
76 468 592 79.05 468 578 80.97 
77 723 814 88.82 723 868 83.29 
78 1030 1166 88.34 1030 1272 80.97 
86 1792 2100 85.33 1792 2103 85.21 
93 1238 1374 90.10 1238 1309 94.58 
96 296 349 84.81 296 346 85.55 
103 684 754 90.72 684 732 93.44 
131 3094 3395 91.13 3094 3322 93.14 
152 478 526 90.87 478 508 94.09 
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Table 3.4. Producer’s, user’s, overall accuracy and Kappa coefficient for predicted 
soil map units in the reference area (Continued). 
 

Producer's Accuracy User's Accuracy SMU 
Predicted Total % Predicted Total % 

165 45 45 100.00 45 49 91.84 
178 464 493 94.12 464 493 94.12 
182 235 258 91.09 235 239 98.33 
192 2115 2211 95.66 2115 2220 95.27 
216 1037 1203 86.20 1037 1207 85.92 
235 20 20 100.00 20 21 95.24 
245 91 99 91.92 91 92 98.91 
248 154 185 83.24 154 190 81.05 
249 151 168 89.88 151 230 65.65 
250 14 18 77.78 14 16 87.50 
251 698 785 88.92 698 740 94.32 
256 113 118 95.76 113 115 98.26 
259 4608 4762 96.77 4608 4635 99.42 
272 185 207 89.37 185 200 92.50 
282 277 323 85.76 277 318 87.11 
283 26 31 83.87 26 44 59.09 
288 423 478 88.49 423 444 95.27 
291 247 259 95.37 247 263 93.92 
300 881 944 93.33 881 1037 84.96 
301 1341 1434 93.51 1341 1374 97.60 
302 357 370 96.49 357 366 97.54 
312 265 335 79.10 265 329 80.55 
334 536 682 78.59 536 582 92.10 

Total 44881 48656 92.24 44881 48656 92.24 
Average   89.85   89.04 
Kappa      0.9172 
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Table 3.5. Producer’s, user’s, overall accuracy and Kappa coefficient for predicted 
soil map units in the unmapped area using field data. 
 

Producer's accuracy  User's accuracy  SMU 
 Predicted Total % Predicted Total % 

21 577 550 95.32 619 550 88.85 
23 5635 5531 98.15 5537 5531 99.89 
24 12058 11815 97.98 12007 11815 98.40 
45 830 808 97.35 880 808 91.82 
69 1078 1061 98.42 1144 1061 92.74 
70 48 48 100.00 53 48 90.57 
72 1447 1313 90.74 1352 1313 97.12 
73 3103 2956 95.26 3037 2956 97.33 
77 661 628 95.01 689 628 91.15 
93 1086 1052 96.87 1129 1052 93.18 
131 439 428 97.49 459 428 93.25 
152 12 12 100.00 26 12 46.15 
192 62 54 87.10 58 54 93.10 
216 1273 1260 98.98 1291 1260 97.60 
235 351 347 98.86 349 347 99.43 
245 450 445 98.89 453 445 98.23 
251 30 30 100.00 37 30 81.08 
259 1299 1299 100.00 1300 1299 99.92 
272 827 810 97.94 842 810 96.20 
283 10 10 100.00 12 10 83.33 
288 1 1 100.00 3 1 33.33 

Total  31277 30458 97.38 31277 30458 97.38 
Average     97.35     88.70 
Kappa           0.9673 
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Figure 3.1. Study areas in Harney and Malheur Counties, Oregon. 
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Figure 3.2. Terrain attributes developed from the digital elevation model (DEM): a) Elevation, b) Slope, c) Aspect, and d) Classified 
landforms. 

a) 

c) d) 

b) 
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Figure 3.3. Other environmental: a) False color composite of the Landsat TM images, b) NDVI, c) Vegetation, and d) Geology. 

a) 

c) d) 

b) 
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Figure 3.4. Quadrangles and sampling point distribution over the DOQ of the unmapped area in Malheur County. 
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Figure 3.5. A comparison between present and predicted soil maps of the reference area in Harney County and their prediction 
confidence. 

Present soil map Predicted soil map Confidence map 
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Figure 3.6. Predicted soil map for both the reference and the unmapped areas generated from extrapolating soil-landscape model 
derived from the reference map and its prediction confidence. 

Predicted soil map Confidence map 
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Figure 3.7. Relationship between prediction confidence of SMUs and distance from reference area.
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Figure 3.8. Predicted soil map for the unmapped area in Malheur County developed from field data and its prediction confidence. 

Predicted soil map Confidence map 
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Abstract 

This study deals with the problem of mapping soil salinity over large areas in 

arid and semi-arid environments. Remote sensing data and decision tree analysis (DTA) 

in conjunction with field data were integrated in this work to generate soil salinity maps 

of the study area in Malheur County, Oregon. Salinity developed in the study area is 

mainly either due to water logging or to the introduction of irrigation to some areas. A 

significant correlation was found between electrical conductivity (EC) values and 

surface elevation, bands 1, 2, 3 and 4 of the Landsat TM image, and brightness and 

wetness indices. Salt-affected areas were indicated by their high spectral reflectance and 

they were easily discriminated from the remote sensing data. However, remote sensing 

data failed to distinguish between the different classes of soil salinity.  The prediction 

accuracy of non-saline soils (EC<4 dSm-1) mapped by classifying the Landsat images 

was 97%; but it was 60% for saline soils (EC>4 dSm-1), with an overall accuracy of 

about 95%. On the other hand, the five classes of soil salinity were successfully 

predicted using DTA with and overall accuracy of about 99%. Moreover, the calculated 

area of salt-affected soil was overestimated when mapped using remote sensing data 

compared to that predicted by using DTA. DTA proved to be a promising approach for 

mapping soil salinity in the study area in more productive and accurate ways compared 

to only using remote sensing data.  

 

Keywords: soil salinity, salinity mapping, digital soil mapping, remote sensing, 

geostatistics, classification tree 
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4.1. Introduction 

Soil salinization is a major land-degradation problem in arid and semi-arid 

environments and, wherever irrigation systems are introduced (Moreau, 1996; Dwivedi 

and Sreenivas, 1998; Khan et al., 2001). Mapping techniques that can be used to 

inventory and monitor soil salinization over large areas in more efficient, time-effective 

and less expensive ways are required for precision agriculture and sustaining soil 

productivity in many parts of the world. Predictive mapping techniques, such as linear 

and multiple regression, geostatistics (i.e., Kriging and CoKriging), fuzzy logic, neural 

network, and classification and regression trees (Burrough, 1986; Hansen et al., 1996; 

McBratney et al., 2003; Qi and Zhu, 2003; Scull et al., 2005) have been used to develop 

soil and natural resource maps. Each of these techniques provides optimal results under 

certain circumstances. Geostatistics, for example, yield significant results when data are 

normally distributed and stationary (mean and variance do not vary significantly in 

space); where significant deviations from normality and stationarity arise, the analysis 

becomes problematic (Olea, 1999; Pozdnyakova and Zhang, 1999). This normality 

issue is difficult to constrain at smaller scales, especially when values of environmental 

parameters and soil properties dramatically change from one location to another across 

the soilscape. It is just such a case in mapping soil salinity, where EC values change 

significantly between salt-affected and normal soils over relatively short distances 

within large areas. Using geostatistics in this case will result in significant errors and the 

predicted values will depart significantly from the original. Mapping salt-affected soils 

in the field is difficult as they are interspersed with normal soils and form no contiguous 

pattern (Sethi et al., 2006). 
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Geostatistical techniques such as cokriging could benefit from the availability 

of secondary data in developing prediction maps, but all of the data have to be 

numerical and normally distributed, not nominal or categorical data.  Thus, valuable 

data such as geology and vegetation which either have a significant influence on salt 

accumulation or influenced by soil salinity, could not be used in producing predictive 

soil maps. This issue is in addition to the requirement of geostatistical techniques to 

large amounts of field data in order to obtain optimal results.  

Decision-tree analysis (DTA), on the other hand, is a predictive mapping 

technique that can be used in developing soil salinity maps over large areas. It is a non-

parametric or distribution-free statistical method, which means data are not required to 

fit a normal distribution curve. It can be used with ordinal as well as categorical 

attributes. Moreover, it requires no assumptions about the data and provides 

interpretable prediction rules that can be extrapolated to similar areas (Venables and 

Ripley, 1994; Hansen et al., 1996; Huang et al., 2002).  

Remote-sensing data have been used successfully in mapping soil salinity for 

decades (Singh et al., 1977; Manchanda, 1984; Sharma and Bhargawa, 1988; Csillag et 

al., 1993; Joshi and Sahai, 1993; Moreau, 1996; Khan et al., 2001; Spies and Woodgate, 

2005; Sethi et al., 2006). The principle behind this success is based on the dramatic 

effects that soil salinity has on soil physical, chemical and biological properties. The 

quantities and changes in soil properties can be monitored using remote sensing.  

The objectives of this study are to demonstrate a combined method involving 

remote sensing data and DTA in developing soil salinity maps. A comparative study is 



 

 

93
 

performed to measure efficiency gains that are expected to support land managers 

with the required information for future land management practices in Southern Oregon.   

 

4.2. Materials and Methods 

4.2.1. Site description 

Saline soils and intergrades are abundant in the study area, located in Malheur 

County, Oregon (Fig. 4.1). For this experiment, 1160 km2 area was chosen, with a 

surface elevation of 1175 to 1771m ( =1297m) above sea level and slopes that range 

between 0 to 57o ( = 2o). Aridisol is the dominant soil order in the area as the soil 

moisture regime is aridic and the mean annual precipitation (MAP) varies from 178mm 

in low areas to 330mm on high elevations ( = 254mm). Minimum annual temperature 

is about 0oC and the maximum annual temperature is about 17oC.  

Soils in the area are developed on Tertiary basalt and andesite, tuffaceous 

sedimentary rocks, lacustrine deposits and fluvial sedimentary rocks (Clarke and Bryce, 

1997). Prevalent landforms in the area are alluvial fans, fan remnants, basins, flood 

plains, pediments, and playas. Vegetation varies from native vegetation to agricultural 

pasture land (Kagan and Caicco, 1992).  Dominant native types of vegetation in the area 

are Wyoming big sagebrush (Artemisia tridentata wyomingensis), Shadscale saltbush 

(Atriplex confertifolia), greasewood (Sarcobatus vermiculatus), black sagebrush 

(Artemisia nova), basin big sagebrush (Artemisia tridentata tridentata), and low 

sagebrush (Artemisia arbuscula arbuscula).  

Most soils in the area are well drained and depth to the water table is far away 

from the soil surface except for areas close to agriculture pasture land and the internal 
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playas. Agricultural lands are pump-irrigated and irrigation water flows to nearby 

low-lying areas, resulting in higher water tables. Coyote Lake, in addition to many 

smaller playas, is an internal-draining playa (alkali flats or sabkha) that is periodically 

water-logged during the winter and spring seasons, and dries out during the summer. 

Playas are bare and shallow depressions with a high content of soluble salts and high 

alkalinity.  

 

4.2.2. Data sources and description  

A wide variety of data were used in this work including: IFSAR data (Fig. 4.2), 

remote-sensing data, geology, vegetation, and precipitation.  Description of the data 

layers and their sources is presented in Table 4.1 and a more detailed description of the 

attribute-values for each layer is given in Table 4.2. Spatial data were represented using 

the raster data model in ArcGIS which is helpful in data modeling and data 

manipulation. Data layers were resized to have a spatial resolution of 30m, which 

represent most of the data used in this study.  

 

4.2.3. Soil samples and analysis 

About 210 surface soil samples (nominally15cm depth) were collected from the 

study area during the months of July and August (dry season) 2006, where salt 

efflorescence reaches its maximum (M. Keller, 2006, personal comm.). Samples were 

collected using dirt road transects and stratified random sampling methods, depending 

on landscape complexity and representative areas in the Landsat images (Moreau, 1996; 

De Gruitjer, 2000). Samples were air dried, crushed and sieved to pass through a 2mm 



 

 

95
 

sieve.  Electrical Conductivity (EC) was measured in the soil-saturation extract in 

deciSiemans per meter (dSm-1) according to Richards (1954) (Table 4.3). Soil reaction 

(pH) was also measured in the soil paste. No data were available about water table 

depth and water salinity content for this remote area.   

 

4.2.4. Mapping methods 

Two methods were used in this paper to develop soil salinity maps: remote 

sensing data (Landsat images) and DTA. Results were obtained by each method, 

combined, and then compared. 

 

4.2.4.1. Remote sensing 

The study area covers parts of two Landsat TM images acquired on August 17, 

2005 (Fig. 4.3). The images were mosaiked and subsetted to cover the area of interest.  

Salt-affected soils are usually poorly vegetated areas and stressed vegetation could be 

used as indirect sign for the presence of salinity. Two vegetation indices were therefore 

integrated in the analysis: Normalized Vegetation Index (NDVI) (Rouse et al., 1973) 

and Soil Adjusted Vegetation Index (SAVI) (Huete, 1988). Tassel Cap Transformation 

(TCT) indices (brightness, greenness, and wetness (Kauth and Thomas, 1976)) were 

used to distinguish areas with high spectral reflectance, green vegetated areas and soil 

and vegetation moisture.  Band ratios such as b3/b1 and b5/b7 also were calculated and 

used to interpret some soil properties. Band ratio 3 to 1 is found to reflect iron content 

as reported by Rowan et al. (1977), whereas band ratio 5 to 7 is found to have a strong 

correlation with clay mineral content in poorly vegetated areas (Riaza et al., 2000). 
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4.2.4.2 Decision tree analysis  

Several environmental variables were incorporated in developing soil-salinity 

prediction maps for the study area using DTA. DTA was carried out using the 

See5/C4.5 algorithm (Quinlan, 1993). See5/C4.5 is a system for automated knowledge 

acquisition for knowledge base and other artificial intelligence (AI) applications 

(Eklund et al., 1998). A constructed decision tree consists of nodes representing 

variables or attributes, branches representing attribute values, and leaves representing 

classes. Decision tree is built based on selecting the attribute that minimizes the amount 

of disorder in the sub-tree rooted at a given node.  

Soil samples were classified according their EC values into five classes: (1) EC 

< 2 dsm-1 very low; (2) EC from 2 to 4 dsm-1 low; (3) EC from 4 to 8 dsm-1 moderate; 

(4) EC from 8 to 16 dsm-1 high; and (5) EC > 16 dsm-1 very high. Sampling points were 

buffered using a 300m (10 pixels) buffering distance on the GIS map to collect other 

local environmental data used in training the model. These locations were randomly 

sampled using the Classification and Regression Tree (CART) model (Earth Satellite 

Corporation, 2003). About 21,412 sampling points were used to train the model, 

whereas about 7,641 sampling points were used to validate the model. Training and 

validation data were boosted using 10 trials to enhance the prediction accuracy. Using 

this function results in creating a sequence of decision trees, where each subsequent tree 

attempts to fix the misclassification errors in the previous one. Each decision tree makes 

a prediction and the final prediction is a weighted vote of the predictions of all trees 

(Freund and Schapire, 1996).  Also, the growing tree was pruned by 30% to reduce the 

over-fitting problem and increase the model efficiency (Eklund et al., 1998).   
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4.3. Results 

4.3.1. Field observations 

Field observations in the study area indicate the presence of salt accumulation in 

certain landforms across the landscape. Salts effloresced on the soil surface in the 

floodplain of Crooked Creek (close to the agriculture land). EC values were very high at 

that location and varied from 12.46 to 82.80dSm-1. This high salt content is associated 

salt-tolerant vegetation (halophytes) such as salt grass (Distichlis spicata var. stricta.) 

and greasewood. Also, this location represents a low-leveled area and the ground water 

table was encountered at about 60cm. This result is supported by the significant 

correlation between EC values and surface elevation (Table 4.4).  

Higher salt content was also observed in the playas; however, there was no salt 

accumulation on the playa surface compared to Crooked Creek floodplain. No 

vegetation is growing in these areas, soils are strongly compacted, and pH values are 

greater than 8.5.   

 

4.3.2. Image analysis and visual interpretation 

Salt-affected soils could easily be visually identified from the Landsat images 

using the false color composite (RGB 432) and brightness and wetness indices. The 

spectral reflectance curve (Fig. 4.4) shows that severely salt-affected soils have a high 

reflectance in the visual (bands 1, 2 and 3) and near infrared (band 4) parts of spectrum 

and relatively low reflectance in the mid-infrared parts of spectrum (bands 5 and 7). A 

significant correlation was found between the EC values and bands 1, 2, 3, and 4 of the 
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TM images (Table 4.4). Also, a significant correlation was found between the EC 

values and the brightness and wetness indices.  

Landsat images were classified using the maximum likelihood supervised 

classifier in the ENVI program into 5 classes (1. Saline soil; 2. Agriculture land; 3. 

Inter-mountain basins big sage steppe; 4. Low sage brush steppe; and 5. Inter-mountain 

big sage brush shrubland) (Fig. 4.5). The output map was reclassified into two classes: 

saline (class 1) EC>4 dSm-1 and non-saline (classes 2, 3, 4, and 5) EC<4 dSm-1. 

Prediction accuracy of salt-affected soils was about 60% and non-saline soils was about 

97%, with an overall accuracy was about 95%. Classified saline area represents 6.67% 

of the total area, whereas the non-saline area represents 93.33%. 

 

4.3.3. Decision tree and predicted soil salinity map 

Decision tree created by the See5 program shows a high degree of confidence in 

the classification accuracy (Fig. 4.6). The overall accuracy of the decision tree produced 

without boosting was 98.40% and Kappa coefficient was 0.90 (Table 4.5). Producer’s 

accuracy varied from 77.68 to 99.17% with a mean value of 87.61%, whereas the user’s 

accuracy varied from 78.95 to 99.22% with a mean value of 85.82%. The prediction 

accuracy was enhanced by using 10 trials of boosting. The overall accuracy was 98.81% 

and Kappa coefficient was 0.92 (Table 4.6). Producer’s accuracy varied from 78.75 to 

99.2% with a mean value of 91.39%, whereas the user’s accuracy varied from 71.05 to 

99.59% with a mean value of 85.96%. The calculated area of saline soils represents 

1.86% of the total area, whereas the non-saline area represents 97.40%. 
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4.4. Discussion  

This study reveals that salt accumulates in the study area as a result of either 

water logging or the introduction of irrigation to neighboring areas. Salt-affected soils 

close to the agriculture area mostly originates from evaporation of the shallow water 

table (upward movement) in these low-lying locations. They could also be due to the 

weathering of salt-bearing minerals such as feldspars which are abundant in volcanic 

rocks such as basalt that dominates the area. Although the artificially irrigated area 

represents a very small percent of the total area, it should raise the concern about the 

development of salinity when soils in the area are introduced to irrigation in the future.  

Much research has been performed on the relationship between the development of 

secondary salinization and the introduction of irrigation to increase crop yield especially 

under arid and semi-arid environments. It has been found in most irrigated areas that the 

introduction of irrigation has resulted in a build up of secondary salinization and water 

logging (Dwivedi and Sreenivas, 1998; Furby et al., 1998; Khan et al., 2001; Sukchan 

and Yamamoto, 2002). 

Results indicate that Landsat images of the study area well identify bare areas 

that have a high reflectance due to their high salinity content and/or salt-efflorescence 

on the soil surface. This result agrees with that obtained by Everitt et al. (1988) who 

reported that salt-affected soils with salt encrustation at the surface are, generally, 

smoother than non-saline surfaces and cause high reflectance in the visible and near-

infrared bands. It was also noticed that some spotted areas observe high spectral 

reflectance due to the yellowish dust blown from the playa and deposited there, 
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resulting in misclassifying these locations as highly saline soils. Accordingly, 

classifying salt-affected soils based on spectral signatures could overestimate their areas. 

Vegetation indices (NDVI, SAVI, and Greenness index) did not have a 

significant correlation with the EC values, which indicates that halophytes couldn’t be 

used in identifying salt-affected areas under vegetation cover. This could also be due to 

the coarse resolution of the Landsat image (30m pixel size) and the smaller size of the 

salt-affected area. Landsat data could only distinguish between highly saline soils and 

normal or non-saline soils but salinity classes or degrees in between could not be 

discriminated. Similar results were obtained by Moreau (1996) and Sethi et al. (2006). It 

also found that the wetness index has a significant correlation with the EC values which 

could be due to the tendency of salt-affected soils to retain high moisture content. 

The soil salinity map developed by DTA successfully predicts five classes of 

salinity levels, a significant increase of the standard remote-sensing methods. This 

could be due to ability of DTA to integrate other environmental variables that have 

significant influence on the development of secondary salinization. Elevation and slope, 

for example, are very important variables in predicting soil salinity. Secondary 

salinization mostly occurs in low-land areas, where groundwater frequently rises up 

through the soil profile in these locations (Eklund, 1998; Sethi et al., 2006). Therefore, 

it is important to identify these recharge locations in the study area using the DEM. 

Also, the accumulation of soil salinity is not only influenced by the morphology of the 

soil profile but also by the soil physical, chemical and biological properties (Szabolcs, 

1987; Sethi et al., 2006). Bedrock geology and its chemical composition is another 

valuable variable that was integrated in the analysis and could result in enhancing the 
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prediction accuracy. Soils in the study area are developed on volcanic rocks, mostly 

basalt and andesite, which are rich in feldspars and salt-bearing minerals. Dominant 

vegetation is another variable that is directly influenced by higher soil salinity levels. 

This was also integrated in the analysis; however the vegetation map has a coarser scale 

that does not represent the vegetation types associated with soil salinity (halophytes), 

especially over smaller areas.   

 

4.5. Conclusion 

Current remote-sensing methodology used in mapping soil salinity could be 

significantly improved if Decision-tree analysis (DTA) is incorporated in such efforts. 

Water accumulated in low-lying areas and salt effloresces on the soil surface due to the 

upward movement of water and its evaporation, presenting a problem to most land uses. 

Remote-sensing data alone have been a nominally successful tool in mapping soil 

salinity over large areas, as it can distinguish between only highly salt-affected soils 

indicated by poor and sparse vegetation and high spectral reflectance and non-saline 

soils indicated by healthy vegetation. This is insufficient for modern soil salinity 

management with its finer classes of salinity. Moreover, salt-affected areas may be 

overestimated when mapped using only spectral signatures. Further study is 

recommended to determine if, as suggested by this study, introducing irrigation to the 

study area in Malheur County without an appropriate drainage system could result in 

severe salinity problems. 

As demonstrated here, the development of a soil salinity map using DTA 

successfully distinguishes between the five broadly used classes of salinity in the study 
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area. DTA proved to be an efficient, useful approach for mapping soil salinity over 

large areas compared to traditional remote-sensing data. DTA incorporates several 

environmental variables that significantly influence the development of soil salinity and 

not only the spectral properties of the soil surface. Using this technique could 

significantly enhance the productivity and the accuracy of soil salinity mapping 

compared to conventional mapping methods especially in such remote inhospitable 

areas. Global predictive maps of soil salinity should now be closer to obtain.  
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Table 4.1. Databases and their sources.  
 

Variables Data source Resolution 
(Scale) 

Data 
type  

 
Landsat TM (7 bands) USGS (2005) 30 m Raster 

Normalized Difference 

Vegetation Index (NDVI) 

Derived from the Landsat 

image (Rouse et al., 1973) 

30 m Raster 

Soil Adjusted Vegetation 

Index (SAVI) 

Derived from the Landsat 

image (Huete, 1988)  

30 m Raster 

Normalized Difference 

Salinity Index (NDSI) 

Derived from the Landsat 

image (Khan et al., 2001) 

30 m 

 

Raster 

Brightness, Greenness, and 

Wetness 

Derived from the Landsat 

image (Kauth and Thomas, 

1976) 

30 m 

 

Raster 

Band ratios 

B3/b1 and b5/b7 

Derived from the Landsat 

image  

30 m 

 

Raster 

Terrain attributes (elevation, 

slope and aspect) 

Derived from the IFSAR 

data (NRCS, 2007) 

5 m 

 

Raster 

Geology USGS (2003) 1:500,000 Vector 

Landfire vegetation USFS (2006)   30 m Raster 

Mean annual precipitation  USDA-NRCS (1999) 1:200,000 Vector 

Distance from streams Created using multi-ring 

buffer in ArcGIS 

1:24,000 Vector 

Ecological habitat Clarke and Bryce ( 1997)  1:250,000 Vector 
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Table 4.2. Environmental variables and their properties. 
 

Variable Type 
 

Number of 
classes 

 

Value range 
 

Landsat TM  bands Continuous Continuous 0-255 

NDVI Continuous Continuous 0-100 

SAVI Continuous Continuous 0-100 

Brightness 

Greenness 

Wetness 

Continuous 

Continuous 

Continuous 

Continuous 

Continuous 

Continuous 

42-462 

-60-112 

-96-53 

Elevation  

Slope gradient 

Slope aspect 

Continuous 

Continuous 

Continuous 

Continuous 

Continuous 

Continuous 

1175-1771 

0-57 

-1-360 

Landform  Discrete 10 classes 1-10 

Geology Discrete 9 classes 101-111 

Historic vegetation Discrete 10 classes Wide range (1-45) 

Landfire vegetation Discrete 26 classes Wide range ( 1-2227) 

Precipitation  Discrete 4 classes 7, 9, 11 and 13 

*Distance from 

streams 

Discrete 1 classes 1-7 

 

Habitat Discrete 6 classes 1-6 

*Distance from streams = (<300, 300-900, 900-1800, 1800-2700, 2700-3600, 3600-
4500, and 4500-6000m) 
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Table 4.3. Soil samples and their XY coordinates, saturation percentage (SP), field 
capacity (FC), pH and EC values. 
  
Sample 

No 
Latitude 

(X) 
Longitude 

(Y) 
SP 
(%) 

FC 
(%) 

pH EC 
(uS/m) 

EC 
(dS/m)

1 427377.94 4732683.5 23 11.5 8.61 520 0.52 
2 427408.01 4732738.4 22 11 7.95 440 0.44 
3 425123.02 4733171.7 23 11.5 7.7 420 0.42 
4 426066.03 4729825.9 22 11 6.5 430 0.43 
5 425888.5 4729396.5 20 10 7.28 490 0.49 
6 426422.18 4727613.1 17 8.5 7.38 360 0.36 
8 423415.2 4726609.6 20 10 7.3 580 0.58 
9 426927.68 4702650.1 14.6 7.3 7.29 630 0.63 
10 426253.98 4702676.5 21.78 10.89 7.04 700 0.7 
11 426017.04 4702615.3 20.76 10.38 6.68 290 0.29 
12 424288.7 4702239.8 30.08 15.04 8.24 670 0.67 
13 423567 4702049.6 27.44 13.72 8.22 750 0.75 
14 421671.78 4700790.2 19.34 9.67 7.24 370 0.37 
15 419418.24 4699755.5 21.51 10.75 6.72 260 0.26 
16 418614.62 4699396.5 25 12.5 6.5 590 0.59 
17 416709.02 4699157.9 24.8 12.4 6.65 180 0.18 
18 415714.33 4699196.4 31.13 15.56 7.64 590 0.59 
19 414747.16 4701045 24 12 7.32 460 0.46 
20 414546.51 4701464.7 24 12 7.32 490 0.49 
21 415354.86 4698688.2 23 11.5 7.5 450 0.45 
22 414068.77 4698174.9 23 11.5 7.37 530 0.53 
23 412616.4 4697856.8 24 12 7.47 290 0.29 
24 410844.16 4697052.9 23 11.5 7.61 1170 1.17 
25 410501.52 4697923.7 21 10.5 7.44 480 0.48 

SP= Saturation Percentage 
FC= Field Capacity= ½ SP 
(A complete list of soil samples and their properties is presented in Table A.3.1)
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Table 4.4. Correlation between EC values and numerical environmental variables. 
 

 

 
                                        Number of observations is 210 

* Significant at confidence level of 95% 
       ** Very significant at confidence level of 95%  

                                                     ns Non significant 
 

Variable EC 
Elevation 
 

-0.1805 
* 

Slope 
 

-0.1378 
ns 

Band1 
 

0.2498 
** 

Band2 
 

0.2902 
** 

Band3 
 

0.2562 
** 

Band4 
 

0.3837 
** 

Band5 
 

0.1283 
ns 

Band7 
 

0.0581 
ns 

NDVI 
 

-0.1445 
ns 

NDSI 
 

0.1445 
ns 

SAVI 
 

-0.1328 
ns 

Brightness 
 

0.2570 
** 

Greenness 
 

-0.0590 
ns 

Wetness 
 

0.4537 
** 
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Table 4.5. Producer’s, user’s, overall accuracy and Kappa coefficient for predicted 
soil salinity classes developed be the See5 without boosting. 
 
Salinity 
class 

 
Class1 

 
Class2

 
Class3

 
Class4

 
Class5

Total 
of rows

User’s 
accuracy 

Class1 6961 15 5 12 23 7016 99.22 
Class2 27 61    88 69.32 
Class3 8  30   38 78.95 
Class4 16   380 2 398 95.48 
Class5 7   7 87 101 86.14 
Total of 
columns 

7019 76 35 399 112 7641  

Producer’s 
accuracy 

99.17 80.26 85.71 95.24 77.68  98.40 

Kappa       0.90 
 
 
Table 4.6. Producer’s, user’s, overall accuracy and Kappa coefficient for predicted soil 
salinity classes developed be the See5 with 10 trails of boosting. 
 
Salinity 
class Class1 Class2 Class3 Class4 Class5

Total 
of rows 

User’s 
accuracy 

Class1 6987 17 3 4 5 7016 99.59 
Class2 25 63    88 71.59 
Class3 11  27   38 71.05 
Class4 13   380 5 398 95.48 
Class5 7   1 93 101 92.08 
Total of 
columns 7043 80 30 385 103 7641  
Producer’s 
accuracy 99.20 78.75 90.00 98.70 90.29  98.81 
Kappa        0.92 
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Figure 4.1. Study area and sampling points in Malheur County, Oregon. 
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Figure 4.2. Digital terrain model (DTM) and slope gradient in the study area.
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Figure 4.3. False color composite of the Landsat TM (RGB 432) and greenness index. 

 



 

 

115

 
 
 
 
 
 
 

s

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7

Band number

Re
fle

ct
an

ce

0

0.1

0.2

0.3

0.4

0.5

0.6

300 600 900 1200 1500 1800 2100 2400

Wavelength (nm)
Re

fle
ct

an
ce

Playa Salt-crustb)a) s

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7

Band number

Re
fle

ct
an

ce

0

0.1

0.2

0.3

0.4

0.5

0.6

300 600 900 1200 1500 1800 2100 2400

Wavelength (nm)
Re

fle
ct

an
ce

Playa Salt-crustb)a)

 
Figure 4.4. Spectral reflectance of salt-affected soils collected by using a) Landsat TM image and b) Spectroradiometer2. 

 

                                                 
2 Spectral properties of salt-affected soils in the study area were measured in the field almost at the same acquisition time of Landsat TM images (August 17, 
2005).  The spectral reflectance was measured using the FieldspecfiPro, manufactured by Analytical Spectral Devices of Boulder Colorado. The instrument 
has a field of view of 25 mm. It covers the spectral range from 350 to 2500nm with an average bandwidth of 1nm. 
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Figure 4.5. Supervised classification map of the Landsat TM image (1. Saline soil, 2. Agriculture land, 3. Inter-mountain basins big 
sage steppe, 4. Low sage brush steppe, and 5. Inter-mountain big sage brush shrubland). 
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Figure 4.6. Predicted soil salinity map using decision tree analysis and its prediction confidence.
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CHAPTER 5 

 

General Conclusion 

 

Soil survey maps represent one of the most significant sources of information 

used by land managers. Nowadays, demand is growing for accurate and multi-

resolution soil data to sustain agriculture and the environment. Producing soil survey 

maps by traditional methods is an expensive, labor-intensive, and time-consuming 

process which is no longer supportable. Therefore, developing new techniques that can 

utilize the wealth of available data and technology in producing soil maps in more 

objective, effective, less-expensive, and faster ways should meet the necessity for 

enhancing soil sustainability and productivity in the future. This dissertation studies 

predictive soil mapping (PSM) techniques as a means to this end.  

A soil-landscape model can successfully be extracted from old soil survey data 

using decision-tree analysis and environmental data. Such models were efficiently used 

in transferring the digitized soil maps of the study areas in Benton and Harney Counties 

into more objective digital maps. Assessing the consistency of the present soil map of 

the study area in Benton County resulted in obtaining valuable information. Common 

errors in conventional soil maps (inaccurate boundaries and inclusions) were revealed 

from the predicted soil maps. Prediction accuracy of the developed model is 

significantly influenced by the number of classes chosen to be predicted, the 

proportional area of each class, and the accuracy and scale of contributing 

environmental variables. Map units or taxonomic classes having a large areal extent 
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and/or are well identified by the environmental data incorporated in the model, were 

predicted with high accuracies. On the contrary, map units representing smaller areas or 

that were poorly identified from the data, were predicted with lower accuracies or 

entirely unpredicted.  

Selecting the appropriate model to predict soil classes depends on the details that 

one wants to be retrieved from the generated soil map. Soil taxa maps (i.e., order, 

suborder, and great groups) would be useful in developing the preliminary soil maps at 

small scales, where detailed information is not necessarily required. On the other hand, 

predicting soil subgroups and soil map units could be very valuable at larger scale 

where detailed knowledge about soil characteristics is required. Also, selecting the 

environmental variables to be used in producing predictive soil maps varies from one 

environment to another depending on the prevalent environmental conditions under 

each environment.  The decision tree analysis (DTA) approach shows high flexibility 

under a variety of environmental conditions. 

Using DTA in developing predictive soil maps from field data and soil-surveyor 

knowledge provides significant results compared to extrapolating retrieved soil-

landscapes models from reference areas. These results could be helpful in reducing the 

great amount of field data required in conventional soil mapping methods. DTA could 

significantly reduce the large amount of time consumed in developing soil maps in the 

traditional ways and facilitating their updates. Moreover, the DTA approach can help in 

achieving the most important goals in predictive soil mapping which are producing soil 

maps in more effective, objective, and less-expensive ways and providing information 

about accuracy of the developed maps which are not available in current soil maps. 
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Results revealed that certain points should be considered to enhance the 

outputs of using DTA in predictive soil mapping. First, assuming that available soil 

survey maps and environmental data of reference areas are accurate could be untrue for 

some areas. Soil maps and all other data integrated in predictive soil mapping 

techniques should be evaluated in advance for their accuracy. Second, extrapolating 

retrieved soil-landscape models is spatially limited to neighboring areas that have been 

developed under the same environmental conditions and have similar topography. 

As a demonstration of the usefulness of the DTA approach to soil inventory, an 

issue common to semi and arid soilscapes was investigated. Field observations in the 

study area of Malheur County revealed a potential vulnerability of this soilscape to a 

severe salinity problem. Further study is recommended to determine if introduced 

irrigation would result in soil-salinity problems.  

Use of conventional remote-sensing (RS) methods in mapping soil salinity in the 

study area only distinguished between severely salt-affected soils, indicated by poor and 

sparse vegetation and high spectral reflectance, and non-saline soils, indicated by 

healthy vegetation. Furthermore, salt-affected areas were overestimated when mapped 

using only spectral signatures of surface features. The obtained results from mapping 

soil-salinity using RS data are insufficient for modern soil salinity management with its 

five classes of salinity. This provides a good test of using decision tree analysis (DTA) 

in producing soil salinity maps. Resulting salinity prediction maps by DTA successfully 

and accurately distinguished between the five broadly used classes of salinity in the 

study area. DTA proved to be an efficient, useful approach for mapping soil salinity 

over large areas compared to traditional RS data, where several environmental variables 
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having significant impact on the development of soil salinity can be incorporated in 

the analysis and not only the spectral properties of the soil surface.  
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Appendix 1 

Table A.1.1. Map symbols and names of SMUs in the study area of Benton County, 
Oregon and their relative areas as percentage. 
 

Map 
Symbol Map Unit Name % 

1 Abiqua silty clay loam, 0 to 3 percent slopes 0.10 
8 Amity silt loam, 0 to 3 percent slopes 4.24 
9 Apt-McDuff complex, 5 to 30 percent slopes 1.92 
10 Apt-McDuff complex, 30 to 50 percent slopes 0.29 
12 Awbrig silty clay loam, 0 to 2 percent slopes 2.81 
13 Bashaw clay, 3 to 12 percent slopes 0.05 
17 Bellpine-Jory complex, 2 to 12 percent slopes 4.53 
18 Bellpine-Jory complex, 12 to 20 percent slopes 6.83 
19 Bellpine-Jory complex, 20 to 30 percent slopes 7.68 
20 Bellpine-Jory complex, 30 to 60 percent slopes 10.79 
21 Blachly-Kilowan complex, 5 to 30 percent slopes 0.42 
22 Blachly-Kilowan complex, 30 to 60 percent slopes 0.24 
23 Bohannon-Preacher complex, 30 to 60 percent slopes 3.96 
24 Bohannon-Preacher complex, 60 to 90 percent slopes 1.56 
27 Burntwoods-Oldblue complex, 30 to 60 percent slopes 0.81 
28 Camas gravelly sandy loam, 0 to 3 percent slopes 0.35 
29 Camas gravelly sandy loam, relict bar, 0 to 3 percent slopes 0.94 
30 Caterl-Laderly-Romanose complex, 30 to 60 percent slopes 0.48 
32 Caterl-Murtip-Giveout complex, 30 to 60 percent slopes 0.73 
33 Caterl-Murtip-Laderly complex, 30 to 60 percent slopes 0.36 
36 Chehalem silty clay loam, 0 to 3 percent slopes 0.14 
37 Chehalem silty clay loam, 3 to 12 percent slopes 0.22 
38 Chehalis silt loam, 0 to 3 percent slopes 0.06 
40 Chehalis silty clay loam, 0 to 3 percent slopes 4.90 
46 Cloquato silt loam, 0 to 3 percent slopes 0.26 
48 Coburg complex, rarely and occasionally flooded, 0 to 3 

percent 
1.00 

49 Coburg silty clay loam, 0 to 3 percent slopes 4.14 
50 Coburg silty clay loam, rarely flooded, 0 to 3 percent slopes 1.11 
51 Concord silt loam, 0 to 2 percent slopes 0.00 
52 Conser silty clay loam, 0 to 3 percent slopes 4.90 
53 Dayton silt loam, 0 to 2 percent slopes 22.27 
54 Dayton silt loam, clay substratum, 0 to 2 percent slopes 0.77 
55 Digger-Bohannon complex, 5 to 30 percent slopes 0.75 
56 Digger-Remote-Umpcoos complex, 30 to 60 percent slopes 2.62 
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Table A.1.1. Map symbols and names of SMUs in the study area of Benton County, 
Oregon and their relative areas as percentage (Continued). 
 

Map 
Symbol Map Unit Name % 

57 Digger-Umpcoos-Remote complex, 60 to 90 percent slopes 1.00 
58 Dixonville-Gellatly complex, 12 to 30 percent slopes 0.46 
59 Dixonville-Gellatly complex, 30 to 60 percent slopes 0.33 
60 Dixonville-Gellatly-Witham complex, 2 to 12 percent slopes 0.15 
61 Dupee silt loam, 3 to 12 percent slopes 2.84 
65 Fiverivers-Grassmountain-Chintimini complex, 30 to 60 

percent slopes 
0.63 

68 Formader-Hemcross complex, 3 to 35 percent slopes 0.98 
69 Formader-Hemcross complex, 35 to 60 percent slopes 0.10 
70 Formader-Klistan-Hemcross complex, 60 to 80 percent slopes 0.16 
75 Harslow-Kilchis-Rock outcrop complex, 60 to 90 percent 

slopes 
0.30 

83 Hemcross-Klistan complex, 5 to 30 percent slopes 0.89 
84 Hemcross-Klistan complex, 30 to 60 percent slopes 0.73 
85 Holcomb silt loam, 0 to 3 percent slopes 0.59 
86 Honeygrove-Peavine complex, 3 to 30 percent slopes 11.34 
87 Honeygrove-Peavine complex, 30 to 60 percent slopes 1.18 
88 Honeygrove-Peavine complex, 3 to 30 percent slopes, basalts 0.90 
89 Honeygrove-Peavine complex, 30 to 60 percent slopes, basalts 0.47 
90 Honeygrove-Shivigny complex, 3 to 30 percent slopes 4.92 
91 Jory silty clay loam, 2 to 12 percent slopes 2.84 
94 Jory silty clay loam, sediments, 2 to 12 percent slopes 7.44 
95 Jory silty clay loam, sediments, 12 to 20 percent slopes 8.52 
96 Jory silty clay loam, sediments, 20 to 30 percent slopes 5.08 
97 Jory-Dupee complex, 2 to 12 percent slopes 2.20 
98 Jory-Gelderman complex, 12 to 30 percent slopes 5.88 
102 Klistan-Harslow complex, 30 to 60 percent slopes 1.83 
104 Laderly-Murtip-Giveout complex, 5 to 30 percent slopes 2.99 
106 Linslaw loam, 3 to 8 percent slopes 0.00 
109 MacDunn-Price-Ritner complex, 60 to 90 percent slopes 0.06 
110 Malabon silty clay loam, 0 to 3 percent slopes 5.62 
113 McAlpin silty clay loam, 0 to 3 percent slopes 1.40 
114 McAlpin silty clay loam, 3 to 6 percent slopes 0.04 
117 McAlpin silty clay loam, rarely flooded, 0 to 3 percent slopes 0.72 
118 McBee silty clay loam, 0 to 3 percent slopes 1.21 
119 McBee silty clay loam, nonflooded, 0 to 3 percent slopes 0.04 
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Table A.1.1. Map symbols and names of SMUs in the study area of Benton County, 
Oregon and their relative areas as percentage (Continued). 
 

Map 
Symbol 

Map Unit Name % 

120 Meda-Treharne-Wasson complex, 2 to 20 percent slopes 1.84 
123 Murtip-Giveout-Laderly complex, 5 to 30 percent slopes 3.39 
125 Newberg fine sandy loam, 0 to 3 percent slopes 0.52 
127 Newberg loam, 0 to 3 percent slopes 0.77 
128 Oldblue-Burntwoods complex, 5 to 30 percent slopes 1.02 
130 Pengra silt loam, 2 to 12 percent slopes 1.29 
133 Pits silty clay, 0 to 5 percent slopes 0.16 
134 Preacher-Blachly-Bohannon complex, 5 to 30 percent slopes 1.31 
135 Preacher-Bohannon complex, 5 to 35 percent slopes 0.32 
136 Preacher-Bohannon-Slickrock complex, 35 to 60 percent 

slopes 
4.77 

137 Price-MacDunn-Ritner complex, 30 to 60 percent slopes 1.00 
139 Salem gravelly silt loam, 0 to 3 percent slopes 0.14 
140 Santiam silt loam, 2 to 8 percent slopes 6.83 
141 Santiam silt loam, 8 to 20 percent slopes 1.59 
145 Shivigny-Honeygrove complex, 30 to 60 percent slopes 2.29 
146 Slickrock gravelly medial loam, 3 to 25 percent slopes 2.07 
147 Steiwer-Chehulpum complex, 3 to 12 percent slopes 0.13 
148 Steiwer-Chehulpum complex, 12 to 30 percent slopes 0.17 
149 Steiwer-Chehulpum complex, 30 to 60 percent slopes 0.04 
150 Treharne-Eilertsen-Zyzzug complex, 0 to 7 percent slopes 0.28 
154 Verboort silty clay loam, 0 to 3 percent slopes 1.00 
155 Waldo silty clay loam, 0 to 3 percent slopes 10.50 
157 Wapato silty clay loam, 0 to 3 percent  slopes 1.30 
159 Water 0.70 
163 Willakenzie loam, 2 to 12 percent slopes 0.35 
164 Willakenzie loam, 12 to 20 percent slopes 0.30 
169 Willamette silt loam, 0 to 3 percent slopes 0.93 
170 Willamette silt loam, 3 to 12 percent slopes 0.93 
174 Witzel-Ritner complex, 3 to 12 percent slopes 0.05 
177 Woodburn silt loam, 0 to 3 percent slopes 7.63 
178 Woodburn silt loam, 3 to 12 percent slopes 0.30 
180 Woodburn silt loam, 20 to 55 percent slopes 0.18 
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Table A.1.2. Soil taxonomic classification of soil series in the study area.  

Soil Name Taxonomic Classification 
Awbrig Fine, smectitic, mesic Vertic Albaqualfs 
Dayton Fine, smectitic, mesic Vertic Albaqualfs 
Concord Fine, smectitic, mesic Typic Endoaqualfs 
Eilertsen Fine-silty, isotic, mesic Ultic Hapludalfs 
Treharne Fine-silty, isotic, mesic Aquultic Hapludalfs 
Dupee Fine, mixed, superactive, mesic Aquultic Haploxeralfs 
Linslaw Fine, mixed, superactive, mesic Aquultic Haploxeralfs 
Santiam Fine, mixed, superactive, mesic Aquultic Haploxeralfs 
Willakenzie Fine-loamy, mixed, active, mesic Ultic Haploxeralfs 
Burntwoods Medial-skeletal over loamy-skeletal, mixed over isotic, frigid 

Typic Fulvudands 
Caterl Medial-skeletal, ferrihydritic, frigid Alic Hapludands 
Formader Medial over loamy, ferrihydritic over isotic, mesic Alic 

Hapludands 
Giveout Medial, ferrihydritic, frigid Alic Hapludands 
Harslow Medial-skeletal, ferrihydritic, mesic Alic Hapludands 
Hemcross Medial, ferrihydritic, mesic Alic Hapludands 
Klistan Medial-skeletal, ferrihydritic, mesic Alic Hapludands 
Laderly Medial-skeletal, ferrihydritic, frigid Alic Hapludands 
Murtip Medial, ferrihydritic, frigid Alic Hapludands 
Slickrock Medial over loamy, ferrihydritic over isotic, mesic Alic 

Hapludands 
Romanose Medial-skeletal, ferrihydritic, frigid Lithic Hapludands 
Wasson Coarse-loamy, mixed, superactive, nonacid, mesic Fluvaquentic 

Humaquepts 
Zyzzug Fine-silty, isotic, acid, mesic Typic Humaquepts 
Blachly Fine, isotic, mesic Typic Dystrudepts 
Bohannon Fine-loamy, isotic, mesic Andic Dystrudepts 
Chintimini Loamy-skeletal, isotic, frigid Andic Dystrudepts 
Fiverivers Fine-loamy, isotic, frigid Andic Dystrudepts 
Grassmountain Fine-loamy, isotic, frigid Andic Dystrudepts 
Oldblue Fine-loamy, isotic, frigid Andic Dystrudepts 
Preacher Fine-loamy, isotic, mesic Andic Dystrudepts 
Meda Fine-loamy, isotic, mesic Humic Dystrudepts 
Kilchis Loamy-skeletal, isotic, mesic Humic Lithic Dystrudepts 
Kilowan Fine, isotic, mesic Typic Dystrudepts 
Digger Loamy-skeletal, isotic, mesic Dystric Eutrudepts 
Umpcoos Loamy-skeletal, isotic, mesic Lithic Eutrudepts 
Remote Loamy-skeletal, isotic, mesic Typic Eutrudepts 
MacDunn Clayey-skeletal, mixed, superactive, mesic Typic Haploxerepts 
Price Fine, mixed, superactive, mesic Typic Haploxerepts 
Ritner Clayey-skeletal, mixed, superactive, mesic Typic Haploxerepts 
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 Table A.1.2. Soil taxonomic classification of soil series in the study area 
(Continued). 
 

Soil Name Taxonomic Classification 
Amity Fine-silty, mixed, superactive, mesic Argiaquic Xeric Argialbolls 
Verboort Fine, mixed, superactive, mesic Xerertic Argialbolls 
Holcomb Fine, smectitic, mesic Typic Argialbolls 
Conser Fine, mixed, superactive, mesic Vertic Argiaquolls 
Chehalem Fine, smectitic, mesic Cumulic Vertic Endoaquolls 
Waldo Fine, smectitic, mesic Fluvaquentic Vertic Endoaquolls 
Wapato Fine-silty, mixed, superactive, mesic Fluvaquentic Endoaquolls 
Pengra Fine-silty over clayey, mixed, superactive, mesic Vertic 

Epiaquolls 
Woodburn Fine-silty, mixed, superactive, mesic Aquultic Argixerolls 
Coburg Fine, mixed, superactive, mesic Oxyaquic Argixerolls 
Gellatly Fine, mixed, superactive, mesic Pachic Argixerolls 
Dixonville Fine, mixed, superactive, mesic Pachic Ultic Argixerolls 
Malabon Fine, mixed, superactive, mesic Pachic Ultic Argixerolls 
Salem Fine-loamy over sandy or sandy-skeletal, mixed, superactive, 

mesic Pachic Ultic Argixerolls 
Willamette Fine-silty, mixed, superactive, mesic Pachic Ultic Argixerolls 
McAlpin Fine, mixed, superactive, mesic Aquic Cumulic Haploxerolls 
McBee Fine-silty, mixed, superactive, mesic Aquic Cumulic Haploxerolls
Abiqua Fine, mixed, superactive, mesic Cumulic Ultic Haploxerolls 
Chehalis Fine-silty, mixed, superactive, mesic Cumulic Ultic Haploxerolls 
Cloquato Coarse-silty, mixed, superactive, mesic Cumulic Ultic 

Haploxerolls 
Camas Sandy-skeletal, mixed, mesic Fluventic Haploxerolls 
Newberg Coarse-loamy, mixed, superactive, mesic Fluventic Haploxerolls 
Witzel Loamy-skeletal, mixed, active, mesic Lithic Ultic Haploxerolls 
Chehulpum Loamy, mixed, superactive, mesic, shallow Ultic Haploxerolls 
Steiwer Fine-loamy, mixed, superactive, mesic Ultic Haploxerolls 
Witham Fine, smectitic, mesic Vertic Haploxerolls 
Apt Fine, isotic, mesic Typic Haplohumults 
McDuff Fine, isotic, mesic Typic Haplohumults 
Peavine Fine, mixed, active, mesic Typic Haplohumults 
Bellpine Fine, mixed, active, mesic Xeric Haplohumults 
Gelderman Fine, mixed, active, mesic Xeric Haplohumults 
Honeygrove Fine, mixed, active, mesic Typic Palehumults 
Shivigny Clayey-skeletal, mixed, active, mesic Typic Palehumults 
Jory Fine, mixed, active, mesic Xeric Palehumults 
Bashaw Very-fine, smectitic, mesic Xeric Endoaquerts 
Pits Fine, smectitic, mesic Xeric Endoaquerts 
Water Water 
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Appendix 2 

Table A.2.1. Soil orders, suborders, great groups in the study area and their codes. 

Order Code Order name Great group Code Great group 
name  

1 1 Alfisols 1 1 Albaqualfs 
2 2 Andisols 2 2 Endoaqualfs 
3 3 Inceptisols 3 3 Hapludalfs 
4 4 Mollisols 4 4 Haploxeralfs 
5 5 Ultisols 5 5 Fulvudands 
6 6 Vertsols 6 6 Hapludands 
7 7 Water 7 7 Humaquepts 

1 and 3 8  8 8 Dystrudepts 
2 and 3 9  9 9 Eutrudepts 
3 and 4 10  10 10 Haploxerepts 
1 and 5 11  11 11 Argialbolls 

  12 12 Argiaquolls 
Suborder Code 

Sub-order 
name 13 13 Endoaquolls 

1 1 aqualfs 14 14 Epiaquolls 
2 2 udalfs 15 15 Argixerolls 
3 3 xeralfs 16 16 Haploxerolls 
4 4 udands 17 17 Haplohumults 
5 5 aquepts 18 18 Palehumults 
6 6 udepts 19 19 Endoaquerts 
7 7 xerepts 20 20 Water 
8 8 albolls 3 and 7 21  
9 9 aquolls 5 and 8 22  
10 10 xerolls 3, 7, and 8 23  
11 11 humults 6 and 8 24  
12 12 aquerts 8 and 9 25  
13 13 Water 15 and 16 26  

2 and 5 14  10 and 16 27  
4 and 6 15  17 and 18 28  

2, 5, and 6 16  5 and 18 29  
7 and 10 17     
3 and 11 18     
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Table A.2.2. Soil subgroups in the study area and their codes. 

SG Code Subgroup name SG Code Subroup name 

1 1 Vertic Albaqualfs 31 31 Pachic Ultic 
Argixerolls 

2 2 Typic Endoaqualfs 32 32 Aquic Cumulic 
Haploxerolls 

3 3 Ultic Hapludalfs 33 33 Cumulic Ultic 
Haploxerolls 

4 4 Aquultic Hapludalfs 34 34 Fluventic 
Haploxerolls 

5 5 Aquultic 
Haploxeralfs 35 35 Lithic Ultic 

Haploxerolls 
6 6 Ultic Haploxeralfs 36 36 Ultic Haploxerolls 
7 7 Typic Fulvudands 37 37 Vertic Haploxerolls 
8 8 Alic Hapludands 38 38 Typic Haplohumults 
9 9 Lithic Hapludands 39 39 Xeric Haplohumults 

10 10 Fluvaquentic 
Humaquepts 40 40 Typic Palehumults 

11 11 Typic Humaquepts 41 41 Xeric Palehumults 
12 12 Typic Dystrudepts 42 42 Xeric Endoaquerts 
13 13 Andic Dystrudepts 43 43 Water 
14 14 Humic Dystrudepts 4 and 11 44  

15 15 Humic Lithic 
Dystrudepts 7 and 13 45  

16 16 Dystric Eutrudepts 8 and 9 46  
17 17 Lithic Eutrudepts 12 and 15 47  
18 18 Typic Eutrudepts 12 and 13 48  
19 19 Typic Haploxerepts 8, 12, and 13 49  

20 20 Argiaquic Xeric 
Argialbolls 4, 10, and 13 50  

21 21 Xerertic Argialbolls 16, 17, and 18 51  
22 22 Typic Argialbolls 30 and 31 52  
23 23 Vertic Argiaquolls 30, 31, and 37 53  

24 24 Cumulic Vertic 
Endoaquolls 19 and 35 54  

25 25 Fluvaquentic Vertic 
Endoaquolls 39 and 41 55  

26 26 Fluvaquentic 
Endoaquolls 39 and 41 55  

27 27 Vertic Epiaquolls 38 and 40 56  
28 28 Aquultic Argixerolls 5 and 41 57  
29 29 Oxyaquic Argixerolls 12 and 16 58  
30 30 Pachic Argixerolls    
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Table A.2.3. Soil orders, suborders, great groups, and subgroups in the study area 
and their proportional areas (%). 
 

Order Great Group Subgroup 
Order % GG % SG % SG % 

1 17.13 1 11.74 1 11.74 47 0.30 
2 6.69 4 5.40 5 5.10 48 3.26 
3 6.32 6 9.49 6 0.30 49 2.16 
4 26.66 8 3.85 8 6.60 50 0.84 
5 37.67 9 1.64 13 0.29 51 1.64 
6 0.09 10 0.48 19 0.48 52 0.36 
7 0.32 11 2.65 20 1.93 53 0.07 
8 0.97 12 2.22 21 0.45 54 0.02 
9 3.13 13 5.53 22 0.27 55 16.20 
10 0.02 14 0.58 23 2.22 56 6.32 
11 1.00 15 10.33 24 0.17 57 1.00 

Suborder  16 5.27 25 4.78 58 0.35 
Suborder % 17 1.01 26 0.59    

1 11.74 18 14.14 27 0.58    
3 5.40 19 0.09 28 3.68    
4 6.69 20 0.32 29 2.84    
6 5.84 21 0.13 31 3.46    
7 0.48 22 0.83 32 1.56    
8 2.65 23 0.84 33 2.39    
9 8.33 24 2.16 34 1.17    
10 15.67 25 0.35 36 0.16    
11 37.67 26 0.07 38 1.01    
12 0.09 27 0.02 40 3.28    
13 0.32 28 19.85 41 10.87    
14 0.13 29 1.00 42 0.09    
15 3.13   43 0.32    
16 0.84   44 0.13    
17 0.02    45 0.83    
18 1.00    46 0.22    
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Table A.2.4. User accuracy of soil subgroups and major soil map units in the study 
area. 
 

Subgroups 
(SG) Major soil map units 

SG User 
accuracy SG User 

accuracy SMU User 
accuracy SMU User 

accuracy 
1 92.40 43 54.44 8 42.30 96 70.85 
5 85.87 44 72.22 9 75.67 97 81.73 
6 71.60 45 86.38 12 44.25 98 81.73 
8 87.99 46 60.32 17 84.33 102 85.66 
13 63.89 47 44.05 18 76.10 104 86.82 
19 48.89 48 83.48 19 73.61 110 75.46 
20 42.90 49 65.96 20 83.43 113 73.33 
21 31.75 50 71.37 23 71.01 118 76.54 
22 49.37 51 78.17 24 73.95 120 81.89 
23 53.71 52 94.74 40 91.15 123 93.26 
24 60.87 53 22.22 48 54.23 128 82.01 
25 84.22 54 62.50 49 50.35 130 82.04 
26 28.11 55 91.94 50 40.74 134 86.89 
27 69.01 56 93.38 52 60.23 136 72.58 
28 39.41 57 74.11 53 95.09 137 68.87 
29 46.42 58 48.67 56 82.04 140 88.53 
31 71.62   57 77.33 141 65.99 
32 73.05   61 73.43 145 79.57 
33 80.75   68 77.08 146 74.37 
34 43.11   86 94.32 154 17.22 
36 69.57   87 51.72 155 86.73 
38 67.83   90 93.06 157 33.51 
40 92.69   91 83.55 177 42.61 
41 81.18   94 77.86   
42 58.62   95 74.68   

Total   79.43    77.71 
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Table A.2.5. User accuracy of soil great groups and all soil map units in the study 
area. 
 

Great groups (GG)  All Soil Map Units (SMUs)  

GG User 
accuracy SMU User 

accuracy SMU User 
accuracy SMU User 

accuracy
1 88.37 1 45.45 57 78.86 120 77.73 
4 85.81 8 40.24 58 96.88 123 90.35 
6 84.36 9 67.87 59 81.25 125 61.73 
8 84.30 10 31.25 60 35.00 127 37.61 
9 74.07 12 54.97 61 69.17 128 84.00 
10 56.34 13 0.00 65 81.93 130 77.51 
11 37.47 17 81.48 68 71.54 133 55.56 
12 50.16 18 68.03 69 54.55 134 87.43 
13 75.37 19 71.68 70 50.00 135 59.38 
14 75.31 20 83.48 75 94.74 136 73.04 
15 68.38 21 36.54 83 42.98 137 64.89 
16 91.88 22 61.76 84 50.00 139 0.00 
17 62.12 23 66.42 85 64.94 140 87.43 
18 83.61 24 67.91 86 93.72 141 60.29 
19 25.00 27 79.66 87 49.68 145 78.55 
20 63.54 28 55.81 88 55.65 146 70.98 
21 67.50 29 25.20 89 50.82 147 73.33 
22 81.28 30 69.09 90 94.45 148 90.48 
23 72.31 32 68.89 91 77.57 149 20.00 
24 64.64 33 53.66 94 82.11 150 85.11 
25 50.00 36 58.82 95 73.41 154 21.14 
26 19.05 37 81.25 96 66.67 155 86.54 
27 0.00 38 30.00 97 78.98 157 30.07 
28 92.86 40 85.20 98 80.31 159 47.87 
29 75.87 46 58.33 102 80.50 163 82.22 
  48 46.15 104 82.85 164 45.45 
  49 44.32 109 100.00 169 67.42 
  50 36.24 110 76.13 170 41.07 
  52 57.74 113 67.05 174 62.50 
  53 93.52 114 57.14 177 39.40 
  54 71.03 117 82.80 178 33.33 
  55 55.56 118 73.41 180 42.86 
  56 71.43 119 60.00   

Total 81.22      74.17 
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Appendix 3 

 
Table A.3.1. Soil samples and their XY coordinates, saturation percentage (SP), field 
capacity (FC), PH and EC values. 
  
Sample 

No 
Latitude 

(X) 
Longitude 

(Y) 
SP 
(%) 

FC 
(%) 

PH EC 
(uS/m) 

EC 
(dS/m)

1 427377.94 4732683.5 23 11.5 8.61 520 0.52 
2 427408.01 4732738.4 22 11 7.95 440 0.44 
3 425123.02 4733171.7 23 11.5 7.7 420 0.42 
4 426066.03 4729825.9 22 11 6.5 430 0.43 
5 425888.5 4729396.5 20 10 7.28 490 0.49 
6 426422.18 4727613.1 17 8.5 7.38 360 0.36 
8 423415.2 4726609.6 20 10 7.3 580 0.58 
9 426927.68 4702650.1 14.6 7.3 7.29 630 0.63 
10 426253.98 4702676.5 21.78 10.89 7.04 700 0.7 
11 426017.04 4702615.3 20.76 10.38 6.68 290 0.29 
12 424288.7 4702239.8 30.08 15.04 8.24 670 0.67 
13 423567 4702049.6 27.44 13.72 8.22 750 0.75 
14 421671.78 4700790.2 19.34 9.67 7.24 370 0.37 
15 419418.24 4699755.5 21.51 10.75 6.72 260 0.26 
16 418614.62 4699396.5 25 12.5 6.5 590 0.59 
17 416709.02 4699157.9 24.8 12.4 6.65 180 0.18 
18 415714.33 4699196.4 31.13 15.56 7.64 590 0.59 
19 414747.16 4701045 24 12 7.32 460 0.46 
20 414546.51 4701464.7 24 12 7.32 490 0.49 
21 415354.86 4698688.2 23 11.5 7.5 450 0.45 
22 414068.77 4698174.9 23 11.5 7.37 530 0.53 
23 412616.4 4697856.8 24 12 7.47 290 0.29 
24 410844.16 4697052.9 23 11.5 7.61 1170 1.17 
25 410501.52 4697923.7 21 10.5 7.44 480 0.48 
26 410719.77 4697799 26 13 7.34 310 0.31 
27 409901.46 4696267.5 21.5 10.75 8.01 1030 1.03 
28 406761.63 4694464.1 21 10.5 7.44 480 0.48 
29 406892.03 4694315.7 20 10 7.05 310 0.31 
30 414572.08 4702216.2 32.5 16.25 7.28 680 0.68 
31 414849.78 4702808.5 17.5 8.75 7.53 370 0.37 
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Table A.3.1. Soil samples and their XY coordinates, saturation percentage (SP), 
field capacity (FC), PH and EC values (Continued). 
 
Sample 

No 
Latitude 

(X) 
Longitude 

(Y) 
SP 
(%) 

FC 
(%) 

PH EC 
(uS/m) 

EC 
(dS/m)

32 415031.27 4702509.5 19 9.5 6.86 340 0.34 
33 414944.99 4702179.6 18 9 7.53 380 0.38 
34 414987.25 4702322.7 36 18 8.16 10460 10.46 
35 413758.88 4702718.2 23 11.5 7.52 280 0.28 
36 412967.26 4704219.4 17 8.5 7.44 1200 1.2 
37 413296.51 4705308 17.5 8.75 6.91 340 0.34 
38 414475.75 4707121.7 18 9 7.35 610 0.61 
39 414792.83 4707805.3 22 11 7.53 330 0.33 
40 412294.93 4704190.7 23 11.5 8.29 750 0.75 
41 412123.3 4704070 22 11 8.15 570 0.57 
42 410889.01 4703133.1 21 10.5 8.15 580 0.58 
43 409854.15 4701926.1 16 8 8.11 640 0.64 
44 410118.53 4700490.7 25 12.5 7.47 240 0.24 
45 410487.47 4699346.5 26 13 8.44 220 0.22 
46 410777.35 4698820.7 39 19.5 8.4 520 0.52 
50 422172.62 4727424.8 23 11.5 7.81 860 0.86 
51 422212.53 4727397.2 24 12 7.81 870 0.87 
52 418912.71 4729983.2 19 9.5 8.01 520 0.52 
53 418594.51 4730554.4 21 10.5 7.06 310 0.31 
54 418514.02 4731016.1 38 19 8.83 2740 2.74 
55 417476.8 4733657.3 34 17 6.91 390 0.39 
56 418193.83 4730349.4 24 12 7.35 570 0.57 
57 415416.28 4731009.9 17 8.5 7.67 390 0.39 
58 412253.86 4731769.9 28 14 7.96 410 0.41 
59 410686.92 4732067.5 20 10 7.87 390 0.39 
60 408363.35 4733590.3 22 11 7.59 250 0.25 
61 406542.5 4732975 29 14.5 7.6 390 0.39 
62 406331.06 4731990.5 24 12 8.15 860 0.86 
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Table A.3.1. Soil samples and their XY coordinates, saturation percentage (SP), 
field capacity (FC), PH and EC values (Continued). 
 
Sample 

No 
Latitude 

(X) 
Longitude 

(Y) 
SP 
(%) 

FC 
(%) 

PH EC 
(uS/m) 

EC 
(dS/m)

63 406156.09 4730817.4 28 14 7.13 280 0.28 
64 405694.8 4729525.3 21 10.5 7.15 400 0.4 
65 404604.87 4727921.7 21 10.5 7.87 470 0.47 
66 403608.37 4725797.8 23 11.5 7.79 890 0.89 
67 403430.18 4723891.5 19 9.5 7.78 420 0.42 
68 404401.12 4721619.5 23 11.5 7.15 300 0.3 
69 405882.81 4719256.3 21 10.5 8.05 510 0.51 
70 406868.4 4717727 24 12 8.04 1030 1.03 
71 408388.72 4707558.1 26 13 7.66 620 0.62 
72 408495.26 4708655.8 30 15 7.26 170 0.17 
73 409219.82 4709510.1 32 16 7.51 290 0.29 
74 408962.63 4709787.6 21 10.5 8.45 1010 1.01 
75 409722.16 4710948.8 29 14.5 7.42 600 0.6 
76 410581.4 4712056.5 23 11.5 7.92 290 0.29 
77 425193.15 4725245.9 28 14 8.3 440 0.44 
78 425025.44 4724556.7 26 13 9.88 1120 1.12 
79 424811.89 4724361.9 32 16 9.96 24400 24.4 
80 424355.15 4723633.5 24 12 8.09 370 0.37 
81 424380.79 4722649 19 9.5 8.29 430 0.43 
82 425197.7 4721033 24 12 7.84 430 0.43 
83 425699.29 4717899.2 19 9.5 7.76 390 0.39 
84 425871.59 4716142.9 23 11.5 7.74 460 0.46 
85 425960.85 4714926.9 24 12 8.43 380 0.38 
86 426037.33 4713176.8 23 11.5 8.28 790 0.79 
87 427108.89 4713900.8 21 10.5 7.54 350 0.35 
88 426086.03 4712601.7 25 12.5 8.44 310 0.31 
89 426142.93 4711680.6 28 14 8.53 320 0.32 
90 425617.18 4710505.5 27 13.5 7.44 760 0.76 
91 425862.26 4709560.5 28 14 7.67 510 0.51 
92 426553.44 4709005.8 22 11 7.76 580 0.58 
93 426866.19 4708889.3 24 12 7.94 470 0.47 
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Table A.3.1. Soil samples and their XY coordinates, saturation percentage (SP), 
field capacity (FC), PH and EC values (Continued). 
 
Sample 

No 
Latitude 

(X) 
Longitude 

(Y) 
SP 
(%) 

FC 
(%) 

PH EC 
(uS/m) 

EC 
(dS/m)

94 425925.04 4708450.5 20 10 7.46 310 0.31 
95 426054.15 4707450.4 25 12.5 7.36 380 0.38 
96 426035.03 4706655.1 23 11.5 7.37 250 0.25 
97 426244.79 4705883.6 25 12.5 7.15 330 0.33 
98 426776.98 4704959.9 26 13 7.38 320 0.32 
100 411721.7 4730550.2 23 11.5 7.85 580 0.58 
101 411380.19 4728612.9 19 9.5 7.54 610 0.61 
102 411389 4726929 20 10 7.53 330 0.33 
103 411774.97 4724880.3 23 11.5 7.63 390 0.39 
104 411958.85 4721803.1 22 11 7.61 370 0.37 
105 411607.96 4720336.8 22 11 7.25 370 0.37 
106 410443 4719557.4 20 10 7.04 290 0.29 
107 409301.52 4719135.5 22 11 7.33 350 0.35 
108 407367.34 4719432 28 14 7.81 410 0.41 
109 423857 4723402.9 18 9 8.28 380 0.38 
110 423125.47 4722782.8 23 11.5 7.47 640 0.64 
111 422452.4 4722349.4 20 10 8.31 360 0.36 
112 421205.9 4721734.9 24 12 7.21 490 0.49 
113 419635.81 4720876.2 28 14 7.62 350 0.35 
114 418378.39 4720229.8 21 10.5 6.92 270 0.27 
115 417502.42 4718077.2 23 11.5 7.68 190 0.19 
116 416984.91 4715862.5 24 12 7.27 170 0.17 
117 409519.47 4702445.9 30 15 8.43 530 0.53 
118 409344.89 4702486.3 26 13 7.61 230 0.23 
119 409069.46 4703190.4 26 13 7.92 370 0.37 
120 408710.97 4704169.8 24 12 8.26 270 0.27 
121 408327.55 4705144.5 22 11 7.45 200 0.2 
122 408258.71 4706210.8 20 10 7.65 350 0.35 
123 407613.56 4707253.9 23 11.5 7.59 290 0.29 
124 406082.2 4719961.2 24 12 8.03 460 0.46 
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Table A.3.1. Soil samples and their XY coordinates, saturation percentage (SP), 
field capacity (FC), PH and EC values (Continued). 
 
Sample 

No 
Latitude 

(X) 
Longitude 

(Y) 
SP 
(%) 

FC 
(%) 

PH EC 
(uS/m) 

EC 
(dS/m)

125 401181.16 4720263.5 19 9.5 8.11 650 0.65 
126 401891.45 4720889.9 21 10.5 7.54 540 0.54 
127 402931.29 4721663.3 27 13.5 7.91 380 0.38 
128 402937.38 4721702.1 24 12 8.43 610 0.61 
129 403470.33 4722067.7 20 10 7.53 370 0.37 
130 403489.42 4722037.1 18 9 8.06 850 0.85 
131 402883.27 4724779.1 21 10.5 7.21 440 0.44 
132 416657.91 4727823.7 17 8.5 7.46 510 0.51 
133 417245.27 4728204.2 19 9.5 7.08 770 0.77 
134 418062.92 4729002.8 17 8.5 7.5 330 0.33 
135 418810 4729336.4 21 10.5 7.16 430 0.43 
136 419185.89 4729536.1 20 10 7.98 460 0.46 
137 420717.46 4724326 19 9.5 7.33 220 0.22 
138 420965.41 4724276.8 21 10.5 8.04 620 0.62 
139 421327.8 4724224.7 23 11.5 7.44 390 0.39 
140 422147.46 4724465.7 17 8.5 7.41 190 0.19 
141 423049.65 4725197.1 24 12 7.83 3720 3.72 
142 427381.18 4732731.7 23 11.5 8.61 530 0.53 
143 426658.09 4733220.6 21 10.5 7.95 420 0.42 
144 425412.24 4732829.9 24 12 7.7 410 0.41 
145 425662.89 4731654.6 19 9.5 8.07 570 0.57 
146 425683.09 4731683.9 19 9.5 7.3 230 0.23 
147 426042.92 4729849.2 21 10.5 6.5 420 0.42 
148 425968.68 4728624.1 21 10.5 7.12 560 0.56 
149 426084.54 4728686 25 12.5 7 300 0.3 
150 426482.65 4727604.4 17 8.5 7.38 360 0.36 
151 426387.26 4727194.6 24 12 7.21 600 0.6 
152 424742.04 4726287.9 18 9 6.4 250 0.25 
153 423634.52 4725882.5 19 9.5 7.3 530 0.53 
154 424152.64 4726384.3 17 8.5 0 310 0.31 
155 428193.07 4715631.7 17 8.5 0 290 0.29 
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Table A.3.1. Soil samples and their XY coordinates, saturation percentage (SP), 
field capacity (FC), PH and EC values (Continued). 
 
Sample 

No 
Latitude 

(X) 
Longitude 

(Y) 
SP 
(%) 

FC 
(%) 

PH EC 
(uS/m) 

EC 
(dS/m)

156 427625.09 4715915.1 19 9.5 7.2 520 0.52 
157 427973.69 4715474.2 17 8.5 7.1 350 0.35 
158 426133.77 4712108.2 15 7.5 0 550 0.55 
159 425623.06 4711016.5 19 9.5 0 250 0.25 
160 425780.62 4710137.8 18 9 0 340 0.34 
161 425953.47 4708881.6 17 8.5 0 740 0.74 
162 425899.97 4708882.5 18 9 0 340 0.34 
163 426015.92 4707870.6 22 11 6.8 360 0.36 
164 426455.35 4705477.9 18 9 0 230 0.23 
165 426896.44 4702641.3 19 9.5 6.5 370 0.37 
166 407057.59 4707440.4 19 9.5 0 670 0.67 
167 405338.26 4708371.3 22 11 0 440 0.44 
168 407099.17 4706095.7 31 15.5 0 500 0.5 
169 406782.44 4706500.2 30 15 0 530 0.53 
170 408105.4 4704253.8 19 9.5 0 240 0.24 
171 407871.3 4703503.9 20 10 0 260 0.26 
172 407486.02 4701886.9 21 10.5 0 270 0.27 
173 407224.03 4700263.2 18 9 0 430 0.43 
174 406892.73 4698757.6 20 10 0 540 0.54 
175 407353.1 4696580.2 19 9.5 8 760 0.76 
176 408929.56 4695946.1 20 10 7.1 760 0.76 
177 408152.77 4696268 21 10.5 0 420 0.42 
178 406318.14 4697027.9 22 11 6.2 360 0.36 
179 405332.87 4697421.3 21 10.5 0 210 0.21 
180 404896.24 4697608.8 28 14 0 4760 4.76 
181 405785.21 4696543.5 21 10.5 0 240 0.24 
182 405764.47 4696574.4 17 8.5 8.2 480 0.48 
183 405399.65 4696082.4 23 11.5 6.4 310 0.31 
184 404927.86 4695668.7 23 11.5 6 190 0.19 
185 404459.85 4695017.9 33 16.5 7.7 920 0.92 
186 403694.64 4694173.1 19 9.5 7.5 1880 1.88 
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Table A.3.1. Soil samples and their XY coordinates, saturation percentage (SP), 
field capacity (FC), PH and EC values (Continued). 
 
Sample 

No 
Latitude 

(X) 
Longitude 

(Y) 
SP 
(%) 

FC 
(%) 

PH EC 
(uS/m) 

EC 
(dS/m)

187 403227.03 4692649.6 20 10 7.3 450 0.45 
188 403211.77 4691923.2 22 11 7.2 350 0.35 
189 403954.43 4691811 21 10.5 8.1 500 0.5 
190 403943.17 4691854.1 19 9.5 8 690 0.69 
191 405440.78 4692872.6 38 19 7.8 890 0.89 
192 406271.42 4693505.5 22 11 7.3 450 0.45 
193 407801.61 4694698.7 20 10 7.3 390 0.39 
194 417839.79 4699197.6 26 13 6.5 590 0.59 
195 420708.95 4700330.8 18 9 7.3 660 0.66 
196 422735.11 4701180.6 19 9.5 7.5 460 0.46 
197 425314.18 4726403.4 26 13 8.6 12460 12.46 
198 425197.87 4725922.8 23 11.5 8.6 82800 82.8 
199 424462.08 4724346.2 25 12.5 8.6 27500 27.5 
200 421690.61 4721690.2 26 13 8.5 420 0.42 
201 416253.58 4715294.6 25 12.5 6.3 410 0.41 
202 415306.92 4714382.1 35 17.5 7.7 550 0.55 
203 413780.43 4713957.4 22 11 6.8 830 0.83 
204 413477.89 4713701.7 26 13 6.2 180 0.18 
205 412733.85 4713277.4 22 11 6.8 830 0.83 
206 407566.18 4715316.7 33 16.5 8.6 10500 10.5 
207 407816.6 4716032.2 31 15.5 8.43 10530 10.53 
208 408710.94 4715853.3 36 18 8.16 11270 11.27 
209 409641.06 4714440.3 31 15.5 8.44 10480 10.48 
210 408432.14 4714335.7 34 17 8.63 11070 11.07 
211 409891.48 4713367 36 18 8.57 10860 10.86 
212 408979.25 4712472.7 34 17 8.73 11070 11.07 
213 408192.23 4712723.1 30 15 8.81 10660 10.66 
214 415939.02 4709556.7 22 11 7.12 790 0.79 
215 416740.94 4712447.6 20 10 7.1 830 0.83 

 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


