


AN ABSTRACT OF THE THESIS OF

Zhangxiang Hu for the degree of Master of Science in Computer Science presented on

June 3, 2015.

Title: RANDOM ACCESS MACHINE IN SECURE MULTI-PARTY COMPUTATION

Abstract approved:

Michael J. Rosulek

Secure multi-party computation (MPC) is a conceptual framework in cryptography. It

allows distrusting parties engage in a protocol to perform a computational task while

still maintain some secure properties. Most existing approaches are required to interpret

functions as a boolean circuit. With the recent state-of-art circuit garbling scheme, the

performance are significantly improved. However, boolean circuit still has its limitations

in practical usage, especially when the input data size is enormous.

In this thesis, we focus on another technique in MPC which is called random-access

machines (RAM program). We first describe a zero-knowledge proof system in which a

prover holds a large dataset M and can repeatedly prove NP relations about that dataset.

This system achieves sublinear amortized cost. Second, we present the first practical

protocols for evaluating RAM programs with security against malicious adversaries. The

extra overhead of obtaining malicious security for RAM programs is minimal and does

not grow with the running time of the program.



c©Copyright by Zhangxiang Hu
June 3, 2015

All Rights Reserved



RANDOM ACCESS MACHINE IN SECURE MULTI-PARTY
COMPUTATION

by

Zhangxiang Hu

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Presented June 3, 2015

Commencement June 2016



Master of Science thesis of Zhangxiang Hu presented on June 3, 2015.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon
State University libraries. My signature below authorizes release of my thesis to any
reader upon request.

Zhangxiang Hu, Author



ACKNOWLEDGEMENTS

Great thanks go to my advisor Mike Rosulek for his advising during my studies, this

thesis would never possible without him. He inspired me a lot on ethics both in academia

and research, and gave a lot of insightful comments on technical writings in cryptography.

It is my honor to be his student.

I am grateful to the my thesis committee members, Attila Altay Yavuz, Amir Nayyeri,

Rakesh Bobba and Mike Pavol for their helpful feedback on this thesis. Also thanks to

my collaborators and co-authors, Arash Afshar and Payman Mohassel.

Finally but most importantly, I would like to thank my family for their great support

in my life, especially my wife Xueni Guo who undertook the unpredictable journey to

USA, she means the whole world to me.



TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Security Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Adversary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Ideal Functionality and Protocol . . . . . . . . . . . . . . . . . . . 3

1.1.3 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 ORAM Application in Zero-knowledge Proof . . . . . . . . . . . . 5

1.2.2 RAM Program with Malicious Security . . . . . . . . . . . . . . . 6

2 Preliminary 7

2.1 Basic Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Hash Function and Strongly Universal Hashing . . . . . . . . . . . . . . . . 8

2.3 Garbled Circuit and Garbling Scheme . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Garbled Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Oblivious Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Garbling Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Oblivious RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Commitment and Zero-knowledge proof . . . . . . . . . . . . . . . . . . . . 15

2.5.1 Commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.2 Zero-knowledge Proof . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Zero-Knowledge Proofs by using Oblivious RAM program 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Our results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Authenticated Array . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Committing Private Function Evaluation . . . . . . . . . . . . . . 20

3.2.3 Garbling Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Protocol overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Additional Notation and Helper Routines . . . . . . . . . . . . . . . . . . . 25

3.5 Detailed protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Security proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



TABLE OF CONTENTS (Continued)
Page

4 RAM Program with Malicious Security 35

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Garbling Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Batching Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 High-level Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Detailed Protocol Description . . . . . . . . . . . . . . . . . . . . . 44

4.3.3 Efficiency and Parameter Analysis . . . . . . . . . . . . . . . . . . 48

4.3.4 Security Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3.5 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Streaming Cut-and-choose Protocol . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 High-level Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.2 Detailed Protocol Description . . . . . . . . . . . . . . . . . . . . . 58

4.4.3 Efficiency and Parameter Analysis . . . . . . . . . . . . . . . . . . 61

4.4.4 Security Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.5 Integrating Cheating Recovery . . . . . . . . . . . . . . . . . . . . 66

5 Conclusion 72

Bibliography 73

Appendices 80

A Streaming Cut-and-choose Protocol Efficiency . . . . . . . . . . . . . . . . . 81

B Concrete Bounds for Batch Preprocessing Protocol . . . . . . . . . . . . . . 85



LIST OF FIGURES
Figure Page

2.1 And gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 1-out-of-2 oblivious transfer functionality Fot . . . . . . . . . . . . . . . . 10

2.3 Ideal functionality Fotc for committing oblivious transfer. . . . . . . . . . 11

2.4 Description of garbling scheme . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5 Ideal functionality Fcom for commitment . . . . . . . . . . . . . . . . . . . 16

2.6 XOR-homomorphic commitment functionality Fxcom. . . . . . . . . . . . . 16

2.7 Ideal functionality FRZK for zero-knowledge proofs of NP-relation R . . . . 17

3.1 Ideal functionality FAut for authenticated array access. . . . . . . . . . . . 20

3.2 Ideal functionality Fcpfe for committing private function evaluation. . . . 20

3.3 Summary of variables and notation used in the protocol. . . . . . . . . . . 27

3.4 Ideal functionality Finit for initializing an ORAM program along with wire

labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Illustration of MkBucket(B = {1, 2, 3}, hd = 1). . . . . . . . . . . . . . . . 44

4.2 Overview of soldering and evaluation steps performed in the online phase. 45

4.3 Wire-label reuse within a single thread i, in the streaming cut-and-choose

protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Cheating recovery component 1: MatchBox. Where ∆t[i] denotes the ith

bit of ∆t and m = |∆t|. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 Cheating Recovery component 1: Garbler Cheating Detection. . . . . . . 70

4.6 Final Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



LIST OF TABLES
Table Page

2.1 Garbled table for AND gate . . . . . . . . . . . . . . . . . . . . . . . . . . 9



LIST OF APPENDIX TABLES
Table Page

A.1 Comparison of “overhead” of naive implementation with streaming cut-

and-choose approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



Chapter 1: Introduction

The concept of secure two-party computation in the presence of semi-honest adversary

was introduced by Yao in [55]. It allows two parties to jointly perform computations

on their private inputs without leaking any information about their input beyond what

is deducible from the output of computation. Namely, there are two parties Alice and

Bob with their respective private input x and y, and they wish to cooperatively evaluate

a polynomial-time computable function f(x, y) = (f1(x, y), f2(x, y)) such that Alice re-

ceives output f1(x, y) and Bob receives output f2(x, y). Besides the output, they should

learn no useful information about the other parties’ private input. A more general case

is multi-party computation (MPC) rather than two parties. There are many situations

in the real world that can take advantage of multi-party computation. For example, in

electronic voting, voters want to choose a new president but are unwilling to reveal who

they voted for. Another common situation is an auction, all parties want to find out the

highest bidder but they do not want let others know their pricing strategy.

A naive way to achieve this is to find a trusted third party to gather all inputs, do the

computation and announce the results to all parties. In the real world, a trusted third

party can be a lawyer, a well-known company or government. However, sometimes it is

hard to find a trusted third party, so we want a good “strategy” that can simulate the

trusted party and perform the computation. Normally, a good “strategy” must achieve

some security properties such as correctness, privacy, authenticity etc.

In cryptography, such strategy is called protocol. It implements the functionality of

a trusted third party: performing the computation while still keeping the privacy of each

party’s input. Originating from the works [55, 16], there are significant improvements in

designing and implementing a practical secure computation protocol. These techniques

are mostly restricted to functions represented as boolean or arithmetic circuits. However,

the conversion to circuit may lead to a huge blowup both in circuit size and running time.

In addition, in the real world, the majority of applications we encounter in practice

are more efficiently captured using random-access machine (RAM) programs that allow

constant-time memory lookup. For example, to search an element in a large database,



2

efficient programs such as binary search can run in sub-linear time in the size of data.

To convert it to a circuit, there are known polynomial transformations between RAM

programs, Turing Machines and circuits. Given a RAM program with running time T ,

we can convert it to a Turing machine with running time O(T 3) [10]; and such Turing

machine can be transformed to a circuit of size O(T 3 log T ) [44]. Therefore, by converting

a RAM program to a circuit, it incurs an expensive time lose.

An variant of RAM program is oblivious RAM (ORAM). ORAM is a secure im-

plementation of RAM program computation. It was first introduced by Goldreich and

Ostrovsky [18] to protect software from illegitimate duplication. Different from the regu-

lar RAM program, an ORAM program can hide the information of both data and access

pattern. In section 2.4, we present more details about ORAM programs.

1.1 Security Concerns

In this section, we introduce some fundamental notions in cryptography.

1.1.1 Adversary

To model security, we first need to model our adversary. That is, if a party is corrupted

by an adversary, what can the adversary do when performing the computation? The

security definition depends on the assumptions of adversary’s ability. In general, there

are two main adversary models that have been considered:

• Semi-honest: Also called “passive”. In this model, the adversary follows the pro-

tocol correctly as an honest party, but tries to learn some unauthorized information

from the transcript of messages it received during the computation.

• Malicious: Also called “active”. In contrast to the semi-honest model, the mali-

cious adversary can deviate arbitrarily from the protocol during the computation.

Usually, we prefer our protocol to protect against malicious adversaries. In this

case, it guarantees that an attack to the protocol can succeed only with negligi-

ble probability. However, it also requires more cost and has less efficiency than

semi-honest model.



3

Another important distinction of adversary in MPC is between adaptive and non-

adaptive. An adaptive adversary allows to choose parties to be corrupted throughout

the computation while a non-adaptive adversary allows to control arbitrary but fixed set

of corrupted parties.

1.1.2 Ideal Functionality and Protocol

Functionality defines what a trusted third party can do for the computation. We usually

refer it as in the ideal world, it describes what kind of computation task we want to

achieve. The ideal functionality repeatedly receives inputs from all parties and sends

back appropriate output values to them. It guarantees that all parties’ outputs have the

expected properties with respect to their inputs.

A functionality is called reactive if new input values are received and new output

values are generated throughout the computation. 1 Otherwise a functionality is called

non-reactive if it is just waiting for inputs from all parties and sends corresponding

outputs back to them.

A protocol π for a functionality F is an algorithm that consists of all parties ex-

changing information with each other to compute the same result as the functionality. A

protocol with n participants is called an n-party protocol. We usually refer to protocols

in the real world, it implements the task of a ideal functionality.

1.1.3 Security Analysis

To analyze the security of the protocol, we usually use real/ideal world paradigm, intro-

duced by Goldreich, Micali, and Wigderson [16]. In this paradigm, the real world has all

parties engage in a protocol while the ideal world has all parties simply send their input

to a trusted third party (the functionality) who performs the computation. We say that

the protocol securely implements the functionality if the real world is as secure as the

ideal world. Namely, let S be a simulator (usually is an algorithm) that takes whatever

the adversary can see in the ideal world, S simulates the view that the adversary sees

in the real world. We use viewS to denote the simulated real world view described by

simulator S, and use viewR to denote the real view in the real world. If one can not

1Even if the new inputs are chosen based on previous outputs.



4

efficiently distinguish between viewS and viewR, then the adversary learns nothing new

from the protocol execution. In other words, if an adversary can attack the real world

interaction, it can also attack the ideal world interaction and achieve the same effect.

In multi-party computation, all parties’ inputs are chosen independent of other par-

ties’ input. In the ideal world, the trusted third party takes all parties’ input, performs

the computation and sends the corresponding result to each party. Whatever can be

seen in the real world for each party must be also learned only from party’s output in

the ideal world. Both views should be computational indistinguishable. We will discuss

more about indistinguishability in section 2.1.

The security described above is called standalone security. However, it only address

the case that a single protocol execution is considered and it does not guarantee the

security when a protocol instance may run concurrently with other protocols. Thus, we

adopt the framework by Canetti [8] which is called Universally Composable Security or

UC-Security. Here we only give a brief overview, and refer the reader to [8] for the full

definition.

Environments. This framework uses the notion of an external environment to model

contexts in which a protocol might be asked to execute. The environment interacts

with all parties throughout the execution and tries to help the adversary. It sends some

inputs to parties and receives outputs from them. Indeed, environment interacts with

the protocol execution twice.

• First, it sends arbitrary inputs to the parties and to the adversary, and then it

receives the outputs from the parties and the adversary.

• Second, the environment outputs a single bit, which indicates whether the en-

vironment thinks that it has interacted with the real protocol or with the ideal

functionality.

Dummy protocol. An important protocol in this UC framework is called the dummy

protocol, denoted by πdummy, it prescribes the same behavior for each party as they would

execute protocol π in the real world.



5

Execution. Let F be a functionality, π be a protocol, A be an adversary, and Z be an

environment, we define EXEC(F , π,A,Z, k) to be the random variable of the environment

Z’s output, it can be only 0 or 1. Here k is the secure parameter.

Definition 1 ([48]). Let F and G be functionalities, and π be a protocol, we say π is

a secure realization of F in the G-hybrid setting if for all PPT real-world adversaries

A, there exists another PPT adversary (called a simulator) S such that for all PPT

environments Z, we have

Pr[EXEC(G, π,A,Z, k) = 1] ≈ Pr[EXEC(F , πdummy,S,Z, k) = 1]

Here we refer π and G as in the real world, while refer πdummyand F as in the ideal

world. This definition implies that the real world is as secure as the ideal world. In other

words, whatever an adversary can do to attack against π in the real world can also be

done in the ideal world.

Now we come up with the fundamental result in the UC framework as follows:

Theorem 2 ([8]). If π is a secure realization of F in the G-hybrid world, and ρ is a

secure realization of G in the H-hybrid world, then πρ is a secure realization of F in

the H-hybrid world, where πρ is the protocol π in which each external interface to an

instance of G is replaced with an instance of ρ.

In other words, if G is a functionality in protocol π, we can always replace G with its

secure protocol ρ and vice versa.

1.2 Our contribution

In this section, we present a brief overview about what are achieved in this thesis.

1.2.1 ORAM Application in Zero-knowledge Proof

In chapter 3, we present a practical application of ORAM in zero-knowledge proof. We

describe a zero-knowledge proof system in which a prover holds a large dataset M and

can repeatedly prove NP relations about that dataset. Each proof requires only constant

number of rounds of interaction and has sublinear amortized cost in |M |. In addition,



6

the storage requirement between proofs for the verifier is constant. Our construction

combines an Oblivious RAM and garbled circuits, but without using cryptographic op-

erations inside the garbled circuits as in current garbled-RAM constructions, and thus

has a high efficiency in communication/computation complexity.

This work represents joint work with Mike Rosulek from Oregon State University

and Payman Mohassel from Yahoo Labs, and will appear in conference CRYPTO 2015.

1.2.2 RAM Program with Malicious Security

In chapter 4, we present the first practical protocols for evaluating RAM programs with

security against malicious adversaries. Our RAM protocols achieve ratios matching the

state of the art for circuit-based 2PC, the extra overhead of obtaining malicious security

for RAM programs (beyond what is needed for circuits) is minimal and does not grow

with the running time of the program. We introduce two protocols, which use different

approaches for reusing wire labels. The first protocol uses ideas from the LEGO paradigm

for 2PC [41, 13] and the second protocol directly reuses wire labels without soldering.

We also show how to incorporate the input recovery technique of [32] for reducing the

number of circuits by a factor of three.

This work represents joint work with Arash Afshar from University of Calgary, Pay-

man Mohassel from Yahoo Labs and Mike Rosulek from Oregon State University, and is

appeared in conference EUROCRYPT 2015 [1].



7

Chapter 2: Preliminary

In this section, we introduce some basic notations and preliminary notions and definitions

that used throughout this work.

2.1 Basic Notation

Let N denotes the set of natural numbers {0, 1, 2, . . .} and let k ∈ N be the security

parameter. We say a function ε : N → [0, 1] is negligible if for any polynomial p, there

exists a large enough k′ such that for all k > k′, ε(k) < 1/p(k). We say that a probability

Pr(k) is overwhelming if 1− Pr(k) is a negligible function in k.

Let D0 and D1 be two discrete probability distributions. A distinguisher A is a de-

terministic algorithm that outputs either 0 or 1. We define the bias of A in distinguishing

D0 from D1 as:

bias(A,D0,D1) =
∣∣∣Pr[x← D0 : A(x) = 1]− Pr[x← D1 : A(x) = 1]

∣∣∣
and define the statistical distance between distributions D0 and D1 as:

∆(D0,D1) = max
A

bias(A,D0,D1)

We say that two distributions D0 and D1 are computationally indistinguishable if for all

polynomial-time distinguisher A, the bias of A in distinguishing D0 from D1:

Pr[x← D0 : A(x) = 1]− Pr[x← D1 : A(x) = 1]

is negligible.

For an integer n, we define [n] = {1, 2, . . . , n}.



8

2.2 Hash Function and Strongly Universal Hashing

A hash function h : {0, 1}∗ 7→ {0, 1}n is any function that takes arbitrary-length input

and has fixed length output. We say x, x′ with x 6= x′ are a collision under h if h(x) =

h(x′). And h is collision resistant if for all PPT algorithms, the probability that we can

find a collision in h is negligible.

A hash function family H is a set of hash functions where each hash function in H
has the same output length. We also require the collision resistant property, in a hash

function h which is chosen uniform randomly from the family. Notice that the difficulty

of finding collisions now rests in the random choice of functions. Even an adversary can

know every fact about H, it still doesnt know which h ∈ H it is going to be challenged

to find a collision.

Let H be a hash function family and each function h ∈ H has the form h : A 7→ B,

then H is strongly universal if for all distinct a, a′ ∈ A and all (possibly equal) b, b′ ∈ B,

Pr
h←H

[h(a) = b ∧ h(a′) = b′] = 1/|B|2

One choice of strongly universal families is linear functions. In a finite field F, define

function fa,b(x) 7→ ax+b, a, b ∈ F, then the class of functions {ha,b|a, b ∈ F} is a strongly

universal function family.

2.3 Garbled Circuit and Garbling Scheme

2.3.1 Garbled Circuit

The first solution for secure two-party computation was also introduced by Yao [56].

The idea is by using the technique garbled circuits. Denote party P1 as the sender with

input x and P2 as the receiver with input y. Let f to be the function that they wish

to compute. For simplicity, we assume f1(x, y) = f2(x, y). The first step is to express

f as a boolean circuits Cf . Then P1 garble the circuit and sends it to P2. Such circuit

reveals nothing since it is encrypted. P2 evaluates the circuit based on input (x, y) to

obtain the output f(x, y) and then announce the results. During the evaluation, P2

should only learn the output f(x, y). Other messages that P1 and P2 receive must leak

no information.



9

Consider the evaluation of a circuit, a circuit is computed gate by gate, from the

input wire to the output wire. Consider a fan-in to 2, and fan-out to 1 gate g in figure

2.1, the gate input wires w1, w2 has value α, β ∈ {0, 1}, then we can obtain the value

g(α, β) of gate output wire w3. We keep doing this until all gates are evaluated. The

value of circuit outputs wires are the output of circuit.

w1

w2
w3

Figure 2.1: And gate

Next we show how to garble a circuit and how to evaluate it. Consider the same

AND gate g with input wires w1, w2 and output wire w3. The general idea of Yao’s

protocol is to generate two keys(also called wire labels) for each wire, and it does not

reveal anything about the original wire values. For the AND gate g, we generate two

random cryptographic keys k0i and k1i for wire wi. Here k0i represents the value 0 and k1i
represents the value 1. Notice that if one receives kσi , σ ∈ {0, 1}, it can not tell σ is 0 or

1 since the keys have identical distribution. Now we have k01, k
1
1 for input wire w1, k

0
2, k

1
2

for input wire w2 and k03, k
1
3 for output wire w3. Next we have the output value k03, k

1
3

encrypted under the corresponding keys from the input wires. See the garbled table for

AND gate g:

Input wire w1 Input wire w2 Output wire w3 Encryption table

k01 k02 k03 Enck01(Enck02(k03))

k01 k12 k03 Enck01(Enck12(k03))

k11 k02 k03 Enck11(Enck02(k03))

k11 k12 k13 Enck11(Enck12(k13))

Table 2.1: Garbled table for AND gate

Here Enc is a private-key encryption scheme that is secure under chosen plaintext

attacks. An example for Enc suggested in [34] is:

Enck(x) = 〈r, fk(r)⊕ x0n〉



10

• On input (x0, x1) from party P1, and input σ ∈ {0, 1} from P2, sends delayed
output xσ to P2 and ⊥ to P1.

Figure 2.2: 1-out-of-2 oblivious transfer functionality Fot

where x ∈ {0, 1}n, r ∈R {0, 1}n, fk : {0, 1}n → {0, 1}2n for k ∈ {0, 1}n is a pseudorandom

function. Now if we have two input wire keys, we can obtain the corresponding output

wire key by decrypting the four entries in the garbled table. It is guaranteed that only

one ciphertext can be decrypted correctly. Meanwhile, the original value of wire wi is still

hidden. This is because the fact that the evaluator does not know the key is associated

with zero or one.

To securely evaluate function f , P1 generates the circuit Cf and sends her wire labels

to P2 according to her input x. Now if P2 knows his corresponding wire labels, then P2

can evaluate the circuit. Notice that P1 has both wire labels and P2 has his own input

value y. However, P1 does not know which wire label he should send to P2 since he can

not know y. Thus, we need a technique to let P2 receives his corresponding wire labels.

2.3.2 Oblivious Transfer

To solve the above problem, Robin introduced oblivious transfer (OT) in [46]. Generally

speaking, a k-out-of-n OT is a protocol in which the sender has a list of n messages

{m1, · · ·mn}, the receiver receives k of them without learning anything about other n−k
messages. Also, the sender would have no idea about which k messages the receiver has

received. Throughout this work, we will use 1-out-of-2 OT as defined in figure 2.2. In

standard 1-out-of-2 OT, party P1 inputs two messages (x0, x1), and party P2 has input

σ. After running oblivious transfer, P receives xσ.

Committing oblivious transfer The definition of committing oblivious transfer was

first given by Kiraz and Schoenmakers [27]. It works the same as a standard OT except

that the “committing” aspect allows party P2 to reveal (x0, x1) at a later time. The

ideal functionality Fotc is defined in Figure 2.3.



11

• Initialization: Fotc takes private input (x0, x1, id) from party P1 and the private
input σ ∈ {0, 1} from party P2, then stores (x0, x1, id, σ) internally and output
committed.

• Transfer: On command (transfer, id) from P1, Fotc sends
(transferred, xσ, id) to P2.

• Open: On command (open, id) from P1, Fotc sends (opened, x0, x1, id) to P2.

Figure 2.3: Ideal functionality Fotc for committing oblivious transfer.

2.3.3 Garbling Scheme

In section 2.3.1, we have a brief overview about how to use garbled circuit to implement

two party secure computation. We have to interpret f as a circuit, and then garble such

circuit and evaluate it. In this section, we present a high level abstraction of the garbled

circuit from [5]. The abstraction formalize garbled circuits into a primitive which they

call garbling scheme. Bellare et al. abstract versatile syntax and security definitions such

that any garbled circuit satisfies their abstraction.

2.3.3.1 Syntax

A garbling scheme can be defined as a five-tuple algorithm: G = (Gb,En,De,Ev, ev).

Denote f : {0, 1}n → {0, 1}m to be the function that we want to evaluate, let x to be the

original input and y = f(x) to be the final output. Then Gb is a randomized algorithm

that transform f into a new triple of functions (F, e, d). En is an algorithm that takes

(e, x) as the input and outputs garbled input X = En(e, x). Ev takes input (F,X) and

outputs the garbled output Y = Ev(F,X). De is an algorithm that transforms garbled

output Y to the final output y = De(d, Y ) and we have De(d, Y ) = ev(f, x). See figure

2.4 from [5]. Specifically, for a garbled circuit, we say G is a circuit garbling scheme if

ev interprets f as a circuit.

Definition 3. A garbling scheme G = (Gb,En,De,Ev, ev) satisfies correctness if for all

f and for all x, it holds the condition that

De(d,Ev(F,En(e, x))) = ev(f, x)



12

Gb En

Ev

De

ev

1k

f

e

F

X = e(x)

d

Y = F (X)

y = d(Y )

x

y = f(x)

x

Figure 2.4: Description of garbling scheme

2.3.3.2 Security

In [5], the security of a garbling scheme can be abstracted into three properties: Privacy,

Obliviousness and Authenticity. Let Φ be the side information function that represents

the information we expect to reveal for the garbling scheme.

1. Privacy For a simulation based privacy, it requires that whatever can be learned

from (F,X, d) can also be learned by just knowing the final output y and side

information function Φ. More formally, we define privacy as follows.

Definition 4. A garbling scheme G = (Gb,En,De,Ev, ev) satisfies privacy property

if for every function f , input x, side information function Φ, and for all PPT

adversary A, there exists a simulator S such that the following difference:∣∣∣Pr[A(S(1k, y,Φ(f)) = 1]− Pr[A(F,X, d) = 1] : (F, e, d) = Gb(1k, f), X = En(e, x)
∣∣∣

is negligible in k.

2. Obliviousness. Informally, obliviousness means when given Y = En(F,X) but

not d, it does not leak any information about f, x, y beyond Φ(f).

Definition 5. A garbling scheme G = (Gb,En,De,Ev, ev) satisfies obliviousness

property if for every function f , input x, side information function Φ, and for all



13

PPT adversary A, there exists a simulator S such that the following difference:∣∣∣Pr[A(S(1k,Φ(f)) = 1]− Pr[A(F,X) = 1] : (F, e, d) = Gb(1k, f), X = En(e, x)
∣∣∣

is negligible in k.

3. Authenticity. Roughly speaking, authenticity means when given F and X, the

adversary can not forge a valid Y such that Y 6= Ev(F,X) and d(Y ) 6= ⊥.

Definition 6. A garbling scheme G = (Gb,En,De,Ev, ev) satisfies authenticity

property if for every function f , input x, side information function Φ, and for all

PPT adversary A, the following probability:∣∣∣Pr[De(d, Y ) 6= ⊥, Y 6= Ev(F,X) : (F, e, d) = Gb(1k, f), X = En(e, x), Y = A(F,X)]
∣∣∣

is negligible in k.

2.4 Oblivious RAM

Oblivious RAM (ORAM) programs were first introduced by Goldreich and Ostrovsky

[18] to protect software from illegitimate duplication. This technique allows the CPU to

hide all information about a RAM program, both the memory contents it accessed and

its corresponding access patterns. In particular, if an adversary is eavesdropping the

communication between the CPU and the memory, it can not tell what data the CPU

is accessing and what memory the CPU is really trying to access. Theses information

should look random to the adversary. The probability distribution of the access pattern

must depend only on the input length rather than the input itself.

A more general application of ORAM is between a client with a limited memory and

an untrusted server with a large memory. The client wants to store a large dataset on

the server side and operate the data while still maintaining the privacy. An intuitive

way is to encrypt the dataset before storing it to server. However, it still leaks the access

pattern which contains significant sensitive information. Therefore, we use oblivious

RAM program here to hide the information of both data and access pattern. Notice

that an adversary can observe the physical locations that a client has accessed, but it



14

reveals nothing about the virtual memory and the physical access sequence should look

random to the adversary.

In general, a ORAM program can be implemented as a circuit and running a ORAM

program is identified as evaluating such corresponding deterministic next-instruction

circuit Π. Assume that there is a ORAM program Π with its logical memory M . First

we invoke a initialize function Initialize to encode the logical memory M into the physical

memory array M̂ :

(M̂, st)← Initialize(1k,M)

At each evaluation step, Π checks its current ORAM state st, takes input of Σ and

block where Σ is external input and block is the physical memory block data, outputs an

instruction inst, next ORAM state and the corresponding data that is used for updating

the memory block. The syntax of next-instruction circuit Π of a ORAM program is

defined as follow:

(inst, st, block)← Π(st,Σ, block)

The inst variable can only have one of the three forms: (read, i), (write, i), or (halt, z).

(read, i) means the ORAM program to read data from block M̂ [i] and assign it to block

while (write, i) means the ORAM program to write data block to the memory block

M̂ [i]. (halt, z) indicates the ORAM program to terminate and output the final result

z.

More formally, let I denote the access sequence and r ← {0, 1}k be the external

random input to the ORAM program, an execution of an ORAM program Π on input

x with logical memory M is defined as follows:

RAMEval(Π,M, x)

I := ∅, (M̂, st)← Initialize(1k,M)

(inst, st, block) := Π(st, x,⊥)

do until inst has the form (halt, z):

block := [if inst = (read, id) then M̂ [id] else ⊥]

r ← {0, 1}k, (inst, st, block) := Π(st, r, block)

if inst = (write, id) then M̂ [id] := block

I := I‖inst
output z



15

The security definition of an ORAM program Π requires that the memory access

sequence I does not leak any information about the data set M or the input x. In other

words, let I(Π,M, x) be the random variable denotes the sequence of values taken by

the inst variable in RAMEval(Π,M, x), then there exists a simulator S such that, for all

x and initially empty M̂ , the output S(1k, z) is indistinguishable from I(Π,M, x) where

z is the final output of the RAM program on inputs x.

Definition 7. We say that Π is a secure ORAM if there exists an efficient sim-

ulator S such that, for all M , all (M̂, st) ← Initialize(1k,M), all x and z such that

z = RAMEval(Π,M, x) and for all PPT A, the following difference:∣∣∣Pr[A(S(1k, z) = 1]− Pr
r

[A(I(Π,M, x)) = 1]
∣∣∣

is negligible in k.

2.5 Commitment and Zero-knowledge proof

2.5.1 Commitment

The notion of commitment scheme is one of the most fundamental tool in cryptography.

It allows one party to create a commitment c to a secret message m while still hiding

the message from other parties, but later the party can choose to open the commitment

and disclose m. It requires that the commitment must binding, which means once the

commitment c is made, it is impossible to find another message m′ such that m′ and m

has the same commitment c. The commitment functionality Fcom is defined in figure

2.5.

In addition to a standard commitment functionality Fcom, an XOR-homomorphic

commitment scheme allows party P1 to disclose the XOR of two or more committed

messages while keeps hiding the individual messages. The XOR-homomorphic commit-

ment functionality Fxcom is defined in figure 2.6.



16

Let M denote the space of valid messages and the functionality is parameterized by
an integer k.

• Commit: On input (commit,m) from party P1 with m ∈M and m ∈ {0, 1}k, if
there is no value m already stored in memory, then Fcom stores m internally and
outputs committed to party P2.

• Open: On input open from P1, if value m exists in memory, then Fcom outputs
(opened,m) to party P2.

Figure 2.5: Ideal functionality Fcom for commitment

The functionality is initialized with internal value i = 1. It then repeatedly responds
to commands as follows:

• On input (commit,m) from P1, store (i,m) internally, set i := i+ 1 and output
(committed, i) to both parties.

• On input (open, S) from P1, where S is a set of integers, for each i ∈ S find
(i,mi) in memory. If for some i, no such mi exists, send ⊥ to P2. Otherwise,
send (open, S,

⊕
i∈Smi) to P2.

Figure 2.6: XOR-homomorphic commitment functionality Fxcom.

2.5.2 Zero-knowledge Proof

In zero-knowledge proof, a prover wants to convince a verifier that some NP statement

x is true by using a valid witness w, and the verifier learns nothing except the validity

of the statement. Typically, for any language L ∈ NP with some binary relation RL, for

all valid instances x ∈ L, there exists a string w such that RL(x,w) = 1. Otherwise,

if x /∈ L, then for all string w we have RL(x,w) = 0. The ideal functionality FRZK is

defined in figure 2.7.

A zero-knowledge proof protocol must satisfy the following three properties:

• Completeness The prover can always convince the the verifier of true statements.

• Soundness False statement will not be accepted by the verifier, and the dishonest

prover will be caught cheating with overwhelming probability.

• Zero-knowledge Roughly speaking, zero-knowledge means the verifier learns noth-



17

FRZK is parametrized by a relation R. It involves two parties: a prover P and a verifier
V .

• Setup: On input (init,M) from P , if no previous init command has been given,
then FRZK stores M internally.

• Proof: On input (prove, sid, x, w) from P , if R(M,x,w) = 1, output
(accept, sid, x) to V .

Figure 2.7: Ideal functionality FRZK for zero-knowledge proofs of NP-relation R

ing during the proof except that the statement is true. Formally, we require that

there exists a efficient simulator S such that, for all PPT verifier, S can simulate

all interactions of verifier with the prover.



18

Chapter 3: Zero-Knowledge Proofs by using Oblivious RAM

program

3.1 Introduction

Since zero-knowledge proof plays such a important role in cryptography, there are many

fundamental results show that for all languages in NP, there are zero-knowledge proofs,

[12, 17, 23, 45]. However, it shows that they are too inefficient to be used in practical

applications in the real world.

Besides these protocols of mainly theoretical interested, the recent work [49, 11, 7, 20]

also introduce various protocols that are efficient enough for real world use. But all of

their constructions were practical only for proving statements about certain algebraic

structures such as proving knowledge of and relations for discrete logarithms, RSA public

keys, and bilinear equations.

The recent work [24] combines zero-knowledge proof and garbled circuit and proposes

a new approach that is suitable for general-purpose statements represented as boolean

circuits. The general idea is to interpret the binary relationRL as a function fR such that

for some statement x, fR(w) = 1 if w is a valid witness of x (which means RL(x,w) = 1)

and otherwise fR(w) = 0. Then we can use Yao’s garbled circuit technique to garble

fR so both parties can evaluate the circuit. The security property of garbled circuit

will guarantee the completeness, soundness and zero-knowledge requirements in zero-

knowledge proofs.

In addition, a key observation here is that only the prover has input w to function fR

while the verifier does not, which means there is no security needed for the verifier. Thus,

some very efficient garbling schemes can be applied here. [29] shows that the number

of ciphertexts we need for each gate in a garbled circuit can be reduced to 0, 1, or 2.

It significantly reduce the communication complexity and computational complexity,

achieves a very practical use in the application world.



19

3.1.1 Our results

Garbled circuit-based zero-knowledge proofs are very efficient and with the state-of-

art circuit garbling technique [29, 30], zero-knowledge proofs can scale to statements

of billions of gates. However, it still has limitations in some scenario. For example, a

prover commits to a dataset S and wants to prove membership and non-membership

statements x (x ∈ S and x /∈ S). Since garbled circuit is one time, we must construct a

new circuit for each statement. Otherwise, the authenticity property of garbled circuit

will not be guaranteed. This approach is so cumbersome and it becomes much worse

when the dataset S is very large.

In our work, we introduce a new approach for zero-knowledge proof to address the

problem that described above. We combines oblivious RAM and garbled circuit but

without using cryptographic operations inside the garbled circuits as in current garbled-

RAM constructions. It requires only a constant number of rounds of interaction. Also,

in general we do not have to access the whole dataset, we only need the memory blocks

that will be used in ORAM program. Therefore, the size of circuit ORAM is much

smaller than [24].

Let Π be a oblivious RAM program and M is its corresponding memory blocks.

For any statement x and witness w of the form ∃w : R(M,x,w) = 1, our solution is

constant-round, and incurs online computation and communication cost that is linear

in the running time of the RAM program, competitive with the best semi-honest 2PC

for RAM programs [19], and hence sublinear in |M | for many applications of interest.

Sublinear-time 2PC is not possible in general when expressing the NP relation as a

boolean circuit. Furthermore, in our protocol the verifier maintains only constant storage

space between multiple proofs.

3.2 Preliminaries

3.2.1 Authenticated Array

An authenticated array allows one party to access all stored data and control over all

modifications in the array, as the functionality FAut is described in figure 3.1. A naive

implementation is to let party to generate the array in the local storage. However, when

the party V has minimal memory and it wants to store the array in some untrusted



20

party, then V need another way to guarantee the authenticity of such array. A simple

solution is to use an authenticated Merkle-tree, with V storing only the root of the tree.

• Initialization: On input (init, N) from party V where N ∈ N, FAut initialize an
array T of size N . For each T [i], i ∈ {1, . . . , N}, set T [i] = 0.

• Update: On input (update, id, data) from party V , set T [id] = data and output
(updated, id, data) to both parties.

• Open: On input (access, id) from party V , where id ∈ {1, . . . , N}, send
(accessed, id, T [id]) to V .

Figure 3.1: Ideal functionality FAut for authenticated array access.

3.2.2 Committing Private Function Evaluation

Private function evaluation (PFE) takes input a function h from a sender and input x

from a receiver, and gives output h(x) to the receiver. We define and use a committing

variant of PFE in which the sender can later reveal the h that was used. The formal

description is given in Figure 3.2. In addition, we also require that committing PFE

supports a strongly universal class H of functions.

Fcpfe is parametrized by a class of functions H, with each h ∈ H having a common
domain A.

• Evaluation: On input h ∈ H from party V and input x ∈ A from party P , give
output h(x) to party P . Remember h internally.

• Open: On input open from party V , give output h to party P .

Figure 3.2: Ideal functionality Fcpfe for committing private function evaluation.

A feasible approach to implement Fcpfe is to use oblivious linear function evaluation

(OLFE) [54]. Let F be a finite field, then the class of functions of the form x 7→ ax+ b

is strongly universal (with a, b ∈ F). OLFE takes input a, b from the sender and x from

the receiver, and sends the output ax+ b to the receiver.



21

3.2.3 Garbling Scheme

The garbling scheme we use in this work is slightly different from the standard garbling

scheme in section 2.3.3. Recall that in the standard garbling scheme, we use X and Y

to represent the real garbled input and garbled output respectively. When f is a circuit,

to garble the circuit, we use E and D to represent the descriptions of input wire labels

and output wire labels. So X is a subset of E and Y is a subset of D. 1 In other

words, let W be a m × 2 array that represent a set of wire labels on m wires, For each

wire i, W [i, 0] ∈ {0, 1}k and W [i, 1] ∈ {0, 1}k are two wire labels that encode false and

true, respectively. For a truth value x, the corresponding wire labels are defined as

W |x = (W [1, x1], . . . ,W [m,xm]). Therefore, for genuine input x and output y, we have

X = E|x and Y = D|y.
Also, we have different security requirements in our protocol. Specifically, in zero-

knowledge proof, we require the garbling scheme to satisfy correctness and authenticity.

Since the circuit should only output 0 or 1 (depends on whether w is a valid witness)

and verifier has no input, obliviousness and privacy are out of our consideration.

In addition to correctness and authenticity, we also require that the garbling scheme

can be efficiently verified. That is, there exists an efficient algorithm Chk which takes

as input a boolean circuit, a garbled circuit F and input wire label description E such

that:

Chk(f, F,E)→ D or ⊥

For our work, we require a variant garbling scheme different from the standard one,

• Gb(1k, f, E,D)→ F . Takes as input a boolean circuit f , descriptions of input wire

labels E and output wire labels D, and outputs a garbled circuit F .

• En(E, x)→ X = E|x. Takes as input description of input wire labels E, a plaintext

input x and outputs a garbled input X. In our schemes, encoding is always done

via E|x.

• Ev(F,X) → Y . Takes as input a garbled circuit F and a garbled input X and

returns a garbled output Y .

1For each wire, E and D are wire labels includes both value 0 and 1, X and Y are wire labels only
has value 0 or 1.



22

• Chk(f, F,E) → D or ⊥. Takes as input a boolean circuit, a (purported) garbled

circuit F and input wire label description E and outputs either D or an error

indicator ⊥.

and also has a different security requirements:

Definition 8. A garbling scheme satisfies correctness if:

1. For all circuits f , circuit-inputs x, and valid wire label descriptions E,D,

Chk(f, F,E) = D whenever F ← Gb(1k, f, E,D)

2. For all circuits f , (possibly malicious) garbled circuits F and wire-label descriptions

E,

Ev(F,E|x) = D|f(x) whenever Chk(f, F,E) = D 6= ⊥

Definition 9. Let W denote the uniform distribution of m × 2 matrices as described

above. A garbling scheme has authenticity if for every circuit f , circuit-input x, and

PPT algorithm A, the following probability:

Pr[∃y 6= f(x), D̃ = D|y : E ←W, F ← Gb(1k, f, E,D), D̃ = A(F,E|x)]

is negligible in k.

3.3 Protocol overview

Adapting to the ORAM setting, using constant rounds. We follow roughly the

RAM-2PC paradigm of [19, 1], with some important differences. Let Π be an Oblivious

RAM program with memory M̂ , that implements R(M,x, ·).2 We assume a trusted setup

phase in which Π’s memory M̂ and state st are initialized from M . The prover learns M̂ ,

st, as well as a garbled encoding of these values (i.e., one wire label for each bit of memory

& state); the verifier specifies the garbled encoding to be used (i.e., both wire labels for

each bit). If we follow [19, 1] strictly, we would have both parties repeatedly evaluate

the next-memory-access circuit of Π, updating memory M̂ , until it halts. However, this

would result in a protocol with one round of interaction for each memory access of Π.

2We use M to refer to the logical RAM memory, and M̂ to refer to the physical ORAM memory.



23

To see how to achieve the same effect in a constant number of rounds, imagine that

when executing an ORAM program, the memory access pattern I is known in advance.

Then it is possible to express the entire computation in a single circuit. The circuit

includes many copies of the RAM program’s next-memory-access circuit, but is wired

together under the assumption that the memory accesses will be I. For example, if

I says that Π writes to some memory block at time 2, and later reads from the same

memory block at time 10, then the memory-output wires of subcircuit copy #2 will be

connected to the memory-input wires of subcircuit copy #10, and so on.

We can leverage this optimization in our setting because the prover knows all (plain-

text) inputs to Π, including the contents of memory and the ORAM state. Hence,

the prover can execute Π locally to determine the complete memory access pattern I.

Since Π is an oblivious RAM, its access pattern I leaks no information about the in-

puts/memory/state, so the prover can safely send I to the verifier. Using I, the verifier

constructs a single garbled circuit Cx,I as described above. To prevent the prover from

lying about the access pattern I, the circuit recomputes the memory access pattern of

Π and compares it to (hard-coded) I.

Hence, this setting admits a constant-round solution based on ORAM, but avoiding

tools like garbled RAM [38, 14] which incorporate expensive additional crypto circuitry

into the garbled circuits.

Reusing M to perform many proofs. We follow the approach of [1], where the

prover stores the ORAM memory and ORAM state encoded as wire labels from the

various garbled circuits. The idea is that these wire labels can be reused directly as inputs

to subsequent circuits, avoiding oblivious transfers for garbled circuit input. However,

some modifications are required to adapt this idea to our setting.

After evaluating a garbled circuit, the prover holds a garbled output encoding of

ORAM state & memory. The authenticity property of the garbling scheme guarantees

that the prover knows at most one valid label per wire. As soon as the garbled circuit is

opened, however, the prover learns both labels for each wire and authenticity is lost. The

output wire labels are no longer useful for input to subsequent circuits, as the prover can

now feed arbitrary garbled state/memory into subsequent garbled circuits. We need a

mechanism to restore authenticity on all wire labels that may be later used (this includes

the ORAM internal state as well as all memory locations that are read or written by the



24

garbled circuit).

Say the two wire labels on some output wire are y0 and y1, and that the prover

knows only yb. Let us call y0 and y1 the temporary wire labels, since they will soon

be discarded. The verifier chooses a random function h from a strongly universal hash

family. Just before the garbled circuit is opened (clobbering wire-label authenticity),

the parties perform a private function evaluation (PFE), where the prover gives yb, the

verifier gives h, and the prover learns h(yb). After the PFE, the garbled circuit can be

opened, revealing y0 and y1.

Define y′0 = h(y0) and y′1 = h(y1) to be the permanent wire labels for this wire. At

the time of the PFE, the prover could not have guessed y1−b, and so learned the output

of h on some point that was not y1−b. From strong universality of h, even if y1−b is

later revealed, y′1−b = h(y1−b) is still random from the prover’s point of view. Hence

the PFE “transfers” the authenticity guarantee from the temporary wire labels y0, y1 to

the permanent ones y′0, y
′
1, preserving authenticity even after both of y0, y1 are revealed.

Hence, y′0, y
′
1 are safe to use as input wire labels to subsequent garbled circuits.

For technical reasons, the PFE needs to be committing with respect to the input h

(so that the verifier can later “open” the h that was used). We suggest two efficient

instantiations of committing-PFE for strongly universal families: one based on oblivious

linear function evaluation (OLFE) [54] and one based on the string-select variant of OT

presented in [28].

Note that all the PFE instances can be run in parallel hence, maintaining the constant

round complexity of the overall protocol.

Eliminating the verifier’s storage requirement. As described so far, the verifier is

required to keep track of two wire labels for each bit of M̂ , at all times. We can decrease

this burden somewhat by letting the verifier derive these wire labels from a PRF. Let s

be a seed to a PRF. For simplicity, suppose a wire label encoding truth value b on the

jth bit of the ith memory block, last accessed at time t, is chosen as PRF(s, i‖j‖t‖b). In

the actual protocol, the choice of wire labels is slightly more complicated.

Using this choice of wire labels, the verifier need only remember the last-access time

of each block of M̂ . However, this is still storage proportional to |M̂ |. To reduce the

storage even further, we “outsource” the maintenance of these last-access times to the

prover. Let T [i] denote the last-access time of block i. We let the prover store the array



25

T authenticated by a Merkle tree for which the verifier remembers only the root node.3

Whenever the verifier is about to garble a circuit, he must be reminded of T [i] for

each memory block i to be read by the RAM in its computation. We make the prover

report each such T [i] to the verifier, authenticating each value via the Merkle tree.

The ORAM circuit performs some reads & writes in M̂ , so T and the Merkle tree are

updated accordingly, for each memory block that was accessed. Note that all accesses

to the Merkle tree are done at the same time (in parallel), and similarly for the updates

at the end of the execution.

Overall, accessing/updating the authenticated array T adds polylogarithmic (in |M̂ |)
communication/computation overhead and only a small constant number of rounds to

the protocol. Instead of remembering two wire labels for each bit of M̂ , the verifier need

now remember only a PRF seed and the root of a Merkle tree.

3.4 Additional Notation and Helper Routines

ORAM components: Let I be an ORAM memory access sequence. We define

read(I) = {i | (read, i) ∈ I}, write(I) = {i | (write, i) ∈ I}, and access(I) = read(I) ∪
write(I); i.e., the indices of blocks that are read/write/accessed in I. If S = {s1, . . . , sn}
is a set of memory-block indices, then we define M [S] = (M [s1], . . . ,M [sn]).

Let Π denote the next-instruction circuit of an ORAM. Given a zero-knowledge

statement x and ORAM access sequence I, we let circuit Cx,I denote the following

circuit:

3More generally, T can be stored in any authenticated data structure that provides small storage for
the verifier.



26

Cx,I(st, w, M̂ [read(I)]):

(inst, st, block) := Π(st, (x,w),⊥)

for i = 1 to |I| − 1:

r ← {0, 1}k

if I[i] = (read, id) then:

(st, inst,⊥)← Π(st, r, M̂ [id])

if I[i] = (write, id) then:

(st, inst, block)← Π(st, r,⊥)

M̂ [id] = block

I ′ := I ′‖inst
z := [I ?

= I ′]
return (st, z, M̂ [access(I)])

As described in last section, Cx,I is the circuit that will be garbled in the protocol.

Note that both x and I are hard-coded into Cx,I . Also, the circuit verifies that I = I ′,
and this entails checking the correctness of the witness since the final element of I is

(halt,true).

Garbling notation: The circuit Cx,I has 3 logical inputs and 3 logical outputs, and

we must distinguish among them. When garbling the circuit via F ← Gb(Cx,I , E,D, 1
k),

we denote by E a description of input wire labels (i.e., two labels per wire) and D a

description of output wire labels. We write E = Est‖Ewit‖Emem, denoting the cor-

responding input wire labels for state, witness, and memory blocks, respectively. We

define D = Dst‖Dz‖Dmem similarly. When referring to a specific memory block i, we use

notation Emem,i and Dmem,i.

We use X to denote the prover’s garbled input, and Y to denote the prover’s garbled

output (i.e., one label per wire). As above, we define Xst, Xwit, Xmem, Yst, Yz, Ymem.

Finally, we have the prover maintain an array Rmem at all times, containing the current

wire labels for all of the ORAM memory M̂ .

For an overview of the notation used in the protocol, see Figure 3.3.

Temporary and permanent wire labels. Recall from last section that the output

wire labels of a circuit are “temporary” in the sense that their authenticity is lost when



27

Cx,I
st
w

M̂ [read(I)]

st
z
M̂ [access(I)]

Et
Etst
Etwit
Etmem

}
derived from PRF

Dt
Dt

st
Dt

z
Dt

mem

{
Gb

F tXt
Xt

st
Xt

wit
Xt

mem

}
Y t

Y t
st
Y t
z
Y t
mem

{
commit

Fcpfe Xt+1
st

Fcpfe Rmem

~htst Et+1
st

~htmem
E?mem

cleartext
circuit i/o:

verifier: two
labels per
wire

prover: one
label per
wire

︸ ︷︷ ︸
(garbled) input

︸ ︷︷ ︸
(garbled) output

“temporary” wire labels

︸ ︷︷ ︸
“permanent”
wire labels

Ev LabelXfer

Figure 3.3: Summary of variables and notation used in the protocol.

the garbled circuit is opened. We use PFE to transfer the authenticity property of these

temporary wire labels to a different set of “permanent” wire labels.

We transfer authenticity with the LabelXfer subprotocol, where Y is a list of “tem-

porary” wire labels (i.e., one label per wire), and ~h is a list of elements from a strongly

universal hash family H.

prot LabelXfer(Y,~h):

for i = 1 to |Y | (in parallel):

V sends Y [i] and P sends ~h[i] to an instance of Fcpfe

P receives output Z[i] := ~h[i](Y [i])

P outputs Z

Note that all instances of Fcpfe are run in parallel and hence the protocol remains

constant-round given that Fcpfe is itself constant-round.

Selecting wire labels. Now let’s consider how the verifier generates wire labels for

the circuit. Recall from Section 3.3 that the verifier uses a PRF to generate wire labels

corresponding to the ORAM memory, in order to reduce storage.

Since permanent wire labels are derived by applying strongly universal functions to



28

temporary wire labels, the verifier must also select strongly universal functions using the

PRF to be able to reconstruct the choice of functions later.

Let s be the seed to a PRF. The verifier derives the temporary wire labels for a set

S of memory block indices, last updated at time t, via the subroutine TempMemLabels.

The verifier derives the choice of strongly universal functions via the subroutine GenH.

Finally, the verifier derives the current, permanent wire labels for a set S of memory

block indices via the subprotocol PermMemLabels. Since each block may have been last

accessed a different time, the authenticated array FAut is referenced. For each block, the

most recent temporary wire labels and strongly universal functions are reconstructed to

derive the permanent wire labels.

func TempMemLabels(S, t):

D := ∅
for i ∈ S:

for j ∈ {1, . . . , l}, b ∈ {0, 1}:
Di[j, b] = PRF(s, 0‖i‖j‖t‖b)

D := D‖Di

return D

func GenH(S, t):
~h = ∅
for i ∈ S:

for j ∈ {1, . . . , l}:
~hi[j] = PRF(s, 1‖i‖j‖t)

~h := ~h‖~hi
return ~h

prot PermMemLabels(S):

E := ∅
for all i in S (in parallel):

send (access, i) to FAut

receive ti := T [i]

Di := TempMemLabels({i}, ti)
~hi := GenH({i}, ti)
Ei := ~hi(Di)

E := E‖Ei
return E

When ~h is an array of functions and D is a matrix of wire labels, the notation ~h(D)

refers to the matrix E whose entries are E[j, b] = ~h[j](D[j, b]).



29

3.5 Detailed protocol

Now we present the full protocol π. We refer to the prover as P and the verifier as V .

The setup phase uses the initialization functionality Finit defined in Figure 3.4.

• Initialize: On command (init,M) from P and (init, Dst, Dmem), where
M is logical ORAM memory, and Dst & Dmem are wire label descriptions,
run (st, M̂)← Initialize(1k,M). Give output (st, M̂ ,Dst|st, Dmem|M̂ ) to P .

• Open: On command open from V , give output (Dst, Dmem) to P .

Figure 3.4: Ideal functionality Finit for initializing an ORAM program along with wire
labels.

Setup: On input M for prover P , let N denote the number of blocks in the ORAM

encoding of M . Then both parties do the following:

1. V picks random wire label descriptions D0
st and computes

D0
mem = TempMemLabels([N ], 0)

V also chooses a random PRF seed s← {0, 1}k.

2. P sends (init,M) to Finit; V sends (init, D0
st, D

0
mem) to Finit. P receives output

(st, M̂ , Y 0
st = D0

st|st, Y 0
mem = D0

mem|M̂ ).

3. [Transfer wire-label authenticity]:4

(a) V picks random vector ~h0st of strongly universal functions and sets E1
st =

~h0st(D
0
st). The parties perform subprotocol LabelXfer(Y 0

st,
~h0st), with P obtain-

ing output ~h0st(Y
0
st) which he stores as X1

st.

(b) V picks vector ~h0mem = GenH([N ], 0) and the parties perform subprotocol

LabelXfer(Y 0
mem

~h0mem). P receives output ~h0mem(Y 0
mem) which he stores as Rmem.

(c) V sends open to Finit, and P receives output (D0
st, D

0
mem).

4This step could be easily incorporated into Finit, but is written separately so that the remainder of
the protocol has no edge-cases involving t = 0.



30

4. P sends (init, N) to FAut to initialize authenticated array T (with T [i] = 0 for all

i).

Proofs: On input (x,w) for the prover, let this be the tth such proof. The parties do

the following:

4. [ORAM Evaluation]: P runs I ← RAMEval(Π, M̂ , x, w, st), then sends (x, I) to

V . V aborts if I is not an accepting access sequence. Note that RAMEval modifies

M̂ for the prover.

5. [Garbling the circuit]: V generates a garbled circuit as follows:

(a) V chooses input wire labels to the circuit as follows: Etwit are chosen randomly.

Etmem are chosen as Etmem ← PermMemLabels(read(I)). Recall that Etst has

been set previously.

(b) V chooses output wire labels Dt
z and Dt

st randomly, and chooses Dt
mem =

TempMemLabels(access(I), t).

(c) V sets Et = Etst‖Etwit‖Etmem, sets Dt = Dt
st‖Dt

z‖Dt
mem, then invokes garbling

algorithm F t ← Gb(1k, Cx,I , E
t, Dt).

6. [Evaluating garbled circuit]:

(a) The parties invoke Fotc with P giving input w and V giving input Etwit. P

receives Xt
wit = Etwit|w. Additionally, P finds Xt

st in its memory and sets

Xt
mem = Rmem[read(I)].

(b) V sends F t to P , and P evaluates the garbled circuit Y t ← Ev(F t, Xt).

(c) P commits to Y t
z (a single wire label) under Fcom.

7. [Transfer wire-label authenticity]:

(a) V picks random vector ~htst of strongly universal functions and sets Et+1
st =

~htst(D
t
st). The parties perform subprotocol LabelXfer(Y t

st,
~htst), with P obtain-

ing output ~htst(Y
t
st) which he stores as Xt+1

st .

(b) V picks vector ~htmem = GenH(access(I), t) and the parties perform subproto-

col LabelXfer(Y t
mem,

~htmem). P receives output ~htmem(Y t
mem) which he stores as

Rmem[access(I)].



31

8. [Check garbled circuit]:

(a) V sends open to the Fotc-instance from time t, and P receives output Etwit.

(b) V sends open to the PFE-instances used for the state wire labels in time t−1.

The prover thus obtains ~ht−1st and sets Etst = ~ht−1st (Dt−1
st ).

(c) For each i ∈ read(I), verifier sends open to the PFE-instances used for mem-

ory block i in time T [i]. The prover thus obtains ~h
T [i]
mem,i and sets Etmem,i =

~h
T [i]
mem,i(D

T [i]
mem,i).

(d) The verifier sets Et = Etst‖Etwit‖Etmem and runs Dt = Chk(Cx,I , F
t, Et). If the

result is ⊥, then V aborts. Otherwise, V opens his commitment to Y t
z .

9. [Check prover’s output]: V checks whether Y t
z = Dt

z|true. If not, then V aborts

the protocol. Otherwise, V outputs (accept, t, x).

10. [Update T ]: For all i ∈ access(I) (in parallel), V sends (update, i, t) to FAut.

Other discussion. Our protocol is written in a hybrid model with access to various

setup functionalities. In particular, Fcpfe is a reactive functionality, and our protocol

involves many (O(|M̂ |)) instances of Fcpfe that remain “active” between ZK proofs. We

have shown how the verifier’s inputs to the Fcpfe instances can be derived from a PRF,

eliminating the need to explicitly store them. However, when these Fcpfe instances are

realized by concrete protocols, both parties are required to keep internal state between

the PFE phase and opening phase. Hence, the verifier’s random coins for the Fcpfe-

protocols should also be derived from a PRF. In that way, the verifier’s entire view can

be reconstructed as needed when it is time to open each Fcpfe instance.

3.6 Security proof

Theorem 10. The protocol π presented in Section 3.5 is a secure realization of the FRZK
functionality.

Proof. We describe two simulators, depending on which party is corrupted.

Prover is corrupt: The primary role of the simulator in this case is to extract the witness

from P . We construct the simulator in a sequence of hybrid interactions:



32

H0: Simulator plays the role of an honest verifier V (who has no input) and all ideal

functionalities. In particular, the simulator obtains all of P ’s inputs to the ideal

functionalities. This interaction is identical to the real interaction with π.

H1: Same as H0 except that instead of using a PRF, the simulated verifier chooses

output wire labels Dt
mem and ~htmem functions uniformly (in TempMemLabels and

GenH). We have H1 ≈ H0 by the security of the PRF.

H2: Same as H1 except that the simulator aborts in certain cases as follows. The

simulator has initially generated M̂ and st (while simulating Finit) and obtains w

as P ’s input to Fotc in each step (6a). Hence, each time in step 6, the simulator

executes Cx,I(st, w, M̂ [read(I)]) → (st, z, M̂ [access(I)]), updating its internal st

and M̂ .

In the LabelXfer subprotocols in steps (3) and (7), P is meant to provide his

garbled output Y t
mem and Y t

st to the Fcpfe functionalities. Similarly, in step (6c),

the prover is expected to commit to Y t
z |true. In H2, the simulator artificially

aborts if P provides a valid encoding Dt|y for y not equal to the simulated output

of Cx,I at time t.

Now we claim that the simulator artificially aborts with only negligible probability

(so H1 ≈ H2) and that the prover’s view of Et during step (7) in time t can be

simulated given only Etmem|M̂ [read(I)] and Etst|st. This follows essentially from the

authenticity property of the garbling scheme and the strong-universal hashing

property of H.

Consider the LabelXfer subprotocol in step (3) (i.e., time t = 0). At this time, all

wire labels in D0 besides D0
mem|M̂ and D0

mem|st are independent of the adversary’s

view by definition of the Finit functionality. Hence, the simulator artificially aborts

with negligible probability during these steps. Conditioned on not aborting, the

action of the strongly universal hash functions on the “wrong” wire labels of D0

— and hence the value of the “wrong” input wire labels in E1 — is distributed

independently of P ’s view. Thus P ’s view in step (6) can be simulated given only

the claimed subset of E1.

Inductively, the prover’s view of Et at the time of the LabelXfer steps depends only

on the “expected” input wire labels. Hence, the simulator artificially aborts with



33

negligible probability, due to the authenticity property of the garbling scheme. As

above, conditioned on not aborting, the strong universal hashing property ensures

that the prover’s view of Et+1 depends only on the claimed subset of Et+1.

H3: Same as H2 except that in step (2) the simulator sends P ’s input M to FRZK. In

step (9), if the simulated verifier does not abort, then the simulator sends (x,wreal)

to FRZK (where w was extracted from the prover in step (6a). We claim that the

output of the ideal verifier always matches that of the simulated verifier. The

simulated verifier accepts the proof if P has committed to Dt
z|true. Provided that

the simulator has not artificially aborted, then it must be that the simulated Cx,I

has output z = true. By the correctness of the RAM program, it must be that

wreal is a valid witness for x.

Hence, the simulator implicit in H3 is our final simulator.

Verifier is corrupt: In this case, the primary role of the simulator is to simulate its view

without knowledge of the witness w. We note that the only information that needs to be

simulated in each proof is the memory access sequence I and the opened commitment

to output wire label Y t
z . Again we proceed in a sequence of hybrid interactions.

H0: Simulator plays the role of an honest prover P (including M and witnesses w as

input) and all ideal functionalities. Hence, the simulator obtains all of V ’s inputs

to the ideal functionalities. This interaction is identical to the real interaction

with π.

H1: Same as H0 except for the following changes. An honest prover computes Dt in

step (8d) when the verifier decommits to certain inputs to ideal functionalities.

Here we have the simulator perform the same computations, but as soon as possible

given the ability to see the verifier’s inputs to the functionalities. Hence, in step

(6c), the simulator will know the entire contents of Dt. Instead of evaluating the

garbled circuit to obtain garbled output Y t
z , we have the simulator simply commit

to Dt
z|true.

This commitment is only opened when the garbled circuit F t is shown to be

correct. Hence, H0 ≡ H1.



34

H2: Same as H1 except for the following changes. Note that in H1 the simulator uses

secret values M and w only to generate the memory access sequence I. All of

the simulated prover’s other inputs to ideal functionalities can be set to dummy

values, as V gets no outputs. So in H2 we have the simulated prover generate

I in step (4) using the ORAM simulator instead of actually executing the RAM

program itself. We have H1 ≈ H2 by the security of the ORAM.

The simulator implicit in H2 defines our final simulator, since it no longer requires the

secret values M and w to operate.

This completes the security proof of our protocol.



35

Chapter 4: RAM Program with Malicious Security

4.1 Introduction

General secure two-party computation (2PC) allows two parties to perform “arbitrary”

computation on their joint inputs without revealing any information about their private

inputs beyond what is deducible from the output of computation. This is an extremely

powerful paradigm that allows for applications to utilize sensitive data without jeopar-

dizing its privacy.

From a feasibility perspective, we know that it is possible to securely compute any

function, thanks to seminal results of [55, 16]. The last decade has also witnessed signif-

icant progress in design and implementation of more practical/scalable secure computa-

tion techniques, improving performance by orders of magnitude and enabling computa-

tion of circuits with billions of gates.

These techniques, however, are largely restricted to functions represented as Boolean

or arithmetic circuits, whereas the majority of applications we encounter in practice

are more efficiently captured using random-access memory (RAM) programs that al-

low constant-time memory lookup. Modern algorithms of practical interest (e.g., binary

search, Dijkstra’s shortest-paths algorithm, and the Gale-Shapely stable matching al-

gorithm) all rely on fast memory access for efficiency, and suffer from major blowup

in running time otherwise. More generally, a circuit computing a RAM program with

running time T requires Θ(T 2) gates in the worst case, making it prohibitively expensive

(as a general approach) to compile RAM programs into a circuit and then apply known

circuit 2PC techniques.

A promising alternative approach uses the building block of oblivious RAM, intro-

duced by Goldreich and Ostrovsky [18]. ORAM is an approach for making a RAM pro-

gram’s memory access pattern input-oblivious while still retaining fast (polylogarithmic)

memory access time. Recent work in 2PC has begun to investigate direct computation of

ORAM computations as an alternative to RAM-to-circuit compilation [19, 38, 26, 15, 37].

These works all follow the same general approach of evaluating a sequence of ORAM



36

instructions using traditional circuit-based 2PC phases. More precisely, they use existing

circuit-based MPC to (1) initialize and setup the ORAM, a one-time computation with

cost proportional to the memory size, (2) evaluate the next-instruction circuit which

outputs “shares” of the RAM program’s internal state, the next memory operations

(read/write), the location to access, and the data value in case of a write. All of these

existing solutions provide security only against semi-honest adversaries.

Challenges for malicious-secure RAM evaluation. It is possible to take a semi-

honest secure protocol for RAM evaluation (e.g., [19]) and adapt it to the malicious

setting using standard techniques. Doing so näıvely, however, would result in several

major inefficiencies that are avoidable. We point out three significant challenges for

efficient, malicious-secure RAM evaluation:

1: Integrity and consistency of state information, by which we mean both the

RAM’s small internal state and its large memory both of which are passed from one CPU

step to the next. A natural approach for handling internal state is to have parties hold

secret shares of the state (as in [19]), which they provide as input to a secure evaluation

of the next-instruction circuit. Using standard techniques for malicious-secure SFE, it

would incur significant overhead in the form of oblivious transfers and consistency checks

to deal with state information as inputs to the circuit.

A natural approach suitable for handling RAM memory is to evaluate an Oblivious

RAM that encrypts its memory contents. In this approach, the parties must evaluate a

next-instruction circuit that includes both encryption and decryption sub-circuits. Eval-

uating a block cipher’s circuit securely against malicious adversaries is already rather

expensive [31], and this approach essentially asks the parties to do so at every time-step,

even when the original RAM’s behavior is non-cryptographic. Additional techniques

are needed to detect any tampering of data by either participant, such as comput-

ing/verifying a MAC of each memory location access inside the circuit or computing

a “shared” Merkle-tree on top of the memory in order to check its consistency after

each access. All these solutions incur major overhead when state is passed or memory is

accessed and are hence prohibitively expensive (see Appendix A for a concrete example).

2: Compatibility with batch execution and input-recovery techniques. In

a secure computation, every input bit must be “touched” at some point. Oblivious RAM

programs address this with a pre-processing phase that “touches” the entire (large) RAM



37

memory, after which the computation need not “touch” every bit of memory. Since an

offline phase is already inevitable for ORAMs, we would like to use such a phase to

further increase the efficiency of the online phase of the secure evaluation protocol. In

particular, recent techniques of [21, 36] suggest that pre-processing/batching garbled

circuits can lead to significant efficiency improvement for secure evaluation of circuits.

The fact that the ORAM next-instruction circuits are used at every timestep and are

known a priori makes the use of batch execution techniques even more critical.

Another recent technique, called input-recovery [33], reduces the number of garbled

circuits in cut-and-choose by a factor of 3 by only requiring that at least one of the

evaluated circuits is correct (as opposed to the majority). This is achieved by running

an input-recovery step at the end of computation that recover’s the garbler’s private

input in case he cheats in more than one evaluated circuit. The evaluator then uses the

private input to do the computation on his own. A natural applications of this technique

in case of RAM programs, would require running the input-recovering step after every

timestep which would be highly inefficient (see Appendix A for a concrete example).

3: Run-time dependence. The above issues are common to any computation that

involves persistent, secret internal state across several rounds of inputs/outputs (any so-

called reactive functionality). RAM programs present an additional challenge, in that

only part of memory is accessed at each step, and furthermore these memory locations

are determined only at run-time. In particular, it is non-trivial to reconcile run-time

data dependence with offline batching optimizations.

4.1.1 Our contribution

In a RAM computation, both the memory and internal state need to be secret and

resist tampering by a malicious adversary. As mentioned above, the obvious solutions

to these problem all incur major overhead whenever state is passed from one execution

to the next or memory is accessed. We bypass all these overheads and obtain secrecy

and tamper-resistance essentially for free. Our insight is that these are properties also

shared by wire labels in most garbling schemes — they hide the associated logical value,

and, given only one wire label, it is hard to “guess” the corresponding complementary

label.

Hence, instead of secret-sharing the internal state of the RAM program between the



38

parties, we simply “re-use” the garbled wire labels from the output of one circuit into

the input of the next circuit. These wire labels already inherit the required authenticity

properties, so no oblivious transfers or consistency checks are needed.

Similarly, we also encode the RAM’s memory via wire labels. When the RAM reads

from memory location `, we simply reuse the appropriate output wire labels from the

most recent circuit to write to location ` (not necessarily the previous instruction, as is

the case for the internal state). Since the wire labels already hide the underlying logical

values, we only require an oblivious RAM that hides the memory access pattern and

not the contents of memory. More concretely, this means that we do not need to add

encryption/decryption and MAC/verify circuitry inside the circuit that is being garbled

or perform oblivious transfers on shared intermediate secrets.

Importantly, if the RAM program being evaluated is “non-cryptographic” (i.e., has

a small circuit description) then the circuits garbled at each round of our protocols will

be small.

Of course, it is a delicate task to make these intuitive ideas work with the state of art

techniques for cut-and-choose. We present two protocols, which use different approaches

for reusing wire labels.

The first protocol uses ideas from the LEGO paradigm [42, 13] for 2PC and other

recent works on batch-preprocessing of garbled circuits [21, 36]. The idea behind these

techniques is to generate all the necessary garbled circuits in an offline phase (before

inputs are selected), open and check a random subset, and randomly assign the rest

into buckets, where each bucket corresponds to one execution of the circuit. But unlike

the setting of [21, 36], where circuits are processed for many independent evaluations

of a function, we have the additional requirement that the wire labels for memory and

state data should be directly reused between various garbled circuits. Since we cannot

know which circuits must have shared wire labels (due to random assignment to buckets

and run-time memory access pattern), we use the “soldering” technique of [42, 13] that

directly transfers garbled wire labels from one wire to another, after the circuits have

been generated. However, we must adapt the soldering approach to make it amenable

to soldering entire circuits as opposed to soldering simple gates as in [42, 13]. For

a discussion of subtle problems that arise from a direct application of their soldering

technique, see Section 4.3.

Our second approach directly reuses wire labels without soldering. As a result, gar-



39

bled circuits cannot be generated offline, but the scheme does not require the homomor-

phic commitments required for the LEGO soldering technique. At a high level, we must

avoid having the cut-and-choose phase reveal secret wire labels that are shared in com-

mon with other garbled circuits. The technique recently proposed in [40] allows us to use

a single cut-and-choose for all steps of the RAM computation (rather than independent

cut-and-choose steps for each time step), and further hide the set of opened/evaluated

circuits from the garbler using an OT-based cut-and-choose [25, 31]. We observe that

this approach is compatible with the state of the art techniques for input-consistency

check [39, 50].

We also show how to incorporate the input-recovery technique of [33] for reducing

the number of circuits by a factor of three. The naive solution of running the cheating

recovery after each timestep would be prohibitively expensive since it would require

running a malicious 2PC for the cheating recovery circuit (and the corresponding input-

consistency checks) at every timestep. We show a modified approach that only requires

a final cheating recovery step at the end of the computation.

4.2 Preliminaries

4.2.1 Garbling Scheme

The garbling scheme we use in this work is slightly different from the standard garbling

scheme as in section 2.3.3. Our 2PC protocol constructions re-use wire labels between

different garbled circuits, so we define a specialized syntax for garbling schemes in which

the input and output wire labels are pre-specified.

We represent a set of wire labels W as a m × 3 array. Wire labels W [i, 0] and

W [i, 1] denote the two wire labels associated with some wire i. We employ the point-

permute optimization [43], so we require lsb(W [i, b]) = b. The value W [i, 2] is a single-bit

translation bit, so that W [i,W [i, 2]] is the wire label that encodes false for wire i. For

shorthand, we use τ(W ) to denote the m-bit string W [1, 2] · · ·W [m, 2].

We require the garbling scheme to have syntax F ← Gb(f,E,D) where f is a circuit,

E and D represent wire labels as above.

For v ∈ {0, 1}m, we define W |v = (W [1, v1], . . . ,W [m, vm]), i.e., the wire labels with

select bits v. We also define W |∗x := W |x⊕τ(W ), i.e., the wire labels corresponding to



40

truth values x. The correctness condition we require for garbling is that, for all f , x, and

valid wire label descriptions E, D, we have:

Ev(Gb(F,E,D), E|∗x) = D|∗f(x)

If Y denotes a vector of output wire labels, then it can be decoded to a plain output via

lsb(Y )⊕τ(D), where lsb is applied component-wise. Hence, τ(D) can be used as output-

decoding information. More generally, if µ ∈ {0, 1}m is a mask value, then revealing

(µ, τ(D) ∧ µ) allows the evaluator to learn only the output bits for which µi = 1.

Let W denote the uniform distribution of m × 3 matrices of the above form (wire

labels with the constraint on least-significant bits described above). Then the security

condition we need is that there exists an efficient simulator S such that for all f, x,D,

the following distributions are indistinguishable:

Real(f, x,D):

E ←W
F ← Gb(f,E,D)

return (F,E|∗x)

SimS(f, x,D):

E ←W
F ← S(f,E|∗x, D|∗f(x))
return (F,E|∗x)

To understand this definition, consider an evaluator who receives garbled circuit F

and wire labels E|∗x which encode its input x. The security definition ensures that the

evaluator learns no more than the correct output wires D|∗f(x).
Consider what happens when we apply this definition with D chosen from W and

against an adversary who is given only partial decoding information (µ, τ(D) ∧ µ).1

Such an adversary’s view is then independent of f(x) ∧ µ. This gives us a combination

of the privacy and obliviousness properties of [6]. Furthermore, the adversary’s view

is independent of the complementary wire labels D|∗
f(x)

, except possibly in their least

significant bits (by the point-permute constraint). So the other wire labels are hard to

predict, and we achieve an authenticity property similar to that of [6].2

Finally, we require that it be possible to efficiently determine whether F is in the

range of Gb(f,E,D), given (f,E,D). For efficiency improvements, one may also reveal

1Our definition applies to this case, since a distinguisher for the above two distributions is allowed to
know D which parameterizes the distributions.

2We stress that the evaluator can indeed decode the garbled output (using τ(D) and the select bits),
yet cannot forge valid output wire labels in their entirety. This combination of requirements was not
considered in the definitions of [6].



41

a seed which was used to generate the randomness used in Gb.

These security definitions can be easily achieved using typical garbling schemes used

in practice (e.g., [30]). We note that the above arguments hold even when the distribution

W is slightly different. For instance, when using the Free-XOR optimization [30], wire

label matrices E and D are chosen from a distribution parameterized by a secret ∆,

where E[i, 0] ⊕ E[i, 1] = ∆ for all i. This distribution satisfies all the properties of W
that were used above.

Conventions for wire labels. We exclusively garble the ORAM circuit which has its

inputs/outputs partitioned into several logical values. When W is a description of input

wire labels for such a circuit, we let st(W ), rand(W ), block(W ) denote the submatrices

of W corresponding to the incoming internal state, random tape, and incoming memory

block. When W describes output wires, we use st(W ), inst(W ) and block(W ) to denote

the outgoing internal state, output instruction (read/write/halt, and memory location),

and outgoing memory data block. We use these functions analogously for vectors (not

matrices) of wire labels.

4.3 Batching Protocol

4.3.1 High-level Overview

Roughly speaking, the LEGO technique of [42, 13] is to generate a large quantity of

garbled gates, perform a cut-and-choose on all gates to ensure their correctness, and

finally assemble the gates together into a circuit which can tolerate a bounded number

of faulty gates (since the cut-and-choose will not guarantee that all the gates are correct).

More concretely, with sN gates and a cut-and-choose phase which opens half of them

correctly, a statistical argument shows that permuting the remaining gates into buckets

of size O(s/ logN) each ensures that each bucket contains a majority of correct gates,

except with negligible probability in s.

For each gate, the garbler provides a homomorphic commitment to its input/output

wire labels, which is also checked in the cut and choose phase. This allows wires to be

connected on the fly with a technique called soldering. A wire with labels (w0, w1) (here

0 and 1 refer to the public select bits) can be soldered to a wire with labels (w′0, w
′
1) as



42

follows. If w0 and w′0 both encode the same truth value, then decommit to ∆0 = w0⊕w′0
and ∆1 = w1 ⊕ w′1. Otherwise decommit to ∆0 = w0 ⊕ w′1 and ∆1 = w1 ⊕ w′0. Then

when an evaluator obtains the wire label wb on the first wire, wb⊕∆b will be the correct

wire label for the second wire. To prove that the garbler hasn’t inverted the truth value

of the wires by choosing the wrong case above, she must also decommit to the XOR of

each wire’s translation bit (i.e., β ⊕ β′ where wβ and w′β′ both encode false).

Next, an arbitrary gate within each bucket is chosen as the head. For each other

gate, we solder its input wires to those of the head, and output wires to those of the

head. Then an evaluator can transfer the input wire labels to each of the gates (by

XORing with the appropriate solder value), evaluate the gates, and transfer the wire

labels back. The majority value is taken to be the output wire label of the bucket. The

cut-and-choose ensures that each bucket functions as a correct gate, with overwhelming

probability. Then the circuit can be constructed by appropriately soldering together the

buckets in a similar way.

For our protocol we use a similar approach but work with buckets of circuits, not

buckets of gates. Each bucket evaluates a single timestep of the RAM program. To

transfer RAM memory and internal state between timesteps, we solder wires together

appropriately (i.e., state input of time t soldered to state output of time t− 1; memory-

block input t soldered to memory-block output of the previous timestep that wrote to the

desired location). Additionally, the approach of using buckets also saves an asymptotic

log T factor in the number of circuits needed for each timestep (i.e., the size of the

buckets), where T is the total running time of the ORAM, a savings that motivates

similar work on batch pre-processing of garbled circuits [21, 36].

We remark that our presentation of the LEGO approach above is a slight departure

from the original papers [42, 13]. In those works, all gates were garbled using Free XOR

optimization, where w0 ⊕ w1 is a secret constant shared on all wires. Hence, we have

only one “solder” value w0 ⊕ w′0 = w1 ⊕ w′1. If the sender commits to only the “false”

wire label of each wire, then the sender is prevented from inverting the truth value while

soldering (“false” is always mapped to “false”). However, to keep the offset w0 ⊕ w1

secret, only one of the 4 possible input combinations of each gate can be opened in the

cut-and-choose phase. The receiver has only a 1/4 probability of identifying a faulty

gate. This approach does not scale to a cut-and-choose of entire circuits, where the

number of possible input combinations is exponential. Hence our approach of forgoing



43

common wire offsets w0⊕w1 between circuits and instead committing to the translation

bits. As a beneficial side effect, the concrete parameters for bucket sizes are improved

since the receiver will detect faulty circuits with probability 1, not 1/4.

Back to our protocol, P1 generates O(sT/ log T ) garblings of the ORAM’s next-

instruction circuit, and commits to the circuits and their wire labels. P2 chooses a

random half of these to be opened and aborts if any are found to be incorrect.

For each timestep t, P2 picks a random subset of remaining garbled circuits and the

parties assemble them into a bucket Bt (this is the MkBucket subprotocol) by having P1

open appropriate XORs of wire labels, as described above. We can extend the garbled-

circuit evaluation function Ev to EvalBucket using the same syntax. Then EvalBucket

inherits the correctness property of Ev with overwhelming probability, for each of the

buckets created in the protocol.

After a bucket is created, P2 needs to obtain garbled inputs on which to evaluate it.

See Figure 4.2 for an overview. Let Xt denote the vector of input wire labels to bucket Bt.
We use block(Xt), st(Xt), rand(Xt) to denote the sets of wire labels for the input memory

block, internal state, and shares of random tape, respectively. The simplest wire labels

to handle are the ones for internal state, as they always come from the previous timestep.

We solder the output internal state wires of bucket Bt−1 to the input internal state wires

of bucket Bt. Then if Yt−1 were the output wire labels for bucket Bt−1 by P2, we obtain

st(Xt) by adjusting st(Yt−1) according to the solder values.

If the previous memory instruction was a read of a location that was last written to

at time t′, then we need to solder the appropriate output wires from bucket Bt′ to the

corresponding input wires of Bt. P2 then obtains block(Xt) by adjusting the wire labels

block(Yt′) according to the solder values. If the previous memory instruction was a read

of an uninitialized block, or a write, then P1 simply opens these input wire labels to

all zero values (see GetInputpub).

To obtain wire labels rand(Xt), we have P1 open wire labels for its shares (GetInput1)

and have P2 obtain its wire labels via a standard OT (GetInput2).

At this point, P2 can evaluate the bucket (EvalBucket). Let Yt denote the output

wire labels. P1 opens the commitment to their translation values, so P2 can decode and

learn these outputs of the circuit. P2 sends these labels back to P1, who verifies them

for authenticity. Knowing only the translation values and not the entire actual output

wire labels, P2 cannot lie about the circuit’s output except with negligible probability.



44

GC(1)

GC(2)

GC(3)

maj
E(1) D(1)

E(2) D(2)

E(3) D(3)

∆(1→2)

∆(1→3)

∆(2→1)

∆(3→1)

Figure 4.1: Illustration of MkBucket(B = {1, 2, 3}, hd = 1).

4.3.2 Detailed Protocol Description

Let Π be the ORAM program to be computed. Define Π̃(st, block, inp1, inp2,1, . . . , inp2,n) =

Π(st, block, inp1,
⊕

i inp2,i). Looking ahead, during the first timestep, the parties will pro-

vide inp1 = x1 and inp2 = x2, while in subsequent timesteps they input their shares r1

and r2 of the RAM program’s randomness. P2’s input is further secret shared to pre-

vent a selective failure attack on both x2 and his random input r2. We first define the

following subroutines / subprotocols:

prot Solder(A,A′) // A, A′ are wire labels descriptions

P1 opens Fxcom-commitments to τ(A) and τ(A′)

so that P2 receives τ = τ(A)⊕ τ(A′)

for each position i in τ and each b ∈ {0, 1}:
P1 opens Fxcom-commitments to A[i, b] and A′[i, τi ⊕ b]

so that P2 receives ∆[i, b] = A[i, b]⊕A′[i, τi ⊕ b]
return ∆

prot MkBucket(B, hd) // B is a set of indices

for each j ∈ B \ {hd}:
∆(hd→j) = Solder(E(hd), E(j))

∆(j→hd) = Solder(D(j), D(hd))

∆(hd→hd) := all zeroes // for convenience

func Adjust(X,∆) // X is a vector of wire labels



45

bucket Bt−1 bucket Btst(·)

block(·)

inst(·)

st(·)

block(·)

rand(·)

D(hdt−1)

Yt−1

E(hdt)

Xt

∆st = Solder(·, ·)

Adjust(·,∆st)

read from block
last written at t′

∆block = Solder(·, ·)

Adjust(·,∆block)

no read, or read
from uninitialized
block GetInputpub(·, 0n)

decode via τ(·)

GetInput1,GetInput2

Text above an edge refers to the entire
set of wire labels. Text below an edge
refers to the wire labels visible to P2

while evaluating.

Figure 4.2: Overview of soldering and evaluation steps performed in the online phase.

for each i do X̃[i] = X[i]⊕∆[i, lsb(X[i])]

return X̃

func EvalBucket(B, X, hd)

for each j in B:

X̃j = Adjust(X,∆(hd→j)))

Yj = Adjust(Ev(GC(j), X̃j),∆
(j→hd))

return the majority element of {Yj}j∈B

prot GetInputpub(A, x) // A describes wire labels; x public

P1 opens commitments of A|∗x; call the result X

P1 opens commitments of τ(A)

P2 aborts if lsb(X) 6= τ(A)⊕ x; else returns X

prot GetInput1(A, x) // A describes wire labels; P1 holds x

P1 opens commitments of A|∗x; return these values

prot GetInput2(A, x) // A describes wire labels; P2 holds x

for each position i in A, parties invoke an instance of Fot:



46

P1 uses input (A[i, A[i, 2]], A[i, 1⊕A[i, 2]])

P2 uses input xi

P2 stores the output as X[i]

P2 returns X

We now describe the main protocol for secure evaluation of Π. We let s denote a

statistical security parameter, and T denote an upper bound on the total running time

of Π.

1. [Pre-processing phase] Circuit garbling: P1 and P2 agree on the total number

N = O(sT/ log T ) of garbled circuits to be generated. Then, for each circuit index

i ∈ {1, . . . , N}:

(a) P1 chooses random input/output wire label descriptions E(i), D(i) and com-

mits to each of these values component-wise under Fxcom.

(b) P1 computes GC(i) = Gb(Π̃, E(i), D(i)) and commits to GC(i) under Fcom.

2. [Pre-processing phase] Cut and choose: P2 randomly picks a subset Sc of

{1, . . . , N} of size N/2 and sends it to P1. Sc will denote the set of check circuits

and Se = {1, . . . , N}\Sc will denote the set of evaluation circuits. For check circuit

index i ∈ Sc:

(a) P1 opens the commitments of E(i), D(i), and GC(i).

(b) P2 checks that GC(i) ∈ Gb(Π̃, E(i), D(i)); if not, P2 aborts.

3. Online phase: For each timestep t:

(a) Bucket creation: P2 chooses a random subset of Bt of Se of size Θ(s/ log T )

and a random head circuit hdt ∈ Bt. P2 announces them to P1. Both parties

set Se := Se \ Bt.

(b) Garbled input: randomness: P1 chooses random r1 ← {0, 1}n, and P2

chooses random r2,1, . . . , r2,n ← {0, 1}n. P2 sets

rand1(Xt) = GetInput1(rand1(E
(hdt)), r1)

rand2(Xt) = GetInput2(rand2(E
(hdt)), r2,1 · · · r2,n)



47

(c) Garbled input: state: If t > 1 then the parties execute:

∆st = Solder(st(D(hdt−1)), st(E(hdt)))

and P2 sets st(Xt) := Adjust(st(Yt−1),∆st).

Otherwise, in the first timestep, let x1 and x2 denote the inputs of P1 and P2,

respectively. For input wire labels W , let st1(W ), st2(W ), st3(W ) denote the

groups of the internal state wires corresponding to the initial state x1‖x2‖0n.

To prevent selective abort attacks, we must have P2 encode his input as n-wise

independent shares, as above. P2 chooses random r2,1, . . . , r2,n ∈ {0, 1}n such

that
∑n

i r2,i = x2, and sets:3

st(Xt) = GetInput1(st1(E
(hdt)), x1)

‖ GetInput2(st2(E(hdt)), r2,1 · · · r2,n)

‖ GetInputpub(st3(E
(hdt)), 0n)

(d) Garbled input: memory block: If the previous instruction instt−1 =

(read, `) and no previous (write, `) instruction has happened, or if the pre-

vious instruction was not a read, then the parties do

block(Xt) = GetInputpub(block(E(hdt)), 0n)

Otherwise, if instt−1 = (read, `) and t′ is the largest time step with instt′ =

(write, `), then the parties execute:

∆block = Solder(block(D(hdt′ )), block(E(hdt)))

Then P2 sets block(Xt) := Adjust(block(Yt′),∆block).

(e) Construct bucket: P1 and P2 run subprotocol MkBucket(Bt, hdt) to assem-

3We are slightly abusing notation here. More precisely, the parties are evaluating a slightly different
circuit Π̃ in the first timestep than other timesteps. In the first timestep, it is P2’s input x2 that is
encoded randomly, whereas in the other steps it is P2’s share r2 of the random tape. However, the
difference between these circuits is only in the addition of new XOR gates, and only at the input level.
When using the Free-XOR optimization, these gates can actually be added after the fact, so the difference
is compatible with our pre-processing.



48

ble the circuits.

(f) Circuit evaluation: For each i ∈ Bt, P1 opens the commitment to GC(i)

and to τ(inst(D(i))). P2 does Yt = EvalBucket(Bt, Xt, hdt).

(g) Output authenticity: P2 sends Ỹ = inst(Yt) to P1. Both parties decode the

output instt = lsb(Ỹ ) ⊕ τ(inst(D(hdt))). P1 aborts if the claimed wire labels

Ỹ do not equal the expected wire labels inst(D(hdt))|∗instt . If instt = (halt, z),

then both parties halt with output z.

4.3.3 Efficiency and Parameter Analysis

In the offline phase, the protocol is dominated by the generation of many garbled circuits,

O(sT/ log T ) in all. In Appendix B we describe computation of the exact constant. As

an example, for T = 1 million, and to achieve statistical security 2−40, it is necessary to

generate 10 · T circuits in the offline phase.

In the online phase, the protocol is dominated by two factors: the homomorphic

decommitments within the Solder subprotocol, and the oblivious transfers (in GetInput2)

in which P2 receives garbled inputs. For the former, we require one decommitment for

each input and output wire label (to solder that wire to another wire) of the circuit Π̃.

Hence the cost in each timestep is proportional to the input/output size of the circuit

and the size of the buckets. Continuing our example from above (T = 106 and s = 40),

buckets of size 5 are sufficient.

In Appendix B we additionally discuss parameter settings for when the parties open

a different fraction (i.e., not 1/2) of circuits in the cut-and-choose phase. By opening

a smaller fraction in the offline phase, we require fewer circuits overall, at the cost of

slightly more circuits per timestep (i.e., slightly larger buckets) in the online phase.

We require one oblivious transfer per input bit of P2 per timestep (independent

of the size of buckets). P2’s input is split in an s-way secret share to assure input-

dependent failure probabilities, leading to a total of sn OTs per timestep (where n is

the number of random bits required by Π̃). However, online oblivious transfers are

inexpensive (requiring only few symmetric-key operations) when instantiated via OT

extension [22, 2], where the more expensive “seed OTs” will be done in the pre-processing

phase. In Section 4.3.5 we suggest further ways to reduce the required number of OTs

in the online phase.



49

Overall, the online overhead of this protocol (compared to the semi-honest setting) is

dominated by the bucket size, which is likely at most 5 or 7 for most reasonable settings.

In terms of memory requirements, P1 must store all pre-processed garbled circuits,

and P2 must store all of their commitments. For each bit of RAM memory, P1 must

store the two wire labels (and their decommitment info) corresponding to that bit, from

the last write-time of that memory location. P2 must store only a single wire label per

memory bit.

4.3.4 Security Proof

In this section we prove the security of the batching protocol of Section 4.3.

Case 1: P1 is corrupted. In this part, we are going to construct a simulator S
progressively by using a standard hybrid argument. Let πf denote the protocol of section

4.3.2. We begin by showing the real view of P1 during the protocol and then constructing

the simulator such that S can therefore simulate the whole protocol independent of P2’s

input. We define H0 to be the real protocol πf , i.e. P1 and P2 follow the protocol while

S does not change anything, it acts the same as P2. During the execution of πf , the

view of P1 consists of

1. A random check circuits set Sc.

2. A random subset of B of Se of size Θ(s/ log T ).

3. The view in the standard oblivious transfer protocols when running protocol GetInput2.

Also, notice that P2 may abort during the execution of protocol GetInputpub and

GetInput2, S needs to compute such abort probabilities which are independent of

P2’s input.

4. At the end of πf , P1 receives a message Ỹ = inst(Yt).

We construct S that simulates all P1’s view of above. Since (a) and (b) does not depend

on any of P2’s input, S can just behave the same as an honest P2: For the cut-and-choose,

S picks a random subset Sc and sends it to P1, if any checking circuit in Sc fails, S abort

the protocol. Also, at each timestep t, S chooses a random subset B and announces it



50

to P1. Now we describe the simulation of the rest of P1’s view, via a sequence of hybrid

interactions:

Hybrid H0: Ideal functionality: We define hybrid H0 to be the same as the real

interaction, where the simulator S plays the role of an honest P2 and also hon-

estly plays the role of the ideal functionalities of Fxcom, Fcom and Fot. One thing

we highlight is that S can extract P1’s input and all wire labels from the ideal

functionlities.

Hybrid H1: Ensure good buckets: At each timestep t, in step (3f) of Circuit Eval-

uation, S learns all garbled circuits and wire labels from the ideal functionality

Fcom and Fxcom, even for evaluation circuits. So we define hybrid H1 to be identi-

cal to H2 except that S will abort if Bt does not have a majority of good circuits.

Here, by “good” circuit we mean that its the circuit would be accepted by P2 in

checking phase if P1 had opened it (along with its wire labels).

To show that H1 ≈ H0, it suffices to show that the simulator aborts due to a bad

bucket only with negligible probability.

In Appendix B, we define a value B∗(ρ, T,m), which is the probability that the

adversary successfully generates m malicious circuits, P2 does not abort in the cut-

and-choose phase, and yet some Bt does not contain a majority of good circuits,

when buckets have size ρ and there are T timesteps. This event corresponds exactly

to the event that the simulator aborts in H1. We assume that ρ is chosen so that

B∗(ρ, T,m) < 2−s, which is negligible.

Hybrid H2: Compute Ỹ differently: Define H2 to be the same as H1, except for

the following changes. S extracts P1’s plain input x1 from the ideal functionalities

in the first timestep, then executes the RAM program Π on inputs (x1, x2) as

RamEval(Π,M, x1, x2).

At each “Circuit evaluation” step of the protocol, where P2 performs

Yt = EvalBucket(Bt, Xt, hdt)

S instead computes Yt = D(hdt)|∗(st,inst,block), where (st, inst, block) denote the inter-

nal variables defined in RamEval(Π,M, x1, x2) for the corresponding timestep.



51

Then we claim that H2 ≡ H1. This follows the correctness condition of garbling

schemes. Specifically, the correctness condition for garbling schemes is:

Ev(Gb(F,E,D), E|∗x) = D|∗f(x)

Thus, if the majority circuits in bucket Bt are good (which is guaranteed in these

hybrids), it is easy to see that the correctness condition extends to EvalBucketas:

EvalBucket(Bt, E(hdt)|∗x, hdt) = D(hdt)|∗f(x).

Then, one can verify that at each timestep t, the garbled inputs Xt to EvalBucket

always encode the inputs to Π within RamEval, and the garbled outputs Yt of

EvalBucket always encode the outputs of Π within RamEval.

Hybrid H3: Selective abort: In subprotocol GetInput2, parties invoke an instance of

a standard oblivious transfer protocol Fot. However, P1 can use malicious wire

labels for oblivious transfer and cause P2 to abort when execute protocol πf . Then

the probability of P2 aborting depends on P2’s input.

Our protocol used the technique of [35] to deal with selective aborts: namely, we

encoded P2’s input via s-way XOR shares. We define H3 to be identical to H2

except that S uses the technique of [35] to simulate the probability of P2’s aborts,

by extracting P1’s inputs to Fot. The analysis of [35] shows that S can simulate

the probability of P2’s abort to within `2−s+1, where ` denotes the length of input

and s is the security parameter. Hence H3 ≈ H2.

Hybrid H4: Simulating ORAM memory accesses Let SORAM be the simulator

from the security definition of ORAMs (Section 2.4).

Notice that H3 does not actually use all outputs of the RAM next-instruction

circuit Π. In the output of RamEval(Π,M, x1, x2), only I(Π,M, x1, x2) is used in

H3, to generate Ỹt which is sent to P1. Define H4 to be identical to H3 except that

S uses the simulated access pattern of SORAM (1λ, f(x1, x2)). From the security of

ORAM, we have that H4 ≈ H3.

Now the simulator S described in hybrid H4 is a valid simulator in the ideal world.

S does not require P2’s input x2 — it only requires f(x1, x2) which it can receive from



52

the ideal functionality.

Case 2: P2 is corrupted: First we give a overview of P2’s real view in the protocol.

Then we use a sequence of hybrids to construct S step by by step until eventually, S
can implement the protocol independent of P1’s input. Consider the protocol, P2’s view

consists of:

1. Commitments to all garbled circuits and wire labels under Fcom and Fxcom.

2. The set of check circuits with size ρT .

3. The set of evaluation circuits with size ρT .

4. At each timestep t, P2 receives wire labels from GetInputpub and P1’s auxiliary

input wire labels in subprotcols GetInput1.

5. At each timestep t, P2 receives his auxiliary input wire labels from Fot before he

can evaluate the bucket Bt. Notice that at the end of the protocol, P2 sends the

output Ỹ = inst(Yt) to P1. P1 may abort if Ỹ 6= inst(D(hd[Bt]))|∗instt .

We now describe the sequence of hybrids: Let H0 be the real protocol πf and we formally

describe the simulator S.

Hybrid H0: Ideal functionalities: We begin by letting S follow Π as an honest P1

except that S also plays the role of all of the ideal functionalities.

Hybrid H1: Circuits: From P2’s view, we see that P2 eventually receives a set of check

circuits Sc and a set of evaluation circuits Se, both of size ρT . In the real world,

P1 generates those garbled circuits and commits to all of them in step (1) of pre-

processing phase. We define H1 to be the same as H0 except that, instead of letting

S generate all circuits at the very beginning, we have S simulate the commitment

messages in the pre-processing phase, but actually garble a circuit (honestly) only

when its associated commitments are about to be opened opened.

It is not hard to see that H1 ≡ H0 since we only delay the time of constructing

circuits and such construction is independent of P1’s input.



53

Hybrid H2: Visible wire labels: Now, we would like to generate simulated garbled

circuits for the evaluation circuits, but before that we must know exactly which

wire labels will be visible to P2.

Recall that in hybrid H1, S chooses random translation bits τ(E) for the wire

labels. Then in subprotocol GetInput2, P2 specifies certain inputs v and receives

E|∗v = E|τ(E)⊕v. Let λ(E) = τ(E) ⊕ v denote these select bits which become

“visible” to P2.

We define H2 so that S first chooses λ(E) at random. Then it arranges so that

P2 receives these wire labels from subprotocol GetInput2. At the same time, S still

extracts P2’s input v and sets τ(E) = λ(E)⊕ v accordingly.

Similarly, in H1, P2 chooses the translation bits τ(D) randomly for output wire

labels D. Conversely, in H2, at the time that S actually garbles this circuit, S
already knows what the logical input to this circuit will be. Hence, it can simulate

the steps of RamEval and predict what the output v of this circuit will be. Hence

it chooses λ(D) at random and sets τ(D) = λ(D)⊕ v accordingly.

Also note that in subprotocol Solder(A,A′), P1 is supposed to open a commitment

to τ(A)⊕τ(A′). In this hybrid, however, we can replace τ(A)⊕τ(A′) = λ(A)⊕λ(A′)

since the protocol only solders wires that will carry the same logical value.

We have that H1 ≡ H2, since all the distributions involved are identical.

Hybrid H3: Simulated circuits: We define hybrid H3 to be the same as H2 except

that S generates each evaluation circuit using the simulator SGC from the security

of garbling schemes. More concretely, for each evaluation circuit, instead of running

Gb(Π̃, E,D), we run SGC(Π̃, E|λ(E), D|λ(D)).

Then we have H3 ≈ H2, by the security of the garbling scheme.

Hybrid H4: Simulated access pattern: Observe that in H3, the values λ(A) are

used to simulate the garbled circuits, but corresponding τ(A) values are no longer

used in the Solder subprotocol. The only place τ(A) values are used is when P1

reveals τ(inst(D(hdt))).

Hence, as S is simulating the steps of RamEval, the only values it actually uses

in H3 are the access pattern I(Π,M, x1, x2). We define H4 to be identical, except



54

that S uses the simulated access pattern SORAM (1λ, f(x1, x2)). Then we have that

H4 ≈ H3 by the security of ORAM.

Finally, H4 describes a valid simulator S for the ideal model. It does not use P1’s

input x1 except to obtain f(x1, x2) to provide as input to SORAM .

4.3.5 Optimizations

Here we present a collection of further optimizations compatible with our 2PC protocols:

4.3.5.1 Hide only the input-dependent behavior

Systems like SCVM [37] use static program analysis to “factor out” as much input-

independent program flow as possible from a RAM computation, leaving significantly

less residual computation that requires protection from the 2PC mechanisms.

The backend protocol currently implemented by SCVM achieves security only against

semi-honest adversaries. However, our protocols are also compatible with their RAM-

level optimizations, which we discuss in more detail:

Special-purpose circuits. For notational simplicity, we have described our RAM

programs via a single circuit Π that evaluates each timestep. Then Π must contain

subcircuits for every low-level instruction (addition, multiplication, etc) that may ever

be needed by this RAM program.

Instruction-trace obliviousness means that the choice of low-level instruction

(e.g., addition, multiplication) performed at each time t does not depend on private input.

The SCVM system can compile a RAM program into an instruction-trace-oblivious one

(though one does not need full instruction-trace obliviousness to achieve an efficiency

gain in 2PC protocols). For RAM programs with this property, we need only evaluate

an (presumably much smaller) instruction-specific circuit Πt at each timestep t.

For the batching protocol of Section 4.3, enough instruction-specific circuits must be

generated in the pre-processing phase to ensure a majority of correct circuits in each

bucket. However, we point out that buckets at different timesteps could certainly be

different sizes! One particularly interesting use-case would involve a very aggressive pre-

processing of the circuits involved in the ORAM construction (i.e., the logic translating



55

logical memory accesses to physical accesses), since these will dominate the computation

and do not depend on the functionality being computed.4 The bucket size / replication

factor for these timesteps could be very low (say, 5), while the less-aggressively pre-

processed instructions could have larger buckets. In this case, the plain-RAM internal

state could be kept separate from the ORAM-specific internal state, and only fed into

the appropriate circuits.

Along similar lines, we have for simplicity described RAM programs that require a

random input tape at each timestep. This randomness leads to oblivious transfers within

the protocol. However, if it is known to both parties that a particular instruction does

not require randomness, then these OTs are not needed. For example, deterministic

algorithms require randomness only for the ORAM mechanism. Concretely, tree-based

ORAM constructions [51, 52, 9] require only a small amount of randomness and at

input-indepenent steps.

Memory-trace obliviousness. Due to their general-purpose nature, ORAM con-

structions protect all memory accesses, even those that may already be input-independent

(for example, sequantial iteration over an array). One key feature of SCVM is detecting

which memory accesses are already input-independent and not applying ORAM to them.

Of course, such optimizations to a RAM program would yield benefit to our protocols

as well.

4.3.5.2 Reusing memory

We have described our protocols in terms of a single RAM computation on an initially

empty memory. However, one of the “killer applications” of RAM computations is that,

after an initial quasi-linear-time ORAM initialization of memory, future computations

can use time sublinear in the total size of data (something that is impossible with cir-

cuits). This requires an ORAM-initialized memory to be reused repeatedly, as in [19].

Our protocols are compatible with reusing garbled memory. In particular, this can

be viewed as a single RAM computation computing a reactive functionality (one that

takes inputs and gives outputs repeatedly).

4Such pre-processing yields an instance of commodity-based MPC [3].



56

4.3.5.3 Other Protocol Optimizations

Storage requirements for RAM memory. In our cut-and-choose protocol, P1

chooses random wire labels to encode bits of memory, and then has to remember these

wire labels when garbling later circuits that read from those locations. As an optimiza-

tion, P1 could instead choose wire labels via Fk(t, j, i, b), where F is a suitable PRF, t is

the timestep in which the data was written, j is the index of a thread, i is the bit-offset

within the data block, and b is the truth value. Since memory locations are computed at

run-time, P1 cannot include the memory location in the computation of these wire labels.

Hence, P1 will still need to remember, for each memory location `, the last timestep t at

which location ` was written.

Adaptive garbling. In the batching protocol, P1 must commit to the garbled circuits

and reveal them only after P2 obtains the garbled inputs. This is due to a subtle issue of

(non)adaptivity in standard security definitions of garbled circuits; see [4] for a detailed

discussion. These commitments could be avoided by using an adaptively-secure garbling

scheme.

Online/offline tradeoff. For simplicity we described our online/offline protocol in

which P1 generates many garbled circuits and P2 opens exactly half of them. Lindell

and Riva [36] also follow a similar approach of generating many circuits in an offline

phase and assigning the remainder to random buckets; they also point out that changing

the fraction of opened circuits results in different tradeoffs between the amount of circuits

used in the online and offline phases. For example, checking 20% of circuits results in

fewer circuits overall (i.e., fewer generated in the offline phase) but larger buckets (in

our setting, more garbled circuits per timestep in the online phase).

4.4 Streaming Cut-and-choose Protocol

4.4.1 High-level Overview

The standard cut-and-choose approach is (for evaluating a single circuit) for the

sender P1 to garble O(s) copies of the circuit, and receiver P2 to request half of them to

be opened. If all opened circuits are correct, then with overwhelming probability (in s)



57

a majority of the unopened circuits are correct as well.

When trying to apply this methodology to our setting, we face the challenge of

feeding past outputs (internal state, memory blocks) into future circuits. Näıvely doing

a separate cut-and-choose for each timestep of the RAM program leads to problems

when reusing wire labels. Circuits that are opened and checked in time step t must have

wire labels independent of past circuits (so that opening these circuits does not leak

information about past garbled outputs). Circuits used for evaluation must be garbled

with input wire labels matching output wire labels of past circuits. But the security of

cut and choose demands that P1 cannot know, at the time of garbling, which circuits

will be checked or used for evaluation.

Our alternative is to use a technique suggested by [40] to perform a single cut-and-

choose that applies to all timesteps. We make O(s) independent threads of execution,

where wire labels are directly reused only within a single thread. A cut-and-choose step

at the beginning determines whether each entire thread is used for checking or evaluation.

Importantly, this is done using an oblivious transfer (as in [25, 31]) so that P1 does not

learn the status of the threads.

More concretely, for each thread the parties run an oblivious transfer allowing P2

to pick up either kcheck or keval. Then at each timestep, P1 sends the garbled circuit

but also encrypts the entire set of wire labels under kcheck and encrypts wire labels for

only her input under keval. Hence, in check threads P2 receives enough information to

verify correct garbling of the circuits (including reuse of wire labels — see below), but

learns nothing about P1’s inputs. In evaluation threads, P2 receives only P1’s garbled

input and the security property of garbled circuits applies. If P1 behaves incorrectly in a

check thread, P2 aborts immediately. Hence, it is not hard to see that P1 cannot cause a

majority of evaluation threads to be faulty while avoiding detection in all check threads,

except with negligible probability.

Reusing wire labels is fairly straight-forward since it occurs only within a single

thread. The next circuit in the thread is simply garbled with input wire labels matching

the appropriate output wire labels in the same thread (i.e., the state output of the

previous circuit, and possibly the memory-block output wires of an earlier circuit). We

point out that P1 must know the previous memory instruction before garbling the next

batch of circuits: if the instruction was (read, `), then the next circuit must be garbled

with wire labels matching those of the last circuit to write to memory location `. Hence



58

GC(i,t′) GC(i,t−1) GC(i,t)· · ·

inst(·)
⇒ (write, `)

inst(·)
⇒ (read, `)

rand(·) rand(·)

block(·) block(·)

st(·)
E(i,t) D(i,t)E(i,t−1) D(i,t−1)E(i,t′) D(i,t′)

Figure 4.3: Wire-label reuse within a single thread i, in the streaming cut-and-choose
protocol.

this approach is not compatible with batch pre-processing of garbled circuits.

For enforcing consistency of P1’s input, we use the approach of [50]5, where the

very first circuit is augmented to compute a “hiding” universal hash of P1’s input. For

efficiency purposes, the hash is chosen as M ·(x1‖r), where M is a random binary matrix

M of size s× (n+ 2s+ log s) chosen by P2. We prevent input-dependent abort based on

P2’s input using the XOR-tree approach of [35], also used in the previous protocol.

We ensure authenticity of the output for P1 using an approach suggested in [39].

Namely, wire labels corresponding to the same output wire and truth value are used

to encrypt a random “output authenticity” key. Hence P2 can compute these output

keys only for the circuit’s true output. P2 is not given the information required for

checking these ciphertexts until after he commits to the output keys. At the time of

committing, he cannot guess complementary output keys, but he does not actually open

the commitment until he receives the checking information and is satisfied with the check

circuits.

The adaptation of the input-recovery technique of Lindell [33] is more involved and

hence we discuss it separately in Section 4.4.5.

4.4.2 Detailed Protocol Description

We now describe the streaming cut-and-choose protocol for secure evaluation of Π,

the ORAM program to be computed. Recall that Π̃(st, block, inp1, inp2,1, . . . , inp2,n) =

Π(st, block, inp1
⊕

i inp2,i). We let s denote a statistical security parameter parameter,

and T denote an upper bound on the total running time of Π. Here, we describe

5although our protocol is also compatible with the solution of [39].



59

the majority-evaluation variant of the protocol and discuss how to integrate the input-

recovery technique in Section 4.4.5.

1. Cut-and-choose. The parties agree on S = O(s), the number of threads (see

discussion below). P2 chooses a random string b← {0, 1}S . Looking ahead, thread

i will be a check thread if bi = 0 and an evaluation thread if bi = 1.

For each i ∈ {1, . . . , S}, P1 chooses two symmetric encryption keys k(i,check) and

k(i,eval). The parties invoke an instance of Fot with P2 providing input bi and P1

providing input (k(i,check), k(i,eval)).

2. RAM evaluation. For each timestep t, the following are done in parallel for each

thread i ∈ {1, . . . , S}:

(a) Wire label selection. P1 determines the input wire labels E(t,i) for garbled

circuit GC(t,i) as follows. If t = 1, these wire labels are chosen uniformly. Oth-

erwise, we set st(E(t,i)) = st(D(t−1,i)) and choose rand1(E(t,i)) and rand2(E(t,i))

uniformly. If the previous instruction instt−1 = (read, `) and no previous

(write, `) instruction has happened, or if the previous instruction was not

a read, then P1 chooses block(E(t,i)) uniformly at random. Otherwise, we

set block(E(t,i)) = block(D(t′,i)), where t′ is the last instruction that wrote to

memory location `.

(b) Input selection. Parties choose shares of the randomness required for Π̃:

P1 chooses r1 ← {0, 1}n, and P2 chooses r2,1, . . . , r2,n ← {0, 1}n.

(c) P1’s garbled input transfer. P1 sends the following wire labels, encrypted

under k(i,eval):

st1(E(t,i))|∗x1 if t = 1

rand1(E(t,i))|∗r1

The following additional wire labels are also sent in the clear:

st3(E(t,i))|∗0n if t = 1

block(E(t,i))|∗0n if write or uninitialized read



60

(d) P2’s garbled input transfer. P2 obtains garbled inputs via calls to OT.

To guarantee that P2 uses the same input in all threads, we use a single OT

across all threads for each input bit of P2. For each input bit, P1 provides the

true and false wire labels for all threads as input to Fot, and P2 provides his

input bit as the OT select bit.

Note that P2’s inputs consist of the strings r2,1, . . . , r2,n as well as the string

x2 for the case of t = 1.

(e) Input consistency. If t = 1, then P2 sends a random s × (n + 2s + log s)

binary matrix M to P1. P1 chooses random input r ∈ {0, 1}2s+log s, and

augments the circuit for Π̃ with a subcircuit for computing M · (x1‖r).

(f) Circuit garbling. P1 chooses output wire labels D(t,i) at random and does

GC(t,i) = Gb(Π̃, E(t,i), D(t,i)), where in the first timestep, Π̃ also contains

the additional subcircuit described above. P1 sends GC(t,i) to P2 as well as

τ(inst(D(t,i))).

In addition, P1 chooses a random ∆t for this time-step and for each inst-

output bit j, he chooses random strings w(t,j,0) and w(t,j,1) (the same across

all threads) to be used for output authenticity, such that w(t,j,0) ⊕ w(t,j,1) =

∆t. For each thread i, output wire j and select bit b corresponding to truth

value b′, let vi,j,b denote the corresponding wire label. P1 computes ci,j,b =

Encvi,j,b(w(t,j,b′)) and hi,j,b = H(ci,j,b), where H is a 2-Universal hash function.

P1 sends hi,j,b in the clear and sends ci,j,b encrypted under k(eval,i).

(g) Garbled input collection. If thread i is an evaluation thread, then P2

assembles input wire labels X(t,i) for GC(t,i) as follows:

P2 uses k(eval,i) to decrypt wire labels sent by P1. Along with the wire labels

sent in the clear and those obtained via OTs in GetInput2, these wire labels

will comprise rand(X(t,i)); block(X(t,i)) in the case of a write or uninitialized

read; and st(X(t,i)) when t = 1.

Other input wire labels are obtained via:

st(X(t,i)) = st(Y(t−1,i))

block(X(t,i)) = block(Y(t′,i))



61

where t′ is the last write time of the appropriate memory location, and Y

denote the output wire labels that P2 obtained during previous evaluations.

(h) Evaluate and commit to output. If thread i is an eval thread, then P2

evaluates the circuit via Y(t,i) = Ev(GC(t,i), X(t,i)) and decodes the output

inst(t,i) = lsb(Y(t,i))⊕ τ(D(t,i)). He sets instt = majorityi{inst(t,i)}.
For each inst-output wire label j, P2 decrypts the corresponding ciphertext

ci,j,b, then takes w′j to be the majority result across all threads i. P2 commits

to w′j .

If t = 1, then P2 verifies that the output of the auxiliary function M · (x1‖r)
is identical to that of all other threads; if not, he aborts.

(i) Checking the check threads. P1 sends

Enck(i,check)(seed(t,i)) to P2, where seed(t,i) is the randomness used in the call

to Gb. Then if thread i is a check thread, P2 checks the correctness of GC(t,i)

as follows. By induction, P2 knows all the previous wire labels in thread i,

so can use seed(t,i) to verify that GC(t,i) is garbled using the correct outputs.

In doing so, P2 learns all of the output wire labels for GC(t,i) as well. P2

checks that the wire labels sent by P1 in the clear are as specified in the

protocol, and that the ci,j,b ciphertexts and hi,j,b are correct and consistent.

He also decrypts ci,j,b for b ∈ {0, 1} with the corresponding output label to

recover w′(t,j,b) and checks that w′(t,j,0) ⊕ w
′
(t,j,1) is the same for all j. Finally,

P2 checks that the wire labels obtained via OT in GetInput2 are the correct

wire labels encoding P2’s provided input. If any of these checks fail, then P2

aborts immediately.

(j) Output verification. P2 opens the commitments to values w′j and P1 uses

them to decode the output instt. If a value w′j does not match one of w(t,j,0)

or w(t,j,1), then P1 aborts.

4.4.3 Efficiency and Parameter Analysis

At each timestep, the protocol is dominated by the generation of S garbled circuits (where

S is the number of threads) as well as the oblivious transfers for P2’s inputs. As before,

using OT extension as well as the optimizations discussed in Section 4.3.5, the cost of the



62

oblivious transfers can be significantly minimized. Other costs in the protocol include

simple commitments and symmetric encryptions, again proportional to the number of

threads. Hence the major computational overhead is simply the number of threads. An

important advantage of this protocol is that we avoid the soldering and the “expensive”

xor-homomorphic commitments needed for input/outputs of each circuit in our batching

solution. On the other hand, this protocol always require O(s) garbled circuit executions

regardless of the size of the RAM computation, while as discussed earlier, our batching

protocol can require significantly less garbled circuit execution when the running time T

is large. The choice of which protocol to use would then depend on the running time of

the RAM computation, the input/output size of the next-instruction circuits as well as

practical efficiency of xor-homomorphic commitment schemes in the future.

Compared to our other protocol, this one has a milder memory requirement. Garbled

circuits are generated on the fly and can be discarded after they are used, with the

exception of the wire labels that encode memory values. P1 must remember 2S wire

labels per bit of memory (although in Section 4.3.5 we discuss a way to significantly

reduce this requirement). P2 must remember between S and 2S wire labels per bit of

memory (1 wire label for evaluation threads, 2 wire labels for check threads).

Using the standard techniques described above, we require S ≈ 3s threads to achieve

statistical security of 2−s. Recently, techniques have been developed [33] for the SFE

setting that require only s circuits for security 2−s (concretely, s is typically taken to be

40). We now discuss the feasibility of adapting these techniques to our protocol:

4.4.4 Security Proof

We assume an adversary A that can control any of the two parties (at most one party in

a run of protocol). In what follows, we consider two cases: adversary controlling party

P1 or P2.

1. P1 is corrupted. Simulator S sets the simulated P2’s input as follows. It sets x2

to all zeros since P2’s input can be anything. It will randomly choose the values for

r2,1, · · · , r2,n as an honest P2 would do, since the security of the ORAM depends

on these values to be sampled randomly.

Simulator would pick a random string b as an honest P2 would and sets it as the



63

input of Fot. The adversary will choose the two keys for each thread and sends

them as his input to Fot. Since S is simulating the Fot, it will know both the “eval”

and “check” keys for all the threads. Later on in the protocol, this will enable it

to extract P1’s input.

At each time-step,

• S receives P1’s garbled input as described in the protocol. More specifically,

for the first time-step t = 1, S receives st1(E(t,i))|∗x1 and rand1(E(t,i))|∗r1 en-

crypted under k(i,eval). Since the simulator already knows k(i,eval), it can

decrypt them to extract the actual garbled value. To extract the actual in-

put, simulator needs to know the opening of circuit. S will not know that

until the check phase, which happens after the evaluation phase.

• S continues with the rest of the protocol as an honest P2 would, choosing

a random matrix M, gather the garbled input, evaluate the “eval” circuits,

check the “check” circuits, and perform output verification. S will abort if an

honest P2 would have aborted.

• In checking phase, simulator will receive the seeds encrypted by k(i,check).

Since it already knows k(i,check) for “all” the threads, it can extract P1’s input

(for the first time-step, t = 1) as follows. S reconstruct the circuits of all

“eval” threads using the seeds it had recovered. Afterwards, for the set of

reconstructed eval circuits, it compares the input garbled values that it had

received before against their corresponding circuits.

If the garbled values match the opened circuits, S can extract P1’s input for

that circuit. Simulator will then set P1’s input to be majority input to “eval”

threads.

Simulator will abort if either of the following events happen. 1) if the majority

of “eval” circuits are bad (the reconstructed circuits are not valid garbling of

the function that is being computed). 2) The majority of extracted inputs are

invalid (if the garbled input values do not match the reconstructed circuits)

or the valid input are inconsistent.

Adversary can distinguish the simulator in the following cases. 1) The major-

ity of the “eval” circuits are bad. In this case, an honest P2 will not abort but



64

S will. Following the standard cut-and-choose arguments, this event happens

with negligible probability. 2) All “eval” circuits are correct, the output of

the hash function M is the same, but the inputs are inconsistent. In this case

the honest P2 will not abort but the simulator will. As discussed in [50], the

probability of this event is negligible.

• Simulator will pass the extracted input of P1 to TTP. It will then resume the

protocol by performing the steps in checking phase and following the protocol

for the rest of the time-steps, behaving as an honest P2 would.

• To ensure that A cannot distinguish the block output of each time-step from

a real execution, S create a sequence of simulated, random looking RAM

accesses and in each time-step it returns one of them. Since the simulator

has the seed to all the eval circuits of each time-steps, as describe above, it

can return correct garbled values corresponding the simulated RAM access

that it wishes to return. By security of ORAM, this simulated RAM access

is indistinguishable from the actual execution.

• When the protocol finishes, S will then output whatever A outputs.

To prove the indistinguishability consider the following arguments.

• The simulator can abort in three cases: 1) if the output of the augmented

circuits are not identical, or 2) if P1 fails the checking phase. None of them

depend on P2’s input. And 3) If inputs to “eval” threads are invalid, are

inconsistent, or if the majority of “eval” circuits are bad circuits. As described

above, in these cases A can distinguish the simulator but only with negligible

probability.

• By security of ORAM, and the hiding property of the commitment scheme

used, the choice of x2 will not have a distinguishable effect on the view of A
since all he sees during the run of the protocol are the commitments regard-

ing the output authenticity and the memory access patterns. In particular,

following the ORAM properties, memory access patterns look random in the

view of the adversary and are indistinguishable regardless of P2’s input value.

2. P2 is corrupted. Similar to the previous case, simulator sets x2 to all zeros and

assigns a random value to r1. The rest of the simulation is as follows.



65

• S chooses random values for k(i,eval) and k(i,check) for all i ∈ {1, . . . , S} and

sets them as input to Fot. By simulating Fot, S can extract P1’s choices of

cut-and-choose bits.

• Simulator follows the protocol as an honest P1 would do and selects garbled

values for input wires, and sends the encrypted garbled values corresponding

to his inputs as stated in the protocol.

• S will use the garbled values corresponding to P2’s input wires as input to

Fot. As before, since S is simulating Fot, it will receive P1’s input when he

passes them to Fot. S will then pass P1’s input to TTP and receive the result

of the computation z.

• In time-step t = 1, as instructed by the protocol, S will interact with P2 to

receive the matrix M . It would then choose r randomly.

• Having the matrix M, P1’s inputs, P1’s choices of cut-and-choose bits, and

the result of computation z, S proceeds to garble the circuits as follows.

(a) Simulator will create garbled circuits corresponding to checked threads as

an honest P1 would do. Simulator will also create the output authenticity

values wj,0 and wj,1. And computes the values for ci,j,b and hi,j,b, b ∈ {0, 1}
for “check” circuits as an honest P1 would.

(b) For the “eval” circuits, S behaves differently. In each time-step (except

for the last), circuits should output some garbled value for st output wires

(can be any arbitrary value) and a valid garbled value for block output

wires. In the last time-step, the st output wires represent the output of

the computation, so they cannot be arbitrary.

S creates a series of random looking memory access instructions that it

intents to output at each time-step. It also knows the values z of the last

time-step st output wires. By security of garbling scheme, S can simulate

garbled circuits that always output the garbled value corresponding the

these predetermind values and leak nothing else.

• After garbling the circuits, S sends them along with output authenticity

checks as stated above.

• It will continue the protocol to the end as an honest P1 would and aborts

accordingly.



66

The proof of indistinguishability is as follows.

• For input consistency check circuits, since P1 is choosing the random values

r and feeds x1||r to the hash function M , following [50] the output of the

sub-circuit computing hash function M looks random.

• For the evaluation circuits, by security of the garbling scheme, A can guess the

actual values of the garbled st values, with negligible probability. By security

of the garbling scheme, if A knows one of the two garbled values of wire, he

can correctly guess the other value only with negligible probability. Therefore,

even though A will know the truth value of the garbled value corresponding

to block output wires, he cannot obtain the other garbled value. Therefore,

by security of the encryptions used, he cannot decrypt the ci,j,1−b since he

does have access to the decryption key. As a result, A cannot distinguish the

fake circuit from the correct circuit, except with negligible probability.

For the last time-step, we can employ the same reasoning about the indis-

tiguishability of the fake circuit that always outputs z with the actual circuit

that computes z.

• Moreover, by security of the ORAM, the randomly created access patterns

are indistinguishable from the real run of the protocol.

• The check circuits are constructed correctly and by security of Yao’s protocol

they do not leak any information regarding P1’s input. Therefore, they do

not effect the view of the A.

• In the rest of the simulation S acts as an honest P1 would and aborts accord-

ingly.

4.4.5 Integrating Cheating Recovery

The idea of [33] is to provide a mechanism that would detect inconsistency in the output

wire labels encoding the final output of the computation. If P2 receives output wire

labels for two threads encoding disparate values, then a secondary computation allows

him to recover P1’s input (and hence compute the function himself). This technique

reduces the number of circuits necessary by a factor of 3 since we only need a single

honest thread among the set of evaluated threads (as opposed to a majority). We refer



67

the reader to [33] for more details. We point out that in some settings, recovering P1’s

input may not be enough. Rather, if P2 is to perform the entire computation on his

own in the case of a cheating P1, then he also needs to know the contents of the RAM

memory!

Cheating recovery at each timestep. It is possible to adapt this approach to our

setting, by performing an input-recovery computation at the end of each timestep. But

this would be very costly, since each input-recovery computation is a maliciously secure

2PC that requires expensive input-consistency checks for both party’s inputs, something

we worked hard to avoid for the state/memory bits. Furthermore, each cheating-recovery

garbled circuit contains non-XOR gates that need to be garbled/evaluated 3s times at

each timestep. These additional costs can become a bottleneck in the computation

specially when the next-instruction circuit is small.

Cheating recovery at the end. It is natural to consider delaying the input-recovery

computation until the last timestep, and only perform it once. If two of the threads

in the final timestep (which also computes the final output of computation) output

different values, the evaluator recovers the garbler’s input. Unfortunately, however,

this approach is not secure. In particular, a malicious P1 can cheat in an intermediate

timestep by garbling one or more incorrect circuits. This could either lead to two or

more valid memory instruction/location outputs, or no valid outputs at all. It could

also lead to a premature “halt” instruction. In either case, P2 cannot yet abort since

that would leak extra information about his private input. He also cannot continue with

the computation because he needs to provide P1 with the next instruction along with

proof of its authenticity (i.e. the corresponding garbled labels) but that would reveal

information about his input.

We now describe a solution that avoids the difficulties mentioned above and at the

same time eliminates the need for input-consistency checks or garbling/evaluating non-

XOR gates at each timestep. In particular, we delay the “proof of authenticity” by P2 for

all the memory instructions until after the last timestep. Whenever P2 detects cheating

by P1 (i.e. more than two valid memory instructions), instead of aborting, he pretends

that the computation is going as planned and sends “dummy memory operations” to P1

but does not (and cannot) prove the authenticity of the corresponding wire labels yet.



68

For modern tree-based ORAM constructions ([52, 9], etc) the memory access pattern

is always uniform, so it is easy for P2 to switch from reporting the real memory access

pattern to a simulated one. Note that in step (h) of the protocol, P2 no longer needs

to commit to the majority w′j . As a result, step (j) of the protocol will be obsolete.

Instead, in step (h), P2 sends the instt in plaintext. This instruction is the single valid

instruction he has recovered or a dummy instruction (if P2 has attempted to cheat).

After the evaluation of the final timestep, we perform a fully secure 2PC for an input-

recovery circuit that has two main components. The first one checks if P1 has cheated.

If he has, it reveals P1’s input to P2. The second one checks the proofs of authenticity

of the inst instructions P2 reveals in all timesteps and signals to P1 to abort if the proof

fails.

First cheating recovery, then opening the check circuits. For this cheating

recovery method to work, we perform the evaluation steps (step (h)) for all time-steps

first (at this stage, P2 only learns the labels for the final output but not the actual value),

then perform the cheating recovery as described above, and finally perform all the checks

(step (i)) for all time-steps.

We now describe the cheating recovery circuit which consists of two main components

in more detail.

• The first component is similar to the original cheating recovery circuit of [33]. P2’s

input is the XOR of two valid output authenticity labels for a wire j at step t

for which he has detected cheating (if there is more than one instance of cheating

he can use the first occurrence). Lets denote the output authenticity labels for

jth bit of block(Y(t,i)) at time-step t with w(t,j,b), b ∈ {0, 1}. Then P2 will input

w(t,j,0) ⊕ w(t,j,1) to the circuit. If there is no cheating, he inputs garbage. Notice

that w(t,j,0)⊕w(t,j,1) = ∆t for valid output authenticity values, as described in the

protocol (note that we assume that all output authenticity labels in timestep t use

the same offset ∆t).

P1 inputs his input x1. He also hardcodes ∆t. For timestep t (as shown in Figure

4.4) the circuit compares P2’s input against the hardcoded ∆t. If P2’s input is the

same as the ∆t, cheating is detected and the circuit outputs 1. To check that P2’s

input is the same as at least one of the hard-coded ∆s, in the circuit of Figure 4.5



69

we compute the OR of all these outputs. Thus, if the output of this circuit is 1, it

means that P1 has cheated in at least one timestep.

To reveal P1’s input, we compute the AND of output of circuit of Figure 4.5 with

each bit of P1’s input as depicted in Figure 4.6. This concludes the description of

the first component for cheating recovery.

• In the second component, we check the authenticity of the memory instructions P2

provided in all timesteps. In particular, he provides the hash of concatenation of

all output authentication labels he obtained during the evaluation corresponding

to inst in all timesteps (P2 uses dummy labels if he does not have valid ones due

to P1’s cheating), while P1 does the same based on the plaintext instructions he

received from P2 and the labels which he knows. The circuit then outputs 1 if

the two hash values match. The circuit structure is therefore identical to that of

Figure 4.4, but the inputs are the hash values. An output of 0 would mean that

P2 does not have a valid proof of authenticity.

As shown in the final circuit of Figure 4.6 then, if P1 was not already caught

cheating in the previous step, and P2’s proof of authenticity fails, the circuit outputs

a 1 to signal an abort to P1. This is a crucial condition, i.e., it is important to

ensure P1 did not cheat (the output of circuit of Figure 4.5) before accusing P2 of

cheating, since in case of cheating by P1 say in timestep t, P2 may be able to prove

authenticity of the instructions for timestep t or later.

Efficiency: Following the techniques of [33], all the gates of Figures 4.4, and 4.5 can

be garbled using non-cryptographic operations (XORs) and only the circuit of Figure

4.6 has non-XOR gates. More precisely it requires |x1| ANDs and a NOT gate.

Of course, the final circuit will be evaluate using a basic maliciously secure 2PC.

Thus, we need to add a factor of 3s to the above numbers which results in garbling a

total of 3s(|x1|+ 1) non-XOR gates which is at most 12s(|x1|+ 1) symmetric operations.

The input consistency checks are also done for P1’s input x1 and P2’s input which

is a proof of cheating of length |∆| and a proof of authenticity which is the output of

a hash function (both are in the order of the computational security parameter). We

stress that the gain is significant since both the malicious 2PC and the input consistency

cheks are only done once at the end.



70

∆t[0](w(t,j,0) ⊕ w(t,j,1))[0]

∆t[1](w(t,j,0) ⊕ w(t,j,1))[1]

∆t[m](w(t,j,0) ⊕ w(t,j,1))[m]

outt

MatchBoxt

Figure 4.4: Cheating recovery component 1: MatchBox. Where ∆t[i] denotes the ith bit
of ∆t and m = |∆t|.

MatchBox0

MatchBox1

MatchBoxT

w(t,j,0) ⊕ w(t,j,1)
garbler
cheated

GarbCheatDetection

Figure 4.5: Cheating Recovery component 1: Garbler Cheating Detection.



71

w(t,j,0) ⊕ w(t,j,1)

Hash(w(t,j,b)),
t ∈ {0, . . . , T},

j ∈ {1, . . . , |instt|}

GarbCheat
Detection

MatchBox

x1

P2’s
output

P1 aborts
if equal to 1

Figure 4.6: Final Circuit



72

Chapter 5: Conclusion

In this thesis, we have studied the role of oblivious RAM in secure multi-party com-

putation. As we have mentioned above, most techniques are restricted to functions

represented as boolean or arithmetic circuits, and the the conversion from function to

circuit may lead to a huge blowup both in circuit size and running time. In the real

world, modern algorithms of practical interest all rely on fast memory access for effi-

ciency, and suffer from major blowup in running time otherwise. For example, consider

performing a binary search on a dataset of size n, we only need to touch O(log n) data

when applying RAM programs. However, when using garbled circuit technique, we have

to touch all data which significantly increases the circuit size and running time. More

generally, a circuit computing a RAM program with running time T requires Θ(T 2) gates

in the worst case, making it prohibitively expensive (as a general approach) to compile

RAM programs into a circuit and then apply known circuit 2PC techniques.

First we describe a system in which a prover holds a large dataset M and can repeat-

edly prove NP relations about that dataset. It is not appropriate here to use garbled

circuit due to the large dataset. ORAM technique can help reducing the cost to sublinear

in an amortized way. It requires only a constant number of rounds of interaction, incurs

online computation and communication cost that is linear in the running time of the

RAM program.

We then present the first practical protocols for evaluating RAM programs with

security against malicious adversaries. We point out three main challenges in malicious-

secure RAM evaluation, integrity and consistency of state information, compatibility

with batch execution and input-recovery techniques, and run-time dependence. Then

we introduce two protocols that address the issues. The first protocol uses the LEGO

paradigm of label soldering for 2 party computation. The second approach directly reuses

wire labels without soldering while garbled circuits must be generated online.

Based on some concrete measurements in Appendix A (see table A.1), the “extra

overhead” of achieving malicious security for RAM programs (i.e. the additional cost

beyond what is needed for malicious security of the circuits involved in the computation),



73

is at least an order of magnitude smaller than the naive solutions and this gap grows as

the running time of the RAM program increases.



74

Bibliography

[1] Arash Afshar, Zhangxiang Hu, Payman Mohassel, and Mike Rosulek. How to ef-
ficiently evaluate RAM programs with malicious security. In Eurocrypt, 2015. To
appear.

[2] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More
efficient oblivious transfer and extensions for faster secure computation. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13: 20th Con-
ference on Computer and Communications Security, pages 535–548. ACM Press,
November 2013.

[3] Donald Beaver. Commodity-based cryptography (extended abstract). In 29th An-
nual ACM Symposium on Theory of Computing, pages 446–455. ACM Press, May
1997.

[4] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Adaptively secure garbling
with applications to one-time programs and secure outsourcing. In Xiaoyun Wang
and Kazue Sako, editors, Advances in Cryptology – ASIACRYPT 2012, volume 7658
of Lecture Notes in Computer Science, pages 134–153. Springer, December 2012.

[5] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. Cryptology ePrint Archive, Report 2012/265, 2012. http://eprint.iacr.
org/2012/265.

[6] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12:
19th Conference on Computer and Communications Security, pages 784–796. ACM
Press, October 2012.

[7] Jan Camenisch and Markus Michels. Proving in zero-knowledge that a number is
the product of two safe primes. In Jacques Stern, editor, Advances in Cryptology –
EUROCRYPT’99, volume 1592 of Lecture Notes in Computer Science, pages 107–
122. Springer, May 1999.

[8] Ran Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology, 13(1):143–202, 2000.

[9] Kai-Min Chung and Rafael Pass. A simple ORAM. Cryptology ePrint Archive,
Report 2013/243, 2013. http://eprint.iacr.org/2013/243.

http://eprint.iacr.org/2012/265
http://eprint.iacr.org/2012/265
http://eprint.iacr.org/2013/243


75

[10] Stephen A. Cook and Robert A. Reckhow. Time-bounded random access machines.
In Proceedings of the Fourth Annual ACM Symposium on Theory of Computing,
STOC ’72, pages 73–80, New York, NY, USA, 1972. ACM.

[11] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowl-
edge and simplified design of witness hiding protocols. In Yvo Desmedt, editor,
Advances in Cryptology – CRYPTO’94, volume 839 of Lecture Notes in Computer
Science, pages 174–187. Springer, August 1994.

[12] Cynthia Dwork, Uriel Feige, Joe Kilian, Moni Naor, and Shmuel Safra. Low com-
munication 2-prover zero-knowledge proofs for NP. In Ernest F. Brickell, editor,
Advances in Cryptology – CRYPTO’92, volume 740 of Lecture Notes in Computer
Science, pages 215–227. Springer, August 1992.

[13] Tore Kasper Frederiksen, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Peter Se-
bastian Nordholt, and Claudio Orlandi. MiniLEGO: Efficient secure two-party com-
putation from general assumptions. In Thomas Johansson and Phong Q. Nguyen,
editors, Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture Notes
in Computer Science, pages 537–556. Springer, May 2013.

[14] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled ram revisited. In PhongQ. Nguyen and Elisabeth Oswald, editors,
Advances in Cryptology EUROCRYPT 2014, volume 8441 of Lecture Notes in
Computer Science, pages 405–422. Springer Berlin Heidelberg, 2014.

[15] Craig Gentry, Shai Halevi, Steve Lu, Rafail Ostrovsky, Mariana Raykova, and Daniel
Wichs. Garbled RAM revisited. In EUROCRYPT, 2014.

[16] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred Aho, editor,
19th Annual ACM Symposium on Theory of Computing, pages 218–229. ACM Press,
May 1987.

[17] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems. Journal of
the ACM, 38(3):691–729, 1991.

[18] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on obliv-
ious RAMs. J. ACM, 43(3):431–473, 1996.

[19] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal Malkin,
Mariana Raykova, and Yevgeniy Vahlis. Secure two-party computation in sublinear
(amortized) time. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM



76

CCS 12: 19th Conference on Computer and Communications Security, pages 513–
524. ACM Press, October 2012.

[20] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear
groups. Cryptology ePrint Archive, Report 2007/155, 2007. http://eprint.iacr.
org/2007/155.

[21] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J.
Malozemoff. Amortizing garbled circuits. In Advances in Cryptology – CRYPTO
2014., 2014.

[22] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious
transfers efficiently. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 145–161. Springer, August
2003.

[23] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In David S. Johnson and Uriel Feige, editors,
39th Annual ACM Symposium on Theory of Computing, pages 21–30. ACM Press,
June 2007.

[24] Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi. Zero-knowledge using
garbled circuits: how to prove non-algebraic statements efficiently. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13: 20th Conference
on Computer and Communications Security, pages 955–966. ACM Press, November
2013.

[25] Seny Kamara, Payman Mohassel, and Ben Riva. Salus: a system for server-aided
secure function evaluation. In Ting Yu, George Danezis, and Virgil D. Gligor, edi-
tors, ACM CCS 12: 19th Conference on Computer and Communications Security,
pages 797–808. ACM Press, October 2012.

[26] Marcel Keller and Peter Scholl. Efficient, oblivious data structures for MPC. Cryp-
tology ePrint Archive, Report 2014/137, 2014. http://eprint.iacr.org/.

[27] Mehmet S. Kiraz and Berry Schoenmakers. A protocol issue for the malicious
case of yao’s garbled circuit construction, 2006. http://www.win.tue.nl/~berry/
papers/wic06.pdf.

[28] Vladimir Kolesnikov and Ranjit Kumaresan. Improved secure two-party computa-
tion via information-theoretic garbled circuits. In Ivan Visconti and Roberto De
Prisco, editors, SCN 12: 8th International Conference on Security in Communica-
tion Networks, volume 7485 of Lecture Notes in Computer Science, pages 205–221.
Springer, September 2012.

http://eprint.iacr.org/2007/155
http://eprint.iacr.org/2007/155
http://eprint.iacr.org/
http://www.win.tue.nl/~berry/papers/wic06.pdf
http://www.win.tue.nl/~berry/papers/wic06.pdf


77

[29] Vladimir Kolesnikov, Payman Mohassel, and Mike Rosulek. Flexor: Flexible gar-
bling for xor gates that beats free-xor. In JuanA. Garay and Rosario Gennaro,
editors, Advances in Cryptology CRYPTO 2014, volume 8617 of Lecture Notes in
Computer Science, pages 440–457. Springer Berlin Heidelberg, 2014.

[30] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg,
Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP
2008: 35th International Colloquium on Automata, Languages and Programming,
Part II, volume 5126 of Lecture Notes in Computer Science, pages 486–498. Springer,
July 2008.

[31] Benjamin Kreuter, abhi shelat, and Chih-Hao Shen. Billion-gate secure computa-
tion with malicious adversaries. In Proceedings of the 21st USENIX conference on
Security symposium, pages 14–14. USENIX Association, 2012.

[32] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert adver-
saries. Cryptology ePrint Archive, Report 2013/079, 2013. http://eprint.iacr.

org/2013/079.

[33] Yehuda Lindell. Fast cut-and-choose based protocols for malicious and covert ad-
versaries. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part II, volume 8043 of Lecture Notes in Computer Science, pages
1–17. Springer, August 2013.

[34] Yehuda Lindell and Benny Pinkas. A proof of yao’s protocol for secure two-party
computation. Cryptology ePrint Archive, Report 2004/175, 2004. http://eprint.
iacr.org/2004/175.

[35] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In Moni Naor, editor, Advances
in Cryptology – EUROCRYPT 2007, volume 4515 of Lecture Notes in Computer
Science, pages 52–78. Springer, May 2007.

[36] Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computation in the
online/offline and batch settings. In Juan A. Garay and Rosario Gennaro, editors,
CRYPTO (2), volume 8617 of Lecture Notes in Computer Science, pages 476–494.
Springer, 2014.

[37] Chang Liu, Yan Huang, Elaine Shi, Jonathan Katz, and Michael Hicks. Automating
efficient RAM-model secure computation. In Proceedings of the IEEE Symposium
on Security and Privacy (Oakland), May 2014.

http://eprint.iacr.org/2013/079
http://eprint.iacr.org/2013/079
http://eprint.iacr.org/2004/175
http://eprint.iacr.org/2004/175


78

[38] Steve Lu and Rafail Ostrovsky. How to garble RAM programs. In Thomas Johans-
son and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013,
volume 7881 of Lecture Notes in Computer Science, pages 719–734. Springer, May
2013.

[39] Payman Mohassel and Ben Riva. Garbled circuits checking garbled circuits: More
efficient and secure two-party computation. In Ran Canetti and Juan A. Garay,
editors, Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture
Notes in Computer Science, pages 36–53. Springer, August 2013.

[40] Benjamin Mood, Debayan Gupta, Joan Feigenbaum, and Kevin Butler. Reuse It Or
Lose It: More Efficient Secure Computation Through Reuse of Encrypted Values.
In ACM CCS, 2014.

[41] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two party secure computation.
Cryptology ePrint Archive, Report 2008/427, 2008. http://eprint.iacr.org/

2008/427.

[42] Jesper Buus Nielsen and Claudio Orlandi. LEGO for two-party secure computation.
In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptography Conference,
volume 5444 of Lecture Notes in Computer Science, pages 368–386. Springer, March
2009.

[43] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure
two-party computation is practical. In Mitsuru Matsui, editor, Advances in Cryp-
tology – ASIACRYPT 2009, volume 5912 of Lecture Notes in Computer Science,
pages 250–267. Springer, December 2009.

[44] Nicholas Pippenger and Michael J. Fischer. Relations among complexity measures.
J. ACM, 26(2):361–381, April 1979.

[45] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowledge
with logarithmic round-complexity. In 43rd Annual Symposium on Foundations of
Computer Science, pages 366–375. IEEE Computer Society Press, November 2002.

[46] Michael O. Rabin. How to exchange secrets with oblivious transfer. Cryptology
ePrint Archive, Report 2005/187, 2005. http://eprint.iacr.org/2005/187.

[47] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz. OCB: A block-
cipher mode of operation for efficient authenticated encryption. In ACM CCS 01:
8th Conference on Computer and Communications Security, pages 196–205. ACM
Press, November 2001.

http://eprint.iacr.org/2008/427
http://eprint.iacr.org/2008/427
http://eprint.iacr.org/2005/187


79

[48] Mike Rosulek. The structure of secure multi-party computation. In PHD thesis.
2009. http://hdl.handle.net/2142/13698.

[49] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles
Brassard, editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture
Notes in Computer Science, pages 239–252. Springer, August 1989.

[50] abhi shelat and Chih-Hao Shen. Fast two-party secure computation with minimal
assumptions. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 13: 20th Conference on Computer and Communications Security, pages
523–534. ACM Press, November 2013.

[51] Elaine Shi, T.-H. Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious RAM
with O((logN)3) worst-case cost. In Dong Hoon Lee and Xiaoyun Wang, editors,
Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in
Computer Science, pages 197–214. Springer, December 2011.

[52] Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher W. Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. Path ORAM: an extremely simple oblivious
RAM protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 13: 20th Conference on Computer and Communications Security, pages
299–310. ACM Press, November 2013.

[53] Stefan Tillich and Nigel Smart. Circuits of Basic Functions Suitable For MPC and
FHE. http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/.

[54] Stefan Wolf and Jürg Wullschleger. Oblivious transfer is symmetric. In Serge
Vaudenay, editor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of
Lecture Notes in Computer Science, pages 222–232. Springer, May / June 2006.

[55] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
23rd Annual Symposium on Foundations of Computer Science, pages 160–164. IEEE
Computer Society Press, November 1982.

[56] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th Annual Symposium on Foundations of Computer Science, pages 162–167.
IEEE Computer Society Press, October 1986.

http://hdl.handle.net/2142/13698
http://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/


80

APPENDICES



81

Appendix A: Streaming Cut-and-choose Protocol Efficiency

To signify the efficiency advantages of our streaming cut-and-choose protocol, we com-

pare our approach with a naive but natural transformation of [19] from semi-honest to

malicious security.

A.1 Naive Approach

In order to check consistency of the shared state values passing from one circuit to

another, one could compute the one-time MAC of the shares in one circuit and verify

the MACs in the next. And to maintain integrity and privacy of the memory blocks, a

natural solution is to encrypt them using an authenticated encryption scheme and store a

ciphertext that is decrypted whenever the memory location is accessed. Furthermore, one

would need to repeat the cheating-recovery component after each timestep (or otherwise

use 3s threads).

For the one-time MAC, we use the efficient scheme of [50] which we used earlier for

input-consistency. This way, MACing is essentially free (since it is all XOR gates) while

it costs only 2M AND gates to verify where M is the size of the input to the MAC. For

the authenticated encryption (AE), one can use any standard AE scheme such as the

efficient OCB-AES128 [47] which requires two AES calls when encrypting only one block

of input. The decryption cost is similar with an extra τ AND gates where τ is the length

of the authenticity tag (let τ = 128). Assuming that an AES circuit implementation

would require 6 800 non-XOR gates [53], authenticated encryption of a block of 128 bit

would require a circuit size of 13 600 non-XOR gates while decryption requires 13 728

non-XOR gates.

In the construction of [19], the tree-ORAM circuit can be broken into four main

circuits: 1) the circuit that given the shares of a virtual address, returns its corresponding

label to the Receiver, 2) a circuit that given the shares of a virtual address and an

encrypted path from root to a leaf, returns the shares of the data corresponding to the

virtual address and removes it from the path, 3) a circuit that adds the removed data



82

to the root node, and 4) a circuit that given a label, evicts the nodes from root to that

label. Note that one would need to apply a separate cheating recovery for each of these

circuits.

Given these circuits, we compute the total number of bits (state information) that

are passed between circuits. We also compute the number of times that we need to call

encryption and decryption algorithms on the memory items. Note that these numbers

are for a single ORAM operation.

Consider the following parameters. The number of actual data items stored in mem-

ory is denoted by N . In the level-0 tree of the ORAM, each node contains a constant

number of blocks, Z. Each block consists of a metadata section of length D and a data

section of the same size. Encrypting a block is implemented by AES-128. The security

parameter (for key length and the length of the tag in authenticated encryption) is S′.

We also denote the Sender side storage for the ORAM by CS. For simplicity, we consider

the case of a non-recursive ORAM. Therefore, CS is equal to N ×D (i.e. Sender needs

to store his share of metadata for all memory locations). Since we are assuming the use

of cheating recovery technique, the number of threads is S = s.

To compare the efficiency of our approach with the naive transformation, we compare

the overhead incurred by each approach. The overhead is computed in three aspects:

1) the number of extra gates necessary, 2) the extra input consistency checks, and 3)

the extra storage requirement on Sender’s side. These extra cost are computed over the

run-time (T ) of the program. To clarify what we mean by “extra” overhead, consider

the following.

If the size of a circuit (number of non-XOR gates) computing a semi-honest 2PC

ORAM is denoted by SO and it stores CS bytes of data in Sender’s side, using cut-and-

choose and cheating recovery, we would at least need a circuit size ofMS = s×SO for cut-

and-choose and 3s×|x1| non-XOR gates for cheating recovery. We would also need s×CS
bytes at Sender’s side. Moreover, we would require the usual input consistency checks on

x1. Therefore, in the run-time of the program, we would need MST = MS×T+3s×|x1|
non-XOR gates and CSs = s×CS bytes of storage. Any cost other than MST , CSs and

the input consistency checks on the |x1| is considered an overhead. In what follows, we

compute the overhead of the naive transformation approach.

For each invocation of ORAM, we have the following costs. We need to apply MACing

and verification for 8D + 2CS bits. The authenticated encryption and decryption are



83

each called on 3Z logN+Z blocks. We need to check input consistency on 2D+3S′+CS

bits of data. And finally, the cost of cheating recovery for a circuit with input size M

is 3s ×M non-XOR gates. Thus, for an ORAM application with running time T and

assuming the use of cheating recovery, the overhead for time-steps t1 to t2 such that

t′ = t2 − t1 (corresponding to a single ORAM call) is as follows.

• MAcing: almost free.

• Verification: t′s× (2× (8D + 2CS)) non-XOR gates.

• Authenticated Encryption: t′s× (13 600× (3Z logN + Z)) non-XOR gates.

• Authenticated Decryption: t′s× (13 728× (3Z logN + Z)) non-XOR gates.

• Cheating Recovery: 3t′s× (8D + 2CS) non-XOR gates.

Note that during the run time of a program, many such ORAM calls are performed

such that T = t′ × num of calls.

Given D = 64 (so that we can feed 2D = 128 blocks of data to AES), N = 210,

S′ = 128, s = 40, Z = 4, and CS = N×D the total size of the overhead is T×154.36×220

non-XOR gates. We would also have a computational overhead of O(T × IC ×ND) for

input consistency checks, where IC is the overhead of input consistency check for one

bit of data on s garbled circuits. The Sender storage does not have any overhead.

A.2 Our approach

In our approach, we do not need to check the correctness of the state information using

MAC. We also, do not need authenticated encryption and decryption. Moreover, we

perform the cheating recovery only once at the end of the protocol. Therefore, our only

overhead is introduced by the final cheating recovery which is equal to 3s × (|x1| + 1)

(see section 4.4.5), where x1 is the input to the circuit in the first time-step. Notice that

only 3s of it is considered “extra” overhead.

Our approach achieves the above at a cost of increasing the Sender’s storage re-

quirements. In our approach Sender needs know for each memory location and for each

thread, which circuit updated that location (i.e. he needs to store the seed (|seed| = S′)

of the circuit) and also when was the last update performed (i.e. he needs to store a



84

time-step t (|t| = log T )). This results in an extra N×s×(S′+log T ) storage for Sender.

As for input consistency, note that we do not need any input consistency checks for the

intermediate circuits which are responsible for ORAM access.

Given the same concrete parameters as above, with the addition of |x1| = 128 the

overheads are as follows. Our approach needs only 120 extra non-XOR gates at the cost

of an extra 5MB + log T × 40KB of Sender storage.

Table A.1 provides a comparison of the overhead of the two approaches. Notice

that as the running time increase our performance on circuit overhead increases linearly

while the storage requirements increases only logarithmic. As can be seen in this table,

our approach saves orders of magnitude on circuit size (number of non-XOR gates) and

removing the need for costly input consistency checks, while adding only a small overhead

on Sender storage size.

Table A.1: Comparison of “overhead” of naive implementation with streaming cut-and-
choose approach

Naive implementation Streaming cut-and-choose

Circuit Size (T × 154.36× 220) non-XOR gates (120) non-XOR gates

Sender Storage 0 5MB + log T × 40KB

Input Consistency Checks O(T × IC ×ND) 0



85

Appendix B: Concrete Bounds for Batch Preprocessing Protocol

Here we compute the number of circuits ρ needed per bucket in the protocol of Section

4.3. Let T denote the total number of time steps taken by the RAM program.

In that protocol, P1 generates 2ρT circuits and exactly half are checked. The remain-

ing ones get placed randomly into T buckets of ρ circuits each.

Let B(ρ, T,m) denote the probability that some bucket contains a minority of good

circuits, when m circuits are bad. Then we have the following recurrence:

B(ρ, T,m) =

ρ∑
i=0

(
m
i

)(
ρT−m
ρ−i

)(
ρT
ρ

) {
if i < ρ/2 then B(ρ, T − 1,m− i)

else 1

}
In this recurrence, i indexes the number of bad circuits in the first bucket. The

fraction gives the probability of the first bucket receiving exactly i bad circuits. If

i < ρ/2 then the condition is not yet met and it must further hold on the remaining

T − 1 buckets; if i ≥ ρ/2 then the condition is met (hence 1).

Then let B∗(ρ, T,m) denote the overall probability that an adversary will be successful

by generating m bad circuits. Since the bad circuits must survive the cut and choose,

and then a minority-good bucket is generated, we have:

B∗(ρ, T,m) =

(
2ρT−m
ρT

)(
2ρT
ρT

) · B(ρ, T,m)

A value of ρ is sufficient to achieve security 2−s if we have

max
m
{B∗(ρ, T,m)} < 2−s

Using these recurrences, we were able to exactly compute the minimal values of ρ for

s = 40 and selected values of T :



86

T minimum ρ needed:

100 13

250 11

500 9

5,000 7

100,000 7

500,000 5

These are admittedly a very small sample size, though we can report that the points are

fit closely (r = 0.97) by the linear regression ρ = 1.86 · (40/ log2 T ) + 1.46.

We note that the analyses of [21] are slightly different, in that they need only a single

good circuit in each bucket (i.e., the adversary succeeds only by making a bucket with

no good circuits).

Checking a different fraction of circuits. In [36], it is suggested to check a different

(i.e., not 1/2) fraction of circuits in the offline phase. Indeed, if the parties check a smaller

fraction of circuits, then P1 generates fewer circuits overall (in the offline phase) but P2

evaluates more circuits per timestep in the online phase (i.e., buckets must be bigger).

Suppose that 1 − φ fraction of circuits are checked in the offline phase. In order to

have T buckets of ρ circuits each, P1 must generate N = dρT/φe circuits total and the

parties must check N − ρT of them. Then the probability of m bad circuits surviving

the cut and choose is:

B∗(ρ, T,m) =

( dρT/φe−m
dρT/φe−ρT

)( dρT/φe
dρT/φe−ρT

) · B(ρ, T,m)

Following [36], we compute the parameters for several values of T and φ (again for

s = 40):



87

T fraction checked (1− φ) circuits per timestep

online only (bucket size) total (eval + check)

100 0.80 9 45.0

100 0.60 11 27.5

100 0.40 13 21.7

100 0.25 15 20.0

500 0.90 7 70.0

500 0.50 9 18.0

500 0.25 11 14.7

1000 0.80 7 35.0

1000 0.40 9 15.0

1000 0.20 11 13.7

5000 0.50 7 14.0

5000 0.15 9 10.6

104 0.35 7 10.8

104 0.10 9 10.0

5× 104 0.15 7 8.2

We note that [36] also prove a bound on the bucket size ρ; namely, if:

ρ ≥ 2s+ 2 log T − log(−1.25 log φ)− 1

log T + log(−1.25 log φ)− 2

then the total probability of a majority-bad bucket is at most 2−s, when using buckets

of size ρ. However, the exact bounds that we have computed are significantly tighter.




	Introduction
	Security Concerns
	Adversary
	Ideal Functionality and Protocol
	Security Analysis

	Our contribution
	ORAM Application in Zero-knowledge Proof
	RAM Program with Malicious Security


	Preliminary
	Basic Notation
	Hash Function and Strongly Universal Hashing
	Garbled Circuit and Garbling Scheme
	Garbled Circuit
	Oblivious Transfer
	Garbling Scheme

	Oblivious RAM
	Commitment and Zero-knowledge proof
	Commitment
	Zero-knowledge Proof


	Zero-Knowledge Proofs by using Oblivious RAM program
	Introduction
	Our results

	Preliminaries
	Authenticated Array
	Committing Private Function Evaluation
	Garbling Scheme

	Protocol overview
	Additional Notation and Helper Routines
	Detailed protocol
	Security proof

	RAM Program with Malicious Security
	Introduction
	Our contribution

	Preliminaries
	Garbling Scheme

	Batching Protocol
	High-level Overview
	Detailed Protocol Description
	Efficiency and Parameter Analysis
	Security Proof
	Optimizations

	Streaming Cut-and-choose Protocol
	High-level Overview
	Detailed Protocol Description
	Efficiency and Parameter Analysis
	Security Proof
	Integrating Cheating Recovery


	Conclusion
	Bibliography
	Appendices
	Streaming Cut-and-choose Protocol Efficiency
	Concrete Bounds for Batch Preprocessing Protocol

