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Diagnostic Analysis for Mechanical Systems 

1 Introduction 

1.1 The Diagnosability Problem 

The complex electromechanical systems that compose modern-day machines are more 

efficient, cost-effective, reliable than those of only a few years ago. Many systems 

today are integrated in such a way that components have multiple functions and are 

managed by sophisticated computer control systems [Manelski 1998]. While the 

benefits of this evolution in system architecture are numerous, such as increased 

reliability and simpler, more efficient designs, there is a significant drawback we seek 

to address in this research project. Because of the many component interdependencies 

in today's integrated systems, causes of failure are often difficult to distinguish. Thus, 

because of this increased complexity, more errors are made in the diagnosis and repair 

of electromechanical systems. This is a problem in diagnosability, the system 

characteristic defined as a measure of the ease of isolating faults in the system. 

There are two approaches to alleviating problems with fault isolation. The first is to 

make improvements to the diagnostic process for systems already designed and in­

service. This approach includes developing maintenance and diagnostic procedures 

and processes and incorporating electronic diagnostics into system design. There has 

been much research and application in this area of diagnosis. An example lies in the 
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design of the Air Supply and Control System (ASCS) for the Boeing 767-400ER 

aircraft. Extensive built-in tests (BIT) were incorporated into the design to allow for 

problems to be easily diagnosed [Boeing]. 

Less work has been focused on a second approach to the problem, improving inherent 

system diagnosability. This approach involves looking at the problem during the 

design stage and asking the questions: How can this system be improved to make it 

easier to diagnose? What are ways ofmeasuring this system's diagnosability during 

design? In this approach we assume that changes in the structure of the system will 

affect the efficiency of diagnosing the system's failures. In endeavoring to understand 

and develop methodologies for improving diagnosability in this sense, we must have a 

good understanding of the diagnostic process (see section 2). 

1.2 Motivation for Pursuing Diagnosability Improvement 

Maintaining electromechanical systems is costly in both time and money, and 

diagnosability problems increase these costs. This fact serves as the primary 

motivation for exploring diagnosability improvement in systems ranging from 

airplanes to automobiles to high-tech manufacturing equipment. 

The number of maintenance actions on an airplane system (see Figure 1) serves as an 

illustration of the reality of the diagnosability problem, and as compelling motivation 

for exploring practical solutions. Figure 1 shows that for the Air Supply and Control 

System on an airplane, an average of 8.5 maintenance actions were executed to correct 

each indicated failure condition. Maintenance actions in this particular study can 
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Figurel Maintenance actions on an airplane system 

include replacing, repairing, or checking a component or deferring action until a later 

time. These statistics are significant because more maintenance actions increase time 

and labor, and thus costs, and can affect safety because problems on mechanical 

systems persist longer than necessary. 

Thus, the motivation for this research is that the problem of efficiency in fault 

isolation has been a significant issue in maintenance time and life-cycle costs. The 

ability to predict the diagnosability of a system early in its design stage would enable 

the building of systems with more efficient fault isolation, leading to reduced life-

cycle costs. 
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1.3 Background Work in Diagnosability Analysis 

Before further developing the diagnosability model in this paper, we will present a 

review of some previous research in diagnosability. 

Pau [1981] explores the links between data analysis and failure diagnosis. He asserts 

his data analysis methods can achieve several objectives important to diagnosis, 

including the following: 

• 	 Elimination of most redundant observations or tests 
• 	 Selection of tests and observations giving the best possible 

discrimination between failure causes and determination of 
equipment condition ... 

• 	 Elimination of imprecise symptoms ... [Pau 1981] 

These characteristics are important in the development of this paper, including the 

distinction between observations and tests. 

Ruff [1995] introduced the idea of mapping a system's performance measurements to 

system parameters. Performance measurements would be indications from lights, 

gauges, etc. Parameters were usually the system components being measured, such as 

valves, controllers, or actuators. The complexity of the interdependencies between 

measurements and parameters was directly related to the diagnosability of the system. 

Ruff also completed some initial work on evaluating competing designs based on life 

cycle costs associated with diagnosability. 

Clark [1996] extended Ruff's work by establishing some valuable metrics based on 

performance measurement-parameter relationships. The most significant of these 

metrics, Weighted Distinguishability (WD), represents the complexities of 
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interdependencies between components and indications. The distinguishability metric 

will be extended in this research, but evaluated from a different perspective (see 

section 4.1). 

Simpson and Sheppard [1994] devote a considerable portion of their book System Test 

and Diagnosis to diagnosability evaluation. They present a highly mathematical and 

theoretical analysis of diagnosis and testing adapted mainly for electrical applications. 

In evaluating diagnosability, they develop large matrices of test results and test 

conclusions to analyze and measure ambiguity and the ability to isolate faults. 

Wong [1994] developed methods for minimizing both the time and cost of diagnosis 

early in the design stage. Wong developed a checking order index for each system 

component, which was calculated by dividing the probability of failure by the average 

time to check the component. A ranking order of components to be checked could then 

be established for each possible failure indication. Wong then developed an expected 

time to diagnose for a given indication. 

Kurki [1995] researched model-based fault diagnosis, exploring the use of structural 

and behavioral models in examining fault detection and fault localization processes. 

Murphy [1997] developed prediction methods for a system's Mean Time Between 

Unscheduled Removals (Unjustified) (MTBURun). The MTBURwzj metric is a 

significant component attribute in doing diagnosability analysis. This present research 

will broaden the methodology that Murphy began in predicting MTBURunj• 
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Finally, Fitzpatrick [1999] worked on developing methods for predicting Mean Time 

Between Failures (MTBF) and Mean Time Between Maintenance Actions (MTBMA) in 

addition to MTBURunj . 

1.4 Research Goals 

The overlying goal of this research is developing a method for measuring system 

diagnosability, and thus allowing for the comparison of designs and the prediction of 

life-cycle costs of fault isolation. The methods should allow for designs with optimum 

diagnosability and minimized diagnostic costs. In the course of pursuing this goal, 

several original contributions will be made in this paper. The following is a brief 

outline of these contributions. 

First, in section 2, we will present a broader picture of diagnostic phases and failure 

types for developing a diagnosability model. Previous research in mechanical systems 

focused on fault isolation based on indication and observation, but not on diagnostic 

testing. So there is opportunity in this paper to expand the model, accounting for the 

entire diagnosis process from operational indications to testing procedures. Similarly, 

previous research developed models for diagnosability assuming only full failure. 

However, in reality failures are often not so clear cut. Failures may also occur partially 

or intermittently, significantly effecting diagnosability assessment. This research will 

present an analysis of these additional failure types. 

In section 3, we will outline using Failure Modes and Effects Analysis (FMEA) and 

Fault Tree Analysis (FTA) as tools in the development of a diagnosability model. 



7 

Finally, based on this new examination of failures and diagnosis, section 4 will present 

a new, more mathematically rigorous, method for computing diagnosability metrics, 

including a prediction of the mean time between unscheduled component removals 

(MTBUR and MTBURunj). These metrics are important indicators in judging a system's 

diagnosability. 

The scope of the research will involve analyzing systems and their components to the 

level of the LRU (line replaceable unit). We will not concern ourselves with the inner 

structure of each LRU and what specifically has failed at that level of detail. (The 

terms LRU and component will be used interchangeably in this paper.) 

In summary, we will build on previous diagnosability research and introduce new 

methods in establishing a diagnosability model and diagnosability metrics. This 

project will broaden the picture of diagnosability so it more accurately reflects the 

range of circumstances to which it is applied. Ultimately, the methods from this paper 

will lead to systems with greater ease of fault isolation, and thus a higher likelihood 

that the correct LRU will be replaced when a failure occurs. 
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2 Understanding Failure and Diagnosis 

This research will investigate two major areas in building a broader diagnostic model. 

The first is taking into account the two phases of the diagnostic process, observation 

and testing. The second area is considering failure types. Both areas highlight some 

unique characteristics of mechanical systems in contrast to electrical systems. 

2.1 Diagnostic Phases 

2.1.1 Phase 1: Observation 

The first phase of diagnosis is observation. During this first phase of diagnosis, 

observable abnormalities in system function and performance are noted (i.e., the 

presence of a liquid from a leak). Usually observation leads to the conclusion that 

there is a problem, or some loss of system function, but does not allow for 

understanding the problem entirely. By observing symptoms, or operational 

indications (effects), of failures, we are led to conclusions about the nature of a 

system's failure and its causes. Based on observation we can infer a set of possibly 

failed candidate components responsible for the observed symptoms. All of the 

components that are possible causes to a given set of indications are known as an 

ambiguity group [Simpson 1994]. There is ambiguity because each component in the 

group causes an identical set of indications to occur when they fail (see also section 

3.2 on indication sets). 
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2.1.2 Phase 2: Testing 

Our goal in diagnosing failures is narrowing down the possible candidates and 

choosing the most-likely-failed component for maintenance. Therefore, attempting to 

minimize an ambiguity group of candidates leads us to the testing phase of diagnosis. 

The purpose of the testing phase is to gain additional information about a problem by 

running specific tests on system components. Knowledge from observation is used to 

determine the appropriate tests to conduct (see section 4.2.2). Ideally, the testing phase 

allows for the complete elimination of ambiguity (the ambiguity group contains one 

component). However, as will be explored in the development of a testability metric, 

time constraints limit this ideal from always being possible. 

2.1.3 Example 

Let's use the example of an automobile in illustrating the two diagnostic phases. For 

phase one, there are many observations one can make in forming conclusions about 

problems with a car. There may be oil leaking, the "check engine" light flashing, or 

perhaps an abnormal sound. These are all observations leading to the conclusion that 

the car engine is not behaving within normal parameters. In other words, there is 

evidence of some sort of failure based on observation. 

For the testing phase, a voltmeter may be used to check electrical connections, or a 

mechanic could attach a diagnostic computer to the car to determine the cause of the 

"check engine" light. However, at the end of the process, there may still remain 
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multiple probable causes to the automobile's symptoms. A mechanic would then have 

to choose the component to replace from the remaining ambiguity group. 

2.1.4 Differences Between Mechanical and Electrical Systems 

The relationship between the phases of diagnosis and diagnosability in mechanical 

systems differs from other applications. Most of the prior research into the diagnosis 

and testing process has been in the area of electrical and computer applications. For 

example, in Simpson and Sheppard, evaluating diagnosis involves analyzing 

exhaustive sets of tests on the system [Simpson 1994]. In electrical applications, the 

observation phase provides less information; more of the diagnostic process is 

dependent on the testing phase. However, unlike mechanical and electromechanical 

systems where testing is complex, costly, and time-intensive, large amounts of testing 

are relatively simple, low cost, and quick in the electrical and computer realm. 

Because of the higher time and costs, testing time becomes a more critical constraint 

in mechanical systems (this constraint will factor into our development of a testability 

metric later in the paper, see section 4.2.1). Therefore, while the methods developed 

previously in test and diagnosis study are valuable for studying diagnosability in 

mechanical applications, we are attempting in this project to more carefully 

understand the observation and testing phases of diagnosis in mechanical systems. 

Most specifically, we are interested in how these phases factor into optimizing system 

diagnosability. 
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2.2 Failure Types 

In developing a broader understanding of the diagnosis process and a more accurate 

diagnosability evaluation, we will need to take a closer look at the nature of failure 

and the different ways failures can occur. In general, the failure of a component or 

system can most simply be expressed as a shortfall between performance and 

standards [Bignell 1984]. In other words, a system is designed to perform an expected, 

measurable behavior. When the system unacceptably deviates from this behavior, it 

has failed to carry out its designed function. This deviation can take the form of either 

the absence of desired function or the appearance of unwanted side effects [Bignell 

1984]. 

Often failure is modeled in a binary fashion. Either a system or component is failed or 

not. This binary approach to failure modeling was used in prior diagnosability 

research, and functions well in electrical and computer applications. Again we 

encounter an area where there is significant difference in diagnosability modeling in 

mechanical and electrical systems. Electrical systems are made up of complex 

connections between relatively simple components that are generally either failed or 

not. Modeling their failure in more detail would be difficult and unnecessary. 

However, in mechanical systems, failure is often more complex than this binary 

simplification. Mechanical systems have fewer components than electrical systems, 

yet the functionality of individual components may be much more complicated. 

Failure can vary in severity, from mild to catastrophic; failure can vary in totality, 

from partial to complete; and, failure can vary in periodicity, from intermittent to 
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continuous. Finally, each failure can stand on its own or be part of a multiple-failure 

situation. Thus, rather than one failure situation for a given failure mode, there is an 

entire spectrum of possibilities in varying severity, totality, periodicity, and 

multiplicity. 

For a mechanical or electromechanical system this broader understanding of failure is 

needed to have a more complete and accurate picture of the system's behavior. 

Additionally, because the type of failure affects the system's symptoms and testability, 

the diagnostic process is affected by the nature of a given failure as well. Therefore, it 

will be significant to account for failure types in modeling diagnosability. 

For modeling purposes, it would be difficult to take into account a full continuous 

spectrum of failure types in each of the four categories above (severity, totality, 

periodicity, and multiplicity). Thus we will create classifications of failures in each of 

the failure types. For this research, we will classify each failure mode into three 

different types based on the above descriptions: full, partial, and intermittent. The 

failures can be further classified as mild or severe. I First we will define each type of 

failure, then describe how that type effects diagnosis. 

2.2.1 Full failure 

A full failure occurs when an LRU completely fails to perform the function for which 

is was designed. For example, when a valve is stuck in the closed position, it is 

1 In this paper we will not quantify these failure types (i.e., a broader range of totality from none to 
full); however, this would be a valuahle enhancement to failure analysis. 
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considered a full failure because it is not capable of performing its function to allow a 

fluid to pass through (i.e., provide airflow). 

A full failure is generally more easily diagnosed than partial and intermittent ones. 

The symptoms are present at all times, both when the operator detects the failure, and 

when a mechanic checks for it. Additionally, a full failure is likely to be more severe 

in nature, with a greater deviation from the desired behavior, making it easier to 

pinpoint the likely cause. 

2.2.2 Partial failure 

When an LRU is still able to perform its desired function, but to a limited degree, it is 

partially failed. An example is a pneumatic valve which is designed to provide 1.00 

m3/s of airflow, but is only able to supply 0.50 m3/s because it cannot fully open. 

Thus, at times the valve may be able to supply the necessary amount of air. But, if the 

system requires more than 0.50 m3/s, the valve can no longer perform its function. 

Similarly, a valve able to fully open, but not responding properly (i.e., not at the 

correct pressure schedule), would be considered partially failed. 

A partial failure creates ambiguity in system performance. The system may not 

demonstrate any or all of the effects of full failure. For example, the system response 

may be "sluggish," but not completely ineffective. Indications such as gauges and 

built in tests may not show a failure condition, as in the above example if the system 

requires less than 0.50 m3/s. Thus, for partial failures, information from the first 

diagnostic phase defined in the last section (observation of system performance and 
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indications) is not as helpful as for a full failure. The second phase of diagnosis 

(testing) becomes a more crucial step in isolating a fault. In the valve example, a 

mechanic would be able to observe the valve opening only partially or in the wrong 

conditions. 

2.2.3 Intermittent Failure 

When an LRU is in a failed state at some times, and completely functional at others, it 

is intermittently failing. The failure could be at random times, or only during certain 

system operating modes. An example is an airplane-system valve that fails to open 

during flight, but works properly on the ground. 

Intermittent failures can be difficult to test. A failed component can cause a system to 

perform improperly and display certain indications during operation, yet work 

perfectly fine when it is tested as a possible cause of the problem. This situation is 

similar to the plight of a patient who notices certain symptoms at home, but then the 

symptoms are not present when he or she goes into the doctor to be checked. 

Intermittent failure can easily misdirect the diagnostic process, because if an LRU is 

tested to be functioning properly, mechanics will assume it is not the cause of the fault 

and look at other candidates. Thus, for intermittent failures, information from the 

testing diagnostic phase is not as helpful as with full failure. Information for the 

observation phase needs to be gathered when the system is in a failed mode. 
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2.2.4 Failure severity 

Eubanks [1997] describes varying failure severity in an icemaker. If the icemaker is 

slightly tilted from its proper angle, it will produce non-uniform ice cubes. If the 

icemaker is highly misaligned, the results are very small ice cubes mixed with large, 

partially liquid ice cubes. So the specific degree of tilt can lead to different failure 

modes (i.e., 5-100 misalignment or > 100 
). We will revisit the icemaker example later 

in the paper (section 3.3 and 4.4). 

Classifying failure severity can sometimes diminish ambiguity in fault diagnosis. 

"Ambiguity groups can be minimized if we take into consideration the magnitude of 

parameter changes, in addition to direction and sequence of changes." [Sen 1996] For 

example, continuing with the pneumatic value from above, a failure may create a state 

of low over-pressurization or very high over-pressurization. Quantifying how much 

extra flow is being allowed through the value acts as an additional indication to the 

failure state of the system. 

2.2.5 Multiple failures 

Multiple failures occur when two or more components are concurrently in a failed 

state. How often multiple failures occur is a function of the failure rates of the 

individual components; usually this is much more infrequent than single failures. 

Exceptions are in the case where components are highly interdependent and one 

failure may cause a cascading reaction of subsequent failures. In the analyses and 

models developed in this paper we will assume that only one component has failed 
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when a failure indication occurs. However, we will make notes about how the 

processes may be modified to account for multiple failures. 



17 

3 Building a Diagnosability Model 

The first step in evaluating a design for diagnosability is building a model, which 

shows the relationships between components of the system and possible failure 

indications. Sen, et al. [1996] state: 

... a common modeling paradigm is necessary to represent large 
systems consisting of electronic, electrical, mechanical and hydraulic 
subsystems ... a test engineer analyses the system, either bottom-up or 
top-down, identifying various failure source-test dependencies of the 
system. The resulting model forms the basis for system-level testability 
analysis and fault diagnosis. 

This section describes the system's Failure Modes and Effects Analysis (FMEA) and 

Fault Tree Analysis (FT A), and how they are used to build the diagnosability model. 

This model will then be used to calculate the system's diagnosability metrics (see 

section 4). 

3.1 Extracting Information for the Model 

The main information sources for building the diagnosability model are the FMEA 

and the fault tree. These two documents contain different perspectives on the failure 

characteristics of a system, and together offer a complementary picture of a system's 

reliability and structure early in the design process. The FMEA is organized in a 

"bottom-up" approach [Leitch 1995], considering each of the system components and 

analyzing each possible failure mode for its effects at higher levels. The fault tree has 

the opposite perspective as a "top-down" analysis [Leitch 1995], and is organized by 
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first considering possible failures and then analyzing all possible causes at lower 

structural levels. Taken together, the FMEA and fault tree can create a fairly accurate 

representation of the failure-structure relationships in a system needed for effective 

diagnosability analysis. 2 

3.1.1 FMEA 

The FMEA is a widely used document for failure analysis, and will serve as our 

primary document for obtaining diagnosability information. From the FMEA 

designers can gain important insight into a system's structure and information flow 

early in the design process. The data and relationships in FMEA are also valuable 

input for predictive analysis such as criticality, operability, manufacturability, 

maintainability, and the diagnosability we are addressing here [Leitch 66]. We will 

describe the basic structure of the FMEA document, as well as the enhancements 

needed for the FMEA to contain all of the relevant and necessary information for 

diagnosability analysis. 

Again, as stated in section 1.4, the FMEA is organized by components (LRUs), which 

are the smallest level of structure we identify for diagnosability analysis. For each of 

the components in the sub-system, assembly, etc. being considered, the basic FMEA 

provides the following information: 

"Family genealogy. which can be analyzed both bottom-up and top-down in "tree" diagrams. is a good 
analogy to FMEA and the fault tree. A bottom-up family tree will identify parents, grandparents, and 
great-grandparents. while a top-down family tree will identify brothers and sisters, aunts and uncles, 
and cousins. Together, like the FMEA and FTA, the two family models present a complete 
understanding of all family relationships. 
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• 	 The function of the components 
• 	 All of the most likely failure modes of the component 
• 	 The failure rates of each mode, or of each component combined with 


failure mode frequency. 

• 	 The failure effects on higher levels in the structure, from sub­

assemblies to the whole system. [Leitch 1995] 

For the FMEA to be most useful for diagnosability, some sections need to added to the 

standard form to produce an enhanced FMEA for diagnosability. As stated in earlier 

sections, we want to consider the broader spectrum of failure characteristics for a 

system including totality and periodicity, and information available during the 

diagnosis process including both observation and testing phases. 

Therefore, each failure mode can be broken down by failure type, including full, 

partial, and intermittent. Each failure type will have its own failure rate, i.e. Arull, Apart' 

and Aint. Each failure mode-type combination will also need to have a description of its 

failure indications. Additionally, it may be helpful to have replacement time data for 

each component (see section 4.1.3, replacement matrix), and diagnostic testing 

information (section 4.2.2). 

The diagnosability model can be constructed from the FMEA by making connections 

between components, failure modes, and indications as described in the FMEA table. 

This process will be outlined in section 3.2 and 3.3. 

3.1.2 Fault Tree 

Fault Tree Analysis may also be useful for building our model. Fault trees are widely 

used not only in reliability analysis, but also in safety analysis because they are able to 
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predict causes of failure beyond mechanical malfunction [Bahr 1997]. For example, 

they are able to take into account human error and other environmental influences. 

And while FMEA allows designers to focus on specific components and their failure 

characteristics, fault trees tend to allow for focusing on a particular failure and the sets 

of component interactions with can lead to that failure. Thus, there is a new 

understanding of structural relationship uncovered by looking at the fault tree 

perspective. Furthermore, and important to diagnosability analysis, the fault tree is a 

valuable tool in computing failure rates. With knowledge of component failure rates, 

the fault tree allows the rates to be multiplied or added up the tree to obtain a 

cumulative failure rate for each failure. 

The main disadvantage to the fault tree in building our diagnosability model is the 

binary nature of the events in the tree. Because we are interested in broadening our 

look at failure into a wider spectrum and more complete picture, we must be careful 

not to over-simplify based on the fault tree data [Harms-Ringdahl 1993]. Thus, it is 

best to use the fault tree as a supplementary data source to the FMEA. 

3.2 Diagnosability Model 

From the information in the FMEA we can analyze failure indications and establish 

unique indication sets. These indication sets are linked to system components to form 

our diagnosability model. 

An indication is a measured or observed deviation from the desired behavior or 

performance of a system. The complexity in the diagnosis process arises because a 
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given indication, or set of indications, does not necessary point to one failed 

component. The relationship between indications and components is illustrated in 

Table 1. Here, the lower case "i" represents an individual indication. The upper case 

"I" represents the set of individual indications which all occur for a given failure. Note 

that if we were including multiple failures in our model, we would add entries for 

multiple component failures (i.e., C2C3) along with their corresponding indications. 

Component/ 
Failure Mode 

Indications 
( ) = sometimes 

Indication Set 

CI/FMl i1 11 
CI/FM2 iI, i2 12 
C2/FMl iI, i2 12 
C3/FMI i2,(il) 13, (12) 
C3/FM2 il 11 

Table 1 Simple Indication Set Illustration 

In this simple case, when i 1 and i2 appear, there is ambiguity (thus forming an 

ambiguity group) because either component one or two has failed (or both have 

failed). Here, il and i2 form the unique indication set 12. The component-indication 

diagram this illustration is shown in Figure 2. Each line represents a unique failure 

mode. Attached to each mode is a particular failure rate A. Figure 2 represents the 

critical information needed for our diagnosability model. 
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Figure 2 Component-Indication Diagram 

Human error or time constraints could cause some indications to be missed. 

Additionally, certain maintenance procedures could affect diagnosis. For example, 

some airline procedures (or unofficial maintenance practices) allow for deferring a 

maintenance action or repeatedly replacing a part that is not likely failed but easily 

replaceable. Furthermore, human error is often the cause of misdiagnosis (drawing the 

wrong conclusions from correctly identified indications). These human factors and 

organizational factors will not be accounted for in our model, and in this paper we will 

assume that diagnosis is occurring with all indications accurately observed. However, 

metric values we calculate in the next section may be adjusted to account for these 

factors. 

3.3 Validation Example: Ice-Maker 

We will now use some of the modeling methods developed in this section to form a 

diagnosability model for a validation example. 
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Eubanks, Kmenta, and Ishii outlined the method for using an Advanced FMEA 

(AFMEA) for modeling a system's behavior. They suggested that their AFMEA could 

be used for diagnostics prediction [Kmenta 1998]. In fact, Eubanks et al. highlight the 

inherent relationship between FMEA and diagnosis early in their work. While FMEA 

builds a model of what behaviors 

FMEA
result from given structures, the 

diagnosis process attempts to 

accomplish the opposite: seeking 

Diagnosis
the system structure responsible for 

a given system behavior (or 
Figure 3 FMEAJDiagnosis Relationship 
[Eubanks 1996] 

misbehavior) (Figure 3) [Eubanks 

1996]. 

Eubanks, et al. [1996, 1997] use an icemaker to illustrate the AFMEA. In order to 

validate the suggested link between their AFMEA and diagnosis, we will extend the 

icemaker example by building its diagnosability model. Eubanks presents a function-

structure mapping of the icemaker, but for diagnosability analysis we will need to 

expand this model to include failure indication and component failure rates. 

Eubanks, et al. [1997] bring up an important diagnosability issue in the case of 

external factors. Often indications in a system are not caused by failure of one of the 

system's components, but rather due to some external influence. This cause could be 

an environmental factor (i.e., cold temperature) or from another sub-system 

interconnected with the one being analyzed. From a diagnosis perspective, this issue is 

STUCTURE 
(Failure) 

BEHAVIOR 
(Misbehavior) 
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significant because the failure indication may lead to the replacement of a part that is 

not failed. 

The traditional FMEA only accounts for components of the system, not external 

factors. For the icemaker, Eubanks, et al. [1997] use their behavior modeling to 

identify the refrigerator's alignment as an external factor affecting the icemaker. 

External factors may also be extracted from a fault tree analysis. We will incorporate 

the misalignment into our icemaker FMEA as an "external component." 

A complete icemaker FMEA is included a the end of this report. Table 2 summarizes 

possible failure indications. Notice that is and i7 are denoted "not observable." These 

indications are listed in a separate column of the FMEA, and will not be accounted for 

in forming indication sets. However, these indications would be helpful in analysis of 

the testing phase. 

i1 No ice the bucket 
i2 Ice overflowing 
i3 Low ice level in the bucket 
i4 Ice layer in bucket and/or fused ice cubes 
is No water in the mold (not observable) 
i6 Small or irregular ice cubes 
i7 Ice stuck in the mold (not observable) 
i8 Icemaker not running 
i9 Feeler arm in the bucket 
ilO Large or partially liquid ice cubes 

Table 2 Failure indications for the icemaker 
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As we explained in section 2, there is a high degree of variation in failure modes, and 

therefore in component-indication relationships as well. The process of grouping 

indications into indication sets can be rather subjective, as was the case here. Table 3 

summarizes the likely component-indication relationships revealed in the FMEA.3 

Component Indication Sets Component Indication Sets 

Cl 1216 C6 1215 
C2 121314 C7 II 12 
C3 1213 C8 II 12 
C4 II 15 C9 1215 
C5 II 12 E (External) 1517 

Table 3 Component-Indication relationships for 

the icemaker 


In the next section we will discuss the computation of diagnosability metrics. The 

icemaker example will then be continued in section 4.4 where we compute its 

diagnosability metrics. 

3 Small variations of this model can easily be incorporated into the metric computations of section 4 to 
experiment with effects of changes in the model. 
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4 Diagnosability Metrics 

We have developed a set of metrics that comprise a complete description of the 

diagnosability of a system and its components. To derive these metrics, we translate 

our component-indication model into a matrix model. These matrices can be more 

easily manipulated mathematically to produce numerical results. First, we will analyze 

our system based on information only from the observation phase. The result will be 

our new distinguishability metric. Secondly, we will extend the analysis to the testing 

phase, and our distinguishability metric will be broadened into the testability metric. 

Finally, we will evaluate the MTBUR of the system and its components, completing a 

set of metrics, along with the replacement rate matrix, which give valuable insight into 

the diagnosability of the system. 

4.1 Distinguishability 

The metric associated with the observation phase of diagnosis we define as 

distinguishability (D), an estimate of the probability a mechanic, in the initial 

maintenance attempt, will correctly infer a specific component as the cause of failure, 

given some failure indication has occurred.4 The metric comes in several forms: 

system, indication, and component distinguishability (Dsys, D illd, DLRU). Additionally, 

4Note that this is a different definition of distinguishability from Clark [1996]. While it remains a 
similar system measure, this new D is specifically a probability of removal rather than an arbitrary 
index value. 



27 

Dind and DLRU can be unweighted or weighted (WDind, WDLRU). The D metrics are all 

conditional probabilities of a justified removal. 5 Table 4 summarizes the individual 

definitions. 

Metric Probability of: 
Dsys justified removal, given some failure indication (or some component failed) 

n m 

computed as: :IWDind (i) or :IWDLRU (j) 
i=1 j=1 

Dillli) justified removal, given ith failure indication 

WDinli) ith failure indication and justified removal, given some failure indication 

DLRu(j) justified removal, givenjth component failed 

WDLRU(j) jth component failed and justified removal, given some component failed 

Table 4 Definitions for Distinguishability metrics 

Clark [1996] established a method for evaluating system distinguishability, which is 

important for comparing the overall diagnosability of competing designs. However, in 

order to evaluate the design of a system, it is helpful to have a metric that evaluates the 

distinguishability of each individual component in a given configuration. DLRU fits this 

criteria by measuring the overall ability to separate a given component from others in 

the process of isolating faults. If the number of components mapped to a particular 

indication decreases, then DLRU will decrease as well. While Diml and DLRU are very 

similar, the former helps in understanding ease of diagnosis and the latter is geared 

toward optimizing design. 

5 Removing a failed component is justifIed. Removing a working component is unjustified. 
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4.1.1 Susceptibility 

Another metric family related to D is susceptibility (5), which are the probabilities of 

unjustified removals, and summarized in Table 5: 

Metric Probability of: 
Ssys unjustified removal, given some component removed 

m 

computed as: 1- DSYS or I,WSLRU (j) 
j=! 

SLRU (j) unjustified removal, givenjth component removed 

WSLRU (j) jth component removed and unjustified removal, given some component removed 

Table 5 Definitions for Susceptibility metrics 

The main different between Sand D is that D is conditional on a particular failure 

occurring, while S in conditional on a particular replacement occurring. Also note that 

Ssys is not unique information from Dsys , but only the inverse probability. As we will 

see later on, S is closely related to MTBURunj . 

4.1.2 Example problem: Distinguishability Analysis 

To illustrate the method for obtaining these metrics, we will use an simple, abstract 

sample problem (not representing an actual system). From the FMEA (Table 6), we 

obtain the component-indication relationships for the system. The component-

indication relationships from the FMEA are diagramed in Figure 4. 
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Component Modes (Indication Sets) 
Cl I1 13 15 ' 
C2 13 15 
C3 I1 1416 
C4 12 
C5 I1 121415 

Table 6 Abbreviated FMEA for 
example problem 

Figure 4 Component-Indication Diagram for 
example problem 

As discussed in the last section, each failure mode (and correlated indication set) has a 

specific failure rate (Ii,). Failure rates are the expected frequency of failure over a long 

period of time. Over short periods, the frequency of failure will vary. These failure 

rates can be organized as shown in Table 7 for the example problem. 
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[10· C1 C2 C3 C4 C5 Indication Indication 
failures/hour] Rate Prob 

11 
12 
13 
14 
15 
16 

Comp Rate 
Comp Prob 

2 0 4 0 3 
0 0 0 2 15 
3 2 0 0 0 
0 0 17 0 25 

10 12 0 0 3 
0 0 8 0 0 

15 14 29 2 46 
0.142 0.132 0.274 0.019 0.434 

9 0.085 
17 0.160 
5 0.047 

42 0.396 
25 0.236 

8 0.075 

1061 

Table 7 Component-indication failure rate table for example 

problem 


Each row can be summed to obtain an indication rate, ~nii). Each column can be 

summed to obtain a component's failure rate (for all failure modes), ALRU(j). The sum 

of these rates is the system failure rate, Asys. The indication probability or component 

failure probability is computed by dividing the indication rate or component failure 

rate by the system failure rate.6 

4.1.3 The Failure Rate Matrix Aand Replacement Matrix R 

For obtaining our metrics, we will convert the failure rate data into an n x m matrix, ')... 

(There are n indication sets and m components). Additionally, we will form a n x m 

replacement matrix, R. The replacement matrix is an important mathematical 

representation of the predicted maintenance action for each indication. Each row of R 

contains a single 1 and the rest zeroes. The one is placed in the column representing 

6 Initially, for computing distinguishability and testability, it is fine to use relative failure rates; 
however, when we calculate MTBUR we will need absolute failure rates. 
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the component that will be replaced for the corresponding indication. The replacement 

component can be determined using one of three criteria: 

• Failure rate 
• Replacement time 
• Checking index (Failure rate / replacement time) 

For this example, we will use the highest failure rate to determine the replacement 

component in each row of R. So for indication one, the" 1" is placed in the third 

column because C3 has the highest failure rate. It is important to note that in this 

analysis we are considering only the initial maintenance attempt. We will deal with 

accounting for subsequent removals in the section on the MTBUR metric (section 4.3). 

Thus we have: 

2 0 4 0 3 

0 0 0 2 15 

3 2 0 0 0
A= 0 0 17 0 25 

10 12 0 0 3 

0 0 8 0 0 

R= 


0 0 1 0 0 

0 0 0 0 1 

0 0 0 0 

0 0 0 0 

0 1 0 0 0 

0 0 0 0 

4.1.4 Computing the Replacement Rate Matrix AR 

From the Aand R matrices we obtain the m x m (square) replacement rate matrix, AR, 

by multiplying the transpose of the replacement matrix by the failure rate matrix 

(Equation 1). Equivalently, the element in the ith row andjth column of AR is obtained 

by taking the dot product of the ith column vector of R with the jth column vector of A 

(Equation la). 
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Cl 

C2 
Replaced 
Component C3 

C4 

C5 

Failed Component 

Cl C2 C3 C4 C5 

0 0 

0 

2 

0 0 

0 0 17 

UNJUSTIFIED 
REMOVALS 

Figure 5 Replacement Rate Matrix AR 

The AR matrix shown in Figure 5 includes each combination of component failures 

and replacements. The numbers in the diagonal of the AR matrix are the rates for 

justified removals. The numbers in the off-diagonals are thus unjustified removal 

rates. From these rates we can easily obtain all our metric values. For example, the 

failure rate for Cl is 15 x 10.4 failures/hour. The justified removal rate is 3 x 10-4
. 

Thus, DLRU is computed as 3/15 =0.200. Table 8 summarizes the metric values for this 

example problem: 
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lIe No. Dind WDind DLRU WDLRU S WS 
1 0.444 0.038 0.200 0.028 0.400 0.019 
2 0.882 0.142 0.857 0.113 0.520 0.123 
3 0.600 0.028 0.414 0.113 0.294 0.047 
4 0.595 0.236 0.000 0.000 N/A 0.000 
5 0.480 0.113 0.870 0.377 0.322 0.179 
6 1.000 0.075 

Dsvs = 0.63 Dsvs = 0.63 Ssvs = 0.37 

Table 8 Metric Values for example problem 

Dsys and Ssys are a system-wide metrics, helpful in determining the system-wide effect 

of changes in diagnosability. In the current model, our system has a 63% probability 

of being diagnosed correctly after the observation phase of diagnosis. Table 8 also 

illuminates the differences between weighted and unweighted metrics. The 

unweighted metrics range from 0 to 1 for each value, whereas the sum of the weighted 

metrics ranges from 0 to 1. The weighted metrics give sense of the importance of the 

indication or component metric in the perspective of the whole system. For example, 

indication three has a satisfactory Dind value of 0.600; however, its WDind value of 

0.028 suggests the indication's metric is not as significant as others. 

There are a couple of components that Table 8 highlight as good candidates for 

diagnosability improvement. We notice that component one has a low 

distinguishability of 0.200; however, this is less significant because its weighting is 

relatively low. Component three is important to consider: it has only a 41 % chance of 

being diagnosed correctly on the initial attempt, coupled with its significant WDLRU 

value of 0113. 
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4.2 Testability 

The second metric we will develop, associated with the testing phase of the diagnosis 

process, is testability (T). Simpson and Sheppard [1994] introduce the following 

definition for testability: 

... a design characteristic which allows the status (operable, inoperable, 
or degraded) of an item to be determined and the isolation of faults 
within the item to be performed in a timely and efficient manner. 

Our testability metric is a measure of the design characteristic to which Simpson and 

Sheppard refer. Similar to distinguishability, testability will measure the probability a 

correct component is isolated after diagnostic testing has occurred. Thus, testability 

broadens the scope of our diagnosability measurements to the testing phase. As it turns 

out, distinguishability (D) is a special case of testability CT) where no testing has taken 

place. Additionally, by examining the changes between T and D (LJT) , we can 

ascertain, for the system or an individual indication or component, the ability for 

ambiguity to be decreased (or discernment increased) through testing procedures. 

4.2.1 Critical Time 

Crucial to the testing phase of diagnosis is the critical time Tc' for testing. In 

mechanical systems, testing can be time intensive task. There is a critical point for 

which the costs of additional testing outweigh the gains in ambiguity reduction. This 

critical time is apparent in airplane maintenance, where after a certain amount a time a 

flight will be delayed or even cancelled. We will model a testing phase that is 

constrained by the critical time. When there is more time available for testing, more 
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tests can be run and thus more 

ambiguity eliminated. The 

testability value will therefore be a 

function of Te (Figure 6), where 

higher Te values should produce 

higher Tvalues. (In reality, the 

1.0 ..........,.........; I :::.:; ........
............. .. -t..............................:;;;;... --- ­

T(t) 

D 

I 

testing time 

function in Figure 6 would have Figure 6 Typical Testability Function 


steps, representing added tests, 


rather than a smooth curve.) 


The values of the T family parallel those of D and are summarized in Table 9: 

Metric Probability of: 
Tsys(rc) justified removal, given some failure indication and critical time Te 

n m 

computed as: LWI:nd (i) or LWTLRU (j) 
i=l j=l 

Tinii, Te) justified removal, given ith failure indication and critical time Te 

WTinii, Te ) ith failure indication and justified removal, given some failure indication and 

critical time Te 

TLRu(j, Te) justified removal, givenjth component failed and critical time Te 

WTLRu(j, Te) jth component failed and justified removal, given some component failed and 

critical time Te 

Table 9 Definitions for Testability metrics 

It should be noted that the S metrics will also change values, and continue to provide 

important insight, when testing is taken into account. 
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4.2.2 Example Problem Continued: Testability Analysis 

We will expand the theoretical example problem begun in the distinguishability 

section to illustrate testability analysis. The computation of T will be similar to D, but 

we will need to analyze the testing options and make some adjustments to the failure 

rate and replacement matrices. 

The first step in computing testability is to catalog the available system tests. Each 

indication set has an associated catalog of possible tests that verify the candidate 

components for that indication. Each possible test has an associated testing time (see 

Table 10 below). The test symbols (Tij ) shown in the table have additional subscripts 

that denote the candidates they verify. If a test is negative, then neither component is 

failed. If a test is positive, then either or both of the components are failed. (However, 

we will continue to make the simplifying assumption that only one component has 

failed.) Our catalog of test needs take into account failure types of the candidate 

components for each indication. As mentioned in section 2.2.3, intermittent failures 

may not be verifiable by testing. 

Table 10 lists tests relevant to indication one, sorted by the checking index. The 

checking index is computed by dividing the failure probability by the testing time. The 

failure probability used for computing the checking index is obtained in one of two 

ways. For tests that verify one component (i.e., Tl verifies CI), that component's 

failure probability, given indication one, is used. Because there are only three 

candidates for indication one, tests that verify either of two candidate components 
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actually verify the remaining candidate (i.e., T35 verifies Cl). Thus, the probability 

for the remaining component is used for the checking index computation.? 

Test Failure Rate (A.) 
[10-3/hour] 

Test time (t) 
[min] 

Checking Index 
(A.lt) 

T1 2 (verifies C1) 3 0.67 
T3 4 (C3) 7 0.57 
T23 4 (C3) 10 0.40 
T5 3 (C5) 13 0.23 
T35 2 (C1) 9 0.22 
T45 3 (C5) 14 0.21 
T12 2 (C1) 15 0.13 

Table 10 Example Test Set and Checking 

Order for Indication One 


The checking order gives the ideal progression of tests for the testing phase of 

diagnosis. A high checking index means that test should be run first. 8 The testability 

metric will be a function of which tests can ideally be run which verify the maximum 

number of components within the critical time restriction. 

If we wanted to expand the model further, we could include component removals in 

the catalog of tests as well. Removals have the same effect as tests. For example, C 1 

may be removed for testing, or because of misdiagnosis, and found normal. C 1 is then 

verified and the fault lies elsewhere. Thus Table 10 could include removals R 1, R3, 

7 These multiple index tests (i.e., T35) are more difficult to compule into the checking index when there 
are more than three candidate components. Thus, while these tests are included here to show the 
possibility of these tests, it may be easier to conduct this analysis with only "single-index" tests. 

S For more information on optimum test sequencing in localizing failure, see Pau Chapter 4. 
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and R5 with their respective replacement times (which typically are longer than testing 

times). 

4.2.3 Matrix Row-Split Method 

To compute the values of T, we will return to the matrix methods developed in section 

4.1.3. Because testing introduces multiple replacement possibilities for a given 

indication, we will have to make some modifications to the failure rate matrix Aand 

replacement matrix R. To illustrate these modifications, we will continue with the 

testing analysis of indication one in the example problem. 

If we have a critical time of eight minutes, there is only time to run one test, T].9 There 

are two possible outcomes. If the test is positive, then C 1 is failed and C 1 will be 

replaced. We will denote this scenario as test outcome Tl.1. If the test is negative, 

then either C3 or C5 are failed. In this case, if failure rate is the replacement criteria, 

then C3 would be replaced (test outcome TI.2). The first row (corresponding to 

indication one) of the matrices would be split into two rows for each outcome. 

9 Actually, a mechanic may in this case decide to run only T3, as this test can be run within the critical 
time and verifies a component with a higher failure rate. 
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Matrix Row Split for Indication One111 ~ T1.1rr1.21 

[2 0 

Failure Rate Matrix A 

4 0 3] ~ [2 0 0 0 ;]o 0 4 0 

Replacement Matrix R 

[0 0 1 0 0] ~ [1 0 0 0 
o 0 10 ~] 

Figure 7 Matrix Row Split for Indication One 

Notice that each new row of R contains a single"1" indicating the component 

replaced as before. The following is sample computation of the replacement rate 

matrix AR from revised matrices for all indications, where each row has been split into 

test outcomes. 

o TTl.l 2 0 0 0 

Tl.2 0 0 4 0 3 

T2.1 0 0 0 0 15 

T2.2 0 0 0 2 0 

T3.1 3 0 0 0 0 

T3.2 0 2 0 0 0 

T4.l 0 0 17 0 25 

T5.1 0 12 0 0 0 

T5.2 0 0 0 0 3 

T5.3 10 0 0 0 0 

T6.1 0 0 8 0 0 

• 


1 0 0 0 0 

0 0 1 0 0 

0 0 0 0 1 

0 0 0 1 0 

1 0 0 0 0 

0 1 0 0 0 

0 0 0 0 1 

0 1 0 0 0 

0 0 0 0 1 

1 0 0 0 0 

0 0 1 0 0 

= 

AR 
15 0 0 0 0 

0 14 0 0 0 

0 0 12 0 3 

0 0 0 2 0 

0 0 17 0 43 

There are now many more values on the diagonal of AR, and therefore more justified 

removals. In effect, each test outcome moves a value vertically in its column from an 

off-diagonal to a diagonal position in AR (compare the new matrix with the one 
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illustrated in Figure 4). Table 11 shows how the testability changes for various critical 

time values for indication one. 

Critical Time 
[min] 

Testability of 
Indication One 

,1Tind 

0 0.444 (Din d) 0 
8 0.667 0.222 
12 1.00 0.556 

Table 11 Effect of critical time on 

testability values 


As stated earlier in section 4.2, it is helpful to examine the change between 

distinguishability and testability. Table 12 shows the how testability analysis effects 

the diagnosability metrics. (Again, for this example problem, we have increased 

critical time from zero to eight minutes between computing D and T). By this table, we 

can tell that the testing phase has significant impact on indications three and five, 

along with components one and four. Notice the greatest susceptibility decrease is for 

component two. 

lie No. ,1 Tind ,1WTind ,1TLRU ,1WTLRU ,15 ,1WS 
1 +0.222 +0.019 +0.800 +0.113 -0.400 -0.019 
2 +0.118 +0.019 +0.143 +0.019 -0.520 -0.123 
3 +0.400 +0.019 0.000 0.000 -0.094 -0.019 
4 0.000 0.000 +1.000 +0.019 N/A 0.000 
5 +0.520 +0.123 +0.065 +0.028 -0.039 -0.019 
6 0.000 0.000 

LlTsys = +0.18 L1TSYS = +0.18 LlSsys = -0.18 

Table 12 Metric value changes with the testing phase 
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Component one, which we flagged has having low distinguishablity in section 4.1.4, 

had a +0.800 improvement after testing (giving CIa testability of 1.0). However, C3 

had poor diagnosability after the observation stage, and Table 12 indicates there was 

no improvement in its TLRU. This result would strengthen C3 as candidate for 

diagnosability improvement. 

4.3 Mean Time Between Unscheduled Removals 

While the D and T metrics are valuable for design evaluation, we would also like a 

metric that lends itself more to the evaluation of the life-cycle costs associated with 

fault isolation. For this purpose we use Mean Time Between Unscheduled Removals 

(MTBUR). (For example, The Boeing Company has developed a cost model that uses 

MTBUR as one of its inputs [Boeing].) This metric, rather than measuring a 

probability of a removal like D or T, measures the average time between removals. 

Because MTBUR accounts for all component replacements, we need to rework the 

failure rate and replacement matrices, which previously only accounted for the initial 

replacement. We will again utilize the matrix row-split method to make this 

adjustment. Figure 8 illustrates the changes to the matrices made for indication one, 

for both distinguishability and testability computations (we denote the rows "IM" and 

"TM" to correlate with MTBUR): 
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Observation Phase: 11 -7 IM1.1I1.2/1.3 
(11 split into three rows) 

Failure Rate Matrix A Replacement Matrix R 

[2 0 4 0 3] -7 r~ ~ ~ ~ ~3]
o 0 0 0 

[0 0 

Test Phase: T1.1I1.2 -7 TM1.1.1I1.2.1/1.2.2 
(Test outcome 1.2 split into two rows) 

~ ~l 
o 3 

[1 0 0 0 0] -7 [1
o 0 1 0 0 0 

o 
~ ~ ~ ~ll 
o 1 0 

Figure 8 MTBUR Matrix Row Split for Indication One 

Simply put, these new matrices describe the replacements made for each failure 

scenario, based on using the failure rate criteria. Each row of A now contains only one 

element (for one failure mode). The corresponding row of R describes all the 

component replacements predicted for the failure (each row can now have multiple 

"1 "s). Figure 8 shows that for indication one, C l' s failure leads to replacements of C 1, 

C3, and C5 (based on our criteria, the order of replacement would be C3, CS, Cl). In 

the second row, C3's failure leads to the initial, justified replacement ofC3. Finally, 

the third row represents CS's failure leading to the replacement of C3 and CS. 

MTBUR can be calculated directly from the revised AR matrix. If each row is summed, 

we obtain a removal rate for each component (RLRu), 
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MTBUR=_l­
RLRU 

MTBUR may be broken up into justified and unjustified removals. While MTBURjllst is 

related to component reliability, MTBURunj is more closely related to fault isolation 

problems. For calculating these metrics, we separate RLRU into a justified part (the 

diagonal matrix element) and an unjustified part (the sum of the off-diagonals for that 

row). Note the relationship between the MTBUR metrics: 

-l 

MTBUR= 1 + 1(MTBUR just MTBURunj J 
Table 13 summarizes the MTBUR results for our example problem. In the table, N/A 

denotes that the LR U is never replaced according to the model (can be considered 

MTBUR ---+ (0). In the columns for change, a "+" indicates a change from some value 

to N/A. 

Observation TestinQ ChanQe 
LRU No. MTBURunj MTBUR MTBURunj MTBUR MTBURunj MTBUR 

C1 
C2 
C3 
C4 
C5 

5,000 
769 

2,000 
N/A 
323 

588 
370 
294 

5,000 
130 

N/A 
N/A 

3,333 
N/A 
588 

667 
714 
313 

5,000 
159 

+ 
+ 

+1,333 
N/A 

+265 

+79 
+344 
+19 

0 
+29 

System 196 64 500 79 +304 +15 

Table 13 MTBUR Values for the example problem 
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These MTBUR values suggest the impact each individual LRU will have on 

maintenance costs of fault isolation. Generally, the data shows that MTBUR values 

have improved due to testing. We would conclude, from its low MTBUR value, that 

C5 is a likely LRU for focusing on fault isolation cost improvement. 

4.4 	 Validation Example Continued: Ice-Maker Diagnosability 
Metrics 

Now that we have established the method for computing diagnosability metrics, we 

will use the information from the icemaker FMEA in section 3.3 to calculate the 

metrics for the icemaker. The metrics values for the icemaker are listed in appendix, 

along with the entire spreadsheet tool used to calculate the replacement rate matrix and 

metric values. For this validation we only took the analysis through the observation 

phase level. The validation could be expanded further by cataloging tests and using the 

methods of section 4.2. 

For the icemaker, the switch linkage and switch (C2 and C3) have interesting 

diagnosability characteristics. The switch linkage has a 1.00 distinguishability, 

weighed at a significant 0.311 over the whole system, suggesting satisfactory 

component diagnosability. However, the linkage does have the lowest MTBUR of 

21,008 hours. In contrast, the switch itself has a DLRU of 0.0 an overall 0.119 

misdiagnosis probability, 10 the highest of all components. 

10 The misdiagnosis prohability was not formally given a name as a metric, hut can still be 
informative-as is the case hcrc. 
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The difference in C2 and C3 highlights the fact these components have high failure 

rates combined with the same indication profile. So for the best diagnosability, we 

want to configure systems so the components with lowest reliability have different 

failure indications. These numbers also show us that components with good 

distinguishability numbers may still have a low MTBUR value because of their low 

reliability. Thus, it is beneficial to evaluate all the metrics before drawing conclusions. 

The AR matrix also shows us that external factors (E) contribute to the water delivery 

system's (C6) having the highest susceptibility (S) for the icemaker. This fact serves to 

validate Eubank's assertion that external factors are an important consideration in our 

modeling. 
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5 Summary and Conclusions 

Our objective in this research was to create a method for modeling a system in way 

that readily describes the system's diagnosability characteristics, or the ease of 

isolating faults in the system. After presenting the problem of diagnosability and the 

motivations for pursuing improvement, we established the setting for developing our 

model by describing failure and diagnosis. The full spectrum of failure types and 

complete diagnostic process provided a framework for a more accurate model for 

diagnosability analysis. We described the use of the FMEA and fault tree for 

extracting the information needed for our model. Finally, we presented a new process 

for computing diagnosability metrics by using matrix algebra and the matrix "row­

split" method to derive the highly informative replacement rate matrix AR. Important 

in this process was the new replacement matrix R, which described the predicted 

maintenance actions for given indications. From AR we were able to extract many 

dIagnosability measurements, including the distinguishability, testability, and MTBUR 

metrics. We successfully validated many of our methodologies with the icemaker 

mechanism presented by Eubanks [1997]. The new mathematics for computing the 

metrics are relatively simple compared to previous methods. Changes in the model can 

be input into a spreadsheet tool, instantly computing updated diagnosability measures. 

The methodologies of this paper are generally applicable to many electromechanical 

systems. However, diagnosability analysis is most beneficial to systems with low 
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reliability, high maintenance costs, and high complexity. I I The results reveal 

important characteristics of the system, failure indications, and individual components 

for improving diagnosis times and minimizing the costs of fault isolation. Observing 

changes in the metrics disclose the diagnosability effects of design changes. 

There is opportunity for future work in several areas. More could be uncovered in the 

complexity of failures and their relationship to the diagnostic process presented in 

section 2; these failure and diagnosis theories can be more tightly woven into the 

modeling and metric computation process, creating a more accurate representation of 

system diagnosability. For example, failure modes could be weighted in the metric 

computation by the failure's severity. Failure severity-or the consequences of 

failure-could also affect the replacement and testing criteria (checking index). 

Furthermore, the adjustments made in section 4.3 to account for all replacements, 

creating a modified AR matrix, could possibly be extended to create more accurate 

distinguishability and testability metrics. Finally, the methods of this research can be 

validated more rigorously on a complex system beginning early in its design process. 

II While the icemaker example served as a simple case for validation in this paper, these criteria suggest 
it would not benefit as greatly from diagnosability analysis as other systems. 
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Appendix 



Icemaker FMEA Document 

Component Function Failure Mode Failure Type Failure Rate 
[per million 
cycles] 

Effect Sys Effect 
(observable) 

Indication Code 
( ) =sometimes 

[Indication Set] 
1 Feeler arm Sense ice level in 

bucket 
Broken off Full 3 No ice, feeler arm in 

bucket at times 
I, (9) [2], (6) 

2 Switch linkage Feeler arm - Switch 
connection 

Stuck closed Full 60 Ice overflow 2 [3] 

Stuck closed Intermittent 50 Ice overflow (2) [3] 

Stuck open Full 80 No ice I [2] 

Stuck open Intermittent 70 Low ice in bucket at 
times 

(3) [4] 

3. Switch Acti vateldeacti vate 
ice maker 

Stuck closed Full 50 Ice overflow 2 [2] 

Stuck open Full 50 No ice I [3] 

4. Mold Hold water, form ice 
geometry and size 

Crack Partial 8 Water leak Small ice, ice layer 
in bucket 

6, (4) [5] 

Hole Full I Water leak, mold 
empty 

No ice, ice layer in 
bucket 

1,4 [I] 

5. Freezer Freeze water Not functioning Full 30 High temp No ice, water in 
bucket at times 

1, (4) [2], (I) 

6. Water Delivery 
System 

Fill mold wI water Not functioning Full 25 No water in mold No ice 1 [2] 

Slow water Partial 45 Small ice 6, (3) [5] 

7. Mold heating 
system 

Loosen ice No heat Full 90 Ice stuck in mold No ice I, (4) [2], (1) 

8. Ice harvesting 
system 

Remove icc from 
mold 

Not functioning Full 30 Ice stuck in mold No ice I, (4) [2],(1) 

9. Ice timer Allow proper 
freezing time 

Not functioning Full 40 Ice stuck in mold No ice 1 [2) 

Too fast Partial 15 Water leak Small ice 6, (4) [5) 

EXTERNAL: 
Refrigerator 
Alignment 

Create a consistent 
water level in the ice 
mold 

Small 
misalignment 

Mild severity 150 Small ice 6 [7) 

Large 
misalignment 

Severe 40 Water leak Small ice, ice layer 
in bucket 

6,4 
[5] 



Component-Indication Failure Rate Matrix for example problem 
Indication Indication 

[10-4 hOU(1] C1 C2 C3 C4 C5 Rate Prob 

11 
 2 0 4 0 3 9 0.085 

17 0.160 Worksheet for calculating 12 0 0 0 2 15 
3 2 0 0 0 5 0.04713 metrics for example problem 

14 0 0 17 0 25 42 0.396 
15 10 12 0 0 3 25 0.236 

8 0.075 
Comp Rate 15 14 29 2 46 

16 0 0 8 0 0 
1061 

Comp Prob 0.142 0.132 0.274 0.019 0.434 

Replacement Matrix 
C1 C2 C3 C4 C5 Justified P(Just) WP(Just) replacement probabilities 

11 
12 
13 
14 
15 
16 

0 0 1 0 0 
0 0 0 0 1 
1 0 0 0 0 
0 0 0 0 1 
0 1 0 0 0 
0 0 1 0 0 

4 0.444 0.038 given indication 
15 0.882 0.142 

3 0.600 0.028 
25 0.595 0.236 /
12 0.480 0.113 
8 1.000 0.075 

67 0.63 
Replacement Rate Matrix 

FailedRate 
Repl Rate Justified P(Just) WP(Just) Unjust P(Unj) WP(Unj)Replaced C1 C2 C3 C4 C5 

2 0.400 0.0193 2 0 0 0 5 3 0.600 0.028C1 
12 0.480 0.113 13 0.520 0.123C2 10 12 0 0 3 25 

5 0.294 0.0472 0 12 0 3 17 12 0.706 0.113C3 
0 #DIV/Ol 0.000 0 #DIV/Ol 0.000C4 0 0 0 0 0 0 

0 0 17 2 40 40 0.678 0.377 19 0.322 0.17959C5 
67 0.63 39 0.3715 14 29 2 46 106Comp Rate 

673 12 12 0 40Justified 
0.200 0.857 0.414 0.000 0.870P(Just) 
0.028 0.113 0.113 0.000 0.377 0.63WP(Just) \ given component replaced 

12 2 17 2 6 39Unjustified ~ 0.800 0.143 0.586 1.000 0.130P(Unjust) given component failed 
0.113 0.019 0.160 0.019 0.057 0.37WP(Unjust) 



---

Testability Failure Rate Matrix 
Indication 

....[1:....:o=--.4:....:h.:..::Oc::U-:::r"1,fl-:+__.::C-=1__--"-C:;:-2___C:::.3=-_---.,;C:::.4:=---_---=C=,S Rate 
T1.1 2 0 0 0 0 
T1.2 0 0 4 0 3 9 - ----------~-.------------ --~---~.-----

T2.1 0 0 0 0 15 
T2.2 0 0 0 2 0 17
T3.1---- 3~ O---~~O--- --0----0 
T3.2 0 2 0 0 0 5 

-- ------ -----------~ -- -------------­
T4.1 0 0 17 0 25 42 
TS.1 --0----~---f2--- O----O--O--·~-

H~ 0 0 0 0 3 
TS.3 10 0 0 0 0 25
T6.11----0 ---0-·~8--~O----Of------8 

Comp Rate 15 14 29 2 46 106 
Comp Prob 0.142 0.132 0.274 0.019 00434 

C1 C2 C3 C4 CS Justified 

Worksheet for calculating 
testability metrics for 
example problem 

P{Just) WP(Just) 
T1.1 1 0 0 0 0 
T1.2 _~Q.. _ _.Q.. ~_ _ !___ O ___ ......Q ___.._6_.Jl.~_.2.057 
T2.1 0 0 0 0 1 
T2.2 ~__ _Q.~ ~_....Q ____ () __-.-!_ ~----.9 ___ ~1Z.....~0~_0.160 
T3.1 1 0 0 0 0 
T3.2 __ .Q.. _____1___ .2. __ .2___~0__ 5 1.000 0.047 
T4.1 ___ Jl..._~_O_____0___.J2._____ ~--- 25 0.595 0.236 
TS.1 0 1 0 0 0 
TS.2 0 0 0 0 1 
TS.3 0 0 0 0 25 1.000 0.236 

----.~-----.--- -~-------=t------:::------:--=-----

T6.1 0 0 0 0 8 1.000 0.075 
86 0.81 

Rate Failed 
Replaced C1 C2 C3 C4 CS Repl Rate Justified P(Just) WP(Just) Unjust P(Unj) WP(Unj) 
C1 1S 0 0 0 0 15 15 1.000 0.142 0 0.000 0.000 
C2 0 14 0 0 0 14 14 1.000 0.132 0 0.000 0.000 
C3 0 0 12 0 3 15 12 0.800 0.113 3 0.200 0.028 
C4 0 0 0 2 0 2 2 1.000 0.019 0 0.000 0.000 
CS 0 0 17 0 43 60 43 0.717 00406 17 0.283 0.160 
Comp Rate 15 14 29 2 46 106 86 0.81 20 0.19 
Justified 15 14 12 2 43 86 
P(Just) 1.000 1.000 00414 1.000 0.935 
WP(Just) 0.142 0.132 0.113 0.019 00406 0.81 
Unjustified 0 0 17 0 3 20 
P(Unjust) 0.000 0.000 0.586 0.000 0.065 
WP(Unjust) 0.000 0.000 0.160 0.000 0.028 0.19 



Failure Rate Matrix 
Indication Indication 

1.00E-07 Cl C2 C3 C4 C5 C6 C7 C8 C9 E Rate Prob 
11 0 0 0 1 10 0 70 20 0 0 101 0.121 
12 1 80 50 0 20 25 20 10 40 0 246 0.294 
13 
14 
15 

0 
0 
0 

110 
70 

0 

50 
0 
0 

0 
0 
8 

0 
0 
0 

0 
0 

45 

0 
0 
0 

0 
0 
0 

0 
0 

15 

0 
0 

40 

160 
70 

108 

0.191 
0.084 
0.129 

Worksheet for calculating 
icemaker metrics 

16 2 0 0 0 0 0 0 0 0 0 2 0.002 
17 0 0 0 0 0 0 0 0 0 150 150 0.179 

Comp Rate 3 260 100 9 30 70 90 30 55 190 8371 1.000 
Comp Prob 0.004 0.311 0.119 0.011 0.036 0.084 0.108 0.036 0.066 0.227 1.000 

Replacement Matrix Dind WDind 
Cl C2 C3 C4 C5 CS C7 C8 C9 E Justified P(Just) WP(Just) 

11 
12 
13 
14 
15 
16 
17 

a 
0 
0 
0 
0 
1 
0 

0 
1 
1 
1 
a 
a 
a 

a 
a 
a 
a 
a 
0 
0 

a 
0 
0 
0 
a 
a 
a 

0 
0 
a 
0 
0 
0 
0 

0 
0 
0 
a 
1 
a 
a 

1 
a 
0 
0 
0 
0 
a 

0 
0 
0 
a 
a 
a 
a 

0 
0 
a 
a 
a 
0 
0 

a 
0 
0 
a 
a 
a 
1 

70 
80 

110 
70 
45 

2 
150 

0.693 
0.325 
0.688 
1.000 
0.417 
1.000 
1.000 

0.084 
0.096 
0.131 
0.084 
0.054 
0.002 
0.179 

527 0.S3 
Replacement Rate Matrix 
Rate Failed SLRU WSLRU 
Replaced Cl C2 C3 C4 C5 CS C7 C8 C9 E Repl Rate Justified P(Just) WP(Just) Unjust P(Unj) WP(Unj) 
Cl 2 0 0 0 0 0 a 0 0 0 2 2 1.000 0.002 0 0.000 0.000 
C2 1 260 100 0 20 25 20 10 40 0 476 260 0.546 0.311 216 0.454 0.258 
C3 a 0 0 0 0 0 0 a a 0 0 0 #DIV/O! 0.000 a #DIV/O! 0.000 
C4 a 0 a 0 0 a 0 a a a a 0 #DIV/O! 0.000 a #DIV/O! 0.000 
C5 a 0 a 0 0 a 0 a a a a 0 #DIV/O! 0.000 a #DIV/O! 0.000 
CS a a a 8 0 45 0 a 15 40 108 45 0.417 0.054 63 0.583 0.075 
C7 0 0 0 1 10 0 70 20 0 0 101 70 0.693 0.084 31 0.307 0.037 
C8 0 0 0 0 0 0 0 0 0 0 0 0 #DIV/O! 0.000 0 #DIV/O! 0.000 
C9 0 0 0 0 0 0 0 0 0 0 0 0 #DIV/O! 0.000 0 #DIV/O! 0.000 
E 0 0 0 0 0 0 0 0 0 150 150 150 1.000 0.179 0 0.000 0.000 
Comp Rate 3 260 100 9 30 70 90 30 55 190 837 527 0.63 310 0.37 
Justified 2 260 0 0 0 45 70 0 0 150 527 
P(Just) 0.667 1.000 0.000 0.000 0.000 0.643 0.778 0.000 0.000 0.789 DLRU 
WP(Just) 0.002 0.311 0.000 0.000 0.000 0.054 0.084 0.000 0.000 0.179 0.63 WDLRU 
Unjustified 1 0 100 9 30 25 20 30 55 40 310 
P(Unjust) 0.333 0.000 1.000 1.000 1.000 0.357 0.222 1.000 1.000 0.211 
WP(Unjust) 0.001 0.000 0.119 0.011 0.036 0.030 0.024 0.036 0.066 0.048 0.37 



Icemaker Failure Rate Matrix for MTBUR Calculation 

1.00E-07 
11 

12 

13 

14 
15 

16 
17 

Comp 
Rate 
Comp 
Prob 

C1 C2 C3 C4 C5 C6 C7 C8 C9 E 
Indication 

Rate 

101 

Indication 
Prob 

0.1210 0 0 1 0 0 0 0 0 0 
0 0 0 0 10 0 0 0 0 0 
0 0 0 0 0 0 70 0 0 0 
0 0 0 0 0 0 0 20 0 0 

246 0.2941 0 0 0 0 0 0 0 0 0 
0 80 0 0 0 0 0 0 0 0 
0 0 50 0 0 0 0 0 0 0 
0 0 0 0 20 0 0 0 0 0 
0 0 0 0 0 25 0 0 0 0 
0 0 0 0 0 0 20 0 0 0 
0 0 0 0 0 0 0 10 0 0 
0 0 0 0 0 0 0 0 40 0 

160 0.1910 110 0 0 0 0 0 0 0 0 
0 0 50 0 0 0 0 0 0 0 

70 
108 

0.084 
0.129 

0 70 0 0 0 0 0 0 0 0 
0 0 0 8 0 0 0 0 0 0 
0 0 0 0 0 45 0 0 0 0 
0 0 0 0 0 0 0 0 15 0 
0 0 0 0 0 0 0 0 0 40 

2 
150 

0.002 
0.179 

2 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 150 

3 

0.004 

260 

0.311 

100 

0.119 

9 

0.011 

30 

0.036 

70 

0.084 

90 

0.108 

30 

0.036 

55 

0.066 

190 

0.227 

8371 

1.000 

1.000 

Replacement Matrix 

C1 C2 C3 C4 C5 C6 C7 C8 C9 E 
11 

12 

13 

14 
15 

6 
7 

0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

1 
0 
0 
0 

1 
1 
0 
0 

0 
0 
0 
0 

1 
1 
1 
1 

1 
1 
0 
1 

0 
0 
0 
0 

0 
0 
0 
0 

1 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 
1 

1 
0 
1 
1 
1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 

1 
0 
0 
1 
0 

0.5 
1 
0 

1 
0 
0 
1 
1 
1 
1 
0 

1 
0 
0 

0.5 
0 
1 
1 
0 

1 
0 
0 
0 
0 
0 
1 
0 

1 
0 
0 
1 
1 
1 
1 
1 

0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

1 
1 

0 
1 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 1 0 0 0 0 0 0 0 0 
0 
0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

1 
0 
0 
0 

0 
0 
0 
0 

1 
1 
1 
1 

0 
0 
0 
0 

0 
0 
0 
0 

1 
0 
1 
0 

1 
0 
1 
1 

1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 

VI 

VI 




Icemaker Replacement Rate Matrix--ALL REPLACEMENTS 

Rate Failed S LRU WSLRU 
Replaced Cl C2 C3 C4 C5 C6 C7 C8 C9 E Repl Rate Justified P(Just) WP(Just) Unjust P(Unj) WP(Unj) MTBURuj MTBUR 

Cl 3 0 0 0 0 0 0 0 0 0 3 3 1.000 0.002 0 0.000 0.000 #DIY/O! 3,333,333 
C2 1 260 100 0 20 25 20 10 40 0 476 260 0.546 0.176 216 0.454 0.146 46,296 21,008 
C3 1 0 100 0 20 25 20 10 40 0 216 100 0.463 0.068 116 0.537 0.079 86,207 46,296 
C4 0 0 0 9 0 0 0 0 0 0 9 9 1.000 0.006 0 0.000 0.000 #DIY/O! 1,111,111 
C5 1 0 0 1 30 0 10 10 0 0 52 30 0.577 0.020 22 0.423 0.015 454,545 192,308 
C6 1 0 0 8 20 70 20 10 15 40 184 70 0.380 0.047 114 0.620 0.077 87,719 54,348 
C7 1 0 0 1 20 0 90 30 0 0 142 90 0.634 0.061 52 0.366 0.035 192,308 70,423 
C8 1 a a 1 10 a a 30 a a 42 30 0.714 0.020 12 0.286 0.008 833,333 238,095 
C9 1 a a 8 20 25 20 10 55 a 139 55 0.396 0.037 84 0.604 0.057 119,048 71,942 
E a a a 8 0 a a a 15 190 213 190 0.892 0.129 23 0.108 0.016 434,783 46,948 
Camp Rate 10 260 200 36 140 145 180 110 165 230 1476 837 0.57 639 0.43 15,649 6,775 
Justified 3 260 100 9 30 70 90 30 55 190 837 
P(Just) 0.300 1.000 0.500 0.250 0.214 0.483 0.500 0.273 0.333 0.826 DLRU 
WP(Just) 0.002 0.176 0.068 0.006 0.020 0.047 0.061 0.020 0.037 0.129 0.57 WDLRU 
Unjustified 7 0 100 27 110 75 90 80 110 40 639 
P(Unjust) 0.700 0.000 0.500 0.750 0.786 0.517 0.500 0.727 0.667 0.174 
WP(Unjust) 0.005 0.000 0.068 0.Q18 0.075 0.051 0.061 0.054 0.075 0.027 0.43 




