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Total US lumber production in 2011 was 77.9 million cubic meters. Its primary 

use was for housing and construction. There is a growing concern that the 

structural properties for wood are being reduced as trees are harvested at 

much younger ages as the wood supply shifts from older to younger forests. 

Goal of this study is to promote the inclusion of wood properties, density and 

Modulus of Elasticity (MOE) in pre-harvest inventory of Douglas-fir 

(Pseudotsuga menziesii (Mirb.) Franco). Hitman ST-300, a non-destructive 

method based on acoustic velocity, was used to estimate MOE. Results from 

Pearson correlation showed a highly significant relationship between MOE with 

density (.405), acoustic velocity (.860) and DBH (-.327). A linear model was 

fitted to estimate MOE as function of acoustic velocity. Slope and intercept are 

significant for this model (p-value <.001) with an R2 of .739. A second linear 

model was fitted including acoustic velocity and DBH as predictor variables. 

Slope and intercept are significant for this model (p-value <.001) with a R2 of 



 

 

.768. Both models were compared obtaining an increase of.017 when DBH was 

included in the regression. Monte Carlo simulation was used to determine the 

impact of a subsample of density with acoustic velocity to determine MOE. It 

was found that an optimal sample size of ten percent when MOE was estimated 

using acoustic velocity and wood density cores. Using acoustic, non-

destructive, evaluation along with these models can help to operationalize the 

collection of wood properties that can support the primary log supply chain. It 

also provides a significant opportunity for foresters to know the condition of the 

forest and its properties early in the supply chain management. 
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1. Introduction 

Wood has been used since ancient times as the source for fuel, tools 

and shelter. Being a renewable material, its uses continue to grow. Howard and 

Westby (2013) estimated total lumber production (hardwood and softwood) in 

the US at 77.9 million of cubic meters (33 billion board feet). Softwood 

represents 79 percent of the total lumber production in the US 2011 and 79 

percent Oregon produced 9.8 million m3 (4.1 billion board feet) is from Oregon 

(Oregon Forest Resources Institute, 2015). The primary use of lumber has 

been in single family homes with 63.5 percent of the lumber consumed for 

housing, 24.3 percent for new construction and 39.2 percent for improvement 

of existing house units (Howard and Westby, 2013). 

There is an effort to build larger structures using wood. In Scandinavia, 

architects are using wood in novel methods. One example of this is wood city 

in Helsinki; it is a project that combine commercial and residential buildings. 

These new residential buildings will be the tallest wooden buildings in Finland 

with some reaching eight-stories (Stora Enso, 2014). Thus, wood is being 

placed in more demanding structural uses and a variety of engineered wood 

products are being developed to meet these needs. This include laminated 

veneer lumber, oriented strand board, cross laminated timber, glued laminated 

timber (Glulam), among others. In addition, there is an increasing demand for 

machine stress grade lumber. It combines visual assessment of knots, and 

other defects, with a non-destructive bending test to estimates stiffness 

(Erickson et al. 2000). With the development of engineered wood products, it 
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is becoming increasingly more important to understand the wood properties to 

allocate logs to most appropriate manufacturing facilities to generate the 

products that will meet these needs.  

Mechanical and physical properties of structural engineered products 

depend on the interactions between the qualities of the resource, the wood 

properties, the manufacturing process, and their applications (Lam 2001). 

Much of the current practice is to judge wood quality according to its visual 

characteristics; this includes number and size of knots and branches (Husch et 

al. 1982). Wood quality measurements; include: density, stiffness (modulus of 

elasticity), microfibril angle, dimensional stability, among others. (Walker 1998, 

Amishev and Murphy 2008). However, there is a growing concern that the 

structural properties for wood are being reduced as the wood supply shifts to 

younger forests. (Amishev and Murphy 2008). Thus, various wood quality 

measurements will need to be incorporated into operational inventories to allow  

the improved characterization of the resources that will allow for raw material 

be allocated to the most appropriate manufacturing plant that will produce the 

best values.  

Wood density (the ratio between wood mass and its volume) is the most 

common wood property used to describe wood, as it provides an index to many 

other properties (Walker et al. 1993). It is an important physical property 

because is a good indicator of many mechanical properties (Leon, 2010). 

Typical values for western United States species are: Douglas-fir (Pseudotsuga 

menziesii (Mirb.) Franco) 480 Kg/m3, Hemlock (Tsuga spp.) 450 Kg/m3, 
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ponderosa pine (Pinus ponederosa) 400 Kg/m3, radiata pine (Pinus radiata) 

420 Kg/m3 (USDA, 2010)  

Modulus of Elasticity (MOE) is the second most prominent wood 

property. It is the resilience of the wood to deformation when a load is applied. 

Elasticity implies that deformations produced by stress are recoverable after 

loads are removed (USDA. 2010, Navia, 2006, Rocha, 2012). High values are 

desirable to avoid bending of window frames, walls or door frames when 

loaded. Values for common species are:  Douglas-fir 13.6 GPa, western 

hemlock 11.3 GPa, ponderosa pine 8.9 GPa, radiata pine 10.2 GPa (USDA, 

2010).  

Today, there are non-destructive methods capable to predict MOE 

without altering wood end-use capabilities. One of the methods is acoustic 

testing, a promising method that measure acoustic velocity on trees or logs and 

allow us to predict MOE due to velocity is related with the modulus of elasticity 

and density. In this study, Hitman ST300® is used to measure the acoustic 

velocity of stress-waves in standing trees taking it directly on the lower bole 

portion of the stem (Paradis et.al. 2013; Tsehaye et. al. 2000; Wang, 2012).  

In the future, the wood supply will be coming from younger forest or fast 

growing plantations and the desirable wood properties from older timber may 

become scarce (Filipescu 2014). Thus, there is a need to be able to predict the 

wood qualities better as part of the pre-operational inventory to improve the 

performance of the forestry supply chain. Logs that have the desirable wood 



4 

 

 

properties need to be identified early in the supply chain and allocated to mills 

making products where those wood properties may add the most value to the 

final products.  

 

2. Objectives  

The objective of this study is to promote the inclusion of wood properties, 

density and MOE in pre-harvest inventory. The goal will be to develop various 

analytical techniques to will allow for these wood properties to be predicted  

from easy to measure variables such as diameter and from the acoustic velocity 

from the standing trees and predict the desired wood properties. Although 

these are based on a sample from one stand, we believe that they demonstrate 

the potential to capture and include wood properties to support the inclusion of 

wood properties in the primary supply chain.  

3. Literature Review 

Non-destructive evaluation (NDE) are those techniques that allow the 

evaluation of material properties without producing damages to subject matter 

(Amishev and Murphy, 2008). Nowadays, there are several NDE that have 

been developed and they are frequently used to estimate mechanical wood 

properties such as MOE and microfibril angle. Some of this NDE can be 

classed into two groups the first one is based on microwaves like SilvaScan-

2®, Near Infra-Red (NIR) spectroscopy, and the second group based on 

acoustic velocity like Fakoop Microsecond Timer, IML Hammer® and the tool 
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used in this study the HITMAN® (Amishev and Murphy 2008; Paradis et al. 

2013; Merlo et.al., 2008; Chauhan and Walker 2006).   

Acoustic technologies like Fakoop and Hitman are well-established and 

support the allocation of logs to uses, based on its acoustic values they 

produce. Their use has been accepted for the forest products industry (Wang 

et al. 2007; Paradis et al. 2013;). According to Amishev and Murphy, (2008) the 

information provided by acoustic tools have been used to sort logs for veneer 

uses, they found a correlation of 0.52 between acoustic velocity and mill veneer 

recovery. Johnson and Gartner (2006) used acoustic testing in four 20-years 

old Douglas-fir progeny tests in the Coast Range of northern Oregon, to 

estimate heritability MOE and basic density. They found that heritability Index 

for MOE and density were 0.55 and 0.59 respectively. Also overall mean for 

MOE and density was calculated obtaining 8.55 GPa, and 415 Kg/m3 

respectively. 

Paradis et al. (2013) investigated the use of Hitman ST300 to identify 

the stands to supply raw material for the production of machine stress-rated 

lumber. Three hundred thirty-three trees were measured from an uneven-age 

black spruce stand in the North Shore region of Quebec in Canada. A multiple 

linear regression model was developed describing mean tree MOE as a 

function of acoustic velocity squared and DBH. Coefficient of determination R2 

was 0.41. Similar studies completed by Mora et al. (2009) and Lui et al. 2007 

found higher values of explained variance with values of 0.65 in Pinus taeda 

and 0.55 in black spruce with acoustic velocity and tree diameter and MOE. In 
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addition, they found that acoustic velocity could be affected by the insertion 

depth of Hitman probes. 

Acuna and Murphy (2006) selected 119 Douglas-fir trees from 17 

second growth stands in the Coast and Cascade range of Oregon, collecting 

400 disk to obtain wood density. They used a stepwise multiple regression 

analysis to estimate wood density values, using as explanatory variables height 

(along the tree where the disk were collected), average diameter of each disk 

including the bark, elevation of the site, density at 0 m above the base, and the 

aspect of the tree where the sample were taken. Overall, the mean density was 

0.404; this is lower than reported values for Douglas-fir (0.450). Among all the 

variables used in their model, only height was significant at explaining density. 

The linear model explain 25.9 percent of the variation of log density. As 

expected, mean density values decrease when the wood disk were taken 

higher in the stem as the proportion of juvenile wood increased.  

Lachenbruch et al. (2010) studied the relationship of density, microfibril 

angle, and acoustic velocity with stiffness in Douglas-fir. One hundred eighty-

three trees were sampled from 17 stands that were older than 20 years with no 

silvicultural treatments in the past seven years were used in their study. These, 

stands are located in western Cascade and Coastal range of Oregon. From 

each stand, 7-12 dominant or codominant trees were sampled by removing 

small clear sections of mature wood. The samples were dried to a 12 percent 

moisture content. Using Silvascan, density was estimated 0.526 g/cm3 and 

microfibril angle in 14.6 degrees. Using direct measurements, they obtain 
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density was 0.553 g/cm3, acoustic velocity 5443 m/s, and MOE 11533 MPa. 

Modulus of elasticity was correlated with density 0.762 and with velocity 0.680 

(Lachenbruch et al. 2010). They predicted the MOE values using density and 

velocity as the independent variables and their model produce significant slope. 

The model explained 73.3 percent when density and velocity2 were used. MOE 

was better predicted when both variables were used than by either one alone 

(0.578 for density and 0.460 for velocity) (Lachenbruch et al. 2010).   

Wang et al. (2005) studied the relationship between acoustic velocity 

measurement on standing trees and the acoustic velocity measured in butt logs 

of five softwood species (sitka spruce (Picea sitchensis), western hemlock 

(Tsuga heterophylla), jack pine (Pinus banksiana), ponderosa pine, and radiata 

pine). A total of 352 trees were evaluated, stand age varies from 8 to 25 years 

in radiata pine, spruce and hemlock stands are uneven-aged, meanwhile jack 

pine and ponderosa pine have 40 and 43 years respectively. A linear model 

was fitted using the acoustic velocity on logs as the independent variable and 

acoustic velocity measured on trees as the dependent variable. The model 

explained a large amount of the variability with a coefficient R2 of 0.993 for sitka 

spruce, 0.845 for western hemlock, 0.710 for jack pine, 0.830 for ponderosa 

pine, and 0.900 for radiata pine. Positive relationship between tree velocity and 

DBH was found in ponderosa and radiata pine and they suspect that this 

relationship will be also found in other species.     
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4 Methods 

Data were collected from a second growth Douglas-fir stand with mixed 

ages located in the McDonald-Dunn Forest. The mean age is 70-75 years, and 

has been commercially thinned on three occasions. A subset of the stand was 

used in this study that included 510 trees. Each tree had the DBH, height, 

acoustic velocity, and wood core from an increment bore collected. 

Hitman ST300 was used to measure the acoustic velocity for the lower 

portion of the tree bole. Carter et al. (2005) explained Hitman’s functioning, 

“Transmitter and receiver probes are driven through the bark into the outer 

wood of the lower stem. They are vertically aligned along the stem 

approximately 1.3 meters apart. A laser guided ultrasound rangefinder 

measures the exact distance between the probes. An acoustic wave is 

imparted into the tree stem through the transmitter probe by a hammer blow. 

The receiver probe picks up the acoustic signal passing through the tree and 

determines the time-of-flight of the acoustic wave. The distance and time are 

sent by wireless communication to a PDA (personal digital assistant) that 

calculates the acoustic velocity and also allows the user to enter other tree and 

stand data” This process was repeated three times for each tree measured 

(Figure 1). 
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Figure 1. Measurement of acoustic velocity with the Hitman ST300. (A) 
Transmitter probe (B) Receiver probe (C) Personal digital assistant (Fibre-
gen.com, 2015). 
 

As Hitman assumed that density is constant, a tabulated value for green 

density for different seasons is usually used to account the changes in moisture 

content (Paradis et al. 2013; Achim et al. 2010). Auty and Achim (2008) citing 

Sandoz (1993) and Carter et al. (2005) suggest that fresh-cut density should 

be used to account for small variations in the cell wall. In addition, tree diameter 

was also found to have a positive relationship with velocity and therefore, it has 

an influential impact on MOE estimation (Chauhan and Walker 2006; Paradis 

et al. 2013) these considerations are taking account for this study. 

Wood density was computed weighting wood core mass and the volume 

was computed by water displacement; later density is compute by the ratio of 

mass divided by its volume (Williamson and Wieamann 2010). Thus, having 

the density and the velocity for each tree, dynamic MOE for each tree can be 
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computed using the following equation (1) (Wang, 2012; Tsehaye, 2000; 

Paradis et al. 2013): 

𝑀𝑂𝐸𝐷 = 𝑉2𝜌                                                   (1) 

Where,  

MOED = dynamic modulus of elasticity 

V = average acoustic velocity from Hitman measurements  

ρ = wood sample density 

As one of the objectives of this study is to combine the use of the 

acoustic tool (Hitman ST-300) and inventory data to predict wood properties 

that can be difficult or expensive to measure on every tree. Therefore, different 

relationships were being explored among the inventory and acoustic variables. 

A number of alternative models were tested, those models include variables 

such as total height, basal area, but they were discarded because height is 

difficult to measure for every tree and basal area is a function of diameter.  

The first step was to develop a linear model that estimates MOE as a 

function of acoustic velocity and DBH (equation 2).  

𝑀𝑂𝐸𝐷 = 𝑏0 +  𝑏1𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 + 𝑏2𝐷𝐵𝐻                         (2) 

Where, 

 

MOED = dynamic modulus of elasticity 

Velocity = average acoustic velocity from Hitman measurements  

DBH=Diameter at the breast height in meters. 

 

The second linear model is a simplification of the first linear model (Equation 3) 

but in this case using just velocity as variable because MOE is directly 
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proportional to Velocity when a tabulated wood density is use in equation (2). 

𝑀𝑂𝐸𝐷 = 𝑏0 +  𝑏1𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦                                 (3) 

MOED = dynamic modulus of elasticity 

Velocity = average acoustic velocity from Hitman measurements  

 

4.1 Monte Carlo Simulation 

 

Monte Carlo methods encompass several techniques that use random 

numbers and probability distributions to approximate solutions to quantitative 

problems (Temesgen, 2015). Monte Carlo simulates the full sampling process 

many times (hundreds or thousands times). At each iteration, the process 

selects randomly a certain number of sampling units according to a sampling 

intensity. Then, estimation are made for the rest of the population based on a 

model fitted with the selected sample. The outcome is a probability distribution 

of the overall value of the system calculated through the iterations of the model 

(Yadav and Ramasubramanian 2011).  

In forestry, Monte Carlo methods has been used by Temesgen et al. 

(2011) to simulate different sampling strategies to estimate tree foliage biomass 

in Douglas-fir and ponderosa pine stands. They found that systematic sampling 

with ratio estimation is the most efficient sampling to estimate foliage biomass 

in both species. 

In this study, the purpose of the Monte Carlo simulation to explore the 

potential to reduce the number of wood density samples needed to calculate 

reliable dynamic MOE. Therefore, a random sample of wood density are taken 
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from the population of 510 trees (Table 1) to determine the sample size needed 

to support the characterization of the resources.  

Table 1. Sample intensities for Monte Carlo Simulation and number of trees 
that it represents. 

Sample (%) # Trees 

1 5 

1.5 8 

2 10 

2.5 13 

3 15 

5 26 

7 36 

10 51 

12 61 

15 77 

17 87 

20 102 

25 128 

30 153 

35 179 

40 204 

45 230 

50 255 

55 281 

60 306 

 

Then, five hundred iterations were performed at each sampling intensity and 

the values were used to estimate the dynamic MOE with a subsample of 

population (Equation 4). With this sub-sample of wood density and velocity as 

the predictor variables and dynamic MOE as the response variable, a linear 

regression will be developed (Equation 4); 

𝑀𝑂𝐸𝐷 = 𝑏0 +  𝑏1𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 + 𝑏2 𝜌                             (4) 

Where,  
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MOED = dynamic modulus of elasticity 

Velocity = average acoustic velocity from Hitman measurements  

ρ = wood sample density 

The performance of the estimator is measured using the following performance 

measures as described by Temesgen et al. (2008)  

𝐵𝑖𝑎𝑠 =
1

500
∑ (𝑀𝑂𝐸𝑖 − 𝑀𝑂𝐸̂𝑖)

500

𝑖=1
                           (5) 

 
Mean squared error MSE (equation 6)  

 𝑀𝑆𝐸 =
1

500
∑ (𝑀𝑂𝐸𝑖 − 𝑀𝑂𝐸̂𝑖)

2500

𝑖=1
                               (6) 

 

Root Mean Squared Error (equation 7) 

𝑅𝑀𝑆𝐸 = √
1

500
∑ (𝑀𝑂𝐸𝑖 − 𝑀𝑂𝐸̂𝑖)

2
500

𝑖=1
                               (7) 

 

The goal is to find the lowest bias and variance from the various sample sizes.  

The optimal sample size can be determinate by a significant change in the 

values of MSE or RMSE or graphically by the point where the curve stabilized 

and produce a straight line (Temesgen et.al. 2008; Poudel et.al. 2015; 

Temesgen et.al. 2011). 

 

 

 

 



14 

 

 

5. Results 

 

 Five hundred ten trees were used in this study to develop methods to 

incorporate wood properties into an operational inventory. The results will 

include both the summary statistics and the statistics describing the 

appropriateness of the analytical models that were developed to estimate 

dynamic MOE using easily measured variables to support supply chain 

management.  

 The descriptive statistics are shown in Table 2 with the distributions 

presented in Figure 5. DBH appears to be skewed to the left but this is 

expected, as this is a mixed-age cohort stand.  

Table 2. Descriptive Statistics for Dynamic MOE, Velocity, DBH, Wood 

density  

 

N=510 Minimum Maximum Mean 

Std. 

Deviation 

   Statistic Std. Error Statistic 

MOE (GPa)  7.3728 23.1246 13.0834 .10774 2.43317 

Velocity (Km/s)  3.7612 6.3043 4.9709 .0187 .42432 

DBH (m)  .1640 1.4000 .5363 0.93 .21064 

Wood density 

(g/cm3) 

 .3772 .6932 .5265 .0021 .04938 

 

Figure 2 show the distribution of calculated MOE, Velocity, DBH (m) and wood 

density, our response and predictor variables used in the study and its 

theoretical normal distribution.  
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Figure 2. Response and predictor variables distribution. Line represent 

variable theoretical normality curve. 

 

5.1 Pearson Correlations. 

 

MOE is one of the most important wood property variables due to its 

importance in many engineered wood applications, where stiffness is an 

important attribute. Due to its relevance, all variables were analyzed to 

determine their correlation with MOE. Table 3 shows that acoustic velocity has 

the highest correlation, 0.860, followed by wood density, 0.405, the third one in 

order of relevance –or influence- is DBH -0.327. Even though, both basal area 

and total height (HT) also have significant correlation with MOE, both were left 

out of the modeling analysis because basal area is a function of DBH and total 

height may be difficult to obtain for each tree in an industrial scale.   
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Table 3. Pearson Correlation for study variables. 

 

  MOE 

DBH 

(m) Velocity 

Wood 

density HT 

Basal 

area 

MOE Pearson 

Correlation 

1 -.327** .860** .405** -

.190** 

-.323** 

Sig. (2-tailed)  .000 .000 .000 .000 .000 

N  510 510 510 510 510 

DBH (m) Pearson 

Correlation 

 1 -.548** .348** .830** .974** 

Sig. (2-tailed)   .000 .000 .000 .000 

Velocity Pearson 

Correlation 

  1 -.109* -

.408** 

-.521** 

Sig. (2-tailed)    .014 .000 .000 

Wood 

density 

Pearson 

Correlation 

   1 .364** .304** 

Sig. (2-tailed)     .000 .000 

HT Pearson 

Correlation 

    1 .759** 

Sig. (2-tailed)      .000 

Basal area Pearson 

Correlation 

     1 

Sig. (2-tailed)        

**. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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5.2 Modeling analysis  

  

As one of the objectives of the project was to test whether a more easily 

collected set of variables (i.e. can one avoid collecting density on all trees) can 

be used to estimate MOE. Several linear models were tested (those include 

variables as total height, volume, basal area, among others). The first model 

includes two independent variables DBH and the velocity measurement. The 

slope for both terms are highly significant with a p-value of .000 and the model 

explains 76.8 percent of the variation in the dynamic MOE (see Tables 4a,b,c).  

 

Table 4a. Model Summary. 

Model 

Adjusted R 

Square 

Std. Error of the 

Estimate 

1 .768 1.1720284 

 

 

Table 4b. ANOVA Summary for the model. 
 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 2317.003 2 1158.501 843.374 .000b 

Residual 696.441 507 1.374   

Total 3013.443 509    

a. Response Variable: MOE 

b. Predictors: (Constant), DBH (m), Velocity 
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Table 4c. Coefficients Summary. 
 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -15.929 .827  -19.270 .000 

Velocity 5.579 .146 .973 38.114 .000 

DBH (m) 2.386 .295 .207 8.093 .000 

a. Response Variable: MOE 

 

 

Residual analysis of this model validate the assumptions needed for 

regression. Residuals were constant, linear and normality as required to apply 

the general linear model. The Q-Q graph of the residuals shows that most of 

the values can be explained by the model, but 21 percent of the cases cannot 

be explained by the fitted model. Residual versus fitted and scale-location plots 

(Figure 4) show no correlation between residuals and fitted values, which 

supports the use of the fitted model. In addition, the residual vs leverage plot 

shows that there is the possibility of some outlier values that are affecting the 

prediction power of the regression (Figure 3). 
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Figure 3. Regression summary Plots 

 

The high correlation value between MOE and velocity (Table 3) makes 

one think about the possibility of a simpler model that computes MOE using 

only velocity as the predictor variable. The fitted model was highly significant 

p-value .000, and an adjusted R2 of .739 (Table 4a). Thus, another linear model 

was fitted using the input method to compare if the addition of an extra variable, 

in this case DBH, improves the prediction power of the model.  

Now there are two models:  

 

Model 1: 𝑀𝑂𝐸 = −11.421 + 4.930 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

Model 2: 𝑀𝑂𝐸 = −15.929 + 5.579 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 + 2.386 𝐷𝐵𝐻  
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Slope and intercept are significant (p-value .000) for model 1 (Table 5b) 

Figure 5 show the regression plots and indicates that model 1 has no pattern 

or trend on the residuals as seen in scale-location and residual plots. Q-Q plot 

show that most of the values (74 percent) are explained with the model fitted.  

Additionally, the assumptions required for the linear model are also validated 

(Figure 4). Furthermore, the Leverage plot that indicate the possible presence 

of outlier values and its possible source will be discussed in the next section.   

    
Figure 4. Regression summary Plots for model 1. 

 

5.3 Comparing the use of one variable model vs the two variable model 

All terms in the regression for both models are significant (Table 5b). 

The inclusion of DBH into the model 1 improves adjusted R2 from .739 to .769 

(Table 5a). In addition, adding DBH into the model reduced residual mean 
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square error in .174, this represents a reduction of 11 percent (Table 5b). 

Table 5a. Model Summaries. 

Model Adjusted R Square Std. Error of the Estimate 

1 .739 1.2442142 

2 .768 1.1720284 

 

Table 5b. ANOVA Summary for both models. 
 

Model Sum of Squares df Mean Square F Sig. 

1 Regression 2227.024 1 2227.024 1438.582 .000b 

Residual 786.419 508 1.548   

Total 3013.443 509    

2 Regression 2317.003 2 1158.501 843.374 .000c 

Residual 696.441 507 1.374   

Total 3013.443 509    

a. Response Variable: MOE 

b. Predictors: (Constant), Velocity 

c. Predictors: (Constant), Velocity, DBH (m) 

 

Table 5c. Coefficients Summaries for both models. 

 
 

Model 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -11.421 .648  -17.614 .000 

Velocity 4.930 .130 .860 37.929 .000 

2 (Constant) -15.929 .827  -19.270 .000 

Velocity 5.579 .146 .973 38.114 .000 

DBH (m) 2.386 .295 .207 8.093 .000 

a. Response Variable: MOE 
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The relevance of having both DBH and velocity variables in the model was also 

confirmed by the confidence interval ellipse (Figure 5), which produce a 

pairwise confidence region at 95 percent for a linear model fit.   

 
Figure 5. Confidence ellipse for model 2. Blue lines represents the  

confidence interval for model 2  

 

5.4 Monte Carlo Simulation  

 

Since density is such an expensive variable to collect as each core must 

be taken, labeled, dried, weighted and immersed in water to compute the 

density. It was hoped that its collection could be minimized when computing 

the dynamic MOE. What is the sampling size of density needed to estimate the 

dynamic MOE in the stand? Twenty sample intensities from one to 60 percent 

of the population were used in a Monte Carlo simulation. Each sample had 500 

iterations and the mean MOE was calculated (Figure 6).    
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Figure 6. Distribution of iteration means per sampling intensity. 
  

The bias and root mean square errors (RMSE) values were computed 

for estimated dynamic MOE from the samples. The absolute bias values range 

from 0.0003 to 0.0631, these low values indicate that the predictor used in this 

simulation makes accurate predictions (Table 6). 
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Table 6. Monte Carlo Simulation Summary variables per sampling Intensity. 
 

Sampling 

intensity % 
BIAS MSE RMSE MEAN 

1 0.03610 0.1249 0.35340 13.1265 

1.5 0.024644 0.1037 0.322090 13.00334 

2 0.018659 0.0925 0.304098 13.00373 

2.5 0.009825 0.0883 0.297097 13.13666 

3 0.012490 0.0837 0.289358 13.11202 

5 0.008076 0.0741 0.272250 13.08662 

7 0.007528 0.0702 0.265036 13.17628 

10 0.003857 0.0670 0.258922 13.09133 

12 0.003028 0.0659 0.256688 13.00699 

15 0.001377 0.0642 0.253355 13.10147 

17 0.002156 0.0639 0.252704 13.07007 

20 0.001219 0.0629 0.250827 13.07036 

25 0.001398 0.0624 0.249781 12.96586 

30 0.000591 0.0615 0.248029 13.06039 

35 0.000654 0.0611 0.247111 13.09574 

40 0.000509 0.0606 0.24620 13.2014 

45 0.000278 0.0605 0.246012 12.99049 

50 0.002250 0.0611 0.247164 13.04720 

55 0.001564 0.0602 0.245317 13.19156 

60 0.001725 0.0605 0.245970 13.07846 
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Figure 7. Root Mean Square Error by sampling intensity. 
 
 

Figure 7 shows the changes in root mean square with increasing 

sampling intensity. It shows that at a 10 percent sampling intensity results in 

the most efficient strategy. It is produced when RMS errors stabilized, in this 

case around 0.250 with small variation when sampling intensity increased more 

than 10 percent.  
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6. Discussion  

After descriptive statistics were performed there was no missing values 

in any of the analyzed variables. Computed MOE correlations with density 

(.405), acoustic velocity (.860) and DBH (-.327) are all highly significant. This 

relationships was reported in other studies that use acoustic measurements to 

estimates MOE (Paradis et al. 2013; Amishev and Murphy, 2008; Carter et al. 

2005; Auty and Achim, 2008). Acoustic velocity is the most significant variable 

to explain MOE predictions with a correlation of .860. These results are slightly 

better than those found by Lachenbruch et al. (2010) reported that density has 

a higher correlation to MOE than velocity, .762 and .680 respectively for mature 

Douglas-fir trees. This difference could be due to the forest population subject 

to study, Lachenbruch et al. (2010) use a mature meanwhile the other is a 

second growth forest.  

 A weak inverse trend was found between DBH and MOE. Lower DBH 

values correspond to high values of MOE, it could be attributable to some 

variation caused by the probes insertion depth. This trend was also found by 

Grabianowski et al. (2006) in radiate pine. 

Regarding the model fitted, the use of DBH combined with velocity 

demonstrates a good prediction power with a R2 of .768. Slope and intercept 

are significant (p-value .000). In general, R2 is higher than those reported in 

similar linear model with the same variables for Black Spruce R2= .410 (Paradis 

et al. 2013). For Douglas-fir Lachenbruch reported R2= .733, but in this case 

they use density instead of DBH.  
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Residual and leverage plots shows the possible presence of outlier 

values, this could be attributable to variation in velocity and DBH. Velocity 

variation could came from changes in tree moisture content. DBH variation 

source could be due to the depth insertion of the probes. In addition, Paradis 

et al. (2013) indicate that is known inclusion of DBH bring some variation in 

stress waves even if MOE and Density remain constant.  

When velocity was used to predict MOE by itself an R2 of .739 was 

found, variable and slope were highly significant (p-vales .000) for this model. 

Although this model obtain good values, an increase of .017 in R2 was found 

when DBH is used in the model, with a reduction in 11 percent in residuals MSE 

means a moderate reduction in the difference between the estimation and the 

real value. The same trend was shown by Wang et al. (2007); their model 

reduced prediction variability in velocity and improve prediction power when 

DBH is include in the regression. Lachenbruch et al. (2010) also found an 

increase in predictive power when regression model include both velocity and 

density than when estimation were made based on either variable alone. 

After completing the 500 iterations from the Monte Carlo Simulation, all 

the simulations contain the MOE population mean µ=13.08 GPa in each one of 

them, no significant skewedness was found. BIAS remain small (0.0003 – 

0.0631) indicating the model is able accurately predict MOE from these 

samples.     

Wood density samples are expensive to collect and process for large-

scale operational inventories. This study finds the optimal wood density sample 
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size for MOE estimations based on acoustic velocity and tree density, through 

the Root mean squared error. RMSE shows the expected path of decrease 

while the sampling intensity increased. The RMSE stabilizes after that 10 

percent of sampling intensity is used, which allow one to make valid statistical 

infer on the population based on that 10 percent.   

However, if sampling 10 percent of the population represents a 

limitation, researcher could appeal to use a smaller sampling intensity of 7 

percent without a reduction in the predictability with an RMSE increasing from 

0.265 at a 7 percent sample versus a 0.250 at 10 percent sample 0.250.  
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7. Conclusions 

 The objective of the study is to promote the inclusion of wood properties 

density and MOE in pre-harvesting inventories. It was demonstrated that this 

inclusion is possible and reliable (R2= .768, when DBH used in the model) in 

the estimations of Modulus of Elasticity obtained, which becomes a helpful tool 

during pre-harvest inventory planning. In addition, techniques developed show 

that is possible to combine wood properties with inventory information to asses 

wood stiffness.  

         Modulus of elasticity is well correlated to acoustic velocity with, wood 

density and DBH. DBH has an inverse trend with MOE, lower DBH values 

yields to higher values of MOE. Despites this trend on DBH, which is always 

part of every operational forest inventory, is a helpful variable when combined 

with acoustic velocity to predict MOE values (R2= .769). With this model 

foresters are provided of an equation that require less complex inputs, reduce 

in the variation of the acoustic velocity measurements, and without doubts an 

easier way to estimates MOE with variables that are cheaper, easier and less 

time consuming that wood density. To reduce variation in acoustic velocity 

measurements and the possible presence of outlier values, probes insertion 

depth should be controlled by prefixing it according to the specie sapwood 

characteristics.  

          Monte Carlo Simulation shows that it is possible to make accurate 

estimations of MOE with a subsample of density cores. A 10 percent of wood 

density (cores) appears to be the best sampling intensity. However, one can 
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use an interval between 7 and 12 percent of sampling intensity because of the 

small differences in RMSE. Using more than 12 percent sampling intensity 

does not improve in the quality of MOE estimations. Therefore, there is no 

statistical gain in use a sampling intensity bigger than 12 percent. However, 

this result is produced from only one stand. 

Using acoustic nondestructive evaluation can help to operationalize the 

collection of wood properties that can support the primary log supply chain. It 

also provides a significant opportunity for foresters to know the condition or 

status of the forest and its properties early in the supply chain management. 

Furthermore, it is an opportunity for Douglas-fir foresters to assess wood quality 

practically in real time, which will allow them to take the decisions about the 

best silvicultural treatments to achieve desired quality for a specific end-used. 
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