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Abstract This paper examines the sources of uncertainty for the Forced Diffusion (FD) chamber soil
respiration (Rs) measurement technique and demonstrates a protocol for uncertainty quantification that
could be appropriate with any soil flux technique. Here we sought to quantify and compare the three primary
sources of uncertainty in Rs: (1) instrumentation error; (2) scaling error, which stems from the spatial variability of
Rs; and (3) random error, which arises from stochastic or unpredictable variation in environmental drivers and
was quantified from repeated observations under a narrow temperature, moisture, and time range. In
laboratory studies, we found that FD instrumentation error remained constant as Rs increased. In field studies
from five North American ecosystems, we found that as Rs increased from winter to peak growing season,
random error increased linearly with average flux by about 40% of average Rs. Random error not only scales
with soil flux but scales in a consistent way (same slope) across ecosystems. Scaling error, measured at one site,
similarly increased linearly with average Rs, by about 50% of average Rs. Our findings are consistent with
previous findings for both soil fluxes and eddy covariance fluxes across other northern temperate ecosystems
that showed random error scales linearly with flux magnitude with a slope of ~0.2. Although the mechanistic
basis for this scaling of random error is unknown, it is suggestive of a broadly applicable rule for predicting flux
random error. Also consistent with previous studies, we found the random error of FD follows a Laplace
(double-exponential) rather than a normal (Gaussian) distribution.

1. Introduction

High-frequency soil respiration (Rs) measurements have proliferated over the last decade, as demonstrated by
the increased in numbers of sites incorporated in Rs synthesis studies during this period [Hibbard et al., 2005;
Carbone and Vargas, 2008; Bond-Lamberty and Thomson, 2010; Kim et al., 2012]. The increasing number of
locations with Rs measurements is a welcome development given the relevance of soil flux to global carbon
cycle projections. Soil respiration represents the single largest flux of CO2 from terrestrial ecosystems and a
major source of uncertainty in modeling climate-carbon cycle feedbacks [Reichstein and Beer, 2008]. Meaningful
synthesis and comparison of Rs data sets is hampered, however, by the fact that there has been limited reporting
of measurement uncertainty. Despite efforts to propose protocols [Savage et al., 2008], there has not been
widespread adoption of community standards for Rs quality assurance and uncertainty quantification. At the
same time, various Rs measurement systems have come into usage, potentially compounding the challenge
of measurement intercomparison. To help address this problem, we present an uncertainty analysis of Rs
measurements using the recently developed Forced Diffusion (FD) chamber [Risk et al., 2011]. Our study builds
fromprevious efforts to quantify Rs uncertainty by examining new instrumentation and a larger ecological range
of conditions. These procedures are not only appropriate for FD but for any other Rs measurement technique.

Uncertainty analysis entails enumerating the factors that contribute to incomplete knowledge of a measured
quantity. To clarify the distinction between the terms uncertainty and error, we shall use the term uncertainty
to characterize the range of values within which the quantity being measured could be expected to fall and
the term error to describe components contributing to uncertainty (in the sense of Rabinovich [2006]). Error
strictly describes the difference between a measurement and the actual or true quantity being measured
and, as such, is an idealized concept that cannot be known exactly. Following ISO convention, we use
uncertainty to refer to the quantification of error and also to the general concept of uncertainty as doubt
about a measurement result [Joint Committee for Guides in Metrology (JCGM), 2008].
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Valuable precedents for flux uncertainty quantification come from the eddy covariance community, which has
invested considerable effort to standardize quality assurance and uncertainty quantification procedures
[Loescher et al., 2006; Papale et al., 2006; Richardson et al., 2006; Schmidt et al., 2012]. Uncertainty for ecosystem
fluxes can be partitioned into (1) systematic errors, or biases, which have been quantified primarily as
associated with instrumentation or flux filtering criteria and (2) randomerrors which arise from unpredictable or
stochastic variation in environmental factors and are generally quantified from multiple observations made
simultaneously, or under a narrow range of conditions to eliminate environmental variability [JCGM, 2008].
In practice, systematic and random errors can be difficult to partition under field conditions. In the case of
soil fluxes, which have a very small measurement footprint generally less than 50 cm2, another important
component of uncertainty is scaling error. Soil respiration measurements have high spatial variability
[e.g., Riveros-Iregui and McGlynn, 2009; Giasson et al., 2013] and are often extrapolated to larger spatial scales
of interest, such as an eddy covariance tower footprint, which is on the order of >0.5 km2, yielding a large
scaling factor of 105–106. Scaling error stems both from spatial variability in Rs and from the weighting factors
that are used to scale up individual chambers to an average for the site or flux tower footprint. In forest systems
in particular, some eddy covariance sites have shown mismatch between chamber measurements of soil
respiration and tower measurements of ecosystem respiration, with Rs either higher than whole ecosystem
respiration measured by eddy covariances or with Rs improbably small relative to the tower fluxes [Phillips et al.,
2010; Giasson et al., 2013]. Error in the scaling of chamber measurements to the tower footprint may be
one cause of such mismatches. It is common practice to evenly weight all chambers to compute a site or
footprint average [Van Gorsel et al., 2007], therefore in this paper, we consider only the spatial variability
component of scaling error.

For Rs, we therefore recommend considering three sources of error that contribute to overall uncertainty: (1)
instrumentation error (IE), ideally determined by measuring known CO2 fluxes under controlled laboratory
conditions; (2) scaling error (SE), of which we examine here the spatial variability component; and (3) random
error (RE), which we compute as the difference between Rsmeasurements at a single location under a narrow
timeframe and range of environmental conditions, when known drivers including temperature, precipitation,
and time-of-day and time-of-year are constant. While each of these sources of error has been examined
previously individually, to our knowledge, they have not yet been comparatively assessed against one
another, for any Rs measurement technique.

Soil fluxes are generally measured by automated or manual chambers at the soil surface or by subsurface
measurements of CO2 profiles with the gradient approach [Tang et al., 2003]. Both approaches are subject to
known errors and biases. A side-by-side comparison of 20 chamber designs against a known flux on a sand
column showed a large range in accuracy, with chambers under- or over-estimating fluxes by up to 35%
[Pumpanen et al., 2004]. The comparatively new FD chamber system [Risk et al., 2011] has been shown to
validate well on a sand column and against the commercial LI-COR-8100 system (Licor Environmental,
Lincoln, Nebraska, United States) [Risk et al., 2011]. Laboratory performance, however, provides only a limited
assessment of the variability that can be expected under field conditions because of the added sources of
error from the environment. A goal of this paper is to comparatively evaluate laboratory and field
performance of FD chambers.

Here we build on efforts to develop strategies for handling Rs data systematically, while also reporting FD
field performance across ecosystems.

1.1. Estimating Error Types

A challenge in quantifying the instrumentation error of FD chambers or any other Rs measurement system
is that it is impractical to generate standard calibration CO2 fluxes under field conditions. Therefore, most Rs
measurements are made using systems in which the internal sensors are calibrated for CO2 concentration,
but complete systems (which may include multiple sensors, chambers, pumps, and valves) are not
routinely calibrated against a known flux. Inaccuracies stemming from air pumping, pressure differentials,
sampling time, or chamber feedbacks on soil gas diffusion are therefore unknown. Alternatively, calibration
CO2 fluxes can be generated in laboratory conditions using sterile sand to represent a semiporous soil
medium [Martin et al., 2004; Pumpanen et al., 2004; Risk et al., 2011], and this is arguably the best approach
for estimating instrumentation error.
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Several approaches have been used to quantify random error of fluxes. For instance, Savage et al. [2008]
quantified random error of Rs by comparing paired measurements made at the same time of day, 24 h apart
under nearly identical conditions of soil moisture and soil temperature. This approach, hereafter called
the “daily-differencing” approach, was originally employed to quantify carbon and energy flux uncertainty
from a single eddy covariance tower [Hollinger and Richardson, 2005]. Daily-differencing is a surrogate for
the uncommon situation of comparing two independent eddy covariance systems in the same ecosystem
[Hollinger and Richardson, 2005; Schmidt et al., 2012]. Daily-differencing is also a sensible approach for
quantification of Rs random error, however, because soil microsites can be highly heterogeneous, so
neighboring soil chambers are arguably unlikely to measure the same flux.

Using the daily-differencing approach, random error can take on either positive or negative values
(depending on whether flux on day 2 is greater or less than that on day 1) and is expected to have a mean of
zero. Combining random error estimates across a range of conditions, the standard deviation (or variance)
of the random error has been used to characterize the uncertainty of the random error [Richardson and
Hollinger, 2005; He et al., 2010]. The distribution of random error for eddy covariance and soil fluxes calculated
by daily-differencing has been shown to have a Laplace (double-exponential) distribution, characterized by
a stronger peak and longer tails than a Gaussian (normal) distribution. Other approaches have been used for
estimating random error of eddy covariance fluxes, including characterizing the residuals between observed
and modeled fluxes [Lasslop et al., 2008; Richardson et al., 2008]. A commonality between all approaches,
however, is the finding that the variance of random error increases with flux magnitude.

We focus on the daily-differencing approach here to avoid any explicit model assumptions for an expected
flux and to compare our findings with previous estimates of Rs random error from Savage et al. [2008], who
showed that the variance of random error scaled with flux rate in the same way (same slope) for two forest sites.
For eddy covariance fluxes, similar scaling of random error with flux magnitude was found across several
distinct ecosystems, regardless of the approach for characterizing random error [Richardson et al., 2008].

The fact that random error appears to scale consistently across sites, irrespective of whether measured at the
soil (chambers) or whole ecosystem (eddy covariance) level, raises two questions of interest. First, does the
variance of Rs random error scale with flux rate similarly across ecosystems, as it does for eddy covariance
fluxes? If so, it demonstrates important parallels between the error structures of whole-ecosystem and soil
fluxes. Here we build on previous analyses of Rs random error by Savage et al. [2008], by incorporating
observations for five additional sites, including four additional ecosystems. Second, is instrumentation error a
biasing factor in previous studies of random error? As previous analyses did not separate these error types, it
is possible that the random error was heavily influenced by systematic instrumentation error.

A frequently reported source of Rs uncertainty is spatial variability. Spatial variability is not a source of error at
the chamber level but contributes to Rs uncertainty in upscaled estimates of Rs at the site or eddy covariance
footprint level. Many environmental factors have been shown to correlate with Rs spatial variability, including
proximity to trees, temperature, and moisture [Stoyan et al., 2000; Tang and Baldocchi, 2005; Martin and
Bolstad, 2009; Leon et al., 2014], organic matter content [Saiz et al., 2006], and concentrations of nitrogen,
microbial biomass [Scott-Denton, 2003], and extracellular enzymes [Phillips et al., 2012]. Ideally, spatial
variability could be readily predicted from easily measured environmental variables, but regression
relationships are generally not transferrable through time or across sites [Rodeghiero and Cescatti, 2008; Leon
et al., 2014].

In the current study, we measured spatial variability at one site where continuous FD measurements were also
measured at a smaller number of locations, by conducting survey campaigns using a portable LI-COR-8100 soil
flux system. Although measured with a non-FD system, we present these spatially intensive data along with
analyses of FD random error in order to make order-of-magnitude comparisons of scaling and random error
types, and to examine commonalities in the seasonality of the errors, and relationships to flux magnitude.

Spatial variability can be very large and is important to report along with average site Rs [Adachi et al., 2005],
but it does not substitute for quantifying instrumentation and random error. All three provide relevant
information. Spatial variability depends on the number of locations measured and the heterogeneity of
the site, and it encompasses error that can be explained by environmental factors, as well as random
and instrumentation errors. In contrast, random error is residual error unexplained by environment.
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Instrumentation error is a systematic source of error unrelated to biogeochemistry; thus, all three provide
distinct information.

The overarching purpose of this study is to inform practitioners on the relative magnitudes of these three
error types that contribute to Rs uncertainty, as well as to characterize the statistical properties of each type.
The explicit goals are to

1. Quantify Rs uncertainty from instrumentation, scaling, and random error.
2. Identify distinctive and consistent statistical characteristics of Rs itself and Rs error, which can be used

for constructing QC (Quality control) filters, and constructing probabilistic models for gap filling
and upscaling.

2. Materials and Methods

For this study, we used several data sources. Instrumentation error was assessed by re-analysis of previously
published data presented in Risk et al. [2011]. Random errors were determined from field studies, including
FD observations of Rs in three maritime boreal-type systems in eastern Canada, one hardwood forest in north
central United States, and finally two grassland prairie sites in southern Saskatchewan, Canada (Table 1).
Spatial variability was measured at one of these sites and is reported here for comparison with random error.

2.1. Study Sites
2.1.1. Atlantic Transect
Three observational sites were deployed across a 1000 km transect in Atlantic Canada during the summer of
2010. The three sites represent different northern maritime ecosystems and are characterized by a cool
maritime climate (long warm winters), although they differ in precipitation, wind, and resulting snow cover.
The sites were intentionally placed to represent different climatological and landscape types.

The northernmost site, Gros Morne, is a coastal grassland located in Shallow Bay at the north end of Gros
Morne National Park in western Newfoundland, Canada. Soils are a sandy loam derived from a sandy moraine
deposition that is imperfectly drained and stratified. Of the three Atlantic sites, Gros Morne has the coolest
climate with heavy snow in the winter and with very high winds [Environment Canada, 2000].

The Cape Breton site is a boreal forest in Cape Breton Highlands National Park, in northwestern Nova Scotia,
Canada, on the plateau of North Mountain. Snow generally persists from October until May, and very high
winds are common. The soil is characterized by a stony sandy loam till with variable drainage [Neily et al.,
2003]. The site has only a low density of small-stature coniferous trees because it is situated within the
remnants of a past spruce budworm infestation (1974–1985) that caused die-off [Neily et al., 2003], and heavy
moose grazing has restricted regrowth to below waist height. The balance of site vegetation consists of
grasses that have invaded the formerly forested site.

The Woods Harbour site is located in southwestern Nova Scotia, Canada, is a grass-forest ecotone, and is set
approximately 1 km east from the coast. This soil is characterized by a moderately coarse sandy loam derived
from glacial till, with undulating topography and slow, variable drainage [Cann et al., 2008]. This site has
the most moderate temperatures in the Atlantic transect, with little snow accumulation and repeated
freeze-thaw events during winter.

Table 1. Study Site Locations and Characteristics

Site Names Ecosystems MAT (°C) MAP (mm) Location Sampling Period

Atlantic Transect, Nova Scotia, Canada

Gros Morne Coastal grassland 3 1725 49°55′56.11″N; 57°46′37.93″W; 6m asl Aug 2010 to Jun 2012
Cape Breton Highlands Disturbed boreal forest 5.5 1310 46°49′04.85″N; 60°40′19.86″W; 370m asl Aug 2010 to Jun 2012
Woods Harbour Grass-tree ecotone 7 1265 43°31′36.93″N; 65°43′47.46″W; 18m asl Jul 2010 to Oct 2012

Goodwater, Saskatchewan, Canada
Site 1 Grassland 3.5 420 49°34′03.04″N; 105°51′38.15″W; 750m asl Jun 2011 to Sep 2012
Site 2 Grassland 3.5 420 49°34′03.04″N; 105°51′38.15″W; 750m asl Jun 2011 to Sep 2012

Wisconsin, United States
Willow Creek Hardwood forest 4.8 820 45°48′00.00″N; 90°12′00.00″W; 515m asl Jul 2011 to Dec 2012
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2.1.2. Goodwater Sites
Two prairie (fallowed agricultural) sites, S1 and S2, were located near the town of Goodwater in southern
Saskatchewan, on soils generally representative of local agricultural land uses. The two sites were situated
within 5 km of each other and aimed to capture localized variability. Both sites were free of trees and shrubs
and were mostly covered by grasses. Soils from this area are generally classified as fine-grained (clay to
clay loam) Solonetzic soils [Soil Classification Working Group, 1998], with a hardpan layer in the B horizon
[Miller and Brierley, 2011]. The first site was the most productive, supporting thick fallow grasses during our
study. The local climate is characterized by hot summers and very cold winters, although relatively little snow
accumulates (<30 cm) because of the dry climate [Environment Canada, 2000].
2.1.3. Willow Creek
The last site, Willow Creek, was established in a deciduous broadleaf forest in northern Wisconsin (Ameriflux
site US-WCR). This site is characterized by a short humid growing season and relatively cold winters and is
located in the Chequamegon-Nicolet National Forest, owned and supervised by the U.S. Department of
Agriculture–Forest Service. Dominant trees are aged 55–90 years, with a canopy height of approximately
25m. Eddy covariance measurements have been made at the site since 1998, and plant and soil characteristics
have been described in detail by others [Boldstad et al., 2004; Cook et al., 2004;Martin and Bolstad, 2005; Phillips
et al., 2013]. Common geomorphologic features of the upland areas include southwest trending drumlins,
slightly elevated groundmoraines, poorly drained depressions, and outwash plains. The soil texture is classified
as ranging from sandy loams to loamy sands [Phillips et al., 2013].

2.2. Soil CO2, Temperature, and Moisture Monitoring

Each site was monitored using Forced Diffusion (FD) chambers (Forerunner Research, Halifax, Canada), a soil
CO2 monitoring instrument detailed in Risk et al. [2011] and Lavoie et al. [2012]. The FD chambers are
conceptually similar to dynamic chambers and can measure continuously, requiring only minimal down time
for maintenance and recalibration. Each FD chamber is paired with an atmospheric reference chamber,
and both chambers contained Vaisala GMP 343 CO2 sensors (Helsinki, Finland).

The Atlantic and Goodwater sites were each equipped with two FD chambers and an accompanying atmospheric
reference chamber. The FD chambers were less than 2m apart, with the FD atmospheric reference sensor
between the FD soil chambers. In addition to the respiration measurements made by the FD chambers, each
station also measured and recorded soil temperature at the soil surface and 10 and 30 cm below the surface
and air temperature at 1m height using 107B temperature sensors (Campbell Scientific, Alberta, Canada).
Volumetric water content at 10 and 30 cm depth was measured using CS 616 reflectometers (Campbell
Scientific), soil oxygen was measured with a SO-200 (Apogee Scientific, Colorado, United States), and relative
humidity was measured using the TRH-100 sensor (Pace Scientific, Mooresville, North Carolina, United States).
All soil sensors were installed within 1m of FD chambers, close to the atmospheric reference sensor.

At the Willow Creek site, three plots spaced approximately 10–15m from each other were established
near the base of an eddy covariance tower. Each plot was instrumented with an FD chamber and paired
atmospheric reference chamber, thermistors for soil temperature at 10 and 15 cm depth (CS-107B, Campbell
Scientific, Logan, Utah, United States), and time domain reflectometry soil moisture probes at 4 and 18 cm
(CS-616, Campbell Scientific).

2.3. Soil CO2 Flux Instrumentation Error Quantification

Forced Diffusion (FD) chambers operate by differencing two concentration measurements—an atmospheric
CO2 reference and an internal chamber CO2 concentration within a restrictive semi-permeable membrane.
Forced Diffusion chamber is a dynamic chamber system that measures flux based on the differential
concentration between a controlled throughflow cavity and the surrounding air. While Savage et al. [2008]
found that the error of a static chamber system scaled with flux, we would expect different behavior from FD.
Unlike a regular static chamber, the sensors inside the FD are not subject to rapid transitions in concentration.
Instead, the concentration they see over the measurement interval is more or less constant, which means
that averaging time can be used to significantly diminish short-term random fluctuations, in a way that is not
possible with static chambers.

In past error estimates, FD chamber error was quantified as the manufacturer-specified concentration
measurement error, propagated through to the flux calculations [Risk et al., 2011]. However, this method
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overstated error, as most manufacturers
specify the mean nonlinearity from true
across the entire range, whereas FD
typically uses a relatively restricted range
of concentration measurements between
400 and 700 ppm. Within this range, the
likely calibration nonlinearities of the
Vaisala 343 CO2 sensors are much smaller
than in the total range (usually 0–2000ppm),
and our experience is that nonlinearities
tend to be highest at the edges of the
range and smallest in the middle. Within
the middle of the range, the primary
source of instrumentation error for two
well-matched calibration sensors is
instrumentation random measurement
error and electrical noise.

To more effectively measure the total
error associated with FD, incorporating
error in both sensor measurements,
combined with any error in differencing
of the sensor measurements to calculate
flux, we re-analyzed data presented in
Risk et al. [2011] where FD is compared
to a true flux rate generated on a sand
column, or Flux Generator. This Flux
Generator decay experiment started at a
flux of 7 μmolm�2 s�1 and ended at
0.5 μmolm�2 s�1. Both the FD sensors and
the Flux Generator gas analyzer were
calibrated for concentration immediately
before the experiment. Observations from
both sources were logged at 1min
intervals. So as to eliminate Flux Generator
measurement errors from the analysis, the
Flux Generator decay time series, which is
extremely predictable over time, was fit
with an exponential curve (R2 = 0.975) so

as to provide an idealized comparator for assessing the FD flux errors. We calculated the FD relative
standard error (RSE, in %), as

RSE ¼ SE=Mean�100

We performed the RSE calculation in two ways, the first of which used the standard error of the regression
coefficient between the FD and Flux Generator across the entire experiment. This first method results in a
very low RSE averaging roughly 0.01μmolm�2 s�1, because of the high n of 1214 observations during
the decay experiment and the high linearity of the FD which results in a very low error from absolute. The
second method of RSE calculation involves use of SE values from much smaller temporal intervals of interest
with lower n, under the understanding that themean of FD fluxes across such intervals is extremely close to the
absolute flux. Since we had only 1min data, we chose to use temporal periods of 5, 10, and 15min across which
we could calculate SD, SE, and RSE. In some ways, this approach was less than ideal because over a 15min
averaging period, for example, fluxes would have decayed in some cases by up to several tenths of a
μmolm�2 s�1. Over the entire experiment, there was a 12-fold difference in flux over 12 h, which represents
transitions that would exceed the rate that would normally be seen in the diel fluctuations at most field sites.
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Figure 1. (a) Forced Diffusion flux versus Flux Generator decay,
with raw FD observations shown in grey, and 15-point averaged
in black. (b) Relative standard error (%) for the 15-point averaged
flux versus the generator flux rate.
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So readers should bear in mind that this temporal averaging presents a relatively worst-case error.
Figure 1 shows a regression between the FD sensor and Flux Generator idealized flux for unaveraged
data (grey) and also for 15min averaged data (black), although it would have been ideal to have 15 × 1 s
data rather than 15 × 1min data.

2.4. Scaling Errors of Soil CO2 Flux

Scaling error stems both from spatial variability in soil flux and from the algorithms used to scale up from
individual chambers to site or eddy covariance footprint-level averages. Here we assume unweighted
averages are used to compute site averages and focused only on the spatial variability of Rs.

We quantified spatial variability at the Willow Creek site (only) from survey measurements at 24 soil collar
locations. Scaling error was defined as the standard deviation of measurements made on the same day
(within 2–4 h). Soil flux was measured on two perpendicular transects extending 100m away from the
site’s eddy covariance tower, with 20m spacing between measurement points (see Figure 3b), as well as
at four additional plots near the tower base next to permanently installed FD chambers. The spatially
intensive measurements were made with the LI-COR-8100 soil flux system (LI-COR Environmental, Lincoln,
Nebraska, United States) approximately every 3weeks from April to October in 2011 and 2012. The
LI-COR-8100 system was cross-validated with the four FD chambers in 100 side-by-side measurements
on 21 unique sampling days (Slope = 0.79 ± 0.03, P< 0.001, R2 = 0.86). Because there was a systematic bias
with lower FD measurements compared with the LI-COR system at this site, we report both the observed
spatial variability with the LI-COR system and the inferred variability that would have likely been detected
using FD sensors.

2.5. Random Error of Soil CO2 Flux

Following procedures proposed by Hollinger and Richardson [2005] for eddy covariance tower and
reused for automated soil chambers by Savage et al. [2008] and Nagy et al. [2011], we used a “paired
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Figure 2. Seasonal changes in probability density functions for 24 soil flux locations at Willow Creek, Wisconsin, United
States, 2011–2012. Respiration was measured with a LI-COR-8100 approximately every 3 weeks during snow-free periods.
May 2011 was characterized by unusually high fluxes, or hot moment, associated with a late and rapid spring thaw.
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observations” approach. We examined
the difference between soil respiration
(Rs) measurements made at the same
FD chamber exactly 24 h apart

RE ¼ Rst¼0
–Rst¼24h

� �
=√2 (1)

To further eliminate explainable sources
of error, however, we deviated from
the method used by Savage et al.
[2008] and considered only pairs with
soil temperature within 1°C and
moisture within 0.01 vol/vol for both
measurements. We refer to our method
of random error quantification as the
restricted daily-differencing approach.

It has been shown that the probability
density function of soil flux random error
calculated with daily-differencing follows
a Laplace distribution, which is given by

1
2
exp �χ � μ

b

� �

The mean of random error is expected to
be zero, and the variance is given by √2β,
where β is the mean of the absolute
deviations of observations from themean.
Hereafter, we describe uncertainty as the
standard deviation (SD) of the random
error distribution, and for completeness
give both √2β (Laplace) and σ (Gaussian)
estimates of SD (RE) [Richardson and
Hollinger, 2005; He et al., 2010].

To assess whether the restricted daily-
differencing approach for quantifying
random error (i.e., SD (RE)) successfully
eliminated explainable error related to
temperature or moisture variation, we
examined correlations between SD (RE)
and temperature and moisture. We also
examined whether SD (RE) scaled
significantly with soil flux magnitude, as
was shown by Savage et al. [2008] for
two temperate deciduous forests. To
compare the correlations across
ecosystems, we used an analysis of

covariance (ANCOVA), with site (six sites) as the categorical variable and flux, temperature, or moisture as
continuous variables.

All statistics were conducted in the statistical freeware R 3.0 [R Development Core Team, 2013].

3. Results
3.1. Instrumentation Error of Soil CO2 Flux

Figure 1a shows a regression between fluxes as recorded by the FD sensor and the fitted Flux Generator
decay time series, showing both 15min averaged values (black) and raw values (grey). There is a high degree

Figure 3. Rs scaling error for Willow Creek. (a) Standard deviation of 20
soil flux locations versus mean flux. Each point represents a unique
sampling day, black line shows the mean fit to all days, and grey line
omits the extremely active period in May and June 2011, when a late
spring thaw was followed by a heat wave. (b) Representative example of
the spatial variability in soil CO2 flux, from 25 August 2011.
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of linearity in the FD measurements, and the 15min averaging obviously reduces noise by a large amount.
Small departures from the 1 : 1 line likely arise most often because of changes in the ventilation regime of
the room, or from individuals entering the room to check on the experiment and accidentally breathing
onto the surface sensors. Figure 1b shows the RSE for 15min averaged fluxes. FD has a nearly constant SE
regardless of flux rates, which translates to a declining RSE when plotted against flux rate. The RSE is roughly
5% at the lowest fluxes and declines to a value closer to 1% at fluxes near 6μmolm�2 s�1.

3.2. Scaling Error of Soil CO2 Flux

Spatial variability in survey Rsmeasurements at the Willow Creek sites is shown in Figures 2 and 3. Probability
density plots (Figure 2) shows two key aspects of spatial variability. First, there is a characteristic seasonal
pattern to the distribution of Rs across the Willow Creek site. In general, there was low variance in Rs during
the spring and fall and widening variance during the growing season. In addition, in April to May 2011, a
delayed spring thaw followed by rapid warming contributed to unusually high and variable flux rates,
exceeding 25μmolm�2 s�1 in some locations, a transient condition that has been called a “hot moment”
[McLain et al., 2003; Leon et al., 2014]. Figure 2 also shows Rs was not normally distributed but had high
kurtosis (strong central peak) and skewness due to high flux outliers. Kurtosis consistently exceeded a value
of 3, indicating Rs more closely follows a Laplace rather than normal distribution.

Spatial variability, expressed as the standard deviation of a Laplace distribution (√2β) increased linearly with
mean soil flux (Figure 3a; √2β =0.49(±0.04) × flux; P< 0.001; R2 = 0.89). The sampling days from spring 2011
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Figure 4. Soil CO2 fluxes (μmolm�2 s�1) for the Atlantic (Boreal forest, Ecotone, and Coastal grassland), Goodwater (Grassland S1 and S2), and Willow Creek
(Temperate forest) sites and FD chambers (FD#1, short-dashed red; FD#2, solid blue; FD#3, long-dashed green).
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had substantially higher spatial variability than other sampling days; when these dates were excluded, scaling
error was found to be approximately one third of mean flux (√2β = 0.34(±0.02) × flux; P< 0.001; R2 = 0.95).
Taking into account the systematic bias between LI-COR and FD chambers at this site, we can expect that
using the FD would give a slope approximately 20% lower (slope = 0.39 for all dates and 0.27 excluding
the hot moment). We did not attempt to normalize fluxes by environmental drivers (e.g., moisture or
temperature) at each location but rather include the spatial variability in drivers within the expression of Rs
spatial variability. Previous work examining spatial relationships between Rs and drivers is discussed below.

3.3. General Characteristics of CO2 Flux Time Series

Across all sites, FD chambers recordedmore than 9,000measurements over the study period (Figure 4). Soil CO2

flux showed considerable seasonal variability for all six sites, increasing both in mean value and in variance
(i.e., SD) from winter to summer (Figures 4 and 5). Fluxes were lowest at the grassland sites and highest in the
forest sites, with mean fluxes having a low of 1.3 (Goodwater S2, grassland) and a high of 4.2μmolm�2 s�1

(Cape Breton Highland, boreal forest). Colocated chambers within sites also differed considerably in mean flux,
by as much as 45% (at Cape Breton Highland). All time series were characterized by high flux outliers, and
peak values ranged between 5.51 (Goodwater S1, grassland) and 28.2μmolm�2 s�1 (Willow Creek Temperate
forest) (Table 2).

Several statistical features of Rs time series were consistent across sites. Seasonal distributions at single
locations did not follow a normal distribution, but had strong kurtosis as well as skewness (Figure 5).
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An Anderson-Darling test for normality confirmed that the probability distribution function of soil CO2 flux
was not normal (i.e., Gaussian) for any of the sites. Similar to spatial distributions, temporal soil flux
distributions were more closely approximated by a Laplace than a normal distribution and were skewed,
thus capturing the strong peaks and outliers. Seasonally, kurtosis was most pronounced in winter and spread
to a broader peak in the summer and fall (Table 2 and Figure 5).

3.4. Random Error of CO2 Flux

Random error calculated with the restricted daily-differencing approach had mean values close to zero for all
sites and FD soil chambers, as expected (Table 3). The distribution of random error was more closely
approximated by a Laplace than a normal distribution (Figure 6), as found previously for other soil
autochambers [Savage et al., 2008]. As shown for soil CO2 flux, a test for normality also showed that the
probability distribution function for random error of CO2 flux was not normal (i.e., Gaussian) for any of the
sites. Variance of random error increased fromwinter to summer for all sites (Figure 6), similar to scaling error.
To assess whether the restricted daily-differencing approach for random error successfully eliminated
explainable error related to temperature or moisture variation, we examined correlations between the
standard deviation of random error and temperature and moisture. We found SD (RE) increased as soil
temperature increased, although the slope was very close to zero (RE (SD) = 0.51 + 0.03 × Soil Temperature;
R2 = 0.18; P< 0.0001; Table S2 in the supporting information). The slope between SD (RE) and soil moisture
content was not significantly different from zero (All sites combined: RE (SD) = 1.10� 0.28 × Soil Moisture;
R2 =�0.01; P= 0.4644; Tables S3 and S4). As hoped, our approach of restricting the analysis to pairs without a
large change in temperature or moisture provided estimates of random error that do not correlate in a
significant way with known drivers of soil flux.

Table 3. Statistical Properties of the Random Error of Soil CO2 Flux (RE; μmol m�2 s�1) for the Six Sites Surveyed

Site Names Ecosystems FD# RE (Mean) of CO2 Flux RE (SD) of CO2 Flux √2β Skewness Kurtosis

Gros Morne, Newfoundland Coastal grassland FD1 0.01 1.00 0.95 �0.1 6.9
FD2 0.03 1.27 1.20 0.3 8.9

Cape Breton Highlands, Nova Scotia Boreal forest FD1 0.01 1.10 1.16 0.1 5.0
FD2 0.00 0.78 0.84 �0.1 4.2

Woods Harbour, Nova Scotia Ecotone FD1 �0.11 1.19 1.12 �0.3 7.1
FD2 �0.05 1.19 1.07 �0.2 8.3

Goodwater, Site 1, Saskatchewan Grassland FD1 0.16 1.19 0.79 1.1 6.0
FD2 �0.02 0.91 0.83 �0.1 8.7

Goodwater, Site 2, Saskatchewan Grassland FD1 �0.04 0.64 0.66 �0.1 5.3
FD2 �0.03 0.75 0.74 �0.1 6.1

Willow Creek, United States Temperate forest FD1 �0.04 0.97 0.74 �0.1 20.0
FD2 �0.01 1.40 1.08 �1.2 30.1
FD3 �0.40 0.95 0.71 �0.1 13.1

Table 2. Statistical Properties of Soil CO2 Flux (μmolm�2 s�1) for the Six Sites Surveyed

Site names Ecosystems FD# Mean CO2 Flux SD CO2 Flux Skewness Kurtosis

Gros Morne, Newfoundland Coastal grassland FD1 2.7 2.1 1.1 3.7
FD2 3.8 2.8 1.2 4.7

Cape Breton Highlands, Nova Scotia Boreal forest FD1 4.2 1.6 0.4 3.2
FD2 2.9 1.1 0.1 3.2

Woods Harbour, Nova Scotia Ecotone FD1 3.0 2.3 0.9 3.3
FD2 2.8 2.3 1.0 4.0

Goodwater, Site 1, Saskatchewan Grassland FD1 2.2 1.2 1.1 6.0
FD2 2.1 1.4 1.5 6.0

Goodwater, Site 2, Saskatchewan Grassland FD1 1.3 1.0 1.1 4.0
FD2 1.4 1.0 1.4 5.9

Willow Creek, United States Temperate forest FD1 2.5 2.0 1.5 6.2
FD2 2.8 2.7 2.3 11.7
FD3 3.1 2.7 1.8 5.5
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Although random error was poorly related to environmental variables, when all the sites were combined, our
analysis indicated that SD (RE) increased linearly with soil CO2 flux (RE (SD) = 0.37 + 0.18 × Soil Flux; R2 = 0.65;
P< 0.0001; Figure 7 and Table S1). The ANCOVA also showed the same slope for SD (RE) versus flux for all five
ecosystems (Table S4).

4. Discussion

This study showed that for six sites in five unique ecosystems, Rs time series had consistent statistical features,
including strong kurtosis and skewness in distributions of seasonally binned data, and increased variance
at high flux rates (Figure 5). Whereas previous studies have shown these characteristics of Rs time series,
they have not been able to tease apart whether the increased variance at high fluxes stemmed from
instrumentation error or random environmental error [Savage et al., 2008]. This study showed that for FD soil
chambers, instrumentation error does not increase appreciably with flux rate, and therefore, FD chambers
were actually more accurate as fluxes increased. In contrast, random error increased at high levels of Rs, and
the relationship between random error and soil CO2 flux was constant across ecosystems. Furthermore, at the
one site where we investigated spatial variability, we found it increased linearly with soil CO2 fluxes.

4.1. Instrumentation Error of Soil CO2 Flux

As expected, the instrumental error differs from the results of Savage et al. [2008] and, in fact, shows the
opposite behavior. In a static chamber, the flux error scales in direct proportion to the concentration error,
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which also scales linearly with concentration. For FD, the main error comes at low fluxes, where the difference
between the internal FD sensors is small relative to instrumental noise. But, as fluxes get higher, the signal to
noise ratio of the differential FD technique improves. And, in this context, averaging is a useful technique for
increasing the signal to noise or decreasing the random instrumental noise. This is not possible in static
chamber measurements because the technique must capture rates of change.

As mentioned in the methods section, these FD error experiments present a rather worst-case error, because
during our experiment, fluxes were changing rapidly during the averaging intervals, so that a portion of
the variance observed over any particular interval was partly a consequence of Flux Generator decay, and not
just instrumental error. At field sites, the rate of change in fluxes would generally be smaller. And, in a field
setting, it would be more optimal to sample 15 observations at 1 s frequency, rather than 15 observations at
1min frequency. In our field studies used for this paper, we generally averaged 30 ormoremeasurementsmade
at 1 s frequency, depending on field site, so our RSE would be somewhat tighter than shown for the Flux
Generator text. On the other hand, the disadvantage of the FD technique is that both of the integral Vaisala 343
sensors are prone to drift in the field environment, and both sensors may drift in opposite directions, or in
unpredictable ways. However, Vaisala provides useful specifications for drift and subtests recalibration intervals.
Recalibration should be performed as per manufacturer specification, and researchers should pay close
attention to recalibrationwhen small flux rates beingmeasured, because differential concentrations are smaller.
It may also be possible in some cases to frequency-filter data and to remove long-term (drift) components,
for studies in which diel cycles are of interest, although it is obviously preferable to undertake regular
recalibration, or to redesign the hardware to eliminate the effects of drift. In newer embodiments of the FD
technique, this issue is being addressed by use of a single concentration sensor to measure both FD cavities.
This will result in a true differential measurement and will eliminate the effects of drift.

Figure 7. Relationships between the standard deviation (SD) of the random error (RE) of soil CO2 flux (μmolm�2 s�1) and
soil flux magnitude at the Atlantic (Boreal forest, Ecotone, and Coastal grassland), Goodwater (Grassland S1 and S2), and
Willow Creek (Temperate forest) sites. For slope and intercept detailed information, please see Table S1.
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Overall, the important result from this analysis is that FD error does not scale with fluxes in the same way as
error from transitional static chambers and that averaging can be used to reduce inherent errors. We caution
that the instrumentation error is expected to be different for all chamber types. Unfortunately, manufacturers
of flux measurement hardware tend not to report specifications related to flux error and instead report error
inherent in concentration measurements that underlie the flux measurement. Instrument configuration is
also very important. For example, for automated static chambers, configuration involves a long list of
parameters, and errors will vary in some proportion to the configured measurement interval, the allowed
headspace concentration increase, dead-band, collar length, and the choice of linear or nonlinear fitting
solutions. These parameters are interactive and will affect error in complex ways. Currently, the best
comparative resource for chamber flux measurement instrumentation error is that of Pumpanen et al. [2004],
which captures chamber impacts on the diffusive system in addition to concentration measurement errors.
It would also be optimal to conduct sensitivity tests of these setup parameters, for a more theoretical
understanding of how they will drive error. Intercomparative chamber studies will continue to play an
important role in improving our understanding of Rs measurement error and provide important context
for intercomparison of flux data obtained with different techniques. It is possible that cross calibrations
can be developed, which would likely depend on the configuration parameters used for measurement.
Unfortunately, it is not common practice to list configuration parameters used for the measurements in
published studies, and it is even less common to validate flux chamber performance on Flux Generators,
which would negate the importance of listing the configuration parameters in publications. But, now that
most journals permit supporting information, configuration parameters can be shared without detracting
from the readability of the study. These values might provide important legacy information for reprocessing
or intercomparing data sets.

The most important outcome of the instrumental error analysis is to show that the random errors observed
for the field sites are not due to instrumental error. In Savage et al. [2008], random errors and instrumental
errors were both found to scale with flux rate, whichmade it difficult to divorce their effect in the field studies.

4.2. Scaling Error of Soil CO2 Flux

For the one site where spatial variability was measured, this study indicated that scaling error was a similar
magnitude to random error for spatially averaged Rs time series. Across a typical seasonal range for the
Willow Creek site (0–10μmolm�2 s�1), spatial variability error was about one third of site-averaged Rs. When
higher-than-typical fluxes were considered from spring 2011, the average scaling error was closer to 50%. The
relationship between scaling error and average flux appears linear over normal ranges but may be nonlinear
across large flux ranges that included so-called hot moments or “hot spots.” Localized flux hot spots and
transient hot moments are common features of soil gas flux data, for CO2 as well as other trace gases
[McLain et al., 2003; Leon et al., 2014]. Some of these events have been linked to precipitation and thaw events
[Jarvis et al., 2007; Kim et al., 2012] but, in many cases, are stochastic phenomena with unknown causes.

Many factors influence spatial variability, including variation in environmental drivers. A previous study that
examined underlying mechanisms of spatial variability at the Willow Creek site [Martin and Bolstad, 2009]
showed that the variation between Rs measurements spaced 1–10m apart was explained by correlations
with forest floor mass, root biomass, percent soil carbon and nitrogen, and percent root nitrogen. At larger
spatial scales, topography also influenced soil moisture, which in turn influenced the depression of Rs during
a drought event. While understanding underlying mechanisms is ecologically important, in retrospective
studies, synthesis studies, and modeling efforts, it can also be useful to be able to estimate spatial variance
when spatially extensive data are not available. This study shows that for the Willow Creek site, scaling error
may be readily predicted from a simple linear relationship with flux magnitude.

In addition to environmental variability, random and instrumentation errors also contribute to spatial
variability in Rs. In the case of Willow Creek, there was a systematic bias between the LI-COR and FD systems
observed in the field, which was discussed by Phillips et al. [2013]. Correcting for the systematic bias between
the two systems yields 21% lower estimates for spatial variability if they had been measured with FD
chambers. This correction brings the slope of the relationship betweenmean and variance of Rs to 0.27, when
the hot moment from April to May 2011 is omitted, which is similar to the slope of random error variance and
mean Rs. This suggests indirectly that random error may contribute substantially to the patterns in spatial
variability shown in Figures 2 and 3. The underlying processes that cause a linear increase in spatial variability
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with mean flux and the related seasonal pattern (Figure 3) cannot be distinguished from the unknown
processes that cause random error to increase with mean flux.

For comparison to Willow Creek, Savage et al. [2008] found the standard deviation of six autochambers at
Harvard Forest to be about 20% of average flux. The higher spatial variability at Willow Creek may be due
to the hummocky nature of the site, the patchy presence of invasive earth worms, or other factors. It is
commonly the case that increasing the number of measurement locations reduces scaling error, but for
Willow Creek Rs we did not find this to be the case. Rather, the addition of sampling locations tended to
introduce high flux outliers that increased the standard deviation of mean flux. This is readily understood by
considering the fact that the probability density functions of Rs are typified by strong central peaks and high
skewness, and therefore, a considerable portion of the flux distribution is in the long tail. Adding sites that are
high flux outliers can have considerable impact on estimates of the mean and standard deviation.

A question of practical importance for many researchers is how many plots are enough to sample, to get a
representative spatial average of Rs? Typical guidelines for determining sample number rely on the
assumption of normally distributed data [Rodeghiero and Cescatti, 2008]. We suggest that it is also important
to sample sufficient locations to characterize the distribution of soil flux data, to inform decisions on whether
to bin data into what appear to be hot spots or hot moments andmore typical fluxes. Reporting the skewness
in addition to the standard deviation of soil flux distributions would help indicate the impact of hotspots
and hot moments in flux data sets. To characterize the location of the central peak of a skewed distribution
and its error structure, it may be helpful to divide and analyze the central cluster and a long tail as separate
groups (e.g., as in Lasslop et al. [2008] for eddy covariance fluxes). A sampling approach suggested by Savage
et al. [2008] is to characterize microtopographic features of the site and implement a stratified randomized
sampling design. This may capture the range of site conditions efficiently; however, it may not improve
normality of flux distributions. Leon et al. [2014] also caution that the spatial factors that Rs depends on can
change seasonally (e.g., from root distribution in the spring to moisture distribution in the summer), and
therefore, the spatial dependence of Rs can change, with hot spots moving through time.

4.3. Random Error of Soil CO2 Flux

This study indicated that random error is approximately 40% of mean soil flux, representing the second
largest source of uncertainty for characterizing site soil fluxes.

An interesting and important aspect of this study was that random error not only showed a linear relationship
with soil flux [Savage et al., 2008; Nagy et al., 2011] but scaled in a consistent way across ecosystems. This rate
of increase (~20% of mean flux increases) was the same factor reported for automated soil chambers in
Harvard and Howland forests [Savage et al., 2008]. This similarity occurred despite the fact that we used a
more restricted approach to defining random error than Savage et al. [2008] by excluding pairs with >1°C
temperature difference and >0.01 vol/vol water content difference. Furthermore, the scaling factor 0.2 was
also found for eddy covariance fluxes across a large number of northern ecosystems [Richardson et al., 2008].
Although we cannot generalize this relation to all forested and grassland ecosystems, it would be interesting
in future studies to determine if this relation holds for a broader range of climates and vegetation types,
particularly outside the 45–50° latitudinal range analyzed in this and previous studies of flux random error.

The finding that random error has a Laplace distribution also has important implications for modeling efforts.
Richardson and Hollinger [2005] compared eddy covariance respiration regression models fit using ordinary
least squares approach, which assumes a Gaussian error structure and constant variance, to regression fits
using a maximum likelihood approach and Laplace error distribution. Using ordinary least squares fitting,
they found considerable differences in estimates of respiration temperature sensitivity and a 10% bias in
annual cumulative respiration.

Mechanistic physical transport models have also been used to distinguish the impacts of soil physical and
biological processes on soil CO2 flux [Nickerson and Risk, 2009; Phillips et al., 2011; Creelman et al., 2013;
N. Nickerson et al., manuscript in review, 2015]. For sensitivity and other testing, various levels of synthetic
noise are superimposed on the CO2 production data. The Laplace distribution should ideally be used in this
instance, as a normal distribution would misrepresent the character of any simulated noise, and ultimately,
sensitivity tests based on that noise would have less realism. The magnitude of noise should also be adjusted
seasonally for northern ecosystems with four distinctive seasons.
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Our study also makes clear that FD instrumentation error is constant across a large range of flux rates and
therefore not the source of random error scaling. The cause of the consistent scaling of random error across
ecosystems and spatial scales is unknown but may be rooted in some biogeophysical process related to
energy or moisture, or the manner in which autotrophic and heterotrophic communities respond to these
inputs. For example, we suggest that random error may reflect a range of activation energies required for
metabolic pathways, which broadens as the system becomes more metabolically active. Alternatively, the
heat produced by respiration may increase the variance in gas diffusion rates via kinetic effects. That being
said, we should qualify our statements by adding that our transect spanned mostly longitude, and not
latitude, and many of the eddy covariance error studies have been conducted in similar latitudinal ranges.
Future research might attempt to examine both ecosystem and soil flux random error across wide latitudinal
bands, to see if these universal patterns hold across a wider variety of systems.

4.4. Standardization for Modeling of Soil CO2 Fluxes

We believe that reporting error or uncertainty bands on Rs time series is essential in order to improve
modeling and forecasting and to facilitate intercomparison of studies and measurement techniques. To the
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Figure 8. Rs time series uncertainty bands for three error sources for theWillow Creek site: (a) instrumentation, (b) scaling, and
(c) random errors. The instrumentation error is 0.049 μmolm�2 s�1 added and subtracted to each observation. Scaling error is
the √2ß of survey measurements, and random error is the standard deviation of the random error for the flux magnitude bin
of each observation. We caution the readers that the three sources of errors should be interpreted individually.
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extent possible, researchers should try to provide instrumentation, scaling, and random error assessments
of soil flux measurements. Figure 8 shows time series with all three sources of error calculated here as
uncertainty bands.

We recommend several modifications to default Gaussian approaches for uncertainty quantification. Whether
analyzing spatial or temporal variability of soil fluxes, it is important to accept that normally distributed,
non-skewed data are more likely the exception than the rule [e.g., Martin and Bolstad, 2005; Riveros-Iregui and
McGlynn, 2009; Imer et al., 2013; Leon et al., 2014]. Probability density plots should be constructed to assess
whether spatial variability should be represented as a Laplace distribution with a standard deviation of √2β, in
contrast to a normal distribution with standard deviation of σ. To address the fact that many soil flux data sets
contain high flux outliers, researchers should consider reporting the second and third moments (i.e., both
variance and skewness) to fully characterize scaling error.

To report uncertainty bands for flux time series in a single location, we suggest practitioners calculate
random error. To facilitate wider reporting, we have developed a Web-based R tool that implements the
restricted daily-differencing approach used here, where researchers can upload their own flux, temperature,
and moisture time series and plot and download RE (http://fluxlab.stfx.ca/index.php/informatics).

Alternatively, other approaches for calculating RE have been demonstrated by the eddy covariance
community that could be compared with the restricted daily-differencing approach. For example, larger
time periods with similar environmental conditions can be binned, rather than just fluxes 24 h apart, with
RE calculated as the residual from the mean [Lasslop et al., 2008]. Alternatively, RE can be determined from
the residual of observations and more complex respiration models, such as Q10 or Lloyd and Taylor
temperature functions [Richardson et al., 2008]. The approach to quantifying random error may be
somewhat site specific, depending how variable the soil environment is and how much flux variation is
explained by known drivers. In characterizing what constitutes as-similar-as-possible conditions at a site,
researchers should consider the frequency of rain events and the magnitude of diurnal and seasonal
oscillations in environment, plant growth, and soil activity. Should bins encompass seasonal, fortnightly, or
shorter time windows? Should bins be based on time alone, or should bins be constructed from a
combination of time and environmental drivers? The restricted daily-differencing approach presented here
makes few assumptions about Rs drivers and is a widely applicable approach; however, as models are
developed that can explain more of Rs variability, these should be applied to restrict what is considered
residual random error.

5. Conclusion

In this study, we estimated the instrumentation and random error of soil CO2 flux for the new FD automated
soil chambers for high-frequency measurements introduced by Risk et al. [2011]. We also estimated scaling
error using a LI-COR-8100 soil flux system. We estimated random error for six sites from three main areas
(Western and Atlantic Canada, and Wisconsin, United States) and for five different ecosystems (continental
grassland, coastal grassland, grassland-forest ecotone, hardwood temperate forest, and boreal forest).
The scaling error was estimated only for the hardwood temperate forest.

Our study revealed that instrumentation error was small relative to other sources of error and did not
increase with flux magnitude. Scaling error (spatial variability) was the largest source of uncertainty (30–50%
of flux magnitude) based on our measurements from one site; however, we expect spatial heterogeneity to
differ by site conditions. Random error, characterized with a restricted daily-differencing approach, was
about 40% of flux magnitude overall but also increased linearly with flux magnitude with a slope of ~0.2, a
finding consistent with previous soil flux studies as well as eddy covariance studies. The seemingly constant
scaling of soil flux error across sites, ecosystems, and measurement scales raises the provocative possibility
that 0.2 is a universal scaling factor between random error and CO2 flux magnitude.

In this study, we showed how these features can be used for constructing uncertainty bands to accompany
Rs measurements. While more work is needed to further integrate sources of errors, evaluate alternate
modeling techniques, and generalize results across multiple sites, this study provides important evidence of
the generality of flux statistical features. Importantly, fluxes and flux errors are not normally distributed but
are characterized by high kurtosis and skewness, with impacts on model parameter estimation.
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