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THE CONVERGENCE OF THE DISCRETE ORDINATES
METHOD FOR INTEGRAL EQUATIONS OF

ANISOTROPIC RADIATIVE TRANSFER

CHAPTER 1

INTRODUCTION

§1. 1 Preliminary Remarks

Historically, transfer theory was concerned with the transfer

of radiation through the atmosphere of a star. In connection with this,

many interesting mathematical problems have arisen. Hopf (1934)

was one of the first to consider transfer theory from a serious math-

ematical point of view. He was primarily concerned with problems

involving conservative isotropic scattering.

It was later discovered that the same laws governing stellar

transfer theory could be applied, with some modifications, to the

scattering of neutrons and other particles. In these applications

(Davison, 1957) the term transport theory is used. For an excellent

review of the literature of transfer theory, we refer the reader to a

recent paper by Mullikin (1964a). An excellent bibliography is con-

tained in Wing (1962). For more precise definitions of physical terms

and derivations of equations used below, we refer the reader to the

standard works of Chandrasekhar (1950), Kourganoff (1952), or

Busbridge (1960).
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Most of the completely solved problems in transfer theory

either are concerned with media which are stratified in plane-parallel

layers or can be reduced to such cases. In practice, radiation fields

are usually assumed to be stationary, i. e. , time independent. Time

dependent problems present mathematical difficulties requiring sophis-

ticated techniques and have only recently been studied in any detail;

see for example Case (1960) or Lehner and Wing (1956).

Problems in transfer theory are usually posed in terms of

the so-called transfer equation, which is an integro-differential equa-

tion. By certain standard techniques, these problems are often re-

duced to the discussion of pure integral equations.

We shall be concerned with transfer problems which pertain

to the distribution of radiation in a plane-parallel atmosphere under

the assumptions of time and frequency independence. The energy flow

at a point in a radiation field is specified by the intensity. This is a

function of the geometrical depth of the point below the upper surface

of the medium and of the direction of the flow considered. A medium

is called isotropic if the probability density of the direction of a scat-

tered particle does not depend on its original direction. In this dis-

sertation, we shall assume that the medium is anisotropic, i. e. , not

necessarily isotropic. .Anisotropic transfer problems seldom have

been studied in detail, although in physical reality, scattering is usu-

ally anisotropic. Busbridge (1960) and Chandrasekhar (1950) have
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contributed to this part of the theory and, more recently, Mullikin

(1961, 1964a,b) has investigated some aspects of anisotropic scatter-

ing.

In the so-called discrete-ordinates method of Wick and

Chandrasekhar, numerical integration is used to replace the transfer

equation by a system of ordinary differential equations. The solution

of such a system provides an approximate solution of the transfer

problem. Under fairly general conditions on the quadrature formula,

Anselone (1957, 1958, 1961) proved for various isotropic problems

that the approximate solutions converge uniformly to the desired in-

tensity as the number of subdivision points increases. It is our main

objective to generalize these results to the anisotropic case.

§1. 2 The Transfer Problem

Consider a medium which is either a half-space or is bounded

by two planes. The radiation field is assumed to be in equilibrium.

Let T denote the optical distance from the outer surface of the me-

dium measured in the direction normal to the surface. Let p. be

the cosine of the angle 0 which a given direction makes with the

outward normal to the surface T 0, and let 4 denote the azi-

muth of this direction referred to a fixed plane normal to the T-axis.

At a depth T below the surface, the intensity of radiation is a func-

tion of T, p., and (I), and is customarily denoted by I(T,p,,c1)). We



shall henceforth assume axial symmetry and denote the intensity by

I(T,p.). The non-axially symmetric case can be treated similarly,

but with additional notational complexity.

The interaction of radiation with the medium results in the

absorption as well as the scattering of some of the energy in other

directions. We shall assume that the radiation fields do not interact

with each other and that the frequency of the radiation is unchanged

upon scattering. Radiation absorbed may be either lost to the radia-

tion field or reemitted as scattered radiation.

If a photon traveling with direction ) is absorbed, the

probability density (per unit solid angle) that it will be scattered with

direction (p., .4)) is the phase function 19 (p., (I); , ), which

depends on the cosine of the angle e between the two directions,

i. e. , upon

1

cos 9 + (l-p. 2)2 (l-p.')2COS (1:1)--V

In the case of axial symmetry, the quantity

1 S'2041"
13(11,11') = 2,rr r (11 la ,

0

also called a phase function, plays an important role. We observe

that

4



Note that 0 < < 1. In the so-called conservative case of perfect
0

scattering, o = 1. A related quantity, is defined by

(1. 2. 3) ico 1

3 1 2 P 1-1
-1

The significance of
w1

will be indicated later. In the isotropic

case
w1

= 0. In general, it follows readily from (1. 2. 2) and
1

( 1 . 2. 3) that
3(41

< 0< 1 .

Let I(T, p. ), J(T, ) , and r ( T, p. ) denote, respectively,

the intensity, average intensity, and source function of diffuse radia-

tion in the medium except reduced incident radiation if any is present.

Let r0 ( T, p.) be the sum of the components of r (T, p.) due to

scattering of reduced incident radiation and to emission in the

5

( 1 . 2 . 1 ) POI , POI ID( = POI ' )

We assume, in addition, that p (p., p.° ) is continuous and positive.

In the isotropic case, both p(p.,p.° ) and 13 (p., .4); p. ,(1)' ) are

constant.

The probability that a photon which is absorbed will be scat-

tered rather than lost to the radiation field is the albedo

= ,c02 1 P(I-L,
-1



medium. It will be assumed that r0 (T, H.) is given. These quanti-

ties are related by

1
1 C

J(T, ) = j P(11, , 11, )I(T,
-1

(1. 2. 4)

r(T, ) = J(T, ) + r°(T, ) .

According to their physical definitions, I(T,p.) and r (T, p.) are

non-negative; furthermore, by (1. 2.. 4), r(T, ii.) is also non-nega-

tive. We assume all of these functions to be continuous in the inter-

ior of the medium.

Denote the total optical thickness of the medium by

T0
(0<

T0
< 00). If

TO
<

00'
then I(T, p.) will usually be known

when T = 0 and T =
T0. If T0 = 00, there will be a condition

on the asymptotic behavior of I(T,p.), or of

In addition, the net flux through the bounding surfaces may be given.

We are now ready to make a complete mathematical state-

ment of the transfer problem. We seek a function I(T,p.), defined

for 0 < T<
T0' T < 00, -1 < p. 1, such that

I(T, ) > 0, I (T, ) 0,

P- )(1. 2. 5) - 5' ro(T, ,8T
-1

r(T, 11), as T-4-00

6



with the boundary conditions

(1. 2. 6)

(1.2.7)

(1.3. 1) 8I(T,
aT

p. < 0 ,

> 0, if
T0

< 00,

urn e 1(T, i.)=0, i > 0, if= coTO
00

For the physical significance of (1. 2.7) see Hopf's (1934, Chapter 1)

monograph.

§ 1. 3 An Equivalent Formulation of the Transfer Problem

In view of (1. 2. 4), the transfer equation (1. 2. 5) can also be

written in the form

= I(T, p.) r(r, p.) .

If p. is fixed, p. 0, then (1. 3.1) is a first order linear ordi-

nary differential equation for I(T,p.) in terms of r(T,I.J.). By

elementary methods, the solution of (1.3. 1), subject to the boundary

conditions, can be written

(1. 3. 2) I(T, 0) = r(T, ,

7



(1. 3. 4)

TT'
P.'1 01 CIT°

rr, 14) = -2-
0 'T

r(r, , t )dT' dp. '

T-T'

1
UT

+ p(,')
-1 0

The above is an integral equation for r(r, p.). If it can be solved,

then (1. 3. 3) gives I(T, p.). Hence, we have an equivalent formula-

tion for the transfer problem. Note that To = co in (1. 3. 4) if the

medium is semi-infinite. In this case (1. 2.7) implies the existence

of the improper integral.

§ 1.4 The Net Flux

The rate of energy flow in the normal direction per unit area

of the plane at depth T is

8

TT'
rcr, dT <0,

0

(1. 3. 3) I(T, p.)
T-Ts.T0

r(T1 ,p,)eIi dT > o.

The substitution of (1. 3. 3) into (1. 2. 4) yields



(1. 4. 1)
1

TrF (T) = y
-1

F(T) is called the net flux at depth T. Note that F(T) is twice

the first moment of I(T, p.) with respect to p.. The substitution

of (1. 3.3) into (1.4. 1) yields F(T) in terms of r(-r, p.):

1 s To
( 1 . 4 . 2) F(T) S e tim.1-

0 T

0 T
T-T'

e
rcr , wri dp. .

-1 0

Another useful relation involving F(T) is obtained as fol-

lows. Define I-(T) and 1-.-° (7), respectively, by

s 1 1

(1. 4. 3) -i(T) = I(T, )dp, , o(T) =
1

2-1 -1

Integration of (1. 3. 1) with respect to p, gives11 1

p. I(T, p. )dp. = I(T, p, )dp. -
-1 -1 -1

or



F(T) = 21(T) -dT

(1. 4. 4)

By (1.4. 2) with T = 0,

(1. 4. 5)

(1. 4. 6)

= - 2w0I-(T) -

[11 C
j p(1-4,1-0)I(T,111)c1[0-r°(T, dp,

-1

If = 1 and f° (T) = 0, then F(T) = 0, so F(T)F,
0 dT

a constant. By (1.4. 1) with T 0,

1

F = 2 g I(0, )dp.. .

-1

°('T) 2I(T)(1-w0) - 2r0('T) .

T'1g To ---
F = 2 e r(T,,i.)dT, .

o o

If coo = 1, To = 00, and r0 (T,)= 0, it turns out that

the corresponding (homogeneous) transfer problem has a non-trivial

solution (cf. Chapter 5). The general solution is an arbitrary multiple

of this function. It is customary to make the solution unique by spec-

ifying the net flux. Thus, in the integral equation formulation (1. 3. 4)

of this homogeneous transfer problem, the equation

T'
1 00 -

F =
2

dp.00

10



provides an appropriate normalization condition.

The integral equation (1.4. 2) can also be obtained by inte-

grating (1. 2.4) with respect to T and FL.

§ 1. 5 The K-integral

The second moment of I(T, p.) with respect to p. also

plays an important role in our analysis. Let

(1. 5. 1) 1
c1

2K(T) =
2 -1

Returning to the transfer equation (1. 3. 1), we multiply both sides by

and integrate over 1-1, 11. Using (1. 2. 3), this gives

1
2 d

" = p. I(T, p. )dp. - r (T, )d
-1 -1

= 1F(
2 P(

p. ' )1(T, )dp. dp.
- -12 g

1
1

= F (T) - ' I(T, )dp.
3 I

w11 t°1 1 1
= (T) - F (T) = (1 - F (T) .

2 3 2 2 3

Therefore

11

(1. 5. 2) d tin 1 ti (")1 mon



LE = 1 and -ro(T) = 0, then F(T) is constant and
0

( 1 . 5 . 3 )
c.)11K(T) = - ( 1 - FT + K(0),

4 3

o.)1where 1 - > 0 . This is known as the K-integral in the conser-

vative case. If we substitute for I(T, p.) in ( 1 . 5. 1), we obtain the

following integral equation for r(r, )

T-T'

(1. 5. 4) K(T) = -2-

1 T

1

0
p. e

0 T

T-T1

-2 -1 0

In particular,

(1. 5. 5)

TI

K(0) = 1 r ° e rcri , WV
0 0

The K-integral will appear later in the discussion of the solution

of the homogeneous integral equation.

The equations (1. 5. 4) and ( 1 . 5. 5) can also be obtained from

(1. 3.4) by integration.

12



CHAPTER 2

THE WICK - CHANDRASEKHAR TECHNIQUE

§ 2. 1 Preliminary Remarks

A method of successive approximations due to Wick (1943)

and considerably exploited by Chandrasekhar (1950) is based on the

Gauss quadrature formula. For each m = 1, 2, the Gauss

formula of order 2m is expressed by a correspondence of the form

r
(2. 1. 1)

jf (p.

-1

where (here and henceforth in this chapter) j = ±1, *2, - , ±m.

The
Mi

are the zeros of the Legendre polynomials P2m( p.).

Formulas for the coefficients are given in Szeg3 (1939). The coef-

ficients amj and subdivision points 1/ mj satisfy

(2. 1. 2) a . a .> 0,

(2. 1 . 3) =
In, -3

0 < p, ml< <p. < 1 .mrn-

The correspondence (2. 1. 1) is an e uality for any polynomial of

order at most 4m-1.

13



If the integrals in the transfer problem are replaced by the

corresponding sums then this replacement yields a system of 2m

ordinary differential equations for approximations Im(T, p.) to I(T,p).

An.selone (1957, 1958, 1961) has proven the convergence of I (T, p.)

to I(T,p.) for various isotropic transfer problems. As was previous-
_

ly mentioned, it is our purpose to extend his work to the anisotropic

case. This chapter is devoted to the derivation of the approximate

solutions. For some further details see Chandrasekhar (1950). We

feel that the derivation, as given below, is more efficient in several

respects. Convergence questions are treated in later chapters.

A quadrature formula more general than the Gauss can be

used; the analysis is similar, but notationally more complex. We

will point out below where the Gauss formula simplifies the analysis.

§2.2 The Problem for I (T,ti, )
111

We now write out the equations which define the approximate

problem. Replace the integrals which occur in the transfer problem

by their corresponding sums. We seek I (T, p.) such that

Im(T, p. ) > 0 ,
m(T, ) 0,

(2. 2. 1) p.
aim(T,p.) - (T,

aT
0

a .p(p., .)I (T,p. .)- r (T,p.
3 1113 M M3

14



(2. 2. 2)

(2. 2. 3)

2. 4

Im(0, p.) = 0, < 0 ,

Irn(To, p.) = 0, p.> 0,, if T0< 00,

him e Im(T, p.) = 0, p, > 0, if T0 = 00

By analogy with (1.4. 1), we define

F ('fl =22

Equations analogous to (1. 4. 4)-(1. 4. 6) are easily derived. The right

member of (2. 2. 3) is constant if
coo

= 1 and r0 (T, p.) E 0. The

proof is very similar to that in § 1.4. This provides a normaliza-

tion condition when c,)0 = 1, To = 00 and r°(T, O. In this case,

we specify Fm = F as the same arbitrary positive constant in

4.4) and (2. 2. 3).

By analogy with the exact problem, we define Jm(T, p. )

and r ( T, p.) in terms of I (T, p.) by
111

P.) = a .)I (T, .)m mi m mj

r (T, ) = (1; 11) + ro(T, ).

a .p. (T, p, .) .
rYlj rn3 m mj

15



(2. 2. 6)

For convenience, we suppose that the phase function

13(11 ) can be represented by a finite Legend.re sum

(2. 2. 5) , ) wj2 (11 )P ),

)2=0

where ZN < 4m-1. This will simplify the analysis below. If

is sufficiently smooth and m is large enough, then

p(p., ) can be uniformly approximated by such a Legendre sum to

within a small error. The effect of replacing p(.. , I ) by a good

uniform approximation introduces only a small error in Im(T,
p.).

We will say more about this in later chapters.

We now let p. p.rni and substitute (2. 2. 5) into (2, 2. 1)

to obtain

DI (T, .)m nal - I (T, .)
na nal

arnjw.e Irn(T, (p.rn3

j =0

- r (T, ,

for i = ±1, ±2, , ±m. This is a system of 2m linear ordinary

differential equations with constant coefficients. Following the usual

procedure, we shall seek a solution of the associated homogeneous

16



system (i. e. , with 1-0(T, .) 0) and then add to it a particular
1/11

integral of the inhomogeneous system. This particular integral can

be found by the method of variation of parameters.

Once I (T, .) is obtained, then I (T, p.) for all p.m 1711m
can be derived from (2. 2. 1). This is done in § 2. 5.

§ 2. 3 Solution of the Homogeneous Differential Equations

Consider the homogeneous system associated with (2. 2. 6).

Following standard procedure, we seek solutions of the form

(2. 3. 1) I (T, .) = C .e-kT = *1, ±2, ' , ±rn,m 1111 M1

where k will depend on m. Substitute (2. 3. 1) into (2. 2. 6) with

ro(T, p.) = 0 to obtain

(2. 3. 2)

Solving for Cmi, we obtain

(2. 3. 3)

where

-p. .k C .=C a .0 .w P (p. .)P (p. .) .
rni 1711 ITU rnj mj 1 1 mi I mj

j 1=0

0.)1
PI mi)

1 =0
l+i.mik

17



(2. 3. 4)

Substituting (2. 3. 3) into (2. 3. 4), we have

where

(2. 3. 6)

Although obscured by the notation, the foregoing amounts to a simple

change of variable in a system of linear equations.

We now examine some properties of Dix . An equivalent

form of Di X
is

(2. 3. 7)

=
a .0 .P (p, .) (.=0, 1, 2, N) .

Pi (11m3.)PX(Ilmj.)
1+ .k

kp. .
1713

P .)1D1 (P.rnj) [ 1 -
1+p.mjkmi

From 0 _< _< N, 0 <X <N, and (2. 2. 5)ff, we have_ _

X + < 2N < 4m - 1. It follows that

18

(2. 3. 5) D0)X rnX '
X=0



1 6/X
.1

(2. 3. 8) amiPi(p.rni)Px (p.m.j), P(p)P>, (p.)dp.=

where 61X is the Kronecker delta. If a more general quadrature

were used and the phase function were arbitrary, then the left member

of (2. 3, 8) would be a constant which we could calculate, but not neces-

sarily in such a convenient form.

We now have

DIX =
5/X , a .P (p. .)

1 mj X mjk .P (112/2+1 2 11-p,mik P rni

6/X[(P+1)Pn (11 .)-1-ilDn (1-1- )]k +1 mj -1 mj
21+1 2(2.e+1) mj X

5

21L-F1_ 2/+1 [(f+1)Di+1,k +/DI-1,X .

We write this as

(2, 3, 9) (2./+1)Dix = -k[(R+1)D.e+1,x+)2Df_Lx

By (2. 3. 5) and (2. 3. 9),

(2. 3. 10) (21-1-1) = - k[ (/ +1)c., in+ _1]

2/+1

19
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or

21+1-co
(2. 3.11) - - -m,1+1 k(1+1) m, 1+1 m, 1 -I

where we define m, 1
= O. This equation enables us to determine-

all of the constants ml in terms of mo. Without loss of gen-

erality, assume m0=1. Then, in particular,

cooco1-w0(1-)(3-)
1

k ' m2= 2k2 2

Note that the ml, 1 > 0, are all functions of k. With this in

mind, we write (k), = 1, 2, N. By (2.3. 11) k1 1(k)

is a polynomial in k of order < .

Let = 0 in (2. 3. 5) and (2. 3. 6) to obtain the so-called

characteristic equation for k:

a.
(2. 3. 12) 1 D OX X m 2L141. .kmi

X =0 X=0

(0 < I < N)

mXPX(11, mj

For each root k of the above equation, we have a solution of the

original homogeneous differential equation. Equation (2. 3. 12) arises

since we have a system of linear homogeneous equations and the

determinant of the system must vanish in order to have a non-trivial

solution.

20



By (2. 1. 2) and (2. 1.3) and the fact that the rnx' s are

functions of k, it can be seen that clearing of fractions in (2. 4. 12)

results in a polynomial equation of order m in k2. Hence, it

has 2m roots, and these roots occur in pairs, say ±kma

a = 1, 2,

If co < 1, then these roots are all distinct and we obtain
0

2m linearly independent solutions of the homogeneous system. Thus,

the general solution of the homogeneous system associated with (2. 2. 6)

ma T,h R =0 ' ,
(2. 3. 13) I (T, p. M e

m i ma
3- II mikma

a=±1

where i = ±1, ±2, ±m. The Mma are 2m arbitrary con-

stants and the superscript h on the left indicates the homogeneous

problem.

The case with wel is exceptional since k = 0 is then a

double root of the characteristic equation. We have, (cf. (2. 3. 10)),

for example

and

rno=1,
1

m2= -

5-co2

m3 - 6k

21



(2. 3. 14)

2 amjWX mXPX. (11mi mj 0)
a .co = 1;

j X=0

so there will be only (2m-2) distinct non-vanishing roots ±k,ma

a = 1, 2, m-1. The root k = 0 corresponds to a constant

solution of the homogeneous differential equation. In this case, we

also seek a solution which is linear in T. It is possible to express

this solution in the convenient form (Chandrasekhar, 1950, p. 14)

where b and Q are arbitrary constants. A particularly neat

verification is as follows (recall
0J0 1)

111 (T, p. .) = b (T+ + Qm),m /111

1- T

22



Mmi3
= T+ +Q -Tw -Q -mi m 0 m 0

- ) ( T+ Qm)amjwi (11 ml mi)
1 1

bm m mi 2

1 Ih (T,11 ,)
1

bm 2bm

1 N"
0.)

1
2 L amj*/"L rni*°j1 P/ (11 mi)Pi mj

j =0

j 1=0

a .I (T,p. .)w P .)P (p. .),mi m I / mi

whence it follows that (2.3.14) satisfies the homogeneous differential

equation associated with (2. 2.1).

Hence, when w =1, the general solution of the homogeneous
0

differential equation is given by

23

I(T,p.)=bin ml

p.
M

Qrn+

1=0
(1)/ ml (k

)P)PI mi) k Tma

T+

1

(m - 1)

a =±

+
wl

ma l±p. mikma

where i = ±1, ,±m (if in = 1, there is no summation
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term present). This completes the solution of the homogeneous sys-

tem.

§ 2. 4 The Inhomogeneous Problem

In the foregoing section, we obtained the general solution of

the homogeneous system without the boundary conditions. As men-

tioned previously, the method of variation of parameters yields a

particular solution of the inhomogeneous problem. Thus the general

solution of the inhomogeneous problem has the form

(2. 4. 1) I (T, .) = I cr, p. .) IP ),m M1 ill M1 /11 M1

where I (T, . ) is given by (2. 3. 13) or (2. 3. 15), and IP (T, .)
m 1711 m1

is a particular solution.

The constants appearing in I/1 (T,p.
M1

.) can be determined

from the boundary and auxiliary conditions. They, and hence,

I (T,p, ,) are determined uniquely except when co =1 and T=°°
/711 0 0

The justification of this assertion will become apparent in the follow-

ing chapters.

In particular, when T0 =co, then the asymptotic condition

in (2. 2. 2) implies that
Mma 0 for a < 0. When co =1 and

0

r (T, 11) = 0, the normalization condition yields (cf, Chandrasekhar,

1950, p. 14)



(2. 4. 2)

where F is defined as in (2. 2. 3)ff.

Further determination of the constants is for the most part

a computational problem and this is not our primary concern.

§ 2. 5 An Equivalent Formulation of the Problem for
Im(T,11

)

We conclude this chapter with a reformulation of the approxi-

mate transfer problem in integral equation form. From (2. 2. 1) and

(2. 2. 4), we have

(2. 5. 1)

Formally solving this problem subject to the boundary conditions

gives

(2. 5. 2,) I (T, 0) 7-- rrn(T, 0),

(2. 5. 3) I (T, p.)=

1

bm = (1 - ) F
4 3

(CT

aIm(T,
)

aT - Ina, p(T. ) rm(T, ) .

T-T'
dT'

rm(1-10.0e
< 0,

25

To T-T'

rm(Ti,p..)e
dT' > 0.



From (2. 2. 4),

(2. 5. 4) r (T, p.) =rn rni.10 (11 P, rnj. grn (T, P,Mj) - ror, )

Once the system of differential equations has been solved for

then (2. 5.4) yields rm(T, p.) and (2. 5. 2), (2. 5. 3)mj

yield I (T, p.). Thus we obtain the desired solution of the approxi-

mate problem.

The substitution of (2. 5. 3) into (2. 5. 4) gives

T-T'
m

T P.mi

(2. 5.4) 1-m(T, p.) = -i a
,c 0

ePOI , 11, .) rcri , 11 ,)dT'
T n1J P, rni nai

j=1

-rn

ro(T, p. ) .

This integral equation for r (T, ) is analogous to (1. 3. 4). It

provides an equivalent formulation for the approximate problem.

If (.00=1, To =00 and r0 (T, p,) = 0, then a suitable

normalization condition is given by the equation

T- T'

T mj0

amj .)
rnJ rni

r(r, , p. .)dT1

26



(2. 5. 5) F =2a

which is analogous to 1. 4. 6).

T'

r(r, ,p.rni)dT1
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CHAPTER 3

INTEGRAL EQUATIONS FOR FINITE To

§ 3. 1 Preliminary Remarks

In the first two chapters, we expressed the exact and approx-

imate problems in integral equation form. These integral equations

are studied in detail in this and the following chapters. Henceforth,

' ) satisfies the conditions given in § 1. 2, but no longer is as-

sumed to have the special form (2. 2. 5). Throughout this chapter,

T is assumed to be finite.
0

We now suppose a general quadrature rule of the form (2. 1.1),

where the coefficients and subdivision points satisfy (2. 1. 2) and

(2. 1. 3).

Let C(R) denote the Banach space of continuous real-

valued functions f(T, p.), defined on R: {0 < T< To ; -1 < < 1}

with the uniform norm

lifil = max If(T,p.)1.
(T, R

The norm of a bounded linear operator L which maps C(R) into

C(R) will be denoted by 411 where

11 11 = sup HLfII.
HO< 1

28



§ 3. 2 Operator Equations for ro-, ti and rm(T, p.)

Motivated by (1. 3. 4), we define the linear integral operator

A, for fEC(R), by

(3. 2. 1)

(3. 2. 3) k(x,i4=

=s 1 sb To
(Af)(T, K(T, ; T' , p. ' )f(T' , pidT1 d

-1 0

where

1(3. 2. 2) K(T, p.; T', p.' ) (p, , p.' )k(T ' ),
2

0

> 0,

<0

It is easy to verify that the integral in (3. 2. 1) exists for each (T, 11)

in R. We will show in § 3. 3 that A maps C(R) into C(R)

and is bounded.

Equivalent forms of (3. 2. 1) are

29



1(3, 2. 4) (Af)(T, p.) =

and

1(3. 2. 5) (Af)(T, p.) =

1 C CT°
+ P(11,1-1'

0 T

T-T'

T-T'

p(, -' )e -xf (T-p. 'x, -p. )dxdp.

T0
-T

0

Similarly, motivated by (2. 5. 4), we define the linear integral

operators Arn, m = 1, 2, , for fe C(R), by

±m

(3. 2. 6)
(Amf)(T, p.)

c 0
a .K(T, p.; T' , .)f(T, p. .)dT'

171j Trij /Yli

j=±1 0

where K(T, p.; T' , p. .) is given by (3. 2. 2).mj

It will be shown that each A is a bounded operator onin
C(R) into C(R). Forms analogous to (3. 2.4) and (3. 2.5) are

easily obtained.

We now express the integral equations (1, 3. 4) and (2. 5. 4)

)dT' dp.'

f(T' , )dT' ,

30



for r and r in the form

(3. 2. 7) (I-A )r = r°

(3. 2. 8) (I-A= r°m m

where I is the identity operator on C(R). Since the intensity

I(T, p.) is always displayed with arguments, there should be no con-

fusion.

§ 3. 3 Properties of the Operators A and Am

We show next that A and Am,
m> 1 are bounded lin-

ear operators which map C(R) into C(R). First consider A.

Since

(3. 3. 1) 1 (AO( T, )-(An (717,1:-)1 lifll S.T1K(T p. T)
P

0

-K(T, p.; T°, p.' )1 dT' dp. ,

it suffices to show that

(3. 3. 2)
51 st To

-1 0

as (T, ) IT)

K(T, ; T ' , p. )-K(T, p. ; T' , )1 dT° dp, ' 0

31

In order to establish (3. 3. 2), we shall construct a continuous



kernel K (T, ; f , p. ) for each e> 0 such that

To

(3. 3. 3) I K(T, p.; T' , ' )KC (T, p.; , p. ' ) dT' d' 0

-1 0

as E 0

uniformly for all (T, p. ) in R. Then the desired result will follow

from

(3. 3. 4)
1 To

c I K(T, 11;TI ,}11 ) - K (T, p.;1" , )dT' <
-1 0

32

co
K(T, p.; T' , p, ,)KC (T, p.; T' , dTidp,

1 To
I K' CT, [I; , ) -KE T', p.91 dT'

-1 0

1 s, To
+ I IKE Fr, p7; T' , p, ) - K CT, 11; T , p.') dT' dp.' .

-1 0

We now proceed to the construction of Kt (T, [1; T' ). For

convenience, let P = (T, p. ; ' , p.' ) in four - space . Then

K(P) K(T, 11; T' , p.' ) is a function with domain = R X R.

Discontinuities of- K(P) are confined to points of the

hyperplane Tf {T = Ti , p.=0} . The projection of 7 in the

p.' , T, T' -space is indicated in the accompanying figure. For each



> 0, let ILE = {P: p (P, 1T)< E}

where p(P,7) = inf HP-Q11,
Qerr

with 11 11 the maximum norm.

Then 01,t, is an open neighborhood

of TT . Define KE(P) = K(P) on the

closed set - and extend it

to a continuous function on such

that 0 < K(P) < 2K(P) by means of the Tietze Extension Theorem

(Bartle, 1964, p. 187). Since K(P) = KE(P) on -

(3. 3. 5) I K(P) KE(P)1 dT1 dp.' < K(P)dT' dp.'
-E T

e TE E Te
K (P)dT1 < 3 SI K(P)dT1 dp.'

- T

where T = max (0, 'T-E

yield

and T = min (To, T+ e)

33

Since P(11 , ) is bounded, say by W, (3. 2. 2) and (3. 2. 3)



(3. 3. 6)

yTEK(P)dTrdp, ' < sT+Cp(p. )k(T' -T, )dT' dp.
TE -E T- e

)-bE

< k(T' -T, p. )dT' dp.
-E T- E

w ) dp.'

1

2We 51 (1-ex)dx 0 as E

0

Now (3.3. 3) follows from (3.3. 5) and (3. 3. 6).

It is a consequence of (3. 3. 1), (3. 3. 4) and the uniform con-

tinuity of KE (P) that (Af)(T,p.) is continuous for each f£ C(R).

Thus, A maps C(R) into C(R).

It is much easier to see that each A maps C(R) into

C(R). Note that K (T,p.; T' , p. .) in (3. 2. 6) is continuous since
111. 111.j

every u . O.

The function (A1)(T,p.), where 1 denotes a constant

function, will be useful in showing that A is a bounded operator on

C(R). By (3.2. 1)

34



1
TO 0

(A1)(T, p. ) = K(T, p.; T', p.IdT1 dp.'=-4
'T

p(p.,W)k(11-T, p.r)dlidp,
2

-1 0 -1 0

(3.3.7)

T-T'

=ly
e

2 -1 0

0,T

T-T0
0

1 1 r 1

11301, )41, + POI , )(1-e ) c11-11

2 0

and by (1.2. 2),

T-T0

(A1)(T, N.) = wo - [p(p.p(, -)e + P(11 )e c114,
1 C 1

0

Elementary calculus yields

where 5 = min p(p., p.' ). Similarly

(3. 3. 9) (A 1)(T, = co

1 To
1

dT' dp.' +2,c Si(111)e II I
0 T

[P(I-L , -11 rni)e

T-T

+ p(p. ) p.rnj) e
mj

dT'dp.'

35

1 -
TO

(3. 3. 8) (A1)(7, 1.1) < wo - 5
0

d'



and

(3.3.10)

where

(3.3.11)

ml)(T, ii.) < m
j=1

a .e
/T1

mU a441,11 .) wonaj ' as rn---00.

We note that K(T, [1; T' , ' ) > 0. Hence, A and A,
m > 1 are positive operators. We have the following consequences:

if f, ge C(R), then

f >0 Af > 0 ; f > 0 Af > 0 ;

(3.3.12) f>gAf> Ag ; f > g Af > Ag

Af I <Alf'

and similarly for Am .

It now follows that

11Af 11 < 11 f 11 11 Aill

for all f e C(R). Hence, A is a bounded linear operator and

II A 1 11A111.

36



However,

(3.3.13)

Similarly,

(3.3.14)

(3.4.1)

(3.4,2)

HAII I1A111 since Hill = 1. By (3.3.8),

11A 11 = 11 Ai 11

HA = HA 111 <m m m0

By (3.3.10) , (3.3.11) and (3.3.14),

(3.3.15) IlAmil < < 1 ,

for m sufficiently large.

§_ 3.4, Solution of the Integral Equations for Finite
0

We now return to the solution of the integral equations (3.2.7)

and (3.2.8). Since 1141 < 1 and hAIl < 1 for m sufficiently

large, the operators I-A and I-Am have unique bounded inverses

defined on C(R) which are given by the Neumann series
oo

-(I-A)1 =A
n=0

00

-
-(I-A)1 An ,

n=0

<0) < 1.
o
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which converge in the operator norms. The bounds of these



operators satisfy

(3. 4. 6)

and

(3. 4.7)

(3. 4. 8)

again for m sufficiently large.

Under the condition r0 (T, 11) > 0, it follows from (3. 3.12)

(3. 4. 5) and (3. 4. 6) that ro-, > 0 and rm(T, 11) > O. This

Hence, the integral equations (3. Z. 7) and (3. 2. 8) have the

unique solutions given by the uniformly convergent Neumann series

00

(3. 4. 5) r = An r° ,

ri=0

CO

r = An r0
m len

n=0

r,o
IIIljAJ'

r11 _ _ 11_11,rA01

38

(3. 4. 3) -(I-A)1 1
<
T-1TAT

(3. 4. 4) -1(I-Arn) 1
5_ 1_11A 11

Tn

for m sufficiently large.



completes the solution of the integral equations (3. 2.7) and (3. 2. 8)

for the case T < co
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CHAPTER 4

CONVERGENCE THEOREMS FOR FINITE
To

§ 4. 1 Preliminary Remarks

Having solved the integral equations (3. 2.7) and (3. 2.8) for

the case T < oo, we now turn to convergence questions. We con-

tinue to use a general quadrature rule of the form (2.1.1) which for

convenience satisfies (2. 1. 2) land (2. 1. 3) Moreover, suppose

(4. 1.1)

thm

/a .f(p. .)
Mj Mj

j=± 1

for f C(R), and that

thm

(4. 1. 2) a . < B, m > 1 ,
rrij

j=± 1

for some B < 00. (Actually, (4. 1. 1) implies (4. 1. 2) by the principle

of uniform boundedness. ) The rectangular, trapezoidal, Simpson and

Gauss (but not Newton-Cotes) quadrature rules have these properties.

The convergence in (4. 1. 1) is uniform on any bounded equicontinuous

family of functions and also on the characteristic functions of intervals

(cf. Anselone, 1965).

)dp. as m-00,
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We recall some definitions from functional analysis. A

linear operator L which maps a norrned linear space X into a

normed linear space Y is said to be compact (or completely con-

tinuous) if the image of any bounded set B in X has compact

closure (equivalently, is totally bounded). The following idea, due to

Anselone and Moore (1964), is also used. A set of operators {La}

is said to be collectively compact if, for each bounded set B,

(4. 1. 3 ) {Laf:f eB}
a

has compact closure (is totally bounded). It suffices to take

B:{lifil < 1 }

It will be shown that A is compact, A m> 1} is

collectively compact, and 11Af-A 0 as m.-00 for each

f e C(R). Results of Anselone and Moore (1964) will then be used to

obtain convergence theorems and error bounds in the case T0
< co.

§ 4. 2 Further Properties of A and A

Define AE and A, £> 0, al> 1, on C(R), by

(4. 2. 2)

cTo Cr, ; 9f(Tt, P. )dT? d
0

(Ac f)(T,) = a ; °IKE (T,I1 , P. Mi (T' , Mi WTI
0

41

(4. 2.1) (Ac f )(T,) =

5b1



42

It follows that each A , m> 1 is a compactm

operator on C (R). In view of the definition of KS, for each m

there exists E (m)> 0 such that K(T, [J. , .) Kc (T, T1,
j 11-1 j

if E < E (m). Hence,

(4. 2. 5) A e < e (m)
m m

By (3. 3, 11) and (3.3. 14), the operators Am, m> 1 are uniformly

bounded.

I

Theorem 4.2. 1. 11N-AnifIl o for all fEC(R) as co.

where KE(7, ) is defined in §3. 3. We will use these opera-

tors to establish the desired properties of A and A. First of

all, observe that since le ('T, ; ) is continuous, A_ and

Ac are compact operators on C(R).

From

1 To
(4. 2.3) I IA-AC I 1 2-- sup Si S I K(T, p, ; Ts, p,')-Kc

(T,p.)ER -1 0

and (3. 3.3) ff it follows that

(4. 2. 4) IA- AC I as e 0 .

Since .A is a limit of compact operators, A is compact.

Since every p. 0, the kernel in (3. 2. 6) is continuous
rrij

in T, p, and T.



Proof: By the triangle inequality,

(4.2.6) < II.Af-A5f11+ II.A5f-Arn5 fll + HAmEf-AnafIl .

We examine each of the terms of the right member. First choose

5> 0. Then fix E such that E < 5 and, by (4. 2. 4), Af f < 5.

Now consider II Acf-Ac f I
By (4. 2. 1) and (4. 2. 2.),

HA5f-AfH
TO I S1

_< sup S KC (T, 1-1 , 1)f (T',
R 0 I - 1

a .1c5 (T, p, ; , .)f(T1
T11) rnj

d T'

43

Since Kt (T, p, ; T' , p. I) and f (T' , p.') ) are uniformly continuous in

their arguments, K5 (T, p.; , , p.') ) may be regarded as a

bounded equicontinuous family of functions of p. parametrized by

T, , 1-1 . Since the convergence in (4. 1.1) is uniform on such a fam-

ily,I f -Atm! I as m 00 Thus, there exists m1 = m1(s )

such that I f -At 8 for m> m
Tn 1.

Finally, consider f-A By (3. 2. 6), (4. 2. 2) and the
m

definition of KE

To

II A -At = supm m amj K(T, p, ; T1, -1(c(T, ; T', ) dT1 . -

M3
(7) WER 0

1113



Proceeding as in (3, 3. 5)ff, we have

T c
sup a . K(T, p, ; 7' , p, ) _Ks (T, p, ; 71 , p, ) 1 dr'

(r, 11 ) R .:

Mj
'T

Mj 1-11j

J E

1 1-L . 1 < C-

3 sup a.
(T, )E R

111j

rni

< 3W a[1 - emi

Ts
K(T, p, T1 , 1.1

mj)dT1
,

TE

(11 .),
-E

X r
L - E

[ -E ,E] . By (4. 1. 1)ff, the last sum converges to

gs (1e ) < <5
-E

m = m2(E) such that

A _AC
I < 3 W for m > inThe desired result now followsmm-2.

from (4. 2. 6).

Lemma 4. 2. 1. The set {A , in > 1} is collectively compact.m

is the characteristic function of the interval

as m Hence, there exists

44
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where



Proof: Fix 6> 0 and let e = 6/3W. Then (cf. p. 44), there

exists m(5) such that

IIA f-AE fll <6 for m > m(6), Ifhi <1.m m

Thus, {AE < 1} forms a 5-net for
m> m(5) in

{Arnf:I f < 1}. It follows directly from (4. 1. 2), (4. 2. 2)
m > m(5)

and the fact that K (T,p.;T',p. .) is continuous thatmj

IlfII <1) is bounded and equicontinuous or, equiva-
m> m(5)

lently, totally bounded. By a standard theorem (Liusternik and

Sobolev, 1961, p. 136) {Amf: Ilf11 < 1} is totally bounded.
m> m(5)

For each m. =1 1, 2, , m(6), Am is compact, so

is totally bounded. It follows that

bounded. Hence, {A :m > 1} is collectively compact.m

Recapitulating, we have shown that

(4. 2. 7)

oo
{Amf: If II < 1}

m=1

A is compact

{A: m> 1} is collectively compact,m

11Af-A f I 0 for each f E C(R) .

{A f: Ilf11<l}m

is totally

45

Moreover (cf. § 3.4) (I-A)-1 exists and (I-AY exists and is

uniformly bounded for sufficiently large m.



§ 4. 3 Convergence Theorems for Finite

Anselone and Moore (1964) have studied operators which

satisfy the conditions (4. 2.7). A direct application of their results

yields the following theorems.

Theorem 4. 3. 1. As m OD,

(4.3. 1)
IIAmA-A211

0 .

(4. 3. 2) 11A A-A211 <
1

ml
which holds for in sufficiently large, then

(4. 3. 3)

and

(4. 3. 4) 11r-rmH < Ha-V. 11

1-11 r1 11 11A A-A211

46

-1 11Ar°-A roll IA A-AzIl lIr IIin Ill

We remark that (4. 3. 3) and (4. 3. 4) provide a means of
-estimating I- and r-r since r= (I-A)1 r0 . In this connection

(4. 3. 1) is a consequence of (4. 1. 1) and hence can be estimated in

1+11(i-Arn)-111 11All
<

1_11(I-Am.)-111 IlArnA-A211



terms of an error formula for the quadrature formula.

Theorem 4. 3. 2. As

(4. 3. 5)

If

(4. 3. 4)

then

(4. 3. 5)

and

(4. 3. 6)

Moreover

(4. 3. 7)

m 00,

HAJm-Am2 I I

HAA -A2 H<
1

rn m (I-A)-111

-1 1+ H(I-A) II HA II

H <
1-11(i-A)-111 IIAAm-Am2 II

IlAr°-:A r011+HAAm-A2 mll HrIl
m 2 -

I-- DI-Ar
I I HAAm-AmII

H 0 as m°°.rn

47

We are now able to state a general convergence theorem for

the discrete ordinates method in the case T
0

Theorem 4. 3. 3. If roe C (R), then rm(T, ) r ,



Im(T,
) p. and Jm(T, p. ) J(T, p. ) uniformly as m .

Proof: Apply (4. 3.7) for the first conclusion. The others follow

immediately from (1. 3. 3) and (2. 5. 3), (1. 2.4) and (2. 2.4).

In conclusion, we remark that r (T,p.), I (T, 1i) and

J (T, p.) can be calculated at least if p(p., 11' ) is sufficiently
na

smooth. As suggested in the second chapter, replace

a good uniform approximation in the form of a finite Legendre sum.

This causes s mall perturbations in A (I-A) - and hence inm

r (T, p.), I (T, p. ) and J (T, p.). Error estimates for this approx-
111

imation scheme are obtainable from functional analysis theory.

13(1-1,11' ) by
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CHAPTER 5

INTEGRAL EQUATIONS FOR INFINITE
To

§ 5. 1 Preliminary Remarks

We now turn to the solution of the integral equations (3. 2.7)

and (3. 2, 8) for the case T0= co. In order to do this, it is necessary

to define the operators A and A, m > 1, on a more general

class of functions than C(R). To avoid proliferation of new symbols,

the notation for A and A will be carried over to this chapter

with the change"r0 = 00 in the integrals concerned.

We again assume a general quadrature rule of the form

(2, 1. 1) where the coefficients and subdivision points satisfy (2. 1. 2)

and (2. 1.3). As before, weaker conditons would suffice.

§ 5. 2 Properties of the Operators A and Am

Let D(A) consist of the set of all Lebesgue integrable

functions f(T,p.) for which the right member of

(5. 2. 1) (M(I; [1) =

p00

-1 0

exists for each fixed T and p.; K(T,p.;T' , ii') is defined as

49



before by (3. 2. 2). More explicitly,

(5. 2. 2)

T-T
0

T
1

(Af)(T, P. -2" 5b .c 13(11 , )

+

1 co
1 C C

-2 POI , Pie
0 T

Similar relations hold for
Am,

m -> 1.

Using (5. 2. 1) or (5. 2. 2), we can indicate various functions

which are contained in D(A). If f(T, p.)= p. , then f E D(A) and

(with this function denoted by p.)

1
1 1(5. 2. 3) (A1-)(T,) =

-3 0)111.
+

-2
Si p (11 , )e d'
0

If f(T, p.) = n > 0, then f E D(A), and

1

(5. 2.4) (A1)(T, p.)p. '
= (w021 ,c P )e

d
0

(5. 2. 5)

50

f(T , ' )dT dp. '

f('T',p.')dTI dp.' .

T-T'

ILt

1
1(A(T, p. ) = co°T + (A)111

+ p(l , ' )11 e 1j) d14

0

(5. 2. 6) (A7n)(T, p.) = o..)0Tn + Qn-1(T) + o(T)



where Q1(T) is a polynomial of degree <n-1, and o(1) de-

notes a function of T and p. which tends to zero uniformly in p.

as 00 Similar expressions hold for A with ca replaced
0

by
0.)m0,

given by (3.3. 11), and with the integrals replaced by

corresponding sums. It follows that D(A) and D(Am) contain

all polynomials.

(5. 2.7)

For f,gED(A), and from the definition (5.2. 1),

f > 0 .* A f > 0, f> 0 f > 0,

f > g f > A g, f > g f > A g

If f is measurable and If <g for some gED(A), then

If ED(A), fED(A), and lAfl < < Ag. Hence, if

f(T, ) = 0(T") uniformly in p. as Too, then f E D(A) and

Af = 0(Tn). In particular, D(A) contains all bounded measurable

functions and

(5. 2. 8) ifl < m IA fl coom_< m

We assert that if f is continuous and f = 0(T') for some

n> 0, then Af and A rnf are continuous. By (5.2. 1), for any

y> 0 we have
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(Af) (T, p. )- (A f)(7T., ) < sYrK(T, ;11,11.1)-K(71",p.;T,p.11 If Cr, dTdp. '
-1 0

I s.00
[K(T,p. ; TAL')+K(71--,I.T.;T1,p.')] If (T4.0)

-1 y

The second integral can be made arbitrarily small for all T, T, ,

11 such that 0 < T< 0 <
'

7r< - 1 < < 1, -1 < < 1, by

choosing y sufficiently large. To see this, put the integral in the

form analagous to (3. 2. 5) (with
To

00). With y thus fixed, it

follows from (3.3. 3) that the first integral is arbitrarily small if,

in addition, T:5-1 and I p.--p.1 are sufficiently small. The proof

for A is similar and is omitted.

In this chapter, we will let C(R) denote the Banach space

of bounded, continuous functions defined on the set R: {-1<p.<1,

0 < T< ) , with the supremum norm. Then A and Am map

C (R) into C (R) and, by (5. 2. 8) and (5. 2. 4),

(5.2. 10) 11All = < 1 on C(R),
0

(5.2. 11) I IAm II = wmo on C(R),

where co co as m 00.m0 0

-
If co < 1, then (I-A) 1 exists on C(R) and is given by

0
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a Neumann series which converges in the operator norm. A similar
-statement holds for (I-A )1 for m sufficiently large. Hence,

we again have the formulas and results of §3. 4.

The situation is more difficult if w = 1 or if we seek un-

bounded solutions. These questions will be discussed in the following

sections.

Two closed subspaces of C(R) will be of interest. Let

C (R) = {f:f(T,p.) 0 uniformly in p. as T 00}

C1
(R) = {f: f(T, p.) converges uniformly in p. as T oo} .

Lemma 5.2.1. fEC0 (R) AfEC0 (R), A feC0 '
(R) m> 1.m

Proof: By (5. Z. 2), f 0 Af 0 (uniformly in p. as

T-00), and similarly for A The lemma follows.

Lemma 5. 2. 2. fE C (R) AfECi(R). Moreover,

(uniformly in p. as 00).

Af

A faw
11-1 MO'

m > 1,
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Proof: Let g f-a. Then g. 0, so Ag and by (5. 2. 4)

Af Ag + a Al acoo ,

and similarly for A . The lemma follows.

§ 5.3 Uniqueness Questions

In this section, we consider the uniqueness of solutions of

the equations f - Af g and f - Anif = g. Thus, we examine the

associated homogeneous equations f = Af and f A f.

First suppose
coo

< 1.

Theorem 5.3. 1. Let
wo

< 1. If f = Af where f = O(T) for

some n > 0, then f O.

Proof: For n = 0, the desired result means that f = Af and f

bounded implies f 1=- 0. This follows from the existence of (I-A)-

on C(R). Now let n = 1. If If < MT, then by (5. 2. 5)

I fl = I Af I < AI f I < MAT < M0co T + Mb,

where b is a constant. Apply the operator again to obtain

2
I fl = IA2f I M(A2T) < MT + Mb (co + 1).

0

Repeated application of A gives
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Mb
I iviw0

n mbiwn- l+wn- 2+.
+(

+1) n
- 0 0 0 0 1-co

0

Let n -b.«) to obtain

Thus f 0 since the theorem holds for n = 0.

In a similar manner, it can be shown that

f 0(1n)f =

Hence, induction yields the desired result.

Corollary 5. 3. 1. If f - Al = g and f = 0(T''), then f is unique.

Similar results hold for A with m sufficiently large.

Now consider co = 1.
0

Theorem 5.3. 2. Let (4) = 1. If f Al where f > 0, 10 0,
0

then f(T, p.) > MT+ N for some positive M and N.

Proof: From (1. 5. 4), (5.2-2) and for 6 = min p(p., p.' ), we have

T-T'
1 co

1 1 1
4 (1 - -3 wi)FT + K(0) = 1-0 e f(T', p.' )dT1

2
0 T

T- T'
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p.' f(T',0c11-1 te.

P, - 5 5

(Af)(T p.) f(T p.)

-1 0
e



Hence,

6 1(5. 3. 1) (1 ---3-o1)FT+ K(0)6 = MT+ N.

Application of this theorem gives the following corollary.

Corollary 5.3. Z. Let coo =1. If f = Af, where

f(T, ) = o(T) uniformly in 1.1. as on, then )=--- 0 .

Similar results hold for A with m sufficiently

large.

§ 5. 4 Existence of Neumann Series Solutions

We now turn to the solution of the equation f - Af = g. For

the analogous problem in the isotropic case Hopf (1934) showed that

a Neumann series solution exists if and only if the right member is

integrable in which case the Neumann series converges almost

everywhere to the solution. We shall obtain similar results for

the anisotropic case. Primary attention shall be given to convergence

which is uniform at least on finite intervals.

The following lemmas will be useful in the discussion of the
oo

Neumann series solution f = A ng of the equation f - Af g.

n =0
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Therefore,

N-1

n=

Lemma 5. 4. 2. Let 4.) <
0

with f bounded, then

n+1
A g = f - g, so f - Af = g.

. If f Af = g and g > 0, f > 0,

00

f Ang and Anf 0 monotonically.
n=0

Proof: Now 0 < Af =f - g < f, and 0 < An+ 1f < Anf < f . Hence,

co

= Ang

n=0

NA0f-Af = f-ANf< f.

N-1

A f An+lf

n=0
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Lemma 5. 4. 1. Let
o.)o

1. If f = Ang exists and g> 0,

then f Af = g. n=0

Proof: Since f> 0, Lebesgue's monotone convergence theorem

implies that

N-1

(f -Af ) =

n=

00

Af



exists and 0 < < f

- AtIJ= g, and therefore f - LIJ = A(f-4') and 0 < f < f.

Assume f - 0. Then, by Theorem 5.3. 2, f and

f are unbounded, a contradiction. Hence, f and the desired

results follow.

We now exhibit the Neumann series solution for the special

case f(T, 1. Note that by (5. 2. 4), for = 1
0 '

(5. 4. 1) 1 - Al = v(T,p.),

where

(5, 4. 2) v (T,

A f f monotonically. By Lemma 5. 4. 1,

1
1

:"=. P(11, -
0

00

Lemma 5. 4. 3. If = 1, then Any(T,p.) = 1 and Anl 0
0

n=0

monotonically. Moreover, the convergence is uniform in each finite

interval.

Proof: The first two assertions follow from Lemmas 5. 4.1 and

5. 4. 2 . Since Anl is continuous, and

N-1

/ Any = 1 - A ,

n=0

' ) e
L.

dp.' .

the uniform convergence follows from Dini's theorem.
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Lemma 5.4. 4. Let c...) = 1. If f Af g and f is bounded,
0

00

then f - Ang and In both statements the conver-
n=0

gence is uniform on each finite interval.

Proof: Let I f < M, then

N-1

Ang I = Anf < MA

n=0

The desired results now follow from Lemma 5.4.3.

Lemma 5. 4. 5. Let = 1. If 0 < g(T, 1.1.) < Mv(T, ) for some

M> 0, then the equation f Al g has the Neumann series solu-
co

tion f A g, where the series converges uniformly on each
n=0

finite interval. Moreover, f < M.

Proof: We have

Ang < MAnv.

Apply Lemmas 5. 4. 1 and 5. 4. 3 to obtain the desired convergence.

We point out that g(T, p,) = 0(e -T) implies

g(T, = 0(v(T, )).
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Lemma 5. 4. 6. If I Af and f> -M, M> 0, then f> O.

If, furthermore f A 0 a. e. , then f > 0.

Proof: f> -M y*f = Anf > MAril 0 as 00 by Lemma 5. 4. 3.

Hence, f > 0. If I 0 a. e. , then f > 0 since f Af and the

kernel K(T, p, ; T' p.?) is positive.

§ 5. 5 The General Solution in the Conservative Case

Following Busbridge (1960), and motivated partly by (5. 3.1),

we seek a solution of the equation f = Af, f > 0, in the case wo=1,

which has the form

(5.5. 1) f(T, ) = T + Bp. + q(T, ),

c°1where B -and q(T, p.) is bounded.
3-w1

If w0=1, formally substitute (5. 5. 1) into f Af to obtain

(5. 5. 2) q - Aq = -w(T

where

(5. 5.3) w(T, p.)
B ÷

P(a 1-1 )e

Since w(T, 11) o(v(T, )), it follows from Lemma 5. 4. 5
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00

(5. 5. 4) q Anw(T, 4),

where the series converges uniformly on each finite interval, and

(5. 5. 5) 0 < q(T, p.) < B + 1 .

Thus (5. 5. 1) provides a solution of f = Af when co =1.
0

Note that f(T, 11) > -B. Hence, by Lemma 5. 4. 6, f> 0.

Theorem 5. 5.1. Let ck) =1. The general solution of r= Ar with
0

r 0, r o is given by

(5. 5. 6) r CT, 11) Af(T, ) A[T+ B q(T,

colwhere B - A > 0, and q is given by (5. 5.4). Moreover,

r> o.

Proof: It is clear by the preceding remarks that (5. 5. 6) will give

such a desired soluticn. The uniqueness isproved in the same way

Anselone (1958, p. 563) proved the analogous result in the isotropic

case. In view of this, we omit the details .

Once again an analogous result holds for F A r withm m len
F > o, F 0. The general solution is of the form

M

F (T, p. ) = A [ T+ B +q m(T, p.)] ,
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where B is constant, A> 0 and q is the Neumann series

solution of

(5, 5. 7)

where

(5, 5. 8)

Thus,

(5. 5. 9)

or

m mq - Aq w

B+1
w (T,11) (P-, )e P'nlimj mjP Mi

co

n=0

As previously mentioned, the flux F can be used as a

normalization condition in the case of Theorem 5. 5. 1. Hence, we

can express A in terms of F as follows: Using (1. 5. 3) and
-

(1. 5. 4) with To = 00, dividing by T and passing to the limit, we

obtain

1 1 T-Til

(1--3co)FT +K(0) 1 00

lim - lim TLF Bp. q( T', p.)1 p.'e dTd'
Tcc 2T ,T 0' 0

An wm m
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(5. 5. 10)

and

(5.5. 11)

T-T' j
1 eco

= lirn
dTt dp.'A

oo 00

A 2 , Aurn+ E5(11
T-00

Here

oo

E x-ne-Txdx (n = 1, 2,
1

is the well-known exponential integral. Hence,

3
A = ( 1 -

3 1nr, = (1--3 c...11)F [ T+ (B+1)p. + q(T, p.)] .

A similar result holds for F
m(T,

p.).

We note the similarity of (5. 5. 11) to (2.3. 14) (if b is

replaced by (2.4. 2).
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CHAPTER 6

CONVERGENCE THEOREMS FOR INFINITE To

§ 6. 1 Preliminary Remarks

We have discussed the solution of the integral equations

(3. 2.7) and (3. 2. 8) for the case To = 00. Hence, we turn our atten-

tion to convergence questions. Again, assume a quadrature rule

which has the convergence properties given in § 4. 1.

Convergence results for the discrete ordinates method with

T0 = 00 are obtained. The convergence is uniform on each finite

interval if and is uniform for all T and pi. if co < 1.
0 0

§6. 2 Convergence Theorems for Infinite T0

Before turning to the statement of convergence theorems for

the case T0 00, we give a few preliminary results which will be

useful.

Lemma 6.2. 1. If fE C(R), then A f Af uniformly on

-1 < < 1, T< T < co as rn for each fixed T .

Proof: The device used to prove that f continuous f = 0 (Tn)

implies Af continuous, reduces this question to that for T < 00.
0

This case was treated in Theorem 4. 2. 1.
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Lemma 6. 2. 2. If fEC1(R)' then 11Amf-AfIl 0 as m 00.

Proof: Choose c > 0. Fix ;1" such that

(6. 2. 1) holds when n = 1. Since

(Amf)(T, 1-)1 1 <

I (A 1)(T, 1-1.)-(Af)(T,11)1<e,

2'
I for T > m > 1

If T<'T, then apply the previous lemma. Hence, the result

follows.

Lemma 6. 2. 3. Let n> 0. As 0 implies

that

uniformly on any bounded set if f E C(R),

(6. 2. 1) An fmm
uniformly for all T, p. if f E C i(R).

Proof: The case with n = 0 follows from the two preceding

lemmas. Since

11Af-A f 11 < fl + 11A (f-f )11mm m m

IlAnaH o,
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Thus

oo

fmr, ) f(T,P.)

HA
lf_An+lf Anon_An f )11

m m m m m

induction completes the proof.

We note that

11A11 1 - An111' 0 as m

is a special case of (6.2. 1).

Theorem 6. 2. 1. Let f and f be the Neumann series solu-

tions of

f - Af = f -A f =gm mm m

00where 0 < g < Mv, 0 < grn < My and H g_g- 0 as m .

Then, for each fixed T

oo

n n
g, AA g .m m

n=

uniformly for 0 <'T < oo - l< II <1 if wo < 1,

uniformly for 0 <T<T< 09, -1< p, < 1 if wo = 1 .
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Proof: Note that

N-1 N-1

f =/ A ng + ANf, fm An a + A fN

n=0

for m> 1 N> 1. Now 0 < f (T, p. ) < M and 0 < fm(T, p, ) < M

by Lemma 5. 4. 5. Then

Write

(6. 2. 2) <

N-1 N-1

Ang + MA 1 -1- MA 1,

n.=0 n=0

N-1

g

N- 1

A - An
n

mg,11+14A11

N Nml-A 1 +2MAN1 ,

n=0 n=0

n=0

for N> 1. By Lemma 5. 4. 3, AN1 0 uniformly on each finite

T interval if
coo=

1. If < 1, then IANlfl (A) 0 as
o

N 00. Choose 7711 > 0 and c> 0 arbitrarily. Fix N such

that A 1 < E on [0,71] if
wo

=1 and ANl <C if L)0 < 1.

For m sufficiently large,

hAN1 AN- <
rn

N-1 N-1

Ang - A:agnall <E .

n=0 n=

rrrm m '
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The result now follows from (6. 2. 2).

An important application of this theorem is when r(T, p.)

is the bounded source function corresponding to a given function

o(T, p.) = 0(e -T). For example, roF (T, p.) may be due to reduced

incident radiation. In this case we have the integral equation

(6. 2. 3) r -Ar r°

and the discrete ordinates approximation equation

(6. 2. 4) F -A F = ro .m m m

The following theorem is a direct application of Theorem 6. 2. 1.

Theorem 6. 2. 2. Let r (T, I(T, p.) and J(T, p, ) be the unique

bounded solutions to the given transfer problem (6. 2. 3) with (1. 3. 3)

and (1. 2. 4). Furthermore, let T0=oo and r°(T, p.) 0(e-T). If

F ('T, p.,) satisfies (6. 2. 4), I (T, El) satisfies (2. 5. 3) and J (T, p.)

satisfies (2. 2. 4), then rm(T, r(T, p,), Im(T,
I(T, p,) and

J (T, J(T, p.). If Loo< 1, the convergence is uniform for all

T and p.. If coo = 1, the convergence is uniform on each finite

T interval for all p..

Another important application of Theorem 6. 2. 1 is to the

equations for q and gm, (5. 5. 2) and (5. 5.7) respectively.
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Theorem 6. Z. 3. Let 0)o = 1 and T0 = 00. Let r, I, J, q be

the unique non-negative functions which satisfy the homogeneous

transfer problem (r0 0). Let F , I , J , q be the cor-mm m m
responding discrete ordinates approximations. Then

F r,

J,

uniformly on each finite T interval for all p. .
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