

AN ABSTRACT OF THE DISSERTATION OF

Christopher Matthews for the degree of Doctor of Philosophy in Nuclear Engineering presented on

June 5, 2015.

Title: Fission Gas Bubble Behavior in Uranium Carbide

Abstract approved:

Andrew C. Klein

The need for cheap reliable energy, while simultaneously avoiding uranium supply constraints

makes uranium carbide (UC) fueled Gas Fast Reactors offer an attractive nuclear reactor design.

In order to qualify the fuel, an enhanced understanding of the behavior of uranium carbide during

operation is paramount. Due to a reduced re-solution rate, uranium carbide suffers from a buildup

of very large fission gas bubbles. While these bubbles serve to reduce total fission gas release

through the trapping of diffusing gas atoms, they lead to high swelling and ultimately dominate the

microstructure of the fuel.

The bubble size distribution is determined by the competing absorption rate and the rate of

knock-out, or re-solution. As a result of the enhanced thermal dissipative properties of uranium

carbide fuel, the atom-by-atom knockout process was shown to be an accurate representation of

re-solution in uranium carbide. Furthermore, the Binary Collision Approximation was shown to ap-

propriately model the re-solution event, bypassing computationally expensive Molecular Dynamics

simulations. The code 3DOT was developed as an off-shoot of the code 3DTrim, both of which

utilize the TRIM algorithm to calculate the kinematics of ions traveling through a material.

Benefiting from modern methods and enhanced computational power, the model created in

3DOT results in a more fundamental understanding of the re-solution process in uranium carbide.

A re-solution parameter that was an order of magnitude lower than previously determined was cal-

culated in 3DOT. A decrease in the re-solution parameter as a function of radius occurred for low

bubble radii, with a nearly constant re-solution parameter for bubble radii above 50 nm. Through

comparative studies on the re-solution parameter for various values of implantation energy and

atomic density in the bubble, we found that while the re-solution parameter did change slightly, the

overall shape did not.

A new application, BUCK, was built using the MOOSE framework to simulate the fission gas

bubble concentration distribution. In order to build a bare-bones foundation, the simplistic yet

historically prevalent physics that can be used to model fission gas bubble nucleation, growth, and

knock-out were implemented as stepping stones until more advanced models for each physical

process can be created. As the first step towards models that are based on first-principles, the

new re-solution parameter was included and tested within BUCK.

BUCK was tested using different parameters and behaved normally. However, from studies

using representative simulation parameters, it is clear that the currently implemented theory does

not adequately identify the growth mechanism that leads to larger bubbles. While this currently

limits the applicability of BUCK in a full fuel pin calculation, it provides the baseline structure in

which new physics can be implemented, and represents an important step towards understanding

the complex behavior of fission gas bubbles.

c©Copyright by Christopher Matthews
June 5, 2015

All Rights Reserved

Fission Gas Bubble Behavior in Uranium Carbide

by

Christopher Matthews

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented June 5, 2015
Commencement June 2015

Doctor of Philosophy dissertation of Christopher Matthews presented on June 5, 2015.

APPROVED:

Major Professor, representing Nuclear Engineering

Head of the Department of Nuclear Engineering and Radiation Health Physics

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my dissertation to any reader upon
request.

Christopher Matthews, Author

ACKNOWLEDGEMENTS

Although the work described here only chronicles the last several years of research, it stands on the

shoulders of all of my previous life experiences, support, and interactions.

Working from the beginning, I owe my parents for who I am today, both my Father for setting

a shining example of right and wrong and an appreciation for the technical, and my Mother for

showing me how to have fun at the same time.

I am grateful to the advisors I have had over the years and the opportunities they have given me,

especially Dr. Klein who worked with me on the current project, and Dr. Palmer who first brought

me to Oregon State University.

I am appreciative of The Fringe research group for sitting through many practice talks over the

years through the up’s and down’s, and being as interested in bubbles as I soon became.

And finally, I am extremely grateful to have my Pack at home. Rhody has been an non-judging

and unexpected companion with whom I shared many thoughtful walks. And of course, I owe my

wife Denise for listening to my worries, dealing with my insecurities, and sharing in my triumphs.

Not all of us are as lucky as I am. Thank you all.

TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Fast Breeder Reactors . 4

1.2 Fission Gas . 5

1.3 Extending Fuel Lifetime . 7

1.4 EM2 . 8

1.5 Research Objectives . 8

2 Background 10

2.1 Bubble Behavior . 10

2.2 Atom Density . 11

2.3 Bubble Types . 13

2.4 Diffusivity Dependence . 16

2.5 R/B curves . 18
2.5.1 Peach Bottom . 19
2.5.2 MHTGR Model . 20
2.5.3 EM2 R/B . 23
2.5.4 R/B Model Discussion . 24

3 Re-solution 26

3.1 Background . 26

3.2 Theory . 28
3.2.1 Binary Collision Dynamics . 28
3.2.2 Central Force Scattering . 31
3.2.3 Hard-Sphere Potential . 35
3.2.4 Rutherford Potential . 36
3.2.5 MAGIC Potential . 37
3.2.6 Electronic Losses . 39
3.2.7 Free Flight Path . 39

3.3 Methods . 40
3.3.1 Applicability of BCA . 42

3.4 Results . 43

3.5 Discussion and Conclusions . 45

4 Bubble and Cavity Kinetics 49

4.1 Background . 49

4.2 Theory . 50
4.2.1 Birth . 50
4.2.2 Diffusion . 51
4.2.3 Nucleation . 52

TABLE OF CONTENTS (Continued)
Page

4.2.4 Growth . 55
4.2.5 Bubble Radius . 59
4.2.6 Re-solution . 60
4.2.7 Burnup . 61
4.2.8 Total Number of Gas Atoms . 61
4.2.9 Swelling . 61
4.2.10 Assumptions . 61

4.3 Methods . 62
4.3.1 Coupled Ordinary Differential Equations 62
4.3.2 Newton’s Method . 63
4.3.3 GMRES . 64
4.3.4 JFNK . 65
4.3.5 Pre-conditioning . 66
4.3.6 Dampers . 66
4.3.7 Time Discretization . 67
4.3.8 MOOSE . 67

4.4 Results . 68
4.4.1 Simulation Parameters . 68
4.4.2 Verification . 69
4.4.3 Optimization . 72
4.4.4 Bubble Distribution . 74

4.5 Discussion . 78
4.5.1 Bubble Distribution Peak . 78
4.5.2 Parametric Studies . 79
4.5.3 Swelling . 80
4.5.4 Comparison to Experimental Results . 81
4.5.5 Bubble Coalescence . 83

4.6 Conclusions . 83

5 Conclusions and Future Work 85

5.1 Future Work . 86

References 87

Appendices 95

LIST OF FIGURES
Figure Page

1.1 Worldwide energy consumption . 2

1.2 Worldwide electricity consumption by fuel type 2

1.3 Projected CO2 emissions by country . 3

2.1 Schematic of fission gas behavior in nuclear fuel 11

2.2 Atomic density in bubbles . 12

2.3 Atomic densities calculated from different EOS models 13

2.4 P1 bubble behavior . 15

2.5 P2 swelling behavior in UC fuel . 15

2.6 Micrograph of dumbbell coalescence in uranium carbide fuel 16

2.7 Critical temperature vs. burnup . 17

2.8 Critical temperatures of MX fuels . 18

2.9 Gas release from several UC irradiation tests . 19

2.10 Peach Bottom’s R/B curve . 19

2.11 (R/B)0 plotted for several fuel types and for each diffusive element 21

2.12 Arrhenius plot of the temperature correction f (T) for Xe and Kr 21

2.13 MHTGR Xe R/B values compared to the uncorrected R/B0 curve 22

2.14 Estimated fuel temperatures in EM2 . 23

2.15 R/B values for EM2 estimated fuel temperatures 23

3.1 Schematics of the theories of re-solution . 27

3.2 Schematics of the two-body collision . 28

3.3 Scattering angles schematics . 30

3.4 Trajectories of two-body collision in the laboratory frame 31

3.5 Trajectories of two-body collision in the center of mass frame 32

3.6 Schematic of Θmin . 34

3.7 Schematic of hard-sphere scattering . 35

3.8 Atomic densities calculated from different EOS models 41

LIST OF FIGURES (Continued)
Figure Page

3.9 Schematics for the calculation of pmin . 43

3.10 Calculated b for several atomic density calculation methods 44

3.11 Calculated b for various Emin thresholds . 45

3.12 Probability of a direct fission fragment implantation or fuel cascade implantation . 46

3.13 Parent fractions as a function of bubble radius . 47

3.14 Re-solution as a function of Emin . 48

4.1 Arrhenius plot of diffusivities . 52

4.2 Example of NaCl lattice structure . 53

4.3 Diagram to determine dimer formation in a FCC lattice 54

4.4 Unit cell for calculating sink behavior . 56

4.5 Example solution of diffusion equation for sink 57

4.6 Schematic of Newton’s method . 64

4.7 Nmin for several different simulation parameters 73

4.8 Bubble distribution at different temperatures . 75

4.9 Bubble distribution at 1100 K for different irradiation parameters 76

4.10 Bubble distribution at 1400 K for different parameters 77

4.11 Bubble size at the concentration peak . 78

4.12 Concentration peak as a function of temperature 79

4.13 Swelling for different temperatures . 81

4.14 Derivative of swelling for different temperatures 82

4.15 Total swelling as a function of temperature . 82

4.16 Threshold for bubble interaction with results from the bubble distribution 84

LIST OF TABLES
Table Page

1.1 Fission fragment distribution from the fissioning of 100 atoms of Pu-239 6

2.1 Bubble types . 14

2.2 Structural zones in UC fuel . 17

2.3 Parameters for Equation 2.8 . 22

4.1 Diffusion coefficients utilized in previous simulations 51

4.2 List of parameters and their values . 68

4.3 Comparison between the nucleation analytical solution and BUCK 70

4.4 Comparison between the growth analytical solution and BUCK 71

4.5 Comparison between the re-solution analytical solution and BUCK 72

4.6 Difference between simulations with large N and Nmin 74

LIST OF APPENDICES
Page

A Material Properties . 96

B Input file . 107

C BUCK source . 110

LIST OF APPENDIX FIGURES
Figure Page

A.1 Heat capacities for several uranium carbide compounds 98

A.2 Heat capacities for several plutonium carbide compounds 99

A.3 λ/λmod vs. percent difference between the atomic radius of a given FP and U . . . 100

A.4 Thermal expansion . 101

LIST OF APPENDIX TABLES
Table Page

A.1 Density for MC from several sources . 97

A.2 Melting points for several MC species . 97

A.3 Coefficients for the heat capacities for several MC species 98

A.4 Thermal conductivity ratios due to artificial additions of fission products 100

A.5 Coefficients for thermal expansion . 101

A.6 Elastic moduli at room-temperature . 102

CHAPTER 1: INTRODUCTION

The increase in electricity consumption is inevitably intertwined with worldwide development. At

the same time, the need for clean, cheap energy is driving innovation across all energy production

means. Renewed interest in advanced nuclear technology will necessitate new methods in order

to perform modern safety analyses. The primary goal in nuclear safety lies in retaining the fis-

sion products produced during fission, either within the fuel or a secondary containment system.

The ability to predict fuel behavior and how fuel retains these fission products is essential, and is

primarily achieved through empirically-based methods, limiting the applicability of calculations to

the experimental parameters that formulated the model. As a result, current simplistic fission gas

models are being pushed to their limit of applicability. Many of these models are based on uranium

oxide fuel experiments, resulting in poor transferability to non-oxide fuel types. Due to tremendous

advances in computing power and techniques, it is now possible to build models from the ground

up, relying on first-principles and fundamental understanding of phenomena, rather than integral

experiments. The following work aims to advance the modeling capabilities of uranium carbide

fuel by creating a physical model to predict fission gas behavior in uranium carbide, an advanced

nuclear fuel with application in new Gas Fast Reactors.

The intertwining of modern society and energy has grown ever since the first man-made fires

warmed our ancestors. Now it is nearly impossible to escape electrical outlets or batteries in devel-

oped countries, while the rest of the undeveloped world is racing to match first-world consumption,

and with good reason. By studying factors that determine our modern quality of life, the link to en-

ergy consumption is clear: an energy consumption of 1 kW per person∗ ensures an adequate quality

of life, such as access to drinking water, high life expectancy, and low infant mortality [1].

Energy forecasts from the US Energy Information Administration predict that worldwide elec-

tricity production will nearly double in the next four decades, from 20 trillion kWh in 2010 to 39.0

in 2050 [2]. The UN divides energy predictions into two categories: members of the OECD or Or-

ganization for Economic Cooperation and Development (North America, most of Europe, Australia,

Japan and South Korea) and non-OECD members (Russia, China, India, Africa, Central and South

America, and the Middle East). The increase in electrical generation is primarily in these latter

countries, with China representing the overwhelming majority, more than doubling their production

in the next 30 years (Figure 1.1).

Rising energy production comes with its own disadvantages; as production increases, deple-

tion of limited fuels such as coal, oil and natural gas accelerates. Furthermore, inescapable CO2

emission is projected to have global ramifications through climate change [3]. Due to the relatively

∗Includes petroleum, natural gas, coal, hydroelectricity, and renewable energy. Energy from direct sources such as
food, biomass, and solar heating are not considered.

2

2010 2015 2020 2025 2030 2035 2040
0

50

100

150

200

250

300

Year

P
ro

je
c
te

d
 c

o
n
s
u

m
p
ti
o
n
 [
T

ri
lli

o
n
 k

W
h
]

OECD

China

Russia

India

Non−OECD remainder

Figure 1.1: Worldwide energy consumption [2].

2010 2015 2020 2025 2030 2035 2040

50

100

150

200

250

Year

P
ro

je
c
te

d
 c

o
n

s
u
m

p
ti
o

n
 [
T

ri
lli

o
n
 k

W
h
]

Liquids

Gas

Coal

Nuclear

Other

Figure 1.2: Worldwide electricity consumption by fuel type [2].

3

1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040

10

20

30

40

50

Year

P
ro

je
c
te

d
 C

O
2
 e

m
is

s
io

n
s
 [
T

ri
lli

o
n
 m

e
tr

ic
 t
o
n
s
]

OECD

China

Russia

India

Non−OECD remainder

Figure 1.3: Projected CO2 emissions by country [2].

inexpensive cost of natural gas and coal plants, they tend to be the first choices for rapidly growing

countries, resulting in a sharp increase in fossil-fuel consumption (Figure 1.2) and CO2 emissions

(Figure 1.3).

Fortunately, the ever increasing need for cheap, clean, reliable energy is advancing our under-

standing in non-CO2 emitting energy technologies. While hydropower is growing in non-OECD

countries, maximum capacity will soon be reached as dam-worthy sites will become rare [2]. Wind

and solar power are projected to grow considerably within the next several decades, however the

high cost of each is projected to keep the total market share of each low, about 5% for wind and 1%

for solar in 2040.

Nuclear energy is also receiving a fresh look as energy needs increase. Although suffering from

a somewhat turbulent past, nuclear power is projected to see growth in the coming decades (Fig-

ure 1.2). The high energy density and lack of CO2 emissions makes nuclear energy an attractive

alternative to magange global greenhouse gas concentrations. Similar to fossil fuels, uranium deple-

tion may soon become a problem; Between 2009 and 2011, the amount of cheap (less than $80/kgU)

identified uranium resources (reasonably assured resources and inferred resources) dropped 32.2%.

Although the amount of identified uranium greater than $80/kgU increased by 11.1%, the amount

of easily recoverable uranium is likely to decrease over time [4]. In an effort to increase cost ef-

fectiveness and avoid a uranium shortage, an attractive alternative to the current fleet of thermal

nuclear reactors in the US are fast breeder reactors (FBR) such as the Gas Fast Reactor (GFR),

Sodium-cooled Fast Reactor (SFR), and Lead-cooled Fast Reactors (LFR).

4

1.1 Fast Breeder Reactors

Both thermal and fast reactor fuel consists of fissile (U-235 and Pu-239) and fertile (U-238) iso-

topes.† Energy is produced through the fissioning of fissile material. Neutrons produced during

the fission event can be utilized to “breed,” or produce, additional fissile isotopes through neutron

capture (n) with uranium 238, and subsequent beta decay (β−) into plutonium 239:

238U+n→ 239U+β
−→ 239Np+β

−→ 239Pu. (1.1)

Although this process occurs in typical Light Water Reactors (LWRs), the physics involved

in fast reactors allows more fuel to be created than burned. The capacity of a reactor to breed is

measured by the “breeding ratio”:

BR =
fissile material produced
fissile material consumed

(1.2)

By definition a breeder reactor has a breeding ratio greater than 1, meaning more fissile material is

being produced than consumed.

The higher breeding ratio in fast reactors allows the more abundant fertile fuel isotopes to be

utilized. Using a “seed” starter of fissile fuel, a surrounding fertile fuel “blanket” can be converted

to fissile fuel over years of irradiation. The benefit of this configuration is that the blanket can be

anything that contains uranium: natural, depleted, or enriched uranium, or even spent nuclear fuel.

Bred fissile fuel can either remain in place to fuel the reactor or be recycled as the seed in a new

plant.

Although uranium oxide fuels are overwhelmingly used in current reactors, many nuclear fuel

types have been proposed and tested for use in FBRs. Metal fuel benefits from a high breeding ratio

and high thermal conductivity and was used in most US fast reactors. However, metal fuels expe-

rience large swelling at only small irradiation times, requiring a high initial porosity fuel to uptake

the large volume increase. Due to their familiarity, oxide fuels (mixtures of UO2 and PuO2) were

initially favored. The high melting temperature of oxide fuel offsets its low thermal conductivity

and initial studies showed high-burnup capability [5]. However, due to the presence of one metal

atom to two non-metal atoms, oxide fuels have a lower heavy metal (uranium, plutonium) density,

resulting in a lower breeding ratio from the softening of the neutron spectrum [6].

Carbide fuels (UC, PuC: hereby represented as just UC), and to a lesser extent, nitride fuels,

received much attention in past FBR reactor programs [7]. Uranium carbide in particular is expe-

riencing a renewed interest in the General Atomic (GA) EM2 design [8]. By increasing the heavy

metal density, a large breeding ratio is achievable. The metallic-like behavior of carbide fuels re-

sults in a high thermal conductivity, more than three times that of oxide fuels, allowing the design

temperature of the coolant to be higher without melting the fuel. Carbide fuels also exhibit higher

†U-233/Th-232 are fissile/fertile isotopes utilized in some fuel designs as well.

5

power densities, requiring smaller cores for equal power output. While carbide fuel has favorable

characteristics that make it an ideal candidate for FBR, there is still a lack of consistent material data

and operational experience. Despite many experimental programs that have irradiated carbide fuels

in both thermal and fast reactors, the bulk of the experimental work was completed 30 or more years

ago; the dated methods, records, and material characterization have resulted in large uncertainties.

One of the greatest difficulties with uranium carbide was the high swelling, and eventual pellet-

clad mechanical interaction. The production of fission gas inevitably leads to the complex and

intertwined swelling and fission gas release phenomena which has been extensively studied in the

past, but never fully captured in fuel performance simulations [9].

1.2 Fission Gas

Due to the inherent nature of heavy element fission, an accumulation of amazingly varied elements

constantly keeps the fuel in chemical and mechanical imbalance. Along with several neutrons, a

single uranium atom splits into two highly energetic fission fragments during fission. As these

fragments bounce around within the fuel lattice, they eventually come to rest, becoming fission

products and leaving a zone of displaced atoms in their wake. In general, the radioactive fission

products are relatively benign and can form varied chemical compounds within the fuel. Others,

such as xenon and krypton are volatile, resulting in the so-called “fission gas.” Fission products are

created on the order of 500 ppm per day, quickly overtaking the number of as-fabricated impurities,

which are typically on the order of 1000 ppm. Table 1.1 displays a sample distribution of fission

products after fissioning of 100 atoms of Pu-239.

While most atoms remain stationary after becoming fission products, volatile elements by def-

inition will not stay in solution within the fuel lattice and will tend to thermally diffuse, forming

bubbles or percolating as single gas atoms toward the grain boundaries. Furthermore, the highly

energetic fission fragments constantly streaming through the fuel can knock fission gas atoms out of

the bubbles, resulting in a bubble population that is dependent on both material properties (i.e. ther-

mal conductivity, diffusivity) and state properties (i.e. temperature, fission rate). In high burn-up

fuels, such as those required in fast breeder reactors, both inter-granular and grain-boundary bubbles

made up of fission gases define the microstructure of the fuel: the highly temperature-dependent dif-

fusivity of fission gas results in little bubble formation at colder temperatures and a highly porous

structure near the hot interior. Since bubble interconnectivity is directly related to how much of the

fission gas escapes from the fuel, an understanding of the atom and bubble behavior is essential in

determining the total fission gas release.

In the simplest of terms, the fission gas release can be calculated using a spherical grain model

which solves for the grain and grain boundary concentrations using empirical diffusivity values [10].

Complicating this simple model is the tendency of the insoluble fission gas to collect and form

bubbles within the fuel grain before reaching the grain boundary. In addition, highly energetic

fission fragments can strike the intra-granular bubbles, resulting in re-solution of gas atoms back

6

Table 1.1: Fission fragment distribution from the fissioning of 100 atoms of Pu-239 [9].

Atom Yield (at. %) Compounds

Noble gases
Xe 22.7
Kr 2.5
Volatiles
Cs 19.2
Rb, Te, I 5.8
Earth Alkalines
Sr, Ba 10.1 BaC2, SrC2
4d metals and Ag
Zr 19.4 Mono, di, and
Mo 22.4 sesqueicarbides
Ru 21.9
Pd 13.0
Y, Nb, Tc, Rh, Ag 15.0
Lanthanides and La
Ce 12.8 Mono, and
Nd 13.8 sesqueicarbides
La, Pr, Pm, Sm, Eu, Gd, Tb 16.3

into the fuel lattice. Many models account for these different trapping and re-solution behaviors by

empirically adjusting the diffusivity [5, 11–13]. However, estimation of fission gas in its different

physical forms may result in more accurate calculation of fission gas release [14].

Due to physical differences between UC and UO2, it is known that the re-solution rate, or rate at

which gas atoms are knocked out of bubbles and back into solution, is much lower in UC fuels [15].

Since the bubble size distribution depends on the competing processes of thermal absorption of gas

atoms and the knock-out of single gas atoms from bubbles, the smaller re-solution in carbide fuels

allows larger bubbles to form. These large bubbles dominate the visual landscape of the fuel pin, as

well as result in a sudden “breakaway” swelling rate, as discussed in Section 2.

While there are several theories as to the formation mechanism of the larger bubbles in UC, the

exact cause of the sudden change in the swelling is unknown. Blank claims that bubble diffusion

through the solid results in a “dumbbell” formation, causing a sharp increase in swelling due to the

high surface area to volume ratio of dumbbells [9]. However, several past studies have shown the

bubble mobility in uranium carbide is extremely low, limiting bubble-bubble interaction [9, 16, 17].

Another theory is that the re-solution rate decreases significantly for large bubble sizes, allowing

the bubble size distribution to stabilize at high bubble sizes [9]. While the re-solution rate has been

shown to be bubble size dependent, a modern calculation has yet to be completed to capture the full

relationship [15].

7

1.3 Extending Fuel Lifetime

In order to make fast reactors more economic, the fuel is required to stay in the reactor for extended

periods of time; the longer the fuel stays within the core, the more fertile material is converted

into useable fissile material. Two strategies can be used to extend fuel lifetime. The first process

involves removing fuel from the core after 3-7 years, reprocessing the fuel pins to separate the fissile

material, refabrication of new fuel rods, and reinsertion into the core. Due to the high radioactivity

of nuclear fuel after irradiation, reprocessing requires immense shielding, complicating the handling

of the fuel. The shielding requirements can be reduced by implementing cool-down periods between

irradiation and reprocessing, requiring a large time and money investment in fuel rods waiting in

spent fuel pools [18].

The second strategy to extend fuel lifetime is to simply leave the fuel in the core for long

periods of time. This can include dynamic or static fuel locations, but ultimately results in the fuel

remaining in the core for the lifetime of the reactor, around 30 years, requiring robust cladding

that will maintain structural integrity. One of the factors limiting fuel pin lifetime is strain on the

cladding; as the fuel fissions, fission gas is continually released into the gap between the fuel and the

cladding, creating a pressure differential between the pin plenum and the reactor coolant. The strain

on the cladding results in creep deformation, causing the clad to bulge and ultimately leading to

cladding failure through bursting or pin-to-pin fretting. The high temperature and in-pile irradiation

environment accelerates the creep rate even further. The implementation of a large internal pin

plenum can help extend the fuel lifetime slightly by increasing the internal pin volume.

One solution to extend the lifetime of fuel cladding has been to permit venting of the fuel pin; by

allowing an escape path for the fission gas, either directly to the coolant or into a separate collection

system, the differential pressure across the cladding is able to remain low. This concept was suc-

cessfully implemented in the US in the now decommissioned Peach Bottom 1 reactor. Several other

reactor designs have proposed to use vented fuel, such as the Gas Cooled Fast Reactor (GCFR) and

GA’s EM2 modular reactor [8].

The primary safety goal in nuclear reactors is containment of both the nonvolatile and gaseous

fission products. This has traditionally been achieved in the US with the “Defense in Depth” philos-

ophy, in which the use of redundant and diverse barriers prevents release. The first of these barriers

is considered to be the fuel itself: most fuels are ceramic and do a fair job of retaining solid and

some gaseous fission products [5]. The second barrier is typically the cladding of the fuel. The

cladding physically isolates the fuel from the coolant, and is the primary containment mechanism

in the Defense in Depth concept. Other barriers include the coolant, pressure vessel, and the outer

containment building. By design, vented fuels break the Defense in Depth philosophy by removing

the primary fission product barrier. However, removal of activated products from the core may help

reduce the emission of radioactive materials during reactor accidents. Regardless of the impact of a

vented fuel system on the safety of the reactor, accurate release rates from the fuel are necessary to

help quantify the source term.

8

1.4 EM2

General Atomic’s EM2 design is a 500 MWth modular gas-cooled fast reactor that utilizes carbide

fuel in a vented fuel pin assembly [19]. The design uses helium coolant in a direct conversion

Brayton cycle configuration. The UC fuel pellet consists of many small spherical fuel kernels

compacted and sintered into an annular fuel pellet. The pellets are encased in silicon carbide (SiC)

cladding that contains a venting manifold at the top of the fuel pins, providing an escape path

for volatile fission products that escape the fuel pellet. This side stream is diverted to a Helium

Purification System (HPS) comprised of several carbon filter beds that filter radioactive isotopes.

Clever utilization of the fast spectrum allows the EM2 to breed enough fuel to allow a 30 year

lifetime with no refueling. Furthermore, by utilizing the “seed and blanket” concept discussed

above, the majority of the seed can be fabricated from the vast stockpiles of depleted uranium.

In an effort to be economically competitive, the innovations discussed above (Gas Fast Reactor,

uranium carbide fuel, fuel pin venting) are all implemented in EM2. However, understanding of

uranium carbide behavior fuel during a 30 year residence time is limited to only a small number of

past experiments. Using the EM2 design as an example, the calculation of fission gas behavior may

be approached through a collection of first-principles models into a single modular code, extending

the prediction of fission gas behavior past current experimental limitations.

1.5 Research Objectives

The goal of this work is to progress the understanding and models of fission gas bubble behavior in

uranium carbide in the following ways:

1. Calculate the re-solution parameter in uranium carbide using modern tools and techniques. As

a fundamental parameter in determining fission gas bubble sizes, an enhanced understanding

of this phenomena is necessary for bubble concentration distribution calculations that can

ultimately lead to estimation of fission gas release.

2. Develop a tool for executing bubble concentration distribution calculations. By creating a

modularly structured code, the phenomena describing fission gas bubble behavior in uranium

carbide can be complied into a single application that can be used to simulate the bubble

concentration distribution.

3. Implement the re-solution parameter in the bubble distribution code and compare calculated

bubble concentration distributions to experimental observations.

Due to the differences between the re-solution parameter calculation and the bubble distribution

studies, the theory, methods, and results for each are located within their own respective chapters.

Before the chapters on re-solution and distribution studies, a chapter that contains general bubble

behavior is included to establish some background. A Conclusions and Future Work chapter at the

9

end of the dissertation is utilized to contextualize the results, as well as provide recommendations

for future efforts. Lastly, the appendices contain a uranium carbide material database, an example

BUCK input deck, and the BUCK code,

10

CHAPTER 2: BACKGROUND

The behavior of fission gas in uranium carbide is a very complicated consequence of fission that

depends on the interplay of different individual and coupled phenomena. The tendency of fission gas

to form bubbles dominates the visual landscape of the fuel pin, and ultimately results in the release

of fission gas products into the fuel plenum. This chapter identifies some of the characteristics of

fission gas behavior in uranium carbide. Also included is a description of one of the past techniques

used to model fission gas release in carbide-based fuels; Release over Birth, or R/B curves have

been used in historical calculations of fission gas release. Through application of the R/B curves to

a more recent reactor design, the ineffectiveness of such integral calculations can be highlighted.

2.1 Bubble Behavior

As described in Section 1.2, fission gases are insoluble and tend to thermally diffuse through the

fuel. As a single gas atom moves through the fuel, it will combine with other gas atoms to form

energetically favorable bubbles within the fuel grain. The behavior of these single atoms and bubbles

within the fuel grain comprise the intra-granular domain. As fission gas atoms reach the grain edge,

they will combine to create large, lenticular bubbles in the spacing between the grains. As these

bubbles grow larger, they will eventually interconnect with each other until a pathway is established

with an exterior surface fuel pellet and the fission gas is released into the fuel pellet plenum. The

grain boundary bubbles and their connectivity comprise the inter-granular domain. Schematics of

the fission gas progression is displayed in Figure 2.1.

Fission gas is continually created during the fission process, and is primarily comprised of xenon

and krypton with smaller amounts of other volatiles such as cesium and iodine. The fission gas can

either be created directly from the fission process, or result from transmutation of parent precursors

to gaseous elements through beta-decay.

Since each fission fragment travels about 6 µm in the fuel material, if the fission event occurs

near an exterior fuel surface, the fission fragment can recoil directly into the plenum. While this

“athermal release” results in a geometrically-dependent release pathway, the vast majority of the

fission fragments come to rest within the fuel’s granular structure and can be described using the

inter- and intra-granular models.

The crystal structure of uranium-carbide fuel is a NaCl type arrangement as a cubic lattice with

alternating uranium and carbon atoms. Gas atom defects tend to be large, thus they exist in the

combined defect of a uranium and carbon vacancy. As the fission gas diffuses through the fuel, the

atoms can combine to form more energetically favorable bubbles. These bubbles will have reduced

movement, and are typically assumed to be stationary within the lattice [9], effectively acting as

11

Atom	
 and	
 bubble	

diffusion	
 through	
 grain	

Grain	
 boundary	

perfora7on	
 Grain	
 boundary	

interconnec7vity	
 and	

ven7ng	
 to	
 plenum	

Intra-­‐granular	
 	
 	
 	
 	
 	
 	
 Inter-­‐granular	

Figure 2.1: Schematic of fission gas behavior in nuclear fuel.

traps for the fission gas. During irradiation, fission fragments can strike the bubbles and knock

fission gas back into the lattice, thus the number of atoms in the bubble depends on the competing

processes of fission gas absorption through thermal diffusion and loss through fission re-solution.

The actual size of the bubble depends on the gas atom concentration within the bubble, and requires

a relationship between number of atoms and radius.

2.2 Atom Density

If an inter-granular bubble is in equilibrium with the surrounding material, the pressure p within the

bubble is related to the radius of the bubble r as,

p =
2γ

r
+σ, (2.1)

where γ is the surface tension of the solid and σ is the hydrostatic stress in the solid. Although noble

gases can be treated as ideal gases in most cases, for bubbles below about 10 nm the van der Waals

Equation of State (EOS) is more applicable [17]:

p
(

1
ρg
−B
)
= kT , (2.2)

where ρg is the atomic density of the gas at temperature T and k is Boltzmann’s constant. B is a

constant related to the volume occupied by the atoms, typically defined as 8.5×10−29 m3/atom [17].

Combination of Equations 2.1 and 2.2 gives,

1
ρg

= B+

[(
2γ

kT

)
1
r
+

σ

kT

]−1

. (2.3)

12

10
0

10
2

10
4

10
6

10
−3

10
−2

10
−1

10
0

10
1

Bubble radius [nm]

A
to

m
ic

 d
e

n
s
it
y
 ρ

 g
 [

a
to

m
/n

m
3
]

No hydrostatic stress

1 MPa hydrostatic compression

Figure 2.2: Atomic density in bubbles as a function of radius for a stress free solid and a solid with 1 MPa
compressive stress.

Figure 2.2 plots the density as a function of bubble radius. In a stress free solid, the atomic

density for bubbles with radius less than 1 nm goes to a constant related to the inverse of B. For

large radii greater than 100 nm, the gas density in the bubble reduces to the ideal gas law:

ρg =

(
2γ

kT

)
1
r

. (2.4)

The atomic density is not very sensitive to temperature or surface temperature. However, in the

presence of compressive hydrostatic stress the bubble is able to maintain a higher atom density for

larger bubble radii (Figure 2.2).

In stress free solids, the number of atoms in a bubble m is generally calculated using the van der

Waals equation of state. However, the high temperature and stress involved with very small bubbles

in nuclear fuel results in an underestimation of atomic density; Ronchi computationally studied the

atomic density of gas atoms in UC and showed the atom concentration was indeed higher for small

bubbles [20]. More recent evaluations show that the atomic density may be very near the atom con-

centration for solid xenon in UO2 [21], however the applicability of Ronchi’s data to UC fuel makes

it more appropriate for use in uranium carbide simulations. A smooth transition from Ronchi’s data

for small bubble sizes to values calculated using Equation 2.2 can be utilized to calculate the atom

density in the bubble due to the large spread of bubble radii, giving the “Combined” model types,

as displayed in Figure 2.3.

The number of gas atoms m within a bubble is calculated from ρg by,

m =

(
4πr3

3

)
ρg. (2.5)

13

10
−1

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Radius [nm]

A
to

m
ic

 d
e
n

s
it
y
 [
a
to

m
s
/n

m
3
]

Combined 1000 K

Combined 1500 K

Combined 2000 K

van der Waals 1500 K

Figure 2.3: Atomic densities calculated from different EOS models.

At the lower bubble limit, the number of atoms in a bubble goes by r3, as expected with a

constant density. At the higher bubble limits, the number of atoms goes by r2,

m =

(
8γπ

3kT

)
r2, for r > 100nm. (2.6)

Since the volume of the bubble goes by r3, the combination of two identical bubbles with m

number of gas atoms into a single bubble with 2m gas atoms, results in a local swelling increase of

40%. This means as bubbles get larger and combine, the swelling will increase drastically.

2.3 Bubble Types

In general, four types of bubble concentrations are defined in UC fuels, as displayed in Table 2.1.

Although bubble concentration distributions exist in all irradiated nuclear fuel, carbide based fuels

contain much larger bubbles than oxide fuels due to a smaller re-solution rate in carbide fuels as a

result of UC’s superior thermal properties (i.e. thermal conductivity and thermal diffusivity) [9].

The P1 bubbles are similar to the bubbles found in UO2 fuel, while P2 bubbles are typically

found in uranium carbide or uranium nitride fuels. Although there is some recent evidence that

50-100 nm bubbles form in UO2 at high temperatures and burnups [22], they do not result in the

drastic swelling that plagues UC fuels. Although P2 bubbles have a lower concentration, their size

is highly temperature dependent and can cause problems with swelling. Both the P1 and P2 bubbles

are included in the inter-granular model discussed above. The P3 bubbles consist of grain-face

bubbles that grow as a result of single fission gas atoms reaching the grain boundary. Once a P3

bubble reaches an exterior fuel surface it releases its gas content to the plenum. The grain-face

bubbles are typically assumed to maintain their shape for the remainder of the irradiation time and

any additional gas that reaches an outside interconnected P3 bubble is assumed to be instantaneously

released to the plenum. To model release, a surface saturation point is typically calculated for each

14

Table 2.1: Bubble types.

Type Size [nm] Concentration [m3] Behavior

P1 1-30 1021 Nearly constant after some initial incubation time
P2 30-400 1018 - 1020 Dependent on temperature
P3 50-1000 - Increases until interconnection
P0 103 - Dependent on initial structure, decreases due to sintering

UO2 1 1023

fuel grain, with plenum release typically occurring when 50% of the total grain boundary area is

covered in P3 bubbles [13], although some authors claim higher coverage fractions [23].

Lastly, P0 are voids or flaws introduced into the bulk during fabrication. As the P2 and P3

bubbles grow, they will eventually connect with each other and P0 bubbles.

Due to their extremely small size, few studies have been completed on the P1 concentration.

Ray and Blank performed transmission electron microscopy (TEM) to measure bubble sizes and

form histogram data for both sodium and helium bonded UC fuel pins [24]. Their results showed

that the bubble concentrations are relatively independent of temperature (Figure 2.4). While the P1

swelling contribution and gas content are slightly dependent on temperature, both remain so low

that the P1 population is often ignored in simulations. Regardless, it can be inferred that the P1

bubbles are increasing in size as a function of temperature due to the nearly constant concentration

and increasing swelling.

The small size of P1 bubbles ensures that interactions remain only between single bubbles and

diffusing gas atoms in the bulk, however as P2 bubbles grow larger, they can combine. As discussed

in Section 2.1, the combination of two equal sized bubbles results in a 40% volume increase, thus

a considerable amount of swelling can occur once bubbles are large enough to interact with one

another. This behavior has been observed in UC fuels, and in fact causes a sharp decrease in bubble

concentration as well as breakaway swelling at a characteristic temperature, T2 (Figure 2.5).

The swelling trend due to P2 bubbles can be divided into low and high temperature domains: at

low temperatures < 1100K, the swelling is nearly linear, while at higher temperatures the swelling

suddenly decreases (This behavior is only visible in Figure 2.5 as the last two data points for 11 a/o,

but occurs at all burnup values [9]). The low temperature behavior can be attributed to bubble size

increase from single atom absorption. As temperature crosses the threshold T2, a sharp increase in

swelling rate occurs as a result of a growth mechanism that has yet to be identified.

Blank presents several theories as to the presence of P2 bubbles and their sudden break-away

swelling growth rate [9]. The first is that the re-solution parameter decreases for larger bubble sizes,

allowing larger bubbles to grow; A decrease in the re-solution parameter as a function of bubble

size has been shown previously [15], but modern day analysis have yet to be completed. A second

theory is that there is some sort of synergistic relationship between solid precipitates that are have

been empirically shown to be nearly always associated with large P2 bubbles [24]. A final theory

15

800 1000 1200 1400 1600
0

2

4

6

8
x 10

21

Temperature [K]

B
u
b
b
le

 C
o
n
c
e
n
tr

a
ti
o
n
 [
b
u
b
/m

3
]

(a)

800 1000 1200 1400 1600
0

2

4

6

8

10

12

Temperature [K]

P
e
rc

e
n
t
o
f
g
a
s
 c

o
n
c
e
n
tr

a
ti
o
n

(b)

800 1000 1200 1400 1600
0

0.02

0.04

0.06

0.08

0.1

Temperature [K]

S
w

e
lli

n
g
 [
%

 p
e
r

a
/o

]

(c) (d)

Figure 2.4: P1 bubble behavior: (a) Concentration as a function of temperature, (b) percentage of the total
gas concentration, (c) percentage of swelling per atom percent burn up, and (d) micrograph of P1 bubbles

intermixed with some larger P2 50 nm bubbles.

900 1000 1100 1200

0

5

10

15

Temperature [K]

S
w

el
lin

g
[%

]

11 a/o
6.8 a/o

Figure 2.5: P2 swelling behavior in UC fuel [9].

16

Figure 2.6: SEM micrograph of dumbbell coalescence in uranium carbide fuel [9].

is that the bubbles themselves diffuse through the solid, combining due to dumbbell coalescence,

similar to behavior captured in a some UC micrographs (Figure 2.6).

As the P2 bubbles get larger and larger, they tend to combine with both the P3 and P0 bubbles,

resulting in a decrease in swelling contribution at high temperatures, and forming a highly porous

structure in the central regions of the pin. The different regions of P2 bubble behavior results in a

4-zone structure that has been adopted in describing irradiated carbide fuels. The different regions

are described in Table 2.2. Since most of the fission gas released originates from the interior zones

of the fuel pin, the larger the fraction of pellet that remains as zone IV, the lower the fission gas

release and swelling.

Figure 2.5 compares the difference in P2 swelling from two irradiation tests, showing a slight

dependence on burnup: as burnup increases, T2 decreases. By comparing many different experi-

ments, the so-called T2 curve can be plotted as a function of burnup (Figure 2.7). The cause of this

behavior is not fully understood. One cause may be that the earlier breakaway swelling is due to a

higher concentration of fission gas at higher burnups. A second cause may be due to a change in

fission gas diffusivity, and is discussed below.

2.4 Diffusivity Dependence

The growth of bubbles is dependent on the ease of which fission gas atoms can diffuse through the

fuel, or the diffusivity D:

D = D0 exp
(
−Q
RT

)
(2.7)

where D0 is the intrinsic diffusivity, Q is the activation energy and R is the ideal gas constant. Be-

cause of the temperature dependence of D, larger bubbles are more prevalent at higher temperatures

as single atoms move through the bulk easier and combine with bubbles more often.

The diffusivity can also be modified by the chemistry of the system. The GOCAR irradiation

tests studied fuel with various ratios of nitrogen, oxygen, and carbon [27]. In general, the atomic

17

Table 2.2: Structural zones in UC Fuel.

Zone Properties Required Conditions

IV Zone of low swelling and base release: T <T
As-build structure Typically below 1100-1300K
Slight densification
Small P1, P2, P0 bubbles

III Transition from low to high: T >T2
Sudden change to high rate of swelling Width of zone 200K
Grain Growth
Increasing release up to 70%
Increasing P3 bubbles
P3 interlinkage in hotter regions

II Pseudo columnar grain zone: High T and high ∆T
Not always present Typically only for >120 kW/m
Fuel densification
Possible columnar grain growth
High gas release
Low swelling

I Porous structure: High T
Usually present Central part of pin
Highly porous
High gas release
Low swelling
Central hole possible
Pore size equals grain size

0 2 4 6 8 10 12
1000

1100

1200

1300

1400

1500

Burnup [a/o]

C
ri
ti
c
a
l
T

e
m

p
e
ra

tu
re

 T
2
 [
K

]

Figure 2.7: Critical temperature vs. burn up for several irradiation tests [25–28].

mobility in nitride fuel is slower than carbide fuels [5], thus as the nitrogen/carbon ratio increases,

the fission gas diffusivity lowers, resulting in smaller bubbles and an increase in the critical tem-

perature, matching the observed behavior from the GOCAR experiments; The higher the ratio of

18

0 1 2 3 4 5 6 7 8
1000

1100

1200

1300

1400

1500

1600

Burnup [a/o]

C
ri
ti
c
a
l
T

e
m

p
e
ra

tu
re

 T
2
 [
K

]

UC

UCN, 20% N

UCN, 50% N

UN

UCO

Figure 2.8: Critical Temperatures of MX fuels [27].

nitrogen in the fuel, the higher the critical temperature (Figure 2.8). Conversely, the increase of

oxygen in the fuel increases diffusivity, resulting in a lower T2; The GOCAR irradiation results

repeated in Figure 2.8 compared UC fuel with a 3% oxygen impurity content to UCO fuel with

8% oxygen content. Although oxygen was present in only a small fraction, the critical temperature

dropped by nearly 80 K at 2.2 a/o burnup (Figure 2.8). Extending this behavior to the concept of

structural zones in UC, the higher the oxygen content or lower the nitrogen content, the smaller

zone IV will be, resulting in higher swelling and fission gas release.

The dependence of fission gas release on oxygen is also evident by examining fission gas release

data from several irradiation tests, displayed in Figure 2.9 [9]. It was originally thought that fuel

form, both in diameter and type, played the primary role in curbing fission gas release through direct

control of centerline temperatures [7]. However, fuel irradiated in the 1980s as part of the AC-3 test

experienced extremely low fission gas release despite similar irradiation conditions as previous tests,

with the primary difference being low oxygen impurities [29]. Although temperature will always

be the driving factor of fission gas release, the low oxygen concentration in the AC-3 tests raised

the critical temperature threshold, avoiding the breakaway swelling and the bubble interconnectivity

that often results in high fission gas release.

2.5 R/B curves

In an effort to highlight some of the difficulties in relying on purely experimentally formulated

models, an example of a previous method to calculate fission gas release will be explored here.

For many of the fission gas release calculations utilized for licensing, a Release over Birth (R/B)

curve can be used to compartmentalize all of the effects relating to fission gas release into a single

plot such as Figure 2.10. This plot contains an estimated release rate over birth rate as a function of

isotope half-life, and is formulated using experimental data of total fission gas release from previous

experiments. For carbide fuels, only a couple curves have been formulated, the first of which was

used to license Peach Bottom Unit-1, one of the few gas reactors to ever operate in the United

19

 2 4 6 8 10 12

60

40

20

Burnup [a/o]

Fi
ss

io
n

ga
s

re
le

as
e

[%
]

European

> 2000 ppm O

US 500 ppm O

2

2

AC-3 pellets, 77% smear, 900 ppm O

AC-3 sphere-pac, 80% smear, 700 ppm O

83% Smear

70% Smear

81% Smear

75% Smear

2

2

Figure 2.9: Fission gas release from several UC irradiation tests [9].

10−2 10−1 100 101 102 103 104 105 106

10−2

10−1

100

Half-life (hr)

R
/B

Figure 2.10: Peach Bottom’s R/B curve.

States. The second model was developed for the Modular High Temperature Reactor (MHTGR), a

design that has been extensively studied but never built. Finally, application of the MHTGR to the

more modern EM2 will highlight some of the difficulties in using an integral model to calculate the

intricate fission gas behavior.

2.5.1 Peach Bottom

Figure 2.10 displays R/B curve used in the Peach Bottom Final Hazards Summary Report [30].

The data for the curve was taken from linear accelerator experiments on uncoated (Th,U)C2 fuel

20

particles. This R/B curve was calculated at a non-specified temperature for sole application to the

Peach Bottom reactor design, with no corrections for burnup or differing gas species

2.5.2 MHTGR Model

A more complicated calculation of the R/B release curve for carbide fuel can be found in the 1993

MHTGR model database compiled by Martin [31]. Coefficients for R/B calculations were provided

for UCO1.6, UCO1.1, ThO2, UC2, and UO2 fuels. In general, the diffusive behavior of gas was

reduced to xenon-like and krypton-like behavior. It is assumed that iodine and tellurium release is

similar to xenon, and selenium and bromine release is similar to krypton.

The general model equation for unhydrolyzed fuel is given as:

(R/B) =
(R/B)0 · f (T)+ fs(T)

1+ fs(T)
, (2.8a)

(R/B)0 = 3
(

ξ jk

λi

)n

, (2.8b)

f (T) = c+(1− c)exp(Q jk/RT)exp(−Q jk/RT0), (2.8c)

fs(T) = exp(a[T −Ts]), (2.8d)

(R/B) = calculated release rate over birth rate as a function of isotope i,

(R/B)0 = steady-state fractional release at reference temperature T0,

f (T) = correction factor based on temperature,

fs(T) = correction factor based on structural changes at high temperature,

T = temperature [K],

T0 = reference temperature (T0=1373 K),

Ts = reference temperature for high temperature structural correction [K],

ξ jk = reduced diffusion coefficient for element j (i.e. Xe or Kr) [1/s],

λi = decay constant of isotope i [1/s],

n = constant (a=0.5),

c j = constant for element j (i.e. Xe or Kr),

Q jk = activation energy for steady state fission gas release k [J/mol],

R = ideal gas constant (8.314 J/mol/K),

ak = constant for fuel type k.

The parameters used for Equation 2.8 are displayed in Table 2.3. According to the original docu-

mentation, (R/B)0 is roughly related to the vacancy motion, f (T) to the athermal release mechanism

and overall temperature dependence, and fs(T) to the high temperature diffusion of gas atoms in

grains and any possible bubble diffusion [31]. Missing from the above formulation is any burnup

21

10−2 10−1 100 101 102 103

10−4

10−3

10−2

10−1

Half-life (hr)

R
/B

0
UCO1.6 Xe
UCO1.1 Xe

UC2 Xe
UCO1.6 Kr
UCO1.1 Kr

UC2 Kr

Figure 2.11: (R/B)0 plotted for several fuel types and for each diffusive element.

2000 1000 670 500

10−1

100

101

102

Temperature (K)

f(
T
)

Xenon
Krypton

Figure 2.12: Arrhenius plot of the temperature correction f (T) for Xe and Kr. The same values apply for all
fuel types.

22

Table 2.3: Parameters for Equation 2.8 [31].

UCO1.6 UCO1.1 UC2
Parameter Kr Xe Kr Xe Kr Xe

ξ jk [1/s] 1.31x10−10 1.35x10−11 1.62x10−10 1.67x10−11 1.23x10−10 1.26x10−11

c j 0.073 0.21 0.073 0.21 0.073 0.21
Q jk [J/mol] 5.131x104 4.52x104 5.131x104 4.52x104 5.131x104 4.52x104

ak [1/K] 0.0128 0.0128 0.0133
Ts [K] 1800 1800 1700

10−4 10−3 10−2 10−1 100 101 102 103 104 105 106 107

10−4

10−3

10−2

10−1

100

R/B0

Kr

UC2 1500 K

Xe

UC2 1250 K

UCO 1250 K

UC2 1000 K

Half-life (hr)

R
/B

Figure 2.13: MHTGR Xe R/B values compared to the uncorrected R/B0 curve. Here, UCO corresponds to
UCO1.6. UCO1.1 is omitted since it is rougly same as UCO1.6. The UC2 Kr R/B curve at 1500 K is included

for comparison.

dependence; A correction function for oxide fuel types was included in [31], however since the

focus of the current work is on carbide fuel types, any R/B calculations for the oxide fuels, and thus

burnup dependence has been dropped from Equation 2.8.

The (R/B)0 term depends purely on the decay constant of the isotope of interest, and varies for

fuel type k and element behavior j. (R/B)0 is plotted in Figure 2.11 for several fuel types and for

Xe and Kr diffusive properties. The UC2 and UCO1.6 curves are nearly identical, while the UCO1.1

(R/B)0 values are slightly higher. In general, the R/B values for Kr tend to be an order of magnitude

higher than Xe.

The temperature correction function f (T) is somewhat sensitive to temperature (Figure 2.12).

The exponential behavior of the structure correction function fs(T) provides the greatest modifica-

tion to the R/B values, especially for species with small half-lives. Figure 2.13 displays the corrected

R/B calculated from Equation 2.8. Although the f (T) correction is included, the fs(T) dominates

the deviation from (R/B)0. Due to differences between fuels in the fs(T) coefficients, the corrected

R/B curve for UC2 is higher than the corresponding UCO curves.

23

600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500
0

5

10

15

Temperature (◦C)

N
or

m
al

iz
ed

Pe
rc

en
t BOL

EOL

Figure 2.14: Estimated fuel temperatures in EM2 for Beginning of Life (BOL) and End of Life (EOL) [32].

10−4 10−3 10−2 10−1 100 101 102 103 104 105 106 107

10−2

10−1

100

BOL

EOL

C
s-

13
7

X
e-

13
3

X
e-

13
5

X
e-

13
8

I-
13

5

B
a-

14
0

K
r-

85

Half-life (hr)

R
/B

fo
rE

M
2

BOL Krypton
BOL Xenon

EOL Krypton
EOL Xenon

Peach Bottom

Figure 2.15: R/B values for EM2 estimated fuel temperatures [32].

2.5.3 EM2 R/B

In order to correctly apply the MHTGR model, knowledge of the fuel temperature distribution is

necessary to accurately estimate R/B since the exponential behavior of the fs(T) makes an ordinary

volume averaged temperature inappropriate. As an example, the R/B model can be applied to the

EM2 reactor design. Figure 2.14 displays some preliminary fuel temperatures for Beginning of Life

(BOL) and End of Life (EOL) of a typical EM2 fuel cycle. The peak/average fuel temperatures are

1700/990◦ C for BOL and 1400/1000◦ C for EOL.

The temperature distribution weighted MHTGR R/B curves for the estimated EM2 BOL and

EOL behavior is displayed in Figure 2.15. The parameters for UC2 fuel were assumed for the EM2

uranium mono-carbide fuel. Although a large number of fuel elements at BOL are relatively cold

(<600◦ C), the R/B curve is actually higher due to the few high temperature fuel elements. The

narrow EOL temperature distribution helps keep the fuel out of the high temperature region.

24

The R/B curves in Figure 2.15 can be represented as a two term power model. The R/B for

diffusive behavior j (i.e. Kr or Xe) and isotope i can be estimated by:

R/B = a+
(

b
λi

)1/2

, (2.9)

where λi is the decay constant of the the isotope in [1/s], a is a constant that depends on the temper-

ature distribution (abol = 0.0543 or aeol = 0.0078), and b is a constant that depends on the diffusive

behavior (bXe = 5.74e-11 [s] or bKr = 4.71e-10 [s]). In this way, the R/B can be simply calculated

for each temperature distributions.

2.5.4 R/B Model Discussion

Initially, it was believed that the complexities present in the newer MHTGR model would result in

lower fission gas release than the single Peach Bottom curve. While the narrow EOL temperature

distribution does result in less release of gaseous fission products, the release actually increases for

the BOL temperature distribution: a small percentage of hot fuel rods at BOL cause an increase

in fission gas release, especially of isotopes with short half-lives. In general, the Peach Bottom

curve lies between the BOL and EOL. The uncertainties involved affect both models equally (i.e.

similar but different fuel types, thermal vs. fast reactor design, close packed vs. graphite dispersed

particles), thus neither model is fully adequate. Regardless, the temperature dependence of the

MHTGR allows for potentially more interesting calculations.

Even though there is a higher complexity level included in the MHTGR model, there are still

many assumptions and uncertainties involved:

• The R/B curve was formulated from release rates of short-lived isotopes (half-life <5.3 days),

although Martin claims that it is also applicable to long lived isotopes [31]. While this seems

true, the curve would most likely asymptotically approach a release of 1.0, similar to the

behavior of the Peach Bottom curve (Figure 2.10). Since the MHTGR R/B curve linearly

approaches 1.0, it will tend to overestimate the release of long-lived isotopes.

• The MHTGR model supplies R/B curves only for Xe, Kr, I, Te, Br, and Se. Other species are

assumed to follow a diffusion type models.

• The formulated R/B curves are for UC2, not for the UC fuel present in the EM2 core. There is

some evidence that UC2 has diffusion rates an order of magnitude slower than UC [5, p. 493].

• The MHTGR model was based on release rates from failed coated particles (diameter = 200

µm) in thermal reactor designs. There is some evidence that the release mechanism is pri-

marily from recoil events [33]. In MHTGR fuel designs, the fuel particles are embedded in

a graphite matrix in which recoiling atoms can be trapped before entering a neighboring par-

ticle. The close-packed graphite-free kernels required for fast reactor fuel designs will result

25

in a reduction of recoil release as knocked out atoms will have a high chance of reentering an

adjoining fuel particle.

In general, the limitations of a model based purely on experimentally derived data is evident.

Even when the complexities of the MHTGR model are taken into account, the Peach Bottom and

MHTGR models produce similar results. Furthermore, the models are limited to the narrow band

of experimental parameters utilized to make the relationships. In order to fully understand the

fission gas behavior, a new approach to that builds upon first-principle models of the phenomena is

required.

26

CHAPTER 3: RE-SOLUTION

The radiation field in a nuclear reactor results in a region of high chaos, damage, and instability in

nuclear reactor fuel. One of the most consequential microscopic effects that results in an observable

outcome is the behavior of fission gas; the gas atoms that are created as a product of fission move

through the lattice, eventually finding one another and forming bubbles. These bubbles are then

subject to other fission fragments constantly streaming through the fuel, resulting in the knock out

of gas atoms back into the lattice. This loss event, or “re-solution” process, plays a large part in

limiting the size of fission gas bubbles. A thorough understanding of re-solution is important for

any future fission gas bubble models. While the vast majority of studies on re-solution have focused

on uranium oxide fuels, the inherent material differences that uranium carbide benefits from makes

it an ideal candidate for less computationally expensive modeling methods. The following section

focuses on the re-solution process in uranium carbide. Through the use of a new code 3D Oregon-

state Trim (3DOT), the re-solution parameter is calculate as a function of bubble radius for use in

future fission gas bubble dynamics models.

3.1 Background

The re-solution event has been described as either a collisional atom-by-atom loss, or though a com-

plete destruction process [34]. The latter theory first developed by Turnbull [35], termed “heteroge-

nous” re-solution, assumes a bubble is destroyed if it lies within a destruction zone of approximately

a nanometer around a given fission track, as portrayed in Figure 3.1a. A second “homogenous”

theory originally presented by Nelson [36] assumes that individual gas atoms are knocked out of

bubbles through direct collisions with fission fragments or from fuel cascades produced in the fuel

as portrayed in Figure 3.1b. Many previous studies have looked at one or both of these theories in

UO2 [11, 14, 15, 37–40]. In general, the homogenous theory tends to underestimate the re-solution

rate in UO2, while success has been achieved with the heterogenous theory [14, 15, 41]. Although

fewer studies have looked at re-solution in non-oxide fuels, a study by Ronchi and Elton showed

the homogenous theory produces favorable results in uranium carbide fuels [15].

The ability of the heterogenous re-solution model to accurately estimate re-solution in oxide

fuels, while homogenous re-solution seems more applicable to uranium carbide fuel, lies in the

inherent differences between the two materials; uranium monocarbide is bonded by a mix of cova-

lent and metallic contributions [9], resulting in different energy transport properties such as higher

thermal conductivity and diffusivity when compared to UO2. Fission fragments are well known

to create displacement spikes in materials [17]. Following the lattice disorder, a local temperature

increase on the order of 2000◦ C occurs in UO2, along with a mechanical shock that moves through

27

FF travel length

~2 nm

(a)

Fission Fragment
~100 MeV

 Fuel lattice Bubble atoms

(b)

Figure 3.1: Schematics of the a) heterogenous, and b) homogeneous theories of re-solution.

the lattice as a result of rapid thermal expansion [15, 42]. However, theoretical calculations have

shown that considering the higher electrical conductivity and thermal diffusivity present in uranium

carbide which permits rapid dispersal of energy, the temperature increase is on the order of only

50 K [15]. As a result, the thermoelastic stress field caused by a thermal spike is nearly absent in

UC [43, 44].

In light of the differences between UC and UO2, it is understandable that the bubble destruction

model has seen success in oxide fuels, while the atom-by-atom knockout microscopic model is more

applicable to carbide fuels [15]. Because of this, the typically used, albeit computational expensive,

Molecular Dynamics (MD) fission spike models of determining re-solution can be avoided in favor

of Binary Collision Approximation (BCA) models.

In his original 1969 formulation, Nelson estimated the re-solution rate of a 5 nm xenon gas bub-

ble in UO2 by assuming a Rutherford potential for fission fragment collisions and a hard-sphere po-

tential for all other collisions, with no electronic losses [36]. An atom was assumed to be implanted

back into the fuel if a gas atom located within a critical distance of 1 nm from the surface of the

bubble was struck by an ion and transferred the minimum implantation energy Emin = 300 eV [36].

The critical distance limit assumed that all centrally located fission gas atoms would suffer a large

angle collision before reaching the bubble surface, while atoms close to the bubble surface result in

a re-solution event if struck with sufficient energy. Ronchi and Elton extended the calculation by

allowing Emin, as well as the radius of the bubble, to be a variable parameter of the calculation in

oxide and carbide fuels [15]. Ronchi and Elton utilized the critical distance criterion for re-solution

as well, ignoring the centrally located atoms in the bubble. However, due to the larger bubble sizes

28

M
v

M

M

M

θ

θ

1,0
1

1

2

2

2

1

v1,f

v
2,f

(a)

M
u1,0

1 2

1

2

Mu2,0

M

u2,f

M

u 1,f

(b)

Figure 3.2: Schematics of the two-body collision in a) laboratory and b) Center of Mass coordinates.

in their study, the critical distance was not held constant, but rather allowed to increase in order to

compensate for the lower atomic densities present in larger bubbles.

3.2 Theory

3.2.1 Binary Collision Dynamics

The classical description of the collision of two particles requires only the initial velocities and

trajectories of the two particles to determine dynamics of the system through conservation of mo-

mentum and energy. While the charge and interaction between two subatomic particles somewhat

complicates the classical view, the geometry and setup of the problems are the same.

Consider a moving atom, or “ion,” with mass M1 and velocity v1,0 colliding with an initially

stationary target atom with mass M2 (Figure 3.2a). The ion will scatter off at some angle θ1 with a

new velocity v1,f, while the target atom will recoil with some velocity v2,f and angle θ2. Applying

conservation of energy and momentum yields:

E0 =
1
2

M1v2
1,0 =

1
2

M1v2
1, f +

1
2

M2v2
2, f = E f , (3.1a)

M1v1,0 = M1v1, f cosθ1 +M2v2, f cosθ2, (3.1b)

0 = M1v1, f sinθ1 +M2v2, f sinθ2. (3.1c)

The above equations can be solved in various forms to describe the behavior of the particles. In

an effort to simply the problem, the equations can be recast into the Center of Mass (CM) reference

frame. In this way, the same collision can be reduced to a single equation of motion due only to a

central force field. This simplification holds true no matter how complex the force, so long as the

force only acts along the line joining them with no transverse components. The potential energy

V (r), can then be described using only the absolute value of the distance between the particles, r.

To convert to the CM coordinates, the frame velocity, vcm, is defined such that there is no net

29

momentum change in the system,

M1v1,0 = (M1 +M2)vcm. (3.2)

Solving for vcm gives,

vc = v1,0
Mc

M2
, (3.3)

where Mc is the reduced mass, defined by,

Mc =
M1M2

M1 +M2
. (3.4)

If the frame of reference is changed such that the center of mass is stationary (i.e., the frame is

traveling at vcm), then the velocity of the particles in the CM frame can be converted by subtract-

ing vcm:

u1,0 = v1,0−vcm = v1,0
Mc

M1
, (3.5a)

u2,0 =−vcm =−v1,0
Mc

M2
. (3.5b)

Equation 3.5 highlights one of the major benefits of the CM coordinates; The velocities of the

two particles are independent of angle, and thus remain constant throughout the collision. Further-

more, the system energy in the CM frame reduces to the constant energy of a single particle with

mass Mc and velocity v1,0:

Ec =
1
2

M1u2
1,0 +

1
2

M2u2
2,0 =

1
2

Mcv2
1,0. (3.6)

Although much of the math regarding binary collisions is presented in the CM coordinates, real

world application often requires laboratory coordinates, thus relationships are necessary to convert

between the two. Figure 3.3 displays the vector diagram of the both the lab and CM frames. The CM

scattering angle of the target, Φ, can be determined by examining the lower triangle in Figure 3.3;

since u2, f = vcm, the triangle is isosceles, therefore,

Φ = 2θ2. (3.7)

Furthermore, since the two particles are viewed as moving away from each other in the CM

frame, φ+Φ = π. Equation 3.7 can be rewritten to express the CM target scattering angle in terms

of the lab target scattering angle,

θ2 =
π−φ

2
. (3.8)

Of particular interest in kinematics calculations is the energy of the recoiling target atom as a

30

v1,f

u 1
,f

v2,f
u 2

,f

vcm
1

2

θ

θ

Figure 3.3: Scattering angles schematics for the lab (green) and Center of Mass frame (blue).

function of the target atom scattering angle. By using the law of cosines on the lower triangle in

Figure 3.3 and the velocity relationship in Equation 3.5,

v2
2, f = 2v2

cm (1− cosφ) . (3.9)

Equation 3.9 can be further simplified using Equations 3.3 and 3.7:

v2, f = 2v1,0
Mc

M2
cosθ2. (3.10)

The recoil energy can then be calculated through the kinetic energy relationship

E2, f =
1
2

M2v2
2, f . (3.11)

Combining Equations 3.10 and 3.11, the energy transferred to the recoiling target atom, defined

as T , can be calculated as a function of lab recoil angle:

T ≡ E2, f =
M2

2

(
2

v1,0Mc cosθ2

M2

)2

. (3.12)

Equation 3.12 can be transformed to give a relationship for T as a function of the ion CM recoil

angle by using Equation 3.8:

cosθ2 = cos
(

π−φ

2

)
= sin

φ

2
. (3.13)

Combining Equations 3.12 and 3.13, along with the definition of the initial ion energy from Equa-

tion 3.1a, calculation of T can be simplified to,

T = γE0 sin2 φ

2
, (3.14)

31

M
v

M

M

M

θ

θ

1,0
1

1

1

2

2

2

v1,f

v
2,f

p

Figure 3.4: Trajectories of two-body collision in the laboratory frame.

where γ is defined as,

γ≡ 4M1M2

(M1 +M2)
2 . (3.15)

The product γE0 can also be defined as TM, or the maximum energy transfer during a head-on

collision.

One final relationship is important for kinematics calculations which relates the scattering angle

of the ion in the lab as a function of the scattering angle in the CM frame:

θ1 = tan−1
(

M2 sinφ

M1 +M2 cosφ

)
. (3.16)

The preceding section uses only the conservation of energy and momentum to show that two

particles can be represented by a single particle with mass Mc, interacting with a central force V (r),

with a constant energy given Ec. This was all done with the assumption that the force acts only along

the line joining the two particles, with no transverse forces. In order to determine the kinematics of

a collision (angle of scatter, energy of particles, etc.), the relationship sin2
φ/2 must be calculated.

Equation 3.14 can then be used to determine the energy transfer, and Equation 3.16 can be used to

determine the scattering angle. The following sections discuss several methods that can be used to

calculate sin2
φ/2 based on a central potential.

3.2.2 Central Force Scattering

While the previous section deals the initial and final positions of the particles far away from the

point of collision, knowledge of entire path of the particles is necessary to calculate scattering cross-

sections, or probability of recoil energies. A more appropriate sketch of the collision is shown in

Figures 3.4 and 3.5, where the dotted lines correspond to the asymptotic trajectories from Figure 3.2.

Before the full trajectory can be determined, an advantage of the CM frame must be proved: angular

momentum is constant.

Consider a particle with mass MC traveling with velocity v, at a location described by the po-

32

u

u

CM

M

M

p

r

r

rmin

Figure 3.5: Trajectories of two-body collision in the Center of Mass frame.

sition vector r, acted on by some force F(r) that acts only in the radial direction. The angular

momentum of this single-body problem can be expressed as,

l = r×p = r×Mcv. (3.17)

where p is the momentum of the traveling ion. The time rate of change of the angular momentum

is given by,

l̇ = ṙ×Mcv+ r×Mcv̇, (3.18)

where the dot notation denotes the time derivative. Since ṙ≡ v, the first term equals zero, while the

second term is the torque due to a force,

l̇ = r×F. (3.19)

However, since F is defined as a central force only, r×F = 0, and thus,

l = r×p = constant. (3.20)

The angular momentum can be further simplified by breaking the velocity vector into its polar

components. Since the radial component points in the same direction as r, the angular momentum

can be expressed by the angular velocity only,

l = rMcvθ = r2McΘ̇, (3.21)

33

where Θ is the angle between r and rmin, as displayed in Figure 3.5. The distance r is defined as

r1 + r2, or the sum of the distances from the particles to the center of the problem. Additionally, r1

and r2 are defined as,

r1 =
M1

M1 +M2+
r, (3.22a)

r2 =
M2

M1 +M2+
r. (3.22b)

Since the angular momentum stays constant throughout the entire collision, definition at any one

point can define l. At very long separation distances, the particle travels in a straight line separated

from the point of collision by the impact parameter p as in Figure 3.5, thus the angular momentum

can be calculated as,

l = Mc pv1,0. (3.23)

In order to determine the scattering cross-section of the collision, manipulation of the system

energy is required. The energy of the CM system can be calculated in polar coordinates as the

combination of kinetic and potential energy exerted by V (r):

Ec =
1
2

Mc(ṙ2 + r2
Θ̇

2)+V (r). (3.24)

By equating Equations 3.21 and 3.23, Θ̇ can be expressed as a function of the impact parameter,

Θ̇ =
pv1,0

r2 . (3.25)

Inserting Equation 3.25 into Equation 3.24, and solving for ṙ results in,

ṙ = v1,0

[
1− V (r)

Ec
−
(p

r

)2
]1/2

, (3.26)

Equation 3.26 expresses the radial equation of motion, and determines the time rate of change

of separation between the particle and the central force. However in order to determine the energy

imparted to the recoil particle using Equation 3.14, the scattering angle is required; Utilizing the

fact that ṙ = (dr/dt) and Θ̇c = (dΘc/dt), the left-hand side of Equation 3.26 can be modified by,

dΘc

dr
=

Θ̇

ṙ
=

p

r2
[
1− V (r)

Ec
−
(p

r

)2
]1/2 . (3.27)

Equation 3.27 equates the change in angle as a function the distance between the two particles.

The final scattering angle, φ can be determined by integrating Equation 3.27 over the orbit. Since the

trajectory is symmetric about the impact parameter, the second half of the trajectory of the particle

is the same as the first half and the integral can be reduced to the first half of orbit, from r→ ∞ to

34

u

CM

min

Figure 3.6: Schematic of Θmin.

rmin, while the respective Θ limits go from Θmin to π/2. Utilizing the limits for the first half of the

orbit gives: ∫
π/2

Θmin

dΘ =
∫ rmin

∞

pdr

r2
[
1− V (r)

Ec
−
(p

r

)2
]1/2 . (3.28)

While the upper limit is clear from Figure 3.5, the lower limit requires further clarification;

From Figure 3.6, Θmin +Φ/2 = π/2 and from Figure 3.3, Φ+φ = π, thus,

Θmin =
φ

2
. (3.29)

Plugging Equation 3.29 into Equation 3.28, we can finally solve for the scattering angle φ,

φ = π−2
∫

∞

rmin

pdr

r2
[
1− V (r)

Ec
−
(p

r

)2
]1/2 . (3.30)

Equation 3.30 is known as the classical scattering integral, and can be used to determine the

final scattering angle in the CM frame given some potential energy V (r), energy Ec, and the impact

parameter p. The last unknown, rmin, can be determined through clever interpretation of the inverse

of Equation 3.27:

dr
dΘc

=
r2
[
1− V (r)

Ec
−
(p

r

)2
]1/2

p
. (3.31)

At the middle of the trajectories where the particles are closest, r = rmin and dr/dΘc = 0, thus the

term in the brackets equals zero:

rmin =
p[

1− V (rmin)
Ec

]1/2 . (3.32)

35

p

α

α

α

ɸ

Figure 3.7: Schematic of hard-sphere scattering.

In order to determine the scattering angle in Equation 3.30, a potential energy V (r) must be

defined that describes the interaction between the two particles interacting through a central force

to describe the binary collision dynamics. While there are many potentials that aim to describe this

complicated behavior, only a few exist that can be analytically solved. These simple potentials make

broad assumptions, such as the hard-sphere potential, or rely on empirically tuned parameters, such

as the MAGIC potential. Several of these are discussed in the following sections.

3.2.3 Hard-Sphere Potential

The simplest model to describe the behavior between two interacting atoms is the Hard-sphere

model. The potential energy is very similar to billiard ball collisions, and can be described as,

V (r) =

∞ if r < R1 +R2,

0 if r ≥ R1 +R2.
(3.33)

Unlike many other potentials, the Hard-sphere potential is easily solved geometrically using

Figure 3.7. If the scattering angle is larger than the sum of the radii, p > R1 +R2, then no inter-

action will occur. Otherwise, assuming a purely elastic collision and, the scattering angle can be

determined as,

φ = π−2α = π−2sin−1
(

p
R1 +R2

)
. (3.34)

The scattering angle for all cases can be simplified to,

φ =

{
2cos−1

(
p

R1+R2

)
if p < R1 +R1,

0 otherwise.
(3.35)

36

3.2.4 Rutherford Potential

Along with the Hard-sphere model, the Coulombic or Rutherford potential is one of the few po-

tentials that can be solved analytically. The formulation for the Rutherford potential follows the

two-body collision of unscreened ions, or rather the Coulombic collision between two bare nuclei

with no accounting of electron interaction. Although simple, Rutherford Scattering will prove to be

an appropriate approximation in certain high-energy situations.

The Coulombic potential energy describes the force between two particles with atomic numbers

Z1 and Z2 as,

V (r) =
Z1Z2e2

r
, (3.36)

where e is the charge of an electron. Plugging this into Equation 3.30,

φ = π−2p
∫

∞

rmin

dr

r2
[
1− p0

r −
(p

r

)2
]1/2 , (3.37)

where p0 is defined as,

p0 =
Z1Z2e2

Ec
. (3.38)

Before Equation 3.37 can be integrated, the substitution y = 1/r+ p0/2p2 is required:

φ = π−2
∫ p0/2p2

1/rmin+p0/2p2

dy

[c2− y2]1/2 , (3.39)

where c is defined as,

c2 =
1
p2 +

p2
0

4p4 . (3.40)

In addition, rmin must be defined. Plugging Equation 3.36 into Equation 3.32,

rmin =
p

(1− p0/rmin)
1/2 . (3.41)

Rearranging the above equation and using the quadratic formula we can solve for rmin:

rmin =
p0

2

[
1+
(

1+
4p2

p2
0

)1/2
]

. (3.42)

Using this new integration limit, Equation 3.39 can finally be integrated:

φ = π−2

sin−1
(

p0/2p2

c

)
− sin−1


2
p0

[
1+
(

1+ 4p2

p2
0

)1/2
]−1

+ p0/2p2

c


 . (3.43)

37

Luckily the first term in the brackets goes to 0 as p0 gets large or p gets smaller, so that Equation 3.43

reduces to,

φ = π−2sin−1

 p0
2p2[

1
p2 +

p2
0

4p4

]−1/2

 . (3.44)

Finally, solving for φ gives,

sin2 φ

2
=

1

1+ 4p2

p2
0

. (3.45)

This final equation can be plugged directly into Equation 3.14 to solve for the energy imparted to

the target atom based on the angle of the scattering ion.

3.2.5 MAGIC Potential

When formulating an interatomic potential energy of two interacting atoms, the assumptions utilized

for the hard-sphere and Rutherford type potentials can be bypassed through the creation of a purely

empirical potential formulation. This formulation forms the basis of the MAGIC potential. Through

the analysis of extensive experimental results, Biersack and Haggmark [45] created a universal

model for two-body interatomic potential that is utilized in the TRIM algorithm in the original

SRIM/TRIM software [46], 3DTrim [47], and the 3DOT model presented here.

As discussed in Section 3.2.4, the Rutherford potential describes the interatomic potential en-

ergy function for two bare atoms. In reality, the atoms are surrounded by electrons that shield the

positively charged nucleus. At high enough energies, colliding ions can pierce the outer shell of

electrons, resulting in a Coulombic force that becomes a function of distance from the nucleus.

Mathematically, this can be expressed through a screening function term Φ(R) multiplied against

the Rutherford potential energy as,

V (R) =
Z1Z2e2

aR
Φ(R), (3.46)

where R≡ r/a is the reduced interatomic separation and a is the universal screening length defined

as,

a =
0.8853a0

Z0.23
1 +Z0.23

2
, (3.47)

where a0 is the Bohr radius = 5.29 ·10−11 m.

Although Biersack and Haggmark initially utilized the Molière screening function [45], Ziegler,

Biersack, and Littmark later improved the TRIM algorithm through creation of an Universal Po-

tential [48]. Through brute force calculation of 261 randomly selected pairs of target-ion element

combinations, the so-called “ZBL,” or Universal screening potential energy was empirically created:

ΦU =0.1818exp(−3.2r/a)+0.5099exp(−0.9423r/a)+

38

0.2802exp(−0.4028r/a)+0.2817exp(−0.2016r/a) (3.48)

Unfortunately, the interatomic potential energy for any given target-ion combination had to

be explicitly solved using Equation 3.46. In response to the high expense of specially tailored

calculations, Ziegler, Biersack, and Littmark created the MAGIC formula:

cos
φ

2
=

P+Rc +∆

Rmin +Rc
, (3.49)

with the following reduced parameters:

P = p/a, (3.50a)

Rc = ρ/a, (3.50b)

∆ = δ/a, (3.50c)

Rmin = rmin/a. (3.50d)

Here a is defined as the universal screening length that is used to reduce the impact parameter p,

radii of curvature of the trajectories at the closest approach, ρ, and “correction term”, δ [45].

The term ρ is calculated through the potential energy at the closest approach by,

ρ =
−2 [Ec−V (rmin)]

V ′(rmin)
, (3.51)

where V ′ is the spatial derivative of the interatomic potential energy at point rmin.

Lastly, ∆ is the so called “Magic Formula Parameter,” a correction term that has been empirically

fitted to the Universal Screening Potential, and is defined as [45],

∆ =
A(Rmin−P)

G+1
, (3.52a)

A = 2αεPβ, (3.52b)

G =
γ√

1+A2−A
, (3.52c)

α = 1+C1ε
−1/2, (3.52d)

β =
C2 + ε1/2

C3 + ε1/2 , (3.52e)

γ =
C4 + ε

C5 + ε
, (3.52f)

ε≡ aEc

Z1Z2e2 . (3.52g)

Here, the Ci terms are coefficients that are determined using a particular interatomic screening po-

tential energy. Using Equation 3.46, the coefficients in the MAGIC formulation can be computed

39

as:

C1 = 0.99229, (3.53a)

C2 = 0.11615, (3.53b)

C3 = 0.007122, (3.53c)

C4 = 9.3066, (3.53d)

C5 = 14.813, (3.53e)

Although somewhat tedious, each term described above is analytically solvable, except for the

distance of closest approach; rmin can be solved using a simple Newton method loop applied to

Equation 3.32, similar to the form in Section 4.3.2. Once rmin is determined, Equation 3.49 can be

calculated. Lastly, the Pythagorean identity,

sin(φ/2) =
√

1− cos2(φ/2), (3.54)

can be utilized in order to use the form required in Equation 3.14, allowing calculation of the energy

imparted to the recoiling target atom.

3.2.6 Electronic Losses

Following the original TRIM assumptions, the energy losses due to nuclear-nuclear collisions are

assumed to be separable from the energy losses due to target material’s electrons interaction with

the ion [46]. In general, the electronic loss due to the traveling ion is calculated by,

∆Ee = LNSe(E), (3.55)

where L is the path length between nuclear collisions, N is the atom density of the target, and Se is

the electronic stopping cross section calculated using the Brandt-Kitagawa theory [46, 49].

3.2.7 Free Flight Path

Within the TRIM algorithm, the computational expense is decreased by ignoring collisions that

result in a low energy transfer, T < Tmin, or small scatter angle, θ < θmin. This effectively ignores

many of the glancing angle collisions that have little effect on the end result.

In general, the smaller the the impact parameter, the larger the amount of energy is transferred in

the collision, thus there exists a maximum impact parameter pmax above which a negligible amount

of energy is transferred, or rather T < Tmin. The volume of influence created by a passing ion in

which any target atom present in the volume will cause a scatter in which T > Tmin is simply πp2
maxL,

40

where L is the length of travel. On average, the volume per atom is just the inverse of the atomic

density, or N−1, thus given a particular pmax, L can be calculated by,

πp2
maxL = N−1. (3.56)

The choice of pmax depends on the particular potential to be used, and is input as a parameter at run

time.

3.3 Methods

The BCA code 3DOT [50] was used for all calculations in the current work. 3DOT is based on

Schwen’s 3DTrim [51] which utilizes the previously published TRIM algorithm [46] to track ion

cascades in non-Cartesian geometry. The TRIM algorithm relies on the ZBL universal potential to

model the interactions between moving ions and stationary samples, and calculates the electronic

stopping power by scaling proton stopping powers using the Brandt-Kitagawa theory [46, 49]. Due

to the nature of TRIM calculations, each ion interacts with an undamaged, 0 K amorphous target.

Each 3DOT simulation model consisted of a fuel cube with an implanted sphere of xenon. Ow-

ing to the small computation expense of BCA and the wide spread of bubble sizes present in uranium

carbide [9], the simulated bubble radii ranged from 0.5 nm to 500 nm with periodic boundary con-

ditions enforced on all box sides. As the current study was focused on intra-granular bubbles, grain

boundary effects were not considered and the theoretical density of 13.63 g/cm3 was assumed for

uranium carbide. Fission fragments were randomly created based on the probability distribution

functions of typical fission fragment mass and energies.

For these calculations, a fission gas atom was considered implanted if it exited the bubble surface

with an implantation energy greater than Emin. The value of Emin = 300 eV first utilized by Nelson

has been implemented in many re-solution studies [15, 36, 41]. More recently, a study aimed at

determining the implantation energy in UO2 fuels determined that while re-solution did occur for

atoms with implantation energies less than the 300 eV, the original implantation energy of 300 eV

resulted in a 85% probability of re-solution [52]. In light of this, the value of Emin = 300 eV will be

utilized unless otherwise specified, although model sensitivity to this value will be explored.

The total re-solution rate at which atoms are knocked back into the fuel can be calculated by,

R
[
atom/(s ·m3)

]
=

∫
Ḟb(r)m(r)ρ(r)dr, (3.57)

where r is the bubble radius, Ḟ is the fission rate, b is the re-solution parameter, m is the number of

atoms in a bubble, and ρ is the bubble concentration distribution function,

N
[
bub/m3]= ∫

ρ(r)dr. (3.58)

Here, N is the total concentration of bubbles in the sample.

41

10
−1

10
0

10
1

10
2

10
3

10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Radius [nm]

A
to

m
ic

 d
e
n
s
it
y
 [
a
to

m
s
/n

m
3
]

Combined 1000 K

Combined 1500 K

Combined 2000 K

van der Waals 1500 K

Figure 3.8: Atomic densities calculated from different EOS models.

In stress free solids, the number of atoms in a bubble m is generally calculated using the van der

Waals equation of state (EOS):

m =
4
3

πr3(B+ kTr/2γ)−1, (3.59)

where γ = 1 N/m is the surface energy of uranium carbide [53], k is Boltzmann’s constant, T is

temperature, and B = 8.5·10−29 m3/atom [17]. However, the high temperature and stress involved

with very small bubbles in nuclear fuel results in an underestimation of atomic density, thus the

EOS values calculated by Ronchi were utilized at small bubble radii [20]. Although more recent

evaluations show that the atomic density may actually be higher in very small bubbles [21], a smooth

transition from Ronchi’s data for small bubble sizes to values calculated using Equation 3.59 is

utilized to calculate the atom density in the bubble due to the large spread of bubble radii, giving

the “Combined” model types, as displayed in Figure 3.8.

Considering the many combinations of bubble radii and box sizes, any dependence on simula-

tion volume must be removed. Due to the periodic boundary conditions, the approximately 6 µm

fission fragment path will wrap around the model many times. Due to the relatively low density

within the bubble, as the porosity increases, the total fission fragment path will also increase. In

order to avoid a bubble concentration dependent path length, comparative studies of various bubble

and box sizes showed that the artificial lengthening of the fission fragment path was minimized

when the cube length was at least 10 times the bubble radius. In this way, a value for b can be

calculated independent of the bubble concentration.

42

3.3.1 Applicability of BCA

The ability of 3DOT to quickly analyze ion trajectories lies in the basic BCA simplification in which

each collision is modeled as a single two-body collision. While this approximation is physically

appropriate for high ion energies (typically above 1 keV), multi-body collisions tend to occur at

lower ion energies. Several publications have attempted to explicitly define the limits of BCA with

limited success [54–57].

The error introduced by BCA must be quantified in order to justify its use within this study. For-

tunately, the use of a threshold implantation energy allows all ions below Emin to be ignored. Above

this limit, the error introduced by ignoring multi-body collisions can be estimated by calculating the

maximum deviation that can occur from the next nearest-neighbor atom. If the angular and energy

difference from the otherwise ignored atom has minimal effect on the re-solution rate, then the use

of BCA is appropriate in this study for ions down to Emin.

In 3DOT, the value sin2(φ/2) for use in determining the energy transfer with Equation 3.14 is

calculated using the ZBL potential with the ion and target atomic attributes, and the impact param-

eter p. As with all potentials, the smaller the impact parameter, the larger the angular deflection.

Using Equation 3.14, large angle deflections correspond to high energy transfer. The greatest effect

a second body can have on an ion, and thus the smallest impact parameter, is exactly between two

atoms. The deviation caused by a target atom at this minimum impact parameter will estimate the

angular deviation that is ignored by the BCA approximation in the worst case scenario.

In general, the fission gas escape process can be separated into two events. First, a fission gas

atom must be hit by either a fission fragment or by a fuel atom that has been knocked out of its lattice

site by a fission fragment. Due to the random nature of fission fragment creation in 3DOT, any error

introduced to the fission fragment scatter angle can be ignored as long as all fission fragments are

treated similarly. The same is also true for lattice atom (uranium and carbon) collisions. However,

since the energy of knocked fission gases needs to be explicitly tracked, fission fragment and lattice

ion energies must be correctly handled for all ion energies above Emin. Uranium carbide has a

simple cubic NaCl crystal structure with a lattice parameter of roughly 0.5 nm, resulting in pmin =

0.125 nm as an ion travels between a uranium and carbon atom (Figure 3.9a). Due to the γ factor

included in the energy transfer equation (Equation 3.14), uranium-uranium collisions result in the

highest energy transfer. Using the minimum impact parameter, the maximum energy transferred in

a uranium-uranium collision is 60 eV for all initial ion energies. This value quickly diminishes as

the impact parameter increases, reducing to less than 3 eV when the impact parameter is 0.2 nm. In

the worst possible case, a lattice atom with energy 300 eV will overestimate the ion energy after a

collision by 20%. However, the probability of such an event is small enough that BCA accurately

represents fission fragment and lattice collisions for the purposes of this work.

The second event that must occur to create an implanted atom is the transport of a fission gas

atom from the interior to the surface of the bubble. As opposed to the fuel lattice, both fission gas

ion energy transfer and angular deflection are both important to track, as a knocked fission gas atom

43

a

pmin

(a)

{pmax

(b)

Figure 3.9: Schematics for the calculation of pmin a) in the fuel lattice, and b) in the bubble.

can receive a large-angle deflection very near the bubble surface. In the amorphous bubble region,

the distance between fission gas atoms in the bubble d can be approximated by,

d = 2 pmin = 2(3/4πm)1/3 . (3.60)

Using the Combined EOS described previously, the density in a 1 nm bubble at 2000 K is 15.3

atoms/nm3. Since the minimum impact parameter occurs directly between two atoms, pmin = 0.25

nm (Figure 3.9b). At this large of an impact parameter, the direction of the ion in a representative

Xe-Xe collision deviates by only 2◦ with an initial ion energy of 300 eV. The ion energy must be

reduced below 10 eV to result in a deviation of greater than 30◦. In addition, such small deflec-

tions result in negligible energy transfer. Since these deviations occur during the most conservative

atomic densities and smallest impact parameters, reduction of collisions within the bubble to single

collisions was deemed appropriate for this work.

3.4 Results

Figure 3.10 shows the re-solution parameter b as a function of radius r for different EOS models,

where b represents the number of escaped atoms per bubble atoms for a single fission and single

bubble. A quick decrease initially occurred, reducing b by nearly 60% as the bubble radius increases

from 1 to 50 nm, beyond which the re-solution parameter became nearly constant. Since b was

calculated on a per bubble atom basis, it represents the average probability of any given bubble

atom to be implanted. As the bubble radius increases, interior atoms have farther to travel before

becoming implanted, resulting in the quick decrease in b as a function of radius. However, as

r becomes larger than 10 nm, the atomic density exponentially decreases as a function of radius

(Figure 3.8), boosting the probability of a struck interior atom reaching the surface and flattening b

44

10
0

10
1

10
2

10
3

0.5

1

1.5

2

2.5

3

Bubble radius [nm]

b
 x

1
0

2
5

Combined 2000 K

Combined 1500 K

Combined 1000 K

van der Waals 1500 K

Figure 3.10: Calculated b for several atomic density calculation methods.

as a function of radius. If the bubble sizes increase past the radii of interest studied here, the low

atomic density will eventually serve to create a positive slope in the re-solution parameter at very

large radii.

Figure 3.10 also includes the re-solution parameter using different EOS methods: Combined at

1000 K, 1500 K, and 2000 K, and van der Waals at 1500 K. In general, b was inversely proportional

to the atomic density, producing fewer implanted ions at higher atomic densities, however the re-

solution parameter was not very sensitive to the particular EOS model.

As discussed previously, there is some uncertainty on the value of Emin. Figure 3.11 displays b

for various values of Emin at 1500 K. Previous studies have shown that Emin may be less than 300

eV [52]. By reducing the assumed Emin to 150 eV, the re-solution parameter only increases by 30%,

without much variation in the shape of the curve.

A gas atom can be knocked out of the bubble after first being struck by either a fission fragment

or indirectly through a fuel cascade. Figure 3.12 displays the fraction of implanted gas atoms that

were a result of either a fuel cascade or solely through a direct fission fragment hit in a 5 nm bubble

at 1500 K. Roughly 90% of all implanted ions were a result of a cascade started within the fuel,

showing the overall importance of fuel cascades over direct fission fragment collisions.

As ions propagate through the material, they produce additional “daughter” ions by knocking

atoms from their lattice site. Figure 3.13 displays the probability of each type of “parent” as a func-

tion of bubble radius. For nearly all bubble radii, the direct fission fragment contribution remained

near 10% due to the low cross-section of small bubbles and low interaction probabilities for low

density, large radii bubbles. Due to their small mass and γ factor, the relative importance of carbon

atoms was insignificant; for very small bubble sizes, the majority of all collisions were a result of

uranium atoms directly knocking out fission gas atoms. The increase in fission gas parents indicates

that as the bubble size enlarged, a knock-on effect occurred, resulting in implanted atoms different

45

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

Bubble radius [nm]

b
 x

1
0

2
5

E
min

 = 50 eV

E
min

 = 150 eV

E
min

 = 300 eV

E
min

 = 600 eV

Figure 3.11: Calculated b for various Emin thresholds.

than the original struck gas atoms.

As shown in Figure 3.12, the importance of fission fragment collisions were relatively minor

compared with the importance of fuel cascades. However, it can be expected that the highly en-

ergetic fission fragments create daughter ions with relatively high energies, thus resulting in more

energetic and more deeply implanted atoms. This phenomenon can be shown by plotting the re-

solution parameter in a 1500 K 5 nm bubble as a function of Emin, (Figure 3.14). For low Emin

energies, fuel cascades have a much higher importance in the total re-solution parameter than fis-

sion fragments, similar to what was displayed in Figure 3.13. However at a crossover energy of

about 40 keV, fission fragment interactions produced more implanted atoms than fuel cascades.

3.5 Discussion and Conclusions

The study of the re-solution parameter in this Chapter extends the understanding, methods, and

calculation of the re-solution parameter well beyond previous studies. However, when comparing

the current work to the historical calculations, two results seem to conflict. However, upon further

inspection, the discrepancies further support the current work. The first is that for a bubble radius

of 5 nm, the re-solution parameter was determined to be 1.4 · 10−25 atoms/(fsn·m3), an order of

magnitude less than the previously calculated value of b = 3 · 10−24 atoms/(fsn·m3) [15, 36]. In

addition, the previous re-solution parameter vs. Emin results showed the cascade/fission fragment

importance cross-over occurring at 5 keV, while the calculations in Section 3.4 show a cross-over at

50 keV. The reasons for these differences are rooted in differences between the models used in each

study and warrant discussion.

By tallying energy losses in a 3DOT simulation, we found the amount of energy dissipated due

to electronic losses accounted for about 90% of the original fission fragment energy. In light of this,

46

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Bubble radius [nm]

F
ra

c
ti
o
n
 o

f
im

p
la

n
te

d
 i
o
n
s

Fuel cascade

Non−fuel cascade

Figure 3.12: Probability of a direct fission fragment implantation or fuel cascade implantation.

it can be expected that by ignoring these losses, the fission fragment range, and thus b, will increase

by an order of magnitude. This was verified by running 3DOT simulations without accounting for

electronic losses in which we calculated the re-solution parameter for a 5 nm bubble at 1500 K to

be b = 4.8 ·10−24 atoms/(fsn·m3), within 50% of the previously calculated value [15].

One of the largest improvements over the previous studies is the use of the ZBL potential for

all atoms and energies, as opposed to the Rutherford potential for fission fragment collisions, and

the hard-sphere potential for all other collisions. The Rutherford potential energy is an adequate

representation of high energy ion collisions, and in fact is utilized in 3DOT at high ion energies [46].

Conversely, the hard-sphere approximation is adequate for very low ion energies. However, at

intermediate energies, neither approximation is appropriate [58].

The hard-sphere potential calculates the scattering angle for use in Equation 3.12 from the ge-

ometry of the problem, thus each scatter is independent of the ion’s energy. This results in a much

higher probability of high angle collisions and ultimately an underestimation of an ion’s range.

When applied to lattice atoms, the hard-sphere potential ensures that an entering ion will only pen-

etrate a short distance into the bubble. Likewise, gas atoms far from the bubble surface have a low

probability of re-solution due to an enhanced probability of large-angle scatter events. With the

more physical ZBL potential, the scattering cross-section is inversely proportional to the ion’s en-

ergy, thus uranium atoms are allowed to penetrate to more realistic depths. In addition, all atoms in

the bubble become “available” for re-solution, albeit with a frequency less likely for atoms near the

center of the bubble. Since the ZBL potential is well approximated by the Rutherford potential, sim-

ilar behavior is not reproduced in the highly energetic fission fragments that were originally treated

with a purely Coulombic potential. All of this resulted in a higher probability of the less energetic

lattice cascades, shifting the fuel cascade contribution to b to higher Emin values in Figure 3.14, and

increasing the cross-over point to 50 keV.

47

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Bubble radius [nm]

F
ra

c
ti
o
n
 o

f
im

p
la

n
te

d
 i
o
n
s

Uranium parent

Fission gas parent

Fission fragment parent

Carbon parent

Figure 3.13: Parent fractions as a function of bubble radius.

One final note about the previous studies must be addressed; one of the most interesting results

from Ronchi and Elton was a positive slope in the re-solution parameter at high radii and high

Emin [15]. It should be noted that the value plotted is actually the combination of the product of the

re-solution parameter and critical distance, thus the positive slope is heightened by an increasing

critical distance as a function of radius. Although similar phenomena can be achieved with the

results from 3DOT, they were not nearly as drastic without the inclusion of the critical distance.

In conclusion, due to the relatively high energy transfer material properties in uranium carbide,

fission gas re-solution can be modeled using the homogeneous, atom-by-atom loss model. We found

a re-solution parameter that was an order of magnitude lower than previous studies due to the in-

clusion of electronic ion energy losses in this study. A decrease in the re-solution parameter as

a function of radius occurred for low radii, with a nearly constant re-solution parameter for radii

above 50 nm. BCA allowed the computationally cheap analysis of many different types of bubbles,

and it was shown that the fundamental BCA assumption is appropriate for use in the simulations

presented here. Through comparative studies on the re-solution parameter for various values of im-

plantation energy and atomic density in the bubble, we found that while the re-solution parameter

did change, the overall shape did not. The re-solution parameter calculated here can now be imple-

mented in fission gas bubble calculations to determine how the bubble size relationship impacts the

concentration distribution.

48

10
2

10
4

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

E
min

 [eV]

b
 x

1
0

2
5

Fuel cascade

Fission Fragment

Total

Figure 3.14: Re-solution in a 5 nm bubble due to fission fragment and fuel cascades as a function of Emin.

49

CHAPTER 4: BUBBLE AND CAVITY KINETICS

In an effort to break away from the experimentally derived models typically used for fission gas

modeling in uranium carbide, a new type of code that can be developed modularly was developed.

By utilizing the modularity of the MOOSE framework [59], the code Bubble and Cavity Kinetics

(BUCK) was created in an effort to create a first-principles informed code. In order to build a bare-

bones foundation, the simplistic yet historically prevalent models used to simulate fission gas bubble

nucleation, growth, and knock-out can be implemented as stepping stones until more advanced

models for each physical process are created. In this way, the fission gas bubble concentration

distribution can be studied, ultimately leading to simulations of fuel swelling and fission gas release.

4.1 Background

Many past studies have focused on the bubble behavior in nuclear fuel, but as a result of the over-

whelming complexity of fission gas bubble modeling, each simulation must make broad simplifica-

tions in order to achieve solutions. Many of these simulations assume that the bubble concentration

distribution can be distilled into a single average bubble size [13,23,60–62]. These models perform

adequately, especially for UO2 studies, but rely heavily on empirically tuned parameters [22]. The

inherent use of a single average bubble size precludes the applicability of these models to uranium

carbide fuels in which small and large bubbles exist within the grain.

A second type of bubble population model was explored in the 1970’s and relied on grouping

schemes to reduce the number of bubble groups from millions of bubble sizes to dozens [63–67].

While the grouping scheme was able to reduce the computational cost of the simulation, verifica-

tion of the method through the comparison to a non-grouped method at the bubble sizes of interest

is absent; in both the papers that contain the grouping, as well as initial studies completed within

BUCK, no grouping method solution was able to adequately match any sort of non-grouped method

solution. Subsequently, a full account of each bubble type is necessary to capture the bubble con-

centration distribution. However, as a result of the high computational cost of a bubble model that

explicitly tracks every bubble size, few models have contained bubble phenomena beyond simple

nucleation studies [68]. Furthermore, no study has been able to capture the large bubble behavior

that occurs at high temperature and burnup [22].

In an effort to build towards a better understanding of fission gas behavior, a step-by-step ap-

proach towards full fission gas bubble modeling is required. Models that describe bubble nucleation,

growth, knock-out, and gas diffusivity are necessary, and included in the appropriate sections below.

50

4.2 Theory

Within BUCK, each bubble size is explicitly tracked, starting from single atom “bubbles” to a simu-

lation dependent upper limit of bubbles with N atoms. For the current work, three primary reaction

rate phenomena are considered: nucleation, growth, and re-solution. In general, the reaction rates

of the bubbles are concentration driven and can be written as [17],

Ṙ = (kab + kba)CaCb, (4.1)

where Ṙ is the reaction rate density, kab is the reaction rate constant assuming species b is immobile,

kba is the reaction rate constant assuming species a is immobile, and Ca,Cb are the concentrations

of the species a and b respectively. Here, the reaction rates have units of volume/seconds.

In general, there exist two types of reactions to consider for fission gas bubble modeling: rate-

limited reactions and diffusion-limited reactions. In the case of single gas atoms diffusing through

a medium with a relatively constant concentration, the interaction between atoms is limited by the

random-walk diffusive process of the atoms moving through the bulk. If one of the sinks is much

larger or has a very strong sink strength (i.e. bubbles), it is possible for a region around the sink to

become starved of reactants. In this case, the reaction is limited to the ability of single gas atoms to

reach the edge of the capture volume, resulting in diffusion-limited kinetics.

Between the two regimes, there exists a transition zone in which the reaction progresses as

a mixture between reaction and diffusion controlled. It can be assumed that larger bubbles will

exhibit spherical shapes as the pressure of gas atoms will push evenly at the surrounding lattice.

However, for small clusters, it cannot be expected that the shape is truly spherical. Regardless,

it is typically assumed that a hard transition occurs after gas atoms combine to form dimers [67],

although some studies have assumed a transition at 5 atom clusters, using rate constants whose

derivation is apparently absent [17, 68]. As discussed below, the diffusivity of bubbles is much

smaller than single gas atoms, such that bubbles can be assumed to be stationary. Furthermore, at

such small cluster sizes, the effective size of a dimer is twice the size of a single gas atom, supporting

the assumption of rate-controlled kinetics for bubble growth. As such, the nucleation process for

the formation of dimers will be modeled using rate-controlled kinetics, while absorption of single

gas atoms by any size of bubble will be treated with diffusion-controlled kinetics.

In addition to the reaction rates, gas atom birth and diffusion are also important to capture the

interaction of fission gas bubbles. Each physical phenomenon is discussed below.

4.2.1 Birth

The probability of a gas atom to be produced as a result of fission is about 25%, as defined in

Section 1.2. Since the vast majority of gas atoms produced are xenon, it will be assumed that all

51

fission gas atoms behave as xenon. The corresponding rate equation for fission gas creation is,

∂C1(t)
∂t

= γḞ , (4.2)

where C1 is the concentration of single gas atoms, γ is the gas atom yield, and Ḟ is the fission rate

density.

4.2.2 Diffusion

Diffusivity of gases in uranium carbide has been a phenomena that has received much attention in

the past. Matzke’s compilation of calculated diffusivities from several different studies shows a scat-

ter of over 3 orders of magnitude [5]. This is primarily due to the poor characterization of the fuel at

the time, although reproducibility also suffered from inconsistent experimental conditions such as

the presence of oxide layers, unaccounted chemical reactions, and imperfect vacuum systems. Fur-

thermore, fission dose and the corresponding presence of fission gas bubbles were rarely accounted

for. Ultimately, the diffusivity of gas atoms through a pure lattice is one of the largest uncertainties

involved with fission gas bubble modeling in all types of fuels [17]. Fortunately, since we are pri-

marily concerned with the formation of fission gas bubbles, conservative models of diffusivity can

be utilized.

The diffusivity of gas atoms in the solid is primarily a thermal process. In addition to thermal

diffusion, the fission environment in nuclear fuel is known to boost the diffusivity of species as a

function of the fission rate [17]. In general, the diffusivity of a gas through UC can be expressed by,

Dg = D0 exp
(

Q
RT

)
+DiḞ , (4.3)

where D0 is the maximum diffusion coefficient at infinite temperature, Q is the activation energy,

R is Ideal Gas constant, and T is temperature, Di is the irradiation enhanced diffusion coefficient,

and Ḟ is the fission rate density. Table 4.1 displays parameters from previous simulations, while

Figure 4.1 displays an Arrhenius plot of diffusivities. The dotted red line represents the model

presented by Ronchi with inclusion of fission gas dependent diffusivity. At low temperatures, the

fission rate dependent diffusivity dominates, while at high temperatures it can be neglected.

Table 4.1: Diffusion coefficients utilized in previous simulations.

Reference D0 [cm2/s] Q [kJ/mol] Di [cm5/fission]

Matzke [5] 3.00·10−1 355
Ronchi [62] T > 1100 K 4.60·10−1 328 1.3·10−29

Ronchi [62] T < 1100 K 1.50·10−5 231 1.3·10−29

Madrid [69] 4.60·10−3 326 2·10−30

Eyre [68] 1.66·10−9 221

52

2500 1667 1250 1000
10−23

10−19

10−15

10−11

10−7

Temperature [K]

D
iff

us
iv

ity
[c

m
2 /s

]

Ronchi w/ Di

Ronchi w/o Di

Matzke
Madrid
Eyre

Figure 4.1: Arrhenius plot of Diffusivities.

Except for the values used by Eyre in his 1968 simulations, the diffusivities are relatively similar.

In general, higher diffusivity values will result in a larger absorption rate, and thus larger bubble

sizes. Since the current work is primarily concerned with the newly calculated re-solution parameter

resulting in larger bubbles, the most conservative choice of diffusivity would be the largest value,

thus Ronchi’s value will be utilized.

Lastly, the mobility of bubbles must be addressed. Although previous studies have utilized

terms that account for bubble mobility [67], Blank claims that only for temperatures above 2/3 of

the melting temperature, or roughly 1850 K, does mobility impact bubble behavior. Previous studies

have shown that bubble diffusivities are more than 10 orders of magnitude lower in UC than single

gas atoms [70]. In light of these claims, BUCK assumes that the bubbles remain stationary, and

single gas atoms are the only mobile species.

4.2.3 Nucleation

Bubble nucleation in nuclear fuel is generally assumed experimentally to be a heterogenous process,

either through formation of nuclei created in the wake of fission fragments [35] or at collection

points such as dislocation tangles or precipitates [9]. However, many past calculations incorporate

homogenous nucleation models due to their simplicity [17, 67, 68]. Due to the focus of the current

work on the re-solution rate on large bubbles, dimers are assumed to be nucleated homogeneously,

providing a much more compact and simple formulation for implementation in BUCK similar to

the previous studies.

The formation process for homogeneous nucleation of a dimer occurs once two single gas atoms

occupy neighboring lattice positions of the form,

1 atom + 1 atom→ 1 dimer, (4.4)

53

If it is assumed that the dimer formation process is irreversible (at least in terms of thermal

dissolution, not necessarily re-solution), then the rate of dimer formation can be written as:

Ṙn = P11C1, (4.5)

where Ṙn is the reaction rate density for nucleation and P11 is the probability per second a gas atom

jumps into a nearest neighbor site to a C1 gas atom.

The probability P11 depends on the crystal structure of the material at hand, thus an understand-

ing of the UC system and how gas atom defects are incorporated is necessary; uranium monocarbide

maintains a NaCl lattice structure composed of two inter-laced face centered cubic (FCC) sub-

lattices of uranium and carbon (Figure 4.2). Density Functional Theory calculations for uranium

monocarbide have shown that the incorporation energies of noble gases are positive in all possible

sites, strengthening the assumption that thermal dissolution of dimers does not occur [71, 72]. Fur-

thermore, the most stable of locations for noble gas inclusions is at the uranium vacancy site and is

generally associated with an adjacent carbon vacancy. From this, it can be assumed that the xenon

atom resides in only the uranium sites in the NaCl crystal structure. If gas atoms diffuse through

the lattice by jumping between uranium vacancy sites, the NaCl crystal structure can be reduced to

a single FCC sub-lattice when modeling diffusive behavior. This simplification can be visualized

using Figure 4.2; assuming gas atoms only occupy uranium vacancies (green atoms), then they can

only diffuse through the green atom sub-lattice. Ignoring the unused carbon (purple) sites results in

a FCC structure.

Figure 4.2: Example of NaCl lattice structure.

In order to estimate P11, Figure 4.3 is utilized to break down the separate events by focusing

on dimer formation at a particular gas atom (green site) in a FCC lattice. The number of nearest

neighbor sites to the gas atom (pink sites) is n f cc = 12, a value that is constant for any lattice site

54

in a FCC structure. If any of these sites contain a second gas atom, then a dimer is formed. The

probability P11 can thus be broken down into,

P11 = n f ccPx, (4.6)

where Px is the probability per second that another gas atom jumps into one of the nearest neighbor

positions.

Uranium lattice site
Gas atom
Gas atom nearest neighbor
Nearest neighbor of interest
Jump sites

Figure 4.3: Diagram to determine dimer formation in a FCC lattice.

Since the behavior for each nearest neighbor site is equivalent, Px calculated at one site is ap-

plicable to all other sites. Focusing on the specified yellow site in Figure 4.3, the probability Px

depends on the number of sites surrounding the yellow site, η f cc, the probability that one of the

adjacent sites is occupied by a gas atom, xg, and the jump frequency of the gas atom in a particular

direction, w, as described by,

Px = η f ccxgw. (4.7)

The number of surrounding sites to the yellow atom total η f cc = 7, as designated by the blue

sites in Figure 4.3. Although the number of nearest neighbors in a FCC crystal is 12, the original gas

atom itself nor the sites that are already nearest neighbors are not counted since they would result

in a dimer formation instantaneously.

The probability that any one of the seven sites contains a gas atom is assumed to be equal to

the probability that any given site in the entire lattice contains a gas atom, defined as the gas site

fraction, xg. The site fraction can be written in terms of the concentration as,

xg =C1Ω, (4.8)

where Ω is the lattice site volume, or more clearly, 1/Ω is the number of lattice sites per unit volume.

55

Lastly, the jump frequency can be related to the gas diffusion coefficient, Dg, by [17],

Dg = a2
0w, (4.9)

where a0 is the lattice parameter.

Combining Equation 4.6 through 4.9 into Equation 4.5 results in a nucleation rate given by,

Ṙn =
84ΩDgC2

1

a2
0

. (4.10)

Since the above rate is essentially the reaction rate between a stationary gas atom and the con-

centration of diffusing gas atoms, it must be multiplied by 2 following Equation 4.1. Comparing

Equation 4.10 to Equation 4.1, the nucleation rate can be defined as,

Ṙn = k11C2
1 = fn

168ΩDg

a2
0

C2
1 , (4.11)

where fn has been introduced as a multiplication factor for parametric studies. Unless otherwise

stated, fn = 1.

Following the reaction definition of nucleation as,

C1 +C1
k11−→C2. (4.12)

The differential equations that model nucleation in C1 and C2 can then be defined as,

∂C1(t)
∂t

=−2k11C1(t)2, (4.13a)

∂C2(t)
∂t

= k11C1(t)2, (4.13b)

where the factor of -2 in the first equation is due to the nucleation process consuming two single

gas atoms.

4.2.4 Growth

In order to cast the growth of bubbles into the form of Equation 4.1, we must first consider the case

of an equally distributed concentration of spherical sinks Ci, with radius R, that are accumulating

gas atoms from the surrounding medium. By subdividing the entire medium into unit cells centered

around each sink, a capture volume with radius R can be defined such that,

4πR3

3
Ci = 1. (4.14)

56

R

R

Capture Volume

Sink

Figure 4.4: Unit cell for calculating sink behavior.

If the sinks are spaced far enough apart, then the following boundary condition applies,(
dC
dt

)
R

= 0, (4.15)

and the behavior of the system can be estimated by examining one particular sink, as displayed in

Figure 4.4. The behavior of gas atoms within the capture volume can be solved using the diffusion

equation in the annular spherical shell, R≤ r ≤R, resulting in a concentration of gas atoms C(r, t)

at some radial position r and at some time t. The gas atom concentration at the surface of the sink

can be specified as,

C(R, t) =CR. (4.16)

As discussed above, gas atoms are assumed to have a thermally stable concentration of 0. As a

result, any gas atom immediately adjacent to the sink will be absorbed, resulting in CR = 0.

Due to the fission process, gas atoms are assumed to be created uniformly within the capture

volume. Furthermore, we will assume that there are no other sinks other than the sphere in the

center of the unit cell. The resulting diffusion equation can then be expressed as,

∂C
∂t

=
Dg

r2
∂C
∂r

(
r2 ∂C

∂r

)
+ γḞ (4.17)

At irradiation temperatures where gas atom mobility is sufficiently high, loss of gas atoms to the

sink is balanced by production within the capture volume. In this case, the concentration at any point

within the capture volume changes slowly and we can apply the quasi-stationary approximation,

dC/dt = 0. Using the boundary conditions from Equations 4.15 and 4.16, the above diffusion

57

Zone 2Zone 1

S
in

k

r=0 R R

Figure 4.5: Example solution of diffusion equation for sink.

equation can be analytically solved:

C(r) =
γḞ
6D

(
2R(r−R)

rR
− (r2−R2)

)
. (4.18)

If the sinks are assumed to be widely spaced, then the capture volume is much larger than that

of the sink, leading to a form similar to Figure 4.5. In this case, the solution naturally splits into

two zones: Zone 1 where the concentration is rapidly changing as r→ R, and Zone 2 where the

concentration is relatively constant. If Zone 1 is very close to the bubble, then r remains small, and

Equation 4.17 for only Zone 1 can be reduced to,

d
dr

(
r2 dC

dr

)
=−r2 γḞ

D
= 0. (4.19)

The boundary condition from Equation 4.16 can be applied to the modified diffusion equation,

however the second boundary condition is different:

C(∞) =C(R), (4.20)

where C(R) is the concentration determined by matching the solutions in Zones 1 and 2. Since R

is much greater than the width of Zone 1, it effectively acts as an infinite medium when dealing with

diffusion in Zone 1. Solving Equation 4.19 with the above boundary conditions results in:

C(r) =C(R)

(
1− R

r

)
. (4.21)

The flux of the particles of the sink is calculated using the diffusivity of the gas atoms and the

58

concentration at the surface of the sink as [73],

J =−Dg

(
dC
dr

)
R
=−

DgC(R)

R
. (4.22)

Since the sink in the center of the unit cell is assumed to be spherical, the rate of absorption by

a single sphere is given as [17],

ġ =−4πR2J = 4πRDgC(R). (4.23)

Finally, Equation 4.23 can be cast into the form of Equation 4.1 through the following obser-

vations: If the sinks are widely spaced enough, the concentration C(R), which is defined as the

concentration of atoms at the edge of the capture volume, approximates the entirety of Zone 2 as a

result of the form in Figure 4.5. As such, C(R) can be set to the concentration of single gas atoms

in the solid, C1.

In addition, Equation 4.23 applies to only one sink. To extend it to all sinks of type i in the

solid, then Equation 4.23 must be multiplied by the concentration of sinks Ci. This leads to the final

growth rate form of:

Ġi = kiCiC1 = 4πRiDgCiC1. (4.24)

The basic description of bubble growth follows,

C1 +Ci
ki−→Ci+1. (4.25)

The corresponding differential equations are,

∂C1(t)
∂t

=−
N

∑
i=2

kiCi(t)C1(t), (4.26a)

∂Ci(t)
∂t

= ki−1Ci−1(t)C1(t)− kiCi(t)C1(t), 3≤ i≤ N, (4.26b)

where N is the total number of bubble groups. The first equation represents the loss of single gas

atoms to each separate bubble size, requiring the negative sign. The limits on the second equation

follows the assumption that nucleation only occurs between single gas atoms to form dimers, while

growth occurs for everything else. As such, there can be no growth gain term for C2. Furthermore,

although the largest tracked bubble concentration in a BUCK simulation is CN , the largest bubble

group CN still suffers losses into the CN+1 group. In the case that no losses are tracked for the largest

bubble, as is the case with the verification calculations performed in Section 4.4.2, then kN = 0, and

the second portion of Equation 4.26b is removed.

59

4.2.5 Bubble Radius

Before discussing the re-solution rate, we must first clarify the relationship between the number

of gas atoms in a particular bubble and its corresponding size within the lattice. As discussed

in Section 4.2.3, single gas atoms within the lattice tend to take up one to two vacancies within

the lattice. As atoms combine, the space occupied by small clusters is matched by the vacancies

associated with each gas atom. Eventually, large enough groupings of atoms will start to take on

a spherical shape as the interior bubble pressure pushes evenly against the lattice. However, as

bubbles grow larger, the atoms require more space (Figure 2.2), leading to an increased absorption

of vacancies and a decrease in the gas atom density in order to maintain equilibrium between the

surface tension of the bubble and the interior pressure. This behavior is described in the Section 2.2.

Within BUCK, it is assumed that bubbles always maintain their equilibrium size. Relationships

of this form assume that the vacancy availability, either through high mobility or high concentration,

is large enough to always provide the bubble with the exact number of vacancies it requires to

maintain equilibrium. This assumption has been made in many of the past bubble models [23, 65,

68,74]. Some past models have incorporated explicit tracking of the vacancy and interstitial flux on

the bubble surface, and have shown that the bubble sizes tend to initially be smaller than equilibrium

sizes, and eventually will grow up to 30% of their equilibrium size once the interstitial and vacancy

flux reaches steady-state conditions [67, 75]. This tends to support recent investigations on atom

density in small UO2 bubbles that have shown the atom densities are near that of solid xenon [21,22].

A second study focusing on the relaxation behavior of non-equilibrium bubbles showed that the

only during overpower or undercooling transients does the equilibrium bubble assumption become

an issue [76].

Regardless, the current work aims to isolate the behavior due to the newly calculated re-solution

parameter. As such, the bubbles will be assumed to maintain their equilibrium radii following

similar formulation to Equation 2.3,

1
ρi

= B+

[(
2γ

kT

)
1
Ri

+
σ

kT

]−1

, (4.27)

where ρi is the atomic density for bubble type i, B is the van der Waals constant for xenon, γ is the

surface tension, k is the Boltzmann constant, T is the temperature, and R is the bubble radius. Other

equations of state exist for xenon gas within a solid, as was discussed in Section 3.3. However,

comparisons of different types of models in Figure 3.8 shows little deviation between models, thus

the van der Waal formulation will be utilized in BUCK.

Within BUCK, the bubbles are grouped based on the number of atoms they contain. Expanding

ρi into its representation of atoms per volume, Equation 4.27 gives

mi =
4

3πkT B

(
2γR3

i +σR4
i

2γ

kT +Ri
[

σ

kT + 1
B

]) . (4.28)

60

Equation 4.28 relates the number of gas atoms for a given bubble, mi, to the radius of the equilibrium

bubble. Due to the higher order Ri terms, no closed analytical solution exists for Equation 4.28,

thus a simple Newton algorithm, similar to the method discussed in Section 4.3.2, was utilized to

determine the bubble radius for a given number of atoms.

4.2.6 Re-solution

The process of re-solution is thoroughly discussed in Chapter 3. What remains is an appropriate

model of the form in Equation 4.1 for implementation into BUCK.

Although it may be possible for several atoms to be knocked out of the bubble simultaneously,

the formulation of the re-solution rate in Chapter 3 is essentially a time averaged phenomena. For

simplicity, the re-solution knockout process is assumed to occur on an atom-by-atom basis based

on the re-solution rate. Following the formulation in Equation 3.57, the re-solution rate for bubble

type i is,

K̇i = liCi = Ḟbi fbmiCi, (4.29)

where Ḟ is the fission rate density, bi is the re-solution parameter for bubble type i, fb is a multiplier

utilized for parametric studies (fb = 1 unless otherwise stated), mi is the number of atoms in bubble

type i, and Ci is the concentration of bubble type i. Here, li represents the re-solution rate constant for

the re-solution process, which is essentially a “loss” term. Since the rate constant is not multiplied

by two concentrations as in Equation 4.1, the units correspond to s−1.

The re-solution process can be described as a bubble of size i losing a single atom and becoming

a bubble of size i−1, or:

Ci
li−→Ci−1 +C1, (4.30)

the differential equations that describe the re-solution process are,

∂C1(t)
∂t

= 2liC2(t)+
N

∑
i=3

liCi(t), (4.31a)

∂Ci(t)
∂t

= li+1Ci+1(t)− liCi(t), 2≤ i≤ N−1, (4.31b)

∂CN(t)
∂t

=−lNCN(t). (4.31c)

The first equation requires the separate inclusion for the re-solution of C2 since the splitting of a

dimer results in two single gas atoms. The summation in Equation 4.31a includes the re-solution

event for all other bubble sizes, following the description of the re-solution process in Equation 4.30.

Equation 4.31b includes the re-solution loss term, as well as a gain term due to the larger bubble size

losing an atom. The last equation is similar to Equation 4.31b except the gain term is not included

since no larger bubbles exist by definition.

61

4.2.7 Burnup

For many of the results, the burnup is calculated in order to provide an easy comparison tool between

simulations with different fission rate densities. The burnup quantifies the consumption of uranium

atoms through fission, and is calculated by,

Bu =
tḞMUC

ρthχNa
, (4.32)

where Bu is the burnup in atoms fissioned per initial heavy metal atom, or (a/o), t is the time, Ḟ is

the fission rate density, M is the molar mass of uranium monocarbide, ρth is the theoretical density

of UC, χ is the fractional density of the fuel, and Na is Avogadro’s number.

4.2.8 Total Number of Gas Atoms

During each simulation, it is important to ensure the conservation of gas atoms. The total concen-

tration of gas atoms in the simulation can be calculated as,

C0 =
N

∑
i=1

Cimi, (4.33)

where Ci is the concentration of bubble size i, and mi is the number of gas atoms in bubble size i.

4.2.9 Swelling

For the BUCK simulations, the overall swelling due to single gas atoms and their subsequent bubbles

is the most important parameter to try and match with previous experimental studies. Each bubble

occupies space within the lattice, and the swelling due to the bubbles can be calculated from their

radius and concentration by,

S =
N

∑
i=1

4
3

πR3
i Ci, (4.34)

where S is the sum over all the bubble groups N, each with radius Ri and concentration Ci. As

defined in Equation 4.34, the swelling has units of fractional growth, or rather,

S =
Vfinal

Vinitial
. (4.35)

4.2.10 Assumptions

The assumptions discussed above are compiled into one list below. The reader is referenced to the

appropriate sections for details.

• All gas atoms behave as xenon atoms,

62

• Gas atoms are created uniformly based on the fission rate density,

• Clusters and bubbles of gas atoms are stationary,

• Single gas atoms reside in the lattice only at uranium vacancies or Schottky defects,

• The nucleation process only results in the formation of dimers from two single gas atoms,

• The nucleation process occurs homogeneously,

• There is no thermal loss of atoms from clusters and bubbles,

• Diffusion-limited kinetics can be applied to all sizes of atom clusters,

• The gas bubbles are widely spaced such that the two zone assumption holds,

• The bubbles maintain their equilibrium size following the van der Waals equation of state

(Equation 2.3).

4.3 Methods

The theory described above was implemented into the MOOSE framework [59]. MOOSE is a

relatively new software framework developed by Idaho National Laboratory (INL) that builds on

previous C++ finite element analysis libraries [77] to provide scientists with a Finite Element Anal-

ysis package in which to easily implement their own physics. MOOSE is developed as a framework

rather than a standalone code, essentially providing the tools necessary to solve fully coupled multi-

physics through integration of implicit solvers, native mesh and time-step adaptivity, and paralleliza-

tion. Although MOOSE contains several physics modules developed within the framework such as

solid mechanics, thermo-mechanical physics, and phase-field dynamics, separate “animals” make

up the specific application within the MOOSE framework. Examples of specific applications are

INL’s own BISON, a nuclear fuel performance code [78], and MARMOT, a phase-field mesoscale

code [79].

By sharing the same code architecture, each application can leverage the MOOSE framework

to natively provide coupling [80,81]. Since the BUCK models focus on mesoscale calculations that

hope to inform full scale simulations of fuel rods, the choice to use the MOOSE framework was

clear. A quick background of the details behind the MOOSE framework as it pertains to the current

work is described in the following sections.

4.3.1 Coupled Ordinary Differential Equations

Since the only independent variable that drives the physics defined in Section 4.2 is time, the equa-

tions that can be used to describe the behavior of bubble size can be reduced to ordinary differential

63

equations. As a simple example, consider the steady state behavior of single gas atoms, dimers, and

trimers: −k11C1 −k12C1 −k13C1

k11C1 −k12C1 0

0 k12C1 −k13C1


C1

C2

C3

=

−γḞ

0

0

 , (4.36)

where γḞ represents the source term of single gas atoms, k11 is the rate constant for nucleation, k12

is the rate constant for absorption of single gas atoms by dimers, and k13 is the rate constant for

absorption of single gas atoms by trimers. Equation 4.36 can be represented in vector notation as,

Au = b. (4.37)

The solution is contained within the term u, while the physical relationships are contained in the

operator A and the forcing term b. Since Equation 4.36 is non-linear, numerical methods must be

used to determine the solution vector u. This is achieved by iteratively reducing the error of the

calculated numerical approximation, or residual, given as,

r =−Au+b. (4.38)

Within MOOSE, Newton’s method is the primary way to determine the roots, or the solution of

Equation 4.38 where r is approximately 0.

4.3.2 Newton’s Method

Newton’s method is a popular technique for finding the roots of nonlinear equations, and is essen-

tially based on a Taylor series expansion of a function [82]. In one dimension, the Taylor series is

defined as,

f (xn+1) = f (xn)+ f ′(xn)(xn+1− xn)+O(xn). (4.39)

Since we are trying to solve for f (x) = 0 the above equation can be set to 0 and rearranged

(ignoring the higher order terms O(x)) to create an iterative step to approach f (x) = 0:

xn+1 = xn− f (xn)

f ′xn . (4.40)

Figure 4.6 shows the basic iteration process using the Newton method. Starting at some initial

guess x0, the value of f (x0) and f ′(x0) is determined. x1 is then calculated by Equation 4.40, and the

process is then repeated using the new value. Recall that Newton’s method is trying to determine

f (x) = 0, thus each iteration gets closer and closer to f (x) = 0. The total number of iterations

depends is determined by some convergence criteria, where the iterations are terminated as the

function f (xn) reaches some preset minimum.

As discussed in the above section, we are seeking the minimization of the residual through the

64

f(x)

tangent at x

tangent at x

xxx2 1 0

1

0

Figure 4.6: Schematic of Newton’s method.

manipulation of the solution vector u. Applying Newton’s method to Equation 4.38 results in,

un+1 = un +δun, (4.41a)

δun =− r(un)

J(un)
, (4.41b)

where n is the iteration index, r(un) is the residual vector, u = [u0, ...,u j] is the set of variables and

J(un) is the Jacobian defined as,

Ji j(un) =
∂ri(un)

∂u j
. (4.42)

In general, the Jacobian for two coupled nonlinear equations F1(u1,u2) and F2(u1,u2) is defined

as [83],

J =

[
∂F1
∂u1

∂F1
∂u2

∂F2
∂u1

∂F2
∂u2

]
. (4.43)

4.3.3 GMRES

If both r and J are known, then the δu terms can be determined, and u can be updated using Equa-

tion 4.41a. However, each term of the Jacobian can potentially be very complicated and difficult to

solve, even for simple problems. To avoid these complications, the Generalized Minimal Residual

(GMRES) algorithm can be utilized, avoiding calculation of the full Jacobian [84]. By rearranging

Equation 4.41a, we can introduce a new residual defined as,

r0 =−r(u)−J(u)δu. (4.44)

65

Each GMRES “linear” iteration is denoted by k. Since we are seeking the residual within one

Newton, or “non-linear” step, the index n has been dropped. In GMRES, δu is defined as a linear

combination of Krylov vectors up to the iteration number k−1, {r0,Jr0,J2r0, ...,Jk−1r0}:

δu = δu0 +
k−1

∑
l=0

βl(J)lr0, (4.45)

where u0 is some initial guess (usually 0). By recasting δu in the above way, explicit definition of

J is not necessary, rather the action of J on r0 is all that is needed. Furthermore, that action can be

approximated similar to the definition of the derivative:

Jr0 ≈
r(u+ εr0)− r(u)

ε
, (4.46)

where ε is some small perturbation. We can show the validity of the Equation 4.46 by working

backwards. If we plug in the basic Jacobian from Equation 4.43 into the above Equation 4.46, we

find [82],
F(u+ εv)−F(u)

ε
=

(
F1(u1+εv1,u2+εv2)−F1(u1,u2)

ε

F2(u1+εv1,u2+εv2)−F2(u1,u2)
ε

)
. (4.47)

Now using a first-order Taylor series expansion of F(u+ εv) about u in the above equation:

F(u+ εv)−F(u)
ε

≈

 F1(u1,u2)+εv1
∂F1
∂u1

+εv2
∂F1
∂u2
−F1(u1,u2)

ε

F2(u1,u2)+εv1
∂F2
∂u1

+εv2
∂F2
∂u2
−F2(u1,u2)

ε

 . (4.48)

Simplification shows:

F(u+ εv)−F(u)
ε

≈

(
v1

∂F1
∂u1

+ v2
∂F1
∂u2

v1
∂F2
∂u1

+ v2
∂F2
∂u2

)
= Jv. (4.49)

The GMRES is a powerful tool to allow the use of Newton’s method without the full analytical

form of the Jacobian.

4.3.4 JFNK

Putting all of the above together, we form the Jacobian Free Newton-Krylov algorithm [82]. The

basic program flow consists of two loops. The inner loop is the GMRES algorithm, and determines

the δu terms. After convergence, a Newton non-linear step, or outer loop, moves the values of u by

δu in an attempt at minimizing the residual. GMRES is then utilized again to find the δu terms, and

so on.

66

4.3.5 Pre-conditioning

Although the Jacobian is never fully formed within JFNK methods, some sort of estimation of the

Jacobian is necessary to ensure convergence [82]. This process is known as preconditioning, and

can be described as,

r′(ui)M−1(Mδui+1) =−r(ui), (4.50)

where M is the preconditioning matrix or process. Within GMRES, only the action M−1 is applied

to the residual; Applying Equation 4.50 to Equation 4.46 results in,

JM−1r0 ≈
r(u+ εM−1r0)− r(u)

ε
. (4.51)

Although there are several ways to create M, the default process in MOOSE consists of basic

Block Diagonal Preconditioning and consists of the main diagonal of the Jacobian. Using Equa-

tion 4.43 as an example, the Block Diagonal preconditioner is simply,

J =

[
∂F1
∂u1

0

0 ∂F2
∂u2

]
. (4.52)

Following Equation 4.52, the preconditioner is only the derivative of the partial differential equation

with respects to the variable it acts on. This, along with the residual definition, are the only two

pieces that need to be implemented in MOOSE to add the desired physics behavior.

4.3.6 Dampers

At the start of the simulation, all the concentrations have a value of 0. As time increases, the

gas atoms will eventually filter up to larger and larger bubbles. At very low concentrations, the

bubble concentration may drift to negative concentrations due, an unphysical value that occurs if

the time steps are too large. In order to prevent this, a dampening coefficient is applied to variables

if the change in the variable leads to a negative number. These coefficients essentially limit the

change in a given variable during each non-linear iteration by modifying Equation 4.41a through

the introduction of the dampening coefficient α:

un+1
j = un

j +αδun+1. (4.53)

A coefficient of α = 0.01 applied only to variables in which un+1 is calculated to be negative was

determined to be sufficient to ensure that all concentrations remained positive.

67

4.3.7 Time Discretization

Although the simple example in Equation 4.36 assumes steady state conditions, the time dependence

of each variable is important in order to capture the swelling behavior as a function of burnup. The

Implicit Euler method can be utilized to discretize the time derivative, and is described as,

u̇(t +∆t) =
u(t +∆t)−u(t)

∆t
, (4.54)

where u is the solution vector with time deriviative u̇. Rearranging Equation 4.54 and casting it into

a residual form similar to Equation 4.38 results in,

r(u(t +∆t)) = u(t +∆t)−u(t)−∆tu̇(t +∆t), (4.55)

with an associated Jacobian given as,

J(u(t +∆t)) = I−∆tu̇(t +∆t). (4.56)

Armed with the definition of the residual in Equation 4.55 and the definition of the Jacobian in

Equation 4.56, the time dependence can be estimated using Newton’s method in Equation 4.41.

In the BUCK calculations, backward differentiation formula with s=2 (BDF2) was utilized with

variable time-stepping to take advantage of the superior convergent properties of BDF2 [85]. This

is essentially an extension of the Implicit Euler form described previously, and is given as [85],

u̇(t +∆t1 +∆t2) =
1

∆t2

[(
1+2τ

1+ τ

)
u(t +∆t1 +∆t2)− (1+ τ)u(t +∆t1)+

(
τ2

1+ τ

)
u(t)

]
, (4.57)

where τ = ∆t2/∆t1. Equation 4.57 gives the time derivative at some time step t +∆t1 +∆t2 based on

the values of u at time step t+∆t1+∆t2, as well as u at two previous time steps. Equation 4.57 can be

implemented into the MOOSE structure following the same procedure as Implicit Euler described

above. The time-stepper settings described in Section 4.4.3.2 ensured that the upper limits on τ,

given by,

τ < 1+
√

2, (4.58)

were appropriately enforced.

4.3.8 MOOSE

The basic input file for BUCK is displayed in Appendix B, Since the variables are essentially mean

field values, the results are agnostic of the problem geometry. As a result, the mesh is set to a

one-dimensional line of length 1 with only one segment. Initial conditions for all values are set

to 0, unless otherwise specified. Moose “Actions” are utilized with the BUCK specific “Bubbles”

block, and automatically create the variables, as well as the implementation of the time, nucleation,

68

Table 4.2: List of parameters and their values.

Symbol Parameter Value Units Ref.

γ Fission gas yield 0.25 gas atoms/fission [5]
Ω Lattice site volume 1.53·10−11 µm3 [69]
a0 Lattice parameter 4.96·10−4 µm3 [5]
γ Surface tension 0.626 J/m2 []
B van der Waals constant 8.469·10−29 m3 []
k Boltzmann Constant 1.3806·10−23 J/K
Na Avogadro’s number atoms/mol
MUC Molar mass of UC 240 g/mol
ρth Theoretical density of UC 13.63 g/cm3 [5]
χ Fractional density of fuel 0.80
D0 Diffusion constant 4.6·107 µm2/s [62]
Q Activation energy 328.4 kJ/mol [62]
D0, f Irradiation enhanced diffusion coefficient 1.3·10−9 µm5/fission [62]
fb Re-solution multiplication factor 1
Ḟ Fission rate density 6·1013 fission/second/cm3 [62, 69]

growth, and re-solution kernels. MOOSE-type “Postprocessors” are utilized for the total and by

bubble calculations of atoms, concentration, and swelling. The executioner utilized is the Backward

Differentiation Formulation with S = 2 (BDF2).

Studies on the maximum time-step and number of variables needed to capture adequate solution

fidelity are included in Section 4.4.3.

4.4 Results

The theory described in Section 4.2 was implemented into the MOOSE framework application

BUCK using techniques described in Section 4.3. The results from several simulations are described

below. Before full simulations were attempted, several verification tests were completed to ensure

the physics was implemented correctly. The tests followed the guidelines formulated by the MOOSE

standards [86]. Some were as simple as ensuring consistent user input, while others matched simple

calculations to exact solutions. Several of the latter will be discussed in Section 4.4.2. In addition,

several parameters had to be optimized to ensure minimal computational expense, and are discussed

in Section 4.4.3

4.4.1 Simulation Parameters

The simulations that follow utilize the same basic simulation parameters from Table 4.2 unless

otherwise specified.

69

4.4.2 Verification

The following sections address verification of the physics implemented in BUCK through compar-

isons of several artificial simulations to analytical solutions.

4.4.2.1 Nucleation

The first basic test is on the nucleation process described in Section 4.2.3. The process describes

the formation of a dimer from the combination of two singles atoms of the form,

C1 +C1
k11−→C2, (4.59)

where the rate constant is defined in Equation 4.11 as,

k11 =
168ΩDg

a2
0

. (4.60)

The concentration of single gas atoms and dimers as a function of time is given in Equation 4.13.

Combined with the initial conditions,

C1(0) =C1,0, (4.61a)

C2(0) =C2,0, (4.61b)

Equations 4.13a and 4.13b can be solved for C1(t) and C2(t) as,

C1(t) =
C1,0

2C1,0k11t +1
, (4.62a)

C2(t) =
C1,0

2

(
1− 1

2C1,0kt +1

)
. (4.62b)

Equation 4.62 was compared to a hypothetical BUCK simulation between two species, C1 and

C2, where the initial conditions are given as C1(0)= 1·105 and C2(0)= 0. A transient simulation was

run for 5·107 seconds with timesteps of 1·105 at a constant temperature of 1000 K. The parameters

from Table 4.2 were utilized. The results of the simulation are displayed in Table 4.3. Even with

such large timesteps, BUCK matched the analytical solution with a deviation well below 0.1% for

C1 and C2.

One other important test for each kernel is conservation of gas atoms. Following Equation 4.33,

the conservation statement,

C1(t)+2C2(t) =C1(0)+2C2(0) (4.63)

must always hold true, a behavior that occurs for the above example.

70

Table 4.3: Comparison between the nucleation analytical solution and BUCK.

Time C1 Analytical C1 BUCK C1 % diff C2 Analytical C2 BUCK C2 % diff

0 1.0000 ·102 1.0000 ·102 – – – –
1 ·107 9.3700 ·102 9.3700 ·102 0.004 3.1500 ·101 3.1500 ·101 0.061
2 ·107 8.8100 ·102 8.8100 ·102 0.007 5.9300 ·101 5.9300 ·101 0.056
3 ·107 8.3200 ·102 8.3200 ·102 0.010 8.4000 ·101 8.4000 ·101 0.051
4 ·107 7.8800 ·102 7.8800 ·102 0.013 1.0600 ·102 1.0600 ·102 0.047
5 ·107 7.4800 ·102 7.4800 ·102 0.015 1.2600 ·102 1.2600 ·102 0.043

4.4.2.2 Growth

The next fundamental rate equation that determines bubble size is growth due to absorption of

single gas atoms, as described in Section 4.2.4. For verification purposes, we can look at the growth

behavior between four species,

C1 +C2
k2−→C3 +C1

k3−→C4. (4.64)

Unlike nucleation, the rate equations that describe bubble growth are non-linear due to the in-

clusion of the C1 concentration in every term, thus an analytical solution of the partial differential

equations defined in Equation 4.26 is only available if C1 is kept constant. Enforcing this restriction,

C1(t) =C1,0, (4.65)

along with the initial conditions,

C2(0) =C2,0, (4.66a)

C3(0) = 0, (4.66b)

C4(0) = 0, (4.66c)

the analytical solutions can be solved as,

C2(t) =C2,0 exp(−k2C1t), (4.67a)

C3(t) =
k2

k3− k2
C2,0(exp[−k2C1t]− exp[−k3C1t]), (4.67b)

C4(t) =
1

k3− k2
C2,0[k3(1− exp[−k2C1t])− k2(1− exp[−k3C1t])]. (4.67c)

Equation 4.67 was compared to a hypothetical BUCK simulation between four species with the

initial conditions C1(t) = 1·105 and C2(0) = 1·105. A transient simulation was run for 5·107 seconds

with timesteps of 1·105 at a constant temperature of 1000 K. The parameters from Table 4.2 were

utilized. The results of the simulation are displayed in Table 4.4. Even with such large timesteps,

BUCK matched the analytical solution with a deviation well below 0.1% for C2 and C3, with a

71

Table 4.4: Comparison between the growth analytical solution and BUCK.

Time C2 BUCK C2 diff [%] C3 BUCK C3 diff [%] C4 BUCK C4 diff [%]

0 1.000 ·105 – – – – –
1 ·105 9.222 ·104 0.003 7.312 ·103 0.096 4.639 ·102 0.868
2 ·105 8.505 ·104 0.007 1.322 ·104 0.091 1.728 ·103 0.372
3 ·105 7.844 ·104 0.010 1.793 ·104 0.085 3.633 ·103 0.209
4 ·105 7.234 ·104 0.013 2.161 ·104 0.080 6.046 ·103 0.130
5 ·105 6.672 ·104 0.016 2.443 ·104 0.075 8.853 ·103 0.083

maximum difference of 0.9% for C4 for early timesteps.

Unlike the nucleation process, the verification example described above does not conserve the

total number of gas atoms as C1 is not allowed to change from its initial value. However, in the

case of a population being produced at the expense of another (i.e. C2 forming C3), then the species

conservation statement,

C2(t)+C3(t)+C4(t) =C2(0), (4.68)

should always hold, a behavior that indeed occurred in the above example.

If a similar example is calculated in which C1 is allowed to vary, the conservation statement,

C1(t)+2C2(t)+3C3(t)+4C4(t) =C1(0)+2C2(0), (4.69)

was enforced.

4.4.2.3 Re-solution

Finally, we can compare an example BUCK problem to an analytical solution of three species of

the form,

C3
l3−→C1 +C2

l2−→ 2C1. (4.70)

Utilizing the initial conditions,

C3(0) =C3,0, (4.71a)

C2(0) = 0, (4.71b)

C1(0) = 0, (4.71c)

we can solve the partial differential equations defined in Equation 4.31 for the species involved:

C3(t) =C3,0 exp(−l3t), (4.72a)

C2(t) =
l3

l2− l3
C3,0[exp(−l3t)− exp(−l2t)], (4.72b)

72

Table 4.5: Comparison between the re-solution analytical solution and BUCK.

Time C1 BUCK C1 % diff C2 BUCK C2 % diff C3 BUCK C3 % diff

0 ·100 – – – – 1.000 ·103 –
1 ·104 5.197 ·101 0.010 4.914 ·101 0.043 9.499 ·102 0.001
2 ·104 1.050 ·102 0.008 9.400 ·101 0.042 9.023 ·102 0.003
3 ·104 1.588 ·102 0.006 1.349 ·102 0.041 8.572 ·102 0.004
4 ·104 2.133 ·102 0.005 1.720 ·102 0.040 8.142 ·102 0.005
5 ·104 2.683 ·102 0.003 2.057 ·102 0.039 7.734 ·102 0.007

C1(t) = 3C3,0−C3,0 exp(−l3t)− 2
l2− l3

C3,0[l2 exp(−l3t)− l3 exp(−l2t)]. (4.72c)

Equation 4.72 was compared to a hypothetical BUCK simulation between three species with the

initial condition C3(0) = 1·103. A transient simulation was run for 5·104 seconds with timesteps of

1·104 at a constant fission rate density of Ḟ = 1·1013 fsn/(s·m3). The parameters from Table 4.2 were

utilized. The results of the simulation are displayed in Table 4.5. Even with such large timesteps,

BUCK matched the analytical solution with a deviation well below 0.01% for all species.

Lastly, the conservation of gas atoms can be checked through the conservation statement,

C1(t)+2C2(t)+3C3(t) = 3C3(0), (4.73)

which remained true at all time steps.

4.4.3 Optimization

4.4.3.1 Number of Variables

The potentially large number of variables needed to represent the full bubble distribution is the

largest source of computational expense. Since each bubble size is tracked explicitly, a scheme to

determine the number of bubble groups is required to ensure that variables are not unnecessarily

tracked in the simulation.

All of the rate processes described in Section 4.2 act on some concentration Ci through multi-

plication of the reaction rate by either Ci or the surrounding concentrations, Ci−1,Ci+1. As a result,

it can be expected that if the concentration of Ci or its neighbors is sufficiently small, then explicit

tracking of those concentrations will have minimal effect on the overall solution.

In determining the number of bubble groups necessary for a given calculation, the impact of

any given group on the total solution is necessary. Within BUCK, the primary tracked value is the

swelling defined in Section 4.2.9. In addition, all bubble concentrations are coupled through the

single gas atom concentration C1. As such, the ignoring variables above a given number of atoms N

must not have a significant impact on the total swelling value or C1 concentration.

73

900 1000 1100 1200 1300 1400 1500

100

200

300

400

Temperature [K]

N
m

in

Ḟ = 10/ fb = 0.1

Ḟ = 60/ fb = 0.1

Ḟ = 10/ fb = 1

Ḟ = 60/ fb = 1

Ḟ = 10/ fb = 10

Ḟ = 60/ fb = 10

Figure 4.7: Nmin for several different simulation parameters.

Following these guidelines, criteria for the minimum bubble size necessary for a given sim-

ulation can be defined: All bubble concentrations that are within 10−10 of the single gas atom

concentration at any time must be explicitly tracked, or,

Ci(t)
C1(t)

≥ 10−10. (4.74)

The minimum bubble size that must be tracked, Nmin, can be calculated for several different

scoping studies; in order to determine Nmin, simulations with overestimated values of N were run

for different fission rate densities, Ḟ = {10,60}, as well as different re-solution multipliers, fb =

{0.1,1,10}. From the results presented in Figure 4.7, it is clear that fb determines the baseline values

of Nmin, with lower values of fb resulting in larger bubbles. As temperatures increase, Ḟ determines

the slope, with lower values of Ḟ requiring more variables to capture the bubble distribution.

Due to radiation enhanced diffusion of gas atoms (Section 4.2.2), it was initially expected that

higher values of Ḟ would result in an increase in bubble absorption, and thus larger bubbles. How-

ever, the re-solution rate also depends on Ḟ , and ends up being the dominant parameter, ensuring

that a high re-solution rate prevents large bubbles at both low and high temperatures. This behavior

will be discussed later in Section 4.4.4

In order to ensure that information is not being lost by reducing the number of variables down

to the values predicted by the curves in Figure 4.7, the simulation with Ḟ = 60 and fb = 1 was com-

pared to a corresponding simulation that enforces Nmin. Two temperatures, T = {900,1500} were

compared for differences in swelling and C1 concentration as presented in Table 4.6. The largest

difference due to the total variable reduction is 0.5%, thus limiting simulations to Nmin has a min-

imal impact on the result. Consequently, all of the simulations that follow utilize N values guided

74

Table 4.6: Difference between simulations with large N and Nmin.

Time 900 K swelling [%] 900 K C1 [%] 1500 K swelling [%] 1500 K C1 [%]

1 ·101 – – 3.73 ·10−11 3.34 ·10−11

1 ·102 – 6.67 ·10−12 4.36 ·10−9 4.73 ·10−9

1 ·103 4.58 ·10−10 5.04 ·10−10 2.08 ·10−8 3.72 ·10−9

1 ·104 3.06 ·10−8 1.63 ·10−8 2.05 ·10−9 1.68 ·10−10

1 ·105 5.24 ·10−9 6.07 ·10−10 4.83 ·10−1 2.54 ·10−2

1 ·106 1.03 ·10−1 1.31 ·10−2 8.14 ·10−2 1.69 ·10−3

1 ·107 1.69 ·10−1 1.78 ·10−2 8.08 ·10−3 1.45 ·10−5

7 ·107 2.3 ·10−2 1.9 ·10−3 1.62 ·10−3 4.31 ·10−7

by Figure 4.7, while simultaneously ensuring that the the criteria in Equation 4.74 is maintained.

4.4.3.2 Time stepping

In a single BUCK simulation, there are several different processes that occur at different time scales;

nucleation from a field of single gas atoms occurs relatively early in the simulation, while growth

of larger bubbles occurs much more slowly. Within the MOOSE framework, the variables are

fully coupled and are explicitly solved, thus the time-step intimately determines the computational

expense. This expense manifests itself through the number of non-linear iterations required for

convergence.

An iteration adaptive time step routine was utilized to determine each time-step size. An initial

time step of 0.1 seconds was utilized to ensure that the early nucleation behavior was adequately

captured. After the first time-step, the MOOSE “TimeStepper” IterationAdaptiveDT raised the

time step by a factor of 1.1 if the number of non-linear iterations was below 10. Conversely, the

time step was reduced by a factor of 2 if the number of iterations was above 10. In this way, the

total number of iterations is kept low enough through the direct control of the time-step, while

simultaneously allowing the time-step to increase if the solution easily converged. This helped to

reduce the computational expense for each simulation.

4.4.4 Bubble Distribution

The bubble concentration distribution at various burnups for a single temperature is shown in Fig-

ure 4.8. In general, higher temperatures increase the diffusivity of the gas atoms, resulting in more

absorption and pushing the peak of the concentration distribution to larger bubble sizes. The bub-

ble size distribution remains similar for temperatures below 1100 K, however as the temperature

increases, the distribution shifts to larger bubble sizes. Since larger bubbles accommodate more

gas atoms, the total concentration of bubbles must decrease due to the conservation of gas atoms,

resulting in a lowering of the peak concentration as a function of temperature.

Figures 4.9 and 4.10 show bubble distributions utilizing different simulation parameters, the

75

first at 1100 K, representing low temperature behavior, and the other at 1400 K, representing high

temperature behavior. Further analysis of the parametric study of the fission rate density and re-

solution multiplier are continued in Section 4.5.

0.002 a/o 0.022 a/o 0.22 a/o 2.2 a/o 6.5 a/o 11.0 a/o

0.5 1 1.5 2 2.5
1010

1012

1014

1016

1018

1020

Bubble size [nm]

C
on

ce
nt

ra
tio

n
[c

m
3]

1000 K
Ḟ = 6·1013

fb = 1
fn = 1

0.5 1 1.5 2 2.5
1010

1012

1014

1016

1018

1020

Bubble size [nm]

C
on

ce
nt

ra
tio

n
[c

m
3]

1200 K
Ḟ = 6·1013

fb = 1
fn = 1

0.5 1 1.5 2 2.5
1010

1012

1014

1016

1018

1020

Bubble size [nm]

C
on

ce
nt

ra
tio

n
[c

m
3]

1400 K
Ḟ = 6·1013

fb = 1
fn = 1

0.5 1 1.5 2 2.5
1010

1012

1014

1016

1018

1020

Bubble size [nm]

C
on

ce
nt

ra
tio

n
[c

m
3]

1600 K
Ḟ = 6·1013

fb = 1
fn = 1

Figure 4.8: Bubble distribution at different temperatures for Ḟ = 6·1013 fsn/(s·m3) and fb = 1.

76

0.002 a/o 0.022 a/o 0.22 a/o 2.2 a/o 6.5 a/o 11.0 a/o

0.5 1 1.5 2 2.5
1010

1012

1014

1016

1018

1020

Bubble size [nm]

C
on

ce
nt

ra
tio

n
[c

m
3]

1100 K
Ḟ = 6·1013

fb = 1
fn = 1

0.5 1 1.5 2 2.5
1010

1012

1014

1016

1018

1020

Bubble size [nm]

C
on

ce
nt

ra
tio

n
[c

m
3]

1100 K
Ḟ = 1·1013

fb = 1
fn = 1

0.5 1 1.5 2 2.5
1010

1012

1014

1016

1018

1020

Bubble size [nm]

C
on

ce
nt

ra
tio

n
[c

m
3]

1100 K
Ḟ = 6·1013

fb = 10
fn = 1

0.5 1 1.5 2 2.5
1010

1012

1014

1016

1018

1020

Bubble size [nm]

C
on

ce
nt

ra
tio

n
[c

m
3]

1100 K
Ḟ = 6·1013

fb = 0.1
fn = 1

0.5 1 1.5 2 2.5
1010

1012

1014

1016

1018

1020

Bubble size [nm]

C
on

ce
nt

ra
tio

n
[c

m
3]

1100 K
Ḟ = 6·1013

fb = 1
fn = 10

0.5 1 1.5 2 2.5
1010

1012

1014

1016

1018

1020

Bubble size [nm]

C
on

ce
nt

ra
tio

n
[c

m
3]

1100 K
Ḟ = 6·1013

fb = 1
fn = 0.1

Figure 4.9: Bubble distribution at 1100 K for different irradiation parameters.

77

0.002 a/o 0.022 a/o 0.22 a/o 2.2 a/o 6.5 a/o 11.0 a/o

0.5 1 1.5 2 2.5
1010

1012

1014

1016

1018

1020

Bubble size [nm]

C
on

ce
nt

ra
tio

n
[c

m
3]

1400 K
Ḟ = 6·1013

fb = 1
fn = 1

0.5 1 1.5 2 2.5
1010

1012

1014

1016

1018

1020

Bubble size [nm]

C
on

ce
nt

ra
tio

n
[c

m
3]

1400 K
Ḟ = 1·1013

fb = 1
fn = 1

0.5 1 1.5 2 2.5
1010

1012

1014

1016

1018

1020

Bubble size [nm]

C
on

ce
nt

ra
tio

n
[c

m
3]

1400 K
Ḟ = 6·1013

fb = 10
fn = 1

0.5 1 1.5 2 2.5
1010

1012

1014

1016

1018

1020

Bubble size [nm]

C
on

ce
nt

ra
tio

n
[c

m
3]

1400 K
Ḟ = 6·1013

fb = 0.1
fn = 1

0.5 1 1.5 2 2.5
1010

1012

1014

1016

1018

1020

Bubble size [nm]

C
on

ce
nt

ra
tio

n
[c

m
3]

1400 K
Ḟ = 6·1013

fb = 1
fn = 10

0.5 1 1.5 2 2.5
1010

1012

1014

1016

1018

1020

Bubble size [nm]

C
on

ce
nt

ra
tio

n
[c

m
3]

1400 K
Ḟ = 6·1013

fb = 1
fn = 0.1

Figure 4.10: Bubble distribution at 1400 K for different parameters.

78

10−4 10−3 10−2 10−1 100 101

0.5

1

1.5

Burnup [a/o]
B

ub
bl

e
si

ze
[n

m
]

1600
1500
1400
1300
1100
900

Figure 4.11: Bubble size at the concentration peak for Ḟ = 6·1013 fsn/(s·m3) and fb = 1.

4.5 Discussion

4.5.1 Bubble Distribution Peak

The bubble size corresponding to the peak concentration of the bubble distribution is a convenient

tool to describe the trends in Figure 4.8, and is plotted in Figure 4.11 as a function of burnup

for several different temperatures. From both Figures 4.8 and 4.11, it is clear that the general

shape of the distribution forms very early within the simulation, especially for the high temperature

irradiations; For temperatures above 1400 K, the concentration peak reaches a plateau by burnup 0.1

a/o, or 5 days into the simulation. For these higher temperature simulations, a smooth distribution

around the peak concentration forms, with the right side tail dropping quickly towards 0 and a left

shoulder 40-50 nanometers wide that leads into a nearly flat concentration to the smallest bubble

sizes. As time continues, the newly produced fission gas atoms accumulate around the bubble size at

the peak concentration, boosting the peak to higher values, while the flat, small bubble concentration

profile remains nearly constant. Unlike the higher temperature irradiations, a well defined peak does

not develop at lower temperatures; The peak concentrations at lower temperatures occurs at bubble

sizes smaller than the shoulder visible in the higher temperature irradiations. As a result, the peak

distribution slowly pushes towards slightly larger bubble sizes. Due to the fission rate dependent

diffusivity term defined in Equation 4.3 resulting in a constant diffusivity value at low temperatures

(Figure 4.1), all bubble distributions are nearly identical below 1100 K.

Figure 4.12 displays the values of the bubble size at the peak concentration at the highest burnup,

or rather the farthest right-hand value of each line in Figure 4.11, as a function of temperature.

Figure 4.12 captures the tendency of higher temperature irradiations to create larger bubbles, as well

as showing that lower temperature irradiations form similar distributions. Linearly extrapolating

from the last two points to the melting temperature of uranium carbide (2600 K), the population

will center around a 5 nanometer bubble, much less than the 100-400 nanometer bubble determined

experimentally [9].

79

1000 1200 1400 1600

50

100

150

Temperature [K]
B

ub
bl

e
si

ze
[n

m
]

Figure 4.12: Concentration peak as a function of temperature for Ḟ = 6·1013 fsn/(s·m3) and fb = 1.

4.5.2 Parametric Studies

The bubble distributions for differing values of fission rate density and the resolution multiplier are

displayed in Figure 4.10 and 4.10. As expected, the re-solution rate has a strong effect on the bubble

distribution. If the re-solution rate is increased by a factor of 10, the bubble distribution maintains

the low temperature structure at all studied temperatures, with little change in the bubble size at the

concentration peak as a function of temperature. Conversely, decreasing the re-solution rate by a

factor of 10 results in a concentration peak at larger bubble sizes. The bubble distribution is the

result of the competing thermal absorption and re-solution loss phenomena. As such, tuning the re-

solution parameter produces bubble distributions similar to changing the temperature; Lowering the

re-solution rate has a similar effect as raising the temperature, with the converse being true as well.

At 1400 K, re-solution multipliers of fb = {10,1,0.1} leads to the bubble sizes at the concentration

peak of {0.68,0.90,1.92} nanometers. If the general trend given by these sparse points is followed,

the re-solution parameter multiplier fb must be between 10−3 and 10−4 to achieve bubble sizes on

the order of 102 nanometers, or there must be some other physical phenomena driving the larger

bubble sizes that is not captured in these simulations.

By changing the fission rate density, the impact of diffusivity vs. re-solution rate can be studied.

When Ḟ is lowered from 6·1013 to 1·1013 fission/(sec·m3), the bubble distribution shifts to larger

bubble sizes. Following Section 4.2.2, the diffusivity includes a Ḟ dependent term which should

result in smaller bubble sizes for lower values of Ḟ . Simultaneously, the re-solution rate linearly

scales by Ḟ (Equation 4.29), resulting increased bubble sizes. Between the two competing effects,

the drop in re-solution rate is greater such that the bubbles produced at lower fission rate density

values are larger, although not as large as the bubbles produced with fb = 0.1.

The last parameter to be explored was the homogenous nucleation rate, which was scaled by

fn = {10,1,0.1}. The nucleation multiplier has a very similar contribution as the re-solution multi-

plier, with a smaller nucleation rate resulting in a higher concentration of larger bubbles, and a lower

nucleation rate resulting in a bubble concentration distribution that is similar to low temperature ir-

radiation distributions. In all cases, the nucleation multiplier has less of an impact on the overall

80

distribution deviation when compared to the re-solution multiplier. The cause of this deviation lies

in the consumption of single gas atoms and the population of small bubbles; As the nucleation rate

increases, more small bubbles remain in the distribution. Since all of the bubbles act as sinks of

single gas atoms, fewer single gas atoms remain to be quickly absorbed. Since bubble size is deter-

mined by the competing growth and re-solution rate, a slower growth rate results in smaller bubbles.

Ultimately, by limiting the total number of bubbles, slow bubble nucleation increases the chances

of bubbles to grow.

One final parameter that was not explicitly tested was the diffusivity of the gas atoms. However,

due to the temperature dependence of the diffusivity, some comparisons can be qualitatively made

between different diffusivity models. Recalling Figure 4.1, the diffusivity model used in BUCK

taken from Ronchi can be related to the diffusivities calculated by Matzke [5] by modifying the

temperature. For example, utilizing the Ronchi formulation (the default BUCK model), a tem-

perature of 1275 K matches the diffusivity of the Matzke model at 1400 K. Since the diffusivity

is the only temperature dependent parameter in the simulations, artificially tuning the temperature

reproduces results from different diffusivity models. Applying this knowledge to the bubble con-

centration distributions in Figure 4.8, it can be expected that the slower diffusivity models would

produce distributions centered around smaller bubbles.

The isolation of individual parameters in the preceding parametric study highlights the impact

of each parameter to the bubble concentration distribution. Focusing on the parameters above, the

bubble concentration distribution can be shifted towards larger bubble sizes, in decreasing impor-

tance:

• Increasing temperature: Higher temperatures result in a higher absorption rate;

• Increasing diffusivity: Changes in the diffusivity model leads to similar results as changing

temperature.

• Decreasing the re-solution parameter: Lowering the re-solution rate leads to more absorption,

and larger bubbles;

• Decreasing the nucleation rate: Lowering nucleation results in fewer bubbles from which to

consume single gas atoms. This boosts absorption in the few bubbles present, and larger

bubble sizes;

4.5.3 Swelling

The swelling for several temperatures for Ḟ = 6·1013 fsn/(s·m3) and fd = 1 is displayed in Fig-

ure 4.13. The swelling increases linearly for all temperatures, and at higher rates for higher tem-

peratures. By examining the swelling rate as a function of time in Figure 4.14, the swelling rate

dependence on temperature is clearly visible. Following a transition period very early in the sim-

ulation history, the swelling rate remains constant. This is the same behavior as the bubble size at

81

0 2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

Burnup [a/o]

Fr
ac

tio
na

ls
w

el
lin

g

1600 K
1500 K
1400 K
1300 K
1200 K
1000 K

Figure 4.13: Swelling for different temperatures for Ḟ = 6·1013 fsn/(s·m3) and fb = 1.

the peak concentration, as shown in Figure 4.11, linking the swelling behavior to the growth of the

bubble size at the concentration peak.

By looking at the swelling for a given burnup slice from Figure 4.13, the relationship between

temperature and swelling can be plotted in Figure 4.15. Although the swelling rate increases as

a function of temperature, the swelling rate is so small that the plots remain nearly linear. By

comparing the swelling to the experimentally derived swelling from Figure 2.5 (noting the change

in scale), it is clear that the swelling calculated from the BUCK model does not capture the sharp

“knee” transition seen in the data [9]

4.5.4 Comparison to Experimental Results

From the previous sections, it is clear that the currently implemented BUCK model does not capture

the growth phenomena that leads to the large 100-400 nanometer P2 bubbles, but rather may capture

the behavior of the smaller 1-10 nanometer P1 bubble population. P2 bubbles have been extensively

studied experimentally using scanning electron microscopes, while the smaller P1 bubbles have had

little attention due to requirement of the more difficult tunneling electron microscopy required for

the nanometer sized bubbles. As such, comparison to experimental data is limited to a single study

from 1984 [24].

The data in the study was limited to only a handful of temperature and burnup values, thus only

qualitative comparison is achievable. Regardless, the overall trend is that the BUCK simulations

here underestimate the size of the bubbles by nearly an order of magnitude. Similar to the behavior

described in Section 4.4.4 in which the concentration lowered as the bubble distribution shifted to

larger bubble sizes to accommodate the same number of gas atoms, so do these simulations over-

82

10−5 10−4 10−3 10−2 10−1 100 101

6

6.5

7

7.5

8

8.5

·10−3

Burnup [a/o]

D
er

iv
at

iv
e

of
fra

ct
io

na
ls

w
el

lin
g

1700 K
1600 K
1500 K
1400 K
1300 K
1200 K
1100 K
1000 K
900 K

Figure 4.14: Derivative of swelling for different temperatures for Ḟ = 6·1013 fsn/(s·m3) and fb = 1.

1000 1200 1400 1600 1800
0

2

4

6

8

10

12

14

Temperature [K]

S
w

el
lin

g
[%

]

11 a/o
2.2 a/o
1.1 a/o

Figure 4.15: Total swelling as a function of temperature for Ḟ = 6·1013 fsn/(s·m3) and fb = 1.

83

predict the bubble concentrations in comparison to the previous work.

4.5.5 Bubble Coalescence

One of the primary assumptions in BUCK is that the bubbles do not interact. As discussed in Sec-

tion 4.2.2, the bubbles are assumed to remain stationary [9]. Although the bubbles can be expected

to move slightly due to Brownian motion [17], directed diffusion is assumed to be non-existent,

primarily due the high thermal conductivity leading to a minimal temperature gradient in uranium

carbide [70].

Even if the bubbles do not move, they may interact if their concentration and/or size increase

such that they can physically come in contact. The potential for bubble interaction can be estimated

using some simple assumptions; Since bubbles starve the region around them of gas atoms, it can

be expected that they will form roughly the same distance apart from one another. As a first ap-

proximation, it can be assumed that the bubbles nucleate in a cubic structure with with the volume

occupied by each atom is equal to the inverse of the concentration C. The distance between the

centers of adjoining bubbles can then be determined as,

a =C−1/3. (4.75)

If the bubbles have some radius R, then the space between the faces of the two bubbles can be

calculated by,

d = a−2R =C−1/3−2R. (4.76)

Assuming that two bubbles combine as d→ 0, a plot of the concentration vs. radius given d = 0

can be plotted, as in Figure 4.16. Also included is the bubble concentration/size points at the peak

of the concentration distributions from BUCK results plotted in Figure 4.8. It is clear that the bubble

concentration is well below the threshold value that results in coalescence. For the 1600 K case,

the distance between the faces of the bubbles is 43 nm, 27 times greater than the associated bubble

radius.

While it can be expected that bubbles will coalesce as they grow, the comparison between the

threshold line and the example points in Figure 4.8 show that any sort of interaction is absent in the

BUCK simulations.

4.6 Conclusions

A new application, BUCK, was built using the MOOSE framework to simulate the fission gas bubble

concentration distribution. In order to build a bare-bones foundation, the simplistic yet historically

prevalent physics that can be used model fission gas bubble nucleation, growth, and knock-out were

implemented as stepping stones until more advanced models for each physical process can be cre-

ated. As the first step towards models that are based on first-principles, the re-solution parameter

84

100 101 102

1017

1019

1021

1023

1025

1027

1200K

1400K

1600K

Bubble radius [nm]

B
ub

bl
e

co
nc

en
tra

tio
n

[b
ub

/c
m

3]

Figure 4.16: Threshold for bubble interaction with results from the bubble distribution at Ḟ = 6·1013

fsn/(s·m3) and fb = 1.

calculated in Chapter 3 was included and tested within BUCK. In general, the currently imple-

mented physics does not capture the rapid bubble growth that leads to the large fission gas bubbles

experimentally measured [9]. The modular structure of BUCK will allow for easy implementation

of more advanced models, either as refinements to the currently implemented physics, or new phe-

nomena that is necessary to capture the large bubble growth. Further discussion of potential reasons

for the larger bubbles and future work that may be implemented will be continued in Chapter 5.

CHAPTER 5: CONCLUSIONS AND FUTURE WORK

The need for cheap reliable energy, while simultaneously avoiding uranium supply constraints

makes Gas Fast Reactors an attractive nuclear reactor design. Building on past experience, ura-

nium carbide fuel may further enhance safety through superior energy transfer characteristics, and

increase profitability through high uranium concentration. In order to qualify the fuel, an enhanced

understanding of UC’s behavior during operation is paramount. This requires fundamental under-

standing of basic material properties of the fuel. In particular, fission gas release and swelling

are two complex and intertwined consequences of fission gas behavior that may lead to pellet-clad

mechanical interaction and internal pressure buildup, both of which are prominent safety concerns.

Due to a reduced re-solution rate, uranium carbide suffers from a buildup of very large fission

gas bubbles. While these bubbles serve to reduce total fission gas release through the trapping of

diffusing gas atoms, they lead to high swelling and ultimately dominate the microstructure of the

fuel.

In order to calculate the re-solution parameter in uranium carbide, the code 3DOT was created.

As a result of the enhanced thermal dissipative properties of uranium carbide fuel, the atom-by-atom

knockout process was shown to be an accurate representation of re-solution in uranium carbide.

Furthermore, the Binary Collision Approximation was shown to appropriately model the re-solution

event, bypassing computationally expensive Molecular Dynamics simulations. The code 3DOT was

developed as an off-shoot of the code 3DTrim, both of which utilize the TRIM algorithm to calculate

the kinematics of ions traveling through a material.

Benefiting from modern methods and enhanced computational power, the model created in

3DOT surpassed the complexity of previous historical calculations, resulting in a more fundamental

understanding of the re-solution process in uranium carbide. A re-solution parameter was calcu-

lated that was an order of magnitude lower than previous studies suggested due to the inclusion of

electronic losses in the current study. A decrease in the re-solution parameter as a function of radius

occurred for low radii, with a nearly constant re-solution parameter for bubble radii above 50 nm.

Through comparative studies on the re-solution parameter for various values of implantation energy

and atomic density in the bubble, we found that while the re-solution parameter did change slightly,

the overall shape did not.

A new application, BUCK, was built using the MOOSE framework to simulate the fission gas

bubble concentration distribution. In order to build a foundation, the simplistic yet historically

prevalent models that have been used to describe fission gas bubble nucleation, diffusion, and growth

were implemented in BUCK as stepping stones until more advanced models for each physical pro-

cess can be created. The re-solution parameter calculated from 3DOT simulations was included and

tested within BUCK.

86

BUCK was tested against hand-calculations and various parameters, and behaved as expected.

However, from studies using representative simulation parameters, it is clear that the currently im-

plemented theory does not adequately identify the growth mechanism that leads to larger bubbles.

While this currently limits the applicability of BUCK in a full fuel pin calculation, it provides the

baseline structure in which new physics can be implemented, and represents an important step to-

wards understanding the complex behavior of fission gas bubbles.

5.1 Future Work

The BUCK code presented here provides a baseline code in which newly developed models used

to describe individual fission gas phenomena can be implemented. We incorporated a new model

for re-solution in uranium carbide, which is only one piece of the complicated coupled phenomena,

albeit the property that fundamentally separates uranium carbide from oxide fuels. Each model

implemented in Section 4.2 relies on historic models and data for the physics that describes fission

gas release that are ripe for modern analysis:

• Diffusion: Fission gas diffusion in all types of fuel has been notoriously difficult to measure,

while simultaneously remaining a fundamental input to any gas model. Fortunately, recent

advances in ab-initio studies have led to first-principles calculation of diffusivity in uranium

oxide fuels at different stoichiometric compositions and irradiation conditions [87]. Similar

techniques can be applied to uranium carbide fuels to determine gas diffusivity in UC. As

discussed in Section 2.4, the diffusivity as a function of carbon/nitrogen radio and oxygen

impurities leads to vastly different fission gas release measurements. Large-scale ab-initio

studies that can capture this behavior may highlight the effect of nitrogen and oxygen on the

general diffusivity of fission gas through an imperfect uranium carbide lattice.

• Nucleation: The nucleation process in uranium carbide has been largely uninvestigated, and

is assumed to be a homogeneous process in a system where many heterogeneous mechanisms

likely exist. Turnbull’s theory of nucleation in the wake of fission gas bubbles seems a likely

mechanism, but requires molecular dynamics simulations to determine the exact parameters,

such as number and size of the bubbles produced, as well as gas saturation required before

nucleation occurs [35]. Furthermore, dislocation tangles may act as nucleation sites, yet

quantitative models that describe the interaction do not yet exist [17, 24].

• Growth: The absorption of single gas atoms in distributed sinks is reasonably vetted for large

bubbles, however the transition between small clusters to bubbles would benefit from further

investigation, as discussed in Section 4.2.4. Kinetic Monte Carlo (KMC) simulations may be

more beneficial than typically used Molecular Dynamics simulations to model the diffusion

dominated growth process [88].

87

• Point defects: As discussed in Section 4.2.5, the bubble is assumed always to be in equi-

librium with the surrounding lattice. In actuality, the interaction of vacancies and interstitials

with the bubble determines the size. By including a model that captures point defect behavior,

BUCK may be able to capture the dynamic behavior of the bubble size [67]. Such a model

will also be necessary to capture the potential symbiotic relationship between bubbles and

other flaws.

• Defect symbiotic relationship: Micrographs captured by Ray and Blank showed that almost

invariably, small P1 bubbles interact with dislocation tangles, while the P2 bubbles interact

with larger precipitates [24]. Similar behavior has been capture in UO2 studies [89]. The

sharp growth rate that occurs in the swelling of uranium carbide may be described by some

sort of symbiotic relationship between the defects and the bubbles. A 3-dimensional model

that incorporates a point defect model may be able to quantify the relationship.

Beyond incorporation of more advanced models, several factors incorporated in BUCK can be

improved. Perhaps most obvious, the re-solution parameter calculated in Chapter 3 may benefit

from supporting studies using Molecular Dynamics. Although 3DOT simulations are less computa-

tionally expensive and therefore essential in order to calculate the re-solution parameter for a wide

swath of simulation parameters, comparison to Molecular Dynamics simulations could support the

re-solution parameter calculations.

Secondly, the BUCK framework could be improved to more easily support the large number

of bubble sizes that need to simulated. As discussed briefly in Section 4.1, a handful of previous

studies utilized a grouping scheme to reduce the total number of tracked variables. These studies

failed to validate their simulations against non-grouped simulations, and preliminary studies that

incorporated their grouping method within BUCK lead to vastly inaccurate time scales. Regardless,

implementation of some sort of grouping method is necessary to reduce the computational expense

associated with tracking the thousands of bubble sizes necessary to capture the large P2 bubbles.

This might be achieved through adaptive variable tracking, or some other sort of estimation of the

bubble concentration distribution.

Ultimately, formulation of a complete fission gas model will allow calculation of the swelling

and fission gas release for a uranium carbide fuel pin. The BUCK simulation can then be coupled

to the thermo-mechanical fuel performance code BISON in which the material properties presented

in Appendix A are implemented, to calculate the behavior of an entire pin during irradiation. These

simulations can be verified using past experimental data [26, 27, 90, 91], and ultimately inform new

simulations.

88

References

[1] C. Pasten, J. C. Santamarina, Energy and quality of life, Energy Policy 49 (2012) 468–476.

[2] EIA, International Energy Outlook 2013, Tech. Rep. DOE/EIA-0484, US Energy Information
Administration (2013).

[3] X. Liu, A. Vedlitz, J. W. Stoutenborough, S. Robinson, Scientists’ views and positions on
global warming and climate change: A content analysis of congressional testimonies, Cli-
matic Change.

[4] NEA, IAEA, Uranium 2011: Resources, Production and Demand, Tech. Rep. NEA No. 7059,
NEA/IAEA (2007).

[5] H. Matzke, Science of Advanced LMFBR Fuels, North-Holland, 1986.

[6] A. E. Waltar, A. B. Reynolds, Fast Breeder Reactors, 1st Edition, Pergamon Press, 1981.

[7] R. B. Matthews, R. J. Herbst, Uranium-plutonium carbide fuel for fast breeder reactors, Nu-
clear Technology 63 (1) (1983) 9–22.

[8] R. W. Schleicher, T. C. Bertch, A. S. Shenoy, P. K. Gupta, K. R. Schultz, EM2: An Inno-
vative Approach to U.S. Energy Security and Nuclear Waste Disposition, in: Nuclear Power
International 2010 Conference, no. May, 2010.

[9] H. Blank, Nonoxide ceramic nuclear fuels, in: Materials science and technology: a compre-
hensive treatment Vol 10a, Wiley-VCH, 1994.

[10] A. Booth, A method of calculating fission gas diffusion from UO2 fuel and its application to
the X-2-f loop test, Tech. Rep. CRDC-721, AECL (1957).

[11] R. White, M. Tucker, A new fission-gas release model, Journal of Nuclear Materials 118
(1983) 1–38.

[12] M. Speight, A calculation on the migration of fission gas in material exhibiting precipitation
and re-solution of gas atoms under irradiation, Nuclear Science and Engineering 37 (1969)
180–185.

[13] G. Pastore, L. Luzzi, V. Di Marcello, P. Van Uffelen, Physics-based modelling of fission gas
swelling and release in UO2 applied to integral fuel rod analysis, Nuclear Engineering and
Design 256 (2013) 75–86.

[14] K. Govers, C. Bishop, D. Parfitt, S. Lemehov, M. Verwerft, R. Grimes, Molecular dynamics
study of Xe bubble re-solution in UO2, Journal of Nuclear Materials 420 (2012) 282–290.

[15] C. Ronchi, P. Elton, Radiation re-solution of fission gas in uranium dioxide and carbide,
Journal of Nuclear Materials 140 (1986) 228–244.

http://linkinghub.elsevier.com/retrieve/pii/S0301421512005617
http://books.google.com/books?hl=en&lr=&id=vebDRK0a6OAC&oi=fnd&pg=PA9&dq=International+Energy+Outlook+2013&ots=rzePzpxaKP&sig=iWfQzb8vTYYseAHdHCGBXj5T8y4
http://link.springer.com/10.1007/s10584-015-1390-6
http://link.springer.com/10.1007/s10584-015-1390-6
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Uranium+2011+:+Resources+,+Production+and+Demand#2
http://cat.inist.fr/?aModele=afficheN&cpsidt=9426890
http://onlinelibrary.wiley.com/doi/10.1002/9783527603978.mst0108/summary
http://www.sciencedirect.com/science/article/pii/0022311583901769
http://www.ans.org/pubs/journals/nse/a_14258
http://www.ans.org/pubs/journals/nse/a_14258
http://linkinghub.elsevier.com/retrieve/pii/S0029549312005754
http://linkinghub.elsevier.com/retrieve/pii/S0029549312005754
http://linkinghub.elsevier.com/retrieve/pii/S0022311511008968
http://linkinghub.elsevier.com/retrieve/pii/S0022311511008968
http://www.sciencedirect.com/science/article/pii/0022311586902059

89

[16] M. Coquerelle, Survey of post-irradiation examinations made of mixed carbide fuels, Tech.
rep. (1997).

[17] D. R. Olander, Fundamental Aspects of Nuclear Reactor Fuel Elements, Tech. Rep. TID-
26711-P1, DOE (1976).

[18] IAEA, Thermophysical Properties of Materials for Nuclear Engineering: A Tutorial and Col-
lection of Data, Vienna, Austria, 2008.

[19] H. Choi, R. Schleicher, Design Characteristics of the Energy Multiplier Module: Presentation
from 2011 ANS Annual Meeting (2011).

[20] C. Ronchi, Extrapolated equation of state for rare gases at high temperatures and densities,
Journal of Nuclear Materials 96 (1981) 314–328.

[21] K. Nogita, K. Une, High resolution TEM observation and density estimation of Xe bubbles
in high burnup UO2 fuels, Nuclear Instruments and Methods in Physics Research Section B:
Beam Interactions with Materials and Atoms 141 (1-4) (1998) 481–486.

[22] P. Garcia, G. Martin, C. Sabathier, G. Carlot, A. Michel, P. Martin, B. Dorado, M. Freyss,
M. Bertolus, R. Skorek, J. Noirot, L. Noirot, O. Kaitasov, S. Maillard, Nucleation and growth
of intragranular defect and insoluble atom clusters in nuclear oxide fuels, Nuclear Instruments
and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms
277 (2012) 98–108.

[23] P. Prajoto, A. Wazzan, D. Okrent, Computer Modeling of Steady State Fission Gas behavior
in Carbide Fuels, Nuclear Engineering and Design 48 (1978) 461–495.

[24] I. Ray, H. Blank, Microstructure and fission gas bubbles in irradiated mixed carbide fuels at
2 to 11 a/o burnup, Journal of Nuclear Materials 124 (1984) 159–174.

[25] H. Blank, I. Ray, C. Walker, A coherent description of fission gas swelling in the structural
zones III and IV of advanced fuels Part I: Properties of Bubble Populations P2 and the Crit-
ical Temperature Burn-up Relation in Carbide Fuel Under the Conditions of Free Swelling,
European Applied Research, Nuclear Science and Technology 4 (5) (1983) 1223–1274.

[26] M. Colin, M. Coquerelle, I. Ray, C. Ronchi, C. T. Walker, H. Blank, The Sodium-bonding
pin concept for advanced fuels Part I: Swelling of carbide fuel up to 12% burnup, Nuclear
Technology 63 (1983) 442–460.

[27] C. Ronchi, M. Campana, M. Coquerelle, J. V. de Laar, Reactor Performance of MC, MN,
MCN and MCO: Results of the comparative irradiation experiments GOCAR, Tech. Rep.
EUR 9186 EN (1984).

[28] C. Ronchi, I. Ray, H. Thiele, J. van de Laar, Measurements and observations on microscopic
swelling in MX-type fuels, Tech. Rep. EUR 5907 EN, Institue for Transuranium elements
(1978).

[29] G. Bart, F. Botta, C. Hoth, G. Ledergerber, R. Mason, R. Stratton, AC-3-irradiation test of
sphere-pac and pellet (U, Pu)C fuel in the US Fast Flux Test Facility, Journal of Nuclear
Materials 376 (1) (2008) 47–59.

http://inis.iaea.org/search/search.aspx?orig_q=RN:29000286
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Thermophysical+Properties+of+Materials+for+Nuclear+Engineering:+A+Tutorial+and+Collection+of+Data#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Thermophysical+Properties+of+Materials+for+Nuclear+Engineering:+A+Tutorial+and+Collection+of+Data#0
http://www.sciencedirect.com/science/article/pii/0022311581905754
http://linkinghub.elsevier.com/retrieve/pii/S0168583X11011487
http://linkinghub.elsevier.com/retrieve/pii/S0168583X11011487
http://www.sciencedirect.com/science/article/pii/0029549378900924
http://www.sciencedirect.com/science/article/pii/0029549378900924
http://www.sciencedirect.com/science/article/pii/0022311584900205
http://www.sciencedirect.com/science/article/pii/0022311584900205
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Reactor+Performance+of+MC,+MN,+MCN+and+MCO+:+results+of+the+comparative+irradiation+experiments+gocar#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Reactor+Performance+of+MC,+MN,+MCN+and+MCO+:+results+of+the+comparative+irradiation+experiments+gocar#0
http://cat.inist.fr/?aModele=afficheN&cpsidt=14967531
http://cat.inist.fr/?aModele=afficheN&cpsidt=14967531
http://www.sciencedirect.com/science/article/pii/S0022311508000962
http://www.sciencedirect.com/science/article/pii/S0022311508000962

90

[30] Philadelphia Electric Company, Final Hazards Summary Report Peach Bottom Atomic
Power Station: Volume V - Plant Description and Safeguards Analysis (Annexes), Tech.
rep. (1961).

[31] R. Martin, Compilation of Fuel Performance and Fission Product Transport Models and
database for MHTGR Design, Tech. Rep. ORNL/NPR-91/6, ORNL (1993).

[32] J. Saurwein, Fission Product Vent System Presentation to OSU (Apr. 2014).

[33] B. Myers, N. Baldwin, W. Bell, R. Burnette, The behavior of fission product gases in HTGR
Fuel Material, Tech. Rep. GA-A13723, GA (1977).

[34] D. R. Olander, D. Wongsawaeng, Re-solution of fission gas - A review: Part I. Intragranular
bubbles, Journal of Nuclear Materials 354 (2006) 94–109.

[35] J. Turnbull, The distribution of intragranular fission gas bubbles in UO2 during irradiation,
Journal of Nuclear Materials 38 (2) (1971) 203–212.

[36] R. Nelson, The stability of gas bubbles in an irradiation environment, Journal of Nuclear
Materials 31 (2) (1969) 153–161.

[37] G. Pastore, Modelling of Fission Gas Swelling and Release in Oxide Nuclear Fuel and Ap-
plication to the TRANSURANUS Code, Ph.D. thesis (2012).

[38] H. Blank, H. Matzke, The effect of fission spikes on fission gas re-solution, Radiation Effects
17 (1973) 57–64.

[39] J. Turnbull, A review of irradiation induced re-solution in oxide fuels, Radiation Effects 53
(1980) 243–250.

[40] K. Govers, S. Lemehov, M. Verwerft, In-pile Xe diffusion coefficient in UO2 determined
from the modeling of intragranular bubble growth and destruction under irradiation, Journal
of Nuclear Materials 374 (2008) 461–472.

[41] D. Schwen, M. Huang, P. Bellon, R. Averback, Molecular dynamics simulation of intragran-
ular Xe bubble re-solution in UO2, Journal of Nuclear Materials 392 (2009) 35–39.

[42] C. Ronchi, T. Wiss, Fission-fragment spikes in uranium dioxide, Journal of Applied Physics
92 (10) (2002) 5837.

[43] H. Blank, Properties of Fission Spikes in UO2 and UC Due to Electronic Stopping Power,
Physica Status Solidi (a) 10 (1972) 465.

[44] C. Ronchi, H. Matzke, J. van de Laar, H. Blank, Fission Gas Behaviour in Nuclear Fuels,
European Applied Research Reports - Nuclear Science and Technology 1 (1) (1979) 1–350.

[45] J. Biersack, L. Haggmark, A Monte Carlo computer program for the transport of energetic
ions in amorphous targets, Nuclear Instruments and Methods 174 (1-2) (1980) 257–269.

[46] J. F. Ziegler, J. Biersack, U. Littmark, The stopping and range of ions in solids: Volume 1,
Pergamon, New York, 1985.

http://www.osti.gov/scitech/biblio/10199713 http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=10199713
http://www.osti.gov/scitech/biblio/10199713 http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=10199713
http://www.sciencedirect.com/science/article/pii/S002231150600198X
http://www.sciencedirect.com/science/article/pii/S002231150600198X
http://www.sciencedirect.com/science/article/pii/0022311569901895 http://linkinghub.elsevier.com/retrieve/pii/0022311569901895
http://www.tandfonline.com/doi/abs/10.1080/00337577308232598
http://www.tandfonline.com/doi/abs/10.1080/00337578008207119
http://linkinghub.elsevier.com/retrieve/pii/S0022311507010392
http://linkinghub.elsevier.com/retrieve/pii/S0022311507010392
http://www.sciencedirect.com/science/article/pii/S0022311509004516
http://www.sciencedirect.com/science/article/pii/S0022311509004516
http://scitation.aip.org/content/aip/journal/jap/92/10/10.1063/1.1513192
http://www.sciencedirect.com/science/article/pii/0029554X80904401
http://www.sciencedirect.com/science/article/pii/0029554X80904401

91

[47] D. Schwen, R. Averback, Intragranular Xe bubble population evolution in UO2: A first pas-
sage Monte Carlo simulation approach, Journal of Nuclear Materials 402 (2010) 116–123.

[48] J. Ziegler, J. Biersack, M. Ziegler, SRIM: The stopping and Range of Ions in Matter, SRIM
Company, 2008.

[49] W. Brandt, M. Kitagawa, Effective stopping-power charges of swift ions in condensed matter,
Physical Review B 25 (9).

[50] C. Matthews, 3DOT Source.
URL: https://github.com/tophmatthews/3DOT

[51] D. Schwen, 3DTrim Source.
URL: http://groups.mrl.illinois.edu/averback/3dtrim/

[52] D. Parfitt, R. Grimes, Predicting the probability for fission gas resolution into uranium diox-
ide, Journal of Nuclear Materials 392 (2009) 28–34.

[53] H. Blank, Fabrication of carbide and nitride pellets and the nitride irradiations of Niloc 1 and
Niloc 2, Tech. Rep. EUR 13220 EN, Institute for Transuranium Elements (1991).

[54] M. Posselt, Comparison of BC and MD simulations of low-energy ion implantation 102
(1995) 236–241.

[55] V. Ferleger, I. Wojciechowski, On non-binary nature of the collisions of heavy hyperthermal
particles with solid surfaces, Nuclear Instruments and Methods in Physics Research Section
B: Beam Interactions with Materials and Atoms 164-165 (2000) 641–644.

[56] G. Hobler, G. Betz, On the useful range of application of molecular dynamics simulations in
the recoil interaction approximation, Nuclear Instruments and Methods in Physics Research
Section B: Beam Interactions with Materials and Atoms 180 (2001) 203–208.

[57] I. Chakarov, R. Webb, An investigation of collision propagation in energetic ion initiated
cascades in copper, Nuclear Instruments and Methods in Physics Research B 102 (1995)
145–150.

[58] G. S. Was, Fundamentals of radiation materials science: Metals and alloys, Springer Berlin
Heidelberg, 2007.

[59] D. Gaston, C. Newman, G. Hansen, D. Lebrun-Grandié, MOOSE: A parallel computational
framework for coupled systems of nonlinear equations, Nuclear Engineering and Design
239 (10) (2009) 1768–1778.

[60] L. Noirot, MARGARET: A comprehensive code for the description of fission gas behavior,
Nuclear Engineering and Design 241 (6) (2011) 2099–2118.

[61] M. Wood, J. Matthews, A simple operational gas release and swelling model, Journal of
Nuclear Materials (1980) 35–40.

[62] C. Ronchi, J. van de Laar, H. Blank, The sodium-bonding pin concept for advanced fuels.
Part III: Calculation of the swelling performance, Nuclear Technology 68 (1984) 48–65.

http://www.sciencedirect.com/science/article/pii/S0022311510001960
http://www.sciencedirect.com/science/article/pii/S0022311510001960
http://prb.aps.org/abstract/PRB/v25/i9/p5631_1
https://github.com/tophmatthews/3DOT
https://github.com/tophmatthews/3DOT
http://groups.mrl.illinois.edu/averback/3dtrim/
http://groups.mrl.illinois.edu/averback/3dtrim/
http://linkinghub.elsevier.com/retrieve/pii/S0022311509004504 http://www.sciencedirect.com/science/article/pii/S0022311509004504
http://linkinghub.elsevier.com/retrieve/pii/S0022311509004504 http://www.sciencedirect.com/science/article/pii/S0022311509004504
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Fabrication+of+carbide+and+nitride+pellets+and+the+nitride+irradiations+of+Niloc+1+and+Niloc+2#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Fabrication+of+carbide+and+nitride+pellets+and+the+nitride+irradiations+of+Niloc+1+and+Niloc+2#0
http://linkinghub.elsevier.com/retrieve/pii/S0168583X99010435
http://linkinghub.elsevier.com/retrieve/pii/S0168583X99010435
http://linkinghub.elsevier.com/retrieve/pii/S0168583X01004189
http://linkinghub.elsevier.com/retrieve/pii/S0168583X01004189
http://www.sciencedirect.com/science/article/pii/0168583X95801326
http://www.sciencedirect.com/science/article/pii/0168583X95801326
http://linkinghub.elsevier.com/retrieve/pii/S0029549309002635
http://linkinghub.elsevier.com/retrieve/pii/S0029549309002635
http://linkinghub.elsevier.com/retrieve/pii/S0029549311002561

92

[63] M. Hayns, On the group method for the approximate solution of a hierarchy of rate equations
describing nucleation and growth kinetics, Journal of Nuclear Materials 59 (1976) 175–182.

[64] M. Hayns, R. Bullough, The Nucleation and Growth of Fission Gas Bubbles, Tech. Rep.
IAEA-SM-190/15 (1975).

[65] M. Hayns, M. Wood, On the rate theory model for fission-gas behaviour in nuclear fuels,
Journal of Nuclear Materials 59 (3) (1976) 293–302.

[66] M. Hayns, M. Wood, Models of fission gas behaviour in fast reactor fuels under steady state
and transient conditions, Journal of Nuclear Materials 67 (1977) 155–170.

[67] J. Griesmeyer, N. Ghoniem, D. Okrent, A dynamic intragranular fission gas behavior model,
Nuclear Engineering and Design 55 (1979) 69–95.

[68] B. Eyre, R. Bullough, The formation and behaviour of gas bubbles in a non-uniform temper-
ature environment, Journal of Nuclear Materials 26 (3) (1968) 249–266.

[69] A. Madrid, An Intermediate Model on Intragranular Fission Gas Behavior During Steady
State Irradiation of LMFBR Uranium Carbide Nuclear Fuel, Ph.D. thesis, Unicersity of Cal-
ifornia, Los Angeles (1980).

[70] R. Weeks, R. Scattergood, S. Pati, Migration velocities of bubble-defect configurations in
nuclear fuels, Journal of Nuclear Materials 36 (2) (1970) 223–229.

[71] M. Freyss, First-principles study of uranium carbide: Accommodation of point defects and
of helium, xenon, and oxygen impurities, Physical Review B 81 (1) (2010) 014101.

[72] R. Ducher, R. Dubourg, M. Barrachin, A. Pasturel, First-principles study of defect behavior
in irradiated uranium monocarbide, Physical Review B 83 (10) (2011) 1–12.

[73] D. A. Porter, K. E. Easterling, M. Y. Sherif, Phase Transformations in Metals and Alloys,
CRC Press, 2009.

[74] J. Rest, An improved model for fission product behavior in nuclear fuel under normal and
accident conditions, Journal of Nuclear Materials 120 (2-3) (1984) 195–212.

[75] J. Griesmeyer, N. Ghoniem, The response of fission gas bubbles to the dynamic behavior of
point defects, Journal of Nuclear Materials 80 (1979) 88–101.

[76] A. Wazzan, J. Tatsumi, D. Okrent, M. Billone, Effect of Non-equilibrium fission gas and fuel
creep on swelling and release in irradiated carbide fuels, Nuclear Engineering and Design 88
(1985) 93–101.

[77] B. S. Kirk, J. W. Peterson, R. H. Stogner, G. F. Carey, libMesh: a C++ library for paral-
lel adaptive mesh refinement/coarsening simulations, Engineering with Computers 22 (3-4)
(2006) 237–254.

[78] J. Hales, S. Novascone, B. Spencer, R. Williamson, G. Pastore, D. Perez, Verification of the
BISON fuel performance code, Annals of Nuclear Energy 71 (2014) 81–90.

http://www.sciencedirect.com/science/article/pii/002231157690132X
http://www.sciencedirect.com/science/article/pii/002231157690132X
http://www.sciencedirect.com/science/article/pii/0022311576900611
http://www.sciencedirect.com/science/article/pii/0022311577901714
http://www.sciencedirect.com/science/article/pii/0022311577901714
http://linkinghub.elsevier.com/retrieve/pii/0022311568900998
http://linkinghub.elsevier.com/retrieve/pii/0022311568900998
http://www.sciencedirect.com/science/article/pii/0022311570901479 http://linkinghub.elsevier.com/retrieve/pii/0022311569901433 http://linkinghub.elsevier.com/retrieve/pii/0022311570901479
http://www.sciencedirect.com/science/article/pii/0022311570901479 http://linkinghub.elsevier.com/retrieve/pii/0022311569901433 http://linkinghub.elsevier.com/retrieve/pii/0022311570901479
http://link.aps.org/doi/10.1103/PhysRevB.81.014101
http://link.aps.org/doi/10.1103/PhysRevB.81.014101
http://link.aps.org/doi/10.1103/PhysRevB.83.104107
http://link.aps.org/doi/10.1103/PhysRevB.83.104107
http://www.sciencedirect.com/science/article/pii/0022311584900576
http://www.sciencedirect.com/science/article/pii/0022311584900576
http://www.sciencedirect.com/science/article/pii/0029549385900482
http://www.sciencedirect.com/science/article/pii/0029549385900482
http://linkinghub.elsevier.com/retrieve/pii/S0306454914001492
http://linkinghub.elsevier.com/retrieve/pii/S0306454914001492

93

[79] M. R. Tonks, D. Gaston, P. C. Millett, D. Andrs, P. Talbot, An object-oriented finite element
framework for multiphysics phase field simulations, Computational Materials Science 51 (1)
(2012) 20–29.

[80] M. Tonks, D. Gaston, C. Permann, P. Millett, G. Hansen, D. Wolf, A coupling methodology
for mesoscale-informed nuclear fuel performance codes, Nuclear Engineering and Design
240 (10) (2010) 2877–2883.

[81] M. R. Tonks, P. C. Millett, P. Nerikar, S. Du, D. Andersson, C. R. Stanek, D. Gaston,
D. Andrs, R. Williamson, Multiscale development of a fission gas thermal conductivity
model: Coupling atomic, meso and continuum level simulations, Journal of Nuclear Ma-
terials 440 (1-3) (2013) 193–200.

[82] D. A. Knoll, D. E. Keyes, Jacobian-free Newton-Krylov methods: A survey of approaches
and applications (2004).

[83] J. Farlow, J. E. Hall, J. M. McDill, B. H. West, Differential Equations and Linear Algebra,
Prentice-Hall, Upper Saddle River, New Jersey, 2002.

[84] Y. Saad, M. H. Schultz, GMRES: A Generalized Minimal Residual Algorithm for Solving
Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical Computing 7 (3)
(1986) 856–869.

[85] S. Eckert, H. Baaser, D. Gross, O. Scherf, A BDF2 integration method with step size control
for elasto-plasticity, Computational Mechanics 34 (5) (2004) 377–386.

[86] Idaho National Laboratory, MOOSE Workshop (2015).

[87] D. a. Andersson, P. Garcia, X. Y. Liu, G. Pastore, M. Tonks, P. Millett, B. Dorado, D. R. Gas-
ton, D. Andrs, R. L. Williamson, R. C. Martineau, B. P. Uberuaga, C. R. Stanek, Atomistic
modeling of intrinsic and radiation-enhanced fission gas (Xe) diffusion in UO2±x: Implica-
tions for nuclear fuel performance modeling, Journal of Nuclear Materials 451 (1-3) (2014)
225–242.

[88] M. Stan, Multi-Scale Models and Simulations of Nuclear Fuels, Nuclear Engineering and
Technology 41 (1) (2009) 39–52.

[89] S. Kashibe, K. Une, K. Nogita, Formation and growth of intragranular fission gas bubbles in
UO2 fuels with burnup of 6-83 GWd/t, Journal of Nuclear Materials 206 (1) (1993) 22–34.

[90] C. Ronchi, I. Ray, H. Thiele, J. V. de Laar, Swelling analysis of highly-rated MX-type
LMFBR fuels: II. Microsopic swelling behaviour, Journal of Nuclear Materials 74 (1978)
193–211.

[91] C. Ronchi, C. Sari, Swelling analysis of highly rated MX-type LMFBR fuels. I. Restructuring
and Porosity Behaviour, Journal of Nuclear Materials 58 (2) (1975) 140–152.

[92] T. Preusser, Modeling of Carbide Fuel Rods, Nuclear Technology 57 (1982) 343–371.

[93] P. Petkevich, Development and Application of an Advanced Fuel Model for the Safety Analy-
sis of the Generation IV Gas-cooled Fast Reactor, Ph.D. thesis, Ecole Polytechnique Federale
de Lausanne (2008).

http://linkinghub.elsevier.com/retrieve/pii/S0927025611004204 http://dx.doi.org/10.1016/j.commatsci.2011.07.028
http://linkinghub.elsevier.com/retrieve/pii/S0927025611004204 http://dx.doi.org/10.1016/j.commatsci.2011.07.028
http://linkinghub.elsevier.com/retrieve/pii/S002954931000419X http://dx.doi.org/10.1016/j.nucengdes.2010.06.005
http://linkinghub.elsevier.com/retrieve/pii/S002954931000419X http://dx.doi.org/10.1016/j.nucengdes.2010.06.005
http://linkinghub.elsevier.com/retrieve/pii/S0022311513007150
http://linkinghub.elsevier.com/retrieve/pii/S0022311513007150
http://dx.doi.org/10.1016/j.jnucmat.2014.03.041
http://dx.doi.org/10.1016/j.jnucmat.2014.03.041
http://dx.doi.org/10.1016/j.jnucmat.2014.03.041
http://www.kns.org/jknsfile/v41/JK0410039.pdf
http://linkinghub.elsevier.com/retrieve/pii/002231159390229R
http://linkinghub.elsevier.com/retrieve/pii/002231159390229R
http://www.sciencedirect.com/science/article/pii/0022311578903598
http://www.sciencedirect.com/science/article/pii/0022311578903598
http://www.sciencedirect.com/science/article/pii/0022311575901002
http://www.sciencedirect.com/science/article/pii/0022311575901002
http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=6816480

94

[94] IAEA, Status and Trends of Nuclear Fuels Technology for Sodium Cooled Fast Reactors,
Tech. rep., IAEA, Vienna, Austria (2009).

[95] M. Tetenbaum, A. Sheth, W. Olson, A Review of the Thermodynamics of the U-C, Pu-C, and
U-Pu-C Systems, Tech. Rep. ANL-AFP-8, ANL (1975).

[96] C. Holley, Jr., M. Rand, E. Storms, The Actinide Carbides, in: Chemical Thermodynamics,
IAEA, 1984, Ch. 6.

[97] S. Govindarajan, P. Puthiyavinayagam, S. Clement Ravi Chandar, S. Chetal, S. Bhoje, Perfor-
mance of FBTR Mixed Carbide Fuel, in: Influence of high dose irradiation on core structural
and fuel materials in advanced reactors, 1997, pp. 47–56.

[98] E. Storms, An Analytical Representation of the Thermal Conductivity and Electrial Resistiv-
ity of UC, PuC, and (UPu)C, Tech. Rep. LA-9524, LANL (1982).

[99] P. Petkevich, K. Mikityuk, P. Coddington, R. Chawla, Development and benchmarking of a
2D transient thermal model for GFR plate-type fuel, Annals of Nuclear Energy 34 (9) (2007)
707–718.

[100] J. Matthews, Mechanical Properties and Diffusion Data for Carbide and Oxide Fuels, Tech.
rep., UK Atomic Energy Authority (1974).

[101] W. Dienst, Swelling, Densification and Creep of (U, Pu)C Fuel under irradiation, Journal of
Nuclear Materials 124 (1984) 153–158.

http://linkinghub.elsevier.com/retrieve/pii/S030645490700076X
http://linkinghub.elsevier.com/retrieve/pii/S030645490700076X
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Mechanical+properties+and+diffusion+data+for+carbide+and+oxide+fuels#0
http://www.sciencedirect.com/science/article/pii/0022311584900199

95

APPENDICES

96

APPENDIX A: MATERIAL PROPERTIES

The following attempts to collect material data for uranium monocarbide fuels. However, data

information will be included for (Uw,Pux)yCz for various values of w, x, y, and z, when it is available.

All combinations will now be labeled generically as MC fuels.

The primary resources utilized for this Database are as follows:

• H. Matzke, Science of Advanced LMFBR Fuels. (1986) [5]: This extensive monograph

touches on all topics of MC fuels up to the publishing date. Matzke himself contributes his

own data to most topics. The book emphasizes the spread of sparse material data, and tries to

give recommendations on the best practice, although it does not make explicit recommenda-

tions;

• H. Blank, “Nonoxide ceramic nuclear fuels,” in Materials science and technology: a compre-

hensive treatment Vol 10a, (1994) [9]: This summary is extensive in the material data up to

the publishing date. It contains much of the same data as Matzke;

• T. Preusser, “Modeling of carbide fuel rods,” Nuclear Technology, vol. 57, pp. 343-371,

1982 [92]: This article contains the relations used in the fuel performance code URANUS. A

review of thermo-mechanical properties of UC and (U,Pu)C is used to backup the choices for

the program. Also included is the physical model used for the fission gas release module in

URANUS. Due to the complexity of the material data, much of the URANUS relations are

simplistic;

• P. Petkevich, “Development and Application of an Advanced Fuel Model for the Safety Anal-

ysis of the Generation IV Gas-cooled Fast Reactor,” (2008) [93]: This dissertation contains

material properties compiled from several sources. The thermomechanical properties are

taken from generic material property sources rather than MC specific sources, however hard

to find swelling and creep relations are included.

A.1 Density

The density of MC from Matzke are displayed in Table A.1. One interesting note is that (U0.8,

Pu0.2)C has a lower density than both UC and PuC.

A.2 Melting Temperature

The melting points for several MC compounds are listed in Table A.2.

97

Table A.1: Density for MC from several sources.

Compound Density kg/m3

From Matzke [5] Other values

UC 13,630 13,630 [92, 93]
UC2 11,680
U2C3 12,880
PuC 13,600
Pu2C3 12,700
Pu3C2 15,300
(U0.8, Pu0.2)C 13,580 13,600 [92]

Table A.2: Melting points for several MC species [94].

Compound Temperature [K]

UC 2780 ± 25
PuC 1875 ±25
U2C3 2100
Pu2C3 2285
(U0.8Pu0.2)C 2750 ± 30
(U0.8Pu0.2)2C3 2480 ± 50

A.3 Specific Heat Capacity

Although steady state calculations are relatively insensitive to the heat capacity, accurate relations

for Cp may be necessary for transient models. The heat capacity is dependent primarily on tem-

perature [92]. Blank claims the first studies of MC heat capacity did not take into account a strong

upward trend in Cp at temperatures above 60% of the melting temperature [9]. This incorrect data

was reproduced in the ANL collection on thermodynamic data for MC fuels [95]. Blank believes

the most accurate assessment of the heat capacity was completed by Holley in 1984 [96]. The heat

capacity for MC is typically cast into a form as,

cp(T) = a+bT + cT 2 +dT 3 + eT−2, (A.1)

Cp = heat capacity [J/mol/K],

T = temperature [K].

Since simple relations are adequate for steady-state calculations, Preusser uses a linear trend for

the heat capacity of UC given as,

Cp(T) = 54.4+(0.00962)T . (A.2)

The heat capacities for uranium carbides are plotted in Figure A.1, with plutonium carbides

plotted in Figure A.2.

98

Table A.3: Coefficients for the heat capacities for several MC species.

Fuel a b c d e Trange (K) Ref.

UC 50.98 2.57E-02 -1.87E-05 5.72E-09 -6.19E+05 298-2780 [2]
UC1.5 5.354 -2.39E-02 2.07E-05 0 -1.45E+06 298-1670 [2]
UC2 49 8.25E-02 -7.82E-05 3.03E-08 -5.93E+05 298-2000 [1]
U2C3 150.7 -4.79E-02 4.13E-05 0 -2.91E+05 360-1700 [1]
PuC0.84 57.876 -1.45E-02 7.71E-06 8.62E-09 -6.55E+05 298-1875 [2]
PuC1.5 78.0375 -4.00E-02 3.52E-05 0 -1.09E+06 298-2285 [2]

Figure A.1: Heat capacities for several uranium carbide compounds.

As the M/C ratio decreases, the heat capacity tends to increase. The largest deviation occurs in

the U2C3 composition, resulting in nearly a factor of 2 increase. At 1100 K, the transition occurs

for hyperstoichiometric fuels as (UC+C) transitions into (U2C3 + C) this phase change is visible in

the heat capacity curves UC1.5 and especially UC2 transitions from following the UC heat capacity

curve, to following the slope of U2C3.

The heat capacities given by Blank will be utilized as the standard. Deviation in stoichiometry

and plutonium content will be ignored for the present. A relationship based on M/C or U/Pu ratio

may be possible, perhaps even as simple as a linear relation.

A.4 Thermal Conductivity

The thermal conductivity is heavily dependent on temperature, porosity, and stoichiometry of MC.

Any imperfections, such as Pu content, fission product, and deviations in stoichiometry serve to

decrease the thermal conductivity [92]. Preusser uses the simple relation [92],

λ =

20, for T ≤ 773 K,

20,+(1.3 ·10−3)T for T > 773 K,
(A.3)

99

Figure A.2: Heat capacities for several plutonium carbide compounds.

λ = thermal conductivity [W/m/K],

T = temperature [K].

Porosity corrections are typically given in the form:

φ = φ
′(1−P)n, (A.4)

φ = Property of sub-dense material,

φ′ = Property of fully-dense material,

P = Fractional porosity,

n = correction factor.

The most basic approximation is for n=1, and usually applies to material in which the mi-

crostructural information such as the shape and orientation of the pores is unknown. Both n = 3/2

and a second type of correction,

φ = φ
′
(

1−P
1+P

)
(A.5)

have been used to for (U, Pu)C specifically [97].

Thermal conductivity is heavily dependent on C/U ratio, especially when there is excess ura-

nium. If the fuel is slightly hypo-stoichiometric, the extra uranium atoms will form a metallic phase

along the grain boundaries, increasing the thermal conductivity. However, the extra carbon atoms

incorporated in the crystal in hyper-stoichiometric fuels will result in a decreased thermal conduc-

tivity. Note, UC fuels are typically kept at hyper-stoichiometric levels to avoid the swelling issues

caused by free uranium metal.

100

By taking into account the C/M ratio, Storms [98] was able to isolate the effect of the U/Pu

ratio on the thermal conductivity. For hyper-stoichiometric fuel, a plutonium ratio of 20% results

in a very slight decrease in λ. Increasing the Pu ratio to 40% markedly decreases the conductivity.

However, hypo-stochiometric fuel experiences decrease in thermal conductivity of about 20% up to

1000◦ C, at which point the UC and (U0.8,Pu0.2)C have similar thermal conductivities.

Blank includes a summary on studies on the thermal conductivity of (U0.8Pu0.2)C1+x with arti-

ficially mixed fission products Ce, Zr, and Mo. Table A.4 displays the ratio of the thermal conduc-

tivities between the pure and FP mixed samples, λ/λmod .

Table A.4: Thermal conductivity ratios due to artificial additions of fission products. The change in the ratio
is nearly constant for 5-10% molar introduction of MoC. Reproduced from [9].

Species Atomic radius [µm] Molar addition λ/λmod at 700 K λ/λmod at 1200 K

U 175 - - -
Ce 185 10% 1.15 1.087
Zr 155 10% 1.21 1.16
Mo 145 5% 1.25 1.186

Since the decrease in thermal conductivity is higher at lower temperatures, it can be expected

that the outer ring of the fuel pellet will experience a greater change in thermal conductivity as a

function of fission product addition.

From Table A.4, it is clear that the addition of the Ce results in the lowest modification in

the thermal conductivity, while Mo results in the highest. By plotting λ/λmod by the percentage

difference in atomic radius of each FP with uranium, a nearly linear trend is obvious (Figure A.3).

Figure A.3: λ/λmod vs. percent difference between the atomic radius of a given FP and U.

Although a trend might be drawn from the above, Matzke claims that even though the thermal

conductivity has a slight dependence on the FP concentration, it is a smaller effect when compared

to porosity, C/M ratio, and restructuring [5].

101

Figure A.4: Thermal expansion [5, 92, 99].

From the previous discussion, we can see that the thermal conductivity varies as a function

of C/M and U/Pu ratios. What was not discussed was the even wider deviations between thermal

conductivity reports. Matzke attributes the difficulty in determining an accurate value of λ (and

many other physical properties) on the poor characterization of the material before measurement.

A.5 Thermal Expansion

Most thermal expansion relations are given in the linear form:

λm = a+bT , (A.6)

λm = mean thermal expansion coefficient, [1/K],

T = temperature, [K].
Values for a and b are displayed in Table A.5.

Table A.5: Coefficients for thermal expansion.

Reference a b

General Atomics 1E-5 0.9E-9
Matzke [5] 1E-5 1.2E-9
Preusser [92] 1.007E-5 1.17E-9

Preusser claims that the above relation utilized in URANUS is highly representative of the

values in literature, as well as conforming well to experimental data [92].

The coefficient of thermal expansion is independent of the stoichiometry up to 800◦ C [5].

Above this temperature, hypo-stochiometric UC behaves differently than stoichiometric UC due

to the phase changes of the free uranium present at the grain boundaries [92]. The decomposi-

102

tion temperature U2C3 → UC + UC2 occurs at 1780◦ C, and is accompanied with a large volume

change [5]. Differences in the thermal expansion between UC and U2C3 should lead to noticeable

internal stresses in two-phase structures [9].

Matzke claims that the U/Pu mixture does not exhibit great deviations, and the URANUS code

utilizes the same coefficient of thermal expansion for both UC and PuC.

In a thorough explanation of thermal expansion data, Blank claims that in principle, the porosity

does not affect the thermal expansion, with data from dense arc-melted UC producing nearly the

same results as 86% sub-dense hot-pressed UC.

A.6 Young’s Modulus

Table A.6 displays the elastic moduli at room-temperature.

Table A.6: Elastic moduli at room-temperature [5].

Material Young’s [106 Pa] Shear [106 Pa] Bulk [106 Pa] Poisson’s

UC, (U0.85Pu0.15)C 225 87.3 176.8 0.228
UC10.96 211 82.9 157.5 0.28
UC 210 81.3 167.8 0.291
(U0.8Pu0.2)C 202 78.5 160.3 0.29

Preusser implements a temperature and porosity dependent thermal conductivity of the form,

E(T , p) = 2.15 ·1011 (1−a ·P)
(
1−0.92x10−4 [T −273]

)
, (A.7)

E = Young’s modulus, [Pa],

P = fractional porosity, P≤0.3,

T = temperature, [K],

a = porosity correction coefficient.

A porosity correction coefficient of a = 2.3 is typically used [5,92], with a value of a = 1.54 for

fuel with 20% Pu. The porosity correction does not consider the shape of the pores which may be

important for highly porous material.

Matthews [100] claims differences in stoichiometry and grain radius does not significantly mod-

ify Young’s Modulus. Matzke references several studies of Young’s Modulus after the introduction

of several fission products, and claims they have little affect [5].

A.7 Poisson’s Ratio

Preusser [92] utilizes a porosity corrected υ:

υ = 0.288−0.286P, for 0.05≤ P≤ 0.27. (A.8)

103

Preusser acknowledges other papers use fixed values, namely the first value given in Table A.6.

However, since the URANUS code utilizes values for Young’s modulus and Poisson’s ratio from

the same resource, Preusser recommends the above formulation. Matzke claims that Poisson’s

ratio does not change as a function of temperature due to similar temperature dependencies for the

moduli [5].

A.8 Thermal Creep

For fuel rod analysis, only primary and secondary creep is applicable as tertiary creep regions lie out

of the time span of the rod lifetime. However, due to the complexity of primary creep, typically only

secondary creep is modeled. In general, thermal creep begins at 1300 [K], and dominates radiation

creep, although both are important to reducing stress in the fuel [92].

Preusser claims that the following relationship is the most applicable for thermal creep:

ε̇
th
cr = cth ·σ2.44 exp(−Q/RT) (A.9)

ε̇th
cr = thermal creep rate, [1/s],

cth = coefficient, cth = 9.48 ·10−9

σ = effective stress, [Pa],

Q = activation energy, Q = 5.255 ·105 [J/mol],

R = ideal gas constant, 8.314 [J/mol· K],

T = temperature, [K].

The above equation only accounts for temperature and pressure dependence. The grain size will

also affect creep since the speed of grain boundary sliding increase as grain size decreases. This

results in different creep rates between coarse-grained arc-melted fuel and fine-grained sintered fuel.

The effect of impurities can be considerable to the creep rate. This is especially true with the

addition of the sintering aid nickel, with an Ni addition to 0.05% resulting in 2-3 orders of magnitude

increase in the creep rate. Similar behavior is observable with higher concentrations of carbon,

however, additions of Pu, Zr, or O have little effect. Free mixed metal (U,Pu) in hypostoichiometric

fuel can result in phases with low melting point eutectics that can lead to low creep resistance [92].

A.9 Irradiation Creep

As a result of the relatively low irradiation temperatures of carbide fuel, irradiation creep is more

significant than similar behavior in oxide fuels where thermal creep dominates. Regardless, irra-

diation creep behavior is similar in most nuclear fuels, most likely due to the linear relationship

between creep and the number of point defects resulting from neutron dose. Preusser utilizes the

104

following relationship for irradiation creep:

ε̇
irr
cr = cirrḞσ (A.10)

ε̇irr
cr = irradiation creep rate, [1/s],

cirr = coefficient, 1 ·10−37 [1/Pa·s·Ḟ],

σ = effective stress, [Pa],

Ḟ = fission rate density, [fsn/m3·s].

A.10 Irradiation Induced Swelling and Densification

Since the swelling of uranium carbide fuel is based on the total number of fissions, it can be approx-

imated using a stepwise approach with the burnup, B:

V (B+∆B) = (1+V (B))
[

∂(∆V/V)

∂B

]
∆B. (A.11)

In this way, the swelling rate can be defined for given timestep. Although an approximation,

the above equation is valid if the volume increase is small relative the the volume, which can be

controlled by the timestep size.

A.10.1 Solid Fission Product Swelling

Most authors quote a swelling rate of around 0.5% per atom percent burnup. This is derived from a

very simplistic model: Given 100 fission events, 200 fission products are created. 50 of these fission

products will be volatile and will not contribute to the solid swelling factor. 100 of the remaining

150 atoms can be assumed to occupy the original actinide location, thus 50 atoms create a new site

in the lattice. If these atoms are assumed to take the same space as the actinide atoms, then each

fission will cause the bulk to swell by the 0.5 per fission per initial metal (U, Pu) atom (FIMA).

Preusser uses the following relationship for swelling due to solid fission products [92]:

∂(∆V/V)ss

∂B
= css, (A.12)

∆(∆V/V)ss = fractional volume change,

css = solid swelling factor, 0.417,

∆B = change in burnup over timestep, [FIMA].

Although the above solid swelling factor is slightly less than the typical 0.5, the lower value is

included with the same gaseous swelling formulation presented in [92].

105

A.10.2 Gaseous Fission Product Swelling

The swelling due to gaseous fission products is one of the most complex behaviors in mixed carbide

fuels. As discussed in Section 2.1, the bubble behavior in UC fuels is very complex and highly

dependent on temperature, burnup, impurities, and microstructure.

The swelling due to gaseous fission products can be divided into two contributions. The first is

the inclusion of single gas atoms which mimics the behavior of solid fission product swelling. At

low temperatures when atomic diffusion is nearly absent, the gas atoms will remain isolated as point

defects. However, at high temperatures, the gas atoms will tend to group together and form bubbles.

These bubbles themselves can interconnect and form larger bubbles, resulting in a less efficient use

of space (Section 2.1). As a result, the bulk fuel will swell as the concentration and sizes of bubbles

increase.

Ideally, the swelling caused by gaseous fission products would be calculated using a bubble

concentration distribution function. However, the complexity of such a model has typically forced

empirical relationships to be used to describe the swelling behavior.

Preusser uses a volume swelling model that accounts for porosity, temperature, burnup, and

contact pressure:

∂(∆V/V)gs

∂B
=

cgs fpor fcont , for T ≤ 973 K,

(cgs + ftemp fBu) fpor fcont , for T > 973 K,
(A.13)

∂(∆V/V)gs

∂B
≤ 3.653, for all T , (A.14a)

fpor = exp(0.04−P), for P > 0.04, (A.14b)

fcont = exp
(
− pc

pc0
b
)

, for fcont ≤ 1, (A.14c)

ftemp = 12.95− (0.0281)T +(1.520 ·10−5)T 2, (A.14d)

fBu =
B
B0
−a, for fBu ≥ 0, (A.14e)

106

∆(∆V/V)gs = fractional volume change,

css = gaseous swelling factor, css = 1.528,

fpor = porosity correction,

fcont = contact pressure correction,

ftemp = temperature correction,

fBu = burn correction,

P = fractional porosity,

pc = cladding contact pressure, [Pa]

pc0 = constant, pc0 = 1 ·106 [Pa],

T = temperature, [K],

B = burnup, [FIMA],

B0 = threshold burnup, B0 = 0.0112 [FIMA],

a = model fitting parameter, a = 2.0,

b = model fitting parameter, b = 0.1.

The model is Equation A.13 combines the complexity of the gas bubble distribution into one

experimentally derived equation. At low temperatures, the swelling rate dependent only on the

porosity of the fuel and contact pressure with the cladding. At high temperatures, the swelling

rate is much higher, simulating the run-away swelling above the threshold temperature, similar to

the behavior discussed in section 2.1. The high temperature growth is also limited by the burnup

correction, and is constrained only above the threshold burnup value B0. The model parameters

a and b were used to tune the model the the experimental data, resulting in a correlation that is

somewhat limited.

A.10.3 Densification

Densification of the fuel occurs as a result of the high temperatures and irradiation environment in

fuel rods. Carbide fuel pins have been observed to have an approximate volume fractional densi-

fication rate of ∆V/V = 0.67[FIMA]−1, with a maximum densification of about 90% of the theo-

retical density (TD). Creep tests on 85% TD (U0.85Pu0.15)C pellets showed a densification behavior

of [101],

∆P = ∆Pmax[1− exp(−B/Bc)] (A.15)

∆P = porosity decrease,

∆Pmax = maximum porosity decrease, ∆Pmax =−0.034,

B = burnup, [FIMA],

Bc = burnup constant, Bc = 0.006 [FIMA].

107

APPENDIX B: INPUT FILE

Listing B.1: example.i

1 [GlobalParams]
temp = temp
fission_rate = fission_rate
N = 100

5 s = 100
block = 0
allow_loss = true

[]

10

[Mesh]
type = GeneratedMesh
dim = 1

[]
15

[Bubbles]
[./Conc]

c1_initial_condition = 0
c2_initial_condition = 0

20 initial_condition = 0
[../]
[./Knockout]

factor = 1
[../]

25 [./Growth]
[../]
[./Rad]

[./Eq]
[../]

30 [../]
[./PPs]

fission_rate = fission_rate
concentrations = ’csv’
total_atoms = ’console’

35 total_concentrations = ’none’
swelling = ’swelling_csv’
total_swelling = ’console csv’
c1_loss = ’c1_csv’
gain_rate = ’gain_csv’

40 knockout_rate = ’knockout_csv’
[../]
[./Nucleation]
[../]
[./Dampers]

45 damping = 0.01
starting_index = 10

[../]
[]

50

[Kernels]
[./fg_source]

type = VariableScaledSource
variable = c001

55 scaling_variable = fission_rate
factor = 0.25

108

[../]
[]

60 [AuxVariables]
[./temp]
[../]
[./fission_rate]
[../]

65 []

[AuxKernels]
[./temp_aux]

70 type = ConstantAux
variable = temp
value = 1000

[../]
[./fsn_rate_aux]

75 type = ConstantAux
variable = fission_rate
value = 60

[../]
[]

80

[Materials]
[./Dg]

type = GasAtomDiffusivity
85 model = 4

factor = 1
block = 0

[../]
[]

90

[Executioner]
type = Transient

95

solve_type = PJFNK

line_search = none
trans_ss_check = true

100 scheme = bdf2

l_max_its = 1000
nl_max_its = 20

105 end_time = 1e10

[./TimeStepper]
type = IterationAdaptiveDT
dt = 1e-1

110 growth_factor = 1.1
optimal_iterations = 10
iteration_window = 2
linear_iteration_ratio = 100

[../]
115 []

[Postprocessors]
[./dt]

120 type = TimestepSize
[../]
[./swelling_terminator]

109

type = PostprocessorTerminator
postprocessor = gas_swelling

125 threshold = 0.1
outputs = ’none’

[../]
[]

130

[Outputs]
print_perf_log = true
interval = 10
output_final = true

135 output_initial = true
[./csv]

file_base = ’1000’
interval = 1
type = CSV

140 [../]
[./swelling_csv]

file_base = ’1000-sw’
interval = 1
type = CSV

145 [../]
[./c1_csv]

file_base = ’1000-c1’
interval = 1
type = CSV

150 [../]
[./gain_csv]

type = CSV
interval = 1
file_base = ’1000-g’

155 [../]
[./knockout_csv]

type = CSV
interval = 1
file_base = ’1000-k’

160 [../]
sync_times = ’1e1 1e2 1e3 5e3 1e4 5e4 1e5 5e5 1e6 5e6 1e7 5e7 1e8 5e8 1e9’

[]

110

APPENDIX C: BUCK SOURCE

LISTINGS

C.1 buck/Makefile . 112

C.2 actions/BubblesActionBase . 113

C.3 actions/BubblesCoalescenceKernelsAction . 116

C.4 actions/BubblesConcTimeKernelAction . 118

C.5 actions/BubblesConcVarsAction . 120

C.6 actions/BubblesDampersAction . 122

C.7 actions/BubblesFFNucleationKernelsAction . 124

C.8 actions/BubblesGrowthKernelsAction . 126

C.9 actions/BubblesKnockoutKernelsAction . 128

C.10 actions/BubblesNucleationKernelsAction . 130

C.11 actions/BubblesPostprocessorsAction . 132

C.12 actions/BubblesRadAuxKernelAction . 137

C.13 actions/BubblesRadAuxVarsAction . 139

C.14 auxkernels/EquilibriumRadiusAux . 141

C.15 base/BuckApp . 143

C.16 dampers/PositiveDamper . 146

C.17 kernels/BasicDiffusion . 147

C.18 kernels/BubbleBase . 148

C.19 kernels/BubbleFFNucleation . 151

C.20 kernels/BubbleGrowth . 153

C.21 kernels/BubbleKnockout . 155

C.22 kernels/BubbleNucleation . 157

C.23 kernels/VariableScaledSource . 159

C.24 materials/GasAtomDiffusivity . 161

C.25 materials/MaterialXeBubble . 163

C.26 parser/BuckSyntax . 166

C.27 postprocessors/BoundedElementAverage . 168

C.28 postprocessors/C1LossPostprocessor . 169

C.29 postprocessors/GainRatePostprocessor . 171

C.30 postprocessors/GrainBoundaryGasFlux . 172

C.31 postprocessors/KnockoutRatePostprocessor . 173

C.32 postprocessors/MaterialXeBubbleTester . 175

C.33 postprocessors/PostprocessorTerminator . 177

111

C.34 postprocessors/SumOfPostprocessors . 178

C.35 postprocessors/SwellingPostprocessor . 180

C.36 utils/BuckUtils . 181

112

The BUCK source requires the backbone framework of MOOSE, which can be downloaded us-

ing instructions from www.MOOSEframework.com. The BUCK source code can also be accessed

from github.com/tophmatthews/buck.

What follows is the necessary header and source files needed to run the example input file in

Appendix B, and should reside in the base directory ./buck, with the MOOSE framework in the

adjacent directory ./moose.

Listing C.1: buck/Makefile

1 ###
################# MOOSE Application Standard Makefile #####################
###
#

5 # Optional Environment variables
MOOSE_DIR - Root directory of the MOOSE project
#
###
Use the MOOSE submodule if it exists and MOOSE_DIR is not set

10 MOOSE_SUBMODULE := $(CURDIR)/moose
ifneq ($(wildcard $(MOOSE_SUBMODULE)/framework/Makefile),)

MOOSE_DIR ?= $(MOOSE_SUBMODULE)
else

MOOSE_DIR ?= $(shell dirname ‘pwd ‘)/moose
15 endif

framework
FRAMEWORK_DIR := $(MOOSE_DIR)/framework
include $(FRAMEWORK_DIR)/build.mk

20 include $(FRAMEWORK_DIR)/moose.mk

###

APPLICATION_DIR := $(CURDIR)
25 APPLICATION_NAME := buck

APP_REV_HEADER := $(CURDIR)/include/base/BuckRevision.h
BUILD_EXEC := yes
DEP_APPS := $(shell $(FRAMEWORK_DIR)/scripts/find_dep_apps.py $(APPLICATION_NAME

))
include $(FRAMEWORK_DIR)/app.mk

30

###

113

Listing C.2: buck/include/actions/BubblesActionBase.h

1 #ifndef BUBBLESACTIONBASE_H
#define BUBBLESACTIONBASE_H

#include "Action.h"
5

class BubblesActionBase: public Action
{
public:

BubblesActionBase(const std::string & name , InputParameters params);
10 virtual void act(){}

protected:
const std::string _conc_name_base;
const std::string _conc_1stM_name_base;

15 const std::string _rad_name_base;
const bool _exp;

unsigned int _N;
unsigned int _s;

20 std::vector <VariableName > _c;
std::vector <VariableName > _m;
std::vector <VariableName > _r;
std::vector <Real > _atoms;
std::vector <Real > _widths;

25 unsigned int _G;

private:
void varNamesFromG(std::vector <VariableName > & vars , const std::string prefix , const int

G, const int start=1);
};

30

template <>
InputParameters validParams <BubblesActionBase >();

#endif //BUBBLESACTIONBASE_H

buck/src/actions/BubblesActionBase.C

1 #include "BubblesActionBase.h"

#include "BuckUtils.h"
#include <iomanip >

5

template <>
InputParameters validParams <BubblesActionBase >()
{

InputParameters params = validParams <Action >();
10

params.addParam <std::string >("conc_name_base", "c", "Specifies the base name of the
variables");

params.addParam <std::string >("conc_1stM_name_base", "m", "Specifies the base name of the
variables");

params.addParam <std::string >("rad_name_base", "r", "Specifies the base name of the
variables");

params.addParam <int >("N", "Largest group size");
15 params.addParam <int >("logN", "Log10 of largest group size");

params.addParam <int >("s", "Total number of ungrouped equations");
params.addParam <bool >("experimental", false , "Flag to use experimental kernel");

return params;
20 }

BubblesActionBase::BubblesActionBase(const std::string & name , InputParameters params) :
Action(name , params),

114

_conc_name_base(getParam <std::string >("conc_name_base")),
25 _conc_1stM_name_base(getParam <std::string >("conc_1stM_name_base")),

_rad_name_base(getParam <std::string >("rad_name_base")),
_exp(getParam <bool >("experimental"))

{
if (!isParamValid("N") && !isParamValid("logN"))

30 mooseError("From BubblesActionBase: N or logN must be specified");
else if (isParamValid("N") && isParamValid("logN"))

mooseError("From BubblesActionBase: Either N or logN must be specified");

if (isParamValid("N"))
35 {

if (isParamValid("logN"))
mooseError("From BubblesActionBase: Either N or logN must be specified , not both.");

_N = getParam <int >("N");
}

40 else if (!isParamValid("logN"))
mooseError("From BubblesActionBase: N or log N must be specified");

else
_N = std::pow(10.0, getParam <int >("logN"));

45 if (isParamValid("s"))
_s = getParam <int >("s");

else
_s = _N;

50 for (int j=0; j<_s; ++j)
_atoms.push_back(j+1);

for (int j=_s; j<_N; ++j)
{

55 Real x = (_atoms.back() + 1) / _s + _atoms.back();

if (x <= _N)
_atoms.push_back(x);

else
60 {

_atoms.push_back(_N);
break;

}
}

65

_G = _atoms.size();

for (unsigned int i=0; i<_atoms.size() -1; ++i)
_widths.push_back(_atoms[i+1] - _atoms[i]);

70 _widths.push_back (1.0);

varNamesFromG(_c, _conc_name_base , _G);
varNamesFromG(_m, _conc_1stM_name_base , _G);
varNamesFromG(_r, _rad_name_base , _G);

75 }

void
BubblesActionBase::varNamesFromG(std::vector <VariableName > & vars , const std::string

prefix , const int G, const int start)
80 {

int digits = Buck::numDigits(G);

for (int i=start; i<G+1; ++i)
{

85 VariableName var_name = prefix;
std::stringstream out;
out << std::setw(digits) << std::setfill(’0’) << i;
var_name.append(out.str());

115

vars.push_back(var_name);
90 }

}

116

Listing C.3: buck/include/actions/BubblesCoalescenceKernelsAction.h

1 #ifndef BUBBLESCOALESCENCEKERNERLSACTION_H
#define BUBBLESCOALESCENCEKERNERLSACTION_H

#include "BubblesActionBase.h"
5

class BubblesCoalescenceKernelsAction: public BubblesActionBase
{
public:

BubblesCoalescenceKernelsAction(const std::string & name , InputParameters params);
10 virtual void act();

};

template <>
InputParameters validParams <BubblesCoalescenceKernelsAction >();

15

#endif //BUBBLESCOALESCENCEKERNERLSACTION_H

buck/src/actions/BubblesCoalescenceKernelsAction.C

1 #include "BubblesCoalescenceKernelsAction.h"

#include "Factory.h"
#include "FEProblem.h"

5

template <>
InputParameters validParams <BubblesCoalescenceKernelsAction >()
{

InputParameters params = validParams <BubblesActionBase >();
10

params.addRequiredParam <NonlinearVariableName >("temp", "The temperature variable name");
params.addParam <bool >("use_displaced_mesh", false , "Whether to use displaced mesh in the

kernels");

return params;
15 }

BubblesCoalescenceKernelsAction::BubblesCoalescenceKernelsAction(const std::string & name ,
InputParameters params) :

BubblesActionBase(name , params)
{

20 }

void
BubblesCoalescenceKernelsAction::act()

25 {
for (int g=0; g<_G; ++g)
{

std::string var_name = _c[g];

30 InputParameters p = _factory.getValidParams("BubbleCoalescence");
p.set<NonlinearVariableName >("variable") = var_name;
p.set<std::vector <VariableName > >("coupled_conc") = _c;
p.set<std::vector <VariableName > >("coupled_rad") = _r;
p.set<std::vector <Real > >("coupled_atoms") = _atoms;

35

p.addCoupledVar("temp", "");
p.set<std::vector <VariableName > >("temp") = std::vector <VariableName >(1, getParam <
NonlinearVariableName >("temp"));

std::string kernel_name = var_name;
40 kernel_name.append("_growth");

_problem ->addKernel("BubbleCoalescence", kernel_name , p);

117

}
}

118

Listing C.4: buck/include/actions/BubblesConcTimeKernelAction.h

1 #ifndef BUBBLESCONCTIMEKERNERLACTION_H
#define BUBBLESCONCTIMEKERNERLACTION_H

#include "BubblesActionBase.h"
5

class BubblesConcTimeKernelAction: public BubblesActionBase
{
public:

BubblesConcTimeKernelAction(const std::string & name , InputParameters params);
10

virtual void act();
};

template <>
15 InputParameters validParams <BubblesConcTimeKernelAction >();

#endif //BUBBLESCONCTIMEKERNERLACTION_H

buck/src/actions/BubblesConcTimeKernelAction.C

1 #include "BubblesConcTimeKernelAction.h"

#include "Factory.h"
#include "FEProblem.h"

5

template <>
InputParameters validParams <BubblesConcTimeKernelAction >()
{

InputParameters params = validParams <BubblesActionBase >();
10

params.addParam <bool >("use_displaced_mesh", false , "Whether to use displaced mesh in the
kernels");

params.addParam <bool >("transient", true , "Flag to determine if TimeDerivative kernels
should be made for nucleation concentration variables");

return params;
15 }

BubblesConcTimeKernelAction::BubblesConcTimeKernelAction(const std::string & name ,
InputParameters params) :

20 BubblesActionBase(name , params)
{
}

25 void
BubblesConcTimeKernelAction::act()
{

if (getParam <bool >("transient"))
{

30 for (unsigned int g = 0; g < _G; ++g)
{

InputParameters poly_params = _factory.getValidParams("TimeDerivative");

poly_params.set<NonlinearVariableName >("variable") = _c[g];
35 poly_params.set<bool >("use_displaced_mesh") = getParam <bool >("use_displaced_mesh");

std::string kernel_name = _c[g];
kernel_name.append("_time");

40 _problem ->addKernel("TimeDerivative", kernel_name , poly_params);
}

}

119

}

120

Listing C.5: buck/include/actions/BubblesConcVarsAction.h

1 #ifndef BUBBLESCONCVARSACTION_H
#define BUBBLESCONCVARSACTION_H

#include "BubblesActionBase.h"
5

class BubblesConcVarsAction : public BubblesActionBase
{
public:

BubblesConcVarsAction(const std::string & name , InputParameters params);
10 virtual ˜BubblesConcVarsAction(){}

virtual void act();

private:
const std::string _order;

15 const std::string _family;

const Real _ic;
};

20 template <>
InputParameters validParams <BubblesConcVarsAction >();

#endif //BUBBLESCONCVARSACTION_H

buck/src/actions/BubblesConcVarsAction.C

1 #include "BubblesConcVarsAction.h"

#include "FEProblem.h"
#include "libmesh/string_to_enum.h"

5

template <>
InputParameters validParams <BubblesConcVarsAction >()
{

InputParameters params = validParams <BubblesActionBase >();
10

params.addParam <std::string >("order", "FIRST", "Specifies the order of the FE shape
function to use for this variable");

params.addParam <std::string >("family", "LAGRANGE", "Specifies the family of FE shape
functions to use for this variable");

params.addParam <Real >("scaling", 1.0, "Specifies a scaling factor to apply to the
variables");

params.addParam <Real >("c1_initial_condition", "Specifies a initial condtion to apply to
c1");

15 params.addParam <Real >("c2_initial_condition", "Specifies a initial condtion to apply to
c2");

params.addParam <Real >("initial_condition", "Specifies a initial condtion apply the rest
of the variables");

return params;
}

20

BubblesConcVarsAction::BubblesConcVarsAction(const std::string & name ,
InputParameters params) :

BubblesActionBase(name , params),
_order(getParam <std::string >("order")),

25 _family(getParam <std::string >("family")),
_ic(getParam <Real >("initial_condition"))

{
}

30 void
BubblesConcVarsAction::act()
{

121

if (_current_task == "add_variable")
{

35 for (unsigned int i = 0; i < _G; ++i)
{

Real scale = 1.0;
_problem ->addVariable(_c[i],

FEType(Utility::string_to_enum <Order >(_order),
40 Utility::string_to_enum <FEFamily >(_family)),

scale);
}

}
else if (_current_task == "add_ic" && isParamValid("initial_condition"))

45 {
for (unsigned int i = 0; i < _G; ++i)
{

InputParameters poly_params = _factory.getValidParams("ConstantIC");
poly_params.set<VariableName >("variable") = _c[i];

50 if (i == 0)
poly_params.set<Real >("value") = getParam <Real >("c1_initial_condition");

else if (i == 1)
poly_params.set<Real >("value") = getParam <Real >("c2_initial_condition");

else
55 {

poly_params.set<Real >("value") = _ic / _widths[i];
}
problem ->addInitialCondition("ConstantIC", "Initialize" + 1+i, poly_params);

}
60 }

}

122

Listing C.6: buck/include/actions/BubblesDampersAction.h

1 #ifndef BUBBLESDAMPERSACTION_H
#define BUBBLESDAMPERSACTION_H

#include "BubblesActionBase.h"
5

class BubblesDampersAction : public BubblesActionBase
{
public:

BubblesDampersAction(const std::string & name , InputParameters params);
10 virtual void act();

private:
const int _index;

};
15

template <>
InputParameters validParams <BubblesDampersAction >();

#endif

buck/src/actions/BubblesDampersAction.C

1 #include "BubblesDampersAction.h"

#include "FEProblem.h"

5 template <>
InputParameters validParams <BubblesDampersAction >()
{

InputParameters params = validParams <BubblesActionBase >();

10 params.addParam <Real >("damping", 0.1, "The maximum newton increment.");
params.addParam <int >("starting_index", 1, "Variable list index at which to start

applying damper.");

return params;
}

15

BubblesDampersAction::BubblesDampersAction(const std::string & name , InputParameters
params) :

BubblesActionBase(name , params),
_index(getParam <int >("starting_index"))

{
20 if (_index > _G)

mooseError("In BubblesDamperAction: starting_index must be less than then the total
number of groups , G");

}

void
25 BubblesDampersAction::act()

{
for (int g=_index; g<_G; ++g)
{

std::string base_kernel = "PositiveDamper";
30

InputParameters p = _factory.getValidParams(base_kernel);
std::string var_name = _c[g];
std::string kernel_name = var_name;
kernel_name.append(base_kernel);

35

// BubbleBase variables
p.set<NonlinearVariableName >("variable") = var_name;
p.set<std::vector <VariableName > >("coupled_conc") = _c;
p.set<std::vector <VariableName > >("coupled_rad") = _r;

123

40 p.set<std::vector <Real > >("coupled_atoms") = _atoms;
p.set<std::vector <Real > >("coupled_widths") = _widths;

// BubbleDamping variables
p.set<Real >("damping") = getParam <Real >("damping");

45

_problem ->addDamper(base_kernel , kernel_name , p);
}

}

124

Listing C.7: buck/include/actions/BubblesFFNucleationKernelsAction.h

1 #ifndef BUBBLESFFNUCLEATIONKERNELSACTION_H
#define BUBBLESFFNUCLEATIONKERNELSACTION_H

#include "BubblesActionBase.h"
5

class BubblesFFNucleationKernelsAction: public BubblesActionBase
{
public:

BubblesFFNucleationKernelsAction(const std::string & name , InputParameters params);
10 virtual void act();

};

template <>
InputParameters validParams <BubblesFFNucleationKernelsAction >();

15

#endif //BubblesFFNucleationKernelsAction_H

buck/src/actions/BubblesFFNucleationKernelsAction.C

1 #include "BubblesFFNucleationKernelsAction.h"

#include "Factory.h"
#include "FEProblem.h"

5

template <>
InputParameters validParams <BubblesFFNucleationKernelsAction >()
{

InputParameters params = validParams <BubblesActionBase >();
10

params.addRequiredParam <VariableName >("fission_rate", "The fission rate density variable
name");

params.addParam <bool >("use_displaced_mesh", false , "Whether to use displaced mesh in the
kernels");

params.addParam <int >("number", 5, "Number of bubbles created per fission");
params.addParam <int >("size", 4, "Size of bubbles created");

15 params.addParam <Real >("factor", 1.0, "User supplied multiplier.");
params.addParam <Real >("upper", 1e7, "Upper dead -band limit");
params.addParam <Real >("lower", 1e6, "Lower dead -band limit");

return params;
20 }

BubblesFFNucleationKernelsAction::BubblesFFNucleationKernelsAction(const std::string &
name ,

InputParameters params) :
BubblesActionBase(name , params)

25 {
}

void
BubblesFFNucleationKernelsAction::act()

30 {
int n=0;
{

std::string var_name = _c[n];

35 InputParameters p = _factory.getValidParams("BubbleFFNucleation");

p.set<bool >("use_displaced_mesh") = getParam <bool >("use_displaced_mesh");

p.set<Real >("factor") = getParam <Real >("factor");
40 p.set<int >("number") = getParam <int >("number");

p.set<int >("size") = getParam <int >("size");
p.set<Real >("upper") = getParam <Real >("upper");

125

p.set<Real >("lower") = getParam <Real >("lower");

45 p.set<NonlinearVariableName >("variable") = var_name;
p.set<std::vector <VariableName > >("coupled_conc") = _c;
p.set<std::vector <VariableName > >("coupled_rad") = _r;
p.set<std::vector <Real > >("coupled_atoms") = _atoms;
p.set<std::vector <Real > >("coupled_widths") = _widths;

50

p.addCoupledVar("fission_rate", "");
p.set<std::vector <VariableName > >("fission_rate") = std::vector <VariableName >(1,
getParam <VariableName >("fission_rate"));

std::string kernel_name = var_name;
55 kernel_name.append("_nucleation");

_problem ->addKernel("BubbleFFNucleation", kernel_name , p);
}

60 n = getParam <int >("size")-1;
{

std::string var_name = _c[n];

InputParameters p = _factory.getValidParams("BubbleFFNucleation");
65

p.set<bool >("use_displaced_mesh") = getParam <bool >("use_displaced_mesh");

p.set<Real >("factor") = getParam <Real >("factor");
p.set<int >("number") = getParam <int >("number");

70 p.set<int >("size") = getParam <int >("size");

p.set<NonlinearVariableName >("variable") = var_name;
p.set<std::vector <VariableName > >("coupled_conc") = _c;
p.set<std::vector <VariableName > >("coupled_rad") = _r;

75 p.set<std::vector <Real > >("coupled_atoms") = _atoms;
p.set<std::vector <Real > >("coupled_widths") = _widths;

p.addCoupledVar("fission_rate", "");
p.set<std::vector <VariableName > >("fission_rate") = std::vector <VariableName >(1,
getParam <VariableName >("fission_rate"));

80

std::string kernel_name = var_name;
kernel_name.append("_nucleation");

_problem ->addKernel("BubbleFFNucleation", kernel_name , p);
85 }

}

126

Listing C.8: buck/include/actions/BubblesGrowthKernelsAction.h

1 #ifndef BUBBLESGROWTHKERNERLSACTION_H
#define BUBBLESGROWTHKERNERLSACTION_H

#include "BubblesActionBase.h"
5

class BubblesGrowthKernelsAction: public BubblesActionBase
{
public:

BubblesGrowthKernelsAction(const std::string & name , InputParameters params);
10 virtual void act();

private:
const bool _include_c1;
const bool _include_c2;

15 };

template <>
InputParameters validParams <BubblesGrowthKernelsAction >();

20 #endif //BUBBLESGROWTHKERNERLSACTION_H

buck/src/actions/BubblesGrowthKernelsAction.C

1 #include "BubblesGrowthKernelsAction.h"

#include "FEProblem.h"

5 template <>
InputParameters validParams <BubblesGrowthKernelsAction >()
{

InputParameters params = validParams <BubblesActionBase >();

10 params.addRequiredParam <VariableName >("temp", "The temperature variable name");

params.addParam <bool >("allow_loss", false , "Flag to allow losses from the largest bubble
group.");

params.addParam <bool >("include_c1", true , "Flag to create growth kernel for c1");
params.addParam <bool >("include_c2", true , "Flag to create growth kernel for c2");

15

return params;
}

BubblesGrowthKernelsAction::BubblesGrowthKernelsAction(const std::string & name ,
InputParameters params) :

20 BubblesActionBase(name , params),
_include_c1(getParam <bool >("include_c1")),
_include_c2(getParam <bool >("include_c2"))

{
}

25

void
BubblesGrowthKernelsAction::act()
{

30 for (int g=0; g<_G; ++g)
{

if (g==0 && !_include_c1)
continue;

35 if (g==1 && !_include_c2)
continue;

std::string base_kernel = "BubbleGrowth";

127

40 InputParameters p = _factory.getValidParams(base_kernel);
std::string var_name = _c[g];
std::string kernel_name = var_name;
kernel_name.append(base_kernel);

45 // BubbleBase variables
p.set<NonlinearVariableName >("variable") = var_name;
p.set<std::vector <VariableName > >("coupled_conc") = _c;
p.set<std::vector <VariableName > >("coupled_rad") = _r;
p.set<std::vector <Real > >("coupled_atoms") = _atoms;

50 p.set<std::vector <Real > >("coupled_widths") = _widths;

// BubbleGrowth variables
p.set<bool >("allow_loss") = getParam <bool >("allow_loss");
p.set<bool >("experimental") = _exp;

55 p.addCoupledVar("temp", "");
p.set<std::vector <VariableName > >("temp") = std::vector <VariableName >(1, getParam <
VariableName >("temp"));

_problem ->addKernel(base_kernel , kernel_name , p);
}

60 }

128

Listing C.9: buck/include/actions/BubblesKnockoutKernelsAction.h

1 #ifndef BUBBLESKNOCKOUTKERNERLSACTION_H
#define BUBBLESKNOCKOUTKERNERLSACTION_H

#include "BubblesActionBase.h"
5

class BubblesKnockoutKernelsAction: public BubblesActionBase
{
public:

BubblesKnockoutKernelsAction(const std::string & name , InputParameters params);
10 virtual void act();

};

template <>
InputParameters validParams <BubblesKnockoutKernelsAction >();

15

#endif //BUBBLESKNOCKOUTKERNERLSACTION_H

buck/src/actions/BubblesKnockoutKernelsAction.C

1 #include "BubblesKnockoutKernelsAction.h"

#include "Factory.h"
#include "FEProblem.h"

5 #include "BuckUtils.h"

template <>
InputParameters validParams <BubblesKnockoutKernelsAction >()
{

10 InputParameters params = validParams <BubblesActionBase >();

params.addParam <bool >("use_displaced_mesh", false , "Whether to use displaced mesh in the
kernels");

params.addRequiredParam <VariableName >("fission_rate", "The fission_rate variable name");
15 params.addParam <Real >("factor", 1, "Scaling factor");

params.addParam <Real >("b", -1, "Value to set constant knockout parameter. B is
automatically calculated if not given.");

return params;
}

20

BubblesKnockoutKernelsAction::BubblesKnockoutKernelsAction(const std::string & name ,
InputParameters params) :

BubblesActionBase(name , params)
{
}

25

void
BubblesKnockoutKernelsAction::act()
{

for (int g=0; g<_G; ++g)
30 {

std::string base_kernel = "BubbleKnockout";

InputParameters p = _factory.getValidParams(base_kernel);
std::string var_name = _c[g];

35 std::string kernel_name = var_name;
kernel_name.append(base_kernel);

// BubbleBase variables
p.set<NonlinearVariableName >("variable") = var_name;

40 p.set<std::vector <VariableName > >("coupled_conc") = _c;
p.set<std::vector <VariableName > >("coupled_rad") = _r;
p.set<std::vector <Real > >("coupled_atoms") = _atoms;

129

p.set<std::vector <Real > >("coupled_widths") = _widths;

45 // BubbleKnockout variables
p.set<bool >("experimental") = _exp;
p.set<Real >("factor") = getParam <Real >("factor");
p.set<Real >("b") = getParam <Real >("b");
p.addCoupledVar("fission_rate", "");

50 p.set<std::vector <VariableName > >("fission_rate") = std::vector <VariableName >(1,
getParam <VariableName >("fission_rate"));

_problem ->addKernel(base_kernel , kernel_name , p);
}

55 }

130

Listing C.10: buck/include/actions/BubblesNucleationKernelsAction.h

1 #ifndef BUBBLESNUCLEATIONKERNELSACTION_H
#define BUBBLESNUCLEATIONKERNELSACTION_H

#include "BubblesActionBase.h"
5

class BubblesNucleationKernelsAction: public BubblesActionBase
{
public:

BubblesNucleationKernelsAction(const std::string & name , InputParameters params);
10 virtual void act();

};

template <>
InputParameters validParams <BubblesNucleationKernelsAction >();

15

#endif //BUBBLESNUCLEATIONKERNELSACTION_H

buck/src/actions/BubblesNucleationKernelsAction.C

1 #include "BubblesNucleationKernelsAction.h"

#include "Factory.h"
#include "FEProblem.h"

5

template <>
InputParameters validParams <BubblesNucleationKernelsAction >()
{

InputParameters params = validParams <BubblesActionBase >();
10

params.addRequiredParam <VariableName >("temp", "The temperature variable name");
params.addParam <bool >("use_displaced_mesh", false , "Whether to use displaced mesh in the

kernels");
params.addParam <Real >("a", 4.96e-4, "Lattice Parameter [um]");
params.addParam <Real >("omega", 1.53e-11, " Atomic volume [umˆ3]");

15 params.addParam <Real >("factor", 1.0, "User supplied multiplier.");

return params;
}

20 BubblesNucleationKernelsAction::BubblesNucleationKernelsAction(const std::string & name ,
InputParameters params) :

BubblesActionBase(name , params)
{
}

25

void
BubblesNucleationKernelsAction::act()
{

for (unsigned int n = 0; n < 2; ++n)
30 {

std::string var_name = _c[n];

InputParameters p = _factory.getValidParams("BubbleNucleation");

35 p.set<bool >("use_displaced_mesh") = getParam <bool >("use_displaced_mesh");
p.set<Real >("a") = getParam <Real >("a");
p.set<Real >("omega") = getParam <Real >("omega");
p.set<Real >("factor") = getParam <Real >("factor");

40 p.set<NonlinearVariableName >("variable") = var_name;
p.set<std::vector <VariableName > >("coupled_conc") = _c;
p.set<std::vector <VariableName > >("coupled_rad") = _r;
p.set<std::vector <Real > >("coupled_atoms") = _atoms;
p.set<std::vector <Real > >("coupled_widths") = _widths;

131

45

p.addCoupledVar("temp", "");
p.set<std::vector <VariableName > >("temp") = std::vector <VariableName >(1, getParam <
VariableName >("temp"));

std::string kernel_name = var_name;
50 kernel_name.append("_nucleation");

_problem ->addKernel("BubbleNucleation", kernel_name , p);
}

}

132

Listing C.11: buck/include/actions/BubblesPostprocessorsAction.h

1 #ifndef BUBBLESPOSTPROCESSORSACTION_H
#define BUBBLESPOSTPROCESSORSACTION_H

#include "BubblesActionBase.h"
5

class BubblesPostprocessorsAction: public BubblesActionBase
{
public:

BubblesPostprocessorsAction(const std::string & name , InputParameters params);
10 virtual void act();

private:
const bool _conc;
const bool _total_conc;

15 const bool _total_atoms;
const bool _swelling;
const bool _total_swelling;
const bool _c1_loss;
const bool _gain_rate;

20 const bool _knockout_rate;
};

template <>
InputParameters validParams <BubblesPostprocessorsAction >();

25

#endif

buck/src/actions/BubblesPostprocessorsAction.C

1 #include "BubblesPostprocessorsAction.h"

#include "Factory.h"
#include "FEProblem.h"

5

template <>
InputParameters validParams <BubblesPostprocessorsAction >()
{

InputParameters params = validParams <BubblesActionBase >();
10

params.addRequiredParam <VariableName >("fission_rate", "fission rate density");

params.addParam <std::vector <OutputName > >("concentrations", "Where to output
concentration postprocessors");

params.addParam <std::vector <OutputName > >("total_concentrations", "Where to output
concentration postprocessor. Not calculated if empty.");

15 params.addParam <std::vector <OutputName > >("total_atoms", "Where to output concentration
postprocessor. Not calculated if empty.");

params.addParam <std::vector <OutputName > >("swelling", "Where to output swelling
postprocessor. Not calculated if empty.");

params.addParam <std::vector <OutputName > >("total_swelling", "Where to output total
swelling postprocessor. Not calculated if empty.");

params.addParam <std::vector <OutputName > >("c1_loss", "Where to output
C1LossPostprocessor. Not calculated if empty.");

params.addParam <std::vector <OutputName > >("gain_rate", "Where to output
GainRatePostprocessor. Not calculated if empty.");

20 params.addParam <std::vector <OutputName > >("knockout_rate", "Where to output
KnockoutRatePostprocessor. Not calculated if empty.");

return params;
}

25 BubblesPostprocessorsAction::BubblesPostprocessorsAction(const std::string & name ,
InputParameters params) :

BubblesActionBase(name , params),

133

_conc(isParamValid("concentrations") ? true : false),
_total_conc(isParamValid("total_concentrations") ? true : false),
_total_atoms(isParamValid("total_atoms") ? true : false),

30 _swelling(isParamValid("swelling") ? true : false),
_total_swelling(isParamValid("total_swelling") ? true : false),
_c1_loss(isParamValid("c1_loss") ? true : false),
_gain_rate(isParamValid("gain_rate") ? true : false),
_knockout_rate(isParamValid("knockout_rate") ? true : false)

35 {
}

void
BubblesPostprocessorsAction::act()

40 {
std::vector <PostprocessorName > pp_names;
std::vector <PostprocessorName > swelling_pp_names;

if (_conc || _total_conc || _total_atoms)
45 {

for (int i=0; i<_G; ++i)
{

std::string pp_to_use = "BoundedElementAverage";
pp_names.push_back(_c[i] + "_conc");

50

InputParameters params = _factory.getValidParams(pp_to_use);
params.set<MultiMooseEnum >("execute_on") = "timestep_end";
params.set<VariableName >("variable") = _c[i];
params.set<Real >("lower") = 0;

55

std::vector <OutputName > outs;
if (_conc)

outs = getParam <std::vector <OutputName > >("concentrations");
else

60 outs.push_back("none");

params.set<std::vector <OutputName > >("outputs") = outs;

_problem ->addPostprocessor(pp_to_use , pp_names[i], params);
65 }

}

if (_total_conc)
{

70 std::string pp_to_use = "SumOfPostprocessors";
std::string this_pp_name = "total_conc";

InputParameters params = _factory.getValidParams(pp_to_use);
params.set<MultiMooseEnum >("execute_on") = "timestep_end";

75 params.set<std::vector <PostprocessorName > >("postprocessors") = pp_names;

std::vector <OutputName > outs(getParam <std::vector <OutputName > >("total_concentrations"
));
params.set<std::vector <OutputName > >("outputs") = outs;

80 _problem ->addPostprocessor(pp_to_use , this_pp_name , params);
}

if (_total_atoms)
{

85 std::string pp_to_use = "SumOfPostprocessors";
std::string this_pp_name = "total_atoms";

InputParameters params = _factory.getValidParams(pp_to_use);
params.set<MultiMooseEnum >("execute_on") = "timestep_end";

90 params.set<std::vector <PostprocessorName > >("postprocessors") = pp_names;
params.set<std::vector <Real > >("factors") = _atoms;

134

std::vector <OutputName > outs(getParam <std::vector <OutputName > >("total_atoms"));
params.set<std::vector <OutputName > >("outputs") = outs;

95

_problem ->addPostprocessor(pp_to_use , this_pp_name , params);
}

if (_swelling || _total_swelling)
100 {

for (int i=0; i<_G; ++i)
{

std::string pp_to_use = "SwellingPostprocessor";
swelling_pp_names.push_back(_c[i] + "_swelling");

105

InputParameters params = _factory.getValidParams(pp_to_use);
params.set<MultiMooseEnum >("execute_on") = "timestep_end";
params.set<VariableName >("variable") = _c[i];

110 params.addCoupledVar("r", "");
params.set<std::vector <VariableName > >("r") = std::vector <VariableName >(1, _r[i]);

params.set<Real >("width") = _widths[i];

115 std::vector <OutputName > outs;
if (_swelling)

outs = getParam <std::vector <OutputName > >("swelling");
else

outs.push_back("none");
120

params.set<std::vector <OutputName > >("outputs") = outs;

_problem ->addPostprocessor(pp_to_use , swelling_pp_names[i], params);
}

125 }

if (_total_swelling)
{

std::string pp_to_use = "SumOfPostprocessors";
130 std::string this_pp_name = "gas_swelling";

InputParameters params = _factory.getValidParams(pp_to_use);
params.set<MultiMooseEnum >("execute_on") = "timestep_end";
params.set<std::vector <PostprocessorName > >("postprocessors") = swelling_pp_names;

135

std::vector <OutputName > outs(getParam <std::vector <OutputName > >("total_swelling"));
params.set<std::vector <OutputName > >("outputs") = outs;

_problem ->addPostprocessor(pp_to_use , this_pp_name , params);
140 }

if (_c1_loss)
{

std::vector <PostprocessorName > these_pp_names;
145 for (int i=0; i<_G; ++i)

{
std::string pp_to_use = "C1LossPostprocessor";
these_pp_names.push_back(_c[i] + "_c1_loss");

150 InputParameters params = _factory.getValidParams(pp_to_use);
params.set<MultiMooseEnum >("execute_on") = "timestep_end";
params.set<VariableName >("variable") = _c[i];

params.addCoupledVar("r", "");
155 params.set<std::vector <VariableName > >("r") = std::vector <VariableName >(1, _r[i]);

params.addCoupledVar("c1", "");

135

params.set<std::vector <VariableName > >("c1") = std::vector <VariableName >(1, _c[0]);

160 params.addCoupledVar("fission_rate", "");
params.set<std::vector <VariableName > >("fission_rate") = std::vector <VariableName

>(1, getParam <VariableName >("fission_rate"));

params.set<Real >("width") = _widths[i];
params.set<Real >("atoms") = _atoms[i];

165

params.set<std::vector <OutputName > >("outputs") = getParam <std::vector <OutputName >
>("c1_loss");

_problem ->addPostprocessor(pp_to_use , these_pp_names[i], params);
}

170 }

if (_gain_rate)
{

std::vector <PostprocessorName > these_pp_names;
175 for (int i=0; i<_G; ++i)

{
std::string pp_to_use = "GainRatePostprocessor";
these_pp_names.push_back(_c[i] + "_gain_rate");

180 InputParameters params = _factory.getValidParams(pp_to_use);
params.set<MultiMooseEnum >("execute_on") = "timestep_end";
params.set<VariableName >("variable") = _c[i];

params.addCoupledVar("r", "");
185 params.set<std::vector <VariableName > >("r") = std::vector <VariableName >(1, _r[i]);

params.addCoupledVar("c1", "");
params.set<std::vector <VariableName > >("c1") = std::vector <VariableName >(1, _c[0]);

190 params.set<Real >("width") = _widths[i];

params.set<std::vector <OutputName > >("outputs") = getParam <std::vector <OutputName >
>("gain_rate");

_problem ->addPostprocessor(pp_to_use , these_pp_names[i], params);
195 }

}

if (_knockout_rate)
{

200 std::vector <PostprocessorName > these_pp_names;
for (int i=0; i<_G; ++i)
{

std::string pp_to_use = "KnockoutRatePostprocessor";
these_pp_names.push_back(_c[i] + "_knockout_rate");

205

InputParameters params = _factory.getValidParams(pp_to_use);
params.set<MultiMooseEnum >("execute_on") = "timestep_end";
params.set<VariableName >("variable") = _c[i];

210 params.addCoupledVar("r", "");
params.set<std::vector <VariableName > >("r") = std::vector <VariableName >(1, _r[i]);

params.addCoupledVar("c1", "");
params.set<std::vector <VariableName > >("c1") = std::vector <VariableName >(1, _c[0]);

215

params.addCoupledVar("fission_rate", "");
params.set<std::vector <VariableName > >("fission_rate") = std::vector <VariableName

>(1, getParam <VariableName >("fission_rate"));

params.set<Real >("width") = _widths[i];

136

220 params.set<Real >("atoms") = _atoms[i];

params.set<std::vector <OutputName > >("outputs") = getParam <std::vector <OutputName >
>("knockout_rate");

_problem ->addPostprocessor(pp_to_use , these_pp_names[i], params);
225 }

}
}

137

Listing C.12: buck/include/actions/BubblesRadAuxKernelAction.h

1 #ifndef BubblesRadAuxKernelAction_H
#define BubblesRadAuxKernelAction_H

#include "BubblesActionBase.h"
5

class BubblesRadAuxKernelAction;

template <>
InputParameters validParams <BubblesRadAuxKernelAction >();

10

class BubblesRadAuxKernelAction : public BubblesActionBase
{
public:

BubblesRadAuxKernelAction(const std::string & name , InputParameters params);
15

virtual void act();

private:
std::vector <SubdomainName > _blocks;

20 };

#endif // BubblesRadAuxKernelAction_H

buck/src/actions/BubblesRadAuxKernelAction.C

1 #include "BubblesRadAuxKernelAction.h"

#include "FEProblem.h"
#include "Factory.h"

5

template <>
InputParameters validParams <BubblesRadAuxKernelAction >()
{

InputParameters params = validParams <BubblesActionBase >();
10

params.addRequiredParam <NonlinearVariableName >("temp", "The temperature variable name");
params.addRequiredParam <std::vector <SubdomainName > >("block", "The blocks where bounds

should be applied.");

return params;
15 }

BubblesRadAuxKernelAction::BubblesRadAuxKernelAction(const std::string & name ,
InputParameters params) :

BubblesActionBase(name , params),
20 _blocks(getParam <std::vector <SubdomainName > >("block"))

{
}

25 void
BubblesRadAuxKernelAction::act()
{

for (unsigned int i=0; i<_G; ++i)
{

30 InputParameters params = _factory.getValidParams("EquilibriumRadiusAux");

params.set<std::vector <SubdomainName > >("block") = _blocks;
params.set<AuxVariableName >("variable") = _r[i];
params.set<Real >("m") = _atoms[i];

35

params.addCoupledVar("temp", "");

138

params.set<std::vector <VariableName > >("temp") = std::vector <VariableName >(1, getParam
<NonlinearVariableName >("temp"));

std::string kernel_name = _r[i];
40 kernel_name.append("_eq");

_problem ->addAuxKernel("EquilibriumRadiusAux", kernel_name , params);
}

}

139

Listing C.13: buck/include/actions/BubblesRadAuxVarsAction.h

1 #ifndef BUBBLESRADAUXVARSACTION_H
#define BUBBLESRADAUXVARSACTION_H

#include "BubblesActionBase.h"
5

class BubblesRadAuxVarsAction : public BubblesActionBase
{
public:

BubblesRadAuxVarsAction(const std::string & name , InputParameters params);
10 virtual ˜BubblesRadAuxVarsAction(){}

virtual void act();

private:
const std::string _order;

15 const std::string _family;
};

template <>
InputParameters validParams <BubblesRadAuxVarsAction >();

20

#endif //BUBBLESRADAUXVARSACTION_H

buck/src/actions/BubblesRadAuxVarsAction.C

1 #include "BubblesRadAuxVarsAction.h"

#include "FEProblem.h"
#include "libmesh/string_to_enum.h"

5

template <>
InputParameters validParams <BubblesRadAuxVarsAction >()
{

InputParameters params = validParams <BubblesActionBase >();
10

params.addParam <std::string >("order", "FIRST", "Specifies the order of the FE shape
function to use for this variable");

params.addParam <std::string >("family", "LAGRANGE", "Specifies the family of FE shape
functions to use for this variable");

params.addRequiredParam <std::vector <SubdomainName > >("block", "The block id where this
variable lives");

15 return params;
}

BubblesRadAuxVarsAction::BubblesRadAuxVarsAction(const std::string & name ,
InputParameters params) :

20 BubblesActionBase(name , params),
_order(getParam <std::string >("order")),
_family(getParam <std::string >("family"))

{
mooseAssert(!getParam <std::vector <SubdomainName > >("block").empty(), "Blocks must be

specified in BubblesRadAuxVarsAction");
25 }

void
BubblesRadAuxVarsAction::act()
{

30 std::set<SubdomainID > blocks;

std::vector <SubdomainName > block_param = getParam <std::vector <SubdomainName > >("block");
for (std::vector <SubdomainName >::iterator it = block_param.begin(); it != block_param.

end(); ++it)
blocks.insert(_problem ->mesh().getSubdomainID(*it));

140

35

for (unsigned int i=0; i<_G; ++i)
{

_problem ->addAuxVariable(_r[i],
FEType(Utility::string_to_enum <Order >(_order),

40 Utility::string_to_enum <FEFamily >(_family)),
&blocks);

}
}

141

Listing C.14: buck/include/auxkernels/EquilibriumRadiusAux.h

1 #ifndef EQUILIBRIUMRADIUSAUX_H
#define EQUILIBRIUMRADIUSAUX_H

#include "AuxKernel.h"
5

class EquilibriumRadiusAux : public AuxKernel
{
public:

EquilibriumRadiusAux(const std::string & name , InputParameters parameters);
10 virtual ˜EquilibriumRadiusAux() {}

protected:
virtual Real computeValue();

15 private:
VariableValue & _temp;
VariableValue & _sigma;
const Real _m;
const Real _gamma;

20 const Real _B;
};

template <>
InputParameters validParams <EquilibriumRadiusAux >();

25

#endif //EQUILIBRIUMRADIUSAUX_H

buck/src/auxkernels/EquilibriumRadiusAux.C

1 #include "EquilibriumRadiusAux.h"

#include "Material.h"
#include "MaterialXeBubble.h"

5

template <>
InputParameters validParams <EquilibriumRadiusAux >()
{

InputParameters params = validParams <AuxKernel >();
10

params.addRequiredCoupledVar("temp", "Coupled temperature");
params.addCoupledVar("sigma", 0, "Coupled hydrostatic stress");
params.addRequiredParam <Real >("m", "Number of atoms");
params.addParam <Real >("gamma", 0.626, "Surface tension [J/mˆ2]");

15 params.addParam <Real >("B", 8.469e-29, " Atomic volume [mˆ3]");
return params;

}

EquilibriumRadiusAux::EquilibriumRadiusAux(const std::string & name , InputParameters
parameters)

20 :AuxKernel(name , parameters),
_temp(coupledValue("temp")),
_sigma(coupledValue("sigma")),
_m(getParam <Real >("m")),
_gamma(getParam <Real >("gamma")),

25 _B(getParam <Real >("B"))
{
}

Real
30 EquilibriumRadiusAux::computeValue()

{
Real gamma_in_m = _gamma;
Real B_in_m = _B;

142

Real rad_in_m = MaterialXeBubble::VDW_MtoR(_m, _temp[_qp], _sigma[_qp], gamma_in_m ,
B_in_m , false);

35 return rad_in_m * 1.0e6;
}

143

Listing C.15: buck/include/base/BuckApp.h

1 #ifndef BUCKAPP_H
#define BUCKAPP_H

#include "MooseApp.h"
5

class BuckApp;

template <>
InputParameters validParams <BuckApp >();

10

class BuckApp : public MooseApp
{
public:

BuckApp(const std::string & name , InputParameters parameters);
15 virtual ˜BuckApp();

virtual void runInputFile();

static void registerApps();
20 static void registerObjects(Factory & factory);

// static void associateSyntax(Syntax & syntax , ActionFactory & action_factory);

protected:
void printHeader();

25

};

#endif /* BUCKAPP_H */

buck/src/base/BuckApp.C

1 #include "BuckApp.h"
#include "Moose.h"
#include "AppFactory.h"

5 // Buck
#include "BuckSyntax.h"
#include "BuckRevision.h"

// AuxKernels
10 #include "EquilibriumRadiusAux.h"

// dampers
#include "PositiveDamper.h"

15 // Kernels
#include "VariableScaledSource.h"
#include "BasicDiffusion.h"
#include "BubbleBase.h"
#include "BubbleNucleation.h"

20 #include "BubbleFFNucleation.h"
#include "BubbleGrowth.h"
#include "BubbleKnockout.h"

// Materials
25 #include "GasAtomDiffusivity.h"

// Postprocessors
#include "GrainBoundaryGasFlux.h"
#include "SumOfPostprocessors.h"

30 #include "MaterialXeBubbleTester.h"
#include "BoundedElementAverage.h"
#include "SwellingPostprocessor.h"
#include "PostprocessorTerminator.h"

144

#include "C1LossPostprocessor.h"
35 #include "GainRatePostprocessor.h"

#include "KnockoutRatePostprocessor.h"

template <>
InputParameters validParams <BuckApp >()

40 {
InputParameters params = validParams <MooseApp >();
return params;

}

45 BuckApp::BuckApp(const std::string & name , InputParameters parameters) :
MooseApp(name , parameters)

{
srand(processor_id());

50 Moose::registerObjects(_factory);
BuckApp::registerObjects(_factory);

Moose::associateSyntax(_syntax , _action_factory);
Buck::associateSyntax(_syntax , _action_factory);

55 }

BuckApp::˜BuckApp()
{
}

60

extern "C" void BuckApp__registerApps() { BuckApp::registerApps(); }
void
BuckApp::registerApps()
{

65 registerApp(BuckApp);
}

void
BuckApp::registerObjects(Factory & factory)

70 {
registerAux(EquilibriumRadiusAux);

registerDamper(PositiveDamper);

75 registerKernel(VariableScaledSource);
registerKernel(BasicDiffusion);
registerKernel(BubbleBase);
registerKernel(BubbleNucleation);
registerKernel(BubbleFFNucleation);

80 registerKernel(BubbleGrowth);
registerKernel(BubbleKnockout);

registerMaterial(GasAtomDiffusivity);

85 registerPostprocessor(GrainBoundaryGasFlux);
registerPostprocessor(SumOfPostprocessors);
registerPostprocessor(MaterialXeBubbleTester);
registerPostprocessor(BoundedElementAverage);
registerPostprocessor(SwellingPostprocessor);

90 registerPostprocessor(PostprocessorTerminator);
registerPostprocessor(C1LossPostprocessor);
registerPostprocessor(GainRatePostprocessor);
registerPostprocessor(KnockoutRatePostprocessor);

}
95

void
BuckApp::runInputFile()
{

printHeader();

145

100 MooseApp::runInputFile();
}

void
BuckApp::printHeader()

105 {
Moose::out << "\n"

<< "\n"
<< " ______ _ _ ______ _ _ \n"
<< " (____ \\| | | |/ _____) | /) \n"

110 << " ____) | | | | / | | / / \n"
<< " | __ (| | | | | | |< < \n"
<< " | |__) | |___| | _____| | \\ \\ \n"
<< " |______/ ______|______)_| _) \n"

115 << "\n"
<< "\n"
<< " Bubble and Cluster Kinetics \n"
<< " Oregon State University \n"
<< " Corvallis , OR \n"

120 << "\n"
<< "\n";

Moose::out << "Input file: " << _input_filename << "\n"
<< "Input units: micrometer , gram , second , kelvin , mole\n"

125 << "\n"
<< "BUCK version: " << BUCK_REVISION << std::endl
<< std::endl;

}

146

Listing C.16: buck/include/dampers/PositiveDamper.h

1 #ifndef POSITIVEDAMPER_H
#define POSITIVEDAMPER_H

#include "Damper.h"
5

class PositiveDamper : public Damper
{
public:

PositiveDamper(std::string name , InputParameters parameters);
10 virtual ˜PositiveDamper() {}

protected:
virtual Real computeQpDamping();

15 Real _damping;
};

template <>
InputParameters validParams <PositiveDamper >();

20

#endif //POSITIVEDAMPER_H

buck/src/dampers/PositiveDamper.C

1 #include "PositiveDamper.h"

template <>
InputParameters validParams <PositiveDamper >()

5 {
InputParameters params = validParams <Damper >();
params.addRequiredParam <Real >("damping", "Damping coefficient to use if increment

results in a negative value");
return params;

}
10

PositiveDamper::PositiveDamper(std::string name , InputParameters parameters) :
Damper(name , parameters),
_damping(parameters.get<Real >("damping"))

{
15 }

Real
PositiveDamper::computeQpDamping()
{

20

Real delu = _u[_qp] - _u_increment[_qp];
if (delu < 0)

return _damping;

25 return 1.0;
}

147

Listing C.17: buck/include/kernels/BasicDiffusion.h

1 #ifndef BASICDIFFUSION_H
#define BASICDIFFUSION_H

#include "Diffusion.h"
5

class BasicDiffusion : public Diffusion
{
public:

BasicDiffusion(const std::string & name , InputParameters parameters);
10

protected:
virtual Real computeQpResidual();
virtual Real computeQpJacobian();

15 private:
MaterialProperty <Real > & _diffusivity;

};

template <>
20 InputParameters validParams <BasicDiffusion >();

#endif // BASICDIFFUSION_H

buck/src/kernels/BasicDiffusion.C

1 #include "BasicDiffusion.h"

template <>
InputParameters validParams <BasicDiffusion >()

5 {
InputParameters params = validParams <Diffusion >();

params.addParam <std::string >("diffusivity", "diffusivity", "Diffusion coefficient (
Default: diffusivity");

10 return params;
}

BasicDiffusion::BasicDiffusion(const std::string & name , InputParameters parameters) :
15 Diffusion(name , parameters),

_diffusivity(getMaterialProperty <Real >(getParam <std::string >("diffusivity")))
{
}

20

Real
BasicDiffusion::computeQpResidual()
{

return _diffusivity[_qp] * Diffusion::computeQpResidual();
25 }

Real
BasicDiffusion::computeQpJacobian()

30 {
return _diffusivity[_qp] * Diffusion::computeQpJacobian();

}

148

Listing C.18: buck/include/kernels/BubbleBase.h

1 #ifndef BUBBLEBASE_H
#define BUBBLEBASE_H

#include "Kernel.h"
5

#include "BuckUtils.h"

class BubbleBase;

10 template <>
InputParameters validParams <BubbleBase >();

class BubbleBase : public Kernel
{

15 public:
BubbleBase(const std::string & name , InputParameters parameters);

protected:
virtual Real computeQpResidual();

20 virtual Real computeQpJacobian();

virtual void calcLosses(Real & losses , const bool jac){}
virtual void calcGains(Real & gains , const bool jac){}
virtual void displayBubbleInfo();

25

std::vector <VariableName > _names;
const NonlinearVariableName _this_var;

std::vector <VariableValue *> _c;
30 std::vector <VariableValue *> _r;

std::vector <Real > _atoms;
std::vector <Real > _widths;

unsigned int _G;
35 int _g;

};

#endif //BUBBLEBASE_H

buck/src/kernels/BubbleBase.C

1 #include "BubbleBase.h"

template <>
InputParameters validParams <BubbleBase >()

5 {
InputParameters params = validParams <Kernel >();

params.addRequiredCoupledVar("coupled_conc", "List of coupled concentration variables.")
;

params.addRequiredCoupledVar("coupled_rad", "List of coupled radius variables.");
10 params.addRequiredParam <std::vector <Real > >("coupled_atoms", "List of atom sizes for

coupled variables.");
params.addRequiredParam <std::vector <Real > >("coupled_widths", "List of group sizes");

return params;
}

15

BubbleBase::BubbleBase(const std::string & name , InputParameters parameters)
:Kernel(name ,parameters),
_names(getParam <std::vector <VariableName > >("coupled_conc")),

20 _this_var(getParam <NonlinearVariableName >("variable")),
_atoms(getParam <std::vector <Real > >("coupled_atoms")),

149

_widths(getParam <std::vector <Real > >("coupled_widths"))
{

_G = coupledComponents("coupled_conc");
25 if (_G != coupledComponents("coupled_rad"))

mooseError("From BubbleBase: The number of coupled concentrations does not match
coupled radii.");

if (_G != _atoms.size())
mooseError("From BubbleBase: The number of coupled concentrations does not match atom
sizes list.");

30 for (unsigned int i=0; i<_G; ++i)
{

_c.push_back(&coupledValue("coupled_conc", i));
_r.push_back(&coupledValue("coupled_rad", i));

}
35

// Determine which group current kernel acts on
_g = -1;
for (unsigned int i=0; i<_G; ++i)
{

40 if (_names[i].compare(_this_var) == 0)
{

_g = i;
break;

}
45 }

if (_g == -1)
mooseError("From BubbleBase: Variable not found in coupled_conc list. Check the list."
);

mooseDoOnce(displayBubbleInfo());
50 }

Real
BubbleBase::computeQpResidual()

55 {
Real losses(0);
Real gains(0);
calcLosses(losses , false);
calcGains(gains , false);

60

return -(gains - losses) * _test[_i][_qp];
}

65 Real
BubbleBase::computeQpJacobian()
{

Real losses(0);
Real gains(0);

70 calcLosses(losses , true);
calcGains(gains , true);

return -(gains - losses) * _phi[_j][_qp] * _test[_i][_qp];
}

75

void
BubbleBase::displayBubbleInfo()
{

80 std::cout.precision(6);
std::cout << std::scientific;
std::cout << "=======================================\n";
std::cout << " --< BUCK Bubble Information >-- \n";
std::cout << "=======================================\n";

150

85 std::cout << " group\t| avg atoms\t| width\n";
std::cout << "--------+---------------+--------------\n";
for (int i=0; i<_G; ++i)

std::cout << " " << i+1 << "\t| " << _atoms[i] << "\t| " << _widths[i] << "\n";
std::cout << "=======================================\n" << std::endl;

90 }

151

Listing C.19: buck/include/kernels/BubbleFFNucleation.h

1 #ifndef BUBBLEFFNUCLEATION_H
#define BUBBLEFFNUCLEATION_H

#include "BubbleBase.h"
5

class BubbleFFNucleation;

template <>
InputParameters validParams <BubbleFFNucleation >();

10

class BubbleFFNucleation : public BubbleBase
{
public:

BubbleFFNucleation(const std::string & name , InputParameters parameters);
15

protected:
virtual void calcLosses(Real & losses , const bool jac);
virtual void calcGains(Real & gains , const bool jac);

20 private:
VariableValue & _frd;
const Real _factor;
const int _num;
const int _size;

25 const Real _upper;
const Real _lower;

};

#endif

buck/src/kernels/BubbleFFNucleation.C

1 #include "BubbleFFNucleation.h"

#include "BuckUtils.h"

5 template <>
InputParameters validParams <BubbleFFNucleation >()
{

InputParameters params = validParams <BubbleBase >();

10 params.addRequiredCoupledVar("fission_rate", "Fission Rate Density");
params.addParam <Real >("factor", 1.0, "User supplied multiplier.");
params.addParam <int >("number", 5, "Number of bubbles created per fission");
params.addParam <int >("size", 4, "Size of bubbles created");
params.addParam <Real >("upper", 1e7, "Upper deadband limit");

15 params.addParam <Real >("lower", 1e6, "Lower deadband limit");

return params;
}

20

BubbleFFNucleation::BubbleFFNucleation(const std::string & name , InputParameters
parameters)

:BubbleBase(name ,parameters),
_frd(coupledValue("fission_rate")),
_factor(getParam <Real >("factor")),

25 _num(getParam <int >("number")),
_size(getParam <int >("size")),
_upper(getParam <Real >("upper")),
_lower(getParam <Real >("lower"))

{
30 }

152

void
BubbleFFNucleation::calcLosses(Real & losses , bool jac)

35 {
if (_g != 0)

return;
if (jac)

return;
40 if ((*_c[0])[_qp] < _upper)

{
if ((*_c[_size -1])[_qp] == 0)

return;
else if ((*_c[0])[_qp] < _lower)

45 return;
}

losses += _factor * _num * _size * _frd[_qp];
}

50

void
BubbleFFNucleation::calcGains(Real & gains , bool jac)
{

55 if (_g != _size - 1)
return;

if (jac)
return;

if ((*_c[0])[_qp] < _upper)
60 {

if ((*_c[_size -1])[_qp] == 0)
return;

else if ((*_c[0])[_qp] < _lower)
return;

65 }

gains += _factor * _num * _frd[_qp];
}

153

Listing C.20: buck/include/kernels/BubbleGrowth.h

1 #ifndef BUBBLEGROWTH_H
#define BUBBLEGROWTH_H

#include "BubbleBase.h"
5

class BubbleGrowth;

template <>
InputParameters validParams <BubbleGrowth >();

10

class BubbleGrowth : public BubbleBase
{

public:
15 BubbleGrowth(const std::string & name , InputParameters parameters);

protected:
virtual void calcLosses(Real & losses , const bool jac);
virtual void calcGains(Real & gains , const bool jac);

20

private:
void calcLossesExperimental(Real & losses , const bool jac);
void calcGainsExperimental(Real & gains , const bool jac);

25 bool _allow_loss;
MaterialProperty <Real > & _Dg;

const bool _exp;
};

30

#endif //BUBBLEGROWTH_H

buck/src/kernels/BubbleGrowth.C

1 #include "BubbleGrowth.h"

template <>
InputParameters validParams <BubbleGrowth >()

5 {
InputParameters params = validParams <BubbleBase >();

params.addParam <bool >("allow_loss", false , "Flag to allow losses from the largest bubble
group.");

params.addParam <bool >("experimental", false , "Flag to use experimental formulations.");
10

return params;
}

BubbleGrowth::BubbleGrowth(const std::string & name , InputParameters parameters)
15 :BubbleBase(name ,parameters),

_allow_loss(getParam <bool >("allow_loss")),
_Dg(getMaterialProperty <Real >("gas_diffusivity")),
_exp(getParam <bool >("experimental"))

{
20 }

void
BubbleGrowth::calcLosses(Real & losses , bool jac)
{

25 if (_exp)
{

calcLossesExperimental(losses , jac);
return;

}

154

30

if (!_allow_loss && _g==_G-1) return;// Don’t allow losses if largest bubble size

if (_g == 0)
{

35 for (unsigned int i=1; i<_G; ++i)
{

if (!_allow_loss && i==_G-1) break;

Real k = 4.0 * M_PI * _Dg[_qp] * (*_r[i])[_qp] * (*_c[i])[_qp] * _widths[i];
40 if (!jac)

losses += k * _u[_qp];
else

losses += k;
}

45 }
else
{

Real k = 4.0 * M_PI * _Dg[_qp] * (*_r[_g])[_qp] * (*_c[0])[_qp];
if (!jac)

50 losses += k * _u[_qp];
else

losses += k;
}

}
55

void
BubbleGrowth::calcGains(Real & gains , bool jac)
{

if (_exp)
60 {

calcGainsExperimental(gains , jac);
return;

}

65 if (_g==0 || _g==1) return; // Don’t count gains if single atom bubble or dimer
if (jac) return;

gains += 4.0 * M_PI * _Dg[_qp] * (*_r[_g -1])[_qp] * (*_c[_g -1])[_qp] * (*_c[0])[_qp];
}

70

void
BubbleGrowth::calcLossesExperimental(Real & losses , bool jac)
{
}

75

void
BubbleGrowth::calcGainsExperimental(Real & gains , bool jac)
{

80 }

155

Listing C.21: buck/include/kernels/BubbleKnockout.h

1 #ifndef BUBBLEKNOCKOUT_H
#define BUBBLEKNOCKOUT_H

#include "BubbleBase.h"
5

class BubbleKnockout;

template <>
InputParameters validParams <BubbleKnockout >();

10

class BubbleKnockout : public BubbleBase
{
public:

BubbleKnockout(const std::string & name , InputParameters parameters);
15

protected:
virtual void calcLosses(Real & losses , const bool jac);
virtual void calcGains(Real & gains , const bool jac);

20 private:
Real calcKnockoutRate(const int i);
Real calcB(const Real r);

const Real _factor;
25 VariableValue & _fsn_rate_den;

Real _b;
};

#endif

buck/src/kernels/BubbleKnockout.C

1 #include "BubbleKnockout.h"

template <>
InputParameters validParams <BubbleKnockout >()

5 {
InputParameters params = validParams <BubbleBase >();

params.addParam <Real >("factor", 1.0, "User supplied multiplier.");
params.addCoupledVar("fission_rate", 0, "Variable for fission rate density.");

10 params.addParam <Real >("b", -1, "Value to set constant knockout parameter. B is
automatically calculated if not given");

return params;
}

15

BubbleKnockout::BubbleKnockout(const std::string & name , InputParameters parameters)
:BubbleBase(name ,parameters),
_factor(getParam <Real >("factor")),
_fsn_rate_den(coupledValue("fission_rate")),

20 _b(getParam <Real >("b"))
{
}

25 void
BubbleKnockout::calcLosses(Real & losses , bool jac)
{

if (_g == 0) return;

30 Real k = calcKnockoutRate(_g);

156

if (!jac)
losses += k * _u[_qp];

else
35 losses += k;

}

void
40 BubbleKnockout::calcGains(Real & gains , bool jac)

{
if (_g == _G -1) return;
if (jac) return;

45 if (_g==0)
{

for (int i=1; i<_G; ++i)
{

Real k = calcKnockoutRate(i);
50 if (i==1)

k *= 2.0; // needed since split dimer results in two single atoms
gains += k * (*_c[i])[_qp] * _widths[i-1];

}
}

55 else
{

Real k = calcKnockoutRate(_g+1);
gains += k * (*_c[_g+1])[_qp];

}
60 }

Real
BubbleKnockout::calcKnockoutRate(int i)

65 {
Real b = calcB((*_r[i])[_qp]);
Real frd = _fsn_rate_den[_qp] * 1.0e18;

return _factor * b * frd * _atoms[i];
70 }

Real
BubbleKnockout::calcB(const Real r)

75 {
if (_b >= 0)

return _b;

Real a = 0.02831;
80 Real b =-0.0803;

Real c =-0.149;

Real logr = std::log10(r);
Real right = a * std::pow(logr , 2.0) + b * logr + c;

85 return std::pow(10.0, right) * 1e-25;
}

157

Listing C.22: buck/include/kernels/BubbleNucleation.h

1 #ifndef BUBBLENUCLEATION_H
#define BUBBLENUCLEATION_H

#include "BubbleBase.h"
5

class BubbleNucleation;

template <>
InputParameters validParams <BubbleNucleation >();

10

class BubbleNucleation : public BubbleBase
{
public:

BubbleNucleation(const std::string & name , InputParameters parameters);
15

protected:

virtual void calcLosses(Real & losses , const bool jac);
virtual void calcGains(Real & gains , const bool jac);

20

private:

VariableValue & _temp;
const Real _a;

25 const Real _omega;
const Real _factor;

MaterialProperty <Real > & _Dg;

30 const Real _Z11;
};

#endif //BUBBLENUCLEATION_H

buck/src/kernels/BubbleNucleation.C

1 #include "BubbleNucleation.h"

#include "BuckUtils.h"

5 template <>
InputParameters validParams <BubbleNucleation >()
{

InputParameters params = validParams <BubbleBase >();

10 params.addRequiredCoupledVar("temp", "Temperature");
params.addParam <Real >("a", 4.96e-4, "Lattice Parameter [um]");
params.addParam <Real >("omega", 1.53e-11, " Atomic volume [umˆ3]");
params.addParam <Real >("factor", 1.0, "User supplied multiplier.");

15 return params;
}

BubbleNucleation::BubbleNucleation(const std::string & name , InputParameters parameters)
20 :BubbleBase(name ,parameters),

_temp(coupledValue("temp")),
_a(getParam <Real >("a")),
_omega(getParam <Real >("omega")),
_factor(getParam <Real >("factor")),

25

_Dg(getMaterialProperty <Real >("gas_diffusivity")),

_Z11(168.0)

158

{
30 if (_g > 1)

mooseError("In BubbleNucleation: Cannont implement on non-dimer or non-single atoms.")
;

}

35 void
BubbleNucleation::calcLosses(Real & losses , bool jac)
{

if (_g != 0)
return;

40

Real P11 = _factor * _Z11 * _omega * _Dg[_qp] * _u[_qp] / std::pow(_a, 2.0);

if (!jac)
losses += 2.0 * P11 * _u[_qp];

45 else
losses += 4.0 * P11;

}

50 void
BubbleNucleation::calcGains(Real & gains , bool jac)
{

if (_g != 1)
return;

55 if (jac)
return;

Real R = _factor * _Z11 * _omega * _Dg[_qp] * std::pow((*_c[0])[_qp]/_a, 2.0);

60 gains += R;
}

159

Listing C.23: buck/include/kernels/VariableScaledSource.h

1 #ifndef VARIABLESCALEDSOURCE_H
#define VARIABLESCALEDSOURCE_H

#include "Kernel.h"
5

//Forward Declarations
class VariableScaledSource;

template <>
10 InputParameters validParams <VariableScaledSource >();

class VariableScaledSource : public Kernel
{
public:

15

VariableScaledSource(const std::string & name , InputParameters parameters);

protected:
virtual Real computeQpResidual();

20 virtual Real computeQpJacobian();

Real _factor;
VariableValue & _var;

};
25

#endif

buck/src/kernels/VariableScaledSource.C

1 #include "VariableScaledSource.h"

template <>
InputParameters validParams <VariableScaledSource >()

5 {
InputParameters params = validParams <Kernel >();

params.addParam <Real >("factor", 1, "Number multiplied scaling variable.");
params.addCoupledVar("scaling_variable", 1, "Variable for Scaling");

10

return params;
}

15 VariableScaledSource::VariableScaledSource(const std::string & name , InputParameters
parameters) :
Kernel(name , parameters),
_factor(getParam <Real >("factor")),
_var(coupledValue("scaling_variable"))

{
20 }

Real
VariableScaledSource::computeQpResidual()

25 {
return -_test[_i][_qp] * _factor * _var[_qp];

}

30 Real
VariableScaledSource::computeQpJacobian()
{

return 0.0;
}

160

161

Listing C.24: buck/include/materials/GasAtomDiffusivity.h

1 #ifndef GASATOMDIFFUSIVITY_H
#define GASATOMDIFFUSIVITY_H

#include "Material.h"
5

class GasAtomDiffusivity;

template <>
InputParameters validParams <GasAtomDiffusivity >();

10

class GasAtomDiffusivity : public Material
{
public:

GasAtomDiffusivity(const std::string & name ,
15 InputParameters parameters);

protected:
virtual void computeQpProperties();

20 VariableValue & _temp;
VariableValue & _fission_rate;

Real _D0;
Real _Q;

25 Real _D0f;
Real _Qf;
const Real _R;
const Real _factor;
const int _model;

30 int _G;

MaterialProperty <Real > & _gas_diffusivity;
};

35 #endif // GASATOMDIFFUSIVITY_H

buck/src/materials/GasAtomDiffusivity.C

1 #include "GasAtomDiffusivity.h"
#include "MooseEnum.h"

template <>
5 InputParameters validParams <GasAtomDiffusivity >()

{
InputParameters params = validParams <Material >();

params.addRequiredCoupledVar("temp", "Coupled Temperature");
10 params.addCoupledVar("fission_rate", 0, "Coupled fission rate");

params.addParam <Real >("D0", "Diffusion coefficient [umˆ2/s]");
params.addParam <Real >("Q", "Activation energy [J/mol]");
params.addParam <Real >("D0f", 0, "Fission enhanced diffusion coefficient [umˆ2/s]");
params.addParam <Real >("Qf", 0, "Fission enhanced activation energy [J/mol]");

15 params.addParam <Real >("R", 8.31446, "Ideal gas constant [J/(K*mo)]");
params.addParam <Real >("factor", 1, "Scaling factor to multiply by diffusivity.");
params.addParam <int >("model", 1, "Switch for diffusion coefficient model (0=user input ,

1=UC Matzke , 2=UC Madrid , 3=UC Eyre , 4=UC Ronchi , 5=UO2 Griesmeyer");

return params;
20 }

GasAtomDiffusivity::GasAtomDiffusivity(const std::string & name , InputParameters
parameters) :

Material(name , parameters),

162

25 _temp(coupledValue("temp")),
_fission_rate(coupledValue("fission_rate")),
_R(getParam <Real >("R")),
_factor(getParam <Real >("factor")),
_model(getParam <int >("model")),

30 _gas_diffusivity(declareProperty <Real >("gas_diffusivity"))
{

if (_model == 0)
{

if (!isParamValid("D0") || !isParamValid("Q"))
35 mooseError("In GasAtomDiffusivity: if model = 0 (user supplied), D0 and Q must also

be supplied");
_D0 = getParam <Real >("D0");
_Q = getParam <Real >("Q");
_D0f = getParam <Real >("D0f");
_Qf = getParam <Real >("Qf");

40 }
else
{

if (isParamValid("D0") || isParamValid("Q"))
mooseError("In GasAtomDiffusivity: D0 and Q are supplied , model must = 0");

45

if (_model == 1) // UC Matzke
{

_D0 = 0.3e8;
_Q = 355000.0;

50 }
else if (_model == 2) // UC Madrid
{

_D0 = 4.6e5;
_Q = 326360.0;

55 }
else if (_model == 3) // UC Eyre
{

_D0 = 1.66e-1;
_Q = 221154.0;

60 }
else if (_model == 4) // UC Ronchi
{

_D0 = 4.6e7;
_Q = 328421.0;

65 _D0f = 1.3e-9;
}
else if (_model == 5) // UO2 Griesmeyer
{

_D0 = 2.1e4;
70 _Q = 381000.0;

_D0f = 1.e-4;
_Qf = 26.36;

}
else

75 mooseError("In GasAtomDiffusivity: Invalid model value given.");
}

}

80 void
GasAtomDiffusivity::computeQpProperties()
{

Real diff_thermal = _D0 * std::exp(-_Q / _R / _temp[_qp]);
Real diff_fission = _D0f * std::exp(-_Qf / _R / _temp[_qp]) * _fission_rate[_qp];

85

_gas_diffusivity[_qp] = (diff_thermal + diff_fission) * _factor;
}

163

Listing C.25: buck/include/materials/MaterialXeBubble.h

1 #ifndef MATERIALXEBUBBLE_H
#define MATERIALXEBUBBLE_H

namespace MaterialXeBubble {
5

double VDW_RtoRho(double R, double T, double sigma);
double VDW_RtoP(double R, double T, double m);
double VDW_MtoR(double m, double T, double sigma , double gamma , double B, bool testing);

10 }

#endif // MATERIALXEBUBBLE_H

buck/src/materials/MaterialXeBubble.C

1 #include "MaterialXeBubble.h"

#include "MooseError.h"

5 #include <iostream >
#include <cmath >

namespace MaterialXeBubble{

10 double VDW_RtoRho(double R, double T, double sigma)
{

// Calculates the atomic density in a bubble based on Van der Waal’s EOS
//
// 1/rho = B + 1/(2*gamma/k/T/R + sigma/k/T)

15 //
// R = Bubble radius , [m]
// T = Temperature , [K]
// sigma = Hydrostatic stress , [Pa]
// B = VDW constant , [mˆ3/atom]

20 // k = boltzmann constant , [J/K]
// gamma = surface tension , N/m

double B = 8.5e-29;
double k = 1.3806488e-23;

25 double gamma = 1.0;

double invrho = (B + 1.0 / (2.0*gamma/k/T/R + sigma/k/T));

return 1.0/invrho;
30 }

//

double VDW_RtoP(double rad, double T, double m)
35 {

// Calculates the bubble preessure in a bubble based on Van der Waal’s EOS
//
// p = kT/(1/rho - B)
//

40 // T = Temperature , [K]
// rad = bubble radius , [m]
// m = number of atoms
// k = Boltzmann constant , [J/K]
// rho = Bubble atomic density , [atom/m3]

45 // B = constant , [m3/atom]

double k = 1.3806488e-23; // [J/K]
double B = 8.469e-29; // [m3/atom]
double V = 4.0/3.0 * M_PI * std::pow(rad ,3);

164

50 double rho = m/V;

double p = k*T/(1.0/rho - B);

if (p<0)
55 {

// p = 1e50;
std::cout << "rad: " << rad << " T: " << T << " m: " << m << " VDW pressure: " << p

<< std::endl;
mooseError("In MaterialXeBubble: Negative bubble pressure calculated");

}
60

return p;
}

//
65

double VDW_MtoR(double m, double T, double sigma , double gamma , double B, bool testing)
{

// Uses a simple Newton’s method to determine equilbrium bubble radius as a function
of atoms
//

70 // 1/rho = B + 1/(2*gamma/k/T/R + sigma/k/T)
//
// R = Bubble radius , [m]
// T = Temperature , [K]
// sigma = Hydrostatic stress , [Pa]

75 // B = VDW constant , [mˆ3/atom]
// k = boltzmann constant , [J/K]
// gamma = surface tension , N/m

// Physical Paramters
80 // double B = 8.5e-29;

double k = 1.3806488e-23;
// double gamma = 1.0;

// Calculation setup
85 double A = 4.0/3.0 * M_PI;

double C = 2.0*gamma/k/T;
double D = sigma/k/T;

// Iteration paramters
90 int max_its = 100; // Max iterations

double rel_conv = 1e-5; // Relative convergence criteria.
int it(0); // Iteration counter
double dR(1); // Newton change in R

95 if (testing)
{

std::cout << "m: " << m << "\tT: " << T << "\tsigma: " << sigma << std::endl;
std::cout << "B: " << B << "\tk: " << k << "\tgamma: " << gamma << std::endl;

}
100

double R = 1.0e-9; // bubble radius initial guess
while(it<max_its && std::abs(dR/R) > rel_conv)
{

double RR = R*R;
105 double RRR = R*RR;

double RRRR = R*RRR;
double res = A*D*RRRR + A*C*RRR - m*(B*D+1)*R - B*C*m;
double dres = 4.0*A*D*RRR + 3.0*A*C*RR - m*(B*D+1);

110 dR = res/dres;
double new_R = R - dR;

R = new_R;

165

++it;
115

if (R<0)
{

R = 1;
dR = 1;

120 if (testing)
std::cout << "R dropped below 0, reseting calculation by R=1" << std::endl;

}

if (testing)
125 {

std::cout << "it: " << it << "\tR: " << R << "\tdR: " << res/dres << "\tnew_R: "
<< new_R << "\tconv: " << std::abs(dR/R) << std::endl;

}

} // end while iteration loop
130

if (testing)
{

double rho = m/(4.0/3.0*M_PI*std::pow(R,3));
double calc_rho = VDW_RtoRho(R, T, sigma);

135 std::cout << std::endl << "rho: " << rho << "\tcalc_rho: " << calc_rho << "\t%% diff
: " << std::abs(rho-calc_rho)/calc_rho*100.0 << std::endl;
}

return R;
}

140 }

166

Listing C.26: buck/include/parser/BuckSyntax.h

1 #ifndef BUCKSYNTAX_H
#define BUCKSYNTAX_H

#include "Factory.h"
5 #include "Syntax.h"

#include "ActionFactory.h"

namespace Buck
{

10 void associateSyntax(Syntax & syntax , ActionFactory & action_factory);
}

#endif // BUCKSYNTAX_H

buck/src/parser/BuckSyntax.C

1 #include "BuckSyntax.h"
#include "ActionFactory.h"

// Actions
5 #include "BubblesConcVarsAction.h"

#include "BubblesConcTimeKernelAction.h"

#include "BubblesRadAuxVarsAction.h"
#include "BubblesRadAuxKernelAction.h"

10

#include "BubblesPostprocessorsAction.h"

#include "BubblesCoalescenceKernelsAction.h"
#include "BubblesGrowthKernelsAction.h"

15 #include "BubblesNucleationKernelsAction.h"
#include "BubblesFFNucleationKernelsAction.h"
#include "BubblesKnockoutKernelsAction.h"

#include "BubblesDampersAction.h"
20

namespace Buck
{

void
25 associateSyntax(Syntax & syntax , ActionFactory & action_factory)

{
syntax.registerActionSyntax("BubblesConcVarsAction", "Bubbles/Conc/", "add_variable");
syntax.registerActionSyntax("BubblesConcVarsAction", "Bubbles/Conc/", "add_ic");
syntax.registerActionSyntax("BubblesConcTimeKernelAction", "Bubbles/Conc/", "
add_kernel");

30 registerAction(BubblesConcVarsAction , "add_variable");
registerAction(BubblesConcVarsAction , "add_ic");
registerAction(BubblesConcTimeKernelAction , "add_kernel");

syntax.registerActionSyntax("BubblesPostprocessorsAction", "Bubbles/PPs/", "
add_postprocessor");

35 registerAction(BubblesPostprocessorsAction , "add_postprocessor");

syntax.registerActionSyntax("BubblesGrowthKernelsAction", "Bubbles/Growth/", "
add_kernel");
registerAction(BubblesGrowthKernelsAction , "add_kernel");

40 syntax.registerActionSyntax("BubblesKnockoutKernelsAction", "Bubbles/Knockout/", "
add_kernel");
registerAction(BubblesKnockoutKernelsAction , "add_kernel");

syntax.registerActionSyntax("BubblesCoalescenceKernelsAction", "Bubbles/Coalescence/",
"add_kernel");

167

registerAction(BubblesCoalescenceKernelsAction , "add_kernel");
45

syntax.registerActionSyntax("BubblesNucleationKernelsAction", "Bubbles/Nucleation/", "
add_kernel");
registerAction(BubblesNucleationKernelsAction , "add_kernel");

syntax.registerActionSyntax("BubblesFFNucleationKernelsAction", "Bubbles/FFNucleation/
", "add_kernel");

50 registerAction(BubblesFFNucleationKernelsAction , "add_kernel");

syntax.registerActionSyntax("BubblesDampersAction", "Bubbles/Dampers/", "add_damper");
registerAction(BubblesDampersAction , "add_damper");

55 syntax.registerActionSyntax("BubblesRadAuxVarsAction", "Bubbles/Rad/", "
add_aux_variable");
syntax.registerActionSyntax("BubblesRadAuxKernelAction", "Bubbles/Rad/Eq/", "
add_aux_kernel");
registerAction(BubblesRadAuxVarsAction , "add_aux_variable");
registerAction(BubblesRadAuxKernelAction , "add_aux_kernel");

}
60

} //end namespace

168

Listing C.27: buck/include/postprocessors/BoundedElementAverage.h

1 #ifndef BOUNDEDELEMENTAVERAGE_H
#define BOUNDEDELEMENTAVERAGE_H

#include "ElementAverageValue.h"
5

class BoundedElementAverage;

template <>
InputParameters validParams <BoundedElementAverage >();

10

class BoundedElementAverage : public ElementAverageValue
{
public:

BoundedElementAverage(const std::string & name , InputParameters parameters);
15

virtual void execute();

};

20 #endif // BOUNDEDELEMENTAVERAGE_H

buck/src/postprocessors/BoundedElementAverage.C

1 #include "BoundedElementAverage.h"

template <>
InputParameters validParams <BoundedElementAverage >()

5 {
InputParameters params = validParams <ElementAverageValue >();

params.addParam <Real >("upper", "The upper bound for the variable");
params.addParam <Real >("lower", "The lower bound for the variable");

10

return params;
}

BoundedElementAverage::BoundedElementAverage(const std::string & name , InputParameters
parameters) :

15 ElementAverageValue(name , parameters)
{}

void
BoundedElementAverage::execute()

20 {
for (_qp=0; _qp<_qrule ->n_points(); _qp++)
{

if (isParamValid("upper"))
{

25 if (_u[_qp] > getParam <Real >("upper"))
mooseError("From Postprocessor "<< _name << ": value is greater than upper limit

of " << getParam <Real >("upper"));
}
if (isParamValid("lower"))
{

30 if (_u[_qp] < getParam <Real >("lower"))
mooseError("From Postprocessor "<< _name << ": value is lower than lower limit of

" << getParam <Real >("lower"));
}

}
ElementAverageValue::execute();

35 }

169

Listing C.28: buck/include/postprocessors/C1LossPostprocessor.h

1 #ifndef C1LOSSPOSTPROCESSOR_H
#define C1LOSSPOSTPROCESSOR_H

#include "ElementAverageValue.h"
5

class C1LossPostprocessor: public ElementAverageValue
{

public:
10 C1LossPostprocessor(const std::string & name , InputParameters parameters);

protected:
virtual Real computeQpIntegral();

15 private:
Real calcKnockoutRate();
Real calcB(const Real r);
VariableValue & _r;
VariableValue & _c1;

20 VariableValue & _frd;
MaterialProperty <Real > & _Dg;
const Real _width;
const Real _atoms;
Real _b;

25 const Real _factor;
};

template <>
InputParameters validParams <C1LossPostprocessor >();

30

#endif

buck/src/postprocessors/C1LossPostprocessor.C

1 #include "C1LossPostprocessor.h"

template <>
InputParameters validParams <C1LossPostprocessor >()

5 {
InputParameters params = validParams <ElementAverageValue >();

params.addRequiredCoupledVar("r", "radius variable.");
params.addRequiredCoupledVar("c1", "c1");

10 params.addRequiredCoupledVar("fission_rate", "fission rate density");
params.addRequiredParam <Real >("width", "width");
params.addRequiredParam <Real >("atoms", "atoms");
params.addParam <Real >("b", -1, "Value to set constant knockout parameter. B is

automatically calculated if not given");
params.addParam <Real >("factor", 1.0, "Number multiplied scaling variable.");

15

return params;
}

20 C1LossPostprocessor::C1LossPostprocessor(const std::string & name , InputParameters
parameters) :

ElementAverageValue(name , parameters),
_r(coupledValue("r")),
_c1(coupledValue("c1")),
_frd(coupledValue("fission_rate")),

25 _Dg(getMaterialProperty <Real >("gas_diffusivity")),
_width(getParam <Real >("width")),
_atoms(getParam <Real >("atoms")),
_b(getParam <Real >("b")),

170

_factor(getParam <Real >("factor"))
30 {

}

Real
35 C1LossPostprocessor::computeQpIntegral()

{
Real growth = 4.0 * M_PI * _Dg[_qp] * _r[_qp] * _u[_qp] * _width * _c1[_qp];

Real k = calcKnockoutRate();
40 Real knockout = k * _u[_qp] * _width;

return std::abs(growth) + std::abs(knockout);
}

45

Real
C1LossPostprocessor::calcKnockoutRate()
{

Real b = calcB(_r[_qp]);
50 Real frd = _frd[_qp] * 1.0e18;

return _factor * b * frd * _atoms;
}

55

Real
C1LossPostprocessor::calcB(const Real r)
{

if (_b >= 0)
60 return _b;

Real a = 0.02831;
Real b =-0.0803;
Real c =-0.149;

65

Real logr = std::log10(r);
Real right = a * std::pow(logr , 2.0) + b * logr + c;
return std::pow(10.0, right) * 1e-25;

}

171

Listing C.29: buck/include/postprocessors/GainRatePostprocessor.h

1 #ifndef GAINRATEPOSTPROCESSOR_H
#define GAINRATEPOSTPROCESSOR_H

#include "ElementAverageValue.h"
5

class GainRatePostprocessor : public ElementAverageValue
{

public:
10 GainRatePostprocessor(const std::string & name , InputParameters parameters);

protected:
virtual Real computeQpIntegral();

15 private:
VariableValue & _r;
VariableValue & _c1;
MaterialProperty <Real > & _Dg;
const Real _width;

20 };

template <>
InputParameters validParams <GainRatePostprocessor >();

25 #endif

buck/src/postprocessors/GainRatePostprocessor.C

1 #include "GainRatePostprocessor.h"

template <>
InputParameters validParams <GainRatePostprocessor >()

5 {
InputParameters params = validParams <ElementAverageValue >();

params.addRequiredCoupledVar("r", "radius variable.");
params.addRequiredCoupledVar("c1", "c1");

10 params.addRequiredParam <Real >("width", "width");

return params;
}

15

GainRatePostprocessor::GainRatePostprocessor(const std::string & name , InputParameters
parameters) :

ElementAverageValue(name , parameters),
_r(coupledValue("r")),
_c1(coupledValue("c1")),

20 _Dg(getMaterialProperty <Real >("gas_diffusivity")),
_width(getParam <Real >("width"))

{
}

25

Real
GainRatePostprocessor::computeQpIntegral()
{

Real growth = 4.0 * M_PI * _Dg[_qp] * _r[_qp] * _u[_qp] * _width * _c1[_qp];
30 return growth;

}

172

Listing C.30: buck/include/postprocessors/GrainBoundaryGasFlux.h

1 #ifndef GRAINBOUNDARYGASFLUX_H
#define GRAINBOUNDARYGASFLUX_H

#include "SideIntegralVariablePostprocessor.h"
5

class GrainBoundaryGasFlux;

template <>
InputParameters validParams <GrainBoundaryGasFlux >();

10

class GrainBoundaryGasFlux : public SideIntegralVariablePostprocessor
{
public:

GrainBoundaryGasFlux(const std::string & name , InputParameters parameters);
15

protected:
virtual Real computeQpIntegral();

MaterialProperty <Real > & _diffusivity;
20 };

#endif // GRAINBOUNDARYGAS_H

buck/src/postprocessors/GrainBoundaryGasFlux.C

1 #include "GrainBoundaryGasFlux.h"

template <>
InputParameters validParams <GrainBoundaryGasFlux >()

5 {
InputParameters params = validParams <SideIntegralVariablePostprocessor >();
return params;

}

10

GrainBoundaryGasFlux::GrainBoundaryGasFlux(const std::string & name , InputParameters
parameters) :
SideIntegralVariablePostprocessor(name , parameters),
_diffusivity(getMaterialProperty <Real >("atomic_diffusivity"))

{
15 }

Real
GrainBoundaryGasFlux::computeQpIntegral()

20 {
return -_diffusivity[_qp]*_grad_u[_qp]*_normals[_qp];

}

173

Listing C.31: buck/include/postprocessors/KnockoutRatePostprocessor.h

1 #ifndef KNOCKOUTRATEPOSTPROCESSOR_H
#define KNOCKOUTRATEPOSTPROCESSOR_H

#include "ElementAverageValue.h"
5

class KnockoutRatePostprocessor: public ElementAverageValue
{

public:
10 KnockoutRatePostprocessor(const std::string & name , InputParameters parameters);

protected:
virtual Real computeQpIntegral();

15 private:
Real calcKnockoutRate();
Real calcB(const Real r);
VariableValue & _r;
VariableValue & _c1;

20 VariableValue & _frd;
MaterialProperty <Real > & _Dg;
const Real _width;
const Real _atoms;
Real _b;

25 const Real _factor;
};

template <>
InputParameters validParams <KnockoutRatePostprocessor >();

30

#endif

buck/src/postprocessors/KnockoutRatePostprocessor.C

1 #include "KnockoutRatePostprocessor.h"

template <>
InputParameters validParams <KnockoutRatePostprocessor >()

5 {
InputParameters params = validParams <ElementAverageValue >();

params.addRequiredCoupledVar("r", "radius variable.");
params.addRequiredCoupledVar("c1", "c1");

10 params.addRequiredCoupledVar("fission_rate", "fission rate density");
params.addRequiredParam <Real >("width", "width");
params.addRequiredParam <Real >("atoms", "atoms");
params.addParam <Real >("b", -1, "Value to set constant knockout parameter. B is

automatically calculated if not given");
params.addParam <Real >("factor", 1.0, "Number multiplied scaling variable.");

15

return params;
}

20 KnockoutRatePostprocessor::KnockoutRatePostprocessor(const std::string & name ,
InputParameters parameters) :

ElementAverageValue(name , parameters),
_r(coupledValue("r")),
_c1(coupledValue("c1")),
_frd(coupledValue("fission_rate")),

25 _Dg(getMaterialProperty <Real >("gas_diffusivity")),
_width(getParam <Real >("width")),
_atoms(getParam <Real >("atoms")),
_b(getParam <Real >("b")),

174

_factor(getParam <Real >("factor"))
30 {

}

Real
35 KnockoutRatePostprocessor::computeQpIntegral()

{
Real k = calcKnockoutRate();
Real knockout = k * _u[_qp] * _width;

40 return knockout;
}

Real
45 KnockoutRatePostprocessor::calcKnockoutRate()

{
Real b = calcB(_r[_qp]);
Real frd = _frd[_qp] * 1.0e18;

50 return _factor * b * frd * _atoms;
}

Real
55 KnockoutRatePostprocessor::calcB(const Real r)

{
if (_b >= 0)

return _b;

60 Real a = 0.02831;
Real b =-0.0803;
Real c =-0.149;

Real logr = std::log10(r);
65 Real right = a * std::pow(logr , 2.0) + b * logr + c;

return std::pow(10.0, right) * 1e-25;
}

175

Listing C.32: buck/include/postprocessors/MaterialXeBubbleTester.h

1 #ifndef MATERIALXEBUBBLETESTER_H
#define MATERIALXEBUBBLETESTER_H

#include "GeneralPostprocessor.h"
5

class MaterialXeBubbleTester;

template <>
InputParameters validParams <MaterialXeBubbleTester >();

10

class MaterialXeBubbleTester : public GeneralPostprocessor
{
public:

MaterialXeBubbleTester(const std::string & name , InputParameters parameters);
15

virtual ˜MaterialXeBubbleTester() {};
virtual void initialize() {};
virtual void execute() {};
virtual PostprocessorValue getValue();

20

protected:
const Real _temp;
const Real _sigma;

25 const PostprocessorValue & _m_mag;
};

#endif // MATERIALXEBUBBLETESTER_H

buck/src/postprocessors/MaterialXeBubbleTester.C

1 #include "MaterialXeBubbleTester.h"

#include "MaterialXeBubble.h"

5 template <>
InputParameters validParams <MaterialXeBubbleTester >()
{

InputParameters params = validParams <GeneralPostprocessor >();

10 params.addParam <Real >("temp" , 1000, "Number of atoms.");
params.addParam <Real >("sigma", 0, "stress");

params.addRequiredParam <PostprocessorName >("m_mag", "The postprocessor that has m order
of magnitude");

15 return params;
}

MaterialXeBubbleTester::MaterialXeBubbleTester(const std::string & name , InputParameters
parameters) :

20 GeneralPostprocessor(name , parameters),
_temp(getParam <Real >("temp")),
_sigma(getParam <Real >("sigma")),
_m_mag(getPostprocessorValueByName(getParam <PostprocessorName >("m_mag")))

{
25 }

Real
MaterialXeBubbleTester::getValue()

30 {

176

return MaterialXeBubble::VDW_MtoR(std::pow(10, _m_mag), _temp , _sigma , 1.0, 8.5e-29,
true);

}

177

Listing C.33: buck/include/postprocessors/PostprocessorTerminator.h

1 #ifndef POSTPROCESSORTERMINATOR_H
#define POSTPROCESSORTERMINATOR_H

#include "GeneralPostprocessor.h"
5

class PostprocessorTerminator;

template <>
InputParameters validParams <PostprocessorTerminator >();

10

class PostprocessorTerminator : public GeneralPostprocessor
{
public:

PostprocessorTerminator(const std::string & name , InputParameters parameters);
15 virtual void initialize() {};

virtual void execute();
virtual Real getValue() { return 0; }
virtual void threadJoin(const UserObject &) {};

20 protected:
const Real _threshold;
const PostprocessorValue & _value;

};

25 #endif

buck/src/postprocessors/PostprocessorTerminator.C

1 #include "PostprocessorTerminator.h"

template <>
InputParameters validParams <PostprocessorTerminator >()

5 {
InputParameters params = validParams <GeneralPostprocessor >();

params.addRequiredParam <PostprocessorName >("postprocessor", "The postprocessor name");
params.addRequiredParam <Real >("threshold", "Threshold above which to terminate the solve

");
10

return params;
}

15 PostprocessorTerminator::PostprocessorTerminator(const std::string & name , InputParameters
parameters) :

GeneralPostprocessor(name , parameters),
_threshold(getParam <Real >("threshold")),
_value(getPostprocessorValue("postprocessor"))

{
20 }

void
PostprocessorTerminator::execute()

25 {
if (_value > _threshold)

_fe_problem.terminateSolve();
}

178

Listing C.34: buck/include/postprocessors/SumOfPostprocessors.h

1 #ifndef SUMOFPOSTPROCESSORS_H
#define SUMOFPOSTPROCESSORS_H

#include "GeneralPostprocessor.h"
5

class SumOfPostprocessors;

template <>
InputParameters validParams <SumOfPostprocessors >();

10

class SumOfPostprocessors : public GeneralPostprocessor
{
public:

15 SumOfPostprocessors(const std::string & name , InputParameters parameters);

virtual void initialize() {};
virtual void execute() {};
virtual void threadJoin(const UserObject &) {};

20 virtual Real getValue();

protected:
std::vector <Real > _factors;
std::vector <const PostprocessorValue *> _postprocessor_values;

25 };

#endif

buck/src/postprocessors/SumOfPostprocessors.C

1 #include "SumOfPostprocessors.h"
#include "PostprocessorInterface.h"

template <>
5 InputParameters validParams <SumOfPostprocessors >()

{
InputParameters params = validParams <GeneralPostprocessor >();

params.addRequiredParam <std::vector <PostprocessorName > >("postprocessors", "The
postprocessors whose values are to be summed");

10 params.addParam <std::vector <Real > >("factors", "Factors that postprocessors are
multiplied against.");

return params;
}

15

SumOfPostprocessors::SumOfPostprocessors(const std::string & name , InputParameters
parameters) :
GeneralPostprocessor(name , parameters),
_factors(getParam <std::vector <Real > >("factors"))

{
20 std::vector <PostprocessorName > pps_names(getParam <std::vector <PostprocessorName > >("

postprocessors"));

// Create vector of pps
unsigned int _N = pps_names.size();
for (unsigned int i=0; i<_N; ++i)

25 {
if (!hasPostprocessorByName(pps_names[i]))

mooseError("In SumOfPostprocessors , postprocessor with name: "<<pps_names[i]<<" does
not exist");

_postprocessor_values.push_back(&getPostprocessorValueByName(pps_names[i]));
}

179

30

// Create default factors if it doesn’t exist
if (_factors.size() == 0)
{

for (unsigned int i=0; i<_N; ++i)
35 _factors.push_back(1);

}
else if (_factors.size() != _N)
{

mooseError("In SumOfPostprocessors: Size of factors does not match number of
postprocessors.");

40 }
}

Real
45 SumOfPostprocessors::getValue()

{
Real val(0.0);
for (unsigned int i=0; i<_postprocessor_values.size(); ++i)
{

50 val += *_postprocessor_values[i] * _factors[i];
}
return val;

}

180

Listing C.35: buck/include/postprocessors/SwellingPostprocessor.h

1 #ifndef SWELLINGPOSTPROCESSOR_H
#define SWELLINGPOSTPROCESSOR_H

#include "ElementAverageValue.h"
5

class SwellingPostprocessor: public ElementAverageValue
{
public:

SwellingPostprocessor(const std::string & name , InputParameters parameters);
10

protected:
virtual Real computeQpIntegral();

private:
15 VariableValue & _r;

const Real _width;
};

template <>
20 InputParameters validParams <SwellingPostprocessor >();

#endif // SWELLINGPOSTPROCESSOR_H

buck/src/postprocessors/SwellingPostprocessor.C

1 #include "SwellingPostprocessor.h"

template <>
InputParameters validParams <SwellingPostprocessor >()

5 {
InputParameters params = validParams <ElementAverageValue >();

params.addRequiredCoupledVar("r", "radius variable.");
params.addRequiredParam <Real >("width", "width");

10

return params;
}

15 SwellingPostprocessor::SwellingPostprocessor(const std::string & name , InputParameters
parameters) :

ElementAverageValue(name , parameters),
_r(coupledValue("r")),
_width(getParam <Real >("width"))

{
20 }

Real
SwellingPostprocessor::computeQpIntegral()

25 {
Real swell(0);

swell += _u[_qp] * 4.0/3.0 * M_PI * std::pow(_r[_qp], 3.0);

30 return swell;
}

181

Listing C.36: buck/include/utils/BuckUtils.h

1 #ifndef BUCKUTILS_H
#define BUCKUTILS_H

#include "Moose.h"
5 #include "MooseTypes.h"

#include "Conversion.h"
#include "MooseError.h"

namespace Buck
10 {

Real linEst(const Real xLeft , const Real xRight , const Real yLeft , const Real yRight ,
const Real x);

Real dlinEstdLeft(const Real xLeft , const Real xRight , const Real yLeft , const Real
yRight , const Real x);

Real dlinEstdRight(const Real xLeft , const Real xRight , const Real yLeft , const Real
yRight , const Real x);

Real logEst(const Real xLeft , const Real xRight , const Real yLeft , const Real yRight ,
const Real x);

15 Real dlogEstdLeft(const Real xLeft , const Real xRight , const Real yLeft , const Real
yRight , const Real x);

Real dlogEstdRight(const Real xLeft , const Real xRight , const Real yLeft , const Real
yRight , const Real x);

//

20 template <typename T>
inline void iterateAndDisplay(std::string name , std::vector <T> &show , std::string banner

="")
{

// Iterates through vector of values and dispalys them
std::cout << "==========================\n";

25 if (banner.size() > 0)
std::cout << banner << "\n--------------------------\n";

for (unsigned int i=0; i<show.size(); ++i)
std::cout << name << "[" << i << "]: " << show[i] << std::endl;

std::cout << "==========================\n" << std::endl;
30 }

//

inline int numDigits(int x)
35 {

if (x == 0) return 0;
if (x < 0) x *= -1;
if (x < 10) return 1;
if (x < 100) return 2;

40 if (x < 1000) return 3;
if (x < 10000) return 4;
if (x < 100000) return 5;
if (x < 1000000) return 6;

45 mooseError("In BuckUtils: number too large for numDigits");
return -1;

}

template <typename T>
50 inline T log10(T x)

{
if (x <= 0)

mooseError("In BuckUtils: Cannot take log of a negative number or 0.");
return std::log10(x);

55 }

182

inline void getPartition(Real & fk1, Real & fk2, const Real Ng, const Real Nk1, const
Real Nk2)

{
60 fk1 = Ng / Nk1 * (Ng - Nk2) / (Nk1 - Nk2);

fk2 = Ng / Nk2 * (Nk1 - Ng) / (Nk1 - Nk2);
;

}

65 template <typename T1, typename T2>
inline T1 pow(T1 x, T2 p)
{

if (x < 0)
{

70 mooseError("In BuckUtils: Trying to take a power of a negative number with a non-
integar power");

return 0;
}
return std::pow(x,p);

}
75

} // end namspace

80 #endif //BUCKUTILS_H

buck/src/utils/BuckUtils.C

1 #include "BuckUtils.h"

#include "MooseError.h"

5 namespace Buck {

Real linEst(const Real xLeft , const Real xRight , const Real yLeft , const Real yRight ,
const Real x)

{
Real slope = (yRight - yLeft) / (xRight - xLeft);

10 return slope * (x - xLeft) + yLeft;;
}

Real dlinEstdLeft(const Real xLeft , const Real xRight , const Real yLeft , const Real
yRight , const Real x)

{
15 return 1 - (x - xLeft) / (xRight - xLeft);

}

Real dlinEstdRight(const Real xLeft , const Real xRight , const Real yLeft , const Real
yRight , const Real x)

{
20 return (x - xLeft) / (xRight - xLeft);

}

Real logEst(const Real xLeft , const Real xRight , const Real yLeft , const Real yRight ,
const Real x)

{
25 // if (yLeft <= 0 || yRight <= 0)

// mooseError("In BuckUtils: One of the input values is less than 0. Cannont compute
logEst");

if (yLeft <= 0 || yRight <= 0)
return linEst(xLeft , xRight , yLeft , yRight , x);

30 Real power = (x - xLeft) / (xRight - xLeft);
Real frac = yRight / yLeft;
frac = std::pow(frac , power);

183

frac *= yLeft;

35 return frac;
}

Real dlogEstdLeft(const Real xLeft , const Real xRight , const Real yLeft , const Real
yRight , const Real x)

{
40 if (yLeft <= 0 || yRight <= 0)

return dlinEstdLeft(xLeft , xRight , yLeft , yRight , x);
Real power = (x - xLeft) / (xRight - xLeft);
Real frac = yRight / yLeft;
frac = std::pow(frac , power);

45 frac *= (x - xRight) / (xLeft - xRight);

return frac;
}

50 Real dlogEstdRight(const Real xLeft , const Real xRight , const Real yLeft , const Real
yRight , const Real x)

{
if (yLeft <= 0 || yRight <= 0)

return dlinEstdRight(xLeft , xRight , yLeft , yRight , x);
Real power = (x - xRight) / (xRight - xLeft);

55 Real frac = yRight / yLeft;
frac = std::pow(frac , power);
frac *= (x - xLeft) / (xRight - xLeft);

return frac;
60 }

}

	Introduction
	Fast Breeder Reactors
	Fission Gas
	Extending Fuel Lifetime
	EM
	Research Objectives

	Background
	Bubble Behavior
	Atom Density
	Bubble Types
	Diffusivity Dependence
	R/B curves
	Peach Bottom
	MHTGR Model
	EM R/B
	R/B Model Discussion

	Re-solution
	Background
	Theory
	Binary Collision Dynamics
	Central Force Scattering
	Hard-Sphere Potential
	Rutherford Potential
	MAGIC Potential
	Electronic Losses
	Free Flight Path

	Methods
	Applicability of BCA

	Results
	Discussion and Conclusions

	Bubble and Cavity Kinetics
	Background
	Theory
	Birth
	Diffusion
	Nucleation
	Growth
	Bubble Radius
	Re-solution
	Burnup
	Total Number of Gas Atoms
	Swelling
	Assumptions

	Methods
	Coupled Ordinary Differential Equations
	Newton's Method
	GMRES
	JFNK
	Pre-conditioning
	Dampers
	Time Discretization
	MOOSE

	Results
	Simulation Parameters
	Verification
	Optimization
	Bubble Distribution

	Discussion
	Bubble Distribution Peak
	Parametric Studies
	Swelling
	Comparison to Experimental Results
	Bubble Coalescence

	Conclusions

	Conclusions and Future Work
	Future Work

	References
	Appendices

