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With the ever growing concern of cyber-attacks on power systems, the ability to isolate
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failures, is necessary. It is possible to create unique attacks that may leverage network

operating points to maximize damage to the main grid even when the attack is confined

to a microgrid. Upon isolation of a subnetwork, a control technique must be used to

safely reconnect it to the main grid. The ability to optimally and safely reconnect a

portion of the grid is not well understood and, as of now, limited to raw synchronization

between interconnection points. A support vector machine (SVM) leveraging real-time

data from phasor measurement units (PMUs) is proposed to predict in real time whether
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ity. A dynamics simulator fed with pre-acquired system parameters is used to create
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Chapter 1: Introduction

Electric power systems have seen great strides in recent years and will continue to improve

into the future. Due to the sheer importance of energy delivery and consumption, there

will always be a need to improve and maintain the electrical grid. As the world evolves

around the grid, so must the grid itself.

Many changes have occurred from the beginning of electrical power systems and

continue to shape the way energy is handled. Power systems have become more complex

and interconnected as the system has evolved. With this increased complexity, the need

for better control mechanisms arise. Electrical power systems are comprised of many

components meshed together. As a result, problems in one area may end up impacting

components in a nearby area. Potential mishandling or unforeseen contingencies pose

problems for network operators when attempting to mitigate damages after an event

occurs. Certain vulnerabilities in the grid may lay dormant until a certain contingency

exposes an underlying problem creating an increased probability of cascading failures

[59]. These failures are analogous to a domino effect in which one problem may expose

another, toppling down until the entire network collapses.

Many techniques for guarding against blackouts exist, mainly in the form of protective

relaying [63]. Load shedding is a popular method in avoiding potential voltage collapses

throughout a system [11]. Load shedding takes the form of cutting power to key locations

in hopes of preventing voltages from sagging to critical levels. More aggressive techniques

in the form of network partitioning may take place to further defend against system

collapse. In the face of cascading failures, emergency actions may take place to island

the power grid into several self-sufficient networks to avoid a full scale blackout [26].

Emergency islanding was seen in the Europe blackout in 2006 in which a single overhead

line trip caused the continent to divide into three main islands [37].

A popular solution that has been seeing consideration is the idea of a network made

up of many smaller networks. These smaller networks are known as ‘microgrids’ which

are normally composed of load, generation, and energy storage [38]. These microgrids

may operate whilst interconnected to the main grid and have the ability to isolate from



2

it and continue to serve the local load within. It is clear that the ability to island from

the main grid may be necessary in the face of a potential contingency on either the main

grid or microgrid side in order to protect one another. With the ability to isolate oneself

from a problem, a network could continue serving load while recovering from an isolated

contingency. These microgrids would aid in the larger picture of a Smarter Grid which

would employ smart monitoring, control and self-healing technologies [29].

Regardless of a mass roll-out of microgrids, it is apparent that smarter control tech-

niques could be used to prevent catastrophic events, such as the 2003 U.S. blackout [17],

from ever occurring. Even with phasing in microgrids, new control techniques are neces-

sary to aid in coordination of islanding and reconnecting these networks with the main

grid [57]. At the moment, techniques for microgrid reconnection are limited to manual

synchronization of voltage, angle, and frequency between a Point of Common Coupling

(PCC) [64, 4, 58]. These methods assume a microgrid is connected to the main grid

at one location and fail to address the potential inability to directly synchronize said

measurements. Due to necessary synchronization, generation/load may be cut or energy

storage may aid in achieving satisfactory conditions/synchronization [5]. New techniques

may need to address a wider range of measurements from potentially multiple PCCs as

well as sub-optimal reconnection times due to the potential inability to synchronize. Said

measurements may come from different sources, potentially direct device measurement

or high accuracy estimates from state estimation.

State estimators require large amounts of redundant and accurate data [6], fortu-

nately with the availability of faster and larger measurement sets, network controls may

be achievable in real time and help create a more robust network in the future. Meth-

ods of monitoring the electrical grid have sprung up in forms of Supervisory Control

and Data Acquisition (SCADA) and most recently Phasor Measurement Units (PMUs).

PMUs allow time synchronized data at high sample rates aiding in many control methods

and state estimations [15, 16]. The ability to estimate the state of an electrical network

is a powerful tool, allowing correcting actions to take place in response of contingencies

and sub-optimal network operation. With the introduction of near real time monitoring,

automatic control techniques become feasible for networks in a plethora of situations.

These control techniques may prove invaluable in preventing situations ranging from poor

network operation to full scale blackouts. As measurement explosion occurs, it becomes

difficult to develop well understood rules when building intelligent controls. Artificial
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Intelligence (AI) and Machine Learning (ML) may aid in creating these network controls

when faced with non-trivial actions in certain situations. As of now, it is important to

address the fact that full coverage of PMUs may not be feasible in the foreseeable future,

thus placements of said measurements must be carefully considered. Much research ex-

ists in optimizing PMU locations [7, 28, 27, 41, 69], however said optimal locations may

depend on the application stemming from the usage of said measurements.

When leveraging these measurements, the possibility of adversarial manipulation of

said data must be addressed. With PMUs making use of GPS synchronization, an

adversary may steer the original signal away causing inaccurate measurements [32]. The

electrical grid may be improved with faster and more intelligent control, however the

operation of said controls with manipulated measurements may do more harm than good

to the network in certain situations. As a result, pure automated control algorithms may

be limited to mainly guide network operators in their actions. Other techniques may

make use of pre-processing measurement data to decrease the potential of malicious data

entries.

As the electrical power system moves towards a Smarter Grid, it is important to

prepare for the potential changes of grid architecture and operation. With that being

said, utilities are beginning to deploy their own microgrids [48]. With the operation of

both microgrids and subnetworks, it is imperative that adequate control schemes are

developed to aid in a Smarter Grid. The avoidance of both sub-optimal network oper-

ation and failure is imperative. With the availability of smarter monitoring, the ability

to better develop smart controls becomes feasible. The improvements are not without

concerns; it is important that the community addresses the increased attack platforms

available to adversaries on the cyber side as future automated monitoring/controls will

rely heavily on network communications [8, 30, 25].

1.1 Thesis Focus

This research focuses on introducing a new control technique for reconnecting microgrids

and avoiding situations in which a reconnection may create network instability. As

microgrids are phased into the electrical grid, it is important that the ability to stably

reconnect said microgrids exists with high confidence. An automated approach will aid

operators in real time when tasked with deciding when to reconnect a subnetwork.
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Furthermore, security concerns are raised in conjunction with PMUs and smart me-

ters. Impacts of malicious PMU data on the previously proposed control technique for

microgrid reconnection are raised. The consequence of smart meters directly manipu-

lating loads throughout a network is also demonstrated to show how a well designed

attack may cripple a network. Solutions to identifying malicious PMU data entries are

discussed and adopted to further increase the robustness of future control techniques

using said measurements.

A policy based solution for network control is also explored. When attempting to

mitigate system damage in face of failures, discrete protective elements may operate

to save specific components or alleviate network loading. We explore the addition of

network operator actions to aid against a failing network in the form of policy rollout.

With this, a policy (set of actions) can be determined to attempt to save the network in

an online setting.

1.2 Thesis Layout

The research is organized by first discussing the paper: Load Oscillating Smart Meter

Attack in Chapter 2. This paper focuses on the ability to hack into a large number of

smart meters and consequently turn loads on and off creating an oscillatory based attack.

We follow up with Chapter 3 which is composed of the paper: A Learning Scheme for

Microgrid Reconnection. This demonstrates a potential control scheme that allows the

reconnection of a microgrid in the face of sub-optimal conditions and potentially adver-

sarial PMU data. Chapter 4 further explores impacts of adversarial PMU measurements

and methods of identifying malicious data. A policy based approach to preventing black-

outs is discussed in Chapter 5. We conclude the thesis with the implications of our work

and potential future work.
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Chapter 2: Load Oscillating Smart Meter Attack

The following chapter is composed of the published paper [35]. This focuses on the

impacts of cyber based attacks on smart meters within a network.

2.1 Abstract

This paper investigates the potential impacts of load oscillating attacks in a microgrid

to the stability of the main power grid. The adversary is assumed to be able to control

switches within compromised smart meters and thus is able to dynamically connect or

disconnect the corresponding loads within the microgrid. Using the commercial PSS/e

time-domain simulator with the IEEE Reliability Test System (RTS-96), we demonstrate

the impacts of attacks cycling the total load of the microgrid. Cycling attacks with

different load oscillation frequencies and magnitudes are considered. We found that

for certain oscillation frequencies, oscillating 30 percent of the total microgrid load can

significantly harm the main grid stability.

2.2 Introduction

The power network is trending towards a smarter and more intelligent entity due to

developments in smart grid over the past several years. These advancements occur at

the transmission, distribution, and consumer levels. Distribution networks have seen

a multitude of developments including communication system upgrades, automation of

distribution elements, load control, and Advanced Metering Infrastructure (AMI) [1].

With such improvements, the potential to dynamically control and protect distributed

networks becomes more feasible. Unfortunately with the broadening of said improve-

ments, new attack surfaces are introduced to the power grid [47]. For instance, attackers

may intrude into AMI and manipulate the data or inject false control data in order to re-

motely control switches. This paper focuses on studying whether such attacks launched

at a distribution network can affect the main grid stability.
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Monitoring of the distribution level has been difficult in the past, but with the intro-

duction of smart meters in AMI, the ability to dynamically track load details becomes

possible. Smart meters not only provide power system operators with real-time infor-

mation of individual customer load (e.g., single house load) but also allow operators to

remotely control switches in order to connect or disconnect individual loads [56]. Such

two-way communication creates a new security concern because compromised smart me-

ters (or compromised channels between smart meters and the operators) may not only

cause the leak of measurements, but also allow the adversary to connect or disconnect

the corresponding customer loads [2].

There have been reported successful hacking of smart meters allowing one to sniff

data or even inject commands into the device. The ability to control the devices and

shut down power is a real possibility and may have harmful outcomes pertaining to wide

grid stability [30]. The diverse ways to hack smart meters could be as simple as reverse

engineering one or using software radio programmed to mimic communication devices

to learn how to communicate with the meter. Compromised meters could be used to

spread malware to other smart meters allowing easier accessibility for smart meter based

attacks for adversaries [25]. The spreading of software with malicious intent has already

been tested and successfully carried out by researchers in which a worm was created and

traveled through other meters [42]. As a result, it is possible that a few compromised

smart meters could lead to a large network of compromised meters.

Such security risks of meters are becoming more concerning due to the deployment

of such systems outpacing security efforts [43]. Such deployments stem from sources

such as the Smart Grid Recovery Act in which $4.5 billion dollars were directed toward

modernizing the power grid. These changes are occurring very quickly. In 2014, the

U.S. had 58,545,938 AMI installations with 88% being residential customer installations

[3]. It is expected that the number of smart meters installed worldwide will grow from

313 million, in 2013, to nearly 1.1 billion in 2022 [53]. With the rapid growth of such

network based systems and lack of research on such security risks, major consequences

may occur from compromised systems.

The immediate thought of smart meter attacks would seem to be price fraud in which

meters are tampered with allowing setting changes. In 2009 many reports of such fraud

were reported in Puerto Rico where utility employees changed meter settings such that

customers were charged less [25]. Main security research in regards to smart meters have
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focused on privacy or fraud, however more intelligent based attacks could create more

serious consequences, e.g., disrupting control of power grid [8]. Other attacks may rely

on oscillating portions of the grid to disrupt power delivery. Such attacks have been

developed and tested on small test cases as seen in [39], [40]. These coordinated attacks

may have significant impact on grid stability depending on the source of said switching.

In this paper, we focus on attacks that exploit compromised smart meters in order

to introduce load oscillation within a single microgrid. In general, perturbation at a

distribution level is considered to have a negligible impact and is ignored in the main

grid control. The potential impacts of elaborately designed perturbation at a distribution

level on the main grid stability have not been well understood. This paper aims to fill

this gap by providing case studies with load oscillating attacks.

2.3 Attack Model

In this paper, we consider an adversary who compromised a subset of smart meters within

a microgrid and is capable of controlling switches associated with them. A straightfor-

ward attack could involve a one time dropping of the entire adversarial load, however

this may not capture the worst case result as the network may recover from the single

instance as opposed to a more intelligent attack.

With a more intricate attack, an adversary may choose to cycle loads to confuse the

system and create potential problems with protective device operation. In this case, the

cycling would pertain to actual load manipulation, not just the meter readings. With a

cycling attack, the adversary may control loads and switch them on and off at a frequency

potentially harmful to the network. With such an attack, network convergence issues

may result from component stress or protective schemes occurring to aid in the current

cycled state whilst being detrimental to the next cycled state. Consistent cycling may

result in compounded consequences leading to instability. As a result, this attack would

change the actual operating point of the network.

We modeled such an attack in a microgrid setting. With the RTS-96 case [67], we

assumed the third zone to be our microgrid. We set up an attack model by choosing

all loads in the microgrid to be susceptible to attacks. All initial load models on buses

are split into 10 individual feeder representations with identical values. We choose the

amount of load the microgrid may cycle and pick adversarial feeders for each bus based
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on this information. For example, if we allow 50 % of the total microgrid load to be

cycled, we represent this by cycling 5 adversarial feeders at each bus in the microgrid.

The adversarial feeders for each bus are chosen at random and independently to ensure

diversity. We perform attacks that vary in the set of adversarial feeders, the cycling

frequency, and the attack duration. This attack is performed when the microgrid is

interconnected to the main grid to determine the impact of load oscillation within the

microgrid on the main grid.
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Figure 2.1: Example microgrid attack cycling half of the load

An example attack on the microgrid is shown in Figure 2.1. This attack controls 50

% of the microgrid load and cycles them at a frequency of 0.05 Hz. The attack lasts

for 100 seconds with loads oscillating from 50 % to 100 % of the microgrid load. It is

important to note that the absolute total load of the grid may decrease as the attack

goes on because some uncompromised feeders can be disconnected due the protective

scheme triggered by load oscillation.

For clarity, an example is described and the expected outcomes are discussed. We

use the attack seen in Figure 2.1. The network begins with the main grid and microgrid
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interconnected and operating at the precomputed steady state. At 5 seconds the adver-

sarial loads are switched off in the microgrid leading to only 50 % of the microgrid load

remaining. The network will then be exposed to transients and attempt to converge to a

new stable point of operation. Relays will operate if their thresholds are exceeded for a

pre-set time. These relays are discussed in more detail in Section 3. Relay operation may

result in load shedding, line tripping, or machine tripping. The attack will then restore

the adversarial loads at 15 seconds. It is important to note that the load shedding from

the protection scheme does not discern between adversarial and non-adversarial feeders.

The load shedding may shed adversarial load even when it has been switched off. As a

result, when an adversarial load is restored, it may no longer be served. The attack may

then decrease in magnitude as adversarial load is shed throughout the attack period.

2.4 Methodology

A commercial dynamics simulator, PSS/e, was used to conduct experiments on the

RTS-96 case. Due to the RTS-96 case being a set of three identical networks with two

extra buses for interconnection of said zones, we selected the third zone to represent our

makeshift microgrid. In order to adequately represent the the individual loads and the

associated feeders at a distribution level, we broke each load model presented in the test

case into 10 identical individual loads, each of which is connected to the substation by a

different feeder. An example would be a 100 MW, 10 Mvar load on a certain bus. The

load is broken into ten loads each with values of 10 MW and 1 Mvar.

In order to represent adequate cycling behavior, we allowed feeders to be either

adversarial or non-adversarial. We first select the amount of load we wish to cycle in

the microgrid, we then use this to determine how many adversarial feeders exist per bus.

The representation was as follows: If we were to cycle load from between 40% and 100%

of the total load, each bus in the microgrid would have 4 non-adversarial feeders and 6

adversarial feeders. It was important to create diversity throughout the case, thus we

chose the adversarial feeders at each bus uniformly at random and independently. For

each amount of load we cycle, we choose the adversaries at each bus as we stated before.

For simulations using the same amount of load cycling, we use the same distribution of

adversaries throughout the microgrid; this is to ensure that the same amount of load

being cycled at different frequencies will result in different behavior due to this change
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in frequency, not due to the change of adversarial locations.

Dynamics were implemented in the case by using salient generator models along with

the IEEE type 1 exciter and IEEE type 2 governor. Protective relays were also built

for the case which included overcurrent line relays, undervoltage + underfrequency bus

relays, and underfrequency machine relays. The initial pickup points for overcurrent line

relays were synthesized by running the steady state solution and using the line currents

at hand. The relay pickup time was chosen to be 140 % of the operating current in the

steady state with a zero reset time of 5 seconds. Line relays would trip the associated

branches if they timed out during operation. Table 2.1 shows the other setpoints for the

line relays.

Table 2.1: Different operating points for overcurrent relays

Percent of Pickup Trip Time (s)

Point 1 100 % 5

Point 2 120 % 0.2

Point 3 140 % 0.15

Point 4 160 % 0.1

Point 5 180 % 0.05

Point 6 200 % 0

Undervoltage and underfrequency load shedding protection was produced by placing

relays at each feeder previously created. For the ten feeders per bus, five different

setpoints were created to represent 20 % load shedding at a bus per setpoint; these are

shown below in Table 2.2. In order to create variability in load sheds pertaining to

frequency, we introduced four different types of setpoints that represent time until load

shed. The time until operation for frequency points is a set value divided by a random

variable, x, that can take on a value of 1, 2, 3, or 4. The relays for the ten feeders

in the same bus shared the same value of x. This allows more diversity across bus

relay configuration ensuring not all loads are shed at once due to common frequencies

in smaller islands. Voltage points do not need such variability as their voltages differ

enough throughout the network.

A similar technique for machine relaying was used to ensure diverse frequency trips.

We attach three underfrequency trip points for each machine in the case and introduce
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Table 2.2: Undervoltage/Underfrequency load shedding relays operating points

Volt Pickup Trip (s) Freq Pickup (Hz) Trip (s)

Pt 1 0.88 P.U. 3 59 4/x

Pt 2 0.85 P.U. 1 58.5 2/x

Pt 3 0.80 P.U. 0.5 58 1/x

Pt 4 0.75 P.U. 0.25 57.5 0.5/x

Pt 5 0.70 P.U. 0.1 57 0.25/x

random time trips as shown in Table 2.3. We use a random variable, y, that can take

on values of 1, 2, or 3.

Table 2.3: Points of operation for generator protection relays

Frequency Pickup (Hz) Time Until Trip (s)

Point 1 58.5 y

Point 2 57.5 y/2

Point 3 56 y/4

As stated earlier, a feeder can be adversarial or not. The protective scheme is setup

such that adversarial loads may be shed even when cycled off. This adequately models

an operator shedding a feeder during protective actions even if the feeder has been

completely shut off by an adversary. We assume that the operator does not know the

exact distribution of load on the bus, thus feeders are shed according the the predesigned

protection schemes.

2.5 Results

We performed tests on the RTS-96 case by allowing all buses in the microgrid to have a

number of adversarial feeders. We tested on cases that cycled 30 %, 50 %, and 80 % of

the microgrid load. We also cycled each attack at frequencies of 0.05 Hz, 0.1 Hz, 0.5 Hz,

and 1 Hz. Attacks lasted for 100 seconds with the simulation terminating 75 seconds

after the attacks end.

Interestingly, we observed that the oscillation of more load in the microgrid did not
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Table 2.4: Remaining load, machines, branches after an attack, and amount of buses lost
Attack Active Load

(MW)
Reactive Load
(MVAR)

Machines Branches Lost
buses

Normal Operation 9037 1737 99 120 0
80 % at 0.05 Hz 4201 845 57 49 38
80 % at 0.1 Hz 4745 901 66 62 26
80 % at 0.5 Hz 6220 1121 83 74 14
80 % at 1 Hz 6884 1259 90 77 13
50 % at 0.05 Hz 6454 1174 90 83 12
50 % at 0.1 Hz 6381 1157 89 75 13
50 % at 0.5 Hz 7097 1302 90 79 13
50 % at 1 Hz 7052 1299 90 76 13
30 % at 0.05 Hz 5685 1016 82 59 27
30 % at 0.1 Hz 3953 793 55 45 41
30 % at 0.5 Hz 6509 1260 86 86 5
30 % at 1 Hz 6741 1294 91 80 4

always correspond to the worst outcome; in fact we found that oscillating from 70 % to

100 % of the loads (i.e., cycling 30% of the microgrid load) at 0.1 Hz in the microgrid

caused a major loss in load, machines, buses and branches. Table 2.4 shows the remaining

load after attacks lasted for 100 seconds.

The loads remaining are those that exist at stable islands after an attack occurs.

Unstable islands are either directly disconnected due to protection or not counted as

served if the island has not converged upon termination of the case. Similar behavior

can be seen with the remaining machines after attacks shown by Table 2.4.

Normally high frequency-oscillation of feeders did not adversely effect machine trip-

ping too much. We saw that low amplitude oscillation did not always result in less

machine tripping. The cycling of half the loads seems to result in fewer machines trip-

ping than cycling either 80 % or 30 %. We also observe a similar story for the remaining

branches/transformers after each attack.

In Table 2.4, we track remaining load after an attack along with machines (gen-

eration), and branches (in service two winding transformers and bus tie lines). The

remaining branches after attacks seem highly correlated with the remaining machines

in the case. We see that the cycling of 50 % of microgrid loads results in less ma-

chine trips on average through differing frequency attacks. The remaining branches and
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transformers only represent ones that exist in stable islands upon completion of a test

case. Normally high-frequency load oscillation caused only a small fraction of machines

and branches to trip, however lower frequency coupled with high or low load oscillation

removed a large portion of branches and transformers in the working case.

We also observe how many buses were lost after an attack ended in Table 2.4. The

number of lost buses came from two different scenarios. The first cause was due to

protective line tripping which isolated buses into separate islands. If an island were to

lose all machines, the buses are set out of service due to the inability to serve as an active

portion of the case. The other cause is due to islanding, however the island becomes

unstable before losing all generation. If an island becomes unstable and reaches a point

in which it cannot converge, the entire island is set out of service. The least number

of buses that are disconnected come from a high frequency-oscillation, low amplitude-

oscillation attack. We observe cycling half of the load in the microgrid seems to have

less variability in terms of all parameters shown in Table 2.4 with respect to frequency,

whilst frequency has a big impact on cycling 30% and 80% of the load. The worst case

scenario again results from oscillating 30 % of the load at a frequency of 0.1 Hz.

One major result that was not immediately expected was the large impact small os-

cillations of load could cause as opposed to medium oscillations. The worst performance

outcome was found when cycling only 30 % of the load at 0.1 Hz. We found that low

amplitude oscillation allowed the perturbation to be felt by a large portion of the grid

before protective islanding isolated the attack. As a result, the low oscillating attack at

0.1 Hz was able to cause enough distortion to cause a large island to become unstable

before it broke into protected regions. In case of high-amplitude oscillation attack, the

protective load shedding scheme was able to isolate the attacked region in the microgrid,

however the microgrid and connected buses normally did not survive due to such an

aggressive attack. The moderate-amplitude cycled load attack normally caused protec-

tion to isolate the fault, but some portions of the attacked microgrid still survived due

to less drastic cycling. It is important to note that different protection schemes may

result in differing behavior among the explored attack scenarios. The assumed testing

did not account for an adversary knowing the protective layout of the system; as a result,

more sophisticated attacks may cause further damage to the grid (in particular bypassing

known protective operations isolating the attack).
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2.6 Conclusion

This paper investigated potential impacts of cyber attacks that exploit compromised

smart meters to oscillate the total load of a microgrid. We found that an intelligent

adversary could produce a small-amplitude load oscillation at a problematic frequency

that can distort the grid and cause protective measures to take actions resulting in many

losses and islanding. With presented material with respect to smart meter security

exploitation, possible attacks on such systems could create harmful consequences that

need to be addressed. No countermeasures to such attacks were explored in this paper,

but remain a focal point for future research.
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Chapter 3: A Learning Scheme for Microgrid Reconnection

The following content in this chapter is pending publication in IEEE Transactions on

Power Systems. It describes a method for finding stable points in which a sub-networks

may reconnect to a main grid. The authors consist of: Carter Lassetter, Eduardo Cotilla-

Sanchez, and Jinsub Kim.

3.1 Abstract

This paper introduces a potential learning scheme that can dynamically predict the sta-

bility of the reconnection of sub-networks to a main grid. As the future electrical power

systems tend towards smarter and greener technology, the deployment of self sufficient

networks, or microgrids, becomes more likely. Microgrids may operate on their own or

synchronized with the main grid, thus control methods need to take into account island-

ing and reconnecting of said networks. The ability to optimally and safely reconnect a

portion of the grid is not well understood and, as of now, limited to raw synchronization

between interconnection points. A support vector machine (SVM) leveraging real-time

data from phasor measurement units (PMUs) is proposed to predict in real time whether

the reconnection of a sub-network to the main grid would lead to stability or instabil-

ity. A dynamics simulator fed with pre-acquired system parameters is used to create

training data for the SVM in various operating states. The classifier was tested on a

variety of cases and operating points to ensure diversity. Accuracies of approximately

85% were observed throughout most conditions when making dynamic predictions of a

given network.

3.2 Introduction

As we make strides towards a smarter power system, it is important to explore new tech-

niques and innovations to fully capture the potential of such a dynamic entity. Many large

blackout events, such as the blackout of 2003, could have been prevented with smarter
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controls and better monitoring [18]. Phasor measurement units, or PMUs, are one such

breakthrough that will allow progress to be made in both monitoring and implementing

control to the system [51]. PMUs allow for direct measurement of bus voltages and an-

gles at high sample rates which makes dynamic state estimation more feasible [15, 16].

With the use of PMUs, it is possible to improve upon current state estimation [52] and

potentially open up new ways to control the grid. The addition of control techniques

and dynamic monitoring will be important as we begin to integrate newer solutions,

such as microgrids, into the power network. With these advanced monitoring devices,

microgrids become more feasible due to the potential for real-time monitoring schemes.

The integration of microgrids bring many benefits such as the ability to operate while

islanded as well as interconnected with the main grid; they provide a smooth integration

for renewable energy sources that match local demand. Unfortunately the implemen-

tation of microgrids is still challenging due to lacking experience with the behavior of

control schemes during off-nominal operation.

Currently, microgrids are being phased in slowly due in part to the difficulty of oper-

ating subnetworks independently as well as determining when they can be reconnected

to the main grid. Upon reconnection of an islanded sub-network to the main grid, insta-

bility can cause damage on both ends. It is important to track instabilities on both the

microgrid and main grid upon reconnection to accurately depict the outcome of recon-

nection. Works in the literature have focused on the potential of reconnecting microgrids

to the main grid, in particular aiming at synchronizing the buses at points of intercon-

nect with respects to their voltages, frequencies, and angles [64, 4, 58]. Effort has been

directed at creating control schemes to minimize power flow at the point of common

coupling (PCC) using direct machine control, load shedding, as well as energy storage,

to aid in smooth reconnection [34, 10].

In some cases we may need to look at larger microgrids or subnetworks in which

multiple PCCs exist. In such scenarios, it becomes much more difficult to implement a

control scheme that satisfies good reconnection tolerances in regards to minimizing bus

frequency, angle, and voltage differences at each PCC. In addition to the possibility of

multiple PCCs, it is possible that direct manipulation of the system becomes limited,

compromised, or unsupported with respect to synchronization. In order to address these

shortcomings, we implement an algorithm that dynamically tracks and makes predic-

tions based on the system states, providing real-time stability information of potential
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reconnections.

Due to the complexity of the power grid, it is difficult to come up with a verba-

tim standard depicting the potential stability after reconnection of a subnetwork. With

advances in the artificial intelligence community, we can make use of machine learning

algorithms in order to explore vast combinations of sensor inputs, states, and control

actions. This can be done in a similar fashion to successful techniques applied to other

power system problems as seen in the research literature [19, 33, 54, 66]. In this paper

we propose to use a machine learning algorithm, specifically a Support Vector Machine,

to predict safe times to reconnect a portion of a grid. The Support Vector Machines

allow one to build a classifier predicated upon training data by determining a linear

separator in a specific feature dimension [20]. As seen in [70] we can create a knowledge

base consisting of training and testing data using an appropriate power system model

and simulator. Diversity of data points in the knowledge base can be achieved by incor-

porating load changes allowing multiple operating points [70, 54]. Simulators have been

used prevalently to create data and work has been performed to show the agreement

between different simulators [61]. As a result, we will assume the creation of data for

our technique is adequate upon diligent modeling.

In the proposed machine learning approach, PMU measurements are used as input

features that will be used by a learning algorithm to predict which class the features

belong to, either stable or unstable reconnection. As of now, PMUs are not as prevalent

in the system to assume full state observability in real time, thus it is important to

take into consideration limited PMUs when implementing techniques [71]. This paper

borrows the concept of electrical distance which suggests voltage changes propagate

adhering to closeness of buses [22, 23]. As a result, without getting into the PMU

placement optimization problem, this paper assumes that PMUs were located nearby

the PCCs.

The proposed method leverages real-time PMU data to predict system stability upon

reconnection. PMUs make use of GPS synchronization [32] which can create an attack

platform for adversaries by changing or shifting the time synchronization. Use of erro-

neous or compromised PMU data could lead to incorrect predictions that would degrade

system stability due to hidden failures that remain dormant until triggered by contin-

gencies [63]. We demonstrate a potential framework that can make accurate predictions

in face of partially compromised PMU data.
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It is important to highlight the reasoning behind introducing a learning based ap-

proach to the problem as previous methods dealing with synchronization exist. By

leveraging techniques similar to a synchro-check relay [19, 33, 54, 66], it is possible to

become confident of a stable reconnect for systems even in the dynamic domain. Said

technique focuses on limiting key measurement differences in voltages, angles, and fre-

quencies between a select PCC in a connecting network. However, it is difficult to set

proper thresholds on the voltage, angle, and frequency differences, below which we allow

reconnection. Too low thresholds may cause many opportunities for stable reconnection

missed, while too high thresholds may lead to unstable reconnection. Further, thresh-

olds for different relays may have to be set differently as sensitivity changes for different

locations. In addition, such a reconnection strategy limits the reconnection decision for

certain tie line to depend only on the tie line measurements thereby rendering the decision

possibly suboptimal. The proposed learning scheme provides an integrated framework

that takes into account all the aforementioned challenges including the following:

• The challenge of setting up proper decision regions is naturally handled in the

training phase of the learning scheme.

• Our prediction of stable reconnection timing for certain tie line relies on data-

stream from diverse PMUs, not limited to those associated with a single tie line.

• The learning scheme improves upon the synchro-check relay scheme in a sense that

the possible decision rules of synchro-check relays are included in the collection of

decision rules to be considered by our learning scheme, for most choices of learning

methods.

The proposed technique is not without its flaws. While the learner does a good job

improving on being less restrictive on PMU locations and can provide a better confidence

interval for stability, it is associated with required computation time. The learner needs

to be fed unique data based on the network at hand in order to see improvements on the

previous methods. Using the learner in a real-time environment is trivial, however the

actual training of said learner needs careful consideration along with a unique skill-set. If

the learner is correctly set up it could become a potentially powerful tool for determining

real-time stability of network reconnection.
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The contributions of this paper are as follows. We propose a machine learning frame-

work to learn a classifier that can predict the stability of potential reconnections of a

sub-network regardless of the number of PCCs. The proposed scheme is evaluated us-

ing the RTS-96 case and the Poland case and demonstrates high classification accuracy,

around 90%. We demonstrate the scalability [36] of the proposed scheme using the

Poland case; the amount of required computation scales reasonably as the network size

grows. Lastly, we present that the proposed scheme can succeed for a large-scale grid

even when only a few PMUs are available for use. This implies that the proposed scheme

is feasible even when the number of trustworthy PMUs is quite limited.

The remainder of this paper is organized as follows. Section II gives a brief back-

ground of Support Vector Machines (SVM). Section III covers the methodology to create

a power system classifier. Section IV discusses results from experiments with the pro-

posed algorithm. Section V provides the conclusions.

3.3 Problem Formulation and Preliminaries

In this section, we formulate stability prediction of microgrid reconnection as a machine

learning problem and provide the preliminaries describing the SVM. While we describe

the problem formulation in the context of SVM, the proposed framework is applicable

to generic machine learning approaches.

We propose to leverage SVM to predict stable reconnection timings of a microgrid

based on real-time PMU measurements. Conceptually, the SVMs transform an input

feature vector into a higher-dimensional space and applies a linear classification rule to

predict its class label [12].

In our context, real-time measurements collected from PMUs at certain time point

form an input feature vector. The input vector is associated with a binary class label,

either 1 or −1, depending on whether reconnection of the microgrid at the current time

would lead to a stable operating point or an unstable point, respectively. We assume

that there exists an unknown conditional probability distribution that characterizes the

conditional distribution of the true class label given an input vector. Under this assump-

tion, we will use the SVM framework to learn a classifier that maps input vectors to true

class labels with high probability. The learned classifier can be used in practice to predict

the consequence of a reconnection when certain PMU measurements are observed.
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In order to learn a classifier, we need training data consisting of a number of input

vectors x1, ..., xn, and their associated class labels y1, ..., yn ∈ {−1, 1}. The methodology

to obtain the training data will be explained in Section 3.4. Given a set of training data,

the SVM uses a basis function, denoted by φ(·), to map input vectors into a higher-

dimensional space in order to enhance linear separability. The SVM takes these feature

vectors as inputs with their corresponding labels and is trained with the information.

Specifically, a separating affine hyperplane is obtained by solving the following primal

problem:

min
w,b,ζ

1

2
wTw + C

n∑
i=1

ζi (3.1)

subject to

yi(w
Tφ(xi) + b) ≥ 1− ζi, ζi ≥ 0, i = 1, 2, ..., n (3.2)

where the regularization term with the parameter C penalizes the training data points

that are on the wrong side of the margin. The solutions w∗ and b∗ to the above opti-

mization define the SVM classifier as follows:

f(x) = sign[(w∗Tφ(x) + b∗)] (3.3)

where the offset b∗ is derived from the dual solutions[12].

The example in Fig. 3.1 depicts a classifier built for prediction of two classes. In

this example, the squares represent one class and the circles the other. The separating

hyperplane is found by solving the optimization problem (3.1), with margins existing for

1

2

Separating Hyperplane

Class 1

Class 2

Error Margin

Figure 3.1: Example representation of decision and error boundaries for a Support Vector
Machine
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each class. The support vectors, seen in bold, are examples closest to the margins. A

solution may not always have classes completely separated; the penalty will be associated

to the distance past the margin, ζi, and the weight, C.

In the case that the dimension of φ(xi) is significantly higher than that of xi, solving

the dual of (3.1) can lead to an alternative expression of the classifier that is substantially

easier to compute. The dual of (3.1) is:

min
α

1

2
αTQα− eTα (3.4)

subject to

yTα = 0, 0 ≤ αi ≤ C, i = 1, 2, ..., n (3.5)

where αi denotes the Lagrangian multiplier for the ith constraint of (3.5), and e denotes

a vector of all ones. In the dual formulation, the basis function φ(·) is integrated into

the matrix Q by the use of a kernel function K(xi, xj) , φ(xi)
Tφ(xj). Specifically, the

(i, j) entry of Q is equivalent to yiyjK(xi, xj). Many kernels exist, but the most relevant

one used in this paper is the Radial Basis Function (RBF), or Gaussian, kernel shown

below:

K(xi, xj) = e(−γ|xi−xj |
2) (3.6)

where γ is the hyperparameter to be optimized via cross-validation. The solutions of the

dual problem provide an alternative expression of the classifier (3.3):

f(x) = sign{
n∑
i=1

(αiyiK(x, xi) + b)} (3.7)

Using the above expression has computational advantages over the use of (3.3), be-

cause K(x, xi) is in general easier to compute than w∗Tφ(xi). This is true for kernels

with the dimension of φ(x) being significantly larger than x such as the RBF kernel.

Further, the majority of weights, αi, will be zero; only the support vectors will have

nonzero weights.
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3.4 Training the SVM using a Dynamic Simulator

In this section, we present the machine learning framework for predicting stable recon-

nection timings of a microgrid as well as the detailed procedure to train the classifier

with a power system dynamic simulator. As suggested earlier, we train the SVM to pre-

dict the stability of reconnection for a microgrid when certain PMU measurements are

observed. In order to train the SVM, we need to first acquire a set of training examples,

each of which is a pair of an input vector (i.e., a vector of PMU measurements) and

the true class label (i.e., stability of reconnection when the input vector is observed as

PMU measurements). Unfortunately, it is difficult in practice to obtain sufficient train-

ing data from realistically sized power systems as obtaining a pair requires disconnecting

and reconnecting the microgrid. Thus, we resort to leveraging a power system dynamic

simulator to create training data by running a variety of scenarios for the target system.

3.4.1 Overview

Fig. 3.2 illustrates the procedure that we follow for the experiments in this paper. We

begin this procedure by breaking up a test case into different operating points. Each

of these operating points are used to create different initial conditions unique to their

operating point. These new initial conditions are built by randomly scaling the load

throughout the network. We perform dynamic simulations consisting of islanding and

reconnecting the microgrid to create our synthesized PMU measurements and determine

the stabiliy of said reconnection. After gathering the data, we break our data into

training and testing sets which are used to train the classifier. We then use the classifier

to monitor PMU streams and predict the potential stability of a microgrid reconnection.

We chose the 73-bus version of the IEEE Reliability Test System (RTS-96) [68] and

the 2383-bus version of the Poland Test Case as test cases for evaluation of our approach

as they are well tested in the community [72]. The RTS-96 provides a convenient topology

to implement and test islanding, whereas Poland serves as a larger network to more

closely model a practical system. For the RTS-96 and Poland case we used the procedure

described below to create several operating points. The Poland test case used a modified

winter peak snapshot to ensure diverse data could be gathered during the creation of

different initial conditions.
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Cross-
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Figure 3.2: High level overview of the process to create a classifier

We began with a specific network and created different operating points by uniformly

changing load locations throughout the network. Loads were also uniformly scaled at

random when building these new operating points. We then simulate the dynamics of the

system with Siemens PTI PSS/e and perform the islanding and reconnection scenarios.

Upon completion of simulations, bus voltages and angles before the reconnection of

islands are used as features and the outcome of the case (stable or unstable) are used

to label the set. The raw data produced are separated into training and testing sets in

which cross-validation is performed exclusively on the training set to build an adequate
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classifier.

3.4.2 Diversifying Operating Points

It is important to take into account test cases that can reproduce various operating points

depending upon, for example, time of the day, day of the week, or season [55]. In this

way, the classifier will be useful for a diverse set of network states. We created different

operating points by shuffling and scaling loads at random throughout the system. Upon

obtaining the new demand distribution, we ran a steady state solution of the case and

considered it stable and usable if the voltage magnitude set was between 0.9 p.u. and

1.1 p.u. for the RTS-96 case or 0.8 p.u. and 1.1 p.u. for the Poland case. For each

operating point we created different initial conditions by changing active and reactive

loading on each bus, according to Eqs. (3.8) and (3.9):

Pnew = Pold + θPold, θ ∼ U(−a, b) (3.8)

Qnew = Qold + γQold, γ ∼ U(−a, b) (3.9)

where Pnew and Pold denote the new system active power and original system active

power, respectively; Qnew and Qold denote the new system reactive power and original

system reactive power respectively. For scaling, θ and γ are independent and identically

distributed random variables that are uniformly distributed in [−a, b].

3.4.3 Dynamic Simulation

We are interested in the interaction between the sub-network and main grid upon recon-

nection. In order to observe the main reconnection mechanisms, we simulate the power

system dynamics with a time-domain simulator software (Siemens PTI PSS/e) along with

a custom built command line interface (Python API1). We first used a research-grade

dynamic simulator alongside PSS/e to cross-validate and tune the dynamic machine

models [49, 62]. The dynamic models selected consist of salient machines for the gener-

ators, IEEE Type 1 exciters, and IEEE Type 2 governors. We initiate each simulation

run in PSS/e with a flat start check in order to ensure the dynamic models do not alter

1Application Program Interface
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the steady state solution and also that no protective elements are operating during the

steady state. We added relay models and protection schemes to our test cases, including

overcurrent, undervoltage, and underfrequency relays. The overcurrent relays are set up

using the line limit standard data that come with the selected test cases. We configured

load-shedding, line-tripping, and generator disconnection actions for undervoltage and

underfrequency situations. During the dynamic simulation we monitor bus voltages,

angles, and frequencies.

For each initial condition obtained for a given operating point of the original test

case we run a dynamic simulation. After the initialization period we proceed to island a

pre-defined portion of the test case in which the two isolated systems run independently

for a certain amount of time. The sub-network is then reconnected with the main grid

and continues to run until the end of our simulation time.

3.4.4 Data Generation and Labeling

The proposed learning scheme necessitates the collection of training examples which

will be used for training an SVM classifier. We exploit the aforementioned dynamics

simulation module and various initial conditions to create diverse training examples. As

stated earlier we create different operating points for our test cases, and we then create

new initial conditions for each operating point for diversity. Each initial condition case

will give us a single feature vector along with a single label. The feature vector for each

case consists of the bus voltages and angles measured by PMUs at the time point before

reconnection. Angles were unwrapped to the first turn, between -180 and 180 degrees.

We assume that the PMU set is fixed for clarity.

The label for each initial condition case represents whether the case became stable

or unstable upon reconnection of the sub-network to the main grid. Labeling was done

based on the PSS/e convergence monitor which would alert the Python interface if

the network did not converge at any point in time. If the API observes the ‘network

not converged’ message, we assume immediately that the PSS/e was unable to solve

the differential-algebraic system of equations and label the case unstable. We added

additional convergence rules during labeling which allowed more cases to be labeled

unstable if voltage collapses, there are very large oscillations, divergence or intolerable

frequency spikes occurred. If the case satisfied the rules of stability we provided, it
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was labeled as stable. We store all case data in the form of their feature vectors and

associated class labels.

3.4.5 Test Scenarios

We split the full data set into two subsets; one representing the training set to create the

classifier, and the other one to test the accuracy of the classifier. Three main methods

of creating the training and testing set were used and described below.

3.4.5.1 Single Operating Point Case

To assess the baseline capability of the classifier we start with the simplest case by assum-

ing our classifier is trained and tested on examples originating from a single operating

point. We create the training and testing sets with a single operating point. The dif-

ferent initial conditions from said operating point will be the only examples populating

the training and testing sets. The created sets will be used independently from other

operating points. This test proves the ability for the classifier to make predictions with

PMU data streams coming from a well known network operating point.

3.4.5.2 Multiple Operating Points Case

To build on the previous test, we use multiple operating point to form training/testing

sets for our classifier. We previously demonstrate a method to test individual operating

points, however a more universal classifier would leverage all available data from different

operating points. This test allows a more generalized baseline accuracy to be derived.

This can be achieved by mixing the initial conditions from all available operating points

from the full data set. We create the training set by randomly selecting a subset of the

mixed data. The remaining unselected data is placed into the testing set. This suggests

that the classifier may be trained on a set consisting of examples from different operating

points and make predictions on different examples from the same operating points.
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3.4.5.3 Unseen Operating Points Case

It is important to assess the ability of the classifier in the face of unknown operating

points. The baseline accuracies to be produced from the previous test scenarios implies

predictions would rely on the network having a finite set of most common operating

points. It can be assumed that larger networks would create an exponential number of

potential stable operating points. It is necessary to show that large networks could adopt

the proposed technique by populating the testing set with examples from unknown oper-

ating points unseen in the training set. Unlike the last test scenario, we keep the different

initial condition data from each operating point separate. We create a random subset of

operating points that will be used to populate the training set with their different initial

conditions. The initial conditions created from the remaining operating points are then

put into the testing set. The exclusion of certain operating points from the training

set ensures that the classifier must make predictions on a testing set that contains only

examples from unobserved operating points. The unknown operating points represent

potential distributions of load in the network that are unaccounted for in training, but

may still exist at any given time.

3.4.6 Classifier

Given the prepared training and testing sets, the next step is to define and build the

classifier. As stated earlier, it may be necessary to remap the features to another dimen-

sion in which classification is easier, this leads us to choose from different kernels and

hyperparameters. SVM is very sensitive to the kernel and hyperparameters chosen, thus

it is important to setup the classifier in a way that maximizes our prediction accuracy.

In order to find optimal kernel and hyperparameters, we use k-fold cross validation on

the training set [45]. Random oversampling is employed to balance the training set such

that the classifier will not be over-fitted to the majority class[65].

The next step is to train the classifier with the entire set of training data available.

Upon completion of training, the classifier is able to make predictions of classes for

unseen input feature vectors. Specifically, the classifier predicts whether the system it

has been trained on will be stable or unstable if it were to reconnect at the given time.

We made use of the Python library scikit-learn [50], which includes implementations of
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machine learning algorithms such as SVM.

3.5 Results

In this section, we present the performance of the proposed method for predicting sta-

bility of microgrid reconnection. For evaluation, we used first the RTS-96 test case to

demonstrate the approach and the Poland case to benchmark the methodology against

a real sized power system [14]. As stated previously, the proposed classifier can account

for multiple PCCs in a network. For example, due to the choice of islanding Zone 3 in

the RTS-96, we consider the two PCCs shown in Fig. 3.3.
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Figure 3.3: Points of interconnection in the RTS-96 case.
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3.5.1 RTS-96

For the RTS-96 case we created nine different operating points and gathered 400 different

initial conditions for each. The RTS-96 case is made up of three sub-networks that are

mostly identical to one another, and we chose to island Zone 3 which contained bus

numbers in the 300s. The intentional islanding occurred five seconds into the simulation,

the reconnection event occurred at 45 seconds, and we terminated the simulation at

120 seconds. We did not implement protection schemes for this baseline scenario. We

leveraged data from all buses in the RTS-96 case to test the classifier to begin with.

These buses were chosen due to their proximinity to the PCCs.

3.5.1.1 Single Operating Point Case

We began by creating a classifier for each operating point and observed the accuracy

attained on each class. For each operating point we chose 100 cases of class stable and

100 cases of class unstable to train the classifier. We applied 10-fold cross validation

to the training data to find optimal kernel and hyperparameter values. From these we

observed the best performance was achieved with the RBF kernel along with a specific

set of hyperparameters. Some operating points had differing hyperparameters when their

classifiers were built. As such, Table 3.1 shows the selected hyperparameters for each

operating point.

We observed that training and testing on individual operating points yields results

that suggest some are easier to predict than others. The worst case operating point can

predict unstable cases with an accuracy of 80%, as seen in Table 3.2, however most other

operating points can make predictions at a much higher accuracy. In Table 3.2, Class

1 accuracy and Class 0 accuracy represent the probabilities of detecting stable recon-

nections and unstable reconnections correctly, respectively. It isn’t feasible to assume a

system will be operating with one specific load distribution which is why multiple oper-

ating points were introduced. At the same time, the operating point’s load distributions

were created semi-stochasticaly in the sense that loads were introduced to value changes

consistent with equations (3.8) and (3.9) and randomized, but still had to satisfy the

voltage p.u. stability requirements. These distributions ensured operating points were

different enough that it would cover a a case in which the system operates with high
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Table 3.1: Classifier setup after cross-validation

Operating point Kernel γ C

1 RBF 0.000001 100

2 RBF 0.0001 10

3 RBF 0.000001 10

4 RBF 0.000001 10

5 RBF 0.00001 1

6 RBF 0.0001 10

7 RBF 0.00001 1

8 RBF 0.000001 10

9 RBF 0.00001 0.1

randomness, which is harder to make predictions for than most systems.

3.5.1.2 Multiple Operating Point Case

We also investigated a universal classifier that assumes an operator would not have

immediate access to detailed knowledge of the current operating point of the system.

With this assumption, we create a universal classifier training it with the training set

consisting of cases from all nine operating points, 100 stable and 100 unstable cases

from each operating point. The reason for training with the same number of stable and

unstable cases is to prevent a classifier from being potentially being skewed based on the

priori of the class distributions in the training set. Similarly we use 200 cases from each

operating point to ensure no operating point dominates the classifier during training.

We performed the aforementioned cross-validation technique and obtained the best

classifier, which is an RBF kernel with a γ value of 0.00001 and a C value of 1. We tested

it on the test set, and the results are shown in Table 3.3. The accuracies when jointly

trained perform relatively well as a whole, however some operating points can result

in difficult to classify examples. We kept the operating points separate to observe how

well the universal classifier does on each particular case and then obtained the average

accuracy over the whole test set to demonstrate overall performance.
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Table 3.2: Accuracies for RTS-96 operating points independently trained

Operating point Class 1 accuracy [%] Class 0 accuracy [%]

1 97.8 100

2 80 99.2

3 90.7 97.1

4 97 80

5 84.7 89.6

6 91.3 85.9

7 89.5 86.0

8 96.7 90.6

9 90.6 81.3

Average 90.9 90

3.5.1.3 Inference with trustworthy PMUs

We investigated the performance of the proposed method when only a small subset of

PMUs are used for classification. We created a small subset of PMUs to choose from

located at buses: 118, 121, 218, 221, 223, 318, 321, 323, 325. It turned out that using

a smaller subset of PMUs does not substantially degrade performance if the subset is

properly chosen. Among the assumed PMU locations, we selected a PMU to be allowed

in the trusted subset only if they were immediately adjacent to a PCC in the network.

As a result we can choose a handful of desired PMUs to be used. Out of these PMUs, for

this experiment we only selected either two or three to be secure, then we trained and

tested on the smaller subset. Table 3.4 illustrates the results of this experiment, whereby

Class 1 represents a stable reconnection and Class 0 represents an unstable reconnection.

The main reason for obtaining better results with limited PMUs in some test cases

is due to the exclusion of PMUs that are either adding noise to the classifier or not

providing relevant information. A higher number of features leads to the need for more

training data to create an adequate classifier. If we use PMUs that do not provide

useful information, building the classifier becomes difficult with limited training data.

We observe that it may not be feasible to produce large quantities of training data which

can lead to better results from subsets of PMUs rather than the entire set. This is shown
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Table 3.3: Accuracies for RTS-96 operating points jointly trained

Operating point Class 1 accuracy [%] Class 0 accuracy [%]

1 86.8 100

2 97 72

3 79.2 99.4

4 90.1 82.9

5 89.4 88.7

6 100 78

7 91.2 88.8

8 95.6 92.5

9 93 74

Average 91.4 86.3

in randomly chosen subsets in Table 3.4 for RTS-96 as well as in the following section

for the Poland case.

The above results suggest that the proposed method can be adjusted to be resilient

to potential cyber attacks that may manipulate part of PMU data. In the event that the

integrity of PMU measurement data is not fully guaranteed due to cyber threats[46], we

cannot rely on the classifier processing the full set of PMU measurements. To effectively

handle such a case, we can prioritize protection of a certain small subset of PMUs such

that the integrity of their measurements can be strongly guaranteed even in the presence

of cyber adversaries. Our results imply that if the trusted subset is properly chosen, the

classifier can perform with high accuracy based on the trusted PMU measurements.

3.5.2 Poland Network

For the Poland case we created twenty-four different operating points and generated

roughly 240 different initial conditions total. On top of the steady state diversity im-

plemented, we obtained data from 50 reconnection points spanning randomly between

40-55 seconds from each initial condition to implement more temporal diversity. We

incorporated a protective scheme by adding overcurrent relays on each transmission line,

as well as undervoltage and underfrequency relays on each bus. We allowed relay oper-
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Table 3.4: Accuracies for RTS-96 operating points with subsets of trusted PMUs

PMU location [bus number] Class 1 accuracy [%] Class 0 accuracy [%]

118, 318 92.7 87.6

118, 321 92.8 87.6

121, 318 92.4 87.5

118, 121 90.1 85.6

323, 325 92.2 86.8

218, 321, 325 93.4 87.2

221, 223, 323 94.1 86.6

121, 218, 318 93.2 87.3

118, 121, 218 90.2 86.0

318, 323, 325 94.3 86.4

ation to trip lines, shed load, or disconnect generators. The overcurrent relays were set

based upon the transmission line limits from the original test case. Table 3.5 provides

an overview on the relay configuration.

Table 3.5: Overcurrent relay configuration

Point Pickup [%] Trip time [sec.]

1 100 5

2 125 0.2

3 137.5 0.15

4 150 0.1

Underfrequency and undervoltage relays were used for bus and generator monitor-

ing and protection. Setting the voltage thresholds is straightforward given the baseline

variability of voltages for each bus. Frequency variability is more challenging to set

up without obtaining more information from the operation of a large network. Thus,

we grouped buses with similar frequency response and introduced different frequency

threshold points throughout the system. As a result, load shedding and generator trip-

ping due to underfrequency events allowed for heterogeneous disconnection, generally a
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more accurate depiction of system survival in a real case. Synthesized time-dial points

for underfrequency bus relays were setup as shown in Table 3.6, depicted by rows (LS).

For generator relays, a random value (y = {1, 2, 3, 4}) was chosen and scaled for the

time-dial points shown in Table 3.6, depicted by rows (GR).

Table 3.6: Undervoltage/underfrequency load shedding (LS) and under/over frequency
generator (GR) relay configurations

Point Pickup volt. [p.u.] Trip [sec.] Pickup freq. [Hz.] Trip [sec.]

LS 1 0.92 5 49.5 5, 4, 3, 2

LS 2 0.88 0.5 49 2, 1.5, 1, 0.5

LS 3 0.75 0.2 48.5 1, 0.75, 0.5, 0.25

GR 1 - - 48.5, 51.5 y

GR 2 - - 47.5, 52.5 y/2

GR 3 - - 46, 54 y/4

Table 3.7: Baseline Poland network accuracies
PMU location [bus number] Class 1 accuracy [%] Class 0 accuracy [%]

Unseen Operating Point Case 94.4% 96.0%

Since the Poland test case is divided by default into five zones, we solved the steady

state of the case when islanding certain zones. Zone 5 was a good candidate for inten-

tional islanding due to a low mismatch for generation and demand, as well a voltages

within acceptable operating limits, thus it was selected to be the sub-network of interest

in this experiment. During the dynamic simulations we islanded the sub-network at 2

seconds. We implemented a more temporal approach with respect to reconnection to

capture real-time changes in the network. As a result, reconnection times ranged from

40-55 seconds for each dynamic simulation. Unlike the RTS-96 experiment, we did not

assume full PMU coverage of a large scale network to begin with. We only allowed a

PMU on a bus if it is immediately attached to the interconnection between the sub-

network and the main grid. We were left with 30 available PMUs in the Poland network

to build a feature vector. Since each PMU contains a voltage and angle measurement

the dimension of the feature vector is 60 (if using the entire set of PMUs). As we stated
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Table 3.8: Unseen operating point case accuracies for Poland network with subsets of
trusted PMUs

PMU location [bus number] Class 1 accuracy Class 0 accuracy

2218, 171, 118, 335, 2249, 214, 126, 139,
125, 303, 174, 2226, 186, 1607, 165, 1761 94.3% 95.6%

186, 2331, 315, 139, 167, 10, 2234, 2124,
225, 2218, 2226, 178, 125, 2249, 126, 1607 95.8% 95.3%

303, 2234, 2124, 315, 225, 335, 10, 118,
140, 2226, 2218, 214 88.4% 96.3%

2218, 140, 174, 126, 125, 118, 2234,
171, 2124, 15, 167, 139 94.6% 95.6%

167, 139, 214, 335, 178,
2226, 315, 118 89.8% 96.1%

174, 2249, 2218, 118, 2331,
1607, 141, 166 95.6% 95.5%

139, 165, 2218, 2226 96.0% 95.1%

127, 2249, 118, 166 96.3% 94.3%

earlier in the procedure description, the next step was to create labels based on the

convergence of the case. Figures 3.4 and 3.5 illustrate labeling examples for stable and

unstable cases, respectively.

Figs. 3.4-3.5 depict frequencies of two buses on either side of an interconnection point.

One can observe that case labeled as stable case exhibits a reconnect where the frequency

signals converge to a common operating state. The unstable case shows the frequency

of Bus 126 spike and immediately flat-line representing a bus trip. As described in the

methodology section, if the network did not converge, it would have immediately been

labeled unstable. The rules of stability in the Poland case additionally enforced that at

least 2370 of the 2383 buses in the case were in service after reconnection of the island.

We partitioned the 722 different initial conditions in accordance to the two test cases

described in Section III-E: multiple operating point case and unseen operating point case.

For each test case, we used 10-fold cross validation together with random oversampling

to learn optimal hyperparmaters and train the classifier (see[45, 65] for details of these

methods). The set aside test set was then used to determine the classifier’s accuracy.

The baseline accuracies of the Poland network are seen in Table 3.7. The unseen

operating point case represents the case in which the testing set contains data from
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Figure 3.4: Stable reconnection of Poland microgrid and main grid.

operating points that do not exist in the training set. With the unseen operating point

test, the proposed algorithm demonstrated over 90% accuracy. In particular, the results

from the unseen operating point case suggest that our classifier can demonstrate this

accuracy even when the classifier is trained based on a few operating points and tested

for an unseen operating point case. This implies that the proposed method is scalable

and suitable for use in a large-scale grid; the classifier does not have to be trained for

all possible operating points, and training with a few suffices. As stated earlier for the

smaller test case experiments, we also investigate the accuracy of the classifier for a

scenario when the system is compromised. As a response, our classifier makes use of a

trusted set of PMUs and makes predictions based on their measurements. A variety of

subsets from the available PMU full set make up our possible trusted scenarios, as shown

in Table 3.8. The results indicate that some subsets still perform well even in the face

of unknown operating points.

In the larger Poland case it seems more prevalent that decreasing the amount of

features can lead to similar performance to the full set. The adoption of this control

technique would bring into question whether a utility could provide enough training
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Figure 3.5: Unstable reconnection of Poland microgrid and main grid.

data, specifically the number of training examples, for the classifier. If limited training

data is provided, the usage of an optimal subset of PMUs instead of the entire available

set could yield adequate accuracies. Indeed it is always interesting to observe that less

amount of information give similar results. It is explained in this case by considering a

high dimension of the feature space. For high dimensional feature vectors, it is difficult

to learn an accurate classifier with limited amount of training data. Utilities with the

ability to archive and make available relatively large amounts of training data could still

make use of a a large set of PMUs, if available, and potentially observe higher accuracies

with respect to the quantity of training examples provided in these experiments.

3.6 Conclusion

This paper presents a machine learning approach for the prediction of stable reconnec-

tions of a power system sub-network. The proposed approach leverages a power system

dynamics simulator to generate synthetic, yet realistic in terms of size, training examples

that are subsequently employed to train a classifier. The interactions between power sys-



38

tem dynamics and protection mechanisms are complex, and the exact derivation of an

optimal control strategy is not always feasible. However, as demonstrated in this paper,

a machine learning approach can be useful to capture many unintuitive behaviors and

make predictions in real-time based on PMU measurements. Future improvements on

the training aspect may be necessary as the procedure to build said classifier is relatively

sophisticated and requires in depth knowledge. The method may not be directly usable

by operators as a result of the necessary understanding to build a well trained classifier.

The classifier was tested on a variety of cases and operating points to ensure diversity.

Accuracies of approximately 90% were observed throughout most conditions when mak-

ing dynamic predictions of a given network. Existing work in literature is limited to

the dynamic realization of reconnection stability, however future work may leverage said

technique in a more time sensitive way. In addition, cyber attacks on PMUs in a subset

may distort the classifier thus creating the need to implement techniques on verifying

the authenticity of the data streams.
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Chapter 4: Security Concerns for PMU Based Controls

4.1 Introduction

With the introduction of smarter monitoring and controls, the assumption of reliable

data may not always hold. This chapter focuses on the pre-processing of PMU data to

minimize potentially corrupt data from impeding correct operation of developed control

schemes. We make use of said tools with conjunction of the developed Learning Scheme

proposed in Chapter 3, however the pre-processing could be extended to other control

techniques making use of PMU measurements. Figure 4.1 shows an overview of the steps

used to pre-process PMU data.

Raw PMU Data

Cyber-attack

Online Data 
Pre-

processor

PMU 1

PMU 2

PMU 3

PMU 4

PMU N

Attack 
Found

Yes

No

Control 
Technique

Attack Localizer

Figure 4.1: High level abstraction of detecting and localizing malicious PMU measure-
ments
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4.2 Raw PMU Data

We start with discussing the measurements used and practical assumptions to be made.

If we assume the deployment of PMUs to be confined to a local area, we may make

use of the fact that the power system is slowly varying. The measurements from buses

within close proximity will swing in a similar manner allowing the argument that the

time measurements from multiple PMUs will be low rank [24]. A low rank matrix can

be seen as having high linear dependence between rows and columns. When making this

assumption, one must ensure that the PMUs are grouped close to one another and in

the same network. If PMUs between two isolated systems are merged together, the rank

may dramatically change and impact future analysis of the data. With regards to the

Learning Scheme proposed in Chapter 3, two main sets of PMUs exist where 15 would

reside on the microgrid side and 15 on the main grid.

PMU measurements are synthesized in the same way as Section 3.4.4 from the Poland

test case. We make use of measurements from the 30 key PMU locations before recon-

nection for a given window of time. As stated before, the microgrid and main grid are

operating independently from one another when islanded, thus two sets of measurements

are created to allow separate analysis.

4.3 Cyber Attack

With the PMU measurements at hand, we introduce the potential of an adversary cor-

rupting certain PMU devices. We make a key assumption that an adversary will have

limited resources and access to a small portion of the available PMUs in the set. The

limitation must be made to ensure the PMU measurement matrix is not corrupted to

the point of destroying much of the linearity seen between PMUs. The attack can be

simplified to three main matrices, X, or the ground truth PMU measurements, A, the

attack matrix, and X̃, the observed matrix after attack. This combination can be seen

as a basic addition in equation (4.1).

X +A = X̃ (4.1)

A simplified example of this is shown in equation (4.2) which represents an attack on

row 2. In this case, the data is formated with rows representing each PMU and columns
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being each time step. The first goal would be to localize the attack in an effort to

eliminate any corrupt PMUs. Building off localization, the ability to recreate the attack

matrix and similarly the true measurement matrix may be useful to increase the usable

data if time allows. With time sensitive control schemes it is desirable to quickly localize

corrupt PMU devices to throw away said data and leverage only trustworthy PMUs.


x11 x12 . . . x1n

x21 x22 . . . x2n

x31 x32 . . . x3n

xm1 xm2 . . . xmn

 +


0 0 . . . 0

A21 A22 . . . A2n

0 0 . . . 0

0 0 . . . 0

 =


x̃11 x̃12 . . . ˜x1n

x̃21 x̃22 . . . ˜x2n

x̃31 x̃32 . . . ˜x3n

˜xm1 ˜xm2 . . . ˜xmn

 (4.2)

4.4 Attack Localizer

The ability to ensure only trustworthy PMUs are used in control schemes is of paramount

concern to avoid any malicious impacts to a network. Previous literature makes use of

PMU measurement low rank by implementing the popular nuclear norm minimization

[9]. Said technique in its most basic form is seen in equation (4.3).

min ||X||∗ + λ||A|| s.t. X̃ = X +A (4.3)

This method is used to optimize the solution finding the sparse attack matrix (A)

and the low rank of ‘true’ PMU measurements (X). The nuclear norm ||X||∗ operator

finds the sum of the singular values of matrix X which impacts the rank.

With relatively small windows of data, the nuclear norm minimization approach is

appealing when tasked with finding adversarial PMUs due to the ability of being rel-

atively quick. Upon finding a PMU that seems to have been targeted, the user may

disregard the data when making network decisions and avoid potentially misguided rec-

ommendations from PMU based control schemes. Another benefit of the nuclear norm

minimization is the innate ability to reconstruct both the attack matrix and ground truth

measurements. The whole reason localization is possible is due to the method directly

finding the values of the attack matrix.

The main concern of the nuclear norm minimization based approach is with respect to

how well the data at hand adheres to the assumptions. If an adversary has the ability to
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control the entire set of PMUs, this approach becomes easily exploitable. Furthermore,

if PMUs within an analyzed set do not swing well together, there exists the potential of

poor localization. It should be stressed that this pre-processing should be limited to that

of which PMUs are grouped well with one another and only a limited set are adversely

impacted in a given time frame.

4.5 Online Data Pre-processor

In some control schemes, it may be important to determine if an attack has occurred

as fast as possible. The nuclear norm method may be usable, however it does have a

period of delay due to the direct estimation of the attack and ground truth measure-

ment matrices. An online data pre-processor would be leveraged to predict whether an

attack on the measurements has occurred. This in turn would eliminate the necessity of

continually using the nuclear norm method to find attacks.

Figure 4.2: Training LSTM network.

The most basic approach would be to implement a screening algorithm that would

solely detect if an attack is occurring. A more complex solution would be to detect an

attack and localize it without necessarily directly reconstructing the attack and ground

truth measurement matrices. The next solution is seen to be the most time consuming

where the attack and ground truth measurement matrices are directly solved to localize
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the attack, such as the nuclear norm approach.

Different solutions for this step were attempted, however were unsuccessful as general

solutions. The most interesting involves the use of Deep Learning (DL) where a Long

Short Term Memory (LSTM) network was used temporally to predict the next time

step’s measurement set from a previous set of measurement time steps. The basic idea

is shown in Figure 4.2 in which the measurements highlighted in green represent the

features and the time step measurements in blue are the targets. The LSTM is trained

to make predictions of the measurements for the next time step. With a real time stream

of data, one can compare the LSTM estimate to the data coming in. Since attacks on

measurements may come in many different forms, the LSTM must be trained with attack

free measurements. The testing data will also be attack free and used to build a rule

that discerns measurements as potentially corrupt or not.

Figure 4.3: Testing set residuals and potential thresholds.

The residual between the real time incoming data stream and predicted measurements

from the LSTM may help build the rule. We make use of the testing data to create

a distribution of residuals. An example of these residuals can be seen in Figure 4.3.

The true target T̃ and estimated target T from Figure 4.2 are used to create a residual

depicting how well the LSTM can predict the next time step measurements. This residual

contains the difference between all features estimated at the next time shown in equation

(4.4)
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T =


y11

y21

y31

y41

 , T̃ =


ỹ11

ỹ21

ỹ31

ỹ41

 , R =
∑
i

|Ti − T̃i| (4.4)

With a distribution of residuals, one may choose a threshold to act as a ‘rule’ when

predicting if a measurement matrix contains malicious data. For example, if we choose

the threshold to occur at the maximum observed residual seen in our test set, Figure

4.3, then any predicted target from the LSTM that exceeds that residual will be flagged

as malicious. It can be seen that the higher the threshold, the higher the probability of

false negatives occurring. If our threshold is chosen to be a smaller residual, then we run

the risk of having more false positives.

This approach yielded positives results when leveraging measurements from limited

operating points. Unfortunately when increasing the amount of operating points, the

LSTM’s ability to provide accurate predictions decreases. As a result, the residuals

of predictions increases which degrades performance when predicting if a measurement

matrix is malicious or not. Due to this, the approach would be severely limited to

predictions on a well known operating point of a given network.

4.6 Security Risks with No Preprocessing

We show a quick example of an angular based attack on PMU measurements used in

our previously created Learning Scheme from Chapter 3. This serves to demonstrate the

potential degradation of control schemes when faced with malicious data. The attack is

limited to a particular PMU subset comprised of buses: 127, 2249, 118, 166. We observe

the impacts of shifting the measured angle of a single PMU bus within the subset at a

given time. Table 4.1 shows the results of introducing said angle shifts to certain PMU

measurements and feeding them into the classifier.

It can be seen that the attack significantly degrades the classifier’s performance for

the given subset of PMUs. The accuracy of class 1 and class 0 are shown for each attack

magnitude and location pair. As a result, the addition of pre-processing is necessary

to ensure targeted PMUs are thrown out and a secure set of PMUs may be located

and used when performing the classification. Further implications show that any other
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Table 4.1: Angular shift attack on Subnetwork Reconnection Learning Scheme

PMU Targeted/
Angular Attack

PMU: 127
(Class 1, Class 0)

PMU: 2249
(Class 1, Class 0)

PMU: 118
(Class 1, Class 0)

PMU: 166
(Class 1, Class 0)

5 (94.8%, 93.9%) (95.8%, 95.1%) (95.9%, 94.5%) (95.7%, 94.3%)

15 (83.3%, 92.4%) (55.1%, 97.0%) (57.2%, 96.6%) (56.8%, 96.8%)

30 (51.9%, 89.3%) (40.3%, 97.9%) (48.4%, 97%) (47.7%, 97.2%)

-5 (94.1%, 94.6%) (96.0%, 94.6%) (95.4%, 94.7%) (95.6%, 94.8%)

-15 (75.0%, 93.6%) (56.8%, 96.5%) (55.5%, 97.1%) (56.0%, 96.9%)

-30 (43.3%, 90.7%) (49.2%, 96.7%) (42.2%, 97.8%) (45.0%, 97.7%)

control method leveraging secure PMU subsets can make use of this technique to ensure

their security.

4.7 Results with Preprocessing

After showing the implications of an attack on our previous control technique, we make

use of the pre-processor to limit any malicious data from having any impact on our

classifier. We show results in terms of false positives where the pre-processor determines

a PMU device to be incorrectly adversarial and false negatives where the pre-processor

determines a PMU device to be incorrectly trustworthy. The measurements are synthe-

sized similar to that described in Section 3.4.4. We break the analysis into two windows

containing measurements from 15 PMUs on the microgrid and 15 PMUs on the main

grid. Tables 4.2 and 4.3 show the results of implementing the nuclear norm minimization

technique on a set of randomly attacked PMUs in a given group of PMUs. We look at

198 different sets of PMU measurement windows to test this approach.

Table 4.2: Analysis on 15 PMUs located near interconnection on main grid
Attack Type False Negatives False Positives

1 PMU, U(-0.01,0.01) 0/198 2/198
2 PMU, U(-0.01,0.01) 0/198 2/198
3 PMU, U(-0.01,0.01) 0/198 2/198

The attacks are a trivial uniform scaling of each time point measurement for the

given attacked PMUs. We limit ourselves to observing the attack of up to 3 targeted

PMUs and scaled by up to 1% of the original measurement values. For the most part,
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Table 4.3: Analysis on 15 PMUs located near interconnection on microgrid
Attack Type False Negatives False Positives

1 PMU, U(-0.01,0.01) 0/198 119/198
2 PMU, U(-0.01,0.01) 0/198 117/198
3 PMU, U(-0.01,0.01) 0/198 107/198

this particular attack is well identified on the main grid side with limited false positives.

The microgrid side seems to have a difficult time with false positives, mainly due to bus

2218 which is consistently classified as a targeted PMU. This PMU seems not to swing

well with the other PMUs within the group making it difficult to analyze, as a result

it is consistently labeled as malicious. It is important to note that out of the 198 data

windows, there are 15 PMUs in each. The loss of one PMU in each analysis may not

be such a big deal and may be worth the elimination to ensure the analysis catches the

actual targeted PMUs.
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Chapter 5: Policy Based Network Control

5.1 Introduction

We now focus on the topic of developing smarter control schemes to aid the electric power

network when faced with contingencies. Contingencies normally relate to failures in the

network such as faults, line trips, generator disconnection, and many others. These

contingencies may in turn impact other portions of the network creating a cascading

failure. To demonstrate this, the RTS-96 case is included in Figure 5.1 along with two

arbitrary contingencies.

Line Loss

Partial Loss (of 
loads/generators)

Full Loss (of 
loads/generators)

Transformer

Generator

Load

Transmission line

Bus

Figure 5.1: Two line contingencies on the RTS-96 case.

With the introduction of two contingencies, in this case two line trips, other com-

ponents may become stressed to the point that other protective elements operate. As a

result, the line trips between buses 112-123 and buses 212-223 will cause other lines to
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pick up the slack and transfer the electricity that the two previous lines were previously

handling. It is apparent that other lines may become overloaded and trip which could

potentially lead to cascading failures propagating throughout the network. We can see

in Figure 5.2 an example of the potential of the start of cascading failures. Depending

on the protection in the system, cascading failures may occur in a different manner. For

this example, we assume that all lines, transformers, buses and machines are protected.

Line Loss

Partial Loss (of 
loads/generators)

Full Loss (of 
loads/generators)

Transformer

Generator

Load

Transmission line

Bus

Figure 5.2: Start of cascading failures in the RTS96 case.

After the initial contingency, we can see that other lines begin to trip in effort to

protect the transmission lines. As stated earlier, additional components become further

stressed. An example of a later stage of the cascading failure is shown in Figure 5.3

At this point we can observe that the network has lost a significant portion of com-

ponents. Without proper control schemes, the network may be at risk of starting with a

small contingency set and ending up in total blackout. Networks are normally designed

with redundancy to ensure that the loss of a single component will not have a great

impact on the network operation, this is known as N − 1 security. Further redundancies

may be built in a system to improve the robustness of the grid, however may not be

economically feasible. Due to this, N − 2 security is not necessarily ensured for a given
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Line Loss

Partial Loss (of 
loads/generators)

Full Loss (of 
loads/generators)

Transformer

Generator

Load

Transmission line

Bus

Figure 5.3: Further deterioration of network operation due to cascading.

network. With the difficulty of obtaining this level of security, the ability to recover from

said events with intelligent control schemes becomes necessary.

Much work on protective relaying has been performed to mitigate the impacts of

contingencies. Most strategies focus on load shedding in attempts to bring voltages

level back to tolerable range [11]. Other methods attempt to break the network up into

self-sufficient islands to mitigate any propagating failures [26]. This work focuses on a

policy based approach making use of actions available to a network operator at given

times. Off-line based approaches have yielded success in the past in the form of policy-

switching [44]. A policy based approach allows the operator the luxury to perform a

sequence of actions that attempt to lead to a common goal such as avoiding blackouts

and minimizing component loss.

We focus on an online based approach in the form of policy-rollout [13] which allows

one to simulate the outcome of actions on a given model. This approach draws directly

upon the work performed in [31]. We perform verification of the work that used the

research developed power systems simulator COSMIC [60]. Siemens PSS/e is used as

the dynamics simulator of choice in this work.
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The dynamics simulator PSS/e is widely used in industry and allows adequate model-

ing of network components in the dynamic domain. When attempting to model cascading

failures, it is important that the simulator has the ability to capture the impacts of de-

vice operation with respect to one another in real time. With small step sizes on the

order of sub-seconds we can confidently assume that the interaction of components can

be adequately modeled.

5.2 Dynamic Simulator

As stated previously, we make use of the commercial dynamic simulator PSS/e. We

work with the RTS-96 test case which is comprised of three identical networks connected

to one another. Dynamic models are included on the generators in the form of the

‘GENSAL’ salient generator model, IEEE type 1 exciter and IEEE type 2 governor.

The other components, also seen in Figs. 5.1, 5.2, 5.3, include buses, transmission lines,

transformers, and loads. For simulating dynamics we implement a time step of 1
120

seconds specifying how often the network case state is reevaluated.

Basic protection is implemented in the form of overcurrent relays on branches and un-

der voltage/frequency relays on buses. The discrete protective elements are implemented

to alleviate local stress within the network and protect components. The addition of this

protection scheme will show the impacts of different contingencies and potential cascad-

ing failures.

The state of the network is comprised of many different elements that evolve over

time. The simulator keeps track of these as state variables which include dynamic vari-

ables that change at each time step. The topology of the network is remembered as

well which consists of the status of components such as: lines, transformers, loads, and

generators. In addition the attached protective relays and their state are saved at each

time point as well.

5.3 Policy Rollout

Policy rollout is an attractive solution to network control due to it’s ability to be per-

formed online. When tasked with choosing an action, policy rollout may make use of a

model and transition function to explore an action set and ultimately choose the best
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action to its knowledge. Depending on the model and transition function, an action in a

given state may result in a new state with a given probability. This is best represented

with equation (5.1) depicting the transition from state s at time t to state s∗ at time

t+ 1.

T (st, at, s
∗
t+1) = P (s∗t+1|st, at) (5.1)

One can overcome the issue of probabilistic transitions by running several simula-

tions in a monte-carlo fashion to obtain the average results of performing a particular

action. When a model does not have stochasticity, the transition becomes deterministic

and eliminates the need to explore a given action at a state multiple times. We make

the assumption that our network is deterministic which drastically reduces the time

complexity of exploring our action/state space.

Figure 5.4: Policy rollout with depth one search.

A control policy is implemented based on acting greedily according to an estimated

action-value function Q̃π of a rollout policy π. This action-value function refers to ‘how

good’ an action is at a given state. As shown in Figure 5.4, four actions exist. A depth

one search allows each action to be explored with the a baseline policy being implemented

afterwards. As an example, we explore each of the four possible actions at st, at each

time step thereafter we perform the action ‘Do nothing.’ We can then act greedily by

selecting the best action in accordance to equation (5.2). It is important to note that

Q̃π(s, a) is the estimated action-value for a particular action in a unique state. To clarify,

the states in Figure 5.4 for each action may be different.
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Figure 5.5: Policy rollout with depth two search.

π∗(s) = arg max
a∈A

Q̃π(s, a) (5.2)

The estimated action-value function, Q̃π(s, a), can be found by taking a monte carlo

approach. As a result, we would perform the exploration seen in Figure 5.4 many times

for each action (necessary if non-deterministic). We will have many potential trajectories

based on our action selection, this can be denoted as τ = s0a0 . . . sH . If we denote the

total reward of trajectory τ as R(τ), it will contain each reward r from each state in

the trajectory seen in equation (5.3). Future rewards may be weighted less by using the

discount factor β ∈ [0, 1].

R(τ) =

H∑
i=0

βir(si) (5.3)
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If we are tasked with estimating Q̃π(s, a), we may create many trajectories and sample

m of them [31]:

Q̃πm(s, a) =
1

nm(a)

nm(a)∑
i=1

R(τai ) (5.4)

In this case, we find the action-value function for state s while taking action a. The

total reward of the ith sampled trajectory when taking action a is denoted by R(τai ). We

label the amount of times action a was taken in m samples as nm(a). After obtaining

sufficient samples, we may choose the best action in accordance to equation (5.2).

If time permits, a rollout of larger depth may be performed to further improve upon

the implemented policy. For example, a search of depth two would take the form seen in

Figure 5.5. This will lead to a drastic increase in exploration complexity, on the order

of exponential.

5.4 Application to Network Operation

We use the algorithm policy rollout in tandem with the dynamics simulator PSS/e to

demonstrate an improved approach to preventing cascading failures in a network as well

as increase load survivability. We focus on the RTS-96 case with a predefined protection

scheme. We attempt to improve upon the operation of discrete protective devices and

expert based actions.

5.4.1 Baseline Policies

We leverage similar baseline policies shown in [31]. These include: Shedding global

load and isolating zones in which contingencies occur. Due to the difficulty with PSS/e

interaction of state variables and the necessity of adding user defined models, we did not

make use of the ‘hysteretic load shed‘ or HLS baseline policy.

A key thing to note about these policies is that both Isolate and ShedGlobal occur

with short delay after the associated contingencies. Similarly, the same delay is im-

plemented with the policy rollout approach to ensure no bias occurrs. The remaining

protective elements within the system will continue operating afterwards until the end

of simulation. We make the assumption that the ability to shed load and disconnect
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certain branches is available which in reality may be limited. In practice, load shedding

or branch disconnection is performed by opening a circuit breaker. These devices may

not always be located in the necessary configuration, however similar performance should

occur.

5.4.2 Available Actions for Policy Rollout

The available actions within our network include both load shedding and islanding. Due

to policy rollout being an online method, it is important that the amount of actions

is not so great that exploration becomes infeasible. If we allowed load shedding at all

available locations concurrently we would come to an action space of the size O(2b). Due

to this we use three expert actions that are also drawn from [31]:

ShedZone(z, p): Shed a proportion of p ∈ [0, 1] of all loads within zone z.

ShedGloabl(p): Shed a proportion of p ∈ [0, 1] of all loads within the network.

Island(z): Island zone z from all other zones in the network.

This action space abstraction becomes more necessary as the network scales. Com-

puting power also may impact how an action space is chosen as more power may cor-

respond to the ability to make less abstract actions. Similarly, the ability to search the

action space deeper or longer is impacted by available processing power.

5.5 Results

When simulating the RTS-96 case, we do not account for stochasticity. We leverage

the baseline policies to get a sense of how well our network can survive certain N − 2

contingencies with expert actions. The global load shed action sheds 10% of the load at

all shunts and the zone isolation works by disconnecting any tie line connecting a bus

to a zone in which a contingency occurs. We also allow no expert action to take place

and let only the protection scheme on the network operate. It is important to note that

this baseline protection scheme exists for all policies. When testing the policy rollout

algorithm we made use of the available actions: ShedZone(z,0.1), ShedGlobal(0.1), and
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Island(z) which allows shedding 10% of all shunts in the network, or in a given zone, as

well as islanding any zone.

Figure 5.6: RTS-96 end load survivability with different policies.

In Figure 5.7 we see the total survivability of the RTS-96 case. This means we account

for the loading at each time point and add up the total amount of load served over the

entire duration of the simulation. Conversely, we look only at the end load served in

Figure 5.6 to account for how much of the case has survived to the end. Both results

from either metric look similar.

An interesting result to observe in Figs. 5.7, 5.6 is that it is possible to perform no

expert actions and still obtain good network operation. This relies heavily on how well

the protection in the scheme is configured. As seen, the protection scheme allows the

case to survive many N − 2 contingencies. The GlobalShed policy performs worst as it

seems to shed unnecessary amounts of load to protect the case. The ShedZone performs
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Figure 5.7: RTS-96 total load survivability with different policies.

relatively well, most likely due to the configuration of the RTS-96 case. Depending on

the locations of contingencies, it is possible that the baseline protection automatically

separates the network into the best islands. The policy rollout case seems to perform

the best in which it can allow a higher average surviving load.

With the cases evaluated, it can be seen that the policy rollout approach does seem

to perform better that the other potential policies. Further evaluation is necessary for

more extreme contingencies. The implementation of stochasticity is also important to

check in the future as it will have an impact on the amount of time necessary to evaluate

actions.
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Chapter 6: Conclusion and Future Work

This work focused on the control of electrical power systems and the impacts and possible

mitigation of cyber based attacks. We first discussed the possibility of network damage

brought on by a load oscillating smart meter based attack. This attack has proven

possible and the intelligent control of said meters was shown to significantly impact not

only the network in which the attack originated, but to neighboring locations as well.

We then presented a potential framework to control the reconnection of a subnetwork

to a main grid. The developed framework leveraged real-time measurements to make

predictions of network stability to aid in deciding when to reconnect. The ability to

perform with limited measurements increased the robustness of the learning scheme in

the face of possible adversarial measurements. The necessity of sub-network control when

integrating smaller interconnected networks will be of great importance in the coming

years.

The next chapter addressed the need of a pre-processing tool to locate corrupt PMUs

when a cyber attack occurs. We made use of the well known nuclear norm minimization

technique and discussed another solution in LSTM. The combination of the nuclear norm

method and developed learning scheme generated positive results. We also showed the

impacts of the lack of pre-processing data on our learning scheme which highlighted

the need of said pre-processing. The LSTM based approach was a relatively low time

complexity pre-screening method to determine if an attack had occurred. The addition

of said method may not be warranted based on the difficulty of scalability. Situations

where operators are confident in the current operating point of the grid may make use

of this algorithm, however it would require a large amount of data for training that is

both attack free and from said operating point.

We finished with a policy rollout technique for determining actions in real time that

mitigated network damage in the face of contingencies. It can be shown that policy

rollout outperformed all other policies in regards to both total load and amount of

load left served. Other interesting things of note include the impact of the underlying

protection scheme of a network. It is quite possible that only discrete operations of
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protective elements without operator control may yield positive results, however would

require well developed discrete protection.

Each portion of this research allows for many avenues for future work. The ability

to demonstrate vulnerabilities in an electrical power system allows one to bring to light

the impacts of well constructed attacks. The ever growing attack platforms with regards

to cyber based communication in the power system needs to be addressed in both forms

of prevention and identification. The ability to discern authentic data and malicious

data will be extremely important as new control techniques are developed to operate the

power grid.

Policy based approaches to determine what actions to take in a network is another

important subject to be discussed. Policy rollout is a good start to developing smarter

controls, however many trade-offs exist when discussing this technique. Experimenting

with more extreme contingencies may show even greater performance difference between

rollout and the baseline policies and should be attempted. The possibility of allowing

deeper searches or less abstract action spaces by delaying actions may be an interesting

topic. Off-line Deep-Q learning may also be a future viable solution for immediate action

selection.

Finally the ever growing and changing power grid may make use of control schemes

stemming from AI and ML techniques in the near future. These avenues may help in

many situations such as identifying fault signatures or aid in network control as seen in

Chapter 3. With vast amounts of measurements being made available in the power grid

in the future, these powerful techniques may revolutionize how decisions in the grid are

made in the coming years.
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Appendix A: PSS/e Models: Generator Dynamics

A.1 Salient Generator Model (GENSAL)

Table A.1: Salient generator parameters

CONs # Value Description

J T ′do(>0)(sec)

J+1 T ′′do(>0)(sec)

J+2 T ′′qo(>0)(sec)

J+3 H, Inertia

J+4 D, Speed damping

J+5 Xd

J+6 Xq

J+7 X ′d

J+8 X ′′d = X ′′q

J+9 Xl

J+10 S(1.0)

J+11 S(1.2)

Table A.2: Salient generator states

STATEs # Value Description

K E′q

K+1 ψkd

K+2 ψ′′q

K+3 ∆ speed (pu)

K+4 Angle (radians)



68

A.2 IEEE Type 1 Excitation System (IEEET1)

Table A.3: Excitation system parameters
CONs # Value Description

J TR
J+1 KA

J+2 TA
J+3 VRMAX or zero

J+4 VRMIN

J+5 KE or zero

J+6 TE(>0)

J+7 KF

J+8 TF (>0)

J+9 0 Switch

J+10 E1

J+11 SE(E1)

J+12 E2

J+13 SE(E2)

Table A.4: Excitation system states
STATEs # Value Description

K Sensed VT
K+1 Regulator output, VR
K+2 Exciter output EFD

K+3 Rate feedback integrator

Table A.5: Excitation system variables
VARs # Value Description

L Sensed KE
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A.3 IEEE Type 2 Speed Governing Model (IEEEG2)

Table A.6: Governor parameters

CONs # Value Description

J K

J+1 T1(sec)

J+2 T2(sec)

J+3 T3(>0)(sec)

J+4 PMAX(pu on machine MVA rating)

J+5 PMIN (pu on machine MVA rating)

J+6 T4(>0)(sec), water starting time

Table A.7: Governor states

STATEs # Value Description

K First integrator

K+1 Second integrator

K+2 Hydro turbine

Table A.8: Governor variables

VARs # Value Description

L Reference P0






