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Chapter 1: Introduction

1.1 Motivation

Sweet cherry tree pruning is a vital operation for tree health and throughput of

the farm, this is an extremely labor-intensive operation, and due to the decline in

farming labor, there’s a drive toward developing automatic pruning systems, Auto-

matic pruning systems, rely heavily on machine vision and instance segmentation,

an example of such a system could be found in our work[22]. In this system, we

use a UR5 robot arm equipped with a cutter at the end to effector for accurate

pruning of the cherry trees. These types of systems are expected to perform in all

weather conditions, therefore, training it on diverse data is crucial for accurate seg-

mentation. Therefore we develop an algorithm that can leverage a model trained

on a smaller dataset which might produce incomplete or partially correct masks

and produce accurate 3D structure and labeled data for training by leveraging the

RGB and Depth information along with mask output from the model.

1.2 Contribution

The objective of this project is two-fold:

• Extract branch geometry information such as the radius of the branch, and

the structure of the branch.
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• Produce improved image segmentation masks using the RGB and Depth data

from an Intel RealSense Camera.

and

1.3 Organization

The next chapter discusses related work in segmentation and trunk width estima-

tion of the branches. Later we provide the algorithm details and finally show the

results of the approach tested in the lab setup.
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Chapter 2: Related Work

2.1 Segmentation

Due to the recent success of computer vision in many applications, image segmen-

tation has been a central task in many applications such as autonomous driving,

clustering, medical image analysis, etc. Essential task of image segmentation is to

partition the image into ”segments” pixel-by-pixel, although numerous algorithms

have been developed in the past, deep learning based segmentation architectures

have shown uncompromisingly accurate results for a wide range of applications[14].

A deep learning architecture consists of a set of ”convolutional layers” which

extract various features of the images such as the objects, edges, color or texture-

based information while the data is convolved through these layers to produce a

bounding box and a pixel-by-pixel segmentation mask.

For an agriculture-based setting recent work on segmentation for apple tree

branches detection and segmentation was done in [11] where the authors utilize a

very simple architecture called SegNet to produce 92% accurate predictions from

the images, the authors manually annotate 210 images for training, this num-

ber is really insufficient for modern day architectures such as MaskRCNN and

Mask2Former, which require a large amount of data usually in order of thousands

to train.
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2.2 Pruning

Pruning refers to cutting of the dormant branches during winter or summer of the

tree to improve the yield of the crop and maintain the health of the crop. Succesful

Pruning entirely depends on the accurate segmentation of the branches from the

image, as noted in [22]. A majority of pruning systems are designed to work after

visual processing of the data as noted in [4].

2.3 Automatic Labelling

A large amount of publicly available data for the agricultural domain is labeled

manually for example PlantVillage a data set by Penn State University for plant

disease detection has been labeled manually by domain experts [15], an extensive

list of other manually labeled data resources can be found here [12]. It is known

that labeling in the agricultural domain is a difficult task due to the nature of data

present in the domain, which is usually irregularly shaped and occluded with the

elements in the domain. Since the supervised training techniques require a large

amount of training data which is accurately labeled to obtain results, this task get

very laborious.

Recently authors of [20] have developed an image annotation tool that can assist

the user in the annotation of the images in a semi-automatic or fully automatic

fashion, providing the user with multiple ways of annotating such as polygons,

key points, and freeform annotation and generates the labels in COCO format,

which uses the MaskRCNN[7] a popular deep learning framework as the backend.
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However, it is noted this tool has not been made to be available publicly yet.

In the paper [3] authors introduce a method to perform unsupervised labeling

for weed detection in this work, authors use two recent unsupervised deep cluster-

ing algorithms, Joint Unsupervised Learning of Deep Representations and Image

Clusters (JULE) and Deep Clustering for Unsupervised Learning of Visual Fea-

tures (DeepCluster) to automatically annotate 17,095 images to reduce manual

annotation, an alternate approach for training without labels but from a simi-

lar domain is called transfer-learning [17] and is yet to see its application in the

agricultural domain.

The techniques of automatic labeling is still being explored widely and are a

topic of major interest for the graphics and vision community in general, In this

project we approach automatic image labeling for pruning the cherry trees where

there is no human in the loop, unlike the previous work in [20] and would generate

a 3D mesh and other desiderata such as leader width estimate which unsupervised

techniques such as [1] and [3] do not provide, the labels of the images are produced

in COCO format [9] for training a wide range of deep learning models.

2.4 Structure Extraction

Structure extraction of the plants has been an area of interest in monitoring the

plants and their applications in modeling farms. Recent methods have focused on

template matching and 3D reconstruction. For example, the work in [13] obtains

3D structure using a mix of precompiled templates and finding the nearest match
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from the templates for a reconstructed point cloud, while the work in [10] uses

the methods of multi-view geometry to reconstruct the plants. while traditional

methods focused on image processing techniques to produce a 3D reconstruction.

For example, the work of [23] follows a complex procedure using wavelets to remove

noise from the background and use a custom procedure to 3D reconstruct the roots

of the plants. Volumetric methods were used in the work of [16]. Comparatively,

this work provides a much simpler method to extract the 3D structural information

from a single image.
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Chapter 3: Background

The algorithm has 4 phases outlined below:

• A pre-trained deep learning model such as MaskRCNN is used to extract the

segmentation masks for the leader and the side branch, and the depth data

is used to refine the segmentation mask region.

• A 2D Bezier curve with estimated width is fit to the mask such that it is

center aligned with mask, this curve would be offset such that it aligned with

image edges

• Three techniques to estimate the 3D width of the segmented region

– Find the points on the extremities of the branch and calculating the

distance between them.

– Fit a circle for the 3d-point cloud along the vertical leader and select

the median radius.

– Use triangulation to find the width of the branch.

• Construct a 3D mesh using Frenet frame of 3D curve with radius

• The mesh is reprojected to the image to create the segmentation mask.

In this section, we shall go through each of these phases in detail and to un-

derstand the background required for this project
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3.1 MaskRCNN

MaskRCNN[7] is a widely used image segmentation model which provides the

capabilities of semantic and panoptic segmentation, for semantic segmentation the

model produces labels pixel-wise for each object, while in panoptic segmentation,

the semantic segmentation labels, as well as the object instances, are produced as

the output. The MaskRCNN framework operates in two stages

Stage 1: This stage consists of two networks, a backbone (ResNet, VGG, In-

ception) and a region proposal network. which are used to obtain a set of region

proposals. Region proposals are regions in the feature map which contain the

object.

Stage 2: This in stage the network predicts bounding boxes and object classes

for each of the proposed regions obtained in Stage 1. Each proposed region can be

of a different size.

A more detailed account can be found in the orginal paper of MaskRCNN[7].

We use a trained version of MaskRCNN with a set of 371 images on which we

labeled 5 classes of foreground objects: leaders, side branches, spurs, an “other”

branch category used for tree branches that either extended off the side of the

image or did not belong in any of the aforementioned categories, and nonbranch

objects (primarily wires, wooden posts, and ribbons), which is trained using the

detectron2 framework [21] with a ResNeXT backbone more details can be found

in [22].

An alternate choice to MaskRCNN is Mask2Former which is a recently proposed
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framework [2] that works on a transformer-based backend.

3.2 Camera Projection Matrices

A pinhole camera model is used as the defacto standard for projection i.e. world to

image and deprojection i.e. image to world coordinates, An image is formed in a

camera when an object placed at a distance ’d’ infront of a camera with a focal ’f’

the axis along the camera is focal length is taken to be ’Z-axis’ and perpendicular

to it is taken as ’Y-axis’ from the figure by law of similar triangels we get

h′

h
=

f

d

this gives the relationship between the actual object size, the object size in the

image formed and the focal length, distance.

Lets consider the 3D view of this scenario shown in 3.1a

Similar triangles in the above figure reveal

x

f
=

Xc

Zc

⇒ x = f
Xc

Zc

And similarly, we find

y = f
Yc

Zc

Now, we want to establish what pixel coordinates (u, v) correspond to these values

of (x, y). First, we note that the so-called principal point (x = 0, y = 0) has the

pixel coordinates (u0, v0) = (W/2, H/2). Since x and y are measured in meters,
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(a)

(b)

Figure 3.1: In (a) Image Formation and (b) Image Projection is shown, images
taken from [18]

we need to know the width and height of one ”sensor pixel” in the image plane

measured in meters. If the pixel width in meters is ku and the pixel height is kv,

then

u = u0 +
1

ku
x = u0 +

f

ku

Xc

Zc

v = v0 +
1

kv
y = v0 +

f

kv

Yc

Zc

If we define αu = f/ku and αv = f/kv we can formulate the above equations in

matrix form 
u

v

1

 =
1

Zc


αu 0 u0

0 αv v0

0 0 1




Xc

Yc

Zc


Typically αu = αv = α.
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K =


αu 0 u0

0 αv v0

0 0 1


The matrix K is called the intrinsic camera matrix, which gives a relation

between the camera coordinate system and the pixels (Xc, Yc, Zc). Another notable

transformation in the literature is the world coordinate frame, A point in the world

coordinate system is mapped to a point in the camera coordinate system via a

rotation matrix R and a translation t.


Xc

Yc

Zc

 = R ∗


Xw

Yw

Zw

+ t

We can write this transformation law just using matrix multiplication



Xc

Yc

Zc

1


=



Rxx Rxy Rxz tx

Ryx Ryy Ryz ty

Rzx Rzy Rzz tz

0 0 0 1





Xw

Yw

Zw

1


= Tcw



Xw

Yw

Zw

1


where we defined the transformation matrix Tcw in the last equality. It is great

that we can relate the coordinates of different reference frames just by using a

matrix. This makes it easy to compose several transformations, for example, to

go from world to camera coordinates and then from camera to road coordinates.
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It also enables us to get the inverse transformation using the matrix inverse: The

transform from camera to world coordinates is given by the matrix Twc = T−1
cw.

To conclude this section, we combine Eq. (3) and (4) into one single equation:

λ


u

v

1

 =


αu 0 u0

0 αv v0

0 0 1




Rxx Rxy Rxz tx

Ryx Ryy Ryz ty

Rzx Rzy Rzz tz





Xw

Yw

Zw

1


Or by defining the intrinsic camera matrix K and the extrinsic camera matrix

(R | t)

λ


u

v

1

 = K(R | t)



Xw

Yw

Zw

1


The content in this section is adapted from [18], for a more detailed overview

of the subject, it is recommended to read [6].

The intrinsic and extrinsic matrix is readily available in the Intel™RealSense®

SDK [8].

3.3 3D Mesh Generation

3D Mesh generation is a widely studied topic in computer graphics. We use the

Frenet-Serret frame method to generate 3D meshes from the Bezier curve fit to
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the segmentation mask. There always exists an instantaneous reference frame

along a curve called the Frenet-Serret Frame, for point along the Bezier curve

the Frenet Frame described in terms of
−→
T ,

−→
N ,

−→
B Tangent, Normal and Bi-Normal

respectively, can be obtained using the following equations:

T⃗ =
x⃗′(t)

∥x⃗′(t)∥

B⃗ =
x⃗′(t)× x⃗′′(t)

∥x⃗′(t)× x⃗′′(t)∥

N⃗ = B⃗ × T⃗

where the points are sampled points of along a curve instead of functions, namely

piecewise linear curves (connecting the samples by lines). Therefore we need to

calculate the derivatives by means of finite differences. Thus, the tangent vector

for each point x⃗i of our curve can be calculated by

−→
Ti =

x⃗i+1 − x⃗i−1

∥x⃗i+1 − x⃗i−1∥

If we have a point on the ceneter of the bezier as pc = (xc, yc, 0) with a radius

using the frenet-frame we can construct the 3D mesh as follows:

Xp =

−→N −→
B

−→
T pc

 ∗


x(t)

y(t)

0

 (3.1)

Further reading can be done at [5]
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3.4 Width Estimation

Three methods to estimate the width of the branch are used in this project.

Width 1:

In this method points on the branch boundaries are projected to world co-

ordinates and the distance between them is calculated. as shown in the figure

below:

Figure 3.2: The pixels along the width of the branch are projected to world co-
ordinates using the inverse of the projection matrix, the distance between all the
points projected into the world coordinates is averaged to obtain the width, as an
example in the figure, the distance between two points p1 and p2 in the image is
shown to be projected into the world coordinates p1w, p2w and the distance be-
tween them is calculated using the 2-norm

Width 2: A circle is fit to the point cloud and the width is the radius of the

circle that is fit to the pointcloud.

Width 3:

Width is estimated using the viewing angle of the camera and the pixel distance

between two points of the branch, by obtaining a pixel per meter value from the

equation

(b− a) = 2 ∗ d ∗ tan(α
2
)
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Figure 3.3: A segment of the leader across the z-axis is projected into the world
frame and a circle is fit using RANSAC, this procedure is repeated along the length
of the mask, and the median is taken to be an approximation of the treewidth.

where (b − a) is the segment width, d is the average depth and α is the viewing

angle. This procedure is shown in Figure. 3.4 and further details can be found in

[19].

3.5 Method

The steps in the algorithm are as follows

1. Using the MaskRCNN described in this chapter is used to obtain the mask

2. A Bezier curve is fit to the mask of the segmented region to align with the

boundaries of the mask.

3. Width estimation can be done in two ways

•

• Finding the points on the extremities of the branch and calculating the

distance between them
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Figure 3.4: The width estimation using triangulation is described in the above
picture, process starts by getting the average depth along the branch and using
this to calculate the pixel density per meter to estimate the width of the branch

• Fit a circle for the 3d-point cloud along the vertical leader and select

the median radius.

• Triangulation method

4. After the width is obtained a frenet frame is constructed along the bezier

curve to build a 3D mesh representation of the mask.

5. The mesh thus obtained is projected to the image to create the segmentation

mask and produce coco annonations
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Chapter 4: Results

The dataset is collected using the Intel D435i camera on an in lab setup with 3

trees, for the results we shown the radius estimates for the leader of a tree, whose

mean branch width is 15.48mm which is obtained by taking measurements along

the length of the leader and averaging them. The data is collected as a bag file

and is processed using the Intel RealSense [8] SDK.

A MaskRCNN has been used to extract masks in the first phase, and this mask

is used to identify the region of interest in the image, such as the side-branch or

leader and an edge contour image is extracted, as shown in Figure.4.1

Figure 4.1: Left to right shows the actual RGB image, segmentation mask, and
the edges of the branch.

In the next phase, a Bezier is fit to the edges of the image as shown in the

Figure. 4.2 the Bezier curve fit to the center of the image is offset to align with

the boundaries of the image, giving a localization of the branch in the image.

The branch is now projected into 3D world frame coordinates using the depth

information from the camera and the width is estimated using each of the three
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Figure 4.2: The three Bezier curves are shown in the image, the bezier is fit to
align with the center and the bezier on the boundaries is offset from the center to
align with the boundaries of the leader.

techniques described in the previous section. The branch widths obtained using the

three methods are shown in Figure 4.3, it can be seen that RANSAC method may

produce the most outliers while triangulation and actual branch width estimates

produce much closer results to the ground truth. Further examination of these two

techniques can be seen in Figure.4.4.

Triangulation width estimation produces the most accurate estimates, with an

average of 15.76mm while the actual branch width method produces an average

width of 15.96 for a dataset of 235 images. After the branch width is obtained,

the 3d mesh is constructed, an example construction of the 3D mesh is shown in

the figure below:

The mask segment obtained after running and projecting the mesh back to the

image is shown in the figure below:

The mean running time per image analyzed for 235 examples is found to be

1.68 seconds.
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Figure 4.3: The radius estimates across the samples for all three approaches are
shown in the figure, RANSAC estimates are observed to be most divergent due to
the variation in the data for circle fit. While radius calculation along the branch
has been shown to closely approximate the radius of the branch. Triangulation is
shown to give the best results.
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Figure 4.4: The histogram plot for radius estimates from triangulation and radius
along the width of the branch is shown in the figure, the actual radius is also
plotted in red, the triangulation gives a mean of 15.76mm while the other method
gives a mean of 15.96mm while the actual radius is 15.48mm

Figure 4.5: Mesh generated from the branch Bezier estimates
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Figure 4.6: Segmentation mask produced by projecting the mesh back to image
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Chapter 5: Discussion

5.1 Modes of Failure

The method presented might not produce accurate 3D structure in the following

cases:

(a) The mask is split (not clean or missing) 2D curve matches to “average”

between the masks of the leader and side branch and hence the 2D curve is not

aligned with the original image. 5.1

Figure 5.1: The original image, the mask, and the reconstructed mesh are shown
here, the reconstruction is inaccurate due to the split mask

(b) When the depth data is not available along the branch then the width

estimation of the branch fails 5.2.
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Figure 5.2: The width could be not estimated due to the depth unavailability at
the boundaries
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Chapter 6: Conclusion

The project showcases an approach to do 3D reconstruction, width estimation

and segmentation mask generation relying only on RGB and depth data, the mesh

could also be used to augment existing 3D reconstruction systems, another possible

direction of utility is to import these meshes into PyBullet for training. A possible

future research direction would be to use this method directly for L-System-based

modeling to produce more realistic trees.
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