
AN ABSTRACT OF THE THESIS OF

Choo-Chiang, Lim for the degree of Master of Science in Electrical

and Computer Engineering presented on December 8, 1989.

Title : A Programmable System Scheduler For Control Oriented

Local Area Networks (COLAN)

Abstract approved:
Redacted for privacy

James H. Herzog

The Control-Oriented Local Area Network (COLAN) is a

distributed control system for a series of networked

microcontrollers, which has been under development at Oregon

State University since 1986. A reliable master controller, func-

tioning both as a task scheduler and as a network controller, is

required to allow users to perform task programming, the
transmission and reception of commands and data packets, and
network status monitoring.

The Task Master Controller (TMC) has been designed and
developed to provide these capabilities. The TMC provides an

integrated environment to aid in the editing of task programs, the

execution of task programs, the interpretation of program
statements, the manipulation of files, the maintenance of a
communication protocol between the host computer and remote

microcontrollers, the maintenance of a device and task library, and

the display of network status. The TMC provides two different

modes of operation, a user mode and a command mode, to allow

both the novice user and the experienced system developer to use

the system.

The TMC language also includes such basic programming

language elements as conditional statements, repetitive statements,

and block statements. It also includes such built-in functions as

time delay, print message, reception of data, and save response.

These elements provide the skilled system developer with a
powerful tool to program tasks in any desired sequence. It

provides the novice user with a friendly user interface to schedule

tasks by selecting from a menu of high level commands included in

the system library.

A Programmable System Scheduler
For Control Oriented Local Area Networks (COLAN)

by

Choo-Chiang, Lim

A THESIS
Submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of
Master of Science

Completed December 8, 1989
Commencement June, 1990

APPROVED :

Redacted for privacy

Associate Pessor of ES/&kt&al and Computer Engineering in
charge of major

rm
Redacted for privacy

Head of Departmett of Electrical and Computer Engineering

Redacted for privacy

Dean of Graduate(!fhool I

Date thesis is presented December 8. 1989

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my advisor, Prof.

James Herzog, for his guidance, encouragement and support
throughout this study and for the many hours he spent reading my

work and commenting on it while it was being done. I also like to

thanks Prof. Joel Davis, Prof. Roy Rathja and Prof. Bella Bose for

acting as my committee members and for giving me useful advice.

I warmly thank all of my friends and colleagues whose assistance,

encouragements have been invaluable.

Finally I thank my parents and family members for their financial

support and encouragement throughout my education.

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION 1

1.1 Motivation 1

1.2 Background 1

1.3 Multiple Microprocessor Systems 2

1.4 Local Area Networks 4

1.5 TASMASTER Systems 5

1.6 Cotrol-Oriented Local Area Networks 7

1.7 Task Scheduling Problem for COLAN 8

1.8 Objective of the Thesis 9

1.9 Outline of the Thesis 11

2. DATA COMMUNICATION INTERFACE 15

2.1 Overview 15

2.2 Host Computer 15

2.3 Microcontroller System 16

2.4 EIA RS-485 Bus Standard 17

2.5 RS-232C/RS485 Converter 18

3. DESIGN AND IMPLEMENTATION OF TMC SOFTWARE 22

3.1 Overview 22

3.2 Main Program 23

3.3 Communication Protocol 23

3.4 Interpreter 26

3.5 Task Processor 2 7

3.6 Screen Editor 30

3.7 System Library 31

3.8 File Handling 32

3.9 Network Monitoring 33

3.10 User Interface 33

3.11 Miscellaneous 34

TABLE OF CONTENTS (continued)

Chapter Page

4. USER MANUAL FOR TMC SOFTWARE 40
4.1 Overview 4 0

4.2 Installation 4 0

4.3 Getting Started 41
4.4 Using the Menu System 41
4.4.1 Main Menu 42
4.4.2 Quick-Ref Line 43
4.4.3 Editor Window 44
4.4.3.1 User Mode Task Editing 44
4.4.3.2 Command Mode Task Editing 46
4.5 Menu Commands 46
4.5.1 File Menu 46
4.5.2 Edit Command 48
4.5.3 Execute Menu 48

4.5.4 Setup Menu 5 0

4.5.5 Library Menu 51
4.5.6 Netlnfo Command 52
4.6 Basic Task Program Statements 52
4.6.1 Command Package Statements 52

4.6.1.1 Device Address 53
4.6.1.2 Prefix 53
4.6.1.3 Task Number 54

4.6.1.4 Suffix 55

4.6.1.5 Data Field 5 6

4.6.1.6 Echo Requests 56
4.6.2 Data Packet Statements 5 7

4.6.3 Conditional Statements 57

4.6.4 Repetitive Statements 5 8

4.6.5 Block Statements 58

4.6.6 Built-In Function Statements 5 9

TABLE OF CONTENTS (continued)

Chapter page_

5. SUMMARY AND RECOMMENDATIONS 67
5.1 Summary 6 7

5.2 Recommandations for Future Reseach 68

BIBLIOGRAPHY 71

APPENDIX A TMC APPLICATION EXAMPLES 73
A.1 Application Overview 7 3

A.2 Example 1: A Museum Project 7 4

A.3 Example 2: A Greenhouses Temperature
Control Project 76

LIST OF FIGURES

Figure Page
1-1 Tightly Coupled Multiprocessor System 12
1-2 Loosely Coupled Multiprocessor System 12

1-3 System Configuration For TASKMASTER 13

1-4 Network Configuration For COLAN 13
1-5 Robot Arm Using COLAN Configuration 14
2-1 Half-duplex RS-485 Multidrop Network 20
2-2 RS-232C/RS-485 Converter 21

3-1 Flowchart for Establish Asynchronous Communication- 36
3-2 Circular Queue Operations 37
3-3 Syntax Graph For A TMC Statement 38
3-4 Data Structure For TMC Library 39
4-1 The Main Menu 62
4-2 User Mode Task Editing 62
4-3 Command Mode Task Editing 63
4-4 The File Menu 63
4-5 The Execute Menu 64
4-6 The Setup Menu 64
4-7 Device Library 65
4-8 Task Library 65
4-9 Network Status Window 66

A PROGRAMMABLE SYSTEM SCHEDULER

FOR CONTROL ORIENTED LOCAL AREA NETWORKS (COLAN)

CHAPTER 1

INTRODUCTION

1.1 Motivation

The purpose of this research was to develop and implement a

reliable software for the host computer in COLAN (Control Oriented

Local Area Network) to allow users to synchronize and control all

the system activities and monitor the network status.

1.2 Background

The development of VLSI technology during the past decade

has pushed the evolution of the microprocessor to its practical
limits. Methods used to increase microprocessor performance

include increased word (data-bit) length, increased clock speed,

and the use of more sophisticated architectures. However, none of

these factors will continue to increase at the rate experienced
during the past decade. The current 16-bit and 32-bit

2

microprocessors with clock rates of 16 - 25 MHz have achieved a

much greater performance than 8-bit microprocessors operating at

clock rates of 5 12 MHz. However, word lengths of 64-bits or

more operating at speeds beyond 25 MHz greatly complicate

system design. Sophisticated architecture, such as pipelining and

instruction caches, can be used to increase performance, but only

within restricted limits. The one approach that has not reached its

practical limits is the use of multiple microprocessors.

Multiple microprocessor systems can be used to provide an

appropriate solution to the demand for additional computing power

to meet new requirements. They can support complex
applications, ranging from instruments and dedicated control
systems to large supercomputers.

1.3 Multiple Microprocessor Systems

Multiple microprocessor systems can be categorized by the

degree of coupling and the nature of the intercommunication
between processors. Coupling refers to the ability of the various

elements to share resources, with the two extremes being tightly

coupled and loosely coupled systems [FATH 83].

Tightly coupled systems are also known as multiprocessor

systems. Figure 1-1 shows a tightly coupled system, in which the

processors share a common primary memory and bus structure. A

single common operating system is used to control and coordinate

all interactions between processors and processes. I/O facilities

3

and other system resources are generally shared among the
processors. However, some resources may be dedicated to specific

processors. Synchronization between cooperating processors is

needed in tightly coupled system. The major limitation of a tightly

coupled multiple processor organization is the possibility of

primary memory access conflicts. This memory-processor

bottleneck tends to put an upper bound on the number of
processors which can be supported by a single operating system.

Tightly coupled systems must be very carefully designed to use

more than a few processors effectively.

Loosely coupled multiple processor organizations contain a

number of independent processors that can be geographically
dispersed. This type of organization is also known as a computer

network. Figure 1-2 shows a loosely coupled system, in which each

processor has its own local resources and can therefore operate

independently of the other processors. Each processor executes

its own program from its local memory. The various processors in

the system are interconnected via a communication interface. The

communication links are generally high-speed serial lines.

Interprocessor communications follow a rigid communication

protocol. Many multiple microprocessor applications are loosely

coupled systems. Relatively independent microprocessors, each

dedicated to a particular task, operate simultaneously and
communicate only when necessary. This breaks the memory-

processor bottleneck, since each processor has its own local
memory and operating system.

1.4 Local Area Networks

A local area network (LAN) is a loosely coupled multiple

processor organization. Since 1980, LANs have been used to

interconnect computers, terminals, workstations, data base
servers, and other peripheral devices within a building or local

group of buildings. Some of the basic characteristics of a LAN

include [COTT 1980]:

A high rate of data exchange (0.1 to 100 Mbps);

A high degree of data transfer accuracy (less than one
undetected error per 1012 bits - 1 trillion characters);

Low hardware cost (less than $1,000 per network
connection, with the anticipation of future declines as

logic costs continue to decline);

High network reliability/availability through the use of

state-of-the-art transmission technology (i.e., a failure

results in the disconnect of one user or microcomputer,

but without damaging the network); and

Geographically local structure (a range of 300 10000 ft).

As factories and offices move toward automation, the use of

LANs for sharing information and computer-related resources is

expected to increase in like proportion.

5

1.5 TASKMASTER Systems

The TASKMASTER system is a task-driven distributed

microcontroller system developed at Oregon State University. The

system was created to test the idea of a simple real-time control

system utilizing multiple microcontrollers controlled by a single

scheduler 'HERZ 87].

The original TASKMASTER system was organized with a host

computer (PC) as the system scheduler. Individual microcontroller

based boards, called TASKMASTERs, link to the host and each

other in a daisy-chain structure (Figure 1-3). The host computer is

used to schedule, control, synchronize and coordinate all the

system activities by sending a command packet to each of the

TASKMASTER units as appropriate. These activities are carried out

by the TASKMASTER units using their specialized application
interfaces. At the request of system scheduler, data collected by

TASKMASTER units can also be transferred back to host computer.

In other words, the host computer serves as the system's master
controller for a series of slave microcontrollers. The

TASKMASTER units are strategically located to maximize
equipment availability and to provide for graceful system
degradation should the system fail.

Commands to the TASKMASTER units are in a "task" format.

The tasks are commands that utilize the resources of the
microcontroller to perform a specific action. The resources are the

various pieces of interface hardware used in the specialized control

and monitoring activity. Each task is a preprogrammed subroutine

6

written specifically to accomplish a specific action in the context of

the control problem. The various tasks available to the system are

permanently stored in the local program memory of the individual

microcontrollers. A typical task command packet usually consists

of the following information:

(1) Address : Specifies the destination microcontroller.

(2) Prefix : Specifies the methods or conditions under

which the task is to be started. A task may be added to

the local task queue, executed immediately or execution

may be delayed until the arrival of a "sync" command

from the host.

(3) Task Number : Identifies the specific task to be
performed.

(4) Postfix : Specifies the methods or conditions under

which the task is to be terminated. Tasks may be

discarded after execution or may be requeued for repeat

running.

(5) Parameters : A task may require specialized data or

further specification before it can run.

Two special characters, "{" and " } ", are used to indicate the start

and the end of a packet. By the proper sequencing of tasks,

complex control and monitoring activities can be performed [HERZ

87).

7

1.6 Control-Oriented Local Area Networks

The TASKMASTER system was modified to change its

interconnection structure from the daisy-chain to that of a LAN.

These modified systems, called COLAN, for Control Oriented LAN,

were designed to bring high performance control networks within

such structures as factories, school or offices.

The first COLAN was developed in 1986 by Y. P. Zheng [ZHEN

86]. Since that time five different types of COLANs have been

implemented, including COLAN II [KAO 87], COLAN III [EUM 87],

COLAN IV [THYE 88], and COLAN V [KUMA 89]. Each of these

systems utilizes a different approach to the implementation of a

network.

The basic COLAN configuration (Figure 1-4) consists of

several microcontrollers and a host computer linked to a local area

network by a RS-485 bus. The bus topology provides a simple but

effective way of realizing a decentralized control structure of a LAN.

The RS-485 bus standard is adopted to achieve a high performance

with a low cost twisted-pair cable. It supports data rates up to 10

Mbps with a 50 ft cable, or 100 Kbps with a 4000 ft cable. At a data

rate of 9600 baud, the RS-485 bus of COLAN can operate with a

cable length up to 4000 ft.

The host computer and the microcontrollers are connected

to the RS-485 bus through an RS-232C/RS-485 converter which is

used to change the RS-232C communication standard to RS-485

communication standard, or vice versa. RS-232C is a commonly

used asynchronous serial data communication standard and, is

8

supported by both the host computer (PC) and microcontrollers

used in COLAN. However, the maximum cable length supported by

RS-232C is limited to 50 ft. This is not sufficient for many real-

time distributed control applications. RS-485 communications

standard, on the other hand, allows for a longer cable length. The

RS-232C/RS-485 converter provides an interface between the host

computer and microcontroller and the RS-485 bus in order to have

a longer data communication range.

1.7 Task Scheduling Problem for COLAN

From the development of the initial COLAN to the

implementation of COLAN V, system design has been concentrated

on the establishment of a communication standard and protocol

method, as well as on the development of a microcontroller
operating system. The principal function of the host computer

program is limited to sending and receiving commands and data

packets to and from the microcontrollers on the network. The

host programs generally consists of menu driven routines that allow

the user to select a specific microcontroller (called NIUs or
Network Interface Units [THYE 881) and the task that it is to be
executed. None of these programs, however, provide what was

originally intended for the TASKMASTER system: A system

scheduler that provided control and synchronization for all of the

connected microcontrollers. While these programs are sufficient to

test the network reliability, they are too primitive for real-time,

9

practical applications. Therefore, in order for COLAN to be used in

real-time applications, the primary need was to develop a task
scheduler to synchronize the system activities and handle flow
control of communication packets.

For example, a robotic arm system, as shown in Figure 1-5,

utilizes a microcontrollers at each of three joints, Each monitors a

position sensor to provide closed-loop control. In addition, the

joint processor can perform some of the computation necessary to

execute a motion command. A central scheduler is required to

handle the user interface and gives directions to each of the joint

processors by sending sequences of task commands to all the joint

processors concurrently. The design and implementation of a task

scheduling software will be the main topic of this thesis.

1.8 Objective of the Thesis

The objective of this project is to design the Task Master

Controller (TMC), a programmable task scheduling software which

has the functions and capabilities discussed in the previous section.

More specifically, The TMC includes the following features :

Communication protocol: A communication protocol
routine to maintain reliable communication sessions
between the host computer and the slave microcontrollers

in the network.

Editor: An on-screen editor for task programming

10

(scheduling). A task program is a sequence of task
commands for the network microcontrollers.

File manipulation functions: File manipulation functions

including loading files, creating new file, or saving edited

files, are made available to the user.

Interpreter: A interpreter is invoked to check the syntax

of task program and assure system compatibility.

Task processor: A task processor is needed to execute the

task program. Task programs are executed in sequential

order in two basic ways: run and single step.

Flow control statements: Statements such as if/then/else

and repeat statements are provided for program flow
control.

Built in functions: Built in functions such as WAIT for

response, Time DELAY, and PRINT message are provided

to enhance performance of task program.

User interface: TMC provide a friendly menu-driven style

of user interface. All operations are activated by a press of

a key.

Network Monitoring: At any time, a user can obtain a list of

active microcontrollers which can be accessed through the

TMC.

The TMC also provides two different modes of operation for

different categories of users. The command mode is designed for

such expert users such as system developers. In this mode, tasks

are entered directly from the keyboard in a predefined command-

11

packet statement format. The user mode is designed for general or

novice users. In this mode, task programming is accomplished by

the selection of a series of desired tasks from a predefined list (by

the system developer) in the task library.

All responses received by the TMC from the slave

microcontrollers are displayed immediately on the response
window. Users can then choose to save all or part of the responses

into a file for subsequent analysis.

The TMC offers network users a friendly environment to

perform the task programming process. In the hands of an expert

programmer, the TMC can be used as an extremely effective
development tool.

1.9 Outline of the Thesis

Following the introduction to the COLAN system and the uses

of the TMC discussed in this chapter, the hardware
implementation for the host computer and the system

communication interface are considered in Chapter 2. Chapter 3

includes an analysis of the design and implementation of the TMC

program. More detailed TMC operations are considered in Chapter

4, which may also be used as a TMC user manual. The final chapter

provides a brief summary of the findings of this study and provides

suggestions for further development. Examples of useful
applications are given in Appendix A.

Processor Processor Memory I/O

Address, data and control buses

Figure 1-1. Tightly Coupled Multiprocessor System.

Local buses

Processor

Processor

Memory

12

Command /Data
link

Memory

--f-- ---f--
Local buses

Figure 1-2. Loosely Coupled Multiprocessor System.

System
Scheduler

13

Micro-
controller

Micro-
controller

Micro-
controller

4,

Application Environment

Figure 1-3. System Configuration for TASKMASTER

Host
Computer

Ma aNaa MI IMMIa, a a. al MI a a a

RS 232/485
Converter

RS-232C

RS-485 BUS

RS 232/485
Converter

Micro-
controller

RS 232/485
Converter

Micro-
controller

Application Environment

RS 232/485
Converter

Micro-
controller

Figure 1-4. Network Configuration for COLAN

14

Host
computer

Joint
processor

Position feedback

H
Joint

processor

Joint
processor

Robot
arm

....116

Figure 1-5. Robot Arm Using COLAN Configuration.

CHAPTER 2

DATA COMMUNICATION INTERFACE

2.1 Overview

15

The hardware of COLAN consists of a number of nodes linked

into a local area network by a twisted-pair cable. The hardware of

each node consists of two components, a processor (host computer

or microcontroller) and the RS-232C/RS-485 converter, which is

used to provide the physical level data communication interface

between the processor and the RS-485 communication bus. The

following sections describe the implementation of a data
communication interface based upon a simple RS-232C/RS-485

converter.

2.2 Host Computer

The data communication standard supported by the host
computer is based upon an RS-232C serial interface. A standard

IBM PC serial communication port, either COM1 or COM2, is used

to provide half-duplex, asynchronous serial communications at a

data rates ranging from 300 to 9600 baud. No additional interface

16

boards or other hardware modifications are required for the PC
host.

2.3 Microcontroller System

Two different types of 8-bit microcontroller, the Intel 8051

and the Motorola 68CH11, have been successfully used on the
COLAN. Each of these microcontrollers has a self-contained
asynchronous serial data port which is used for data
communications. Since all communication in the COLAN uses the

conventional asynchronous serial protocol, any microcontroller or

microprocessor which supports a serial port can be used.

A microcontroller based system, or TASKMASTER unit, is

used to provide both the data communication interface and
specialized application interface. In addition to the CPU chip, the

microcontroller based system includes ROM, RAM and I/O chips.

Additional hardware requirements are strongly application
dependent.

The simple serial interface circuit consists of a RS-232C line

driver (1488) and line receiver (1489) pair, and a DB-25
connector. In some cases, a specialized serial communication

coprocessor can be added to perform the serial communication.

17

2.4 EIA RS-485 Bus Standard

The RS-232C standard is the most widely used method for

asynchronous serial data communications of 50 feet or less and is

compatible with most computers, including the IBM PC. However,

for many real-time, distributed control system applications,
communications over longer cable lengths are required. The RS-
485 is the EIA standard recommended for long distance
asynchrounous serial data communication.

The RS-485 bus uses balanced, or differential, drivers and

receivers, each of which requires two wires per signal. This

approach offers several advantages. Noise induced in the cable by

electromagnetic interference affects both wires equally and the

logic states represented by the differential voltage is not affected as

strongly as in RS-232. Because of this immunity, high voltage

swings between logic 1 and logic 0 are not needed for noise
immunity as in the RS-232. Small voltage swings mean less cross

talk between adjacent wires, thus longer cable can be used.
Smaller voltage swings can also be made quickly, allowing the use of

higher data rates.

When a 24-gauge twisted-pair cable (i.e., standard telephone

cable) is used, with a capacitance of 16 pF/ft and a 100 SI
termination resistor at the receiver, the RS-485 bus supports a data

rate of up to 10 Mbps for a 50 ft cable and up to 100 kbps for a

4,000 ft cable. Up to 32 drivers and 32 receivers can be connected

to the system through a bidirectional bus. Figure 2-1 illustrates a
half-duplex RS-485 multidrop network.

18

2.5 RS-232C/RS-485 Converter

The RS-232/RS-485 converter provides the interface
between the host computer or microcontroller and the system bus

by converting the PC's RS-232C communication signals to the RS-

485 communication signals used in the COLAN system bus. The

RS-232C/RS-485 converter consists of a differential line receiver

(75175), a differential line driver (75174), an inverter (7404), and

RS-232C drivers/receivers (MAX232). Figure 2-2 indicates the RS-

232C/RS-485 converter circuit diagram.

The differential line receiver and driver are tri-state gates;

when disabled, the output is in a high-impedance state. This allows

the use of these drivers in systems with multiple transmitters. The

line drivers have two outputs, forming a differential signal pair.

The input is the data transmitted from the RS-232C.

The line receiver has exactly the opposite configuration, with

two differential inputs and an output of data compatible with the

RS-232C standard. The tri-state control for the line driver is
driven by a control signal from the microcontroller. In the case of

host computer, the control signal is the request-to-send (RTS)

signal, an RS-232 control signal provided through the PC serial

port. An inverter is used to provide a complementary control

signal for the line receiver, When the line driver is enabled for data

transmission, the line receiver is disabled, and vice-versa. This

prevents the unnecessary loop-back of the transmitted data through

the line receiver. In the default mode the line receiver is enabled

until data transmissions are required.

19

It is important to note that all RS-232C signals commonly

operate with signal levels of +12 volts and -12 volts, and the line

driver and receiver operate on 0 to +5 volt signal levels (TTL
signals). This incompatibility in signal levels requires the use of

additional RS-232C drivers and receivers (MAX 232) to convert RS-

232C signals to the TTL signal level, and vice versa.

control

20

i RXD1

DM
1

i
t
1

DU

1

i

RXD I

control

I 1 I 1
I I i

I I I t
t I I 1

I I I
I
t

I
I

I
I

control RXD control DD

Figure 2-1. Half-duplex RS-485 Multidrop Network

RS - 485 BUS

2 3

74174 74175
3 7404

13

Require to Send
(RS-232C INPUT)

10 MAX232

MAX232 MAX232

21

Received Data
(RS-232C OUTPUT)

Transmitted Data
(RS-232C INPUT)

Figure 2-2. RS-232C/RS-485 Converter

22

CHAPTER 3

DESIGN AND IMPLMENTATION OF TMC SOFTWARE

3.1 Overview

The TMC Task Scheduler program is written in Turbo Pascal,

Version 5.0. The program is divided into 10 logical modules:

main program,

communication protocol,

interpreter,

task processor,

screen editor,

system library,

file handling,

network monitoring,

user interface, and

miscellaneous.

The design and implementation of each of the above modules is

discussed in the following sections.

23

3.2 Main Program

The main program initializes all the variables, including such

global variables as the communication parameters, the monitor type

(MGA, CGA, or VGA), foreground and background colors, and menu

variables, as well as the system library. Control is then passed to

the main menu, consisting of such selections as file handling, task

program editing, task program execution, environment setup, the

update of devices and the task library, or network status
monitoring. In most cases, selection leads to a pull-down menu or

subsequent pop-up menus with a number of other options.
Depending on the user's choice, a series of functions or procedures

are called to carry out the selected command.

3.3 Communication Protocol

The most important part of the TMC program is the com-
munication protocol, which is used to establish the

communications between the PC and the microcontrollers attached

to the network. The communication protocol routines are used to

control the RS-232 serial port, the INS8250 universal
asynchronous receiver-transmitter (UART), the 8259 interrupt
controller, and the RS-232C/RS-485 converter. In addition, these

routines specify baud rate, parity, stop bits, data bits, and serial
port selection.

24

The communication protocol uses interrupt 12 WORT 85] to

provide simple telecommunications capability. The RS-232C/RS-

485 converter is used to connect the host computer serial port to

the network. The main program block calls several procedures and

functions, outlining the steps necessary to establish asynchronous

communications. These steps are shown on the flowchart in Figure

3-1. The following paragraphs describe the detail functions of each

procedure.

Set serial_port

This procedure uses the BIOS interrupt 14h to set the serial

port to the parameters defined by the user. In this procedure,

register AH is set to 0, which tells the BIOS to initialize a serial

port. Register AL is set to a parameter byte whose bits contain the

communication settings. Register DX is set to 0 for COM1 or 1 for

COM2.

Enable_port

The interrupt is installed by procedure Enable_port. This

procedure saves the old interrupt vector address, installs the new

interrupt vector (address) of the interrupt handler routine
Asynclnt. Whenever an interrupt is caused by an incoming
character received from the slave microcontrollers in the network,

Asynclnt is called to store the character in a circular buffer.
Enable_port also prepares the INS8250 DART chip for

communications.

25

Send_packet or Receive packet

After the serial port is initialized and the interrupt is in-

stalled, control is passed to either the procedure send_packet or

receive_packet. The first transmits the task command packet to

one of the distributed units character-by-character and the second

receives a data packet from the network character-by-character.

Prior to transmitting the packet, the line transmitter on the RS-

232C/RS-485 converter board is enabled by an RTS signal
generated by the send_packet procedure. All received packets are

displayed in the response window.

Disable_port

In the final step in the communication procedure,
disable port is used to install the original interrupt in the interrupt

vector table and to reset the UART chip.

A circular input buffer is one of the central elements of an

interrupt-driven communications program. Because data can arrive

at the serial port any time, the interrupt handler must be able to

capture and process that data while the computer is processing
other functions. If the interrupt fails to store the data characters in

a buffer, the characters will be lost before the program has time to

capture it.

A circular buffer is used to resolve this problem by providing

temporary storage for the received data characters until such time

that the PC can catch up with stream of input characters. The cir-

cular buffer is controlled by three integer variables: Circln, CircOut,

26

and CharslnBuf. CircIn points to the next character that the
interrupt routine places into the input buffer, and CircOut points to

the next character to be taken out of the buffer. CharslnBuf reflects

the number of characters waiting in the buffer.

Figure 3-2 shows the operation of the circular buffer. When

no characters are in the input buffer, CircIn and CircOut are equal

and CharslnBuf is zero. When data arrives at the serial port, the

interrupt routine adds the incoming characters to the buffer and

increments both CircIn and CharslnBuf. This buffer is "circular"

because when the end of buffer is reached, CircIn is reset to 1, or

the beginning of the buffer.

The procedure GetCharinBuf is used to determine whether

CharslnBuf is greater than zero, indicating that characters are
present in the buffer. If CharslnBuf is greater than zero, the
characters in the buffer are removed, CharslnBuf is decremented,

and CircOut is incremented. Thus, CircOut constantly polls CircIn

to determine when there are no characters remaining in the input

buffer. At present the buffer size is limited to 1 Kb, which should

be more than adequate for most communications purposes.
However, the buffer size can easily be changed in the TMC source

program.

3.4 Interpreter

The interpreter performs line-by-line syntax analysis of the

task program. The basic method used is called "top-down parsing"

27

since it consists of top-down attempts to reconstruct the
generating steps from their start symbol to the final symbol. The

task program is a sequence of statements, each of which defines an

action to be carried out by the task processor. In this sense, the

TMC is a sequential programming language, i.e., statements are

executed sequentially in time and never simultaneously. In general,

the parser is intended to recognize six kinds of task program
statements: block statements, conditional statements, repetitive

statements, command packet statements, data packet statements,

and built-in function statements. The parser is a direct translation

of the syntax graph illustrated in Figure 3-3, which reflects flow

control during the process of parsing a sentence. The detailed

format of the command packet statement and the data packet
statement are discussed in Chapter 4.

3.5 Task Processor

The task processor is of crucial importance to the TMC
program since it analyzes and executes program statements. This

processor encompasses three basic functions. The first function

calls the send_packet procedure to transmit packets if the
statement is either a command or data packet.

The purpose of the second processor function is to

manipulate program flow control. When a conditional statement is

encountered, the processor evaluates the condition. If the
condition is not matched, it sets the skip flag to FALSE so that the

28

subsequent statements are skipped until the reserved word ELSE is

encountered, following which the skip flag is reset to TRUE. On

the other hand, if the condition is matched, the converse of the

above operation is carried out. The skip flag is set to TRUE and is

reset to FALSE only when the reserved word ELSE is encountered.

In both cases, the skip flag will reset to TRUE when the reserved

word ENDIF, indicating the end of a conditional statement, is
found.

For repetitive statements, a counter is used to track the
number of times a following statement, including block statements,

must be executed. The counter is decremented each time it
executes the statement. This process continues until the counter

reaches zero, following which the next statement will be executed

in continuation of the execution process. If the statement followed

by the repetitive statement is a block statement, or a series of
statements enclosed by the reserved words BEGIN and END, then a

pointer is used to indicate the beginning of the block statement so

that whenever END is encountered, control can again be returned

to the first statement.

The last task processor function is to execute the built-in

functions, a number of which are provided to enhance the TMC

task scheduling performance. These functions include WAIT,

DELAY, PRINT, PRINTF, SAVEON and SAVEOFF.

WAIT

The WAIT function is used to suspend the task program
execution until a response expected from the microcontroller is

29

received by the receive_packet procedure. A timer is set to 1

second and if the response is not received within that time, a
decision statement like IF NORSP THEN or IF RSP THEN can be

used to determine the next set of tasks to be performed. An error

message can also be displayed using the PRINT function discussed

below.

DELAY

The DELAY function, based on the DELAY procedure defined

in Turbo Pascal built-in procedure and function library [TURB 88],

is used to delay any period of time defined by the user in seconds.

PRINT AND PRINTF

The PRINT function displays messages in a message window,

which may be either a warning or a reminder to the operator. On

the other hand, PRINTF writes the message to a response file as a

comment for received data, e.g., the address of the microcontroller

where the data came from and its meaning.

SAVEON AND SAVEOFF

The SAVEON and SAVEOFF functions are used, respectively,

to turn on and off the save response flag. All received responses are

saved to a response file when the response flag is on. However, in

either case (PRINT or PRINTF), received responses are displayed

in the response window.

30

3.6 Screen Editor

The editor procedure provides a built-in screen editor for the

editing of the task program. The user can edit the program within

the editor window, a window consisting of 19 horizontal lines.

When all 19 lines within the window have been filled, the screen

automatically scrolls up one line.

The editor procedure continuously checks the keyboard to

see if a key has been pressed. The keys are divided into three

groups: cursor movement keys, function keys, and character keys.

The cursor moment keys consist of the four arrow keys, i.e., left,

right, up, and down, plus the PgUp and PgDn keys, and are used to

control the cursor movement on the screen. The function keys

include F7 and F8 as well as the DEL and INS keys. Pressing F7

deletes one line, while pressing F8 causes the insertion of one line.

The DEL and INS keys are used, respectively, to insert or delete

one character. The last group of keys available for editing includes

all of the character keys.

The WhereX and WhereY functions are used to track the

current cursor position. They are updated each time a key is
pressed. The GotoXY function is used to move the cursor to the

new position specified by the coordinates X and Y. The

display_task procedure is used to update the editor screen when

required.

31

3.7 System Library

The system library provides a support environment to allow

novice users to prepare task programs. It consists of a device

library and a task library. The device library contains a list of all the

microcontrollers attached to the network. Devices (or

microcontrollers) can be added to or deleted from the library list.

The task library consists of all the tasks that each microcontroller

can perform. The task list is updated by the system developer in a

method similar to using the editor.

The syntax of each task command packet is checked by the

interpreter. In this manner, the novice user can be assured that

each task command packet used is presented in the correct syntax.

Each listed task also comes with a brief description of the actions it

performs. These descriptions can also be used as a task commands

by the noivce user for task editing. In other words, the detailed

(and unfriendly) packet format is hidden from the user. In this

fashion, the novice user can edit tasks using friendly "high level"

statements.

It is important to note that the system library is only as

current as the user makes it. If new controllers are added or

deleted, these changes will not be reflected in the library unless

the system developer updates the library accordingly. The

procedure for updating the task library is similar to the editing

procedure. After the task command is entered the cursor moves to

the description field instead of moving to the next new line.

32

The entire library utilizes a dynamic data structure, with

memory allocated for the creation of new device task lists only

when the added microcontroller is placed on the device list.
Similarly, memory is deallocated when a microcontroller is
disconnected from the network. Accordingly, memory allocated for

the task library is always kept to a minimum. The data structure for

the system library is shown in Figure 3-4.

3.8 File Handling

The file handling routines consist of the following file and

directory management procedures and functions:

Load file: loading a file from the TMC list of support files in

current directory;

New file: creating a new file for editing;

Save file: saving the current editing file;

Write file: saving the current editing file under another

file name without modifying the name currently in use;

Change Directory: changing the default directory to
another directory.

Exit to DOS: temporarily exiting the TMC program to

DOS, returning to TMC by typing "Exit"; and

Quit: exiting the TMC program, returning control to DOS.

33

These features are implemented by calling the corresponding

standard Pascal library procedures and functions, including ChgDir,

Findfirst, Find Next, and GetDos[TURB 88].

3.9 Network Monitoring

The network monitoring procedure is used to poll (send a

testing packet to) all the microcontrollers in order of their address.

The results provide current microcontroller status (i.e., active or

inactive) so that the user can be readily aware of the address of the

microcontrollers in use.

3.10 User Interface

One of the principal motivations underlying the design of the

TMC is that novice users can use the program with relative ease. A

significant portion of the TMC program is devoted to the creation

of an effective user-program interface. The result is a user-friendly,

menu-driven program which allows anyone to easily follow simple

directions to achieve desired actions. The user interface routines

consist of procedures and functions for the creation of a main
header line menu, pull-down menus, pick-from-list menus, and
pop-up windows.

34

3.11 Miscellaneous

All of the procedures and functions which do not fit into the

above categories are placed in this section, including the
procedures to set up the program environment and to create help

and error messages, as well as check key input and sound
generating functions.

The procedure ChgVar is used to change or set up the
program environment, including the communication parameters

(baud rate and COM port), and to change the task programming

mode from user to command and vice versa. It also turns on and off

the save response flag. Changes can be made by simply pressing

the Enter key to toggle the setting.

Context sensitive help and error messages are available to the

TMC user. Help files are first generated using the TMC_help.pas

program. To create the help function, the user assigns a constant

equal to the help name and defines a record for that assignment.

Constants must be defined consistently in both the TMC_help.pas

and TMC programs.

Unlike help messages, error messages are stored in memory.

There is a defined array, ErrorMessStr, which contains the
messages that are popped-up when an error occurs. The main

routine checks for a non-zero error number and reports the error
when it occurs.

Finally, there are several key decoding routines used to

decode the function keys, the Esc key, the Space bar, and the
Return (Enter) key. Procedures are also included to generate

35

sound when an error occurs or to provide a warning to the user in

such situations as when an exit program command has been
received and files have not been saved.

36

Start D

Set_serial_port

Enable_port

V

Send_packet or
Receive_packet

Disable_port

C Stop,...)

Figure 3-1. Flowchart For Establish Asynchronous Communication

Unused

A
CircIn = CircOut = 1

(a) An empty queue

A
maxsize

The Queue Unused

A
CircOut = 1

A
Circln

(b) The queue with unread characters stored

A
maxsize

Unused The Queue Unused

A
1

A
CircOut CircIn

(c) The queue in (b) at a later time

A
maxsize

Rear Queue Unused Front Queue

A
1

A
Circln

A
CircOut

(d) The queue in a wrapped state

Figure 3-2. Circular Queue Operations

A
maxsize

37

ELSE STATEMENT

STATEMENT

COMMAND PACKET

ENDIF

4 DATA PACKET)

FUNC11ON CALL

Figure 3-3. Syntax Graph For A TMC Statement

39

DEVICE #0

DEVICE #1

DEVICE #2

DEVICE #3

NOT IN USE

NOT IN USE

NOT IN USE

NOT IN USE

NOT IN USE

NOT IN USE

TASK
LIBRARY

#0
UNIVERSAL

TASKS

TASK
LIBRARY

#1
USER SPECIFIED

TASKS

TASK
LIBRARY

#2
USER SPECIFIED

TASKS

TASK
LIBRARY

#3
USER SPECIFIED

TASKS

Figure 3-4. Data Structure For TMC Library

CHAPTER 4

USER MANUAL FOR TMC SOFTWARE

4.1 Overview

40

The TMC program, designed to run on IBM-PC/XT/AT/386

or compatible computers, provides a number of features to aid the

user with task scheduling and system development. Software

operations, including software installation, the use of menu
commands, and the structure of the task program, are provided in

the following detailed descriptions.

4.2 Installation

The TMC software packet is composed of TMC.EXE,
TMC.HLP, and TMC.LIB, which include, respectively, the executable

file for the TMC, the help file, and the library file. It is

recommended that software for the TMC be installed in its own

subdirectory. The following steps will complete this installation :

(1) insert the TMC diskette in drive A,

(2) change to the root directory (cd \) on C: drive,

(3) make a subdirectory for TMC (md TMC),

41

(4) change to the \TMC directory (cd TMC), and

(5) copy all files from the diskette to the \TMC subdirectory

(copy a:tmc.* c:\TMC).

4.3 Getting Started

To start the TMC, enter "TMC" at the DOS prompt, after the

introductory message a "plug and play" system menu is displayed.

This menu provide three option: Main Menu, Run and Quit.

(1) Main Menu : The main menu allows the user to go into

the integrated development envirnoment.

(2) Run : The Run option allow the user to run the default
task program (TMC.CMD) without going into the

integrated development envirnment. This option provides

a faster and simpler way for noivce user who just wants to

run a program already developed by the system developer.

(3) Quit : Exit the TMC program.

4.4 Using the Menu System

When main menu option from the system menu is selected,
TMC will enter the integrated development environment, shown in

Figure 4-1. The main screen consists of four parts: a main menu,
the editor window, the response window, and the quick reference

42

(Quick-Ref) line.

To provide familiarity with the TMC system, some of the

navigating basics are as follows:.

(1) Select a highlighted capital letter to choose a menu item,

or use the arrow keys to move the cursor to the option,

then press the enter key.

(2) Press the esc key to exit the menu.

(3) Use the right and left arrow keys to move from one menu

to the next.

(4) Press the Fl key for context sensitive information relative

to the cursor position (i.e., help in menu selection or
editing).

(5) Press the F10 key to invoke the main menu.

4.4.1 Main Menu

The TMC main menu bar, located at the top of the main
screen, offers six choices:

(1) File: File handling operations (loading, saving, creating, or

writing to disk), the manipulation of directories
(changing), quitting the program, and invoking DOS.

(2) Edit: Allows the creation and editing of task program files.

(3) Execute: Checking and running the task program.

(4) Setup: Allows changes in communication parameters, sets

43

the operating environment, and enables or disables the

response auto-save function.

(5) Library: Allows updating of both the device list and the

corresponding task library.

(6) Net Info: Displays the status of the entire network.

Note that two of the main menu items provide only one option:

Edit simply invokes the editor and Net Info displays only the
network status. However, the other menu items lead to pull-down

menus with a large number of options.

4.4.2 Quick-Ref Line

The Quick-Ref line at the bottom of the screen displays "hot

keys" which perform specified actions. To select one of these

functions, press the listed key:

(1) <F1> is help. Pressing this key opens a help window

which provides information on the TMC commands.

(2) <Esc> is cancel. Pressing this key cancels the current
selection.

(3) <Arrow>. All of the arrow keys are movement keys,
moving the cursor either left, right, up, or down.

(4) <Enter> is select. Pressing this key selects a command.

(5) <F10> is the menu key, calling the main menu.

44

4.4.3 Editor Window

To get into the editor window, select (move the cursor to)

the edit option on the main menu and press Enter. Statement are

entered and edited line-by-line (active lines are indicated by a

highlighted bar) in the editor window. The screen scrolls when

the editor window is full. The editor commands used most often

are summarized below:

Scroll the cursor though your text with the up/down,

left/right, and pgup/pgdn keys.

Insert lines with the F7 key.

Delete lines with the F8 key.

Insert characters with the Ins key.

Delete characters with the Del key.

There are two different approaches to task program editing, one

for novice users and the other for users experienced in system

development. Each is explained in the sections 4.4.3.1 and 4.4.3.2

respectively.

4.4.3.1 User Mode Task Editing

In the user mode, the response window on the left side of the

screen is replaced by a task list window, as shown in Figure 4-2.

Task programming is accomplished as follows:

45

(1) Use the up and down arrow keys to move the highlighted

bar to the line where the desired statement is to be
entered.

(2) Move to the task list window by moving the highlighted

bar with the right arrow key and select a predefined task

from the task list. The selected task will automatically be

transfered to the task program editor at the desired
position.

Repeat these two steps until the entire task program is completed.

Note that typing is not necessary in these operations. The default

task list is a universal task list, listing all of the tasks that can be

applied to each of the remote micrcontrollers in the network, in-

cluding the "friendly blink" and "abort" tasks, as well as conditional

statements, block statements, repetitional statements and built-in
functions. Table 4-1 provides the library of the universal tasks

[LORN 89] available for the system developer to enter into the TMC

system library when required while in the task list window,
pressing the Esc key will pop-up the device list. Selecting a device

from the list will replace the current task list with the task list for

the selected device. In the user mode, the F2 key is used for
program indentation. Each time the F2 key is pressed, the
selected line will be indented by adding three spaces at the
beginning of the line. A maximum of two level indentation is

allowed. Pressing the F2 key again will cancel the indentation.

46

4.4.3.2 Command Mode Task Editing

In the command mode, task editing resembles text editing in

most conventional line editors. The TMC task editor has an simple

structure. The maximum line width is 40 characters. Each line

can contain single or multiple task commands or data packets.

However, a long packet is not to be split into two lines. Users

should break up longer data packets into a smaller packets, each

with a maximum line length of 40 characters. Press the enter key

at the end of each line to proceed to the next line. Each time the

enter key is pressed, the syntax of the line is checked by the
interpreter, and an error message will be displayed if an error is

found. Figure 4-3 shown an example of command mode task
editing.

4.5 Menu Commands

The main menu contains the major selections for loading task

files, editing, checking syntax, and running the task program. The

six options included in the menu are described in the following
sections.

4.5.1 File Menu

The file pull-down menu offers a variety of choices to load

47

existing files, create new files, and to save files. When a file is

loaded, it is automatically placed in the editor. When file editing is

completed, it can be saved to any directory under any non-
conflicting file name. In addition, this pull-down submenu can be

used to change to another directory, temporarily return to the DOS

shell, or to exit from the TMC. The file menu is shown in Figure 4-

4. File menu functions are described as follows:

(1) Load: Loads a file when a file name is selected from a list

of file choices. In the user mode, the listed files have an

".usr" extension. Similarly, in the command mode the

listed files end with a .cmd extension. Users are not able

to load a file into the wrong environment. When trying to

load another file, the user will be asked to verify if there

are already unsaved or modified files in the editor.

(2) New: Specifies that a new file is to be created. By default,

when entering the editor, this file is called either

"noname.usr" in the user environment or "noname.cmd" in

the command environment (this name can be subsequently

changed when the file is saved).

(3) Save: Save the file in the editor to the disk. When the file

name is presented, the editor will ask if the file should be

renamed.

(4) Write to: Writes the file to a new name or overwrites an

existing file.

(5) Change dir: Displays the current directory and allows the

user to change to a specified drive and directory.

48

(6) OS shell: Leaves the TMC and returns to the DOS prompt.

To return to the TMC, type "exit" at the DOS prompt and

press the enter key. This is useful when DOS commands

must be run without quitting the TMC.

(7) Quit: Quits the TMC and returns the user to the DOS

prompt.

4.5.2 Edit Command

The Edit command invokes the built-in screen editor. The

main menu can be invoked from the editor by pressing F10.
However, the source text display remains in the editor window; the

user can return to this display by reselecting the edit command.

4.5.3 Execute Menu

As shown in Figure 4-5, there are three options in the
execute menu: check, run, and step.

(1) Check (in command mode only): The check command

invokes syntax checking for the current task program.

This is a redundant function since the TMC provides an

interpreter to check syntax line-by-line during the process

of editing the task program. However, selection of check

allows the user to edit the task program in another word

49

processor and to load it into the TMC only for execution.

In this case, it is strongly recommended that the check be

used to determine the accuracy of the task program syntax

prior to execution of the task program. It should be noted

that if an external word processor is used to edit the task

program, it should be limited to line lengths of 40
characters per line in order to fit into the TMC editor

window. Files created by external word processor are

restrited to contain ASCII keys only, control characters are

not allowed.

(2) Run: The Run option is used to execute a task program.

The TMC executes the program currently in the editor.

The program will normally run to the end unless a run-

time error is encountered. The user can stop the ex-
ecution of the program at any point by hitting the
character "P" (Pause) key.

(3) Step: The step command allow users to step line-by-line

through the task program. The TMC will execute a

program one line at a time. Each time the enter key is

pressed, TMC executes one more line. With this feature

program operation can be tested, line-by-line, from start

to finish. In addition, the F9 key can be used to execute

the same line repeatedly. In this case, the user can
transmit the same packet or packets repeatedly without

advancing to the next line.

50

4.5.4 Setup Menu

The Setup menu is shown in Figure 4-6, it contains the
settings which determine the operation of the integrated
environment, including the communication parameters and the
user's environment. All settings are changed by toggling the se-

lection.

(1) Com Port: This command sets the serial communication

port at either COM1 or COM2. The default setting is
COM1.

(2) Baud Rate: Data transmission speed is set by selecting the

appropriate baud rate at either 300, 600, 1200, 2400,
4800, or 9600 baud. The default baud rate is 300.

(3) Environment: The TMC provides two different operating

environments, user mode and command mode, designed

for novice users and expert programmers respectively. In

the user mode the actual command and data packet
formats are hindden from the user and a greater
proportion of high level statements (e.g., 'Turn On Switch

#1" or "Increase Light Intensity") are used. High level

commands are defined and stored in the task library by
the system developer. The default environment is user
mode.

(4) Save Response: The save response feature provides an

option to record all responses received in a text file. This

allows the user to save responses from remote

51

microcontrollers for subsequent analysis. The responses

are saved in a text file with the same name as the task

program file, but with a file extension of ".rsp". The save

response default is "no."

4.5.5 Library Menu

The library menu allows the system developer to maintain a

library, including devices and their corresponding tasks, by
updating the library when new microcontroller units are added to

the system. Existing devices and tasks can also be renamed or

deleted and new commands can be inserted into the task list.
When updating the task list, two types of information are required:

the command packet and a description of its functions. The latter

also serves as a high level command for the novice user in the user

mode. Similar to editing a task program in the command mode,

when a packet is entered, the interpreter checks the packet syntax

to assure that its format is free of error. In this manner, novice

users can be assured that the packets associated with the high level

commands are also error free. Note that the first device 00, is

reserved for universal commands which cannot be replaced or
deleted. Though not recommended, associated tasks can be
changed or deleted, including words reserved for conditional

statements, repetitive statements, block statements and such
universal tasks as friendly blink and abort task. The device library

and task library are shown in Figure 4-7 and 4-8 respectively.

52

4.5.6 Netlnfo Command

The Netlnfo command provides status information on the

entire network, displaying the address, status (active or off), and

name of each device. The Netlnfo. window is shown in Figure 4-9.

4.6 Basic Task Program Statements

The TMC consists of six types of statements: command

packet statements, data packet statements, repetitive statements,

conditional statements, block statements, and built-in function

statements.

4.6.1 Command Packet Statements

The command packet is also known as TASK. The general

format for command packet statements is as follows:

{ AA P TT S DD DD DD DD DD /}

The curly braces are characters which indicate the beginning and

the end of a packet. The other parameters in this format are
described in the following sections:

53

4.6.1.1 Device Address

The device address, AA, is a pair of hexadecimal numbers

which identify the destination of the command packet. For

example, 07:15.1 addresses a remote device controller unit with an

address of 07. Note that address 00 is reserved as a universal

address, addressing all of the remote microcontrollers in the
network. Therefore, (00:15) is directed to all remote microcon-

trollers.

4.6.1.2 Prefix

The prefix, P, is a single pre-execution control character

used to specify the execution priority of a task. Three types are

available as follows:.

":" Queued Task. The task is placed on the task queue. It

is executed only when it reaches the head of the queue

and the execution of the current task is completed.

"?" Synchronized Task. This task, similar to the queued

task, is placed at the end of the task queue. It is executed

only when the task reaches the head of the queue and the

execution of the current task is completed. However,

execution does not begin until a synchronizing command

from the TMC is received.

"1" Immediate Task. This is the highest priority task.

54

These tasks are not placed in the queue, but are run
immediately. The current running queue task (if any) is

temporarily suspended and resumed after completion of

the immediate task. An immediate task cannot be
interrupted by another immediate task. If an immediate

task is issued while another immediate task is running,

the second immediate task will be ignored. The execution

of an immediate task can only be stopped before
completion by issuing an abort task command.

For example, with a parameter of {09:15.}, Task 15 is placed

on the task queue of microcontroller unit 09 and will be run upon

completion of all other queue tasks already stored in the task
queue. The parameter {07 ?13.} indicates that task 13 is placed on

the task queue of microcontroller unit 07 and will be run upon

completion of all other queue tasks already stored in the task queue

and the receipt of a synchronized signal. In turn, {05!0A.} indicates

that task OA is to be executed immediately by microcontroller unit

05. The currently running queue task is suspended.

4.6.1.3 Task Number

The task number, NN, is a two-character hexadecimal task

number which determines which task is to be performed. The

queue-management task and other standard utilities are usually
provided by the microcontroller operating system. Additional

55

custom and specific application tasks are defined or written by the

system developer.

4.6.1.4 Suffix

Three suffixes, S, designations determine the terminating

mechanism:

"." indicates that the task is discarded after execution.

"+" indicates that the task will be requeued following

execution and run again when it reaches the head of the

queue. Requeued tasks always remain in the queue until

they are discarded by the host.

"*" indicates that the task will be queued a certain number

of times. The number of times it will be repeated is given

by the first argument (i.e., 01 = once, 00 = 256 times).

After the specified number of repetitions, the task will be

discarded by the local operating system.

For examples, (07:15.) indicates that task 15 will be placed

on the queue and will be executed only once. Following execution,

the local operating system will discard task 15. A designation of

(07:15+) indicates that task 15 will be requeued following
execution. It will be executed and repeated until it is discarded by

the system scheduler. In the designation (07:15*03}, task 15 will

be requeued twice and executed three times. Following the third

56

execution, task 15 is discarded by the local operating system.

4.6.1.5 Data Field

The data field, DD, is optional and consists of 0 to 5 pairs of

hexadecimal numbers. These numbers indicate that the host
computer is passing data, arguments, or encoded instructions to a

remote microcontroller for use in executing a task. Some of the

tasks do not require arguments and the argument is therefore
omitted. If the task is run in the "*" mode, only four arguments can

be specified because the first argument is used to determine the

number of times the task is to be run. Examples of valid commands

include: (07?13-1-1234), {07U3.1122334455}, (08I15.) and
07?04*03112233441.

4.6.1.6 Echo Requests

The echo statement, "/", is also optional. Any command

which includes the "/" character will be echoed back (without the

"/") to the host computer from the microcontroller. Brackets ("[

rather than curly braces ("()") are used to enclose the command.

This echo allows the host to verify the correct reception of the
command.

57

4.6.2 Data Packet Statements

The command packet statement can include five data pairs of

hexadecimal numbers. However, in cases when it is necessary to

send longer data streams to a remote microcontroller, then the

data packet statement should be used. The format of data packet

statement is as follows: [DATA].

Anything enclosed within paired brackets is a data packet

statement. The data can be a string of characters of a length of 40

characters, or the length of the editor window. Data with a length

longer then 40 characters is to be split into two or more packets.

For example:

[012333456789ABCDEF]

[THIS IS A TEST]

4.6.3 Conditional Statements

The conditional statement specifies that a statement can be

executed only if a certain condition is true. If it is false, then either

no statement is executed or the statement following the reserved

word "ELSE" is executed. Note that TMC provides two built-in

conditions, RSP (responded) and NORSP (not responded), and an

operator to compare greater than, less than, or equal to conditions.

For example:

58

WAIT

IF NORSP THEN

{03:05.}

ELSE

(03:06.)

ENDIF

WAIT

IF DATA > 10 THEN

{04:0A.}

ELSE

(04:0B.}

ENDIF

4.6.4 Repetitive Statements

Repetitive statements specify that certain statements are to

be executed repeatedly. The argument for a repetitive statement

specifies the number of repetitions required. For example:

REPEAT 3

{OA:09.12345678)

4.6.5 Block Statements

A block statement is used if more than one statement is

59

specified. It consists of any number of statements enclosed within

the reserved words, BEGIN and END, specifying that the
component statements are to be executed in the sequence in which

they are written. For example:

REPEAT 5

BEGIN

{01:034 (08:0A.12345678}

(04:0B./)

(05:0C.)

END

4.6.6 Built-In Function Statements

The following are the TMC standard functions:

(1) WAIT: Wait for a remote microcontroller to respond. A

typical expected response is the acknowledge message

from a microcontroller to indicate that some task has been

completed successfully. If the remote microcontroller

does not respond within one second following the issuance

of the wait command, then execution is suspended and a

"NO RESPONSE" error message is displayed. The process

can continue by pressing the enter key.

(2) DELAY: Delay for certain amount of time. The delay time

is specified by the user as an argument. For example,

60

DELAY 2.5 will cause a delay of 2.5 sec. This function is

generally used to wait for the completion of a task prior to

issuing an order for another task. For example, a task to

move a robot arm from position x to position y could take

five seconds to accomplish and the next task will not be

issued until the robot arm reaches position y. Inserting a

DELAY 5 statement between the two tasks will accomplish

this goal.

(3) PRINT: The print statement allows the user to print a

message on the screen. Generally, this message is to

inform the operator that a manual control, e.g., push a

button or turn on a switch, must be carried out. It also

serves as a warning message to operators, including
statements such as "temperature is too high."

(4) PRINTF: The printf statement allows the user to add
comments to a response file. Recall that this file consists

of responses received from remote microcontrollers. The

user can add such comments as "these are the responses

from unit OA" or "this is the temperature reading." By

adding comments, data recorded in the response file can

analyzed easily at a later time.

(5) SAVEON: The saveon statement saves the response,
informing the TMC processor that subsequent responses

from remote microcontrollers must be saved in the
response file.

(6) SAVEOFF: Disables saveon, causing the TMC to ignore

subsequent responses.

61

Task # Task Name j Format Function

'00' 'RSET 1{00:00.) or { %}

'01'

'02'

CLRQ

ABRT ,

{00 :01.} clears queue

aborts task during execution{001024

'03' SYNC {001034 starts a task waiting for sync-signal

'04' I HALT {00!04.} halts queue processing

'05' CONT (00105.) resumes halted queue processing

'06' i KILL (00106.) kills task during execution

'07' !NULL 1(00:07.) no operation

'08'

'09'

I1NFT

I DUMQ

1{00:084

I {00:09.}

never ending task

displays contents of task queue

'OA' 1POLL {00:0A.} displays address and event register

'08' 11-ITOM (00:08.23D0) transfers data host -> internal memory

'OC'

'OD'

i
1MTOH

IHTOX

{00:0C.21}

(00:0D.F00380)

sends contents of int. byte to host
transfers data host -> ext. memory

'OE' I XTOH 1{00:0E.F002} transfers data ext. memory -> host

'OF'

'10'

I PAUS

1RESM

1{0010F.}

1(001104

suspends task during execution

resumes a paused task

'11' DELT {00!11.15} delete task by task number

'12' I DELE (001121 B) delete task by entry number

'13' 1DLAY I (00:13.05) delays queue processing

'14' BEEP (00:14.) sends an audio signal to the host

'15' , BLNK (00:15.) visual signal: friendly blink

'16' !DUMP (00:164 downloads INTEL Hex File

'17' IP1TH (00:17.) send contents of P1 to host

'18' I HTP1 i {00:18.F9 writes byte to internal port 1

'19' 1SYNT I (00:19.15) synchronizes queue task by task number

'1A' 1ADVC {0011A.} advance sync task and change status

'1B' GOTO I (00:18.3B7C) jumps to address given

'1C' !EXIT (00:1C.52F3) exits from XMSIBY to address given

'1D. I BAUD {0011D.40} sets the baud rate

'20' I TIME (07:20.235959) sets the system clock

'21' I TINT {07:21:000003} sets a relative timeout value

'22' TOUT {07:22.150000) sets an absolute timeout value

'23' I TCNT {07:23.D0} sets timer status register (23H)

'24' I SNTH (07:24.) displays all timer registers

'26' I TTOH (07:26.) sends the system time to the host

Table 4-1. List of Universal Tasks

62

File Edit eXecute Setup Library Netlnfo

Echo & ResponseTask Program

<F1>- Help <Esc>- Cancel <Enter>- Select <Arrow>- Move <F10>- Menu

Figure 4-1. The Main Menu

File Edit eXecute Setup Library Net Info

Task ListTask Program
SAVE RESPONSE
PRINTF THIS IS THE DATA FROM UNIT #1"

REQUEST FOR DATA

WAIT FOR RESPONSE

IF DATA > 100 THEN

PRIM' WARNING : TEMP. TOO HIGH"

ENDIF

IF DATA > 80 THEN

TURN THE HEATER OFF

ENDIF
IF DATA < 70 THEN

TURN THE HEATER ON

ENDIF

REQUEST FOR DATA

TURN THE HEATER ON

TURN THE HEATER OFF

<F1>- Help <Esc>- Cancel <Enter>- Select <Arrow>- Move <F10>- Menu

Figure 4-2. User Mode Task Editing

63

File Edit eXecute Setup Library Netinfo

Echo & ResponseTask Program
SAVEON

PRINTF 'THIS IS THE DATA FROM UNIT #1"

{01 : 01.}

WAIT

IF DATA > 100 THEN

PRINTF "WARNING : TEMP. TOO HIGH"

ENDIF

IF DATA > 80 THEN

{01 : 02.}

ENDIF

IF DATA < 70 THEN

{01 : 03.}

ENDIF

<F1>- Help <Esc>- Cancel <Enter>- Select <Arrow>- Move <F10>- Menu

Figure 4-3. Command Mode Task Editing

File Edit eXecute Setup Library Netinfo

Load Echo & Responsesk Program
New
Save
Write to
Change dir
OS shell
Quit

<F1>- Help <Esc>- Cancel <Enter>- Select <Arrow>- Move <F10>- Menu

Figure 4-4. The File Menu

64

File Edit eXecute Setup Library Netlnfo

Task Progr Check Echo & Response

Run
Step

<F1>- Help <Esc>- Cancel <Enter>- Select <Arrow>- Move <F10>- Menu

Figure 4-5. The Execute Menu

File Edit eXecute Setup Library Netlnfo

Task Program ComPort COM1

Baud Rate 300
Environment USER
Save Response NO

<F1>- Help <Esc>- Cancel <Enter>- Select <Arrow>- Move <F10>- Menu

Figure 4-6. The Setup Menu

65

File Edit eXecute Setup Library Netinfo

Device
0 : UNIVERSAL

1 : LIGHT UNIT #1
2 : LIGHT UNIT #2
3 : SOUND UNIT
4 : PROJECTOR #1
5 : PROJECTOR #2
6 : NOT IN USE
7 : NOT IN USE
8 : NOT IN USE
9 : NOT IN USE

<F1>- Help <Esc>- Cancel <Enter>- Select <Arrow>- Move <F10>- Menu

Figure 4-7. Device Library

File Edit eXecute Setup Library Netlnfo

COMMAND ACTION

(01 :
(01 :

(01 :

(01 :

01.)

02.1

03.
03.

31370000)
37310000}

TURN ON PROJECTOR #1
TURN OFF PROJECTOR #1

PHASE IN PROJECTOR #1
PHASE OUT PROJECTOR #1

<F1>- Help <Esc>- Cancel <Enter>- Select <Arrow>- Move <F10>- Menu

Figure 4-8. Task Library

66

File Edit eXecute Setup Library Net Info

Task Program Echo & Response

NUM STATUS DEVICE NAME

0 ACTIVE UNIVERSAL

1 ACTIVE LIGHT UNIT #1

2 ACTIVE LIGHT UNIT #2

3 ACTIVE SOUND UNIT

4 ACTIVE PROJECTOR #1

5 ACTIVE PROJECTOR #2

6 OFF NOT IN USE
7 OFF NOT IN USE

8 OFF NOT IN USE

9 OFF NOT IN USE

<Fl>- Help <Esc>- Cancel <Enter>- Select <Arrow>- Move <F10>- Menu

Figure 4-9. Network Status Window

CHAPTER 5

SUMMARY AND RECOMMENDATIONS

5.1 Summary

67

In this study the design and implementation of the Task
Master Controller (TMC), a programmable system scheduler for

COLAN, a distributed control system, has been performed. The

primary goal of this project was to design a powerful, user-friendly

scheduler that would allow both the novice user and the system

developer to schedule tasks on a host computer. An improved

network interface unit (NIU) was also developed to provide a data

communication interface between the host computer and the
network RS-485 communication bus.

The TMC designed and implemented for this study has the

following general characteristics:

The TMC includes a reliable communication driver to

assure communication sessions between the host
computer and designated microcontrollers in the network.

The TMC allows users to edit the task program. For

novice users, high level language statements are used in

place of the low level symbolic statements used by
experienced system developers.

68

The TMC provides an interpreter which checks the syntax

of task program statements.

A task processor is used to execute the task program.

Conditional and repetitive statements are provided for

program flow control.

Helpful built-in functions, such as "wait for response" or

"print message", have been included to enhance system

performance.

The TMC has file handling commands to enable the user to

manage the host computer system.

The TMC provides a friendly menu-driven style of user

interface. Users can activate any operation by simply

pressing a key.

5.2 Recommendations for Future Research

The TMC is a preliminary design of a programmable system

scheduler for COLAN. Areas of concern which require further

design and improvement are listed below:

Flow control: At present, the TMC provides only two basic

flow control statement, i.e., conditional and repetitive

statements. Additional flow control statements which

should be added include a For/Next statement and a While

statement. Moreover, the TMC does not currently support

nested flow control statements, which is a restriction

69

which should be lifted in future developments.

Variables: The TMC does not currently include variables

and it would be desirable to have the ability to declare a

number of different variable types, such as integer, real, or

character. The data received from remote mi-
crocontrollers could then be assigned to these variables.

At present it is assumed that the data received is
expressed in integers and is assigned to a default integer

variable, DATA.

Arithmetic and boolean operations: Arithmetic and

boolean operations can be added to the TMC to perform

these types of operations on the received data. Decision

could then be made, based on the results of these
operations.

Subroutines and functions: Subroutines and functions are

two structures that should be added to the TMC. The
current program version allows only the sequential
execution of the user's program. Repetitive statements

must be executed in a loop or be rewritten for each
execution. The inclusion of subroutines would provide an

easier means of accomplishing repetitive commands, and

would make the program code more readable.

Comments: Comments should be allowed in the user
program, especially since the program is written in a low

level language format. Comments would help other users

understand the program and make it more readable.

70

The implementation of the above recommendations would

require an evolutionary modifications of the interpreter and the

task processor.

[BORL 88]

[coT-r 80]

71

BIBLIOGRAPHY

Borland International, Turbo Pascal Reference and
User's Guide V 5.0, Scotts Val ly, CA, Borland Int.,
1988.

I.W. Cotton, "Technologies for Local Area Computer
Networks," Computer Networks, Volume 4,
November 1980.

[EUM 87] D. Eum, COLAN III, A Control-Oriented LAN Using
CSMA/ CD Protocol, unpublished master's thesis,
OSU, Corvallis, OR, 1987.

[FATH 83] E.T. Fathi and Moshekrieger, "Multiple
Microprocessor Systems: What, Why, and When,"
IEEE Computer, March 1983.

[HERZ 87]

[KAO 87]

J.H. Herzog and T.G. Zhang, "A Design Methodology
for Distributed Microprocessors in Real-Time
Control Applications," Preceedings of Second
International Conference on Computers and
Applications, Beijing, China, June 1987.

S. Kao, Design of COLAN II, A Control Oriented Local
Area Network, unpublished master's thesis, OSU,
Corvallis, OR, 1987.

[KUMA 89] R.C. Kumar, COLAN V, A High Performance Local
Network for Control and Communication Utilizing a
Cmmunication Coprocessor, unpublished master's
thesis, OSU, Corvallis, OR, 1989.

[LORN 89] E. Lorenz, TASKMASTER OPERATING SYSTEM
Reference Manual, unpublished project report, OSU,
Corvallis, OR, 1988.

72

[NORT 85] P. Norton, The Peter Norton Programmer's Guide to
the IBM PC, Washington, Microsoft Press, 1985.

[O'BRI 89] S.K. O'Brien, TURBO PASCAL 5.5, The Complete
Reference, Borland-Osborne/McGraw-Hill, 1989.

[SLAT 87] M. Slater, Microprocessor-Based Design, A

Comprehensive Guide To Effective Hardware Design,
Mayfield Publishing Company, 1987.

[THYE 88] Y. Thye, COLAN IV, A Network for Communication
and Control, unpublished master's thesis, OSU,
Corvallis, OR, 1988.

[WIRT 76] N. Wirth, Algorithms + Data Structures = Programs,
Prentice-Hall, Inc., 1976.

[ZHEN 86] Y. Zheng, A simple Local Area Network, COLAN
(Control Oriented Local Area Network), unpublished
master's thesis, OSU, Corvallis, OR, 1986.

APPENDIX

73

APPENDIX A

TMC APPLICATION EXAMPLES

A.I Application Overview

Using the various TMC task formats and proper sequencing of

tasks allows a great deal of flexibility to accomplish control
requirements. A typical application environment in which a
distributed control system can be effectively used consists of
multiple stepper motors. Each motor is under control of a single

microcontroller. The coordinated activity of several motors could

be used to position a robot mechanism or other complex
mechanical system.

However, the application of COLAN is not limited to a factory

environment. COLAN can be used at any place where a process must

be monitored and adjusted. Applications such as temperature and

humidity control, fire protective sprinkler system, experimental

data collection are valid candidates.

The following section provides two simple application
examples to demonstrate how to use TMC for Task scheduling.

74

A.2 Example 1 : A Museum Project

A museum project is currently being designed and developed

at Oregon State University. The museum project provide enhanced

controllers for, a cassette player (device #01) multiple light
dimmers (device #02) and multiple slide projectors (device #03) to

put on an educational performance for the museum visitors. The

following shows a portion of the task program used in this project.

(01 : 01.) PLAY CASSETTE MESSAGE

DELAY 20 DELAY 20 SECOND

WAIT WAIT FOR RESPONSE

IF RSP THEN IF RSPONSE THEN

(02 : 01. 31370000) INCREASE LIGHT#1 INTENSITY

ELSE ELSE

PRINT "NO RESPONSE ERROR"

ENDIF ENDIF

DELAY 30 DELAY 30 SECONDS

(01 : 01.) PLAY CASSETTE MESSAGE

DELAY 60 DELAY 60 SECONDS

WAIT WAIT FOR RESPONSE

IF RSP THEN IF RESPONSE THEN

(02 : 02. 37310000) DECREASE LIGHT#1 INTENSITY

ELSE ELSE

PRINT "NO RESPONSE ERROR"

75

ENDIF ENDIF

DELAY 30 DELAY 30 SECONDS

REPEAT 3 REPEAT 3 TIMES

BEGIN BEGIN

(03 : 01. 010000) PHASE IN PROJECTOR #1

DELAY 10 DELAY 10 SECONDS

(01 : 01.) PLAY CASSETTE MESSAGE

DELAY 30 DELAY 30 SECONDS

WAIT WAIT FOR RESPONSE

IF RSP THEN IF RSPONSE THEN

{03 : 02. 000100} PHASE OUT PROJECTOR #1

(03 : 03. 010000) PHASE IN PROJECTOR #2

DELAY 10 DELAY 10 SECONDS

{01 : 01.} PLAY CASSETTE MESSAGE

DELAY 20 DELAY 20 SECONDS

(03 : 04. 000100) PHASE OUT PROJECTOR #2

ELSE ELSE

PRINT "NO RESPONSE ERROR"

ENDIF ENDIF

END END

(02 : 03. 00000000) TURN OFF LIGHT #1

The program begins with playing the sound of the displayed

animal, for example a polar bear, and then waits for 20 seconds to

allow for the completion of playing one segment of message on the

76

cassette tape. When the response (indicated by the end of a
segment) from the cassette recorder unit is received, the program

turns on a light (light #1), which is the spot light that focuses on

the polar bear. The intensity of the light will increased from off to

full brightness. Then it is followed by an introductory message

from the cassette player. After the message is played, the light

intensity is reduced to one-half in preparation for a slide show. At

this point the program will enter a repeat loop. Within the loop

two projectors will display the slide photograph of the polar bear

lifestyle alternatively. The display is accompanied by an explanatory

message recorded on the tape. After looping three times (six

slides), the polar bear display is complete. The program turns off

the spot light that focused on the bear and proceeds on to the next

exhibit. Note that the left hand side of the program is the format

used by system developer program, the right hand side program is

an example of novice user's program format.

A.3 Example 2 : A Greenhouse Temperature Control Project

This program is designed to monitor and control the heating

in a series of greenhouses. Each microcontroller unit, for example

device #01, is assigned to a greenhouse, and is assumed to be

attached to a thermostat that provides it with the temperature.

The task is currently not implemented, but it will suffice for an
example.

77

SAVEON SAVE RESPONSE

PRINTF " THIS IS THE DATA FROM UNIT #1"

{01 : 01.1 REQUEST FOR DATA

WAIT WAIT FOR RESPONSE

IF DATA > 100 THEN

PRINT " WARNING : TEMPERATURE IS TOO HIGH "

ENDIF

IF DATA > 80 THEN

(01 : 02.) TURN OFF THE HEATER

ENDIF

IF DATA < 70 THEN

(01 : 03.) TURN ON THE HEATER

ENDIF

PRINTF " THIS IS THE DATA FROM UNIT #2 "

This program shows how the conditional statement can be

used. The program started with "turn on the save response flag" so

that the subsequence responses will be saved. The printf statement

places headings on the responses received. The next task is to
request for temperature data from greenhouse #1. When the data is

received it will check to see whether it is too high (above 100). If

it is too high, a warning message will displayed on the screen. The

program then determine whether the heater needs to be turned on

or off; If the temperature is above 80° C the heater will turned off,

78

if the temperature falls below 70° C then the heater will turned on

again. The program then proceeds to check the next greenhouse

(#2) temperature controller and the same process repeats.

