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Chapter I
INTRODUCTORY STATEMENT

A. Rationale

In the Pacific Northwest the Cascade Mountain Range separates
the humid mesothermal climates of the western portion from the dry and
humid microthermal climates of the intermontane region to the east.
Both regions exhibit similar annual precipitation regimes characterized
by mid-winter maximums and summer drought (Trewartha, 1968, p. 316-
318; Kerr, 1951, p. 28-29). The dominance of cyclonic storms in the
winter months and the dry subsiding northeastern 1imb of the sub-
tropical high in summer account for the strong seasonal variation of
precipitation.

In the seasonal transition period of spring and early summer,
significant differences in the organization of the precipitation
régimes between the interior intermontane and the region west of the
Cascades become apparent. The regional differences are reflected in
mean monthly precipitation statistics with virtually all stations
west of the Cascade crest indicating systematic decreased in precipi-
tation from midwinter maximums through the spring months to midsummer
minimums in July (Philips, 1948, p. 144). In contrast, stations east
of the Cascade crest decrease from midwinter maximums through the
months of February, March and April and then typically record

1



increases in precipitation in May and (or) June.

The secondary spring maximum of the Pacific Northwest
Interior has been identified by John C. Sherman (1947, p. 66-72) and
Glen T. Trewartha (1962, p. 275-278). Using 1910-1940 as a normal
period, Sherman presented isohyetal maps for each month of the year
for eastern Washington. Many stations within the region exhibited
increasing monthly precipitation means in May and June, and Sherman
inferred that this phenomenon was due to increased frequency of
thunderstorms. Trewartha treated the Pacific Northwest Interior as a
precipitation subtype (2C), and indicated that the secondary
maximum was the fesu]t of surface low pressure and the formation of a
500 millibar trough over the region in May and June.

The regional integrity of the secondary maximum of the
Pacific Northwest Interior is also verified by the work of Bryson and
Horn (1960, p. 157-171). The authors analyzed precipitation using
the method of harmonic analysis. The harmonics represent the
contribution of the annual, biannual, and triannual variation in
yearly rainfall. Figure 3 in Bryson and Horn is the ratio of the
second harmonic to the first harmonic (biannual/annual), and the
large contribution of the biannual term in the interior of the
Pacific Northwest is quite evident (Fig. 1 in Appendix). Only a
few Northwest stations were analyzed by Bryson and Horn; consequently
detailed regional characteristics could not be ascertained.

Rudd noted the inadequacy of utilizing the climatic c1assif1-
cation scheme of Koppen for Oregon (Rudd, 1959, p. 31-38; Koppen and

Geiger, 1931, p. 195). Utilizing the winter maximum formula of
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Koppen, much of eastern Oregon falls within the classification of a
humid microthermal climate. Rudd questioned the validity of most of
eastern Oregon being classified as humid and suggested the use of
the even distribution rainfall formula of Koppen, noting that the
biannual nature of the rainfall regime supported this modification.
Rudd noted that some eastern Oregon stations actually indicated a ‘
primary maximum in May and June and that a relative three-month
breakdown of seasons indicated: 28% of the annual precipitation in
January, February, and March; 28% in April, May and June; 13% in
July, August, and September. Rudd did not investigate the origin or
regional extent of the May-June secondary max imum.

The secondary late spring maximum of precipitation of the
Pacific Northwest Interior is particularly unique in that virtué]]y
all cyclonic disturbances are Pacific in origin, moving from south-
west (west) to northeast (east) across the region (Klein, 1957, p.
145-169). This meteorological fact would indicate that the secondary
maximum of the interior is a consequence of physical processes
operating within the region itself, coupled with seasonal changes
occurring upwind to the west. The physical processes of the interior
are operating on meteorological disturbances moving eastward across
this region, causing an increased precipitation yield in the interior

in contrast to decreasing yields west of the Cascades.

B. Precipitation Climatology and Mean Value Analysis

The traditional view of climate classification focuses on
the analysis of mean monthly values of climatological parameters.

The commonly utilized classification systems of Koppen (1931),



Trewartha (1965, p. 223-238), and Thornthwaithe (1931, p. 633-655),
are all based on monthly means derived from a significant period of
record (at least 30 years). While long term mean values are quite
useful in delineating broad regional groupings which may correspond
to slow response indicators (natural vegetation, landforms and soil
types), the system is inadequate when analysis is confined to smaller
regions and to temporal characteristics of meteorological parameters.
This inadequacy is especially acute with respect to precipitation
climatology.

Precipitation is a deécrete event that is associated with a
particular atmospheric circulation paftern. Ih arid, semi-arid, and
even most humid mesothermal climates, precipitation events (days) are
outnumbered by non-precipitation events (days)/ The analysis of
meteorological parameters derived from mean values will describe only
minimally the controls and atmospheric kinematics that are producing
the precipitation even since non-precipitation events contribute the
majority of the input to the mean climatology. This problem is
especially significant in arid and semiarid climates.

Hence, it is doubtful that examination of mean monthly
circulation maps will elucidate the meteorological processes which
are producing the increased springtime precipitation of the interior
of the Pacific Northwest. The precipitation circulation features will
be masked by the preponderance of non-precipitation circulation
events incorporated in the mean. 1In order to detect the characteris-
tics of atmospheric circulation which typify the changing precipita-

tion climatology, the atmospheric characteristics of precipitation



events (as well as non-precipitation events) must be assessed
separately.

The categorization of circulation features from synoptic data
for the western United States has been cdmpi1ed by Richard Sands
(1969). Sand categorized a total of 105 upper air and surface
circulation features from daily synoptic charts. Cfrcu1ation features
were correlated for only maximum precipitation producing patterns,
and since winter months are maximum precipitation periods in the
Northwest the features tend to be biased toward winter patterns.

A direct correspondence between springtime precipitation
and springtime circulation features is not available from Sands' data.
Some insight into the type of feature that may be responsible for the
April to May-June precipitation increases can be detected by simply
examining those circulation features that have peak occurrences in
May and June and especially those features that have large relative
increases in occurrence across the March through June period. The
upper air features which satisfy this criterion are features 3, 4, 16
and 19 on pages 17, 19, 43 and 49 (Fig. 2-5 in Appendix). Feature 4
is particularly noteworthy in that the frequency profile coincides
almost perfectly with the change in mean monthly precipitation for
the Northwest interior. Basic atmospheric kinematics would imply
that the precipitation should be maximized over the interior for this
particd1ar feature. The total number of occurrences of this feature
is not particularly high for the five-year period and might not
contribute significantly to a mean circulation map, yet it may be

that this feature or other similar types are responsible for the



majority of the springtime precipitation of the interior of the
Pacific Northwest. This study will, in part, identify the prevai1ihg
circulation patterns both at the surface and at 500 millibars that
are responsible for precipitation in the period from March through
June.

This research inquiry will investigate the unique springtime
precipitation regime of the interior Pacific Northwest with emphasis
placed on the following topics:

A. An evaluation will be made of the regional extent and
temporal progression of the secondary maximum in the Pacific Northwest
utilizing both mean monthly precipitation statistics and short term
means for selected stations. Analysis will include an evaluation of
relative change characteristics from west to east of the springtime
precipitation of the Northwest and temporal precipitation intensity
characteristics of selected regions.

B. An evaluation of the mean atmospheric circulation
patterns at the surface and 500 millibars will be undertaken for the
period March through June. Synoptic patterns will be stratified and
compiled on the basis of precipitation and non-precipitation
producing events in order to categorize a precipitation and non-
precipitation climatology for the period under consideration.

C. An analysis of the vertical distribution of meteorological
“variables will be undertaken. Primary consideration will be given
to the temporal changes in organization of precipitable moisture,

" vertical temperature gradient, and an appropriate measurement of

atmospheric stability for precipitation events.
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D. A case study of a representative late spring precipitation
event in the Pacific Northwest will be presented.

E. An assessment will be undertaken of the springtime
terrestrial heat inputs. The regional temperature fie]d will be
expressed as a function of both sensible and latent heat contributions.
This will be undertaken to ascertain whether the coastal and interior
heat budgets have seasonal change characteristics similar in nature to
the springtime changes in mean precipitation. Equivalent potential
temperature data are available from a doctoral theses by Val Mitchell

for the Western United States (Mitchell, 1969).



Chapter II

TEMPORAL AND REGIONAL CHARACTERISTICS OF THE
SECONDARY MAXIMUM OF PRECIPITATION AS
DEFINED BY MEAN PRECIPITATION
STATISTICS

A. Relative Change in Mean Monthly Precipitation
in the Pacific Northwest, Utilizing
the Normal Period 1931-1960

The secondary spring maximum of precipitation of the interior
of the Pacific Northwest has been identified by Sherman (1947),
Trewartha (1962), and Rudd (1959), but little research has been done
on the regional distribution and temporal change characteristics of
the phenomenon. The question remains: does the secondary maximum
have a defined regional organization or does the distribution reflect
a randomness that might be explained by the moderately high variance
one finds in monthly precipitation means in arid and semi-arid
regions? |

In responding to the above question, monthly precipitation
normals for the (1931-1960) period were examined for over 300
stations in the Pacific Northwest, utilizing climatological summaries
for Washington, Oregon, Idaho, Nevada, and California. Map 1
indicates the Tlocations of‘the'stations utilized. Table 1 in the

appendix gives a complete 1ist of the stations and their elevations.
8
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The examination of actual pre;ipitation totals would shed very little
light on the regional extent and magnitude of the secondary maximum
since orography will strongly regionalize the magnitude of a given
monthly mean. Therefore, for each station the relative monthly
changes in mean precipitation were calculated (Dixon,'1945, p. 293).
The monthly total was adjusted to a 30-day month (Conrad and Pollack,
1950, p. 237). Relative changes in precipitation were expressed as
the percentage increase or decrease in mean monthly precipitation
from one month to the succeeding month for each statidn. Example:

February to March percentage change = (March - February) X 100
February ’

The following is a presentation of the pattern of change of
precipitation from February through July with emphasis on the states
of Oregon.and Washington. For the sake of brevity, westside will
refer to the region west of the Cascade crest in either Washington or
Oregon, and eastside will refer to the region east of the Cascade
crest in either Washington or Oregon. More specific regions will be
didentified in the text.

During the winter months in the Pacific Northwest, cyclonic
storms frequently move across the region on a southwest to northeast
trajectory (Klein, 1957, p. 145). These storms transport warm,
moist air masses which are caused to rise pseudoadiabatically over
orographic barriers and frontal surfaces. This process results in
pronounced precipitation variation in windward and leeward locations
of orographic barriers (Saycier, 1962, p. 295-302; Petterssen, 1940,
p. 298-302). The month of maximum precipitation in the Pacific

Northwest shows little variation from west to east indicating that the
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west to east trajectory of frohta] impulses is very consistent through
the winter months of December, January and February. West to east
variation in pfecipitation in these months is almost totally the
result of the constraints of elevation aﬁd exposure.

A slight north tosouth variation in the month‘of max imum
precipitation exists in the Pacific Northwest. Philips noted that
while cyclonic control from the west and southwest is maintained in
the Pacific Northwest for all winter months, a migration of the
storm track southWard occurs in the fall and winter reaching a maxi-
mum southerly position in February (Phi]ips, 1948, p. 144). Consequent-
ly, most Washington and northern Oregon stations show a December
maximum, and southern and central Oregon stations record a January
maximum. More properly, a greater percentage of storms follow a more
southeriy track in January and February, the mean track still being
across northwestern Washington.

In the following presentation of the monthly change character-
istics of precipitation in the Pacific Northwest, sufficient regional
gradients of change exist to identify distinct precipitation regions.
A statistical evaluation of the magnitude of the gradient between
precipitation regions was undertaken although in any statistical
‘evaluation of precipitation data certain difficulties arise. Precipi-
tation data rarely satisfy the assumptions of independence, randomness
or gaussian normality.

Utilizing relative values does tend to normalize distributions
(Conrad and Pollack, 1962, p. 201-212), but the difficulties of

randomness and lack of independence remain. The standard technique
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for solving the lack of independence and randomness in precipitation
data is to utilize non-sequential daily data from differing time
periods. This necessitates the use of long periods of record. The
number of precipitation events in dry c]fmates is so small that the
use of a moderately long average period (at least 30 years) is
necessary to arrive at a consistent probably mean (Conrad and Pollack,
1962, p. 240; Court, 1960, p. 4017-4024). The use of data prior to
the 1931-1960 normal period is questionable due to inadequate station
density, poor recording techniques, and a large number of station
relocations. Statistical analysis df the precipitation means
calculated from the 1931-1960 normal period utilizing the standard
normal distribution was undertaken with the knowledge that the data
were not derived by independent averaging.

The regional organization of precipitation change in the
spring is predominantly oriented west to east with the Cascade
Mountain Range typica11y coinciding with the maximum change gradient.
The State of Oregon was selected for analysis since the strongest
gradients of change exist across the Oregon Cascades. The west to
east gradient of change is two to three times the magnitude of the
north to south gradient of change. Relative change data were
stratified into two sets: thirty-one Eastern Oregon stations and
thirty-one Western Oregon stations. Descriptive stafistics were
calculated for monthly precipitation changes for each regional unit

and are presented in Table I (Guthrie, 1973, p. 70-79).
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Table 1

Re]at1ve Change in Monthly Precipitation for Western
and Eastern Oregon

Mean Standard
Percentage Error of  Standard

Change Mean Deviation  Range
Dec. to Jan. Westside -6 1.3 7.7 33
‘Dec. to Jan. Eastside -4 1.8 9.8 38
Jan. to Feb. Westside -21 .64 3.5 17
Jan. to Feb. Eastside -16 2.1 11.7 43
Feb. to Mar. Westside -8 1.3 7.5 33
Feb. to Mar. Eastside -7 3.1 17.4 77
Mar. to Apr. Westside -45 1.09 6.1 27
Mar. to Apr. Eastside =21 2.69 15.0 53
Apr. to May Westside -18 2.3 12 60
Apr. to May Eastside +38 4 .35 24 91
May to June Westside -30 2.1 11.7 44
May to June Eastside -5 2.1 11.9 47
June to July Westside -75 1.3 7.4 28
June to July Eastside ~72 1.4 7.8 30

In Table 1 sample standard deviations for both units are
tabulated. Eastern Oregon standard deviations average higher
throughout the period as expected, due to the greater variability of
precipitation in arid and semiarid regions. Small standard deviations
characterize the December through April period in the west with
moderate increases in May and June associated with increasing
gradients of change across the Coast Range and western Cascades.
Variability increases slowly on the eastside from December through
February and increases rapidly from March through May. The high
variability of the March through May period is associated with the
establishment of strong gradients of change across the eastern
Cascades and the more erratic nature of Tow frequency, moderate

intensity rainfall. The Targe decrease in variability of the June
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to July period reflects the abrupt dominance of the entire Pacific
Northwest by the Pacific High pressure system.

Comparative analysis of the monthly change in precipitation of
westside and eastside units was undertakén utilizing the "students T"
test. The students T test assumes the data are n0rma11y distributed
(Stringer, 1967, p. 110). Figure 1 is a normal plot of monthly
relative changes for selected regional units and selected months. The
plots are sufficiently linear to accept the normal distribution as an
acceptable mode]b(Guthrie,'1973, p. 41). <Calculated T statistics and
table T statistics are presented on the maps of monthly relative change
in precipitation which will be discussed in detail in the following

section.

1. Monthly Relative Change in Precipitation:
February to March

In the winter months of January, February and March, monthly
means progressively decrease withvboth westside and eastside locations
exhibiting similar temporal changes. The regional differenceé that do
exist are organized with respect to orography with those stations in
the more arid locations tending to show greater percentage decreases
than those stations in humid windward locations.

Map 2 indicates isopleths of the percentage change of
precipitation from February to March for Washington, Oregon and
Idaho. In Washington, both westside and eastside stations indicate
sma11 to moderate negative values. Regional differences that do exist

‘are organized on the basis of topography; thus, the Sequim-Port



16

Angeles Towlands and the Pasco basin and Okanogan valley have
moderate decreases on the order of -30%. The remainder of the state
has decreases on the order of -10%. A few stations in the Blue
Mountains of Washington and the higher elevations in central Idaho
indicate small to moderate increases.

In Oregon the February to March period is characterized by an
erratic pattern of small decreasing means with a few areas of small
increases. The strongest decreases are associated with the lower
elevations and more arid locations. All stations west of the Cascades
have decreases on the order of -5% to -15%. The immediate lee of the
Cascades from Klamath Falls north to Friend indicate moderate
decreases on the order of -20%. Low elevation stations in central
Oregon and eastern Oregon also indicate moderate decreases.

. Small increases are noted in three regions; the Cascade crest,
northeastern Oregon in the Wallowa and Blue Mountains, and the high
plateau near Lake Abert. It would appear that many increasing means
are a function of higher elevation.

The gradual decrease in cyclonic activity in combination with
a slow rise in equivalent potential temperature may offer a plausible
explanation for the above anoma]y'of increased precipitation at high
elevation interior locations. The rise in equivalent potential
temperature would appear to be more productive with respect to
increasing precipitable moisture at higher elevations while lower
elevations are more responsive to the decrease in cyclonic activity.
While small regional patterns are discernable, both westside and
eastside units are characterized by weak gradients of change

indicating uniform air mass characteristics both west and east of the
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Cascades. Comparative T statistics indicate nonsignificant differences

between the regional units of Western Oregon and Eastern Oregon.

2. Monthly Relative Change in Precipitation:
March to April

In the period from March to April, monthly means of precipita-
tion continue to decrease in both western and eastern Oregon and
Washington (Map 3). The rate of decrease drops markedly for all
stations with virtually all western»Oregon and Washington stations
indicating decreases on thelorder of -40%. Eastside stations indicate
decreases as well, but of the order of -15% to -30%. The magnitude of
the decrease of both westside and eastside locations for March to
April 1is indicative of a significant decrease in cyclonic storm
intensity and fPQQUency throughout this period. The decrease is very
extensivé across the Pacific Northwest, although more effective on the
westside.

A few areas of precipitation increases are noted at high
elevations in extreme northeastern Washington, in extreme northeastérn
Oregon and in east central Idaho. These high elevation stations are
characterized by late winter means of precipitation which are quite low
in absolute amount. These high elevation interior stations with rather
Tow monthly means may be responding more effectively to the slow rise
in equivalent potential temperature across the February to April
period, despite the general regional decrease in cyclonic activity.

Other interior stations of central Oregon 1ndfcate either

small increases or slight decreases in precipitation including:
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“Redmond, Prineville, Dayville and Madras. These stations will show
spectacular increases in the April to May period, and it appears that
atmospheric processes which will result in increasing precipitation
yields in the April to May period are being initiatedlin that region
as early as April. Comparative T statistics indicate significant
differences between western Oregon and eastern Oregon regional units.

It should be noted that by the March to April period, a
reversal has occurred in the west to east organization of precipita-
tion. In the February to March period, the western lowlands and
arid lee locations are typified by the largest negative values, and
the westside Tocations and high elevations indicate either small

_ negative or even positive values. In the March to April period this
situation begihs to reverse in that the westside and Cascade crest
indicate large negative values, énd it is the Tee side and Tow
elevation interior Tocations which now show small negative values or
even positive values. This would seem to be reflective of fundamental
changes in the origin of precipitation with respect to air mass
characteristics. There is an evolution from a relatively warm oceanic
source being advected into a cool interior during December, January and

'February.(Chapman, 1952, p. 8-37; Connor, 1938, p. 695), to a cool
oceanic source being advected into a progressively warming interior
in March, April, May and June. March is the period of the weakest
west to east temperature gradient. Atmospheric parameteres will be
investigated in later portions of ‘this paper to substantiate the above

statement.
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3. Monthly Re1ative'Change in Precipitation:
April to May

In considering the precipitation change characteristics of the
April to May period in the Pacific Northwest, a summary of the
previous three months is in order. The period of January through
April is characterized by decreasing monthly means, both west and
east of fhe Cascades. Particular areas show increasing means, but
these are not large increases and may well be the result of elevation
controls and variance in using 30-year mean periods. The most
persistent aspect of the pattern is the decreaéing precipitation
tendency with fairly small gradients of change across the Pacific
Northwest, indicating that both eastside and westside locations are
responding in a similar manner to the cyclonic controls to the west.

In the April to May period, a very strong west to east
0rganizationa1 structure appears with the eastside responding in a
manner quite distinct as compared to stations west of the Cascades. A
very pronounced west to east gradient of precipitation change is
established which is two to three times the magnitude of any previous
gradient of change.

The relative change map for April to May (Map 4), indicates
the following major characteristics. All stations west of the
Cascades continue to indicate decreasing means, although less in
mégnitude than the previous month's changes. All interior stations
indicate positive values with the exception of the Blue Mountains of

Oregon and extreme southeastern Washington. Interior positive values .
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are moderately large with highest values in the immediate lee of the
Cascades in both Oregon and Washington. Very strong west to east
gradients of change are organized parallel to the Cascade Mountains
“with the strongest gradient located 1mmed1ate1y 1eewafd of the
Oregon Cascades. |

The area to the west of the Cascades has decreasing means but
a regional organizationé1 structure is quite recognizable. Coastal
stations and coastal mountain stations have the highest negative values
with values of -40% in northwestern Washington, and values of -20% to
-30% for coastal and Coast Range stations of southern Washington and
western Oregon. Puget Sound and Willamette Valley stations indicate
negative values of the order of -5% to -20% in Washington and -5% to
-15% in the Willamette Valley of Oregon.

The few western Cascade stations indicate moderate negative
values of -15% to -30% which are higher than Willamette Valley values,
but smaller than coastal and coast range values.

East of the Cascades a complex pattern of positive values
exists. Highest values, on the order of +50% to +80%, are in the
immediate lee of the Cascades in Oregon, centered in the Bend-Redmond-
Prineville area. In Washington highest ppsitive values are in the
lee of the Cascades, but slightly further downwind centered on the
Waterville Plateau. Moderate positive values extend.eastward to
Spokane.

Small negative values to slightly positive values are
characteristic of the Columbia River gorge in both Oregon and
Washington. Small negative to small positive values are also found

in the southeast Palouse region of eastern Washington and the
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northern edge of the Blue Mountains of Oregon.

The highest positive values of interior Washington and Oregon
seem to be fouhd at intermediate elevations from 2,000 to 4,000 feet
and in the immediate lee of the Cascades; Lower values are located on
a west to east track following the Columbia River and extending east-
ward flanking the Snake River. The Columbia gorge would appear to
effectively extend westside processes eastward into the Snake River
tableland and adjoining Palouse.

The west to east ofganizatfon of the change characteristics is
not simply a product of increasing distance from the west coast. Figure
2 is a plot of the relative changes in monthly precipitation from
December—JanuaEy to June-July for the four regional divisions in
Oregon. Monthly changes were summed and averaged for all stations
within each division. Through the months of December-January to
February-March, all divisions show similar negative values of -10% to
-30%. In the March to April period all divisions show large decreases
of -10% to -50% with a slight increase in the west to east differences.
In April to May the maximum west to east gradients of change exist, but
the ordering of change from negative to positive is: Coastal, Cascades,
Willamette Valley, Central Interior, and lLeeside Cascades. The
processes which produce increasing precipitation yields are not only
controlled by interior distance but by the existehce‘of north—soufh
orographic barriers which produce leeside effects. These leeside
positions are productive independently in augmenting precipitation
yields. Studies on the effect of mountains on precipitation are quite

abundant but focus either on trajectory of air flow (Queney,g& al.,
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1960, p. 130), katabatic effects (Buettner, et al., 1966, p. 125-147),
or airflow and precipitation under uniform air mass characteristics
in windward 1dcations (Myers, 1962, p. 4267-4291). The problem of the
effect of mountain ranges on precipitatibn under conditions of strong
frontal discontinuities characterized by unstable 1ap$e rates,
particularly in the leeward position, is in need of investigation.. The
problem is further complicated by the lack of radiosonde stations in
mountainous terrain. Comparative T statistics, as might be expected,
indicate highly significant differences in the means of the western

Oregon regional unit and the eastern Oregon regional unit.

4. Monthly Relative Change in Precipitation:
May to June

In the period from May to June, the west to east organizational
structure of the previous two months is maintained with some modifica-
tion (Map 5). All westside stations of Washington and Oregon indicate
moderate to large decreases with the exception of the Puget lowlands
in the lee of the Olympics. Interior stations of Oregon show a complex
pattern of smé]] positive to small negative values, indicating that
interior processes which produced spectacu]ar increases in May are
still occurring in June, but at slightly lower rates.

The maximum west to east gradient of change has shifted north-
ward into Washington with a simiiar profile across the Cascades for
this period, as was observed in April to May in Oregon. Largest
negative values are in western Washington and the Olympic Highlands.

Moderate negative values are in the Washington Cascades; smallest
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negative values in the Puget Lowlands; and moderate positive values

in the eastern portion of the Columbia Plateau. Highest positive -
values are in the immediate lee of the Cascades with Yakfma, Ellens-
burg, Waterville Plateau, and Okanogan Hfgh1ands being the core areas.
Figure 3 illustrates the monthly averages for the major c1imatoTogjca1
divisions of Washington. While the strongest gradient of change is
now centered across the state of Washington, comparative T

statistics still indicate highly significant differences in the means

of western Oregon as compared to the eastern Oregon regional unit.

5. Monthly Relative Change in Precipitation:
June to July '

In the period from June to July (Map 6), the abrupt termination
of the late spring rainy season is quite apparent. A1l stations,
both west and east of the Cascades, show decreases on the order of
-60% tb -80%. The large magnitude of the decreases and the lack of
any west to east gradient is indicative of the extensive aridifying
synoptic pattern which is now dominating the Pacific Northwest
(Lydolph, 1957, p. 215-216; Trewartha, 1968, p. 316-318). The 700
millibar Atlas of North America (Wahl & Lahey, 1960, p. 72) readily
indicates the sudden northward shift of the Pacific High across the
last few weeks of June. The shift northward of the northeast
subsiding Timb of the subtropical high into the Pacific Northwest is
simultaneously accompanied by the onset of the summer rainy season
in Arizona. This atmospheric singularity was studied in some detail

by Bryson and Lowry (Bryson, 1955, p. 329-339). The June to July
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relative change maps reflect the dominance of the Pacific High pressure
system across the Pacific Northwest, but in the portion of northern
Nevada included, there exists a strong north-south gradient of
precipitation change which is indicative of the increase of precipita-
tion in Arizona and southern Nevada referred tokby Bryson and Lowry.

The northern limit of the strong subsiding effects of the
Pacific High are apparent in a moderate southeast to northwest gradient
of change across the Olympic Peninsula. While the Puget lowlands are
dominated by the subsiding air of the Pacific High with decreases on
the order of -50% to -60%, the O]ympfc Peninsula decreases are only on
the order of -20%, indicating a return to a more westerly circulation
across the peninsula.

The major features of the springtime precipitation changes in
the Pacific Northwest may be summarized as follows: (1) Small
decreases in precipitation in the winter months of January, February,
and March, both west and east of the Cascades, with greater variability
fo the east in the more semiarid locations. (2) The establishment of
an increasing]j strong west to east gradient of change in the months
of April, May and June, characterized by increased positive values
east of the Cascades. (3) The establishment of region-wide large
nagative values in the month of July as a result of the sudden dominance
of the Northwest by the Pacific High.

B. Analysis of Short Terms Means of Precipitation

for Selected Stations in the
““Pacific Northwest

The use of monthly means, while being the standard climatologi-

cal seasonal time interval, may be too large to accurately assess the



31
initiation and culmination of a secondary maximum that is only about
two months 1nv1ength. Shorter term means would be uséful in
attempting to precisely determine the temporal extent and change
characteristics of the secdndary maximum in the Pacifjc Northwest.

Seven-day, fourteen-day, and twenty-one-day means have been
calculated for selected stations in the Pacific Northwest utilizing
the 1931-1960 normal period. These values are available in "Volume
11, Columbia Basin Handbook, Columbia Basin Inter-Agency Committee,
1969," prepared by Bonnevii]e Power Administration. Figure 4 is a
plot of weekly means for western Orégon and Washington. As the mean
period is reduced in length, increasing variability is introduced into
the system since the average period (1931-1960) has remained constant.

The weekly averages for eastern Washington and Oregon confirm,
and more precisely outline, some of the major features which were
discussed with respect to the monthly means (Figure 5). Figure 5
indicates that the secondary maximum begins in mid-April with weekly
averages increasing to a maximum in late May in eastern Oregon and
early June in eastern Washington. The means rapidly decrease from
June 21 through mid-July. The decrease in means through February and
March is gradual but persistent with a sudden increase in the rate of
decrease from April 5th through April 19th. It is 1nterest1ng to note
that part of the large magnitude of the May increase can be attributed
to the drought in early April. Whether the Tow April values reflect
consistent physical processes is difficult to assess, but means
derived from the period prior to 1934 indicate consistently higher

April values. This would imply that part of the strong decrease in
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April is unique to the 1931-1960 period.

Figure 4 is a February through July plot of weekly means for
western Oregoﬁ and Washington stations, and while much week to week
variability exists due to the short mean‘period the trend of
decreasing means is quite discernable. Westside stafions also
indicate a rather large decrease in the April 5th through April Tgth
period. The most interesting aspect of the western stations is that
the secondary maximum does exist on the westside, but on a much
reduced scale. Weekly meahs do indeed increase from about May 24 to
June 14, but the increase is small énough in magnitude and shorf
~enough in time to be reflected only as a lessening in the rate of
decrease through May and June on a monthly scale. ‘It would appear
that processes which produce large increases in precipitation means
of the eastside are also present on the westside but are smaller in
magnitude.

Relative changes were not calculated for weekly means as the
‘large week to week variability would be even more excessive for
relative values. Relative changes were calculated for three-week
means, and both the station values and average regional values for
Washington and Oregon are presented in Tables 2 and 3. Average
changes for western Washington and eastern Washington have been
calculated although the number of western Washingtonlstations is
admittedly small. Figure 6 presents a plot of the relative changes
for western Washington and eastern Washington, and Figure 7 presents
similar data for Oregon. Figure 8 presents subtracted (eastside-

westside) relative changes for both Washington and Oregon. From



Table 2

Relative Change in Three-Week Means of Precipitation in

Washington, 1931-1960
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June

Jan. Mar. Mar. Apr. May May July
31 01 22 12 03 24 14 05
Western
Washington
Aberdeen -10 -21 -15 -26 -34 . -31 -4 -46
Longview + 1 -23 -7 -38 -10 -15 -7 -61
Puyallup -13  -21 -6 -24 -24 -21 -0 -50
Sedro , :
Wooley -15 0 -13 =21 -20 -10 +19 -60
Average -10 -16 -10 -29 =22 -19 -2 -55
Eastern
Washington
Omak -14  -48 +16 + 6 -9 +77 -38 -59
WallaWalla-10 -15 +3 -2 -4 -6 -29 -79
Spokane -13  -17 -30 + 6 +17 +7 -35 -67
Colville -22 -66 +0 +9 +29 -3  -13 -19
Ellensburg- 5 -48 +22 -31 +11  +44  -30 -76
Ephrata -9 -7 -30 +30 -10  +40 +41 -55
Average-12  -25 -3 + 3 +6 +27 -15 -60




Table 3

Relative Change in Three-Week Means of Precipitation in.
Oregon, 1931-1960
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Jan. Mar. Mar. Apr. May May June July
31 01 22 12 03 24 14 - 05
Western
Oregon
Forest
Grove -3 -3 -18 -41 -24  -19 -23 -60
Eugene -1 -29 -22 -33 -7 -13 -29 -84
Parkdale -11 -8l -45 -10 -26 -42 -16 -31
Salem -4 -34 -13 -37 -10  -33 -15 -74
Seaside 0 -26 -10 -32 -36 -19 0 -56
Average - 3 -40 -20 -30 -22 =25 -16 -62
Eastern
Oregon
Bend -20 -45 -4 -6 +40 +60 -45 -50
Baker +80  -59 -6 + 3 +25 +45  -35 -69
Squaw '

Butte. -2 =25 -2 -23 +90 +4 -27 -83
Union +43 -8 +31 + 1 +13 +22 -28 -76
KlamathF. -16 =37 -4 -15 +4 +20 -33 -62
JohnDay -8 -2 + 2 0 +39 -3 -44 -75
Lakeview - 2 -25 -6 -12 +10 +30 -48 -80

Average + 7 -29 + 2 -7 +22 +28 -36 -70
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WASHINGTON: COMBINED THREE WEEK PERCENTAGE CHANGE
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January through March 22 both westside and eastside stations change at
about the same rates, differing by less than 10%. Significant differ-
ences in the fate of change appeaf by March 22 through April 12 and
increase to a maximum from May 24 through June 14. Throughout this
period the sign of the west to east gradient is positfve, indicating
increasing precipitation yields on the eastside. From June 14 thrbugh
July 23 the west to east gradient rapidly diminishes and actually
reverses sign, indicating s]ight]y increased relative yields for the
west. |

The use of short term means in order to discern temporal details

of precipitation climatology can only be as physically significant
as the consistency, both regionally and temporally, of the repetitive
existence of that mean. A trade-off exists between short term

precision and actual expectancy.

C. Analysis of Monthly Changes in Precipitation
Intensity for Selected Stationsin
the Pacific Northwest

Monthly precipitation intensity statistics have been
calculated for selected Pacific Northwest in "Volume II, Columbia
Basin Handbook, Columbia Basin Inter-Agency Commission, 1969." In
Figure 9, the percentage of precipitation days on whfch selected
precipitation amounts occurred has been calculated for three Oregon
stations for the months of February through July. Newport, Oregon
was selected as a representative westside station. Bend and Redmond
were selected as representative eastéide stations strongly reflecting

the secondary maximum of precipitation.
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In Figure 9A, the percentage of precipitation days (days

.01 inches) for each month has been calculated for February through
July. Newport and Redmond-Bend indicate a slower rate of decrease
through the period with relatively constant values in the May-dune
period.

In Tables 98 through 9E, the percentage of precipitation
days for which selected precipitation amounts have been exceeded is
plotted for the period of February through July. In these graphs of
the moderate to heavy intensity interval, the change in the precipita-
tion delivery of the interior, both temporally and regionally, is
quite apparent. Percentages of all precipitation intensity intervals
decrease throughout the period for western Oregon, with the exception
of a small increase in June‘in the .10 inch intensity interval.

Bend and Redmond indicate large increases for all precipitation
intensity intervals for the March through June period. In the May and
June period the percentage of days in the moderate to heavy
intensity interval is as high or higher for Bend and Redmond than it
is for Newport, despite the fact that Newport exhibits a greater
number of total precipitation days.

The change in the precipitation delivery characteristics of
late spring sotrm events is verified by data compiled at Hanford,
Washington, by Battelle Pacific Northwest Laboratories (Stone, Jenne,
and Thorp, 1972, p. 4.1-4.8). The Hanford-Richland site is the
driest area of the Pasco basin of eastern Washington with annual
totals on the order of 6.5 inches. The annual profile shows a decided
winter maximum and a well developed secondary maximum in June. If one

calculates the percent of days in which measurable precipitation
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occurs, the secondary maximum is hardly apparent (Fig. 10). The
number of precipitation days decreases through the January through
July period. If the percentage of precipitation days is plotted for
each month in which .10 inches is exceeded, the nature of the
secondary maximum becomes apparent. A large increase in the percent
of precipitation days delivering higher intensity rainfall exists in
the April through June period. Also included in Figuré 10 is the
percentage of precipitationvdays in which higher intensity (.25 inches,
.50 inches and 1.00 inch) rainfall occurs. The increase of high
intensity rainfall in May and June {s quite apparent.

In summary , the increase in mean monthly precipitation in
May and June which characterizes much of the Pacific Northwest interior
is not accompanied by a significant increase in precipitation days.
The secondary maximum is a consequence of the increase in moderate to
heavy intensity rainfall per precipitation event. The meteorological
process which produces the increase in precipitation yield are
strongly organized regionally west to east and imply that diabatic
processes are occurring on the eastside at this time at a greater

rate than west of the Cascade Mountains.

D. Relative Changes in Mean Precipitation for the
Pre-1931-1960 Normal Period ‘

Bryson has noted the standard normal period (1931 to 1960), is
quite atypical in the last thousand years of the climatological
record (Bryson, 1972, p. 754-755). The secondary maximum of

precipitation of the interior of the Pacific Northwest may well have
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organizational characteristics which are unique to the 1931-1960 period.
An attempt was made to assess the regional organization as distinct
from the pure1y temporal organization by examining precipitation means
for an earlier period. ‘

Precipitation means were available for Oregon'stations derived
from a variable mean period prior to 1934 (Climatological Data, 1940).
Thé reliability of the precipitation means derived from the earlier
period is more questionable due to variable length average period,
inadequate station density;.and poorer recording techniques (Court,
1960, p.4023). Comparison with the more complete 1931-1960 period can
‘therefore be only qualitative and broad in scope.

Maps 7 through 10 show relative changes in mean precipitation
for the period February through June derived from the earlier period
of record. The most notable differences in the two periods occur in
the March to April period and the May to June period.

The large decreases in mean precipitation throughout the
Pacific Northwest from March to April may partially reflect conditions
unique to the 1931-1960 period. Table 4 presents subtracted 1930-
1960 percentage changes in precipitation from 1934 percentage changes
for various climatological divisions of Oregon. The earlier period
averages about +5% fo +10% above the 1931-1960 period.

In the earlier period all westside stations indicate moderate
decreases on the order of -30%, and over 80% of the eastside stations
of Oregon indicate decreasing means on the order of -10% to -20%.
Several areas of significantly increasing means do exist in the

Redmond, Prineville and Dayville area and thehigh plateau, including



. n&ts SISTERE Yy '
2 oy 3
e grEle @ 0 W,
AN L SN PRUEEN
& i Aeasl O AV \ \ s O e
Ay é,f( < Y\U 10\ \ ) \ 4l Lake! Dry
R -7 i PR VL YN \ \° % o
R i V"“ e - \ . Yo\ l’ \ 1 o Hamey
Q’j Y. . A ‘s Lake
\ SN\ PN 300 \} )

\

§ 3\

) Lake ) ’

~ \e. ., By k?‘ . Surimer ke]

~ o : s ;3 ’_‘_‘\ M’"‘.@Ym‘ \ \ 1 °
TSR, - e e

d N ) . ! y Lake Ader @

, .
.}r }( \
{ %4} “ & % ) "‘ Upper Klamalh

i g &{;\w ? ———e qui‘ 2

b ; 7; AN K\w Klamovhmh - : b O " - ; Y
A ¥ ey e ! ’
ud _ L[--____):__,i-______z_-_ua_--__l

‘20 =20

-10
RELATIVE CHANGE IN MONTHLY PRECIPITATION PRIOR TO 1934 —
FEBRUARY TO MARCH
MAP 7

Sb



-40
e rorid
SRTY 1030 |
S vy T - ~ 1
- { St Helens /?<f 0 / g 3 ![\ ~
Py OO IR N
e 9l M )

/ M e 322 pomen [T
“40, . H;"::qf'l ’%&:x‘ Porﬂmfﬁ")g

Loy Nere o i
2 ~7 c Oregon %
© Mcthinkvite ® ~ S
i s L g,
< =
L Lo & ~ T
$ v 3 Salem
o .A».-i{}"‘ O‘. Albary _
AeCorvalin &
. \ - or‘vclhs ’l.ba_n.n ¢
&."*‘ z a9
[ R N W
- . 3 ‘\5“ K
.;J' ‘}A' H

Mufoewr / " /

A,
1 1._._ «:\ v
S Lakei Dty
— (o]
- ~ < Harney / / gied
3 o a > ke D O N LS
0% ﬁ'\/‘g'\”" " hy 2 ! g
Ny VY & g O \ d
\"‘w,‘:' z? G - 3 /‘ e
o Ehee Q82 o X%
1 e N o .l
;)) k’?’a&":%ﬂ{ “\"{/{./{ i < ° // wgi N >
A Iﬂ4?'/:f'oG$(°"'N‘°""‘ V.3 L4 iamarn ’{l ‘.\H =20 5J' e
RO s, YA s v
! ! N : 1, 5
\ , i i

D ey e
VA ~ g, ¥ 7 Yo
- o8N T s :
R g B '
" ’ 3 . y) Ruservosr . 7 .t ¢ ’
N 1y o ¥ R —
' . (U

RELATIVE CHANGE IN M
MARCH TO APRIL

MAP 8

ONTHLY PRECIPITATION PRIOR TO 1934 -

9P



-30

A{ronc ".
AN -

% N snm.n.
AN
!
s o

R HI !bq:o, ,%; Porﬂand.
R e \\R\‘l‘o// nr)

/ rogk A

7",

oy s‘ :
// b ‘ 5 ‘Solgfn‘
\ ® ."", 'é.m eny -
\ f"c;}';"';‘ / Ol;iqnon '\,
WL “Sy
\ N o /‘5/ "’\\ // f ¥‘
\ A:J/.‘.b ‘-‘.‘ },J /- "‘ .‘ B .
\eigaeg o |
PN N R ~ /
{/’"p,:?\ \.Qé \; 2, °‘ . -~ - k ‘ l
‘x‘ :.;\ ? \\\,‘3(\1‘-,07 ) P 9 g_\ |
% a__ﬂ»"_'w\ ,g_w&\:; A\ Y"\'\U Lm.y«;-mo ; ughee KA
N T RINES A A
S Ry 3 40 EE
- % ’ })-b“ N}\ ; & ",,' ‘Amel‘ﬁ
e /93’).‘»4’ NS S1 =
( N ey Y wlf’ v )t
- £ .'?“ dl'q Rbss "\ 2 1
'40\5(,,\9\;:3" {:«"o«‘ e S : ,;5 ') ‘ \
tjf‘é 2> \wgﬁ; - IR
2 \ i—- 3@-4 . I IR S
0
RECIPITATION PRIOR TO 1934-—

--x-_:C.)-?iC-) =20 -10
RELATIVE CHANGE IN MONTHLY P
APRIL TO MAY
MAP 9

VAZ



B storia

9
X
[
2
1
O
Tf’

3"> K] 'O

BN \ MT. HOOC
. - “\C \"11\» "2asd

-30\54“'"‘*'\& Forﬁond < '@w“ \ 9,
. ggf {, .

0. an'
‘40\Mcmn&vm' ® ' g \O‘
) : . (.,'%A /‘} 40

.\“ ol
’®§ue_r_n /\I ’/?’{,’q, /5' R ;,J

»h ?3, ‘f;‘

am

/

® ‘7."-!:"“ ;5 Albcny N ‘/ m“; so’bv i ;
-;'fiio%a," * ‘® £ ‘ \-_.,/o oo UT, R
g .L.ban ~ 3,\_ ~0%|
NOSANEN ’\’o‘*“é ST TN S
R _40 - l -y q \ 1 , o] ﬁ/

a '\';.
P VY
f* 3, h@ncqgsémgﬂcl@ G
N

2" 3 AN

\t\.m\/o,

-40 2.7 N
30~ ’;\k B }3 775 I o
o LA~ _" 8 : n; \1 o . ),'R«se ol
——\—-I-——- —J—/ - - - - - em i b o mm——

~
\‘—_——_—”

RELATIVE CHANGE IN MONTHLY PRECIPITATION PRIOR TO IA934—

MAY TO JUNE
MAP 10

8t



49
Fremont and Round Grove. Interestingly, the 1931-1960 period shows

the smallest decreases in the Redmond-Prineville area. Small increases
are also noted in the Baker-Union area of northeastern Oregon for both
the 1931-1960 period and the 1934 means.

It is apparent that processes which will prodﬁce increasing
means from April to May over most of eastern Oregon and will be most
intensely developed in the Redmond-Prineville area are being
initiated in that region as early as April.

In the period from‘May to June some significant discrepencies
exist between the two normal periodé. In the 1934 period the basic
west to east organizational structure is still present, but both
west and eastside stations show more negative tendencies. Westside
stations have values on the order of -30% to -50% while eastside
stations have values on the order of -30% to +20%. It would appear
that prior to 1934, the secondary spring maximum in Oregon initiated
earlier in the season in March to April and terminated sooner in May
to June compared to the period 1931-1960. The slightly higher spring
(March-Apri]-May) termperature of the 1910-1935 period is not

inconsistent with this observation (Table 5).
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Table 4

Oregon March to April Relative Changes in Precipitation:
Subtracted 1931-1960 Normals from Prior to 1934 Normals

Climatological Division 1934 - (1931-1960)
Northeast, 8 stations ’ + 1.5%
Southcentral, 9 stations +12%
Northcentral, 11 stations + 5%

High Plateau, 6 stations + 6%
Willamette Valley, 8 station +14%

Coastal, 6 stations K +10%

Table 5

Mean Monthly Temperatures for Hanford, Washington

Average Period March April May June
'1912-1934 46.38 F 53.98 F 61.68 F 69.8° F
1930-1960 44.2° F 52.5° F 61.7° F 69.2° F




Chapter III
MEAN MONTHLY CIRCULATION PATTERNS OF SEA LEVEL
ATMOSPHERIC PRESSURE AND 500 MILLIBAR HEIGHTS
FOR CLASS A AND B PRECIPITATION EVENTS

The secondary spring maximum of precipitation in the interior
of the Pacific Northwest is the result of increased moderate and high
intensity precipitation events in the May through June period; Surface
-and uppef air atmospheric circulation should manifest changes in
organization during this period which reflect increased dominance of
the more unstable sectors of traveling surface and mid-tropospheric
disturbances.

In examining mean monthly surface, 700 millibar, and 500
millibar pressure maps, certain difficulties ar}se. The total array of
synoptic patterns incorporated to produce a monthly mean will be strongly
biased by the large number of non-precipitation events. The averaging
of migratory mid and upper level tropospheric wave disturbances tends to
highly zonalize (ie, orient from west to east) the mean pattern of
flow, removing much of the actual latitudinal (north-south) flow
characteristics. Monthly and five day mean pressure maps are available
for sea level, 700 millibars and 500 millibar for North America
(Lahey, et al., 1969; Lahey, Bryson and Wahl, 1958). These maps
adequately detect the progressive weakening of the midlatitude pressure
gradient through the spring months. The poleward migration of the

Pacific subtropical anticyclone during the Tate June period is also
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readily detected (Lahey, et'al., 1958, Map A - June 25-29). However,
very little information can be deduced with respect to seasonal
changes in the flow characteristics of individual precipitation
producing disturbances.

In order to more clearly ascertain the f]dw characteristics
of precipitation producing synoptic patterns, monthly mean surface

and 500 millibar precipitation pressure maps were deriVed utilizing

six years of U.S. Weather Bureau synoptic maps (Daily Weather Map,
NOAA; 1967-1972). Precipitation events were defined by stations east
of the Cascade Mountains in Washington and Oregon which were recording
precipitation at the time of the plotted surface map; either 4 A.M. or
4 P.M., P.D.T. Utilizing the twelve first order stations in the
interior of Oregon and Washington, precipitation events were arbitrar-
ily stratified into classes A, B, C, and D. The criteria for classifi-
cation were: class A (6 or more stations recording measurable
precipitation); class B (4 to 5 stations recording measurable precipi-
tation); class C (2 to 3 stations recording measurable precipitation);
and class D (only 1 station recording measurable precipitation). Class
A and B events were more representative of extensive precipitation
producing events over the interior and in many cases class C and D
events reflected rather isolated regional shower activity or initiating
and terminating phases of more extensive precipitation systems.
Therefore, only class A and B events were utilized to derive mean
surface and 500 millibar circulation maps. Synchronous maps for both
500 millibar and surface pressure were available only for the period of

1967 to 1972, so the data source included only six years.
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The maps derived are mean surface and 500 millibar circulation

patterns for precipitation events only. In Appendix C, Map 1 includes
representative arid circulation patterns over the Pacific Northwest
for the months of March through June. These have been included only
as comparative examples of arid synoptic patterns for these respective
periods of the year.

Surface and 500 millibar maps were derived for the months of
March, April, May and June for a latitude grid of 350’N to 50° N and
longitude grid of 115°% W to 130° W. Pressure data were plotted from
each map at 2%0 intersections of 1afitude and longitude. Small to
moderate variations in axial position and amplitude characteristics of
individual disturbances tend to produce strong west to east (zonal)
characteristics in the mean flow patterns so the maps derived have
strong west to east biases which would not be as pronounced in the
individual disturbances. Five hundred millibar isotherms were plotted
utilizing an interval of 59 C.

In order to assess the magnitude of latitudinal and meridional
transport characteristics of 500 millibar flow patterns, wind
directions and velocities were tabulated at each 2%0 grid point. Mean
wind velocities and resultant wind direction were then calculated for
each grid point. The amplitude characteristics of the 500 millibar
waves are more realistically identified by the resultant wind directions
than by inferred geostrophic winds produced by averaging 500 millibar
height contours (Conrad, 1962, p. 178-180).

Cyclonic curvature between 130° and 115° West longitude at

500 N, 450 N, and 40° N, was calculated at 500 millibars for all class
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A and B precipitation events for the months of March through June. The
curvature values were calculated in degrees of rotation in the counter
clockwise diréction from the westernmost Tongitude grid points to the
easternmost 1ongitude‘grid point. Average curvature values were
calculated for each month of March through June at 50° N, 45°N and
40°N.

Zonal and meridional indexes can be calculated from 500
millibar height contours (Namias, 1950, p. 130-139; and Rossby, 1939,
p.39 ). Utilizing month1ylaverage 500 millibar heights for c1a$s A
and B precipitation events, zona1/mér1diona1 height ratios were
calculated for the months of March through June. These values are

presented in Tables 6 and 7.

A. Average 500 Millibar Heights and Sea Level Pressures
for March Precipitation Events

1. Average 500 Millibar Heights and Flow Characteristics
for March

In the period from 1968 through 1972, seventeen cases of class
A and B precipitation events were detected. Five hundred millibar
heights, wind velocities and directions, and temperatures were
tabulated and averaged for 21,° 1atitude and longitude grid inter-
sections. Wind rose data were tabulated for each 5° latitude and
longitude intersection.

Map 11 presents averaged 500 millibar heights for the seven-
teen cases. The 500 millibar flow 1ndicates prevailing west or south-

west flow across the entire Pacific Northwest during precipitation



Table 6

500 Millibar Latitudinal and Meridional Height Differences
in Meters for Class A and B Precipitation Events

Latitude and Longitude ‘
Grid Points March April May June

40°N 130°W-50°N- 130% 28.7 24.8 15.5  11.3
40N 1225°W-500N 1225°W 25.8 20.8 8.9 8.5
40°N 115°%-50°N 115% | 22.4 18.0 8.5 8.8
500N 122'°W-50°N 130% 7.6 6.5 3.5 - .6
50°N 115%W-50°N 122:.0W 3.9 6.5 3.6 3.5
40°N 1221.°u-40°N 130°W 4.7 2.5 2.1 -3.4
40°N 115%W-40°N 1221w .5 3.7 5.6 3.8
Table 7

Zonal - Meridional Height Ratios

Latitudina1 Difference

Meridional Difference March April May June
(40°N 122°% - 500N0122%8w

1zgg°w 5N - 130°W 48°N+

115°W 45°N - 122%°W 45°N ) 2.82 1.57 1.11 1.16
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events. The major trough axis is centered west of 130% longitude
with a flat ridge centered at 155% longitude. Lowest heights are
centered to the northwest of the grid in the Gulf of Alaska.

Five hundred millibar temperatures indicate a warm ridge
centered at 177 longitude with a cold trough centered at 130° W
longitude. The warm ridge Tocated in the interior indicates that
precipitation is favored by strong, warm advection in fhe midlevels of
the troposphere. Warm advection is 1nd1cated by the poleward dis-

‘ placement of the isotherms from 125°w longitude to 117% longitude.
The strong latitudinal temperature gradient is. indicative of the
“winter position of the polar front and the prevailing west to east
trajectory of migratory cyc10n1cvdisturbances.

As was previously mentioned, averaging of individual 500
millibar trough positions tend to highly zonalize the mean 500 millibar
flow pattern. Individual wind direction and velocities were tabulated
for the seventeen cases and are presented on Map 11. Highly variable
500 millibar wind directions typify the northernmost grid points,
especially the northwesterly corner of the grid. Very consistent wind
directions typify the southern noundary of the grid and is particularly
true of the southwestern portion of the grid. The wind velocity data
indicate that the highest wind speeds aloft are located in the southern
and western sectors of the grid which implies the westerly jet
maximum is commonly across southern Oregon and southern Idaho when
precipitation is at a maximum in the Northwest interior. Observation
of the individual seventeen cases indicated that the center of lowest

pressure at 500 millibar was typically in the northern sector of the
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grid and that small variations in the position of the low account for the
high vafiabi]ity of the wind directions in that sector. Regardless

of the positidn of the upper level low, southwesterly winds dominated

the southwestern portion of the grid and westerly to west-northwest

winds dominated the southeastern portion of the grid.

2. Meridional and Latitudinal Transport Characteristics
and Curvature Characteristics for March

In Table 6, 500 millibar height differences are presented for
selected meridians and parallels. Table 7 presents ratios of
Jatitudinal height difference divided by meridional values for the
months of March, April, May and June.

The north-south pressure gradient at the three selected
meridians is greater in March than any of the other three months, and
is about three times the magnitude of the west to east pressure
gradient. The west to east pressure gradient is stfongest in the
western limits of the grid with the orientation of the flow being from
the south. While west to east transport is the dominant feature of
the 500 millibar flow, the contribution of warm advection across
the western limits of the grid is quite apparent.

Table 8 presents averaged curvature values for 130°W minus
155°W at latitudes 50°N, 45°N and 40°N. Over 60% of the sixteen
cases indicate anticyclonic curvature values. The dominance of weak
anticyclonic flow across the meridional limits of the grid indicate
that the 500 millibar trough axis is to the west of the western limit

of the grid and the ridge axis is slightly to the west of the eastern
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limit of the grid. Precipitation in the interior Northwest is
associated with strong southwesterly flow at 500 millibars offshore
and across the Pacific coast, with more westerly or even northwesterly
flow dominating the interior and eastern sectors of the grid. The
absolute magnitude of the curvature values are small, indicating that
large changes in the direction of flow across the grid are not common.
Waves with large amplitude characterize the flow at 500 millibars in
March with southwesterly and westerly flow dominating the entire
Northwest. Precipitation is maximized for upper level disturbances which
are dominated by strong warm advection at 500 millibars across the

entire Pacific Northwest region.

Table 8

Curvature Values in Degrees of Rotation

(130%° Longitude - 115 Longitude)
for Respective Latitudes
0 o o Frequency
50°N 45°N 407N Avg. Anti- Frequency
cyclonic  Cyclonic

March
17 cases -10.7 - 2.0 -20.1 -10.9 32 19

April
20 cases - 1.0 +20.0 +13.0 + 7.4 28 32

May
19 cases +100.5 +85 -172.1  +86.1 2 55

June )
16 cases +108 +98 + 58 +88 2 52
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3. Average Sea Level Surface Pressure for Class A
and B Events for March

Utilizing 1968 through 1972 synoptic weather maps, fourteen
cases of class A and B precipitation events were detected. Map 12
presents average sea level pressure for the 14 cases. While the
variable positions of surface troughs introduce strong west to east
orientation to the isobars, some salient features can be detected.
Lowest pressure is typically northwest of Vancouver Ié]and and a
southwest to northeast orientation of isobars exists across the states
of Washington and Oregon. Sea level pressure averages higher in the
interior than offshore, indicating that most cyclonic storms which
produce precipitation in the interior tend to be centered offshore.
The wintertime oceanic and continental heat budget, which produces
cool interior temperatures and warmer oceanic temperatures, favors
the persistence of higher pressure in the-interior despite the
advection of warmer air into the interior aloft during precipitation
events.

The existence of the Pacific High pressure system can be
identified by the ridge of high pressure across northwestern California
and the initial stages of the southwest desert heat low can be
detected by the slightly lower pressure in eastern Nevada. While the
orientation of the flow across the entire Pacific Northwest is from
the southwest, the majOr trough axis is centered well offshore.
Individual examination of the 14 cases of precipitation occurrence
indicated that precipitation was often associated with the passage of‘

a Pacific occluded front in the interior with an associated minor
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trough of Tow pressure. Lowest pressure typically remained offshore
and with the variability of the position of the occluded front in
the interior, the associated minor trough was effectively removed

in the averaging of the fourteen cases.

B. Average 500 Millibar Heights and Sea Level Pressure
for April Precipitation Events

1. Average 500 Millibar Heights and Flow Characteristics
‘ for April

Twenty cases of class A and B precipitation were identified for

the month of April. Map 13 presents averaged 500 millibar heights for
the twenty cases in the Pacific Northwest. The height pattern is
quite similar to the March pattern, although the latitudinal pkessure
gradient is weaker, reflecting the beginning of normal spring seasonal
- warming.

The 500 millibar height contours indicate prevailing west-
southwest flow dominating the Pacific coast and offshore and more
southwest to south flow dominating the interior and eastern sectors of
the grid. Lowest pressure continues to be in the northwestern sector
of the grid. |

Oy

The major long wave trough axis is still to the west of 130
longitude although the ridge axis is now centered b the east of 115
longitude. The amplitude of the major long wave has increased from
the March pattern, but one half a wave length is still outside the
meridional Timits of the grid.

Five hundred millibar temperatures are plotted on Map 13. The

isothermal pattern at 500 millibars in April is similar to the March
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pattern with poleward displacement of the isotherms from west to east
across the grid. The poleward displacement of the isotherms in the
eastern portion of the grid indicates that cool air is being advected

into a region with warmer temperatures aloft.

2. Meridional and Latitudinal Transport Characteristics
And Curvature Characteristics for April

Tables 6 and 7 indicate that strong westér]y flow is quite
dominant in April with only small decreases in north-south 500 millibar
heights from March values. The west to east préssure gradient has not
decreased significantly, indicating that north-south transport is of the
same magnitude as in March. In fact, it has increased slightly in the
eastern sector of the grid. The latitudinal/meridional height ratio
reflects this change as having decreased from 2.82 to 1.57.

Table 8 presents averaged curvature values for the individual
precipitation events for April. Curvature values indicate approximately
equal distribution of cyclonic and anticyclonic flow. Average values
indicate that weak cyclonic flow is predominant, but that the
values are small in magnitude. Interestingly, the cases which are dated
before the 15th of the month are more frequently anticyclonic while
those dccurring after the 15th are more frequently cyclonic. April
appears to be a transition month from the predominantly wintertime
flow pattern in March, and the strong cyclonic flow which will dominate
the later months of May and June.

3. Average Sea Level Surface Pressure for Class A
and B Events for April
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Map 14 presents averaged class A and B events of sea level
pressure for the month of April for the Pacific Northwest. Signifi-
cant changes have occurred in the pattern in comparison to the March
map. The orientation of the isobars has‘taken on strong north-south
character in contrast to the prevailing west to eastlorientation in
March. A surface ridge of high pressure dominates the Pacific coaét
with strong northwest to southeast flow immediately to the east of the
Cascades and a trough of low pressure centered over Nevada and a
weaker trough over western Montana and southeast British Columbia. A
trough of low pressure remains to the northwest of Vancouver Island
with westerly to southwesterly flow dominating the offshore region to
the west of the ridge located on the Pacific coast.

In the averaging of individual synoptic events, large
variability in the position of migrating frontal systems and associated
troughs, tends in the mean to only very subtly reflect the intensity
of the migratory surface disturbances in the interior. April is a
transition period in which both wintertime and later spring synoptic
controls are operative. The low pressure to the northwest of Vancouver
Island and the prevailing west-southwest flow offshore is a wintertime
feature indicative of the normal winter deep low pressure in the
Northeast Pacific. The ridge of high pressure extending from southwest
to northeast across California and southwest Oregon, fs indicative of
the poleward migration of the Pacific high which will eventually
dominate the entire Pacific Northwest in summer. The low pressure
over Nevada is most likely the initial stage of the semi-permanent

desert heat Tow which will be well established east of the Sierra
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Nevada Mountains by mid summer (Jurwitz, 1953, p. 96-99; Bryson and
Lowry, 1955, p. 329-339). The Tower pressure in the northeast
portion of the grid is most Tikely indicative of migratory surface
frontal systems and associated surface troughs. Southwest‘f]ow and
Tow pressure will typically dominate west of the Cascades, while in
the interior a frontal or short wave impulse is crossing the interior
region at.the time of actual precipitation.

The orientation of isobars indicates that northwesterly flow
dominates the interior during precipitation events. The examination
of actual precipitation occurences fevea]s that this is not entirely
the case. Typically, precipitation is associated with a migratory
frontal or short wave impulse moving across the interior. Northwest
flow and a surface ridge of high pressure dominates the post cold
front or cold occlusion sector, and southwest or even southerly
flow dominates the precold frontal sector in which most precipitation
is occurring. The variability in position of these disturbances tends
to mask their amplitude on the mean map and prevailing northwesterly
flow is the result.

The April map does show a consistent aspect of the flow
pattern which is repeated throughout the March through June period.
Regardless of the direction of flow in the interior, for any given
meridian, higher pressure must exist to the south. As long as the
flow has a component directed out of the south, precipitation is
possible, but if higher pressure exists to the north, precipitation
likelihood approaches zero. The boundary across extreme southeastern

Oregon and northern Nevada, in a statistical sense, represents a
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common southern limit of precipitation which is occurring over the
interior of Washington and Oregon (Richter, 1960, p. 32).

The rapid change in the direction of flow to a more
Jatitudinal (north-south) transport pattérn reflects the rapidly .
increasing continent-oceanic temperature gradient. The interior is
now heating Qp rapid1y, producing a much stronger north-south orientation

to the isobaric field.

C. Average 500 Millibar Heights and Sea Level
Pressure for May Precipitation Events

1. Average 500 Millibar Heights and Flow
Characteristics for May

Sixteen cases of class A and B precipitation events were
identified in the month of May. Map 15 presents averaged 500 millibar
heights for the sixteen cases. Distinct changes in the contour pattern
are detectable in comparison to the earlier March and April period.

The latitudinal pressure gradient has weakened, reflecting
continued seasonal warming and the weakening of the midlatitude north-
south temperature gradient. The north-south orientation of the
contours has increased markedly with a shortening of the wave length.
The trough axis has shifted eastward and is now located on the west
coast. Lowest pressure continues to be centered in the northwestern
sector of the grid.

March and April are dominated by southwest flow across much of
the Pacific Northwest, while in May a significant variatioﬁ in flow
between the western and eastern limits of the grid exists. West of

127° 30" west longitude, northwest or west-northwest flow predominates.
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Westerly flow predominates along the coast with strong southwest to even
southerly flow in the central and eastern sectors of the grid. Strong
southerly flow is especially marked in the northeastern portion of the
grid.

The increased amplitude of the flow pattern is indicative of
greater latitudinal transport of air masses, with cold advection
dominating the flow to the west of the Cascades and periodic intrusions
into the interior. Warm advection apparently dominates the flow east
of the Cascade mountain range.

The 500 millibar isotherms reflect the dominance of strong
north-south temperature advection with equatofward displacement of
isotherms characteristic of the region west of the coast, with the
thermal trough extending inland to the Cascade mountain range. Strong
poleward displacement of isotherms is characteristic of the region
east of the Cascade mountains and most intensely developed in the
northeastern portioh of the grid.

Precjpitation in May in the interior is maximized by strong
cold advection west of the Cascades coincident with sharp temperature
discontinuities aloft east of the Cascades. It is evident that the
more unstable sectors of cyclonic storms play a larger role in
pfecipitation events in contrast to the extensive warm sector dominance
in previous months.

The wind rose data plotted on Map 15 verifies the dominance of
west to northwest flow west of the Cascade range, and southwest flow
and southerly flow dominating the region to the east of the Cascade
range. As was the case in previous months, the highest variability

of wind direction is in the northern and northwest sector of the grid,
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indicating that closed 500 millibar Tows are typically centered in the
northern sector. The most consistent wind direction is in the southern
sector of the Qrid, indicating prevalence of northwest flow west of

the coast and southwest flow in the 1ntefior. As ‘was the case in
previous months, high wind velocities are centered,ac}oss southern
Oregon and northern California. The highest wind velocities are

located over the ocean in the extreme southwest portion of the grid.

2. Meridional and Latitudinal Transport
Characteristics and Curvature
Characteristics for May

Tables 6 and 7 reveal the strong decrease in the north to
south pressure gradient. May values have decreased by a factor of two
as compared to April values. The west to east pressure gradient has
decreased in the northern sector of the grid but has not decreased in
the southern portion of the grid. The relative increase in the west
to east pressure gradient is reflected in the zonal index which is now
very close to unity.

The increasing north-south transpoft characteristics of tﬁe
500 millibar height map are more clearly portrayed in the tabulated and
averaged curvature data (Table 8). Of the nineteen cases of class A

"and B precipitation events tabulated, eighteen of the cases indicate
positive (cyclonic) curvature values. The west to east cyclonic
curvature is characteristic of precipitation producing events at 500
millibars across the Pacific Northwest in May. The curvature values
are large in magnitude indicating significant variation in (north-south)

latitudinal transport from west to east. Many precipitation producing
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disturbances are characterized by 500 millibar upper level closed lows
centered over the interior of Oregon and Washington. North to northwest
winds aloft dominate offshore, and southwest or southerly winds
dominate over the central and eastern interior. Precipitation is
maximized by cold advection to the east of the Cascades. Individual
precipitation events commonly show that precipitation is associated
with Pacific cold fronts or cold type occlusions with éo]d advection
aloft immediately to the west of the migrating front. This indicates
that strong destabilization aloft is_responsib1e for significant over-
turning in the lower troposphere, resulting in cummulonimbus develop-
ment and subsequent shower activity. The displacement of the thermal
trough slightly to the east of the mean 500 millibar height trough is
indicative of the destabilization aloft necessary for moderate to heavy

intensity rainfall events in the interior.

3. Average Sea Level Pressure for Class A and B
Precipitation Events for May

Map 16 presents averaged sea level pressure date for May. The
orientation of the isobars in May takes on a more summer 1like pattern
and few of'the wintertime characteristics remain. The prevailing west
to southwest flow offshore and the low pressure in the area of
Vancouver Island has disappeared to be replaced by a high pressure
ridge dominating the west coast. A very strong northwest to southwest
orientation in the isobars prevails along the west coast and Cascade
mountain range. Low pressure is centered over interior Nevada and

southern Idaho and Tow pressure is also centered over northeastern
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Washington and southeastern British Columbia.

The high pressure ridge dominating the offshore and coastal
area is indicative of the northward migration of the Pacific high
system in response to the change in the thermal environment of the sea
and land. By May the ocean is decidedly cooler than the Tand with
increased low level stability over the ocean and corresponding instabi-
lity over the rapidly heating continent. The low pressure over southern
Idaho and Nevada is a direct manifestation of the southwest desert heat
low which is a permanent fiXture of the sea level pressure maps during
late spring and summer.

The low pressure over northeastern Waéhington and southern
British Columbia is most likely an jndication of migratory Pacific
frontal impulses. The front is typically oriented from northeast to
southwest across central Washington and central Oregon with lowest
pressure associated with the more northerly portion of the frontal
wave. In the examination of individual synoptic events, surface low
pressure in the form of migrating cold fronts or cold type occlusions
were present in the interior of Washington and Oregon with a high
pressure ridge to the west of the front. This is in contrast to the
earlier period when, typically, low pressure remains offshore, and a
migrating frontal system is generated out of the major low pressure
system and moves across the interior. The May precipitation events are
characterized by cold frontal or cold type occlusion precipitation with
stronger air mass temperature differences across frontal boundaries than
in the earlier winter period. Cold advection aloft at 500 mj11ibars
insures that destabilization takes on a larger role in precipitation

events, in contrast to the primarily warm advection which characterizes
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precipitation producing disturbances in the earlier winter period.

The tendency for precipitation to be favored by the existence
of higher pressure to the south along any given meridian continues in
May. Some southerly component of flow mdst exist to trigger upward
vertical movement; once the pattern changes to one ofvhigh pressure to
the north along any given meridian, pkecipitation is virtually always

terminated.

D. Average 500 M1111bar Heights and Sea Level Pressure
for June Precipitation Events

1. Average 500 Millibar Heights and Flow Characteristics
for June

Map 17 presents averaged 500 millibar heights for 21 class A
and B precipitation events for June. The Tlatitudinal temperature
gradient has weakened considerably as the cyclonic storm belt shift
poleward.

- The June height pattern is similar in character to the May
pattern with northwest flow characteristic west of 1252 west longitude,
and southerly or southwest flow east of 122° 30" west longitude. The
major trough axis has migrated to the east of the May position and is
‘centered approximately over the Cascade mountain rangé. The southerly
flow east of the Cascades would imply warm advection aloft in that
sector. The 500 millibar isothermal map indicates that this is not
entirely the case.

The thermal trough is well developed with very strong north-

south temperature gradient. Cold advection dominates offshore but
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also extends into the interior including the region dominated by
southerly flow. Intense destabilization in the interior associated
with cooling af 500 millibars seems to be a prerequisite for moderate
to heavy rainfall in the interior. IndiVidua1 synoptic cases typically
show small, intense closed lows at 500 millibars, cenfered over the .
interior plateaus of Oregon and'Washington with pronounced c001ing‘
aloft.

Map 17 also presents plotted wind rose data for the 21 cases
of class A and B precipitation events for June. Wind velocities have
weakened considerably, which is indicative of the weakening and
poleward shift of the midlatitude cyclonic storm track. The strongest
winds during precipitation events are still located to the south at
about 40°N latitude. This belt of high speed westerly winds across
the southern limits of the grid is consistent for all months (March
through June). Despite the changes in organization of the 500 millibar
thermal field, the control of a southerly jet position is consistent
in that maximum cyclonic shearing will exist to the north of the jet
with consequential vertical stretching and accelerated upward vertical
motion (Saucier, 1962, p. 343; Byers, 1957, p. 308-310).

The most highly variable winds are located in the norther]y
sector of the grid coinciding in most cases to the center of upper
level closed lows or the axis of sharp amplitude 500 millibar troughs.
The most consistent widns are again in the central and southern
portions of the grid. Cold advection is characteristic in the offshore
and coastal locations with northwesterly winds predominating. Strong
southwesterly flow dominates the central and interior location although

the more southerly flow is predominately in the eastern portion of the
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grid, indicating that cold advection extends into the interior.

2 Meridional and Latitudinal Transport Characteristics
and Curvature Characteristics for June

Tables 6 and 7 indicate that the north to south pressure
gradient is about the same magnitude as the May values. The west to
east pressure gradient is also equivalent in absolute value to the
May situation. The stronger north to south transport characteristics
of the flow are indicated by the change in sign of the pressure gradient
from the western portion of the grid to the eastern portion of the
grid. |

The average curvature values clearly illustrate the strong
cyclonic trajectory typical of the 500 millibar systems as well as the
predominance of northerly and northwesterly winds aloft in the
western portion of the grid (Table 8). Only 2 of the 21 cases indicate
negative curvature values, implying that very strong cyclonic turning
from west to east aloft is a prerequisite for precipitation in the
interior in June. Average curvature values are quite large, from
58 to +108. Despite variations aloft in the actual wind directions,
the establishment of significant west to east temperature discontin-
uities4re1ated to migratory surface cold fronts or cold type
occlusions, is a prerequisite for moderate to heavy precipitation in

the interior.

3. Average Sea Level Pressure for Class A
and B Precipitation Events for June

The sea level pressure pattern for June is dominated by the

existence of a strong high pressure ridge offshore extending well to
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the northwestward limits of the grid (Map 18). The seasonal poleward
shift of the Pacific High as a result of the strong contrast in
temperature ofbthe ocean and continent is not inconsistent with the
above pattern. The strongest gradient of pressure is notable along
the west coast which coincides with the strongest gradient of
temperature. Northerly to northwesterly flow dominates the offshore
region as well as the west coast eastward to the Cascade Mountains.

Low pressure dominates Nevada and extreme southeast Oregon,
and the interior of easterﬁ Washington and southern British Co]umbia.
The Nevada low is the result of the ﬁntensification of the semi-perman-

'ent summer desert heat low (Namis and Wexler, 1938, p. 164-170). The
Tow in the'northeastern portion of the grid is more likely the
average position of traveling cyclonic disturbances, principally in.
the form of surface cold fronts or cold type occlusions. The pressure
ridge extending eastward across northern California and southeastern
Oregon reflects the southern limit of precipitation as strong anti-
cyclonic and seaward flow dominates the sector south of the pressure
ridge. To the north of the pressure ridge cyclonic and southerly or
southwesterly flow would dominate, and precipitation is more highly
favored.

In the examination of actual synoptic events, the existence
of a northeast to southwest oriented cold front or cold occlusion is
typically detected. The cold front is commonly centered in the
interior of Washington and Oregon with strong southwesterly flow in
advance of the cold front and westerly to northwesterly flow dominating

the post frontal sector. While the precipitation is most commonly
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in the pre-cold front sector, the existence of a cold upper level
trough at 500 millibars insures that moderate instability is quite
typical of the air mass well in advance of the passage of the cold
front. As was indicated in Chapter 2, Juhe is the month of maximum
thunderstorm occurrence in Washington with cold front‘or cold type
occlusion being the most commonly associated weather disturbance

triggering these thunderstorms.

E. Summary of 500 Millibar Flow Characteristics:
March through June

The major changes in the 500 millibar flow pattern which
characterize the March through June period may be summarized as
follows:

1. Progressive weakening of the latitudinal height gradient
reflecting the spring weakening of the midlatitude north-south
temperature gradient.

2. The evolution from strong zonal flow, i.e. (west to east),
in March and April to a much larger meridional flow (north-south)
pattern in May and June.

3. The evolution from long wave length 500 millibar troughs
with small amplitude variations in the direction of flow across the
entire Pacific Northwest during March and April, to shorter wave length
troughs with increased meridional variation in the direction of flow
between the western and eastern 1imfts of the grid.

4. The migration of the 500 millibar trough axis eastward
from a position well off the coast in March to a position centered on

the Cascades in June.
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5. The change in temperature advection from that of dominant,
warm advection across the entire Pacific Northwest in March to
strong, cold advection aloft in western and central sectors in May and
June.

6. The reorientation of the upper level flow pattern from
one characterized by westerly flow and weak meridionally oriented
temperature gradients in March and April, to a pattern of strong
variation in meridional flow and the establishing of strong north-

south oriented temperature'discontinuities.

F. Summary of the Sea Level Pressure.Pattern:
: March through June

The major changes in the sea level pressure pattern which
characterize the March through June period may be summarized as follows:

1. The dominance of low pressure offshore with prevailing
southwest flow across the Pacific Northwest in March.

2. The development of a strong ridge of high pressure along
the west coast which increases in strength and progressively shifts
northward from April through June.

3. Precipitation in the interior is associated with the
passage of a Pacific cold front or cold type occlusion which is
typically located in the interior aligned from southwest to northeast.
Variable position of the associated short wave trough tends to "mask"
jts existence on the average pressure maps.

4. The strengthening and poleward migration of the desert
heat low from April to June in the southeast sector of the grid.

5. The tendency for precipitation to be associated with

higher pressure to the south along a given meridian.
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6. The increased dominance of northwesterly steering and
associated cold advection across the western portion of the grid in
association with well developed Pacific cold fronts.

7. The increased tendency for precipitation to be -more -
closely associated with the unstable air in 1mmediatevpr0x1m1ty to the
cold front, in contrast to the dominance of the warm pre-frontal sector

in March.



Chapter IV

MARCH-JUNE SOUNDINGS FOR CLASS A AND B
PRECIPITATION EVENTS FOR SPOKANE AND
QUILLAYUTE, WASHINGTON

A. Rationale

The secondary sprfng maximum of precipitation in the
interior of the Pacific Northwest is associated with an increase in
the relative frequency of moderate and high intensity rainfall over the
region. Sea level and 500 millibar pressure charts exhibit changes in
the organization of precipitation producing disturbances during the
late spring period. Winter months are characterized by strong warm
advection at the surface and at 500 millibars, while late spring is
characterized by cold advection at 500 millibars associated with the
passage of a surface Pacific cold front. It appears that appreciable
destabilization of the lower troposphere, accompanied by an increase
in precipitable moisture, is associated with precipitation producing
disturbances in the months of May and June.

In order to ascertain the seasonal change in the vertical
distribution of atmospheric parameters, radiosonde date were obtained

for Spokane and Quillayute, Washington, from the Spokane Weather
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Bureau (U.S. Weather Bureau, Pseudo-Adiabatic Chart). Hourly
precipitation observations were also obtained for Spokane (Local
C]imato]ogica]lData, Spokane). Radiosonde data were avaiTab]e for an
intermittent period from 1971 through 1975. Atmospheric parameters
which were analyzed included: vertical lapse rate of.temperature and
dewpoint; relative humidity and precipitable moisture; thickness of
the moist layer; and vertical stability. Due to the absence of
radiosonde charts for certain years, approximately three years of data
were available for any given month. A Tonger period of record would
have been desirable, but seasonal changes in lapse rate, precipitable
moisture, atmospheric stability, and moist layer thickness should be
responsive to normal seasoha] heating. The existence of a secondary
maximum, a frequency relationship for three years, was therefore not
considered to be a significant restriction.
B. Analysis Procedure

Radiosonde data were analyzed for the months of March through
June for Class A and B precipitation events. A sounding Was selected
if measurable precipitation ( T.) occurred within at least one hour of
the sounding time, either 4 a.m. or 4 p.m., P.D.T. Cumulative tota]é
of hourly precipitation were recorded for a consecutive four-hour period
across the radiosonde release time for Spokane, Washington. For each
precibitation sounding, atmospheric variables were récorded and
averaged at standard. 50 millibar atmospheric levels for each month.
Data were also reéorded at 920, 910 and 900 millibars in order to
ascertain low level diurnal changes in the sounding for Spokane,

Washington. It should be noted that most soundings indicated extensive
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saturated layers but of variable heights, and in the prbcess of
aVeraging produce a mean sounding which is unsaturated.

The U.S. Weather Bureau commonly utilizes the Showalter index
of atmospheric stability. The Showalter index is derived by Tifting
the air at 850 millibars to its 1ifting condensation level and then
pseudo-adiabatically to 500 millibars. The index is the difference 1in
the 1ifted temperature and the observed 500 millibar temperature
(Decker, 1973, p. 4-2). Smaller indexes indicate increased instability.
The Showalter index coﬁsideks only 850 temperature and moisture and
500 millibar temperature and does not consider conditions in between
these two levels. The K index (Deéker, 1973, b. 4-2) was derived to
consider moisture at 700 millibars, which was more relevant to the
prediction of severe thunderstorms in the midwest (Miller and Fawbush,
1953). The K index is calculated by the following formula:

K = (850 temperature - 500 temperature) +

(850 dewpoint - 700 dewpoint)
Increasing values of the index indicate greater instability. The U.S.
Weather Bureau has provided thunderstorm probabilities based upon the
K index. The probabilities are as follows:
K 15-20 21-25 26-30 31-35 36-40 40

Probability
of Thunderstorm 20% 20-40% 40-60% 60-80%  80-90%  100%

Both indices are adequate predictors of thunderstorms,
especially in the midwest, where the usual factors conducive to thunder-
" storms are: low level moisture (maritime tropical air), and cooi dry
air aloft (continental polar), coupled with a strong lapse of tempera-

ture in the dry air (Battan, 1961, p. 55; Beebe, 1955, p. 349-350).
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Cramer has pointed out the difficulty of these indices when applied to
the Pacific Northwest (Cramer, 1973, p. 16). The usual conditions for
thunderstorms fn the interior Pacific Northwest are characterized by
warm, dry air in the lower levels of the‘atmosphere, coupled with cool,
moist advection aloft (commonly between 850 and 500 mf]]ibars) and
cool, dry air above 500 millibars. When the moist Tayer extends down
to 850 millibars, the Showalter index will be reliable; but often the
air is dry at 850 and saturated at 800 or 750 millibars, and the
Showalter will be quite mié]eading.

In Technical Attachment No. 74—19, put out by the Western
Region Forecast Center, various techniques of thunderstorm prediction
were evaluated. The three most relaible predictors of thunderstorm
occurrence were the K index, 850 millibar dewpoint, and inches of
precipitable water. Of the six variables evaluated utilizing some
combination of low level temperature and moisture and high level
temperature, none considered moisture at any other level than 850
millibars.

In the following analysis, average Showalter indices, K values,
850 millibar dewpoints, precipitable moisture and moist layer thickness
were all calculated and averaged for the months of March through June.
While very definite changes occur across the March through June period
with respect to all of these variables, individua]]yvany one is not

necessarily a consistent predictor of high intensity rainfall.

C. Average Spokane Soundings for Class A and B
Precipitation Events: Temperature and
Dewpoint, March through June

In Figures 11 through 14, average temperature and dewpoint for

precipitation soundings at Spokane for the months of March through June
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are plotted. Solid lines are temperature and dashed lines are dewpoints.
A dry adiabat and a pseudo-adiabat have also been plotted as well as
two constant séturation mixing ratio lines. In cases where motor
boat1ng was indicated, a dewpoint corresponding to 20% relative
humidity was used in agreement with standard Weather Buread procedures
(Technical Attachment No. 73-17). Figure 15 is a plot of all four ‘
average monthly precipitation soundings combined.

Table 9 presents average data on temperature minus dewpoint,
relative humidity, and avefage 12 level totals of precipitable water
in grams of water per kilogram of dry air, for Class A and B precipita-
tion events. Figukes 16, 17 and 18 present average soundings of
temperature minus dewpoint, relative humidity, and actual mixing ratios
for the months of March through June. Figures 19 and 20 indicate
frequency data for the thickness of the moist layer, and both
Showalter and K index stability values. |

1. Spokane Precipitation Soundings
for March

A total of 33 cases were available for the month of March
encompassing the years 1970, 1972, 1973 and 1975. The average precipita-
tion sounding for March is plotted on Figure 11. In all months large
variability exists in the sounding characteristics which can produce
precipitation. Lapse rates can be either quite unstable or very stable,
depending on the specific synoptic conditions occurring at the time.

A moist, nearly saturated layer must exist, but it may be extensive
or shallow, dr have a base near the surface or some distance aloft. The
average sounding is the mean of a quite variable set of precipitation

conditions.
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TABLE 9

Average Monthly Mixing Ratio, Relative Humidity and Temperature Minus Dewpoint for Spokane, Washington, for
Class A & B Precipitation Events

Pressure Temperature-Dewpoint Mixing Ratio Grms/Kg Relative Humidity
Level Degrees OC Percent
March  April May June March  April May June March April May June
920 2.3 4.6 5.5 5.2 4.3 4.6 6.0 7.1 86 70 67 69
910 2.2 4.3 4.9 4.4 4.3 4.6 5.7 6.7 86 74 74 74
900 2.1 4.4 4.5 4.4 4.3 4.5 5.5 6.2 86 75 76 73
850 1.5 3.6 3.8 4.6 3.9 4.4 5.1 5.5 90 80 76 73
800 1.3 2.8 2.5 3.6 3.4 3.6 4.6 4.9 90 80 80 75
750 1.0 2.2 2.0 2.3 3.0 3.1 4.0 4.3 91 82 80 82
700 1.5 2.5 2.8 1.8 2.5 2.5 3.2 4.0 90 - 81 82 89
650 1.4 3.4 2.4 2.5 2.1 1.9 2.6 3.1 91 74 81 83
600 2.7 5.0 3.3 2.9 1.5 1.3 2.1 2.4 79 68 78 75
550 2.9 5.4 5.1 6.2 1.1 .8 1.4 1.5 77 58 67 61
500 4.0 5.5 5.0 7.8 v .6 1.0 1.0 70 56 62 50
450 7.0 6.8 6.4 10.0 .3 .3 .6 - .6 40 40 54 46
5 32.3  41.8 47.3

Totals 31.
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Despite the variability in individual precipitation conditions,
certain consistent trends do appear in the soundings when analyzed
across the March through June period. March is a period during which
wintertime precipitation conditions ére still prévai]ing but with some
indication of springtime warming beginning to assert itself. Precipita-
tion is assqciated with warm advection between 850 and 600 millibars,
and a surface radational inversion is quite common on the 4 a.m.
soundings, and frequently will exist even on the 4 p.m. soundings. The
saturated layer is quite thfck, averaging about 300 millibars in thick-
ness. Frequently, the saturated layer extends from near 850 millibars
up to at least 600 millibars. It is not unusué] to find either
isothermal layers or even temperature inversions located withfn the
saturated layer, indicating very strong, warm advection aloft. These
sounding characteristics correlate with the prevalent light moderate
intensity rainfall or snowfall associated with the warm sector of
wintertime cyclonic disturbances (Saucier, 1962, p. 291; Conover and
Wallaston, 1949, p. 249-260). The average sounding for March in Figure
11 has the smallest lapse rate of the four months, averaging 3.420 C
per 100 millibars. In Figure 18, the actual mixing ratio values are
the lowest of the four months, but above 800 millibars are equal to or
greater than the April mixing ratios, indicating that precipitation is
associated with warm, moist advection above 800 millibars.

Figure 21 is a plot of both K indices and Showalter indices
versus four hour precipitation totals. A very wide range of stabilities
from Showalter indices of +1 to +19 and K indices of 11 to 45 exists,

but the heavier precipitation is more commonly associated with
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moderately stable indices and only very rarely do highly unstable
indices coincide to high intensity precipitation. This relationship
will be reversed in the May and June period. The average Showa]ter
index is +5.6, the most stable of the foUr months. Figure 22 gives
the average K and Showalter indices for precipitation.1ntensit1es.
Only very tentative conclusions can be reached due to the wide scatter
on the original diagram, but one can conclude that higher stabilities
are more often associated with larger precfpitation values. One would
expect a very pronounced séattering in the lower intensity ranges as
both very stable and unstable conditions can produce light intensity
rainfall. It does appear that rarely do unstable jndices produce high
intensity rainfall. It is also apparent that March is typified by
light intensity rainfall most frequently.

~Figure 23 is a plot of four representative soundings for the
months of March through June. Each sounding was selected for having
both stability indices and temperature dewpoint conditions which were
representative of those commonly occurring in each month. The March
sounding is typical of many which produce precipitation in March but
occur with decreasing frequency through the remaining spring months.
The sounding has a Showalter index of +6 and a K index of +30. The
air is saturated from 850 to 700 millibars, unsaturated but quite
moist from 700 to 550 millibars, and saturated from 550 to 500 millibars.
The saturated layer between 850 and 750 millibars has a very weak lapse
rate indicating warm advection in that layer. Between 700 and 650
millibars, the lapse rate steepens and the vertical wind shear from

the west-northwest is indicative of a cooler, dryer air being advected
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MARCH THROUGH JUNE MOIST LAYER' THICKNESSES FOR SPOKANE,WASHINGTON
CLASS A AND B PRECIPITATION EVENTS
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MARCH THROUGH JUNE SHOWALTER AND K-INDEXES
OF VERTICAL STABILITY FOR SPOKANE, WASHINGTON
CLASS A AND B PRECIPITATION EVENTS
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in that layer. From 600 to 500 millibars, the lapse rate again
weakens and the moisture content again increases to saturation, and
this is evident in the wind shear in that layer as the winds return to
a southwesterly direction again advecting in warmer, moist air. Many
precipitation soundings in March indicate strong changes in layer
advection with height with northeast winds often prevailing in the first
50 to 100 millibars, and variable west to southwesf winds above 850
millibars indicating warm advection aloft. Véry unstab]el1apse rates
do occur in March, but tend to be associated with cold core 500
millibar Tows with quite Tow precipitable moisture values and do not
usually result in substantial precipitation (Saucier, 1962, p. 379-

380).

2. Spokane Precipitation Soundings
for April

A total of 20 cases of precipitation soundings were available

for the month of April, encompassing the years 1971, 1972, and 1975.
The average precipitation sounding from this sample is plotted on
Figure 12. Wide variability exists in the sounding characteristics
which can produce precipitation. The month of April is a transition
month with both residual wintertime characteristics and spring warming
detectable. The average lapse rate has increased to 3.67° C per 100
millibars, but as the mean sounding indicates it is primarily the
result of surface warming of the first 200 millibars. Above 650
millibars, the sounding is as cool as the March sounding. The
wintertime conditions still prevail above‘650 millibars, and while this
destabilizes the sounding, low precipitable moisture values are

maintained above 650 millibars. Precipitation in April, indeed for all
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months, is associated with moist advection above 850 millibars. In
April the average thickness of the moist layer is less than 200
millibars and quite commonly is sandwiched between dry air below
850 millibars and dry air above 600 millibars (Fig. 19).

The most notable aspect of the April mean sounding is that
despite the decrease in stability due to the warming of the lower
layers, the dewpoint curve does not.show a comparable warming and, in
fact, above 750 millibars is less than the March sounding. Precipita-
table moisture values are only .8 grm/kg above the total of the March
sounding, despite an increase in 3.49 C of the 920 millibar surface
temperature. In Figure 18, the actual mixing ratio values illustrate
how increased precipitable moisture has not kept pace with the increase
in temperature and therefore the vapor capacity of the air. In Figure
17, the relative humidity curve indicates that at all levels the April
sounding averages less than the March sounding, desbite the increase
in temperature in the lower layers and the residual March-1ike
temperature distribution above 650 millibars.

April exhibits a wide range of stability values ranging from
Showalter values of +1 to +11 and K indices of 25 to 5I (Fig. 20). No
discérnib]e trend can be identified in the relationship of precipitation
intensity and stability indices. Both unstable and stable indices can
produce moderate intensity rainfall. Figure 21 would seem to indicate
that high intensity rainfall is rather rare in April with a large
clustering in the light to moderate intensities. The average Showalter
index of +5.1 and K index of 35 is decidedly more unstable than the
March average indices, but does not seem to result in a significant

increase in the intensity of precipitation.
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Figure 23 includes a plot of a representative precipitation

sounding for the month of April. The sounding has a Showalter index
of +6.. The soUnding illustrates several common features of the mean
April sounding. The sounding has a moderately high surface temperature,
but is unsaturated below 750 millibars. It is saturated or near
saturated from 750 to 650 millibars, but is quite dry above 600
millibars. The lack of a thick moist Tayer, so typical in March, but
not compensated by increased low level dewpoints, typical of May and
June, would apparently explain the lack of a substantial increase in
precipitation yield from March to April. April is a transition month,
a hybrid, characterized by increased surface héating and delayed upper
tropospheric warming, which while increasing instability is not
compensated by a proportional increase in low or high Tevel moisture
content.

3. Spokane Precipitation Soundings
for May

Twenty-two cases of precipitation soundings were available for
May, encompassing the years 1971, 1972 and 1975. The average precipita-
tion sounding for this samb]e is plotted on Figure 13. The May sounding
shows substantial warming at all levels averaging 4% ¢ warmer than the
April sounding. The average lapse rate is about the same as the>Apri1
sounding averaging 3.6° C per 100 millibars. Warming has taken place
at about the same rate at all levels, indicating that vertical mixing is
quite efficient during most precipitation events. While the lapse
rate is no steeper than the April sounding, several characteristics are
clearly indicative of the -increase in vertical instability. - Dewpoint

temperatures have increased substantially at all levels, indicating
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that pseudo-adiabatic conditions will be more prevalent, due to the
increase in absolute humidity. As both temperature and dewpoint
increase, the slope of a given pseudo-adiabat is not as steep; there-
fore, wet adiabatic processes can be triggered by an environmenta]
lapse rate which need not be as steep as in earlier, colder months
(Byers, 1959, p. 177).

Certain decidedly springtime characteristics are identifjab]e
in the sounding data for May, which were being initiated in April.
Saturation most commonly occurs above 850 or even 800 millibars (Fig.
17) and generally extends to about 600 millibars. Dry air is commonly
found above 600 millibars. Interestingly, the average thickness of the
moist layer is about 275 millibars, which is thicker than the April
value (Fig. 20). A wide range of values %or the thickness of the
moist layer is noticeable, however. Figuré 17 illustrates the increased
convective instability in May as the relative humidity values average
quite high between 850 and 600 millibars, but drop off rapidly above
600 millibars. This is more conducive to cumulonimbus development,
especially if this ]ayer is 1ifted by a Pacific cold front. In this
event, the moist layer will cool wet adiabatically and the dry layer
aloft will cool dry adiabatically, thus steepening thé lapse rate and
promoting increased vertical motion (Byers, 1959, p. 190-192).

Table 9 illustrates the large increase at all levels in
actual water vapor content in May. The 12 level mixing ratio total is
41.8 grams of water/kg. of dry air, an increase of 9.5 grm/kg over
April, amounting to about a 30% increase, which, probably coincidentally,
is precisely the percentage increase in mean precipitation in Spokane

from April to May. Figure 19 is a frequency plot of Showalter indices
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and K values for the month of May. May has an average Showalter
index of 4.8 which indicates that destabilization is quite frequently
associated with precipitation events. Very rarely is precipitation
associated with Showalter indices greater than +7 and most events occur
with indices Tess than +6. Additional insight into the type of
disturbances which produce the more significant rains in May comes from
Figure 21. There is a clustering of data points in the middle stability
ranges about the 1ight intensity precipitation values, but the most
not{ceab1e aspect is the second clustering about the low stability
indices and the high intensity precipitation values. High intensity
precipitation is consistently associated with unstable indices. Very
rarely can heavy precipitation occur with highly stable indices. It is
also quite clear that heavy intensity precipitation occurs proportion-
ately more frequently in May than in either March or April. It is
under conditions of cool advection aloft, coupled with warm, moist air
at intermediate levels, that favor the most intense precipitation in
the month of May.

In Figure 23, a representative sounding for a May precipitation
event has been included. The sounding has a Showalter index of +4 and
a K index of 34. The sounding is unsaturated be10w 800 millibars,
which is fairly common due to the moderate surface heating occurring
at this time of year. It is saturated from 800 to 600 millibars and
nearly saturated to 500 millibars. The sounding is parallel to a
pseudo-adiabat indicating that saturated parcels, given some initial
positive buoyancy, will rise freely. The distribution of wind with
height indicates that southwest to west-southwest winds are prevailing

at all heights. ‘However, the winds turn clockwise with height,
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indicating that progressively cooler air is being advected as one rises
vertically. This is in contrast to the March situation where commonly
the winds indicated increased warm advection with height.

May is a month that is characterized by decreasing cyclonic
storm frequency, but due to the rap1d1y increasing difference in
temperature of the land and sea, the interior is dominated by cold
frontal passages of Pacific origin. As cold, moist air is advected
aloft the increased heat Toads in the lower Tevels destabilize the air
mass, and coupled with 1ncféased precipitable moisture permits
precipitation events of increased intensity.

4. Spokane Precipitation Soundings
for June

A total of 23 precipitation soundings were available for the
month of June for the years 1971, 1972, and 1975. The average precipi-
tation sounding for this sample is plotted in Figure 14. The June
sounding averages 2° C warmer than the May sounding, but is only half
the increase in temperature which occurred from April to May. Ther1apse
rate is about the same as the May sounding, averaging 3.63° C per 100
millibars. The surface layer indicates a strong heating now occurring.
The mean lapse rate above the surface layer is very nearly parallel to
a pseudo-adiabat, indicating that with sufficient mositure availability,
upward vertical motion through considerable heights is assured.

The dewpoint curve indicates that the highest relative humidities
are found from about 800 to 600 millibars, but a greater spread exists
between the temperature and dewpoint curve indicative of a higher
frequency of both dry air at the surface and above 600 millibars. In
Figure 17, the relative humidity distribution with height indicates a‘

decided tendency for precipitation to be associated with moderate
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moisture in the first 100 millibars, high moisture values above 550
millibars. This condition is more conducive to thunderstorm and
cumulonimbus type rainfall. Frontal 1ifting of a moist layer at
intermediate levels coupled with a dry 1éyer aloft will cause a steep-
ening of the lapse rate and convective overturning.

Figure 18 plots the actual mixing ratio at the 12 standard
levels. June records the highest mixing ratio values for the four
months. The increase in moisture is evident from the surface to 550
millibars and above 500 millibars approximates the May values. The 12
Tevel total of precipitable moisture has increased from 42 grms of
water/kg of dry air to just over 47 grms of water/kg of dry air, or an
increase of 13%. This increase in precipitable moisture is pértia]]y
compensated by the greater spread between temperature and dewpoint
indicating that saturated conditions do not occur as extensively through
the vertical atmospheric column in June. This fact is verified in
Figure 17. The base of the moist layer is at 800 millibars and the
highest relative humidities are typically above 700 millibars, a bit
higher in elevation than earlier months. Figure 19 also verifies the
fact that, while a wide variability in thickness of moist layer exists
for precipitation soundings, most commonly the thickness of the
saturated layer is about 200 millibars.

Figure 21 is a plot of both Showalter and K {ndices against
four hour precipitation totals. June is the most unstable of the
three months with an average Showalter 1hdex of +3.5 Figure 20 illus-
trates that precipitation is very rare with Showalter indices greater

that +6, and the majority of precipitation events have indices of less
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than +5. It is evident from Figures 21 and 22 that the highest
intensity precipitation events are associated with unstable Showalter
indices of +4 or 1e§s. The clustering around the .01 inch per 4 hour
precipitation values are of note, indicating that 1ight intensity
precipitation is common as a result of limited moisture supply. If the
moist Tayer is extensive and the air unstable, tHe high precipitable
moisture values permit quite high intensity rainfall, but quite often
the 1imiting factor appears to be the lack of a thick saturated layer.
Figure 20 gives the frequency of occurrence of both Showalter and K
indices, and the predominance of unstable Showalter indices is quite
~evident. The K index peak has shifted to the right (increased stability)
of the Showalter peak, but in examining the soundings it was quite
evident that frequent existence of saturated conditions at 700
millibars tended to give rather low K indices. The K index is most
responsive to predicting thunderstorms when Tow level moisture exists
(below 700 millibars) and a dry layer exists from 700 millibars up to
500 millibars. These conditions are rarely encountered in the interior
Pacific Northwest as the Cascade Mountains tend to restrict moisture
advection to a layer above 850 millibars.

A representative sounding for June is plotted in Figure 23.
The sounding has a Showa]ter index of +3 and a K index of +31. The
Showalter index is probably more indicative of the actual stability of
the sounding as quite high intensity rainfall, .11 inches in four
hours, was occurring. The sounding is unsaturated from the surface to
750 mi]]ibafs and saturated from 750 millibars to 500 millibars, and
quite dry to above 500 millibars. The lapse fate is greater than the

pseudo-adiabatic rate between 800 and 700 millibars and between 650
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and 500 millibars. Upward vertical motion is occurring quite freely
within these layers. The vertical wind distribution indicates the
role that cool advection of air aloft plays in producing precipitation
disturbances in June. The surface winds are from the southeast; they
become southwesterly at 850 to 800 millibars, and theﬁ turn to north-
westerly above 750 millibars. One would not expect to find northwesterly
winds aloft associated with most precipitation events in June. However,
one does consistently find that the winds will veer with height,
indicating incréased, cool advection a10ft;

June is characterized by precipitation bearing disturbances
associated with cold, upper level 500 millibar lows and the passage of
a Pacific cold front on the surface. Conditions which are favorable to
widespread moisture advection above 850 millibars and cooling aloft,
result in unstable lapse rates which can trigger cumulonimbus develop-
ment. These conditions are responsible for the majority of the
moderate to high intensity precipitation in the month of June.

D. Average Quillayute Soundings for Precipitation

Events: Temperature and Dewpoint
March through June

The characteristics of precipitation soundings for the period
of March through June in the interior of the Pacific Northwest can be
correlated to the changes in average mean honth]y rainfall in the
interior. The intensity relationships which appear to be associated
with increased destabilization and 1ﬁcreased precipitable moisture are
in the mean reflected in increased average monthly pr8C1pitation\in
May and June in the interior of Oregon and Washington. Stations west

of the Cascades indicate decreasing monthly means of precipitation
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across the May through June period, so it is relevant to examine
precipitation soundings for a westside station to see if there are.
significant differences in the temporal change of vertically distributed
atmospheric variables. |

Quillayute, Washington, is located at the norfhwest tip of
the 01ymp1c peninsula at sea level. The station records radiosonde
data twice daily and is the only coastal radiosonde station north of
Eureka, California. Radiosonde data were available for Quillayute for
the year 1975, but certain'pr0b1ems arose in that no hourly precipita-
tion data were accessible. Daily weather map series were available so
the existence of precipitation at the sounding release time could be
documented, but no information could be ascertained concerning
precipitation intensities. Precipitation events were selected on the
basis of precipitation occurring on the 4 a.m., P.S.T. weather map at
Quillayute, Washington.

Figure 24 gives plotted values of average temperature and

dewpoint for precipitation soundings from 1000 millibars to 450

millibars for Quillayute for the months of March through June. A
minimum of 10 cases of precipitation occurrence were available for
each month. Average Showalter values and K index values are included
on Figure 24 for each month.

Quillayute is Tocated at sea level on the nbfthwest tip of the
Olympic peninsula and is therefore strongly influenced by the dominant
Pacific marine environment. The ocean warms very slowly in the spring,
and local upwelling effect can produce very cold sea surface temperatures,
even in the mid spring period (Staley, 1957, p. 458-453; Sverdrup, et

al, 1942, p. 724-725). The soundings often indicate low Tevel marine
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characteristics which are quite distince from conditions above 900
millibars. Due to the Olumpic Mountains immediately inland from the
coast, a strong ornographic efféct is available. It is not uncommon
to record precipitation with a saturated‘marine layer which only
extends from 1000 to 900 millibars.

1. Quillayute Precipitation Soundings
for March

The average March temperature and dewpoint sounding is plotted
on Figure 24. A Tlapse rate greater than the pseudo-adiabat exists in
the first 100 millibars, but above 900 millibars is 1es§ than a pseudo-
adiabatic lapse rate. The air is nearly saturated at the surface and
is saturated up to 800 millibars. From 800 mi]}ibars up to 450 milli-
bars the dewpoint curve gradually slopes away from the temperature
curve. In the examination of the actual cases which produce the mean,
.two sets of conditions emerge: (1) Commonly soundings are either very
stable and saturated from near the surface to about 900 millibars and
then gradually decrease in relative humidity above that level; or,

(2) are moderately unstable and nearly saturated from 950 millibars up
to about 600 millibars. The frequency plot of stabilities in Figure

25 indicates the dual nature of the soundings. A group of soundings

have Showalter indices of greater than +8 and another group have

indices of less than +5. The high index values coincide to soundings
which have Tow level moisture and dry air above 900 millibars and the
Tow index soundings coincide to those soundings with near pseudo-
adiabatic lapse rates and saturated conditions from 950 to 600 millibars.
This dual tendency is repeated through the remaining three months with

an increasing proportion of the low level moisture and stability
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indices dominating the samp]é, The average Showalter index for March
for Quillayute is +5.0, which is slightly more unstable than the
average Spokane value. The ocean may still be a heat source from

below at this time as average biweekly sea surface temperatﬁre indicates
a poleward displacement of the isotherms along the Washington coast at
this time (Renner, 1974).

2. Quillayute Precipitation Soundings
for April

The average April Sounding curve for Quillayute, Washington,

is plotted on Figure 24. The temperature curve is quite simi]af to
the March curve with actual cooler conditions prevailing in the first
100 millibars. The sounding data were derived from the year 1975, and
April of that year was one of the coldest on record for the past 20
years in the Pacific Northwest (Monthly Weather Review, 1975). The
sounding curve is not truly representative of the typical mean April.
temperatures, but the vertical change in temperature is probably
representative of typical April precipitation soundings. The most
noticeable difference in the April sounding from the March sounding
is wider spread in temperature and dewpoint. Highest relative
humidities exist in the first 50 millibars and drop off gradually to
700 millibars. Above 700 millibars, the temperature-dewpoint spread
widens up to 450 millibars. |

The frequency plot of Showalter indices for April again
indicates the dual nautre of precipitation events at Quillayute. Two
groups of values exist, one with stability indices greater than +10
and another group with values less than +4. The high stability values

are again associated with soundings with low level moisture between
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1000 and 850 millibars and dry air above; and the low stability values
are associated with pseduo-adiabatic lapse rates and near saturated
conditions from 950 tQ 600 millibars. The proportion of higher
stability condition has increased s1ight1y from the March period. The
average Showa]te? index has increased to +7.2 while tHe average
stability index for Spokane has decreased from +5.5 to +4.9. It
appears that while the lapse rate is quite similar to the March
sounding, precipitable moisture again has decreased and convective
processes are not as efficient in producing thick, saturated layers,
and therefore mean precipitation continues to decrease. A trend has
initiated in April that will continue through the months of May and
June. Westside locations are experiencing increased stability with
precipitation producing disturbances primarily as a result of the
stabilizing effect of the cool oéeanic surface waters. The interior
locations are rapidly destabilizing as a result of the rapidly
increasing latent and sensible heat additions in the lower layers of
the atmosphere.

3. Quillayute Precipitation Soundings
for May

The average May temperature and dewpoint is plotted on Figure

24. The temperature curve indicates a pseudo-adiabatic lapse rate
from 950 to 850 millibars, but above 850 millibars is. less than the
’pseudo-adiabat. The air is nearly saturated from 1000 to 800 millibars,
but above 800 millibars thé relative humidity drops off to below 50%
and is under 45% at 450 millibars. The preponderance of precipitation
events are not characterized by those with low level moisture between

1000 and 850 millibars and dry air above 800 millibars. If one
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examines actual sounding events, one often finds a prohounced temperature
inversion separating the moist, marine layer below from the dryer air
above 800 mi]]ﬁbars. The vertical stratification of air masses is a
common occurrence in summer along the Pacific Coast and, quite often,
it is only a thickening of the marine deck which wi]]igive 1ight
precipitation to the coastal environment (Lowry, 1962, p.>162).

The stability values in Figure 25 reflect the dual nature of
the rain events along the coast. The lower stability values are
associated with strong frontal surges which can break up the marine
inversion énd saturate air to higher levels; the stable indices are
associated with weak disturbances which increase the onshore flow and
simple thicken the Tow level marine Tayer sufficiently to give light
precipitation at coastal stations. The average Showalter stability
index 1s'+7.2 for all events, which is decidedly more stable than the
+4.9 for Spokane, Washington. Mean precipitation is increasing from
April to May in the interior locations, but is confinuing to decrease
in coastal Tocations primarily as a result of the increasing low level
stability imposed upon Pacific air masses moving into the cool, coastal
environment where the prevailing coastal northwesterlies produce
substantial upwelling (King, 1965, p. 266; Sverdrup, 1942, p. 724-725).
In contrast, those Pacific air masses which can break across the
Cascades are rapidly destabilized over the interior and the result is

an increase in cumulonimbus activity and higher intensity rainfall.
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4. Qui]]ayufe Precipitation Soundings
for June

The average June precipitation sounding is plotted in Figure
24. The sounding has a decided summerlike profile. The témperature
curve has a very small Tapse rate in the first 100 mii]ibars, and
from 950 to 850 millibars is close to isothermal. The lapse rate |
1ncreases‘above 850 millibars, but remains less than the pseudo-adiabats
throughout the sounding. The dewpoint curve indicates that saturation
occurs in the first 100 mi]Tibars, but relative humidities rapidly
decrease above 900 millibars, remaining below 55% for the rest of the
sounding. In the examination of specific soundings, one finds that a
strong temperature inversion typically exists between 950 and 850
millibars. This layer separates the cool, saturated marine layer below
from much dryer air above 850 millibars. The marine layer can produce
precipitation with a thickness of 50 millibars, but under strong
onshore flow the moist layer will thicken and extend up to 850 millibars
in some cases. Very rarely are Pacific disturbances strong enough to
destroy the marine inversion entirely and saturate air extensively above
850 millibars.

The plot of Showalter stability indices in Figure 25 illustrates
the increased dominance by Tow level marine layers. The majority of
precipitation events have Showalter indices of +7 or greater, indicating
that the marine inversion is quite persistent and tends only to increase
in height during precipitation events. The average Showalter value is
+8.8 for all cases, while the Spokane average index was +3.5.

It is clear that air masses which produce precipitation in the-

coastal region indicate increasing vertical stability in the period from
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March through Jdune. In contrast, the interior indicates increased
destabilization associated with precipitation producing disturbances
in the same period. The mean monthly precipitation values in the
Pacific Northwest respond to the west to east gradient of stability
in this period by continuing to decrease in May and June west of the
Cascade Mountains, while interior stations indicate increasing
precipitation means.

E. Diurnal Characteristics of Precipitation Soundings
for Spokane, Washington

Radiosonde data are obtained at 4 a.m. and 4 p.m. Pacific
Standard Time. The diurnal heating cycle might be expected to exert
some control on the frequency of rainfall intensity (Geiger, 1966,

p. 69-77; Trewartha, 1968, p. 162-163; Brien and Simpson, 1969, p.
125).

Figure 26 presents relative frequencies of four hour precipita-
tion totals occurring at either 4 a.m. or 4 p.m., radiosonde time, for
the months of March through June. Four years of data were utilized
from 1970 through 1973. The percentage of all rainfall events occurring
at either 4 a.m. or 4 p.m. is included on Figure 26. Al1 months
indicate an afternoon bias in rainfall, and, as might be expected,
the percentage of afternoon rain increases from March through May. The
percentage differences are not large, considering the size of the
sample. There is also a tendency for higher intensity rainfall to be
relatively more frequent in May and June than in March and April.
Higher intensity rainfall is.also more likely in the afternoon in May
and June while it is about equally probably in the a.m. or p.m. in

March and April. The differences in the empirical probabilities are
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not large, however, so one cannot assume that afternoon rainfall is
consistently more intense in May‘and June than morning rainfall.

Table 10 giveé average Showalter indices for 4 a.m. and 4 p.m.
precipitation events for Spokane for the period of March through
June. Surprisingly, there i no obvious monthly trend of increased
destabilization of the afternoon soundings in comparison to the
morning soundings until the month of June. The Showalter index is
calculated using the 850 millibar pressure level, and most of the
diurnal heating effects occur in the first 100 millibars. Most
precipitation soundings in the spring months will indicate temperature
differences amounting to +3 or +4% C at 920 millibars in the afternoon
in comparison to 4 a.m. soundings, but this effect rapidly disappears
above 900 millibars. The regional destabilization which occurs in the
interior of the Pacific Northwest in May and June results in increased
high intensity rainfall when an appropriate Pacific frontal disturbance
~is moving across the region. These disturbances appear to have no
diurnal biases, and therefore the diurnal heating cycle, while detectable
in the frequency curves of precipitation intensity in Figure 26, is

apparently not a major control in itself.

Table 10

Average Monthly Showalter Indices for 4 a.m. and 4 p.m.
Precipitation Soundings for Spokane, Washington

Month 4 a.m. 4 p.m.
March + 6.5 +4.9
April + 4.8 + 5.0
May + 4.4 + 5.0
June + 5.1 + 3.4




Chapter V
CASE STUDIES OF EARLY AND LATE SPRING
PRECIPITATION EVENTS IN THE INTERIOR
OF THE PACIFIC NORTHWEST

The secondary maximum of precipitation in the interior of the
Pacific Northwest is defined thrdugh the analysis of longterm mean
precipitation statistics. The synoptic weather events which produce
the mean are organized on a day-to-day time scale and exhibit quite
variable patterns of atmospheric organization from one given precipi-
tation event to another. The processs of averaging will quite often
remove local synoptic scale features whose variance in space and time
are quite large, but whose existence are nonetheless quite persistent.
If indiyidual precipitation events are examined on a daily basis, one
detects subtle but significant differences in the organization of
atmospheric variables which will produce precipitation in early spring
compared to the late spring period. Two individual synoptic cases
were selected in March and in early June because they represented
rather typical conditions which characterize precipitation events in
both these periods. Their selection was based on quite subjective
criteria which integrated the author's assessment of meteorological
conditions of temperature and moisture advection at the surface and
aloft, plus observed radiosonde characteristics and hourly precipitation
amounts. The selection was made from ten years of weather maps and over
50 radiosonde charts.
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B.  Analysis Procedure

Surface and 500 millibar weather maps were available on a
daily basis with plotted synoptic weather data recorded at selected
stations in the United States at 7:00 a.m., E.S.T. (4 p.m., P.S.T.).
Maps of Maximum and minimum daily temperature and 24 hour precipitation
totals for the 24-hour period preceding 1 a.m., E.S.T. were also
available (U.S. Weather Bureau Daily Weather Map). Radiosonde data
and hourly precipitation data were available for the selected period
for Spokane, Washington (U.S. Weather Bureau Pseudo-Adiabatic Charts;
March 1975 and June 1971). The daily surface and 500 millibar charts,
24 hour precipitation totals, and 24 hour maxihum and minimum tempera-
ture maps are presented in Maps 19 through 30. Spokane actual radio-
sonde data and hourly precipitation totals are presented in Figures 27
through 32, and Tables 11 and 12. Three hour temperature and relative
humidity records for Spokane are presented in Table 13. In the following
discussion of surfacevand 500 millibar synoptic maps, only the Pacific
Northwest region was included on Maps 19 through 30, due to space limita-
tions. The text occasionally refers to events occurring outéide the
lTimits of the maps shown in order to more clearly portray the complete
synoptic situation at the time of observation.

C. Synoptic Analysis of the Precipitation Event
of March 7-8-9, 1975

1. Surface and 500 Millibar Charts
Maps 19 through 21 are the surface charts for the period of
March 7 through March 9, 1975. The surface map for the 7th shows an
intense Pacific cyclonic storm approaching the northern Ca]ifornia

coast. The associated Pacific front is occluded, indicating that the |



TABLE 11

Hourly Precipitation for Spokane, Washington
~March 7th, 8th and 9th, 1975
(in inches)
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Date Hour

7th

A.M, lam 2am 3am 4am b5am 6am 7am 8am 9am 10am 1lam 12pm
Precip. - - - - - - - - - - - -
P.M. Tpm 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm 10pm 11pm T12am
Precip. - - - - - - - - - - - -
8th

A.M. lam 2am 3am 4am 5am 6am 7am 8am 9am 10am Tlam 12pm
Precip. T T - T 01 .03 .03 .05 .01 03 .03 T
P.M. Ipm 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm 10pm 11bm 12am
Precip. T - - - - - - T T 04 .04 .02
9th

A.M. lam 2am 3am 4am b5am 6am 7am 8am 9am T10am 1lam 12pm
Precip. .01 T 0z .03 T .01 .01 .03 .04 .01 T T
P.M. Tpm 2pm 3pm 4pm 5Spm 6pm 7pm 8pm 9pm 10pm T1lpm 12am
Precip. T T T T T T - - - - - -




TABLE 12

Hourly Precipitation for Spokane, Washington
June 9th, 10th and 11th, 1971
(in inches)
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Precip.

Date Hour

9th
A.M. Tam 2am 3am 4am 5am 6am 7am 8am 9am 10am 1lam 12pm
Precip. - - - - - - - - - - - -
P.M. Tpm 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm 10pm 1lpm 12am
Precip. - - - - - - - - - - - -
10th
A.M. Tam 2am 3am 4am 5am 6am 7am 8am 9am 10am 1lam 12pm
Precip. - - - T T .03 .01 .02 .03 .07 .09 .05
P.M. Tpm 2pm 3pm 4pm 5pm 6pm 7pm 8pm 9pm 10pm 11pm 12am
Precip. .08 T .07 .63 .02 T - - - - - -
11th

- AM. lam 2am 3am 4am 5am 6am 7am 8am 9am 10am Tlam 12pm
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TABLE 13
Three Hourly Temperature and Relative Humidity

for Spokane, Washington
(in ©

Date ‘ ’ ‘ Hour

March 1975

7th lam 4am 7a 10am 1Tp 4p 7p 10pm
Temp. 260 250 2661 . 348 4061 4]8 34r‘9 358
R.H. 60% 60% 58%  48% 43%  43% 51%  52%
8th lam 4am 7am 10am 1pm 4pm  7pm 108m
Temp. 340 340 320 320 330 350 340 33
R.H. 57%  62% 85% 89% 89% 89% 89%  92%
9th lam 4am 7am 10am Tpm 4pm 7pm  10pm
Temp. 320 340 340 350 380 370 360 340
R.H. 92% 92% 89% . 89% 86% 85% 89%  89%
June 1971

9th lam 4am 7am 10am Ipm 4pm 7pm  10pm
Temp. 510 440 550 640 690 680 610 570
R.H. 59% 76% 57%  38% 35%  35% 46%  47%
10th lam 4am 7am 10am Ipm 4pm 7pm  10pm
Temp. 540 540 510 520 530 530 530 530
R.H. 59%  62% 83% 83% 83% 83% 78% 83%
11th lam  4am 7am 10am 1pm 4pm 7pm 108m
Temp. 520 470 520 600 640 650 610 54

R.H. 77% 80% 72%  60% 68% 43% 56% 72%
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storm had developed well offshore and has had a 1ife history of several
days. Precipitation is occurring in northern California and southwestern
Oregon. The Pacific Northwest is dominated by a weak ridge of high
pressure and cool modified maritime polar and continental polar air.
Strong high pressure composed of cold continental Arctic air dominates
weéternfCanada and has moved south into the northern Rockies and Great
Plains. Twenty-four hour maximum and minimum temperatures in the
“interior of the Pacific Northwest indicate a large diurnal range with
minimums well below freezing and maximums in the forties and fifties.
Warm air is being advected from the south, but skies have remained
clear over most interior stations, permitting efficient radiational
cooling at night. Most interior stations indicate Tight winds which
appear to be responding to both local air drainage conditions and the
prevailing pressure gradient which is directed from northerly and
easterly quadrants. Cool air is draining from the north and east, and
the north winds at Omak, northeast at Spokane, and southeasterly winds
at Portland are all responding to major downslope topographic controls.

At 500 millibars on the 7th (Map 22), a deep upper level
Tow and associated trough is centered west of the Pacific coast. Two
upper level lows are present, one centered in the Gulf of Alaska at
50°N, 140°W, and another centered at 37°N and 130°W. An assymetrical
ridge of high pressure, the axis trending northwest by southeast,
dominates the Pacific Northwest. Strongest winds at 500 millibars are
located to the south over southern California with wind velocities of
90 knots from the southwest located over Santa Maria. The winds aloft

indicate strong, warm advection aloft over most of California and
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southern Oregon. The 500 millibar isotherms are displaced poleward
along the Pacific coast with the -thermal ridge coinciding to the 500
millibar pressure ridge. There is a strong difluent circulation over
the interior Northwest poleward of the 500 millibar maximum wind
velocity belt, indicating strong, positive vorticity édvection and
favorable conditions for upward vertical motion (Saucier, 1962, p. 350).

Precipitation has been occurring quite heavily during the
previous 24 hours in a zone extending from southern Ca]ffornia to
southern Oregon and eastward across the Great Basin of Nevada, Utah,
Wyoming and northern Colorado. No pfecipitation has occurred in the
Pacific Northwest north of southern Oregon.

On the 8th of March (Map 20), the surface map indicates
that the California low has filled and moved northeastward, and is now
centered along the central Oregon coast with several minor centers
located over northeastern Washington and northeastern Nevada. A warm
front has moved northeastward from the northern California coast and is
centered across southwestern Idaho and northeastern Washington. A cold
front has swept southeastward and extends from the Tow in northeastern
Nevada southwestward through extreme southern California. Precipitation
is widespread throughout the Pacific coast states, both west and east
of the Cascades and Sierra Nevada mountain ranges. Most stations are
cloudy and are either recording precipitation or have recorded precipita-
tion in the last six hours.

Over most of the Pacific Northwest, temperatures have risen
both west and east of the Cascades under the strong advection of central

Pacific air from southwest to northeast. Westside stations indicate
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temperature increases from previous 4 a.m. readings, with changes of:
+6°F at Medford; +3°F at Astoria; +6°F at Quillayute; and +14°F at Port
Hardy. Interior Pacific Northwest stations also indicate temperature
increases of: +20F at Burns; +6° F at Pehde]ton; +13°F at Omak; and
+9°F at Spokane. Wind directions and velocity still fend to be quite
light and variable in the interior Pacific Northwest as a consequence

kof the weak surface pressure gradients. Winds in Oregon appear to be
from a more southerly quadrant than the previous day while northeastern
Washiﬁgton still seems to bé responding to cold air drainage from the
north and northeast. Omak is reporting snow and Spokane is reporting
no precipitation at the observation time, but in the next hour reported
freezing rain and ice pellets (Table 12). At 500 millibars on the 8th
(Map 23), the upper Tow has filled, but a deep trough remains along the
Pacific coast. The trough is oriented north-south and is centered
about 130°W. The ridge‘dominating the Pacific Northwest has shifted
eastward to 110°. The west coast, 1nciud1ng the Pacific Northwest,
is under the influence of southwesterly winds with southerly winds
dominating the coastal areas of Washington and Oregon. The previous
day, southwesterly winds were restricted to southern Oregon and
westerly circulation prevailed over Washington. The wind speeds at
500 millibars over Washington have not changed, but the highest wind
speed, while still located over central California, hés shifted further
north. Strong positive vorticity advection to the north of the maximum
wind velocity belt should be occurring, which would favor upward
vertical motion and shower activity in the moist air mass.

The 500 millibar isotherms show strong equatorward displacement

in the trough axis offshore, indicating cold advection between 130°W and
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135°W, The isotherms are displaced poleward over the west coast and
interior of the Pacific Northwest with a warm thermal ridge extending
northwestward over Vancouver Island. Warm advection is occurring at
500 millibars over all of the interior Pacific Northwest. Absolute
temperature readings at 500 millibars over the interior are -25°¢C,
which is sufficiently cool to give a freezing level of below 4000
feet and snowfall at mid eleyations.

On March 9th, the surface map (Map 21) indicates a weak ridge.
of high pressure extending UP the Pacific Coast. A trough of low
pressure remains over the interior and the low over northeastern
Nevada has intensified and moved southeastward into Colorado. Most
stations along the Pacific coast remain cloudy with shower activity.
Northwesterly winds prevail in northern California with southerly winds
dominating the interior of Washington and northeastern Oregon. Most
stations in the Pacific Northwest have recorded light precipitation in
the Tast six hours, but only the Washington coast and Spokane. are
recording precipitation at the time of observation. Temperatures have
not changed significantly, but cooler, Qnstab]e air has swept across
the region associated with the eastward movement of the 500 millibar
trough (Map 24). Representative 24 hour temperature changes are: ‘
-6°F at Quillayute; -6°F at Astoria; -9%F at Port Hardy; -2°F at Burns;
-29F at Boise; -1%F at Omak; and 0°F at Spokane. A new Pacific storm
is approaching the southern British Columbia coast but is still some
300 miles offshore. Spokane is representative of the cooler, unstable
air as snow is falling with winds out of the southwest.

At 500 millibars, the major trough has filled and moved rapidly

eastward, centered now over southern Nevada at about 115%W. A
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disorganized pattern of westerly flow exists over the Pacific Northwest
with very light winds of less that 15 knots over Washington and slightly
higher ve]ocity wiﬁds of 25 knots over Oregon. The trough has moved
eastward and is-centered over the Pacific Northwest interior. The
strongest cold advection aloft is associated with the‘more southerly
portion of the trough over Nevada and western Arizona. A‘very weak
north-south temperature gradient exists over the Pacific Northwest with
the entire region dominated by air between -25°C and -28°C at 500
millibars.

2. Hourly Precipitation Data and Radiosonde Data
for Spokane for March 7-8-9, 1975

The 24-hour precipitation map for March 9th (Map 24) indicates
that extensive and fairly heavy precipitation occurred over all of the
far west at both coastal and interior locations. The precipitation
totals are from la.m., E.S.T. on the 8th (10pm,P.S.T. on the 7th) to
lam, E.S.T. on the 9th (10 pm, P.S.T. on the 8th). It appears that
most of the precipitation occurring on the 8th was associated with
strong, warm advection from the southwest. This fact is verified by
analyzing the hourly precipitation records at Spokane. Precipitation
began at 1 am. P.S.T. on the 8th with .19 inches of precipitation being
recorded from 5 am to 11 am. No measurable precipitation was recorded
between 11 am on the 8th and 9 pm on the 9th. Table 13 gives three
hourly temperature and dewpoint records for Spokane for the 7th, 8th and
9th of March. March 7 is characterized by cool conditions with a
moderate diurnal range of 16° F. Relative humidities are consistently
in the 45% to 60% range. On the 8th, temperatures warm and maintain

“a minimal diurnal range of 3°F. Precipitation begins at 1 am, but is
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in the form of steady precipitation from 4 a.m. to 11 a.m. Relative
humidity increases to 85% at 7 am, and persists above 89% for the
next 24 hours.. On the 9th, temperatures remain in the 30's, but a
'slightly larger diurnal range is apparent (+6°F).

Figures 27 through 29 give the 4 a.m. radiosonde data for
Spokane for the March 7 through March 9 period. On the 7th (Fig. 27),
the sounding shows a strong radiational temperature inversion in the
first 10 millibars and is nearly isothermal up to 850 millibars. w1nds
are out of the east and norfheast in this layer, indicating regional
drainage of cool air from high pressure to the northeast. Between 850
and 750 millibars, a weak lapse rate exists with winds from the south-
east and south. In this layer, the temperature - dewpoint difference
decreases, indicating that some moisture advection from the south is
already occurring. From 750 to 650 millibars nearly isothermal Tapse
rate exists, and moisture rapidly decreases above 720 millibars. There
is nearly pseudo-adiabatic lapse rate above 650 millibars associated
with quite dry conditions. The winds rabid]y veer above 700 millibars
and are consistently from the west from 650 to 450 millibars at 25 to
30 knots. This sounding indicates a three layered system with:
(1) dry continental polar air from the surface to 850 millibars and
strong radiational cooling; (2) a moist layer (but unsaturated) from
850 to 720 millibars associated with southerly winds and the approaching
storm off of northern California; and (3) dry mP air from 700 to 450
millibars associated with moderate westerly winds. The sounding has a

Showalter index of +15.



ACTUAL MARCH 7 TEMPERATURE AND DEW POINT SOUNDING

FOR SPOKANE, WASHINGTON
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The 4 a.m. sounding for the 8th of March is shown in Figure 28.
Precipitation began at 1 am and was intermittent until 5 a.m. when
steady precipitation continued for six hours. The sounding has a
temperature inversion from the surface to 850 millibars. The low
level radiational inversion is absent so the temperatdre increase with
height 1s'pre1mar11y the result of cool continental polar air being
rapidly overrun by warm Pacific air above 800 millibars. The winds
are from the northeast from the surface to 900 millibars and rapidly
veer around to southerly andvsouth-soufhwester1y winds above 900
millibars. Wind velocities increase to 15 to 25 knots above 900
millibars. The temperature-dewpoint difference‘a1so illustrates the
two-layered system. The continental polar air is quite dry below 850
millibars, but temperature and dewpoint rapidly close to saturation
from 850 to 750 millibars. The air is saturated and uniformly Tess
than pseudo-adiabatic from 750 to 550 millibars. The warm advection in
the midlayers is quite appafent if one examines temperatures from the
4 a.m. éounding on the 8th and temperatures from equivalent Tevels on
the 7th (Tab]e 14).

The most significant warming has occurred between 850 and
900 millibars associated with the strong southerly flow dominating the
layer. Temperatures have not changed. appreciably above 700 millibars,
indicating that the westerly advection of the previoué day and the
southerly advection of the 8th were not sfgnificant]y different in
temperature qualities, but were quite different in moisture qualities.
The sounding for the’8th has a Showalter index of +8, quite stable,

principally as a result of the warming at 850 millibars.
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- TABLE 14
Temperature and Temperature Changes

for Spokane Radiosonde
March 7-8-9, 1975

Height in ‘

Millibars 7th 8th AT 9th 5T
930 - 580 + 180 + 680 ogc - 1gc
920 - 19¢ 00C +12¢ 0°C 0°C
900 - 19¢ 0°C +1°C 0.C 0oC
850 - 20¢ +4°C +60C - 200 - 6.C
800 - 50C +12¢ +60C - 3.C - 4%¢
750 - 8% - 39 +5%C - 62C - 35C
700 -1080 - 686‘ + 480 - 9:¢ - 3.C
600 -15°¢ -159¢ 0% -17% - 2%
500 -23°% -24%¢ - 1% -27% - 3%

Figure 29 gives the radiosonde data for March 9 at 4 a.m. Snow
was occurring at Spokane at the sounding time and continued until noon.
The advection of cool, unstable air is quite evident as the sounding
has cooled at all levels with the exception of the surface layer from
the previous day (Table 14). |

The sounding has a very weak lapse rate of 2°¢ per 100
millibars from the surface to 700 millibars. From 650 to 450 mi]Tibars,
the lapse rate is nearly pseudo-adiabatic. The sounding is saturated
from 850 to 650 millibars and saturated from 550 to 470 millibars. The
cool advection associated with the rear quadrants of the 500 millibar
trough is evident in the winds which are from the southwest from the
surface to 850 millibars, and become westerly and northwesterly from
800 millibars to 500 millibars. The sounding has a Showalter index of

+4.
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The synoptic sequence which has been presented is indicative
of many which produce wintertime precipitation in the interior
Northwest. Saiient features which are quite typical of these events
are: (1) a surface depression located off the Oregon-Washington coast
with prevailing south to southwesterly flow dominating the Pacific
coast region; (2) cool, modified polar or continental polar air présent
in the first 100 millibars over the interior with easterly to northerly
winds blowing at the surface; (3) warm, moist advection above 850
millibars from the south or‘southwest which results in steady, moderate
intensity precipitation, but stable lapse rates; (4) the passage
eastward of an upper level trough or closed Tow and cold advection
from the west or northwest which terminates extensive precipitation, but
due to the moist, unstable character of the air mass, can result in
lTocalized shower activity of rain or snow; and (5) the most extensive
and heavy précipitation is associated with the warm sectors of both
surface and upper air depressions.

D. Synoptic Analysis of the Precipitation Event
of June 9-10-11, 1971

1. Surface and 500 Millibar Charts

Maps 25 through 27 give the surface charts for the period of
June 9 through June 11, 1971. In the previous three days, a series
of Pacific‘cold fronts have been moving across the Paéific Northwest,
aésociated with a very intense, closed 500 millibar cold low located
over northwestern Washington. On the 9th of June, this Tow has filled
and moved into. southwestern British Columbia. Temperatures have

remained cool over all the Pacific Northwest and skies are cloudy at
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ACTUAL MARCH 9 TEMPERATURE AND DEW POINT SOUNDING
FOR SPOKANE, WASHINGTON
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most stations, both west and. east of the Cascades (Map 25). The
latest Pacific cold front, which gave light rain on the 8th, by the
9th has moved into central Montana and a weak ridge of high pressure
has extended into western Oregon and Washington. The next Pacific
occlusion is about 200 miles off the coast of Washingfon and approach-
ing from the west. Winds are very light and'variab]e, both west and
east of the Cascades in response to the very weak pressure gradient.

At 500 millibars (Map 28), the closed low over southeastern
British Columbia is fi]Ting; but a well developed thermal trough
remains over the interior Pacific Northwest. A new upper trough in
the Gulf of Alaska is shifting southeastward and by the 10th will be
along the west coast. Temperatures are cool at 500 millibars (-]50C
to -ZOOC) and winds are from the west and southwest.

On the 10th of June (Map 26), the surface map shows a cold
occlusion on the west coast of Washington and Oregon with precipitation
occurring at most stations west of the Cascades. Precipitation is
also occurring in the interior ahead of the front at Bans, Boise
and Spokane. Most interior stations report light, southwest winds as
Tow pressure still exists to the northeast. A1l stations, both west
and east of the Cascades, report cloudy skies, indicating that
moisture advection from the southwest is quite extensive.

The 500 millibar map (Map 29) shows a northwest-southeast
oriented trough extending from northwestern Washington into south-
western Oregon. Strong cyclonic wind shear is present in the trough
as western Oregon stations indicate northwest'Winds, and central
Washington and eastern Oregon indicate southwest winds. A thermal

trough is present over the interior, indicating that unstable lapse
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rates are present some distance in advance of the surface front.

Map 27 presents the surface map for the 11th of June, 1971.
The Pacific front has moved rapidly southeastward and is now Jocated
in southern Wyoming, central Utah, and southern Nevada. High pressure
has built in over western Wash}ngton and Oregon with northwest winds
prevailing across most of central and southeast Oregon.  Southerly
winds still exist at Pendelton and Spokane as low pressure persists to
the northeast. Most interior Oregon stations report clear skies, with
Washington stations reportihg cloudy skies and showers west of the
Cascades and partly cloudy skies east of the Cascades. Temperatures
are significantly cooler than the previous day.with representative
decreases of: -9°F at Spokane; -11°F at Pendelton; -11°F at Burns; and
-70F at Omak. The dominance by post, cold frontal, maritime bo]ar
air is quite apparent.

At 500 millibars (Map 30), the trough has moved eastward and
is now centered over central Idaho and eastern Nevada. Shower
activity is occurring on the surface map over eastern Idaho and
northern Utah, despite being in the post, cold frontal zone, indicating
the role the cold, upper trough plays in destabilizing the air mass.

A weak ridge of high pressure is dominating most of the region. A
cool, thermal trough does remain over the interior Pacific Northwest.

2. Hourly Precipitation Data and Radiosonde Data
for Spokane for June 9-10-T1, 1971

- The synoptic weather sequence which produced the rains on the
10th is more clearly illustrated by examining the hourly precipitation,
temperature and radiosonde data. Most of the precipitation which

occurred on the 10th fe]] between the times of the synoptic maps for
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the 10th and 11th of June.

Table 12 presents hourly precipitation totals for Spokane on
the 9th, 10th,.and 1ith of June, 1971. Precipitation began on the 10th
at 4 a.m. and for the first 6 hours was Steady but light in-intensity.
At .10 a.m., the intensity increased and quite heavy réin fell until
4 p.m., at which time a thunderstorm occurred, dropping .63 1nches‘1n
an hour. Precipitation terminated two hours after that event,
indicative of the passage of the cold front and the intrusion of dryer
air.

Three hour temperature for the 9th, 10th and 11th are pTotted
in Table 13. On the 9th, a 26°F diurnal range of temperatures occurred
with warm, moist air moving in during the late afternodn and evening
hours. On the 10th, precipitation began at 4 a.m. and continued during
most of the day. The diurnal range of temperatures was very small,
amounting to 50C wifh cool air in the mid-50's dominating most of the
day. By the 11th, cool but dry Pacific air had swept across the region
and Spokane had a diurnal range of 18°F, from 47°F to 65°F.

Figures 30 through 32 give the 4 p.m. sounding on the 9th,

4 a.m. sounding on the 10th, 4 p.m. sounding on the 10th, and 4 a.m.
sounding on the 11th of June, 1971, for Spokane. The 4 p.m. sounding
for the 9th has a dry adiabatic 1apsé rate from the surface to 750
millibars, indicating Strong surface heating and vertfca1 convection.
The air is quite dry throughout the sounding with the highest relative
humidity at the top of the surface mixed layer, reflecting some fair
weather cumulus development. The lapse rate is quite stable above 750

millibars, averaging less than 3°C per 100 millibars. The air is also
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auite dry above 750 millibars as the winds veer to the west and north-
west with height. The 4 p.m. sounding for the 9th has a Showalter
index of +8.

The sounding for 4 a.m. on the 10th indicates widespread
moisture advection from the south and southwest, as it is saturated
from 750 to 500 millibars. The sounding is dry from the surface to
750 millibars, indicative of the common extent to which moisture js
advected into the jnterior well above the 850 millibar level. Surface
temperatures are cooler since it is the early morning sounding, but
temperatures above 850 millibars havé changed very little from the
previous day. This lack of temperature change is indicative of warm
advection above 750 millibars, and the southerly winds above 700
millibars verify this. Precipitation is just beginning at this time
and will be steady and 1light for the néxt 5 hours in the warm pre-cold
front sector. The Showalter index is +8, which is quite stable.

The 4 p.m. sounding on the 10th, during which time thunderstorm
rainfall was occurring, is markedly different from the 4 a.m. sounding.
The air is saturated from 920 to 630 millibars and a pseudo-adiabatic
1apse'rate exists between 920 and 700 millibars (Table 15). Cooling
has occurred both in the first 150 millibars and above 550 millibars,
indicating that vertical motion is occurring quite freely. The warmer
temperatures from 750 to 650 millibars may be a bit misleading as the
radiosonde may well be in the top of the cumulonimbus cloud in tﬁose
levels and therefore be indicating a saturated parcel temperature and
not environmental tempefatures. The rapid cooling above 600 millibars

is indicative of the destabilization that has occurred aloft which is
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promoting rapid upward vertical motion.

TABLE 15

Spokane Sounding Temperature Change for
June 10th and 11th, 1971

Pressure 4 a.m. 4 p.m. AT 4 a.m. AT

Leve] 10th 10th 11th

920 +13°¢ -10%¢ - 3%+ 8% - 280
900 +12°¢C + 9% -3%  +6% - 3%
850 +10°¢C + 79 -3%  +9% 20
800 + 59¢C + 49¢ - 1%  + 4% 0°¢C
750 , +19¢ +1% - 0°%c  +1°% ogc
700 - 3% - 20¢ +1% - 3% - 19¢
650 - 59C - 3% + 2% - 7% - 4¢
600 - 8% - 7% +1% - 8% - 1¢
550 -1130 -1220 - 18c -1380 - 19¢
500 -14% -18°%¢ - 4%  -19% - 1%
450 -19% -25%¢ - 6%  -25% +1°¢

The distribution of the winds aloft is also indicative of the
advection of cooler air aloft. From the surface to 800 millibars, the
winds are from the east, and between 800 and 700 millibars, veer to
the southwest. Above 700 millibars, the winds are westerly and even
northwesterly, reflecting rapid cooling with height. The Showalter
index now manifests very unstable conditions of +2.

| By the 11th, the air mass has cooled a bit more as the front
has moved eastward, but the principal change is the advection of
dryer air aloft. The sounding is unsaturated from the surface to 750
millibars, saturated from 700 to 650 millibars, and very dry from 600
to 450 millibars. From the surface to 700 millibars, the winds are from
the southwest, but turn westerly to northwesterly above 700 millibars.

The sounding is still unstable with a Showalter index of +4, but a
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thick, moist layer is lacking so only scattered clouds exist between
700 and 650 millibars.

The synoptic sequence which has been presented is typica] of
many which produce precipitation in the fnterior in thé mid and late
spring. While the 24 hour rainfall total at Spokane of 1.10 inches was
quite large, many interior stations reported moderate rainfall totals
with this particular synoptic sequence: .13 inches at Pendelton; .23
inches at Boise; .16 inches at Burns; and .31 inches at Lakeview. The
salient features of this syhoptic sequence which typify many precipita-
tion events in the late spring are: (1) a Pacific cold front or cold
occlusion moving across the region from the west; (2) a cold upper
Tevel Tow or trough at 500 millibars along the west coast with cold
advection aloft extending into the interior; (3) a period of warm,
moist advection from the southwest in advance of the approaching cold
front when Tight-steady precipitation occurs; (4) the approach of the
Pacific cold front and cooling aloft at 500 millibars which destabil-
izes the air mass and produces heavier intensity precipitation and
possibly thunderstorms; (5) a period of cooling as the post-frontal
zone occupies the region associated with westerly or northwesterly
winds and dryer air aloft; and (6) most heavy intensity precipitation
events are associated with strong cyclonic wind shear in the upper
trough and strong, cool advection aloft in close proxfmity to the

surface cold front.



Chapter VI

AN ASSESSMENT OF THEiMONTHLY CHANGES IN SURFACE
" SENSIBLE AND LATENT HEAT VALUES IN THE
PACIFIC NORTHWEST UTILIZING EQUIVALENT
POTENTIAL TEMPERATURE DATA

A. Rationale

The Secondary Spring Maximum in the interior of the Pacific
Northwest reflects a complex set of climatological controls. Certain
climatological controls are quite conservative in their temporal
variations while others have very large, short-term variability.

The major physiographic provinces and seasonal incoming
radiation values are quite conéervative in the period of historical
record. Surface albedo, absorptivity, and transmissivity should be
moderately conservative from year to year, but may vary due to the
duration of snow cover, soil moisture, and thermal characteristics
of the sea surface. The location and configuration of upper tropo-
spheric longwaves and surface pressure systems are characterized by
very large, short term variability. The variation in the intensity
and location of atmospheric circulation patterns will necessarily
result in very large year-to-year variations in monthly precipitation
values. It is only through the analysis of long-term precipitation
meéns that regional precipitation types can be ascertained. The
secondary maximum of precipitation in the interior of the Pacific
Northwest should therefore be related to relatively conservative

163
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climatological controls.

The thermal regimes of the eastern Pacific Ocean and the
continental poftion of western North Ameriéa are quite distinct. The
thermal gradients across the land-sea boundary are further intensified
by the existence of the north-south cordilleras of the Cascade
Mountains and Sierra Nevada Mountains. ‘The thermal heat budget of the
continental-ocean boundary has been investigated by many researchers
(Budyko, 1962; Landsberg, 1958; and Riehl, 1965).

In the winter seasoh; the land cools more rapidly than the sea,
due primarily to convective mixing of the sea surface and the strong
downward longwave radiation flux from the atmosphere. This is the
result of high water vapor values. By midwintef, the eastern Pacific
is a large thermal reservoir for air masses moving across the Pacific
Northwest. These warm Pacific air masseé afe forced to rise over the
Cascade Mountains and also rise over the colder continental polar or
modified maritime polar air masses which dominate the lower layers of
the atmosphere in the interior. The moderate intensity rainfall and
snowfall associated with the warm sector of cyclonic storms is there-
foré the most prevalent precipitation type during winter and early
spring.

The angle of solar radiation and length of day increase
rapidly in the mid-spring period so that by late spring incoming
radiation greatly exceeds outgoing terrestrial radiation. During this
period, the thermal gradient of the land and sea rapidly reverse and
by late spring the land is a heat source and the sea a heat sink. The

air mass characteristics of precipitation producing disturbances during
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this period evolves from that of prevailing warm sector precipitation
{n winter to that of cold frontal dominance in late spring. This is
quite apparent by the data presented in the preceding chapters.

The assessment of seasonal changes in the 1ow‘1eve1 heat budget
of the Pacific Northwest region is further complicated by the great
variability in the elevation of observétion points. The effect of
mountains on precipitation has been treated extensively (Donley, 1939;
Crow, 1961; Dickinson, 1959; and Linsley, 1958). These studies and
many others have centered on orographic relationships. Very 1ittle work
"~ has been done concerning the regional sensible and latent heat budgets
in mountainous areas, and how seasonal changes in the surface heat
budget relate to the organization of synoptic weather disturbances
moving across the region.

In a doctoral thesis titled "The Regionalization of Climate
in Montane Areas" by Val Mitchell (1969), the author used the technique
of potential temperature to assess the horizontal distribution of
common air mass characteristics and frontal boundaries in the western
United States. Mitchell analyzed individual synoptic weather disturb-
ances as well as monthly mean values of equivalent potentia]vtemperature.

The equivalent potential temperature of an air parcel is
derived by 1ifting the parcel dry-adiabatically to its Tifting
condensation level and then pseudo-adiabatically to 200 millibars. The
parcel is then reduced dry-adiabatically to 1000 millibars. and its
temperature at that level is its equivalent potential temperature
(Saucier, 1962, p. 14). The equivalent potential temperature of air
mass is a combined measure of both sensible and latent heat contribu-

tions. Equivalent potential temperature is conservative with height
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under conditions of-adiabatic lapse rates. It is not single-valued
with height nor is conservative for diabatic processes (Mitchell, p.

Mitchell produced mean monthly maps of equivalent potential
temperature for the western United States; utilizing first order
weather stations for the period of 1931-1938. The maps for the period
of January to July have been included as Figure 33 through Figure 38.
For a complete discussion of the monthly maps, the reader is referred
to Mitchell, Chapter 111, pages 60 to 105.

B. Mean Equivalent Potential Temperature:
January -to July

The pertinent features of Mitchell's mapé which apply to this
study center around the reorganization of the thermal regime of the
land and sea, and the establishment of a strong thermal gradient
across the western cordillera in the months of February to July. The
equivalent potential temperature maps for January, February, and March
are quite similar. The isotherms have a strong west to east orientation
over the Pacific Northwest, indicative of uniform air mass character-
istics, both west and east of the Cascades. Cooler air does dominate
the interior as a result of the more effective heat loss of the
continent during the winter. March is the month of the least land-
sea temperature difference in the Northwest, while continental heating
is recognizable over the southwestern United States.

The April map indicates the beginning of the reorganization of
the Tand-sea temperature field as the interior is now warming at a
faster rate than the sea. While strong west to east temperature
gradients are confined to northern California, the heating of the

interior Northwest is evident in the poleward displacement of the
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isotherms across Oregon andVWashington.

The May map indicates a well developed land-sea equivalent
potential temperature gradient. The isotherms are'orientéd north-
south with very strong temperature gradiehts covering the entire
Pacific Northwest. The strongest gradient is 10cated‘in northern
California and southern Oregon. Distribution of equivaient potentfa]
temperature will not coincide to the precipitation change gradient,
as the number of stations used to derive the equivalent potential
temperature map were far less than the number of stations used to
derive the precipitation change maps. Mountain stations were lacking
fof Mitchell's data, so the gradients across the Cascades are probably
stronger than indicated on Mitchell's map.

The June map indicates continued north-south orientation of
the isotherm, especially in western Oregon and Washington. Northeastern
Oregon and central and eastern Washington indicate a more west to east
orientation, reflecting a more uniform heating gradient east of the
Cascades. The dry thermal trough of the interior southwest is
readily apparent east of the Sierra Nevada and extends northward into
southern Oregon. The strong equivalent potential temperature gradient
north of southeastern Oregon, separating the thermal trough of Nevada
and southeastern California, is likely a transition zone between the
periodic cyclonic activity still occurring in the norfhern sectors of
Oregon and most of Washington and the dry, subsiding, northeastern 1imb
of the subtropical high to the south.

The distribution of equivalent potential temperature should

not be expected to spatially ccrresoond to the detailed precipitation
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change characteristics in the interior Northwest. Mitchell's data
was derived by utilizing only a few stations in the interior North-
west. The data is not stratified according to precipitation events, and
50 represents the total array of monthly, sensible, and latent heat
contributions. Most significantly, it is difficult to specify the
proportion of sensible and latent heat additions in a given region
since equivalent potential temperature-is a combined measure. The
latent heat contribution is critical in permitting precipitation
processes to occur, since without sufficient moisture no precipitation

is possible despite large, surface, sensible heat additions.

C. Change'in Mean Equivalent Potential Temperature:
January to July

Mitchell did not calculate honth]y changes in mean equivalent
potential temperature. These maps have been calculated from Mitchell's
data and are présented in Maps 31 through 36. The monthly changes in
equivalent potential temperature can be used to assess rather large
scale regional organizations of latent and sensible heat changes.

Small scale regional changes will not be adequately defined and those
that do exist will not necessarily correspond to boundaries of precipi-
tation changes, since far fewer stations were available for Mitchell's
analysis.

Map 31 indicates the change in mean equivalent potential
temperature from January to February. The whole Northwest region
hanifests uniform temperature increases of +4°C. Only extreme North-
western Washington indicates slightly weaker temperature increases

of +2°C, reflecting the very strong marine dominance and consequent
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smaller, sensible heat additions. The uniformity of the temperature
change would imply very little west to east (or north to south) change
in the characteristics of air masses dominating the region in the
January to February period. While the interior is indeed warming at a
faster rate than the coastal regfon, the interior is sfi]] cooler
than the westside, so that little destabilization is available for
" air masses being advected into the interior.

Map 32 presenté changes in equivalent potential temperature from
February to March. The wesf to east gradient of temperature change has
increased particularly across northwestern Washington. The interior
is now heating up more rapidly than the westside, but strong topograph-
ically induced gradients are not yet apparent. At this time the least
actual equivalent potential temperature gradient exists between the
westside and the interior.

The interior of Washington and Oregon are now heating at a
faster rate than the westside but are achieving only parity in actual
equivalent potential temperatures. Air masses advected from west to
east across the Cascades would not be expected to experience signifi-
cant destabilization as actual interior surface heat additions are
roughly equivalent to westside values.

Map 33 presents changes in equivalent potential temperature
from March to April. The temperature field exhibits é rather distinc-
tive organizational pattern. Equivalent potential temperature rises
are large but are separated into two distinct regions. The coastal
area is characterized by small increases and a distinct gradient of

change exists which roughly coincides with the Cascade Mountains.
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Central Oregon and Washington have uniform temperature increases and
a second, strong gradient of change exists across Idaho and western
Montana. The Targe increases in northeastern Idaho and western Montana
should not be interpreted as large additions of sensible heat which
would be available to destabilize the atmosphere. Thfs region was a
heat sink in March due primarily to its higher elevations, and there-
fore is responding in a delayed manner to the increasing solar radiation
loads and loss of snow cover. This region is realizing larger increases
in equivalent potential temberature from March to April in order to
achieve actual equivalent potential temperatures about equal to those
at equivalent latitudes in central Oregon and Washington.

Map 34 presents the change in equivalent potential temperature
~from April to May. Coinciding with the Cascade Mountains is a very
strong gradient of change. Values west of the Cascades average less
than +50C, while values east of the Cascades average above +8°cC.
Univorm values of +8°C to +9°C are located over most of central and
eastern Oregon, northern Nevada, and southern Idaho. Large sensible
and latent heat additions are occurring east of the Cascades at this
time and are producing significantly higher actual equivalent potential
temperatures than the region west of the Cascades.

Destabilization of Pacific air masses penetrating into the
interior is quite likely, although the precipitation yield will be
dependent upon the thickness of advected moisture accompanying the
individual disturbance. A more uniform gradient of temperature change
characterized northern Idaho‘and western Montana. The higher elevation
of this region may result in a greater potential for temperature

rises due to a lag in seasonal heating.
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Map 35 presents the change in equivalent potential temperature
from May to Juné. A less organized pattern of temperature increases |
- js apparent over the Pacific Northwest. The coastal region still
indicates only moderate increases although the dominance of the dry,
subsiding air from the Pacific High has produced a weaker west to east
temperature gradient across the Cascade Mountains. The interior of
Oregon, central Washington, and southern Idaho indicate moderate
temperature increases of 6°C, although not as large as the April to
May values. A curious (anomalous?) area of very small temperature
increases is located in northeastern Washington. This lobe of cool,
equivalent potential temperatures is derived from two observation
stations in northeastern Washington. There is insufficient information
to attribute the anomaly to either local mountain effects or some
observational error, but the readings are certainly anomalous to
similar locations in Montana.

Map 36 presents the change in equivalent potential temperature
from June to July. During this period, stations both west and east
of the Cascades are recording large decreases in mean monthly precipi-
tation. This is the result of the rapid northward shift of the
Pacific High Pressure System and the diversion of the cyclonic storm
track well into southern Alaska. The prevailing clear skies and high
zenith angle of the sun permits further sensible heat additions over
most of the Northwest. Only the coastal region and Puget Sound area
indicate small rises in equivalent potential temperature. This is
most likely due to the Tow clouds and stratus beneath the prevailing

subsidence inversion.
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Additional instability of the lower atmosphere is realized
but this does not result in additional precipitation. The frontal
disturbances and associated advection of moisture are not available at
this time, having been deflected well to fhe north by the prevailing
Pacific High Pressure System. |

The monthly changes in equivalent potential temperature in the
Pacific Northwest demonstrate the strong reorganization of the thermal
regime of the land and sea across the spring period. The intensifica-
tion of the land-sea therma1 gradient by the Cascade Mountains is also
quite detectable, particularly in the period of May through July. The
potential destabilization of air masses crossing the Cascade Mountains
is also apparent by the Targe increases in equivalent potential
temperature in the interior, especially in the month of May. Detailed
regional changes in sensible and latent heat cannot be ascertained and

related to observed precipitation changes, due to inadequate density.
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Chapter VII
CONCLUSION

The Secondary Spring Maximum of Precipitation in the interior
of the Pacific Northwest illustrates the highly comp]ex system by
which atmospheric processes are coupled to seasonal changes in the
heat budget of the land and sea. The existence of major topographic
structures and highly variable terrain in the interior reorganize
atmospheric flow in a comp]ék manner whose fine structure cannot be
detected with the present widely spaced network of radiosonde stations.
Year to year variations in the Tatent and sensibl heat capacities of
the Tand may well lead to significant temporal and spatial variability
of atmospheric disturbances moVing across the region. Large year to
year variability characterizes the thermal organization of the sea
and can significantly reorganize the atmospheric circulation on time
scales ranging from days to seasons (Namias, 1959, 1963, 1969, 1971; and
Quinn and Burt, 1972). The year to year expectancy of precipitation
phenomena is, therefore, quite low and necessitates the definition of
most regional precipitation types from long term mean statistics. The
search for rational explanations of atmospheric process utilizing long
term averages of meteorological data is hampered by the unstratified
character of the data, giving inordinate bias to non-precipitation
climatology.

This study has attempted to define the magnitude and spatial

limits of the Secondary Maximum of Precipitation in the interior of the
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Pacific Northwest, utilizing traditional 30 year normals of precipi-
tation. In addition, this study has utilized synoptic meteorological
data in developing a synoptic precipitation climatology of the
Secondary Maximum. Quite marked changes in the organization of
surface and upper air disturbances are present during the spring
period. Marked changes also occur in the vertical distributioh of
atmospheric moisture and stability. These changes result in an
increase in precipitation yield and must ultimately relate to changes
in the surface heat budget of the land and sea over which disturbances
pass. An examination of the average monthly changes in surface,
equivalent potential temperatures‘for the Pacific Northwest indicates
pronounced reorganization of the sensible and latent heat field across
the March through June period. These changes result in significant
destabilization of maritime-polar air masses moving across the
interior in May and June. The limited number of radiosonde stations
did not permit detailed regidna] heat budget characteristics to be
ascertained, which might relate to some of the more detailed regional
patterns apparent in the precipitation change maps ih Chapter II.

Many questions have arisen from this study which hopefully
will stimulate additional inquiry into the nature of regional
precipitafion processes. The following specific areas could well be
productive in shedding further insight into the complexities of
regional precipitation climatology.

(1) The major north-south cordilleras of the Cascades, Sierra
Nevada and western Rocky Mountains reorganize air flow, and many studies

have focused on their vorticity, katabatic, and trajectory character-
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istics. Little work has been done on the reorganization of individual
synoptic disturbances, including variable upstream and downstream
surface heat budget characteristics. Changes in stability and vertical
motion must be analyzed under actual synoptic conditions, as the
sharp gradients of temperature and moisture advection tend to be lost
in the analysis of average flow patterns. Recent work by Egger has
begun to focus on this problem (Egger, 1974, p. 847-860).

(2) The separation of precipitation climatology from non-
precipitation climatology should be stressed. In climate regimes
other than the most humid, non-precipitation days outnumber precipita-
tion days. The traditional approach is to utilize mean monthly
atmospheric charts for interpretive analysis, which in fact, gives
inordinate bias to non-precipitation events. Precipitation patterns
are often quite unique and distinctive from the "normal" array of
weather patterns, particularly in arid and semi-arid regions. There-

fore, the average precipitation producing circulation pattern may bear

little resemblance to the average circulation pattern. The work of
Sands (1966) and Bryson and Lahey (1958), has stressed the "discreet"
nature of precipitation c11mato1ogy.

(3) There is a need for research focusing on "meso-scale"
meteorological and climatological systems. The large-scale regional
climatological patterns are ultimately derived from atmospheric
disturbances whose organizational Timits are less than a few hundred
square miles. Very few meteoro]ogica] studies are geared to assess

changes in the organization of weather system on a scale less than the
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normal synoptic grid (100's to 1000's of square miles). Studies like
those of Cramer (1970 and 1973) and Fujita (1956 and 1963) can shed
much needed insight into the effects that moderate scale terrain
features can exert on the organization of atmospheric disturbances
such as those Which commonly occur in the interior of the Pacific
Northwest.

(4) This study has presented evidence which Tinks the seasonal
changes in precipitation delivery west and east of the Cascade Mountains
to corresponding changes in the surface heat budget west and east of
the Cascades. Additional research into the variable thermal conditions
" of the sea itself, and to a lesser extent, variable lTatent heat
capacities of the land, may begin to clarify the large year to year
variations in weather patterns for equivalent seasonal periods (months).
The large thermal capacity of the sea and highly variable short term
mixing characteristics would seem to offer Tikely opportunities for
atmospheric reorganization over a variety of time scales (Namias, 1963,
1969, and 1971; Clark, 1972). The reorganization of major atmospheric
flow patterns over the northeastern Pacific could well explain year to
year variations in the timing and intensity of the Secondary Maximum

in the interior Pacific Northwest.
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SUPPLEMENTAL TABLES

List of Climatological Stations and Elevations

for the States of Idaho, Montana, Oregon and Washington

Source: Climatological Handbook, Columbia Basin States, Vol. II,

Precipitation, 1974.
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LoNg CREEX (1908-15) | aRawT 500 %"(‘i'—: MCIGNZIE BRIDOE LANE oo % MIUAMONTE PARN clackaus | 162 ‘_"2:%_:
o ;
W' ¥ WCKINZIZ ERIDOE w100 N 45°u81 N
LONG CRERX (1957} GRANT B bor o] QKR STATION LAXE LB TR MISSOURL GULCH (CASE) | TMATILLA 1050 | Tobeew
2%06! & L3 W ]
LONG VALLEY LAKE 5500 o0 wo MIST COLIMBIA 0
120470 W YelMET FRACTN N 123016 W
LOKGWOOD HooD RIVR| 600 | b :39' Ll MeMINNVILLE TAMHILL 162 | sz w MITCHELL WHERLER oruy | _bkole N
121%0' W 1230 W 12070 W
oW O
100KING GLASS VALLEY | DOUGLAS 680 %’;—;'——: MCNAMERS TiLamoor | k2 T’;.j_:?L;:: MODOC ORCHARD JACKSON 1215 ’:220—:;':
Occ ¥ e ¢
LOOKGUT POTNT DAK Laxe nz LSSt N Kws 65 [ A5090 ¥
T McRARY DAM UMATTLIA o |t MOLALIA 1 W# cuckms | 65 | nt
0y 61 0.
LORELIA kimam | Lo | k2lo N cHAN warzua | ses0 | WEDLX POMOUTH 1 PoL 200 | Lh51 K
1g720" W - e 187261 W ™ 123%¢ W
o1or s 5
LOST CREEK RANCH ANE 100 | 100 N HEACHAN WEATHER BORERY 45°300 W x, | _uuluor W
12250 W AIRFORT STATION UMTILA | LOSO | e roRoUTH 2 Fox ™ | e
WHELL 1 E W 7ho _1__U°55- ! MEAGHAM RANCH visinoon| 10 | SN2 HONROE. BENTON s | 1w
2% W . 3% W 12318 W
W% o ] W7 W
LOWELL 2 N LANE 66 |-l L N
ey HEADOWEROOK RANGH w00 RIVER| 850 |t MONTGOMERY RANCH wvEson | 1500 |-l
C o
LOWER KAY CREEK JEFHSN | 1896 Cvill HEADOW LAKE asiNoton | 1950 [ WSO N MONUKENT oRANT 1990 Wrik ]
1209 W 123°26¢ W 119°25¢ w
o471 w -~ £2°201 ¥ VOMUMENT RANGER CYs
L7 THOUT CREEK JEFFERSON | 2684 Ty WEDFORD SACKSON 179 P STATION GRANT 1950 TI‘!;E:_.E
[TTIN 42%18¢ W%t N
WADRAS JEFFIRSON | 2256 WEDFORD 5 210 N WER GRAN: s A
* |2 DPERDENT STATION | SACKSOR WS e v | POMIENT 2 i W Tt




STATION NAKE

COUNTY

ELE-
VATION

TATITUDE
AND
LONGI TUDE

MORGAN

MORROW

93

45%3u" ¥
1555 W

MORO EXPERIMENT SNTIN

SHERMAN

1858

us%291 N
0% v

MOUNTAIN HUME

COLUMBIA

1000

L6%02! &
125157 W

MOUNTAIN FANCH

JOSEPHTNE

2110

42%1 N
123932 W

MOUNTAIN PARK

HOOD RIVER

Who

L5232
121°0' W

MOUNT ANGEL

MARION

L85

_Lsod® N
122%8" W

MOUNT HOOD

HOOD RIVER

1650

450350 ¥
122%5° W

MUSICK

DOUGLAS

5530

43%3 N
122%2' W

MYRICK (HAWKINS RANCH )

UMATILIA

1725

45%u8" N
8% W

WYHTLE GRERX 12 ENE

DOUBLAT

120

3% N
37300 W

208
)

NEHALEN

TILLAMOOK

150

L5%Q0 N
1237551 W

NELSCOTT

LINCOIN

uh%s7t N
1240 W

NSWBEHG

TAMHILL

152

L% ¥
123°00" ¥

NFWBRIDGF.

BAKER

1900

L7 N
nru v

NBWHRALL ORCHARD

JACKSON

1335

u2%3 ¥
124955 W

NEWHALL RANCH

JACKSON

1335

42°23' N

1275k W

NB¥ PINE CREEK

WEE

4880

42%00' N
120%18" W

NENPORT

LINGOLN

12k

38
12L°04 W

NIGH RANCH

Woo

uS°28* ¥
120715 W

NOLIN

UMATILLA

7

45%uor N
115%08! W

NORTH BED

008

20

43%25 N
PRI

NORTH BEND FAA
IRPORT

coos

13%25 N
12L°14 W

NORTH POWDER

UNTON

250

us°03t N
n7%2 %

NORTHRUP CREEK

COLUMBIA

)

46%00* N
T23%28 v

NOTI 2 ESE¥

LANE

Lo

40 ¥
123%28" W

NTSSA (1916-20)

MALHEUR

2220

3% N
117905 W

NS (1937-62)

MALHEUR

2185

k% ¥
1170 W

OAKRIDGE

8% ¥
| 122726 W

OAKRIDGE SALMON'
HATCHERY

u3%s' W
122927 W

OCEANTAKE

LINCOLN

_Lsto0 x
12L°00" W

STATION LOCATIONS OREGON
LATITURE LATITUDE
ELE- AND E(E- il
STATION NAME COUNTY VATION | LONGETUDE STATION NAME COUNTY VATION | LONGITUDE
0CHOCO oK 3200 | W22 N Ls5%her ¥
Py PENCLETON (1689-1935) | MMATILIA | 1056 | 2uQ1
120°26" ¥ 118%8 W
1o o)
0CHOCD CR CROOK 3700 |A22N PENDLETOR (1535-00) | WATILA | e | STt ¥
120033 W 18 ¥
- O181 .
OCHOCO DAM CROOK 051 | BL1E N ALLETCK A THPOR ™ P
S PEIL 1nrORT R
OCHOCO RANGER STATION | CROOK 3979 | k2l N PEALLETON BRANCH st . ]
12002 EXPER DM 0 STATION WATILA | WeT _‘ﬁ—h
v
OUFLL EXPEADUNT ARra | Hoob Kivix| 70 [ME LN PENLLETUM FIELY UMATILIA | i
121730 W LTATION
cen 5
ODELL LAKK NG, 1 {LAND)Y KLAMATH e |2 Y PHGLETUN neU2 Ul watia | aee | ook N
122703 W [ETS : > T
g
ODELL LAKE 0. 2 (WATER) XIAMATH [RE N W AR PRADLETOL WEATER maTiie |y | SON
122%02* W BUREAU AIRFORT STATION Tieo W
OLEX GILLAY 1600 PENOLETON GRAIK INATILIA 1056 HEOLT W
CROWER N8%E W
PN
GLIVE 1Akt GraNT 5931 FRET: Tr JACHON 300 L2 7k6: K
OLALLIE LAKE. MAR fop Lot L";";ﬁ FELLOMA T D e - _:I\» ey
REARCTAN ) RS
. wulr N - 2 n
ONTARIO AIHIORT 2 W MALHEUR 20k | N PHINPT CROIARE JACKSON 131 L2 72
N7°%10 W 12250 W
5
ONTARIC CAA AIRFORT | MALMIUR 210 [ Lbo0L N T 1 st PuTIia | g7 | WSS9t N
11790 W 6o v
ONTAKIO HADIO STATION W03 N PLIT KT g
: MALHEUA 215 WT ReCh L5028 N
Koy 116%C81 W (ADRINION RAKCH ) HATILLA 1950 11£%501 W
EN
00" RANCH HARNYY L6 AL R e ]
19191 W FINE R 2600 Tl#“w—w
o190 ;
ORCHARS HOKS: JACKSON uyy | b2del ¥ PITTSEURG AL Lo |88 N
1227527 W ; Tt
OREOON AMERICAR L% o
cLaTSOP 1680 3 - - 12°350 ¥
cAeP TV PLACER JOSEMRINE [ 15t s
3
OREGON CAVES JOSEFHINE | koo | L2 06T N L [P I A ]
1237251 W 11975k W
o210
OREGON CITY CLACKAMAS 167 | 45%20 W POMPEL cuckamar | 3979 u5C220 N
1220361 W - 03 W
o 43°350 N OKTLANE °
oRfiGy e w70 FONVLANE WFATHER . L5056 W
122000 W FUREAY ALKPORT STATION| MTTHOVAR S Rrisven
s U539 K FORTIANL WHATHI ©
ORTLEY WASCO 1600 73 : LEO32r K
T W BURFAU CLTY OFFICE MULTNOMAH 9 et W
>
orrs LINCOIN 20 j bsTeer k PORTLAND GAS AND MULTNOMAH 55°30° N
133 561 v COKE. COMPANY v 1225357V
4% ¥ PORTLANG S O3
o MALHHIR 2220 ORTLANG NURTHWEST i Wy
I MATUHAL GAG CoMpany [ FRETROMAR L v
O350
WNER LAM FALIFUR Ao | 4338 N PORT CREGRD - 292 52°U ¥
17013 W : 1265310 w
Ale N . 2% N
PAIELEY LAY wn Ircame FUST CHOOK 12
5SS
PALELEY (NEAR) 1AKY neoy | _20kz: N SONELL BUTTE CRUCK s
120%33 W
; b59351 N
PARICALE HOOD RIVER | 1740 = PONER NOUSE UMATILIA L e et
121°30 W d e v
2
PARKTALE § SO Woor, River| sso0 |-AS ALY PowERs o0 IR TR
301039 W 1207 w
FAULIMA (1913-11) CROOK hooo | ALY PRATHIE - . e bhv2r s
TE058Y W RAIKIC JUTY GHANT 32 TE
o (KAL) FRAIRIF G o271
PAULIFA {1961-80 ) CROCK 368l - GRAN o Lho2y W
e e g T LI i ALY
nqnse [ STRTION PR
- 1oLk ¥ .
PELTON DAk JEFFERSON | W10 ;]‘0“1, - "P* RANCH REFUGEN HARNEY Leze  |2oke K

118931 W




STATION NAME

COUNTY

ELE-
VATION

LATITUDE
AN

0
LON G} TUDE

PRINGETON 13 E

HARNEY

3910

43°160 ¥
118°%20¢ W

PRINEVILLE ? Meff

CROOK

2868

Ly%190 ¥
120%521 W

PROSPECT 2 Swé#

JACKSON

2182

420Uk N
122°31) W

PROUDPOOT (FCHO)

UMATILIA

1000

0371 N
1197 W

QUARTZVILLE 11 Swf

861

Lk°30t N
)22E?8' w

RAGER CREEK

3176

WO N
119°U5 W

RAGER RANOER
STATION

CROOK

ol w
119%0 ¢ W

RAINBOW

1ANE

HAMSEY

WALCO

1350

WO N
20U W

RANGE

TRANT

3500

Ol §

110958 W

RAT GREEX

MORROW

2000

L5218 §

119°' W

REDMOND

DESCHUTES

2994

18w
o110 W

n FEDERAL
AVIATION AOENCY AZRFORY

DESCHUTES

o158

Lh°26 N
)215(\8' w

REEDSPORT

DRIGIAS

L3®h2r N
12:%06" W

RESERVOIR NO, 3

MALHEUR

220 N
117938 W

RESTUN

Bs6

w08 w
123°38" W

REW (LORENZEN RANCH)

UMATILIA

130

LEUST N
119701 W

REX

TAMMILL

ugo

us%8r N
255 W

RICHIAND

BAKER

2218

L6t ¥
117%0' W

RIDDLE (1899-19L0)

DOUGLAS

700

429581 N
123%210 W

RIDDLE (1950-1956)

LOUGLAS

42%71 N
15 W

RIDDLE 2 RNE

DOUGLAS

12%8¢ N

1235210 W

RIDDLE b

DOUGIAS

683

2% N
123261 W

RILEY

HARNEY

Lu2s

43°3) N

118759+ w

RIO HERMOSO

JEFFERSON

2110

Lh%39' N

2% W

RIVERDALE RANCH

CROOK

4225

43°8' N
120°02 0 W

RIVERSIDE

MATHEUR

3000

W% N

T8% w

ROADS END

LINCOLN

4501t w
124°001 W

AOARING SPRINGS RANCH

HARNEY

&30

42390 H
118%5 w

ROBVILLE

DESCHUTRS

kooo

S8y
121%0° ¥

STATION LOCATIONS

209
OREGON

LATITUDE TATITUBE
ELE- aND ELe. anp
STATION WASE caunTy vaTIoN | LovGi TuDe STATION NAME counTy VATION | LONGITUDE
Oy '
ROCK CREEX SENTON 5 | 2N s1ETE LINCOLN 95 __'4_'4;‘_3_"
120°32" W 123757 v
Oy 1 Oga1
ROCK CREEK BAKER 150 —Itlgsfil—' SILVER GREEK FALLS MARION 13k ._".“_“53_"
v 122999 W
o
ROCK CREEK DOUQLAS 140 23 o] SILVER LAKE AKE Lis | _k3oor ¥
122581 W 215 W
ROCK CREEK RANCH RARNEY us75 "’:“" L SILVERTON MANION Lod zZoo-
1510 W 127561 W
0 '
ROKE wuen | oaze |0 ¥ SILVERTON & SE# WARION [ T
117°38° W 12 W
o Scp+
ROME FEDERAL AVIATION | o [ TN Sneusko RSO 2u00 | _UATSET N
AGENCY 17953 W 121°21 W
O
ROSEBURG DOUGIAS ur9 SISKITOU JACKSON RE MO 1N ]
122536 W
ROSEBURD WEATH FR B SISKITOU SUMMIT ] 030
RURFAY ATRPORT STATION (OUULAS 505 WEATHER BURFAU OFFICE | VACKSON luso ;z—ir?m':
KUK WEATHER . — (867 BCUTES 6 Wizt N
ARNAL ey HISTHRS (1958-62) T [ 2180 M 37
BUKEAU OFPICE 255w 121732 W
o 5
ROSLAND UESCIUTES | Lige [ LT N SISTERS (1906-20) pEscHuTES | 2700 | _LULS K
[EACHAL 2
121°%27 W 1213 W
o o
ROUND GROVE. KLUWTH upsp | k2oror ¥ STTEUM 1 9k 005 50 |- ALOEN
2%y v 123%2' W
P 5
RUJADA LANE 1212 | LIN2' N SITAM 6 W oo b
122%57 W o008 BT
W L3%50" ¥ SIUSLAN LIFE BOAT 01 &
Shanw . e o 12507 v STATION w ¥ e
- Ogar Py
SAINT HELENS COUMBTA 40 % SLED SPRINGS WALLOWA 470 1‘{5‘:5' :
SALEM WEATHER BUREAU %550 f
AIRPORT STATIONA HARION 200 11;1).“;?! : SHITH RIVER FALLS DOUGLAS 8¢ :hB' ]
123°8' W
SALM (b) wARTON 1o [ LS N 500 HOUSF. . A 3% N
2% W i i el e
SALMON UNK . URK UMK, SOUTH DEER CREEK DOVALAS _U}—_olm N
. ne 123%U W
SAND CREEX AT Log2 | _k2%sor N SOUTH RESERVATION ATILA | 156 U7 N
12175 W (HOBBY RANCH) | Perw
Toer Bear
SANTIAM JUNCTION Lo 3780 12““_5;:_: SPARTA BKER uso |42 N
17567 117%20' W
L5t N 42%27° N
SANTIAM PASS DN L7e v SPRAGUE RIVER KLAMATH 1370 oy
5
SAUVIES ISIAND MOLTNOMAH uo |_hs ko' w SPRAT WHEELER 1m0 | Ak ¥
122°51" W NUT W
Oca, E
SCOTTS MILLS 8 SE cuckus | 2315 | TR : SPRINOBROOK TAHHTLL we |2
: 123%01 W
SEASIDE CLATSOP 10 W91 N SPRINGP IELD (ANE ure | lb0dr ¥
12)765 W 123%2¢
o1 5
SEUG L W J0SERINE | 1501 | .AZT N SPRING GIADE ACRES P ILL go0 | SES X
123°h2 W 1237150 W
5 ;
sENgcA GRANT uess | b0t ¥ Suaw EUTTE EIPERIGNT{ oy uors | L3%29 N
118%58 W STATION 1% w
SEXTON SUMMIT WEATHER u2%370 W 25
BUREAU ATRPORT STATION| JOSEPFINE | 3836 |5 ores STAFPORD cuckms | L1 1.'.:;’:;':
o 9
SHaNLKO WASCO 7o |- LLLNW | STANFIELD DKATILIA s9p | LSOMTL N
120%5" W 1% v
SHEAFILLE wumm | uso [-LpB SR s use | L2 0
117703 W 1229527 W
SHERIDAN I 207 | LS5t W STARKEY A 8
Ao K E N
121307 W o M0 | Nimy e
OLA1
SHERMN CAOOK g | LM N STAUFPER CROOK Leoo | L330'K
120%2" W 120°%7" W




210

TATTTUDE TATITUOE XTTTU0F
ELE- 0 ELE- AND ELE- AND
STATION NAME COUNTY VATION | LONCITUDE STATION NAME COUNTY VATION | LONGITUDE STATION NAME COUNTY VATION | Loweitune
OLbr N L5007 N A
s N RION 025 ¥ S R PE A, ’ ‘ S L
YTl m oot TLLAMOUK NO, 7 TILIANOK N ) UFPER THOYT CReth LE oo
STEAMBOAT RANGER 3%t N § 45%2¢t N 43%9' w
OUGLAS 1235 {—p— TILIAMOOK 12 4 TILAKOOK | 320 | bS 26l K VALE 1 W MALHER 2300 (=225t
STATION 122%04 W 123957 W ' i U776 W
Oya1 9 0291
STIMPSON CANP washDioton | 1725 | 522 N TILLAMOOK ROGK TILAKOUK | 156 |_bS%Ser N VALLEY FALLS inkF uee |72 N
173°20t W 1265010 W 120017 W
2%, o, S5
SUMMER LAXE 1§ LaxE L1z |h2sh TILLEK pouotas | ldo | _b2%6' N VALSETZ FOLK [RECR L
120%9¢ W 122%70 W
©0or
SUMMIT BENTON 720 TILLER 15 ENE DONGLAS 2500 Jﬁ% VAN HARNEY Lo
122" W
. 10y sroLs 1457500 ¥
SUMMIT GUARD STATION | CLACKAMAS | 3900 " WASKINGTON | 960 |l VANSYOLE UNATILIA K
SUMIT G 12195 ¥ T e ERENTON 8% w
. . -~ o
SUMAIT PRATRIE cRooK 570 —'w%"— TINBERLINE LODUE cuckuas | 5935 |02 N VERMCNIA COLIMELA 8o it
1207 W 1% w 1237120 W
o570 . o
SUNDOWN RANCH cuckius | 2hoo | WST'N TIN HOUF CARIN Mt | o0 | WEATN VDA LANE on | bLOT N
122°311 W LSS 122928 W
0 . 0124
SUNRISE. VALLEY HARNEY 70 306 H TORFTHE DOUCLAS 950 | L6 K VICTILIAS wi soc [ _Le 1z W
126%0r W 122%26 W 120%0¢ W
Cov o1
SUNSET HARNEY [350] "3‘,” u TOKFTER, FALL: DOGLAS 195¢ 0160 N VOLTAGE 2 M! S0 HOUSE | HARNEY 4103 L1 N
s 118°68" W 122%6¢ W 118%581 W
132t K °30 X 13°50t N
SUNSET VALLEY HARNEY o 8 L0 LINCOLN #5 WAGONER GRANT [
118958 W 123971 W 115507 W
0367 v ©15+
SUNTEX MARNEY L300 L3736 N TOLLGATE UMATILIA usoe LSOLT! N WAGONTIRE HARNEY L7126 L3150 &
1938 W 1168%061 W 19%531 W
SUNTEL JUNIPER HILLS 43%0! N Ls%u7t N WALDO JOSEPHINE | 1600 | _Lo%uwe N
HARMEY 620 : 20
RANCH %5 W TCLLOATF NO. 2 UMATILLA 50 T T
3t K 42%1 & W0 ¥
SUSANVILLE GRANT 3756 TRAIL 1 N JACKSON 185 4 WALIC LAKE LANE shol
118°8° W b 122%07 ¥ 122%051
. 90, Cogr o
SUTHERLIN 2 ENE DOUGLAS shs |3z N Y TILAKOOK [ 360 M5 761N WALLACE ORCHARD POLK 173 LA EEN
123716 W 1237370 W 123°03" W
u3%28' N L0 & 2 u6%cor ¥
SUTHERLIN DOUGLAS 1095 THIANGLE LAKE LANE 200 | L8 ¥ WALLA WALLA 13 ESk WATILIA | 2hoo [MECT W
s W wE 12370 W 123%37 W 118%03 W
g 928" N us®3e ¥ gt
SUTHERLIN CAMP OUGLAS loss |AE281M TROUTEALE MULTNOMAH [ e A WALLOUPA WALLOWA 2700 |hEZhor W
123%3¢ W 122723 W U733 W
3 o320 o
7N . - 45°32' K L5 N
SUVER (NEAR LK 20 TROUTDALE M0, MILTOMAH | 23 WALIOWA WALLOWA 29523
) 123%0 W D e 17532 W
528" . Sht
TARLE. ROGK JKCKSON [RICI ) TROUTDALE AVIATION MILTNOMAR 29 ML WALTERVILLE LANE seo | bboh: N
122753 W 122%0 w 122%50" W
016! N TROUTDALE WEATHER 531 N 5 5012t N
TALINT JACKSON 1950 |.b2 ! : g N WANIC WASCO 1800 | AE120 N
2756 W BUREAU ATRFORT STATION| MULTIOMAH | 29 i 210w
0 CLl
TAMARACK VHEELER 3859 Jé,u ™Y WALLOWA 1586 |_LSo5Tr N WARM SPRINGS JEFFERSON | 1500 [ Ll b4t N
1197581 W 17927 W 12100 W
Soir o Lok N
TELOCASET UNTON ko | U206 N TLE LK XLAMATH oS o1 WARM SPRINGS AGRNCT | JEFRERSON | 1500
117°%9 W o 121°351 W I
ron Soen -
THE DALLES WASCO 102 |LE260 N TIGH RIDGE WASCO 2100 | 20 M WARN SPRINGS RESERVOIR{ MALHEUR a2 | L2035 %
210 W T21%6 W 18°13 W
12%Ll" N %08+ N USs°u9r N
THR HEADS CURRY 300 UKLAK TILA 2 oy WARREN COLUMBIA 62 [ AN
121,°30¢ W e L b 561 W 12291 W
016t Cray 0.
THE POPULARS LAKE wie | L1 N UMATILLA ATILLA 285 | L8551 N WASCO SHERMAN 1272 | k% w
120756¢ W ne%2 W 120°21 W
; o2t N
THREE LINKS cuckams | 135 97N UMPQUA DOUGLAS ue |2 ¥ WATERLOO LI w20 L3t R
122 ol W 12k%0 W 1227091 W
457t ¥ . [FRYIN] okt N
TREE LTNK CLACKAMAS | 1106 [ UNION i 2765 |Aoad WATERVILLE UNE 60 |-baohl ¥
122%k W 17°%5 W 5 12201 W
025\ N uko26" N h2%251 N
TIDENATERF LINCOIN 50 —MS-L- UNITY BAKER Lo el WELDERBRN CURRY 10 |t
1235k W nen v 1207250
0281 . .
TLLLAMOOK TLLIAMOOK 15 [hgTee w UPPER OLALLA DOUGLAS 900 X WELCHES cckamas | 1385 | _bS°21t N
123751 W 123°35+ W 12196+ W
4s°35 % 43291 N °c:
TILIAMOCK MO, 1 TILLANOGK | 665 UPPER STEAMIOAT CRERR | LANE hiz2gl N WESTFALL HALHEUR 3000 >
123%320 W 1855 122°3 W 117°L4




STATION NAME

COUNTY

ElE-
VATION

LATITUDE
AND

LONGI TUDE

WESTFALL & W

Jo

oy
17°%51 W

NENDR

LANE

L3°%5 N
122°30' W

WEST FORX

DOUGIAS

05

52%u8" W
RS

WEST LINN

CLACKAMAS

45920 ¥
1229391 w

WESTON (1889-1946)

UMATILIA

1800

45500 K

118525 W

UMATILLA

1866

45%91 N

118261 W

WESTON 2 SE

UMATILLA

2100

L5%ug' N
8% W

WESTON 5 SE

222

usu7! N
HB!;?' W

WESTON (WOOD RANCH )

2000

Cy7t

118°26 W

WHITA KER

L2so

950! N
120°%51 W

WHITESON 2 MW#

45Nt N

h2)%7 W

WICKIUP DAM

wie

43%10 K
121°62' W

WICOPEE

2677

Lo N
122°16! W

WILIAMETTE SNOW
LABORATORY 1B

L100

LN

122%06" w

WILLAMINA 2 S§

POLK

285

12)°30' W

WILLIAMS 2 SWd

JOSEPHINE

1370

h2%Us ¥
123%16" W

WILLOW CREEX

CURRY

42530 N
2b728' w

WINCHESTER

DOUALAS

%17 N

[23°%22

WINONA

JOSEPHINE

ul N
[12)%21t W

WOLF CREEX

JOSEFKINE

K20 N
R23®23 w

TAQUINA HEAD LIFE
BOAT STATION

LINCOLN

87

LWL N
2L w

’i

TONMA

KLAMATH

8o

&2;!1' N
B

217291 W

2I02A0

CLACKAMAS

1385

bs°2
n21%6" W

STATION LOCATIONS
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OREGON



212
STATION LOCATIONS WASHINGTON

—— _
LAT) TuDE LATITUBE LATTTumT
ELE- ANp ELE. AND [ AND
STATION NAME COUNTY vATIoN STATEON NAME COUNTY VATION | LONGI TuDE STATION NAME COUNTY VATION | LwerTune
ABERDEEN GRAYS MARBOR 12 | 46039 W BELLINGHAM 2N WHATCOM 12 | 48710 8 M LEWIS PIERCE 230 47°22' |
123%9¢ W 122%29' w 122933 w
ABERDEEN 20 MNE lcRavs wazpon| 433 [ _47%1p' ¥ BELLINGRAM PEDERAL | ypatcon 150 | _48%s' cars o |ty
12992 u AVIATION AGENCY 2 v CANTO " 123°50 w
ADNA (near) REW TS 250 |_46037" BENTON CITY 2W BERTON 680 46°17" N CARBONADO PreRce \e7 47%st N
123%s* 119°30" w 122%04" w
46931' N 47%6' N 47%0* ¥
ANTANUM RANGER NAKIMA 3100 BERNZ CHELAN 2818 — 2 =
STaTION 121%1° w %00 v CARNATION 1t XIRG L vy
£0°21' N a2
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