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CONSTRUCTIVE METHODS FOR FINDING A ROOT
OF CERTAIN ALGEBRAIC EQUATIONS
WITH REAL COEFFICIENTS

CHAPTER [

INTRODUCTION

There have been many methods invented for computing the
solution of algebraic equations. None of these methods however,
are best suited for use with all algebraic equations. The engineer
or the mathematician that is confronted with the task of computing
an approximate root of a set of algebraic equations must take into
account several factors before he can decide which method for solu-
tion of algebraic equations he should use. Some of the factors that
he must consider are; the nature of the coefficients (realor com-
plex), the degree of the equations that are to be solved, the accura-
cy of approximation that is required, etc.

A new method for solution of algebraic equations with real
coefficients is developed in Chapters II and III. In Chapter II, a
method is developed for computing an approximate root of an alge-
braic equation with real coefficients and a degree that is 2, 4, 6,10,14,
or any positive odd integer. The restrictions on the degree may be
partially lifted with the use of the method that was developed for

Chapter III. This is a heuristic method that is designed to compute



an approximate root of an algebraic equation with real coefficients

and a degree that is any positive integer.



CHAPTER II
METHOD I

Method I may be used to compute at least one complex root of
any algebraic equation that has, 1) real coefficients, and 2) a degree

of n, where n=2,4,6,10,14, or any positive odd integer.

Case I: let

n

f(x) = z a.ixi s

i=0
where n =2 or any positive odd integer.

(i) ¥ n is any positive odd integer, and the
ai's are real, then a real value «¢ for

x can be computed such that f(a) = 0.

(1)) ¥ n =2, and the ai's are complex, then
two complex values [31 and BZ can be

computed such that f(ﬁl) = f (BZ) = 0.

Standard procedures for computing the values a, [31 and

5} can be found in any standard numerical analysis text (2).
2 Y y

Case II: let



f(x)

"
. M 5
©

.
S
-

The a.'s are real; an;é 0. n=4,6,10, or 14.

i

Although the case n =4 has a classical history, it is in-
cluded because it yields interesting results when the method that is
developed for Chapter II is applied to it.

To begin the computation of roots of f(x) = 0, consider the

following theorem.

Theorem I: if

where n 1is even, and the division algorithm is used to divide

2
f(x) by (x +q), thus giving

f(x) = Qlx,q)(x“+a)}+P(q)x+R(q),

¥

then
n-2 n-2
2 2 2
P(q) = al—a3q+a5q - L L (-1 a,n_lq , s
and
n n
2 2 2
R = a_ -a.q+ - . a4 (-1
(@) = aj-a,qta,q +-1) " a q

Proof: if n =2, then



2
fZ(X) = az(x +q)+a1x+(a0-a2q)

2
a X +a2q+a1x+a0-a2q

h
[\S]
—_—
»
~—
1

2
fZ(x) a,x +a1x+a0

Suppose that k 1is any positive integer such that the follow-

ing statement is true:

£ () = Q(x,q)(x +a)+P (A)x+R, (a) ,

where k i
fk(x) = Z ax
i=0
k-2 k-2

P (q) = 44 (-1) 2

K\ = a;-23d - ak-14 g
and .1_(. E

R, (q) = +oa(-1)%a, g% (1)

k4 T apmad R P S

Then, by letting n = k+2 in Theorem I, we obtain the following
statement :

f (x, ) (x“+q)+P, _(q)x+R

k2t = Q2 kt2 k2@ -

where

k+2

i
fp2® = Z ax o
i=0



k k
P (q) = P, (Q+(-1)%a, . q°
k2t T TRV B
and k+2 k+2
2 2

Rk+2(q) = Rk(q)+(-1) L . (2)

Using statement (1), we will show that statement (2) is a true state-
ment.

By definition,

k+2 k+1
fk+2(x) = a X +ak+1x +fk(x). (3)
From (3), it follows that
£ o) - k2, ki1, k, k-1
k2 T 2 TP TR ® TR ¥
k- k-1
-ay 0% -ay 9x +fk(x) . (4)
By factoring (4) we get,
k k-1 2
fk+2(x) = (ak+2x +ak+lx Y x +q)+fk(x)

x ) . (6)

The quantit 1) is a polynomial that has a degree
q Yy poly g

(ay % *a, X

of k and the coefficients a, (i=0---k) are all zero. Hence,

we can use (1) to get,



k-2 k-2
2 2 2
a X ) = Qx, g){x +q)+(-1) ak+1q x

kK ok
2 2
(7)

(1,0

Substituting the results of (1) and (7) into (6), we get

k

k-1 2 2
ay Lo +ak+1x M x +q)+Qk(x,q)(x +q)

g2 =

+Pk(q)x+Rk(q)+q[Q(x, q)(x2+q)
k-2 K-2 k k

-(-1) 2 a, .4 2 x—(-l)zak+2q2]- (8)

Simplifying (8), we get

%7 1)eQ (x, 9)+aQ0x, @)] (x+a)

K
fy o) [y, % Tar,

k+2

k k Kkt 2 I+ 2

2
+(-1) ak+1q2x+Pk(q)x+(—l) 2 a4 2 +Rk(q). (9)

Let

) K k-1
Qk+2(q,h) = [(ak+2x +ak+1x )+Qk(x,q)+qQ(x,q)] ,

then it follows from (9) that



Kok 8
f,,00 = Q@ ne ar(-12a  a®+P (@)x

k+2 k+2

n———— co—m—

2 2
+ (-1) 2,159 R, (q) .

Thus the induction principle assures us that Theorem I is true
for all values for =n  where n is an even positive

integer.

We use the division algorithm, dividing f(x) by x2+q to

get:
f(x) = Q(x,q)(x>+q)+P(q)x+R(q) .

From Theorem I, polynomials P(q) and R(q) can be expressed
in terms of the ai‘s and q. Computation of a value p for q
such that P(B) = R(B) = 0 1is the next task to complete. If
P(B) =R(B) =0, then x=x= N-B are roots of f(x) = 0.

Before beginning the computation of a value f for g such
that P(B) = R(B) = 0, the existence of sucha f must be made
certain. There are two possibilities for the existence of a value
B for q suchthat P(B)=R({P)=0, 1) P(q) and R(q) have
a common factor H(q), where the degree of H(q) > 1, or
2) either P(q) or R(g) vanishes identically. A test to deter-

mine if a value P for g exists, suchthat 1) or 2) is

satisfied, can be constructed with the support of Theorem II.



Theorem II: the necessary and sufficient condition that P(q) and

R(q) have a common factor H(q), where the degree of H(q)> 1,
is that D (P,R) = 0, Dq(P,R) being Sylvester's eliminant for the
q

polynomials P(q) and R(q).

Proof: the proof of Theorem II can be found in any standard theory

of equations text (1).

The following example illustrates how Sylvester's eliminant is

formed: let

The division algorithm is used, dividing f£(x) by x2+q to get:
2
f(x) = Q(x,q)(x +q) + P(q)x + R(q).

It follows from Theorem I that

2
P(q) agq - a3q+ a,

and

1

3 2
R(q) —a6q +a4q —a2q+a0.
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-a, a, -a, a, 0

0 -a6 a, -a, ao
Dq(P, R) = ag -a, a, 0 0
0 ag -ag a, 0

0 0 ag -2y a,

It follows from the above example that if P(q) or R(g) vanishes
identically, then Dq(P,R) = 0. It is noted that R(q) cannot van-
ish identically if a, # 0. Now that a test is established for deter-

mining the existence of f, we mayproceed to compute a value for

B.

Theorem III: if Dq(P,R) =0, and n =6or 4, then a value P

for q can be computed such that P(B) = R(B) = 0.

Proof: from Theorem II, polynomials P(q) and R(g) have a
common factor H(q). This common factor can be computed by

using the Euclidean Algorithm (4).

By repeated use of the division algorithm, the following sequence of

equations is obtained:
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R{q) = Q(q)P(q) + r(q) , deg r(q) < deg P(q),

P(q) = Ql(q)r(q) + rl(q), deg rl(q)< deg r(q) ,

r(q) = Qz(q)rl(q) + rz(q), deg rz(q) < deg rl(q) ,
rk_z(q) = q((q)rk_l(q)+rk(q) ) deg rk(q)< degr, _1(q) .

The recurrence formula may be repeated until the absolute value of

all of the coefficients of rk 1(q) are less than a small tolerance

€ - Hence it follows that rk_l(q) is an approximate factor of
P(q) and R(q). The polynomials Q(q), Ql(q), Qz(q),- .- Qn(q),
r(q), rl(q), rZ(q), < rk(q) can easily be computed by the usual

process of long division of polynomials.

Once the common factor H(q) of P(gq) and R(q) has
been approximated by rk_l(q), a value for B for g can be
computed such that rk_l(ﬁ) =0. If n=4o0r6, then by Theorem
I, the degree of R(q) is 2 or 3 respectively. Hence, the degree

of q) <3. Therefore Case I can be referenced to compute a

1t
complex value B such that rk_l(ﬁ) =0, If rk_l(ﬁ) = 0, then

P(B)=R(B)=0.

Corollary I: if Dq(P,R) =0, andn =4 or 6, then

x = +N-B
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are roots of f(x) = 0.
Proof: the proof of Corollary I follows immediately from Theorem IIL

If however, Dq(P,R)% 0, then f(x) can be expressed as

follows:
n
i
f(x) = Zci(x-h) :
i=0
i
c. = f.(h)
i i!

We use the division algorithm, dividing f(x) by x2+q to get:

£(x) = @, (x, @, B)(x-h) +a)+P (g, W) (x-B)+R (q, ).

From Theorem I, polynomials Pl(q’h) and Rl(q,h) can be ex-

pressed in terms of the ci's and gq.

n-2 -2
P,(q,h) = <:1-<:3q+c5012 -0 (-1) g c 14 ?

n-2 n-2 n n
R (a,h) = cp-c,qte,a’ - €D 2 e g 2 +ePe o

The following determinant is an example of Sylvester's eliminant for

the polynomials Pl(q,h) and Rl(q,h) when n = 6:
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“Ce Cy -C, S 0
0 -c6 4 -c, o
Dq(Pl’Rl) =] <5 -C, <y 0 0
0 g -C, <y 0
0 0 cg -C, <y

To begin computation of an approximate complex root of f(x) =0,

consider Theorem IV.

Theorem IV: if n =4, 6, 10, or 14, then a complex value a

for h can be computed such that Dq(Pl’RI) =0, and a complex

value B for q can be computed such that PI(B, a) =Rl([3, a) =0.

Proof: from the fact that the ci's are polynomials in h, it fol-
lows that Dq(Pl’RI) is a polynomial in h. The degree with
respectto h of Dq(Pl’Rl) is defined in terms of n by

Theorem V.

Theorem V: if

n-2 n-2
2 2 2
Pl(q,h) = cl-c3q+c5q - (-1) Cn-lq ,
and n-2 n-2 n n
2 2 2 2 2
Rl(q,h) = <, —c2q+c4q - .- (-1) c. .24 +(-1) cd >

where
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cnaé 0, h# 0, and n is a positive even integer, then the degree

. . n(n-1)
with respect to h of Dq(Pl,Rl) is ———

Proof: the proof of Theorem V depends on the following lemmas.
Lemma 1: the degree of Ci(h) is n-1.

Proof: consider the term Hci of Ci(h) that contains the highest

degree of h.

n
Hci - (i)anh

Since a # 0, it follows that the degree of c is n-i.

Lemma 2: if row (k) represents the kth row of Dq(Pl’Rl)’

then

row (k) = (Tl)\ T\ e, TN LT )

£-2""274-4 j2-2y
N and { Vbeing defined as below.

n- 1)\,@ -2n+2

Proof:
(i) I k is a positive integer 0<k< % -1, then
n .
n . E"'(J"l)

£ = n+2k, Tj = 0 when E+k<'] <k, sz(_l)

n ..

— < =
when 2+k j’ <k, and xl—Zj Cl—Zj(h)'
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k-1 >-k-1
row (k) = (O,-~-0|,:l:c , ¢, -c.,c., 0+ 0)
n n-2 270

j £-2]

on k. Therefore Lemma 3 is proved.

(ii) -1%<k<n—l, then £ =2k+l, T.=0 when k<j<k-%,
n . . )
AR n
= (- >3 > - = = .
Tj (-1) when k>j >k > and )\I—Zj Cl-Zj(h)
k-3 n-k-1
— . -‘D T /
row (k)—(ol O! +cn—1’ :tcn_3’ 3_C3, Cl, 0"‘0).
Lemma 3: If h 7(0, thens: Dq(Pl’Rl) can be expressed as a
determinant such that the elements in a column all have the same
degree with respect to h.
Proof: from Lemma 2,
row () = (Tihy 27 T 2 TaiiM g one2)
J.et s ©be the degree with respectto h of )\ﬂ 2§ From Lemma
1,
s =n-{ + 2j.
Let
1 2 R R
row (k) = hz (h Tl)\Z-Z’ ,h zjl—Zj’ ,h Tn_lxz_2n+2) .
. £ . .
2] .
The degree with respectto h of h Tn-lxl—2n+2 1s n+<2)
The degree of hzT.)\ with respect to h is not dependent
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Dq(Pl’Rl) is a determinant and therefore, the rules for

,Rl) may be reduced to the

evaluating a determinant apply. Dq(P1

sum of products of the elements of Dq(Pl,Rl). With this idea, con-

sider Lemma 4.

Lemma 4: the degree with respectto h of Dq(Pl’Rl) cannot

be greater than %(n-l) .

Proof: from Lemma 3 and the rules for evaluating a determinant,

the terms of the reduced determinant Dq(Pl’Rl) all have the same
dégree with respect to h. Therefore, the degree with respect to

h of Dq(Pl’Rl) cannot be greater than the degree of any one term
of the reduced determinant Dq(Pl’Rl)' A convenient term of the
reduced determinant of Dq(Pl,Rl) is the product of the elements
on the diagonal of the determinant of Dq(Pl’Rl)' This term may

be expressed as follows:

L |
2 n+ 2k n-1 2k+1
‘|_|' b W h A (11)
n+2k n 2k+1 1
h h
k=1 k__r_1
"2

From Lemma 1, the degree with respectto h of )\n and )\1
is 0 and n-1 respectively. Thus %(n-l) is the maximum

degree with respectto h of Dq(Pl,Rl).
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Lemma 5: the degree with respectto h of Dq(Pl’RI) cannot be

n(n-1)

less than >

Proof: in the proof of Lemma 3 and 4, it has been established that
Dq(Pl, Rl) may be reduced to the sum of terms that all have the

same degree with respect to h. From Lemma 4, the maximum

n(n-1)

degree with respect to h of these terms is - - Consider
n(n-1)
2
the term H-'h which is the term of highest degree of

Dq(Pl’Rl) unless H = 0. To further define H, we introduce

the following equation:

J(h) = a (1+h)"
n

The division algorithm may be used to get:

I (h) Qj(q,h)(h2+q) + P (@h+ Ri(a) .

From Theorem I,

n-2 n-2
2 2 2
Pia) = a (D-Glar@a” -1 " (e © ),
and n-2 n n
R.(q) =a_ (()-Cla+ Mg - 1) 2 (P yg+ ¥ Pa®).  (12)
1A= Al lraT ig)d n-2'9 n’d 7

From Lemma 1,

H,. = (Man
1 n

C1

(13)
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It follows from (12), (13), and the definition of Sylvester's eliminant

for the polynomials Pj(q) and Rj(q), that the term

n-1 n'(r;_l) Ilz'(n‘l)
D (P,,R.)-a -h = H-h
q j ) =n

For example: let n =4, then

J(h) = a4(1+h)4

From (12),
4 4
Pj (h) =a,((})) - (3)a),
and
4 4 4
Ri(h) = 2,((q) - (;)a ().
Hence,
4 4 4
(4)34 (2)34 (O)a4
4 4
D (PR} = ()a, (Pay, 0
4 4
0 (3)a4 (1)a4

The term of highest degree with respectto h of D (Pl’Rl) is:
q

Hc4 _HCZ HCO
H = -Hc3 Hcl 0
0 -
Hc3 Hcl
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From (13),
4 4 4
(4)a —(Z)ah (O)ah
H = —(;})ah (‘ll)ah 0
0 —(:)ah (‘ll)a.h

By reducing H, we get:

2 2
3 4 4 6 3 4 4.6 3 4 4 4
H=a, - () () b4, (5) ~(Jh-a, () (5)-(Dh

Hence,

3
H = a

-D (P,R)h.
4 q i

2
If Dq(pj’Rj) = 0, then from Corollary I, h +q 1is a factor of

a_(14+h)®. Hence,
n
h2+q = h2+2h+1.

This is a contradiction. Thus Dq(Pj’Rj) # 0, and by definition

a 74 0. Therefore, the degree with respect to h of Dq(Pl’RI)

n(n-1)
2

cannot be less than

Lemma 4 states that the degree with respectto h of

n(n-1)
2

Dq(Pl’Rl) cannot be greater than and Lemma 5 states

that the degree with respectto h of Dq(Pl,Rl) cannot be less

-1
than n_(r12_) .  Therefore, the degree with respectto h of



Dq(Pl’Rl)
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n(n-1)

must be exactly >

We will continue with the proof of Theorem IV by considering

each value for n separately.

(1)

(ii)

If n=6, then from Theorem V, the degree with respect

to h of Dq(P Rl) is 15, Therefore, Case I can

1’

be referenced to compute a real value a for h such

that D(P.,R. )=0. I D (P,,R.,)=0, then Theorem
q 1’771 qg 1’771

II1 can be referenced with Pl(q,a) as P(gq) and

Rl(q,a) as R(g) to compute a complex value f for

g such that Pl(ﬁ,a) = Rl(ﬁ,a) = 0. Hence x = a*xnN-B

are roots of f(x) = 0.

If n=4, then from Theorem V, the degree with re-
spectto h of Dq(Pl’Rl) is 6. Therefore, (i) of
Theorem IV can be used to compute a complex value «

for h such that Dq(Pl’Rl) = 0. Let
a = ali N-B

From Theorem I, the degree with respectto q of
R(gq,a) 1is 2. Hence, Case I can be referenced to com-
pute two values c])l and ¢2 for q such that

R1(¢1,a) = Rl(cbz,a) =0. If Dq(Pl’Rl) = 0, then either



(iii)
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P ($,e) =R (6,a) =0 or P ($,,a) =R ($,,0) = 0.
Hence a complex value B for g can be computed
such that Pl(ﬁ,a) = Rl(ﬁ,a) = 0, thus making

x = axN-B roots of f(x) = O,

If n=10o0r 14, then from Theorem V the degree with

respect to h of Dq(Pl,R) is 45 or 91 respec-

1
tively. Therefore Case I can be referenced to compute a
real value a such that Dq(Pl’Rl) = 0. Hence, from
Theorem II, Pq(q,a) and R(q,a) have a common
factor H(qg,a). An approximation of this common factor
can be computed by using the Euclidean algorithm as
described in the proof of Theorem III. If =n =10 or 14,
from Theorem I the degree with respect to q of
Rq(q,a) is 5 or 7. Hence the degree with respect to
qg of H(gq,e)<7. If the degree with respectto q of
H(q,a) is 1,2,3,5, or 7 then Case I can be refer-
enced to compute a complex value  for q such that
Rl(ﬁ ,a) = Pl(ﬁ,a) = 0. If the degree of H(qg,a) is 4
or 6, then (i) or (ii) of Theorem IV may be refer-
enced to compute a complex value B for q such that

H(B,a) = 0. This yields x = gxN-P as roots of

f(x) = 0.
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CHAPTER III
METHOD II

Method II is offered as a heuristic method for computing a
complex root of an algebraic equation with real coefficients.

Case I of Method I may be referenced to compute a real root
of any algebraic equation that has an odd degree and real coefficients.
Hence, only algebraic equations that have an even degree and real

coefficients will be considered. Let
i
f =
(x) Z ax

where the ai’s are real, and n is a positive even integer. As
in Method I, the division algorithm is used, dividing f(x) by

2
x +q to get:
f(x) = Q(x, q)(x +q)+P(q)x+R(q) .

From Theorem I, the polynomials P(q) and R(gq) may be ex-

pressed in terms of the a.l' s and q
n-

n-2
2

n-2
2 2
al—a3q+a5q - e (-1) a q

P(q)

n-2  n-2 n
2

[z}
N B

2 2
R(Q) - ao_azqfallq - '('1) an_zq +('1) a_q
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If the Sylvester's eliminant Dq(P,R) for the polynomials P(q)
and R(q) 1is zero, then from Theorem II, the polynomials P(q)
and R(q) have a common factor H(q). The assumption of the
heuristic is that H(q) 1is linear with respect to q. The Euclidean
Algorithm as described in the proof of Theorem III may be used to
compute an approximation rk_l(q) of H(q). rk_l(q) is linear;

hence, a real value @ can be computed such that (a¢) = 0,

-1

thus making x = #N\-¢ approximate roots of f(x) = 0.

If Dq(P,R) 740, then f(x) may be expressed as follows:

n
i
fx) = z c.x-n)'
i=0
where
i
c. = L)

1 1.

2
The division algorithm may be used, dividing f(x) by (x-h) +q

to get,

fx) = Q) (x a0, B)((x-h)+a)+P  (q, A)(x-h)+R (g, ).

From Theorem I, the polynomials Pl(q’h) and Rl(q,h) may be

expressed in terms of the ci's and q.
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n-2 n-2
2 2 2
Pl(q,h) = cl-c3q+c5q - (-1) ¢ 19
n-2 n-2 n n
2 2 2 2 2
Rl(q,h) = co—c2q+c4q - e (-1) Cn-Zq +(-1) c.d

To compute an approximate root of f(x) =0, we must compute a
value a« for h anda value B for g such that PI(B, a) =

RI(B, a) = 0. Consider the following theorem:

Theorem VI: the necessary and sufficient condition that Pl(q,)\.)

and Rl(q,)\) have a common factor H(g), where the degree of
H(q) > 1, and X 1is a complex number, is that Dq(Pl’Rl) = 0.
Dq(Pl’ Rl) is the Sylvester's eliminant for the complex polynomials

P (q,\) and R, (q,}N) .

Proof: the proof of Theorem VI is equivalent to the proof of Theorem

II.

Lemma 6: if a complex value X for h is computed such that
Dq(Pl ’Rl) = 0, then a complex value B for g can be computed

such that Pl(ﬁ,)\) = Rl(ﬁ,)\) = 0.

Proof: if Dq(Pl’Rl) = 0, then from Theorem VI, the poly-
nomials Pl(q,)\) and Rl(q,)\) have a common factor H(q).
The Euclidean algorithm as described in the proof of Theorem III

may be used to compute an approximation (q) of H(q).

k-1
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According to the assumption of the heuristic, (q) is linear;

k-1
hence, a complex value B for q can be computed such that
rk_l(ﬁ) = 0. Therefore, H(B) = 0; thus making Pl(ﬁ,).) =R\1(B,)\) = 0.
The Sylvester's eliminant Dq(Pl’Rl) is a polynomial in
h with real coefficients. If the degree of Dq(Pl’Rl) with re-
spect to h is odd, then a real value @ for h can be computed
such that Dq(Pl’Rl) = 0. Hence, we will assume that the degree
of Dq(Pl’Rl) with respect to h 1is even. Consider treating the
polynomial Dq(Pl’ Rl) as a new problem and applying the same

sequence of steps to it as was applied to f(x). Using the Euclidean

algorithm, and dividing Dq(Pl’Rl) by ((h-h1)2+q1) we get,
2

It follows from Lemma 6, that if a complex root of Dq(Pl’Rl) =0
can be computed, then a complex root of f(x) =0 can be computed.
Thus the following sequence of equations is suggested:
2
£(x) = Q, (x,h, q)((x-h) +a)+P (q, B)(x-h) + R (q,}) ,
2

2

.............................................

Py P Py o PRyl Ry ) (1)
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From Theorem V, and the sequence of equations (14), the degree

with respect to hk-l of Dq(Pk,Rk) is n, where
P Byt
e T 2

Theorem VII: if

then

where p<k, p and k are positive integers, and lp is a

positive odd integer.

Proof: let

n, = 210, (15)

where { is a positive odd integer. If p =1, then

0
} no(no—l) e
n o= . (16)
From (15) and (16)
k-1 k
n, = 2 20(2 10-1) ,
thus
no= 25l
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where £ is a positive odd integer. If P =k-1, and

1
n_, = sz-l R (17)
where lk 1 is a positive add integer, then we shall prove that
S
where lk is a positive odd integer. By definition,
L P17 (18)
k 2 )
From (17) and (18),
o Zlk_l(Zlk_l—l) 19)
k 2 )

By simplifying (19) we get,

From Theorem VII, the degree with respectto h of Dq(Pk,Rk)
is odd. Therefore, from Case I of Chapter 1I, a real value e for

h in the sequence (14) can be computed such that Dq(Pk,Rk) =0,

Consider the following theorem:

Theorem VIII; if in the sequence (14) Dq(Ps,Rs) = 0, where
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1> s >k, then a complex value ﬁs ] for q,_; can be com-
puted such that Dq(Ps—l’Rs—l) = 0.
Proof: let N\ be a complex value for hs—l such that

Dq(Ps, Rs) = 0. From Theorem VI, the polynomials Ps(qs-l’ )

and Rs(qS \) have a common factor H(q), which may be com-

1,
puted by the Euclidean algorithm. According to the assumption of the

heuristic this polynomial is assumed to be linear; hence, a value

f
Bs_l or g

H(B

c-1 can be computed such that H(ﬁs_l) =0. I

,.]) =0, then P (B, M=R(B__,N)=0 I

Ps(ﬁs_l,)\) = Rs( ﬁs_l,)\) = 0, then it follows from the sequence

(14) that the values )\:b'\/-ﬁs 1 for h are complex roots of

s-2

D (P R ) =0.

From Theorem VIII, it follows that the complex values

x=cz:h'\/—{3k_1 :t'\/-ﬁk_zzl:...:i:r\/_p +N-B

1

are complex roots of f(x) =0, where a 1is a real root of
D = =+ N/-
q(Pk,Rk) 0, a=nN ﬁk-l are complex roots of

Dq(Pk—l’Rk—l) = 0, etc. through sequence (14).
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APPENDIX A

In Chapter II and III a method for computing an approximate
root of an algebraic equation with real coefficients was developed.
To describe this method in a form that is easily adapted to a com-
puter program, the procedures are written in the ALGOL 60 language.
The procedures, Sylvester, ratmult, mult, comfact, and C. F.,
may be found in Appendix B. They are copied, with the exception of

a few minor adjustments, from a thesis written by John Holroyd (3).

procedure comroot(a, N, r) results: (b);

integer array a;

integer N, r;

real array b;

begin comment: the procedure comroot will compute an approximate

complex root of the algebraic equation

f(y) = 0,
where
n
f(y) = }‘ aiyl .
i=0

the values for the formal parameter a are stored in the
integer array a[O0:N, 1:2]. The values i(i= 0,1,---,N)

for the first subscript of the array a refer to the
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coefficient ai of yi. The coefficients ai(i =0,1,---,N)
are rational numbers and are stored as ordered pairs of
integers. The values 1 and 2 for the second subscript
refer to the numerator and denominator respectively of the
coefficient specified by the value of the first subscript, N
contains the degree of the polynomial f£(y). The formal
parameter b stands for an approximate complex root of
f(y) = 0. The values for b are stored in the integer array
b[1:2] . The values 1 and 2 for the subscript of the
array b refer to the real and imaginary part respectively
of the complex root. The integer r is n, in Theorem
VII of Chapter III. ;

integer NS, i, k, m, s, t, ssl, ss2, ss3, ss4;

integer array I11{1:2], I12[1:2], I13[1:2], rs[1:2], ss[1:4],

121[ 0:r, 1:2], I22[0:r, 1:2], as[O:rX(r-1)/2, 1:2],

c[0:r X(r-1)/2, 0:r X(r-1)/2, 1:2], P[0:@-2)/2,1:2, O:r-1, 1:2],
R[0:r/2, 1:2, O:r, 1:2], PS[1:N, 0:(r-2)/2, 0:r-1, 1:2],
RS[1:N, 0:r/2, O:r, 1:2], S[O0:r, 1:2, rX(r-1)/2, 1:2];

array T11[1:2], T12[1:2], T21[0:r, 1:2], T22[0:r, 1:2];
real eps;

switch return, stop, bl, b2, b3;

for i:=0 step Il until N do

for k:=1 step 1 until 2 do
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as[i, k] :=a[i, k] ;

eps: .0000001 ;
if (NS-entier(NS/2)) # 0 then

begin comment: the degree of f(y) is odd. Hence we can

refer to Case I(i) of Chapter II to compute a real root

of {f(y)=0.;

realroot (eps, f, as, NS) results: (Il1) ;

b[1] := I11[1]/111[2] ;

0;

il

b[2] :
ssl:=ss[1];
go to return (ss[1]) ;
end ;
if NS =2 then

begin comment: the degree of f(y) is 2. Hence we can

refer to Case I(ii) of Chapter II to compute a complex
root of f(y) =0.;

for i:= 0 step 1 until 2 do

begin T21[i, 1] := as[i, 1]/as[i, 2];

H

T21[i, 1] := 0 ;

end 1i;

case ii (T21) results: (b, T12) ;
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go to return (ss[1]);

end ;
if NS > 16 then go to M2;
comment: form Dq(P’.R) ;
for i:=0 step 1 until (NS-2)/2 do
begin for k:=1 step 1 until 2 do
P[0, 1,i,k] := as[2xi-1,k] y(-1)1 i;
C.F.(P[0,1,i,1], P[0, 1,1,2]);
end k;
for i:=0 step 1 until NS/2 do
begin for ki= 1 step 1 until 2 do
R[O0, 1,i,k] := as[ 2xi, k]x(-1)1 i;

C.F.(Rfo,1,i,1], R[0,1,i,2];

Sylvester (R, P, i, k, m) results: (S, 121);

if (S[0,1,0,1] x S[0,2,0,2] ) # 0 then goto Cl;

comment: Dq(P,R) = 0, hence we will compute the common
factor of P(q) and R(gq) and then compute an approximate

root of the common factor, ;

121{0, 1] := (NS-2)/2;



bl:

Cl:

34

122[0, 1] := NS/2;

comfact (R, 0, 1, 122, P, 0, 1, I21) results: (as, NS);
comment: the common factor of P and R is now in the
array as and the degree of the common factor is in NS.

We will set the return switches to bl and go back to the

start. ;
ss[1] := 2;
ss[3] := 2;
ss[4] := 2;
ss2:= ss[2] ;
go to St

comment: b contains an approximate complex root of the

common factor of P(q) and R(q). Therefore

y = N-b

is an approximate root of f(y) = 0.;
for ir= 1 step 1 until 2 do

b[i] ;= -b[i] ;

csqrt (b) results: (b) ;

go to return (ss2) ;

if NS = 8 then go to M2 else

if NS = 12 then go to M2;

comment: Sylvester's eliminant for P(q) and R(q) is
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not zero. Thereforewe will proceed with Theorem IV of
Chapter II;
cees (as, NS) results: (c) ;
form PR(c, NS) results: (P,R);
m:= NS/2;

s := (NS-2)/2;

t := NSx(NS-1)/2;

Sylvester (R,P, m, s,t) results: (S, 121);

for iz= 0 step 1 until NS-2 do

m:= it+1;

ratmult (S,1,121,S,m,121,S,m, 121);

m:= NS-1;

comfact (S, m, 1,I21,8,m, 2,121) results: (122, k)

if NS =4 then goto CZ2;

comment: the degree of Sylvester's eliminant for Pl(q,a)
and Rl(q,a) is odd. Hence we will compute an approxi-
mate real root of Dq(Pl’RI) =0.;

for i:= 0 step luntil 121 [m, 1] do

for k:=1 step 1 until 2 do

122[i, k] := S[m, 1,1, k] ;
k:=I121[m, 1] ;
realroot (eps,f,122,k) results: (rs);

comment: rs contains an approximate real root of



=0.;
Dq(Pl’Rl)

comment: we can now evaluate ci(rs) (i=0,1,---,N).;

for i:=0 step 1 until NS do

begin for k:= 0 step 1 until Ns-i do

for m:=1 step 1 until 2 do

121[k, m] := c[i, k, m] ;
m:= N-i;
f(I21, m, rs) results: (I11);
121[i, 1] := 111[i] ;
121[i, 2] ; 111[2];
end i;
comment: form Pl(q,rs) and Rl(q’ rs);

for i:= 0 step 1 _until (NS-2)/2 do

begin for k:= 1 step 1 until 2 do

P[0, 1,1,k] := I21[2xi-1, k] x(-1)1 i;
CF' (P[O,l,l, ]-] ’ P[O,l,l,z]),
end 1 ;

for i:= 0 step 1 until NS/2 do

begin for k:= 1 step 1 until 2 do

R[0,1,1,k] := I21[ 2%i, k] %(-1)1i;
end i;
121[0, 1] := NS/ 2;

122[0, 1] := (NS-2)/2;

36
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comfact (R,0,1,I21,P,0,1,122) results: (as, NS);
comment: the array "as" contains the common factor of
Pl(q, rs) and Rl(q, rs). We will now compute an approxi-

mate complex root of the common factor. ;

comment: set all switches to return to b2;

ss[1] :=3;

ss[2] :=3;

ss[4] :=3;

ss3:= ss[3];

g0 to st;

comment: b contains an approximate complex root of the

common factor of Pl(q,rs) and Rl(q’ rs), hence
y = rs + N-b

is an approximate root of f(y) = 0.;

for i:t=1 step 1 until 2 do

b[i] := -b[i] ;

csqrt (b) results: (b) ;

b[1] := rs[1] /rs[2] +b[1] ;

go to return (ss3);

comment: Dq(Pl’Rl) ;é 0 and N =4;
comment: save the coefficients of Rl(q,h);

for i:= 0 step 1 wuntil 2 do




for k:= 0 step 1 until 4-2%i do

for m:=1 step 1 until 2 do

RS[i,k,m] := R[i, 1,k, m] ;
comment: we will compute an approximate root of
Dq(Pl’Rl) =0.;

for i:z= 0 step 1 until 6 do

for k:=1 step 1 until 2 do

begin m:= NS-1;
as[i, k] := S[m, 1,1i,k] ;
end;
NS:= 6;
comment: set the return switches to b3;

4

ss[1] :

ss[2] := 4;

ss[3)] := 4;

ss4:= ss[4] ;

go to st;

comment: b contains an approximate complex root of
Dq(Pl,Rl) = 0;

comment: we can now evaluate Pl(q,b) and Rl(q,b);

for i:= 0 step 1 until 2 do

begin for k:= 0 step 1 until 4-2%i do

begin T21[k, 1] := RS[i, k, 1] /RS[i, k, 2] ;



ch:

T21[k, 2] := 0;
end ;
m:= 4-2X%i ;

cf(T21,m,b) results: (T11);

T21[i, 1] := T11[1] ;

T21[i,2] := T11[2] ;

end ;

for i:= 0 step 1 until 2 do

for k:= 1 step 1 until 2 do

as[i,k] := T21[2x1, k] x(-1)11;
case ii (as) results: (T1l1, T12);
m:= 2;

cf(as,m, T11) results (T13);

if T13[1] < .0001 then goto <c5 else

if T13[2] < .0001 then go to c5;

T12[1] :

T11[1];

T12[2] ;

T11[2];

T12[1] := -T12[1] ;

T12[2] := -T12[1];

csqrt (T12) results: (T12);
b[1] :=b[1] +T12[1];

b[2] ;= b[2] +T12[2] ;

go to return (ss4);

39



40
M2: comment: the method that was developed in Chapter II does
not apply. We will try the method that was developed in
Chapter III;
comment: compute the number of factors of 2 in N;
t:= 0 ;

M3: NS-2x entier (NS/2);

[l
I

if 1:= 0 then

begin t:= t+l;

NS:= NS/2;
go to M3;
end ;
NS:= N;

for i:= 1 step 1 until t do

begin cees (as, NS) results: (c);
form PR(C,NS) results: (P, R)
comment: we will save the coefficients in the arrays
P and R for later use.;

for k:= 0 step 1 until (NS-2)/2 do

for m:= 0 step 1 until NS-2Xk-1 do

for s:= 1 step 1 until 2 do

PS[i,k, m,s] := P[k, 1,m,s] ;

for k:= 0 step 1 until NS/2 do

for m:= 0 step 1 until NS-2Xk do




for s:=1 step 1 until 2 do

RS[i,k, m,s] := R[k,1,m,s] ;

m:= NS/2;

s:= (NS-2)/2;

k:= NSX(NS-1)/2;

comment: we will form Sylvester's eliminant;
Sylvester (R, P, m, s, k) results: (S, 121);

for k:= 0 step 1 until NS-2 do

begin m:= k+1;

ratmult (S, k,I121,S,m, 121,S,m, I21);
end ;
m:= NS-1 ;
comfact (S, m, 1,I121,S,m, 2,121) results: (122, k);
m:= NSX(NS-1)/2;

for k:= 0 step 1 until m do

for s:=1 step 1 until 2 do

as[k,m] := s[m, 1,k, s] ;

I11fi] := NS ;

NS:= m;
end;
comment: from Theorem VII of Chapter III, the degree of
Sylvester's eliminant is odd. Therefore, we will compute

an approximate real root of Sylvester's eliminant. ;

41
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realroot (eps,f,as,NS) results (I12);

i

b[1] := 112[1] /112[2] ;

b[2] := 0;
comment: we can now proceed as in Theorem VIII of Chapter

III1;

for i:= 1 step 1 until t do

begin s:= I11[i] ;

for k:= 0 _step 1 until (s-2)/2 do

begin m:= 0 step 1 until s-2Xk-1 do

begin T21[m, 1] := PS[i,k, m, 1] /PS[i,k, m, 2] ;

T21[m, 2] :=0;
end;
m:= s-2Xk-1 ;
cf (T21,m,b) results: (T12) ;

T21[k, 1] := T12[1] ;

T21[k, 2] := T12[2];
end;

for k:= 0 _step 1 until s/2 do

begin for m:= 0 step 1 until s-2Xk do
begin T22[k, 1]:=RS[i,k, m, 1}/RS[i, k, m, 2] ;
T22[k, 2] := 0;
end;

m:= s-2Xk;
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cf(T22, m,b) results: (T12);

T22[k, 1] := T12[1] ;
T22[k, 2] := T12[2];
end ;
m:= s/2 ;
k:= (s-2)/2;

complex cf(T22,m, T21,k) results: (T23);

T23[0, 1] := -T23[0,1];

T23[0,2] := -T23[0, 2] ;

for k:=1 step 1 until 2 do

begin T12[k] := T23[0,k];
T13[k] := T23[1,k] ;

end;

cdiv(T12,T13) results: (T12);

for k:=1 step 1 until 2 do

T12[k] := -T12[k] ;
csqrt(T12) results: T (12) ;

for k:= 1 step 1 until 2 do

b[k] := b[k] +T12[k] ;
end 1 ;
stop:

end comroot;
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procedure cf(a,N, z) results: (b);

real arrays a,b; integer N;

comment: the procedure cf will evaluate a function f(y) with

n
i
i=0

The values for the formal parameter a are stored in the array

complex coefficients.

a[0:n, 1:2]. The values 0 to N for the first subscript refer to
the' coefficient a,. The values 1 and 2 for the second subscript
refer to the real and imaginary part respectively of the coefficient a,
specified by the first subscript. The formal parameter b stands
for the value of the function evaluated for the complex value z.

The value for b is stored in the array b[1:2]. The value for =z
is stored in the array z[1:2]. The values 1 and 2 for the sub-
script refer to the real and imaginary part respectively of the arrays
b and =z.

begin integer i,k,m; real array T[1:2];

for i:=1 step 1 until 2 do

b[1] := a[N, i] ;

for i:= 0 step 1 wuntil N-1 do

begin cmult (b, z) results: (T);

for k:=1 step 1 until 2 do

b[k] := T[k] + a[i, k] ;



end;

end;

45
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procedure cees (a,N) results: (c) ;

integer array a,c; integer Nj

comment: the procedure cees will compute

Ci(h) (i =0toN),

where i
_f(h)
cyb) ==~
and
n
i
f(h) = a.h
i=0

the values for the formal parameter a are stored in the array
a[0:N, 1:2] . The values 0 to N for the first subscript refer to the
coefficient a; of hi. Each coefficient specified by the first sub-
script is expressed as the quotient of two integers. The values 1
and 2 for the second subscript refer to the numerator and denomi-
nator respectively of this quotient. The values for the formal param-
eter ¢ are stored in the array c[0:N, 0:N, 1:2] . The values 0
to N for the first subscript refer to the polynomial Ci(h)' The
values 0 to N for the second subscript refer to the coefficients of
the polynomial in h denoted by the first subscript. The values 1
and 2 for the third subscript refer to the numerator and denomi-
nator respectively of the coefficients referred to by subscripts one

and two. ;



begin integer i, k; integer array P[0:N, 0:N];

P[0,0] := 1;
P[1,0] := 1;
P[1,1] := 1;

for k:= 2 step 1 until N do

for i:= 2 step 1 until k-2 do

P(k,i] := P[k-1, i-1] +P[k-1, i];

for k:= 0 step 1 until N do

for it= 0 step 1 until N-k do

1l

begin c[k, i, 1] := P[i,k]Xa[N-i, 1];

clk, i, 2] := a[N-i, 2] ;

C.F.(c[k,i, 1], c[k,i,2])
end ;

end cees
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procedure realroot (eps,f,a,N) results: (b);
real eps;

integer array a,b;

real procedure f£;

integer N;

comment: the procedure realroot will compute an approximate real

root of the equation

f(z)

n
f(z) = Z a,iz1 .
i=0

u

0,

where

The values for the formal parameter a are stored in the integer
array af[0:N, 1:2]. The values 1i(i=0, 1,°*- N) for the first sub-
script of the array a refer to the coefficient a; of zi. The co-
efficients a, are rational numbers and are stored as ordered pairs
of integers. The values 1 and 2 for the second subscript refer to
the numerator and denominator respectively of the coefficient speci-
fied by the first subscript. The formal parameter b stands for the
approximate root of f(z) = 0. The value for b is stored in the inte-
ger array b[l:2] . The values 1 and 2 for the first subscript of

the array b. refer to the numerator and denominator respectively.

The approximate root b must be accurate within the given toler-

ance eps.;
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begin integer array Fz0[1:2] , Fzl[1:2],

Fz2[1:2], F2[1:2], =z0[1:2], Fzl[l:2]

igteger i, k, m ;
z0[1] :

li
(]

z1[1] :

il
—

z1{2]

1l
—

f(a, N, z0) results: (Fz0) ;

for i:=1 step 1 until 5 do

begin for k:=1 step 1 until 2 do

begin f(a,N,zl) results: (Fzl);
if (Fz0[1]/Fz0[2]) (Fz1[1]/Fz1[2]) O
then go to RI;
z1[1] := -z1[1] ;
end;
z1[1] := z1[1] % 104 i;
C.F. (z1[1], =z1[2]);
end;
comment: we cannot find two values z0 and 2zl such that
f(z0) £(z1) <0 ;
&(_)_:c_(_)_error;

R1: if (z0[1}/20[2]) (z1[1]/=1[2]) then

z2[1] := z1[1] X z0[2] - z1[2]X z0[1] else

ret—————

z2[1] :

4]

z0[1]X z1[2] - z0[2] X z1[1] ;

22[2) := 2X z1[2] x z0[2] ;



C.F. (z2[1], z2[2]);
f(a,N, z2) results: (Fz2);
if abs (Fz2[1]/Fz2[2])< eps then

begin

for it=1 step 1 until 2 do

b[i] := F2[i];
go to RZ;
end; else
if (Fz2[1]/ Fz2[2] )X(Fz1[1] /Fz1[2] )< 0

then for i := 1 step 1 until 2 do

Fz0[i] := Fz2[i] else

for i:=1 step 1 until 2 do
Fzl[i] := Fz2[i] ;
goto RI;

R2:

end realroot;
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procedure f(c,N,z) results: (y);

integer array «c¢,z,y; integer N;

comment: procedure f will compute a value for y where

defined as follows:

The values for the formal parameter c¢ are stored in the integer

y

51

is

array c[O:N, 1:2]. The first subscript with values from 0 to N

i
refer to the coefficient of 2z . The second subscript with values

1

and 2 refers to the numerator and denominator respectively of the

coefficient of z'. The formal parameters z and vy are stored

in arrays 2z[1:2] and y[1:2] respectively. The subscript with

values 1 and 2 refers to the numerator or denominator respec-

tively of the values for y and =z.

begin integer 1i,k;

for i:=1 step 1 until 2 do

y[i] := c[N,i];

for i:= 0 step 1 until N-1 do

begin for ke =1 step 1 until 2 do

y[k] := 2[k] Xy[K] + c[N-i-1, K] ;

C.F.(y[1]; vy[2]);

end k;

end f;
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procedure caseii(a) results: (bl, b2);

real array a, bl, bZ;

comment: the procedure caseii will compute two approximate
complex roots of an algebraic equation f(y) = 0, where the coeffi-
cients of f(y) are complex and the degree of f(y) is 2. The
values for the formal parameter a are stored in the array

a[0:2, 1:2] . The values O to 2 for the first subscript refer to the
complex coefficients of f(y). The values 1 and 2 for the second
subscript refer to the real and imaginary part respectively of the
complex coefficient designated by the first subscript. The formal
parameters bl and b2 stand for the two approximate roots of
f(y) = 0. The values for these roots are stored in the arrays

b1[1:2] , and b2[1:2]. The values 1 and 2 for the subscript
refer to the real or imaginary part respectively of the complex root.

begin integer i; real array TO[1:2], T1[1:2], T2[1:2],

T3[1:2], T4[1:2] ;

for i:= 1 step 1 until 2 do

begin TO[i] := a[0, 1] ;
T1[i] := af1,i] ;
T2[i] := a[2,i] ;
end i
cmult (T1,T1) results: (T3);

cmult (T 0, T2) results: (T4);



for iz=1 step 1 until 2 do

T3[i] := T3[i] -4X T4[i] ;
csqrt (T3) results: (T4);

for i:= 1 step 1 until 2 do

begin T3[i] := -T1[i] + T4[i] ;

TO[i] := 2 X T2[i] ;
T1[i] := -T1[i] -T4[i] ;

end 1i;

cdiv (T3, TO0) results: (bl);

cdiv (T1, TO) results: (b2);

end caseii
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procedure form PR(c, N) results: (P,R);

integer array c, P, R; integer N;

comment: the procedure form PR will form the coefficients of

two polynomials P(g,h) and R(q,h).

n-2 n-2
P(q,h) = ¢ (h)-c,(h) (-1) ° 2
4, 1) = ¢,{h)-cainiq - N €n-1
n-2 n-2 n n
2 2 2 2
R(q,h) = co(h)-(:z(h)q cee (-1) Cn-Zq +(-1) cnq

The values for the formal parameter ¢ are stored in the array
c[0:N, O0:N, 1:2]. T he values in the array c¢ are the results of
the procedure cees. The values for the formal parameters P

and R are stored in the arrays P[0:(N-2)2, 1:2, O:N, 1:2],

and R[0:N/2, 1:2, 0:N, 1:2] respectively. The values 0 to
(N-2)/2 for the first subscript in the array P refer to the poly-
nomial in h that is a coefficient of qi . The values 0 to N

for the second subscript refer to the coefficients of the polynomial

in h that was specified by the first subscript. The values 1 and
2 for the third subscript refer to the numerator and denominator
respectively of the coefficient specified by the first two subscripts.
Similarly, the values 0 to N/2 for the first subscript of the array
R refer to the polynomial in h that is a coefficient of qi . The
second and third subscripts for the array R have the same meaning

as the second and their subscripts for the array P respectively.



begin integer i, k, L;

for i:=0 step 1 until (N-2)/2 do

for k:=0 step 1 until N-2Xi-1 do

begin for L:=1 step 1 until 2 do

P[i, 1,k, L] := c[2Xi-1,k, L] (-1)%i;
C.F. (P[i,1,k,1], P[i,1,k,2]);
end k;

for i:=0 step 1 until N/2 do

for ki=0 step 1 until N-2i do

begin for L:=1 step 1 until 2 do

R[i, 1,k, L] := c[2Xi, k, L] X(-1)11;
C.F. (R[i,1,k,1], R[i, 1,k,2];
end k;

end form PR ;
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procedure csqrt (a) results: (b);
real array a,b;
comment: the procedure csqrt computes the square root of the
complex number a and stores the result into b. The values for
the formal parameters a and b are stored in the arrays a[l:2],
and Db[1:2] respectively. The values 1 and 2 for the sub-
script in the arrays a and b refer to the real and imaginary
part respectively of the complex number. ;
begin real z, T1l, PI;

PI:= 3. 1416

z:= sqrt(sqrt(a[i] t 2+a[2] 1 2));

T1:= arctan(a[2] /a[1] )/ 2;

if a[1] <0 then T1:= T1+PI;

b[1] := zXcos(T1);

b[2] := zXsin(T1);

end csqrt ;
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procedure cdiv (a, b)results: (c);
real array a,b,c;
comment: the procedure cdiv divides the complex number a by
the complex number b and stores the quotient into c¢.  The values
for the formal parameters a,b, and ¢ are stored in the arrays
a[ 1:2], b[1:2], and c[1:2] respectively. The values 1 and 2
for the subscript in the arrays a, b, and ¢ refer to the real and
imaginary part respectively of the complex number;
begin real z, T1, T2, T3, PIL

Pl:= 3. 1416

z:= sqrt(a[1] 1 2+a[2] ] 2)/sqrt(b[1] 1 2+b[2]} 2);

T1:= arctan(a[2] /a[1]);

T2:= arctan(b[2] /b[1]);

if a[1] <0 then Tl:=T1 + PI;

if b[1] <0 then T2:= T2 + PI;

T3:=T1-T2;
c[1] := zXcos(T3);
c[2] := zXsin(T3);

end cdiv ;
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procedure cmult (a,b) results: (c);
real array a, b, c;
comment: the procedure cmult multiplies two complex numbers
a and b together and stores the product into c¢. The values for
the formal parameters a, b, and ¢ are stored in the arrays
a[1:2], b[1:2] , and c[1:2] respectively. The values 1 and 2
for the subscript in the arrays a, b, and ¢ refer to the real and
imaginary part respectively of the complex number.

begin integer 1 ;

c[1] := a[1]xb[1] -a[2] Xb[2] ;
c[2] := a[2] Xb[1] +a[1]XDb[2] ;

end cmult ;
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procedure complex cf (a, n, b, m) results: (c);
array a, b, c;

integer n, m;

comment: the procedure complex cf will compute the common fac-
tor of two polynomials f(y) and g(y) with complex coefficients,

The common factor is assumed to be linear.

n
i
f(Y) - Z a‘iY .
i=0
and
m
k
B = ) by

The values for the formal parameters a and b are stored in the
arrays al[0O:n, 1:2] and b[0:m, 1:2] respectively. The values
i(i=0,1,--+n) and k(k=0,1,---m) for the first subscript of the ar-
rays a and b respectively, refer to the coefficients a and b
respectively, The coefficients a and b are complex numbers
and are stored in ordered pairs of real numbers. The values 1
and 2 for the second subscript refer to the real and imaginary part
respectively of the coefficient that was specified by the first sub-
script. The formal parameter ¢ stands for the linear common
factor of f(y) and g(y). The values for ¢ are stored in the ar-

ray c[0:1, 1:2]. The values 0 and 1 for the first subscript
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refer to the coefficient o and <, respectively, where

y+c The values 1 and 2 for the second subscript

cly) = ¢ 0

1
refer to the real and imaginary part respectively of the coefficient
referred to be the first coefficient. The method of computation is

based on the Euclidean algorithm, ;

begin integer i, k, s, p, NS, ms

array R[O:m, 1:2], as[O:n, 1:2], bs[O0im, 1:2];
NS:=n; ms:= m;

for i:= 0 step 1 until n do

for k:= 0 step 1 until 2 do

as [i,k] := a[i,k];

for i:= 0 step 1 until m do

for k:=1 step 1 until 2 do

bs [i, k] := b[i, k] ;

for i:= 0 step 1 until m do

begin polydiv (as, Ns, bs, ms) results (R, p);

for k:= 0 step 1 _until ms do

for s:=1 step 1 until p do

as [k, 2] := bs[k, 2] ;

Hh
|5
H

T
i

0 step 1 until p do

h
o}
2]
n
il

1 step 1 until 2 do

bs[k, 2] := R[k, s] ;

NS:= ms;



end ;

for i:= 0 step 1 until 1 do

for k:=1 step 1 until 2 do

c[i, k] := R[i,k] ;

end complex cf ;
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procedure polydiv (a, n, b, m) results: (R, p);
array a, b, R;

integer m, n, p;

comment: the procedure polydiv computes the remainder when

polynomial f£(y) 1is divided by polynomial g(y).

n
i
fly) = Z ay -
i=0
and
m
k
k=0

The values for the formal parameters a and b are stored in the
arrays af[0O:mn, 1:2] and b[0:m, 1:2] respectively. The values
i(i=0,1,"**n) and k(k=0,1,...m) for the first subscript of the
arrays a and b respectively, refer to the coefficients a, and
bk respectively. The coefficients a, and bk are complex num-
bers and are stored in ordered pairs of real numbers. The values 1
and 2 for the second subscript refer to the real and imaginary part
respectively of the coefficient that was specified by the first subscript.
The formal parameter R stands for the remainder polynomial. The
values for R are stored in the array R[O:m, 1:2]. The values

(0,1,2,-+- m-1) for the first subscript refer to the coefficients of

the remainder polynomial. The values 1 and 2 for the second

subscript refer to the real and imaginary part respectively of the
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coefficients referred to by the first subscript. The integer p con-
tains the degree of the remainder polynomial. n > m;

begin integer i, k, s;

array Q[O:m-m, 1:2], T1f1:2], T2[1:2], as[O:n, 1:2];

for i:= 0 step 1 until n do

for k:=1 step 1 until 2 do

as[i, k] := a[i, k] ;

for i:t=n-m step -1 until 0 do

begin

fork: =1 step 1 until 2 do

begin T1[k] := as[n, k] ;
T2[k] := b[ m, k] ;

end ;

cdiv (T1, T2) results: (T1) ;

for k:= 0 step 1 until m-1 do

begin

for s:=1 step 1 until 2 do

T2[s]:= b[m-k-1, s];
cmult (T1, T2) results: (T1) ;

for s:= 1 step 1 until 2 do

as[n-k, S] 1= a,s[n—k-l, S] 5

for s:=m step 1 until n-1 do

begin as[n—s, l] H= as[n-s-l, 1] ;



as[n-s, 2] := as[n-s-1, 2];

end s ;

end k ;

end i ;

for i:= 0 step 1 until m-1 do

begin R[i, 1] := as[n-m+1+i, 1] ;
R[i, 2]):=as[n-m+1+i, 2];
end ;

end polydiv ;

04



APPENDIX B

The procedures in Appendix B were copied from a thesis

written by John Ries Holroyd, Oregon State University, 1962,
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procedure ratmult (I, i, L, J, j, M, K, k, N);
comment: I is a formal parameter corresponding to an array for
storage of polynomials. 1 corresponds to the subscript of the
element in the array I. L 1is a formal parameter corresponding
to an array for the storage of the degree of the polynomial referred
to by I and the subscript i. Similarly for the sets of three J,
j» M, and K, k, N. I and J refer tothe polynomials being
multiplied and K to the product;
integer i, j, k;
array I, J, K, L, M, N;

mult (I, i, 1, L, J, j, 1, M, K, k, 1, N);

mult (I, i, 2, L, J, j, 2, M, K, k, 2, N);

comfact (K, k, 1, N, K, k, 2, N);

N[k, 1] := L[i, 1] + M[j, 1] ;

N[K, 2] := L[i, 2] + M[j, 2];

end ratmult ;
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procedure mult (I, i, v, L, J, j, v, M, K, k, w, N);
comment: I corresponds to an array for the storage of polynomials.
i corresponds to the value of a subscript of a polynomial element
stored in that array. u corresponds to a real parameter which may
have value 1 or 2 as to numerator or denominator of the poly-
nomial referred to by the array and value corresponding to I and i.
L. corresponds to an array for degree storage for this polynomial.
The correspondence in the parameter list for the sets of four J, j, v,
M and K, k, w, N is the same. I, J, and K correspond to
arrays which contain the two polynomials multiplied and the product
respectively.
integer i, j, k, u, v, w;

array I, j, K;

integer array L, M, N;

begin

integer array H[O:r, 1:2];

integer m, t, a, e, f;

a:= L[i,u];

N[k, w] := a+M[j, v] ;

for m:=0 step 1 until r do
for t:=1, 2, do

H[m,t] := 0;



end

for m:= 0 step 1 until M[j, v] do

begin

for t:= 0 step 1 until a do

e:=1I[i, u, t, 1] X J[j, v, m, 1];
f:= I[i, u, t, 2] X J[j, v, m, 2];
e:= exH[ m+t, 2] + fxH[m+t, 1] ;
f:= fxH[m+t, 2];
if e> f then C.F. (e, f) else C.F. (f, e);
H[m+t, 1] := e;
H[m+t, 2] :=£;
end ;

end ;

for m:= 0 step 1 until N[k, w] do
for t:=1, 2 do
K[k, w, m, t] := H[m, t];
end ;

end mult;
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procedure comfact (I, i, u, L, J, j, v, M), results: (E, m);
comment: correspondence between the sets of formal parameters
I, i, vy, L and J, j, v, M is the same as described in the pro-
cedures mult and sub., This procedure finds any common factors
of the polynomials stored in the arrays corresponding to i,u and
j,vo Let a and b represent the polynomials stored in the ar-
rays correspondingto I and J respectively, Let c be the

common factor,

The common factor c¢ is removed and a' and b' are stored in

arrays corresponding to I and J in respective order,

integer i, j, u, v;
array I, J;
integer L, M;
integer m, r, s, t;
array E[O0:L[i, u] + M[j, v], 1:2], F[0:L[i, u] + M[j, v], 1:2],
G[o:L[i, u] + M[j, v], 1:2], H[0:L[i, u] + M[j, v], 1:2],
m:= L[i,u];
s:= M[j, v] ;

if m> s then go to HI;



Hl:

for t:= 0 step 1 until m do

E[t, 1] :=1[i, u, t, 1];
Eft, 2] :=1[i, u, t, 2] ;
end ;

for t:= 0 step 1 until s do

F[t, 1]:= J[ i, v, t, 1];
Flt, 2] :=J[j, v, t, 2];
end ;
goto HZ;

for t:= 0 step 1 until m do

begin
F[t, 1] :=1I[i, u, t, 1];
Flt, 2] := I[i, u, t, 2] ;
end ;
s:= m ;
m:= M[ j, v];

for t:= 0 step 1 until m do

begin
E[t, 1]:=J3[j, v, t, 1];
E[t, 2] :=J[j, v, t, 2];

end ;
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comment: this procedure is based on Euclid's algortihm for
finding common factors. Let a and b represent the two
given polynomials; also let r[i] and g[i] be polynomials. As-

sume the degree of the polynomial a is less than that of b.

b = a.q[1] + r[1] (1)
a = r[1] q[2] + r[2] (2)
r[1] = r[2] q[3] +r[3] (3)
r[n-1] = r[n] gq[n+1] + r[n+1] (n)
r[n] = r[n+1] gq[n+2] (n+1)

r[n+1] is the common divisor of a and b. The condition
that the degree of the polynomial represented by a be less
than that of the polynomial represented by b is satisfied by
the if statements above. The following statements carry out
the steps (1) through (nt1) stopping when the remainder
r[n+2] = 0 1is reached. These steps may be accomplished
recursively in the following manner. After step (1) denote
the polynomial a by the name b and the polynomial r[1]
by the name a., Divide the polynomial b by the polynomial
a giving the remainder r[2]. After step i which yields
the remainder r[i], denote r[i-1] by the name b and

r[i] Dby the name a. Carry out the division above. Note

that the actual parameters C and t are not used after



H2:

H3:
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the call in this case.
div (F, s, E, m, G, t, H, r) ;
if H[0, 1] = 0Av =0 then goto H3 ;

for t:= 0 step 1 until m do

F[t, 1] := E[t, 1] ;
F[t, 2] := E[t, 2] ;
end ;

for t:= 0 step 1 until r do

begin
Eft, 1]:=H[ t, 1] ;
E[t, 2] := H[t, 2] ;
end ;
s:=Im ;
m:=r ;
go to H2Z;

comment: the following procedures divide out the common
factors and correct the degree storage. On entrance through
the label H3 the common factor is stored in the array E;

for t:= 0 step 1 until s do

s:= L[i, u] ;

begin

Ft, 1] := I[i, u, t, 1] ;



F[t, 2] := I[i, u, t, 2];
end ;
div (F, s, E, m, G, r, H, t);

for t:= 0 step i until r do

I[i, u, t; 1] := G[t, 1] ;
I[i, u, t, 2] := G[t, 2]
end ;

L[i,u]:=1;
s:= M[j, v] ;

for t:= 0 step 1 until s do

begin
Flt, 1] := J[j, v, t, 1] ;
Flt, 2] := J[i, v, t, 2] ;
end ;

div (F, w, E, m, G, r, H, t);

for t:=0 step 1 until r do

begin
I[j, v, t, 1] := G[t, 1] ;
I, v, t, 2] := G[t, 2] ;
end ;
M[j, v] := 1 ;

end comfact ;
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procedure C.F. (a, b);

comment; this procedure removes the common factors from the
integers a and b. On entry to this procedure the integer cor-
responding to b is less than the integer corresponding to a. The

procedure is based on Euclid's algorithm. ;
integer a, b ;
begin

integer g, h, q, r;

g:=a;
h:=b ;
Hl: r:= (g-hx entier(g/h));

if r=0 then go to HZ2 ;

g:=h;
h:i=r;
goto HI;
H2: a:=a/h;
b:= b/h ;
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procedure Sylvester (A, B, m, s, r) results: (C, e) ;

comment: the procedure Sylvester is a recursive procedure for the
reduction of Sylvester's eliminant for the polynomials A and B.
The values for the formal parameters A and B are stored in the
arrays A[O:n, 1:2, O:r, 1:2] and B[O:mn, 1:2, 0:r, 1:2] respec-
tively. The values 0 ton for the first subscript refer to the coef-
ficients a; and bi for the polynomials A and B respectively.
The coefficients a; and bi are the quaqgtient of two polynomials.
The values 1 and 2 for the second subscript refer to the numera-
tor and denominator respectively of the rational polynomials a and
b. The values 0 to r for the third subscript refer to the coef-
ficients of the polynomials that are specified by the first two sub-
scripts. The values 1 and 2 for the fourth subscript refer to the
numerator or denominator respectively of the rational number that is
specified by the first three coefficients. The Sylvester's eliminant is
the product of all polynomials stored in the array C. The degree of
the polynomials whose coefficients are stored in the array C are
stored in the array e[0O:n, 1:2]. The values 0 to n for the
first subscript refer to the polynomials stored in the array C. The
values 1 and 2 for the second subscript refer to the numerator
and denominator respectively of the rational polynomial that is speci-
fied by the first subscript. The actual procedure is not included be-

cause of its excessive length.



APPENDIX C
EXAMPLE
We will compute a root of f(y), where
fy) = yP-24y° + 196y°-336y + 288.

Using the division algorithm, dividing f(y) by (y2+q) we get,

f(y) = Qly,qQ)y>+q) + P(q)y + R(q) .
Plq) = 24q-336,

and
R(q) = q2 -196q + 288 .

We can test Sylvester's eliminant Dq(P,R) to determine if the

polynomials P(q) and R(gq) have a common factor

-1 0 -196 288 0
o -1 0 -196 288
D (P,R)= 0 24 -336 0 0 (1)
0 0 24  -336 0
0 0 0 24 -336

From evaluation of (1) we get
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Dq(P,R) = -71884800 .

Dq(P,R) # 0, hence the polynomials P(q) and R(q) do not have a
common factor.

By expanding f(y) we get,

f(y) = cé(y-h)6+ c5(y—h)5 + c4(y-h)4+c3>(y-h)3:1-c2(y—h)2+cl(x-h)+co.

€y = h6 - 24h3 + 196h2 - 336h + 288.
5 2

¢, = 6h™ - 72h + 392h - 336.
4

c, = 15h™ - 72h + 196 .

C = 20h3 - 24,

3
2

c4 = 15h .

c5 = 6h.

66 =1

Using the division algorithm, dividing f(y) by ((y-h)2+ q) we get,
, 2
f(y) = Qlq,y,h) ({y-h) +q) + P (a,h) (y-h) + R(q, h) .
P (q,h) = 2 +
1 q, = qu - C3q Cl;

and
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2
= - _ + .
Rl(q:h) C6q + C4q Czq CO
-C6 c4 -c:2 CO 0
0 < €4 "% o
Dq(Pl’Rl): g -C, ) 0 0 (2)
0 g -c, c, 0
c
0 0 °5  C3 !
From (2) we get,
3 3. 3 3.
Dq(Pl’RI) = k'(h-l)'(h-z)'(h+3)-(h—2-21)-(h-2+21)
: . . . 1 5.
(h-1-2i)- (- 1424) (bt 1+1)- (b 1) (ht 5 - 5 1)
1 5, 1 i 1 i
(h+2+21)-(h+2+2 ) (h+2 -3 ).

Dq(Pl’Rl) is a polynomial in h that has a degree of 15. There-
fore, we can compute a real root a of Dq(Pl,Rl). If =1,

then

2
Pl(q,l) = 6q + 4q - 10,
and

3 2
Rl(q,l) = -q + 159 - 139q + 125.

Using the Euclidean algorithm to compute the common factor of
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Pl(q,l) and Rl(q’l)’ we get

9(-q +15q° - 139g+125) (-3q+47y(6q2+4q-10)/2+1360(-q+1x

(6q°+4q-10)/2

(-gt+1)(-3q-5) .

Hence (-g+1) is a common factor of Pl(q, 1) and Rl(q, 1). There-
fore Pl(l,l) = Rl(l,l) = 0, thus making vy = 1l*i roots of
f(y) =0.

If, when we computed a real root of Dq(Pl’Rl)’ we had

found that a =2, then

2
Pl(q,Z) = 12q - 136qg + 352,
and

3 2
Rl(q,Z) = -q + 60q - 292q+ 272.

Using the Euclidean algorithm to compute a common factor, we get

9(—q3+60q2—292q+27 2) (-3q+ 146)-(3q2—34q+88)+2600(q—4),

T

3q2-34q+88 (3q-22)-(q-4) .

Hence q-4 1is the common factor of Pl(q, 2) and Rl(q, 2).
Therefore P1(4, 2) = R1(4, 2) = 0, thus making y = 2+2i roots
of f(y) =0. If wefind = -3 for a root of Dq(Pl’Rl) =0,

then
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2
-18q + 564q - 3618,

1

Pl(q! _3)
3 2
R (q, -3) = -q + 13597 -1627q + 4437 .

Using the Euclidean algorithm to compute the common factor of

Pl(q, -3) and Rl(q, -3), we get
3 2 2
9(-q~ + 135q -1627q+4437) = (9q-933)-(-18q +546q-3618)/2
+ (q-9))- (147570) ,

(-18q2+564q-3618)/2 = (q-9)° (-9g+201) .

Hence q-9 is a common factor of Pl(q’ -3) and Rl(q, -3).

Therefore P1(9, -3) :R1(9, -3) = 0, thus making vy= -3*i3 roots

of f(y)=0.





