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CONSTRUCTIVE METHODS FOR T'INDING A ROOT
OF CERTAIN ALGEBRA]C EQUATIONS

WITH REAL COEFFICIENTS

CHAPTER I

INTRODUCTION

There have been many rnethods invented for cornputing the

solution of algebraic equations. None of these rnethods however,

are best suited for use with all algebraic equations. The engineer

or the rnathernatician that is confronted with the task of cornputing

an approxirnate root of a set of algebraic equations must take into

account several factors before he can decide which rnethod for solu-

tion of algebraic equations he should use. Sorne of the factors that

he rnust consider are; the nature of the coefficients (real or corrr-

plex), the degree of the equations that are to be solved, the accura-

cy of approxirnation that is required, etc.

A new rnethod for solution of algebraic equations with real

coefficients is developed in Chapters II and III. In Chapter II, a

rnethod is developed for cornputing an approxirnate root of an alge-

braic equation with real coefficients and a degree that is 2,4,6,L0,14,

or any positive odd integer. The restrictions on the degree rnay be

partially lifted with the use of the rnethod that was developed for

Chapter III. This is a heuristic method that is designed to cornpute



an approxirnate root of an algebraic equation with real coefficients

and a degree that is any positive integer.



CHAPTER II

METHOD I

Method I rnay be used to cornpute at least one cofirplex root of

any algebraic equation that has, I) real coefficients, and 2l a degree

of n, where n = 2,4,6,LA,14, or any positive odd integer.

Case I: 1et

where n = 2 or any positive odd integer.

(i) If n is any positive odd integer, and the

a.rs are real, then a real value a for
1

x can be cornputed such that f(o) = 9.

(ii) If r, = 2, and the a.rs are cornplex, then

two cornplex value" Pt and PZ can be

cornputed such that f (pI) = t (9Zl = 0.

Standard procedures for cornputing the values a, pI and

PZ can be found in any standard nurnerical analysis text (2).

Case II: let

n

f(x) = f "i*i,
i=0



The a.rs are real; a I 0. rt = 4,6, 10 , or !4.
I n'

Although the case n = 4 has a classical history, it is in-

cluded because it yields interesting results when the rnethod that is

developed for Chapter II is applied to it.

To begin the cornputation of roots of f (x) = Q, consider the

following theorern.

Theorern I: if

where n is even, and the division algorithrn is used to divide
)

f(*) by (x-+ q), thus giving

n

f(*) = f "r*t
i=0

n

f(*) = I"i*i,
i=0

f(*) = Q(x, q)(*2+q)+P(q)x+R(q),

then 
L'z- n'3

P(q) = ar-arq*a 
5qZ- 

...+(-t) 2 arr-re ' ,

andnn

R(q) = ao-arata4qz- .. .+(- l) ' ^n,

Proof: if n=2, then



f ,(xl = u r(*z+q)*arx*(ao-arc)

f ,lxl = ^r*Z+^rg*a,x+a o-^zn

f.r(x) = azxz+al*tro

Suppose that k is any positive integer such that the follow-

ing staternent is true :

fu(x) = Q*(x, q11-z+q1+Po(e)x+Ru(c) ,

where k
\--

f, (x) = ) ".*i ,KL1"
i=0

k-z k-z
eo(e) = "r -are*" . +(- I)Zk- ,J ,

andEE
no(t) = ao-ara+' ' '+(- t1z ^ulz (I)

Then, by letting n = k*Z tn Theorern I, we obtain the following

staternent :

ft *r(*) = Qk* r(x, 9)1*z+q1+e112(t)x+Ru*r(e),

k+z
.\-if. , -(x) -- ) a.x ,r<f 4 /-J I

i=0

where



}E
Pu*r(e) = Pu(c)+( -tlz^urrtz ,

and k+z kJz

Ru*r(e) = Rk(q)+(-1)' ^urr,

ft*z(-) = "k+r*k*'*ro+r*k* 
l+ro(x) . (3)

From (3), it follows that

ft *z(*) = "k+ ,*ur'*^o+ rx '*"**rn*u*ro* rn*k- 
t

k k-r-rk+29- -"k+19* +tu(x) .

(z)

Using staternent (l), we will show that statement (2) is a true state-

rnent,

By definition,

(41

By factorrng (4) we get,

ft *r(*) = ("k+r*k*"o*r*o-'11xz+q)+fu(x)

. k k-1.-q(ak+z* *"k+I* ) .

The quantity {"U*r*k+"t+t*k-I) is a polynornial that has a degree

of k and the coefficients a. (i = 0.. .k) are all zero. Hence,

we can use (1) to get,

(6)



k-z k-2

{"o*r*k+"t+t*k-t) = Q(*' q11*z+q1+(-I) 2 
"o*rF -

E!
+ 1-t)zaur2e,z (7)

Substituting the results of (l) and (7) into (5), we get

ft *a(-) = ("k*r*o*ru*,*u-'11*2+q1+eo(x, 9)(*2+q)

)
+ Pu( e)x+Rk(q)+q[O(x, q) (x-+q)

k-z k-z E E

-(-l) ' ^urr,r' x-(-I)z"t* ,r'l . (8)

Sirnplifying (8), we get

ft *r(*) = [(rt+r*k*ru* r*u-')+Qu(x, q)+qQ(x, e)J (*2+q)

5Ek+zw
)77?

+ (- l)-ar+ re'x+Pu(q)x+(- 1) ,k+ze - +Ro(o). (9)

Let

Qu* r(e, h) = [("t+ r*o*ru* ,*u- 
t 
)+Qt(*, q)+qQ(x, q)] ,

then it follows frorn (9) that



,t5
tu* z(-) = Qk* r(e, h)(x-+q)+(( - t ) - at+ 

r c- +Po(e))x

k+z k+z

+ (-t) z 
"k+ze 

z +nu(c) .

Thus the induction principle assures us that Theorern I is true

f or all value s f or n where n is an even positive

integer.

We use the division algorithrn, dividing f(-) by *Z+q, to

get 1

f (*) = Q(x, q)(*2+q) + P(q)x+ R(q) .

From Theorern I, polynornials P(q) and R(q) can be expressed

in terrns of the ,i'" and q. Computation of a value p for q

such that P(P) = R(9) = 0 is the next task to cornplete. If

P(P) = R(P) = O, then x = x * \t-P are roots of f(x) = O.

Before beginning the cornputation of a value p for q such

that P(P) = R(P) = 0, the existence of such a p rnust be made

certain. There are two possibilities for the existence of a value

p for q such that P(p ) = R(p ) = 0, t) p(q) and R(q) have

a cornrnon factor H(q), where the degree of H(q) > l, or

2) either P(q) or R(q) vanishes identically. A test to deter-

rni.ne if a value p for q exists, such that l) or Zl is

satisfied, can be constructed with the support of Theorern II.



Theorern II: the necessary and sufficient condition that P(q) and

R(q) have a cornrnon factor H(q), where the degree of H(q)> l,

is that D (P,R) = 0, D (P,R) being Sylvester's elirninant for theqq
polynornials P(q) and R(q) .

Proof : the proof of Theorern II can be found in any standard theory

of equations text ( i ).

The following exarnple illustrates how Sylvesterrs elirninant is

f orrned: let

The division algorithrn is used, dividing f(*) by *Z + q. to get:

f (*) = Q(x, q)(*2+q) + P(q)x + R(q).

It follows frorn Theorern I that

P(q) = ^5nZ - a3q + al ,

and

R(q) = -^693 + a4q? - ^zn* "o

6

r(-) = ) ".*t
i=0



IO

D (P,R1 =q

-a6 ^4 -aZ "O 0

0 -a6 ^+ -aZ "0

^5 -a3 "l 0 0

0 "5 -a3 "I 0

0 0 ^5 -a3 ,l

It follows frorn the above exarnple that if P(q) or R(q) vanishes

identically, then ,O(O, R) = 0. It is noted that R(q) cannot van-

ish identically if ^el 0. Now that a test is established for deter-

rnining the existence of p, we rrrayproceed to cornpute a value for

p.

Theorern III: if ,n(",R) = 0, and n = 6 or 4, then a value B

for q can be cornputed such that P(P) = R(p) = 0.

Proof : frorn Theorern II, polynornials P(q) and R(q) have a

cornrnon factor H(q). This cornrnon factor can be cornputed by

using the Euclidean Algorithrn (4).

By repeated use of the division algorithrn, the following sequence of

equations is obtained:



I1

R (q)

P (q)

" 
(q)

= Q(q)P(q) + "(q) ,

= $(e), (q) + rr(e) ,

= $(c)r1(t) + rr(nl ,

deg r(q) <

deg r r(t)<
aeg rr(e) <

deg P(q),

deg r(q) ,

deg rr(e) ,

ro_r(e) = 9.(q)t_r(e)+ru(t) , dug ilq) < d.g ro_r(r)

The recurrence forrnula rnay be repeated until the absolute value of

all of the coefficients of rU- r(t) are less than a srnall tolerance

.l Hence it follows that rU_r(e) is an approxirnate factor of

p(q) and R(q). The polynornials Q(q), ar(e), Qr(a),. . . Qrr(e),

r(q), ,r(e) , rr(a), " ' ro(9) can easily be cornputed by the usual

process of long division of polynornials.

Once the cornmon factor H(q) of P(q) and R(q) has

been approxirnated by rU_r(e), a value for p for q can be

cornputed such that rO-,(P) = 0. If n -- 4 ot 5, then by Theorern

I, the degree of R(q) is 2 or 3 respectively. Hence, the degree

of rO_r(e) < 3 Therefore Case I can be referenced to cornpute a

cornplexvalue p suchthat "t_t(9)=0. If ,t_t(P)=0, then

P(p) = R(p) = 0.

Corollary I: if ,n(r,R) = 0, and n = 4 or 6, then

x = +V-g



LZ

are roots of f(x) = Q.

Proof : the proof of Corollary I folIorn,s imrnediately frorn Theorern III.

lf however, D_(P ,Rl + O, then f(-) can be expressed as
q

follows:

1

f -(h)
c. = 

-

r i!

We use the division algorithrn, dividing f(x) by *2+q. to get:

?
f (x) = Qr(x, q, h)((x-h)-+q)+pr(C, h)(x-h)+Rr(e, h).

Frorn Theorern I, polynornials Pr(t,h) and Rr(t,h) can be ex-

pressed in terrns of the c.rs and q.

n-Z n-Z

Pr(e, h) = ct-ca9rcu qz - .. . (- l) z .rr- le 
2

n-Z n-Z n n

Rt(q,h) = co -crr*cna'- "'(-r)' .n-zq z +p\2 "n&

The following deterrninant is an exarrlple of Sylvesterrs elirninant for

the polynornials P, (t, h) and R 
, 
(e, h) when n = 5:

n

f(*) =tc.(x-h)ii
lJ1
i=0
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D (P,,R,)=
qlr

-c5 "4 -cZ .O 0

O -"6 .4 -cZ "0

"5 -ca .l 0 0

0 c5 -ca .I 0

0 0 .5 -ca "I

To begin cornputation of an approxirnate cornplex root of f (x) = 6,

consid.er Theorern IV.

Theorern IV: if tt = 4, 5, 10, or 14, then a cornplex value a

for h can be computed such that Dq(Pl,Rl) = 0, and a cornplex

value p for q canbecornputedsuchthat Pl(p,a)=Rr(F,c) =0.

Proof : frorn the fact that the "it" are polynornials in h, it fol-

lows that ,O(rl, R1) is a polynornial in h. The degree with

respect to h of ,n("l,Rl) is defined in terrns of n by

Theorern V.

Theorern V: if

and

n-Z n-Z

Pr(c,h) = "t-cre * "ur'- "'(-l) ' "n-rr' ,

n-? n-Z n n

Rr (c, h) = .0 - "za + c 4qz (il 2 
"n-za' *Frl' "n' ,

where



t4

"nl o, h+0,

with respect to h

Proof : consider

degree of h.

Lernrna 2:

f(*) =

and n isapositive

of ,O(OI,Rt) is

even integer, then the degree

n(n- t )
z

n-l

c.(h) that contains the highest

- l, then

, T.=(-r1l*t:-'l
J

= t l -23(h)'

\-i
)a.x,/-r

i=0

-l

f-(h)
a= t

1 1:

Proof : the proof of Theorern V depends on the following lernrnas.

Lernrna I: the degree of

the terrn

c. (h)
I

H
C1

1S

of

(1)" n'-'1n

if row (k) represents the .thk row ot

H.=
c1

Since ^n# O, it follows that the degree of n-I .

D (P.,R.),qlr
then

row (k) = (T ll-z'a z\!.-4' ' 'tj^, -z,j' 
" 

' Tr- t\!.-zn+zl'
), and I being defined as below.

Proof :

C. 1S
1

n17
<k

If k isapositiveinteger 0<k

!.=ntZk, T.=0 when *+f.aj')Z

when 3*o< j <k, and *r_rj

(i)
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n
z

n
z,l'u

k-l

-5(0,...0,+c , *cn 'n-Z'

-k-l

row (k) =

(ii)

Lernrna 3: If h /0,

deterrninant such that

degree with respect to

Proof: frorn Lernrna

( n- l, then I
n;+J

(-I)" when

1-nr\-2

row (k) = (0, "'0, + c ,,

n-k- I

, -c3, "r, 6AG ).

J. =
)

T.
)

n
z

*c -r...n-J

then. D (P,, Rl) can be expressed as aql

the elernents in a colurnn all have the same

h.

z,

Let

I,

Let

row(k) = (Ttt"e_z, ,tj^,_zj, '',Tr_trr_zn+z)

be the degree with respect to of * , _aj. Frorn Lernrna

n-!. + Zj.

row (k) {rrlrrr L_2, 
'',hl, j*,_rj,

0

' h- Trr- 
ttr I - zn+z)

I
=-

h!

The degree with re spect to h of n' ,r, 
_ ttr "e 

_ Zn*Z is n * 2i

The degree of nnr 
r^ r_r, with respect to h is not dependent

on k. Therefore Lernrna 3 is proved.

.--" ' -cZ, co, '0" ' 0).

= Zk*L,

k> >k

-0

t

when k<j<k-

and *, -,i= t L-zi{t'l '



,n(Ol,Rl) is a deterrninant

evaluating a deterrninant apply.

surn of products of the elernents

sider Lernrna 4.

16

and therefore, the rules for

(Pl, RI) rnay be reduced to the

,O(O 
t , 

R 
t ). With this idea, con-

D

of

Lernrna 4: the degree with respect to h of ,O(Ol,Rl) cannot

be greater than ] t"- f t

Proof : frorn Lernrna 3 and the rules for evaluating a deterrninant,

the terrns of the reduced determinant Dq(Pl, RI) all have the sarne

degree with respect to h. Therefore, the degree with respect to

h of D (P,,Rl) cannot be greater than the degree of any one terrnqr
of the reduced deterrninant ,n("1, Rl). A convenient term of the

reduced deterrninant of ,O("1, Rl) is the product of the elernents

on the diagonal of the deterrninant of ,n(Ot, Rl). This terrn rnay

be expressed as follows:

i- t

II(#^,)
n-1

TT
-no=z

h
h

hof

1) is

^r)
I

1

+

+

ZK

zk
( r l)

Frorn Lernrna 1, the degree with respect to

is 0 and n- I respectively. Thus 2t^-
degree with respect to h of ,n("1, R t).

trr, and \t

the rnaximurrr



L7

Lernrna 5: the degree with respect to h of ,O(" 
I , 

R 
I ) cannot be

, n(n- l)less than 

-- 

.

Proof : in the proof of Lernrna 3 and 4, it has been established that

,O(Ol,Rl) rnay be reduced to the surn of terrns that all have the

sarne degree with respect to h. From Lernma 4, the rnaxifirurrr

degree with respect to h of these terms is -n(n- I)T. Consider

n(n- 1)

the terrn H'h 2 *hich is the terrn of highest degree of

D (P,,R,) unless H = 0. To further define H, we introduce
qll

the following equation:

J(h) - a (l+h)n
n

The division algorithrn rnay be used to get:

J(h) = ej(q,h)(hZ+q) + pj(q)h + nr(r) .

F.rorn Theorern I,

n-Z n-Z
p.(q) = ,,,t(f)-titr+tiluz -"'(-r) ' ,,,1rtq,z ) ,

and n-z n n

R.(q) = ",,((f,)-tile+ 
(;)q -.-.(- t)z \l)q+ (-r f titr' t. rz)

Frorn Lernrna l,

H . = (1)" nt-'cl 1 n
(r3)



IB

It follows frorn (12), (13), and the definition of Sylvesterrs elirninant

for the polynornials er(U) and nr(C), that the terrn

n(n-l) *(r,_r)
D(P.,R.)."t-I .h 2 - H.hz 

-'
qJ)n

For exarnple: let tr = 4, then

J(h) = an( l+h)4

F rorn ( 12),

p. (h) = ^nttlt - rlrrr,

and

R.(h) = ^nttf,i - tlte tf,iet.

Hence,

D (P.,R.1=q))

L/,A
()) an -()l an (o) an

44-(jl an (i) an o

-tlt^n tlt^n

The terrn of highest degree with respect to h of ,n("l,RI) is:

H.4

-H.
CJ

0

-H"z

HcI

H.o

0

-H"3 H" l

fl=



I9

F rorn ( I3),

H-

By reducing H, we get:

Hence,

rf,i^

L
-(r)air

0

- tlt ^r,

tlt , r.

A.

-(r)ar,

rfir , i,

0

tfl"r,

H - 
^'n 

- ,1, . ,n)' .n6r^tn. ,t'. tf rr,6 -^tn. ,1, rlr tll r,

3H = ^4 
'Dq(P.,R,)h.

If D- (P,, R.) = 0, then frorn Corollary I, hZrq, is a factor ofq)J
a (I+h)n. Hence,

n

hz*q = ttz+zn+t .

This is a contradiction. Thus ,O("j ,R jl + 0, and by definition

^nl 0. Therefore, the degree with respect to h of ,O(Ol, Rt)

cannot be less than ry
Lernrna 4 states that the degree with respect to h of

,n(ol,Rl) cannot be greater than ry and Lernrna 5 states

that the degree with respect to h of ,O("1, Rl) cannot be less

than I Therefore, the degree with respect to h of



z0

D (P, , R, ) must be exactly n(n- l)
- q'- I',--I', ' z

'We will continue with the proof of Theorern IV by considering

each value for n separately.

(i) If n -- 6, then from Theorern V, the degree with respect

to h of ,n(OI,Rl) is 15. Therefore, Caselcan

be referenced to cornpute a real value o for h such

that Dq(Pt,RI) = 0. If Dq(Pl,Rl) = 0, then Theorern

III can be referenced with Pr(t, o) as P(q) and

Rr(e , a) as R(q) to compute a cornplex value p for

q such that Pl(p ,a) = RI(p ,al -- O. Hence x = o+V-P

are roots of f(x) = g.

(ii) If n = 4, then frorn Theorern V, the degree with re-

spect to h of Dq(P 
I , 

R 
I 
) is 6. Theref ore, (i) of

Theorern IV can be used to cornpute a cornplex value a

for h suchthat ,O(OI,Rl)=0. Let

a = ar+ {-B

Frorn Theorern I, the degree with respect to q of

R(q, a) is 2. Hence, Case I can be referenced to corn-

pute two values +l and +Z for q such that

Rt(0t,al = R'(QZ,o) = 0. If oo("I,Rl) = 0, then either



ZL

Pt(+r,o) = *r(Q,,a) = 0 or P,(Qz,al = *t(dz,o) = 0.

Hence a cornplex value p for q can be cornputed

such that Pl(p , ol -- Rl(p , al = O, thus making

x = o *(-p roots of f (*) = 0.

(iii) If n = l0 or L4, then frorn Theorern V the degree with

respect to h of Dq(Pl,Rl) is 45 or 9L respec-

tively. Therefore Case I can be referenced to cornpute a

realvalue a. suchthat ,n("l,Rl) = 0. Hence, frorn

Theorern II, PO(q, o) and R(q, o) have a corrrrrlon

factor H(q, o). An approxirnation of this cornrnon factor

can be cornputed by using the Euclidean algorithrn as

described in the proof of Theorern III. If n = l0 or L4,

frorn Theorern I the degree with respect to q of

R-(q, o) is 5 or 7. Hence the degree with respect to
q

q of H(q, o) < 7. If the degree with respect to q of

H(q, o) is I,2,3,5, or 7 then Case I can be refer-

enced to cornpute a cornplex value p for q such that

Rl(p ,al = PI(p ,al = 0. If the degree of H(q, o) is 4

or 6, then (i) or (ii) of Theorern IV rnay be refer-

enced to cornpute a cornplex value p for q such that

H(F, o) = 0. This yields x = a+{-P as roots of

f(x) = g.



??

CI{APTER III

METHOD II

Method II is offered as a heuristic rnethod for cornputing a

cornplex root of an algebraic equation with real coefficients.

Case I of Method I rnay be referenced to cornpute a real root

of any algebraic equation that has an odd degree and real coefficients.

Hence, only algebraic equations that have an even degree and real

coefficients will be considered. Let

where the ?.ts are real, and n is a positive even integer. As
1

in Method I, the division algorithrn is used, dividing f(x) by

zx +q to get:

f (x) = Q(*, q)(*2+q)+P(q)x+R(q) .

Frorn Theorern I, the polynornials P(q) and R(q) rnay be ex-

pressed in terrns of the "i' " and q

n-2 n-Z

P(q) = ,l-ar9*aug '(-l)' ^n-rr'
n-2 n-? n n

R(q) = ar-ara*^n'-. .-.t-t)z 
^n_z9z rl-t)z 

"naz

n

f(x) = )".*t ,

i=0
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lf the Sylvesterrs elirninant Dq(P, R) for the polynornials P(q)

and R(q) is zero, then frorn Theorern II, the polynomials P(q)

and R(q) have a common factor H(q). The assurnption of the

heuristic is that H(q) is linear with respect to q. The Euclidean

Algorithrn as described in the proof of Theorern III rnay be used to

cornpute an approxirnation rU_ 
, 
(e) of H(q). rU_ 

, 
(e) is linear;

hence, a real value o can be cornputed such that rO_r(o) = 0,

thus rnaking x = *{-c approxirnate roots of f(x) = 6.

If D-(P, R) 10, then f(x) rnay be expressed as follows:
q

where

The division algorithm rnay be used, dividing f(-) by (x-tr)2+q

to get,

n

f(x) = tc.(*-h)i ,
Lrl

i=0

ri(r,)
a='i i!

)
f(*) = QI(x, q,h)((x-h)"+q)+Pr(e,h)(x-h)+Rr(o,h).

Frorn Theorern I, the polynornials Pr(t,h) and Rr(t,h) rnay be

expressed in terrns of the c.ts and q.
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rL-Z n-Z

Pr(c,h) = "I-cug*cug '(-I) ' "rr-ro
n-Z n-? n n

Rr(t,h) = "0-crn*cna '(-l) ' .n-zqz +(-1)'.n'

To cornpute an approxirnate root of f(x) = Q, we rnust cornpute a

value a for h and a value p for q such that Pr(P, o) =

Rl(p, a) = 0. Consider the following theorern:

Theorern VI: the necessary and sufficient condition that Pr(t,tr)

and R,(e, tr) have a corrrlnon factor H(q), where the degree of

H(q) > I, and I is a cornplex nurnber, is that Dq(PI, Rl) = 0.

,n(OI, Rl) is the Sylvesterrs elirninant for the cornplex polynornials

P, (e, L) and R, (t, tr) .

Proof: the proof of Theorern VI is equivalent to the proof of Theorern

II.

Lernrna 6: if a cornplex value t for h is cornputed such that

,O("r, R, ) = 0, then a cornplex value p for q can be cornputed

such that Pt(P, tr) = RI(P,tr) = 0.

Proof: if Dq(Pl,Rl)=0, thenfrorn TheorernVI, thepoly-

nornials P, (e, L) and R, (e, tr) have a cornrrron factor H(q).

The Euclidean algorithrn as described in the proof of Theorern III

rnay be used to cornpute an approxirnation rO_r(C) of H(q).
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A.ccording to the assumption of the heuristic, rU_r(t) is linear;

hence, a complex value p for q can be cornputed such that

"t _t(P ) = 0. Therefore, H(9) = 0; thus rnaking PI(p,t) =R,(P,L) = O.

The Sylvesterts elirninant ,O(O1,Rl) is a polynomial in

h with real coefficients. If the degree of Dq(Pl, Rl) with re-

spect to h is odd, then a real value a for h can be cornputed

such that Dq(Pl, Rl) = 0. Hence, we will assume that the degree

of ,o("r,*r) with respect to h is even. Consider treating the

polynornial Dq(PI, Rl) as a new problern and applying the sarrre

seguence of steps to it as was applied to f(x). Using the Euclidean

algorithrn, and dividing ,O(Or, *r) by ((h-hf )2*qt) we get,

,n(o t, R t) = Qr(h, ht, el )((h-ht )z +qt)+Pz(qt, ht )(h-h, )+Rr(rr, hI ) .

It follows f rorn Lernrna 6, t}rat if a cornplex root of D (P., R.) = 0qII

can be cornputed.

Thus the following sequence of equations is suggested:

o

0can be cornputed, then a cornplex root of f(x) =

f(x) =

D (P,,R.)qlr

'n(tr'*r)

Q, (x, h, q)((x-h1z+q1+e, (q, h)(x-h) + R, (9, h) ,

Qz(h,trr, s)((h-hr)2+qr)+Pz(qr, hI)(h-hr)+Rz(qr, hl),

Q3(hr,hz,c2)((h, -t',r)z +t)+Pr(e2, hz)(hr -hr)+Rr(e z,hzl,

,n("o- l,Rk- t) = at (ht -2,\- t,9k- l)((hk-z-ht- r)2+eu- r)

*Pr(qr_ r,hk_ /(\_z-\- r)+Ru(eo_ t,hk_ r) . (t+1
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From Theorern V, and the sequence of equations (14), the degree

with respect to nU_, of O'(OU,*U) is \, where

tt -t(tt-t-I)tk=
z

Theorern VII: if

n .(n .-1)p-r p-r

tI = zk-l!1 ,

n=
p

then

n = zk-P!. ,PP

where p < k, p and k are positive integers, and ,O is a

positive odd integer.

Proof : let

to = zk!,, (ts1

where ! O is a positive odd integer. If p = 1, then

nO(nO - 1)
,t = Z (16)

F rorn (15) and ( l6)

'r = ?k-",{'uLo-l) ,

thus
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where 1t is a positive odd integer. If P = k-1, and

tk-r = zlk-r 
'

where lt_t is a positive odd integer, then we shall prove that

'k=rk'

where lt is a positive odd integer. By definition,

tt-t(tt-t-t)

(i7)

( I8)n-=k z

Frorn (17) and (18),
?!to-t(2'k- 

r 
- 1)

n-=k

By sirnplifying (19) we get,

h in the sequence (I4) can be cornputed such that

Consider the following theorern:

,k = Ik_t(2lk-1-l)

tk=lk

Frorn Theorern VII, the degree with respect to h of O'(OO,*O)

is odd. Therefore, frorn Case I of Chapter II, a real value o for

(t9)

D (P,,R,)=0.
qKK

Theorern VIII: if in the s equence ( l4) D^ (P^ , R^ ) = 0, where
qSS
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] ) s ) k, then a complex value P 
"_t 

for gs_I can be cofil-

puted such that rn(O"_I,Rs_l) = 0.

Proof : let t be a cornplex value for h"_l such that

,n(O", R") = 0. Frorn Theorern VI, the polynornials P" (g" 
_ I, X)

and R (q ,, tr) have a cornmon factor H(q), which rnay be corn-
S -S-I

puted by the Euclidean algorithrn. According to the assurnption of the

heuristic this polynomial is assurned to be linear; hence, a value

P"_t for 9"_t canbecornputedsuchthat ff(9s_I)=0. If

H(Ps_I) = 0, then O"(P"-1,tr) = Rs(p"_r,).) = 0. If

Ps(p"_1,tr) = R"( 9s_1,}r) = O, then it follows frornthe sequence

(14) that the values L*{-Ps_t for h"_Z are complex roots of

'n(""-l'Rs-l) = o'

Frorn Theorern VIII, it follows that the cornplex values

x = a +{-9t_1 +{-pk-2 +.. . +"-P r +v-p

are complex roots of f(x) = Q, where c is a real root of

D (P,,R, ) = 0, o*{-Pu-t are corrrplex roots of
qKK

,O("O_ I, Rk_ ,) = 0, etc. through sequence ( l4).
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APPENDIX A

In Chapter II and III a rnethod for cornputing an approxirnate

root of an algebraic equation with real coefficients was developed.

To describe this rnethod in a forrn that is easily adapted to a corn-

puter program, the procedures are written in the ALGOL 60 language.

The procedures, Sylvester, ratrnult, rnult, comfact, and C.F.,

rnay be found in Appendix B. They are copied, with the exception of

a few rninor adjustments, frorn a thesis written by John Holroyd (3).

procedure cornroot(a, N, r) results: (b);

integer al"ray a;

integer N, ri

real array b;

begin cornrnent: the procedure cornroot will cornpute an approxirnate

cornplex root of the algebraic equation

f(v)=0,

where

the values for the forrnal pararneter a are stored in the

integer array a[ 0:N, IzZ]. The values i(i = 6, 1,. . . , N)

for the first subscript of the array a refer to the

f(y)= f "rrt.
i=0
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coefficient z. of yi. The coefficients a.(i = 0, l,' ' ' , N)
1-1'

are rational nurnbers and are stored as ordered pairs of

integers. The values I and Z for the second subscript

refer to the numerator and denorninator respectively of the

coefficient specified by the value of the first subscript. N

contains the degree of the polynomial f(y). The forrnal

pararneter b stands for an approxirnate cornplex root of

f (y) = O. The values for b are stored in the integer array

b[ 1:2] . The values I and Z f.or the subscript of the

array b refer to the real and irnaginary part respectively

of the cornplex root. The integer r is .k_ I in Theorern

VII of Chapter III. ;

integer NS, i, k, rn, s, t, ss1, ss2, ss3, ss4;

integer array IllIt:2], tt?lt:Zl, Il3[l:2], rsIt:z], ssIt:4]

121[0:r, l:Z] , I?ZlO:r, lzZ), as[0:rX ft-ll/2, l:2) ,

c[0:rX(r- tl/2,0:r t1(r -Il/2, r:Z], P[0:k-zl/z,t:2, 0:r-t , t:Z)

xlo:r/2, 122, 0:r, l:Zf , PSIl:N, 0:(r-?)/2, 0:r-l , l:Zf ,

RSII:N, O:r/2, 0:r, l:2) , S[ 0:r , liZ, rX(r- ll/2, l:Z] ;

array Tlt[t:21 , T12[t;Zf , T2I[0:r, t:Zf , T22lo:r, I:Z];

real eps;

switch return,

for i:=0 !.!g!

for k;= I steP

stop, bl, b2, b3;

until N doI

T until 2 do
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as[i, k] : = a[], t<] ;

NS:= N ;

for i:= I step I until 4 do

ss[i] := I ;

eps: .0000001 ;

St: ! (NS-entier(NS/zll I o then

begin comment: the degree of f(V) is odd. Hence we can

refer to Case I(i) of Chapter II to cornpute a real root

of f(Y) = 0. ;

realroot (ups, f , as, NS) results: (Il I ) ;

b[I] := 11lll)/ iltlzl ;

b[2] := 0 ;

ssl:= ss[ t] ;

gg to return (ss[l] ) ;

end ;

if NS=Z then

begin comrnent: the degree of f(y) is Z. Hence we can

refer to Case l(ii) of Chapter l[ to cornpute a cornplex

root of f(y) = 0. ;

!g.r i:= 0 qtep I until Z do

besin Tzl[i, 1] := as[i, I]/ as[i, z] ;

Tzt[i, t]:= 0;

end i;

case ii (TZl) results: (b, Tl?l;
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-go to return (ss[I] ) ;

end ;

lf NS > 16 then -p. to M?;

cornrnent: forrn D (P, R) ;

for i:=0 step I until (NS-2)/2 do

begin for k3=l steP 1 until 2 do

P[0, l, i, k] := as[ZXi-I, kJ X(- I ) t i;

c. F. (P[0, l, i, 1] , P[o , t , i, 2) l;

end k;

for i:=0 step 1 until NS/z ao

begin for k:= I step I until 2 do

R[0, l, i, kJ := as[ 21i, k] X(- t) I i;

c.r'.(R[o,t,i, lJ, R[o,t,i,zf ;

end k;

i:= 0;

k:= 0;

fn:= 1;

Sylvester (R, P, i, k, rn) results: (S, l2ll,

ff (s[0, t, o, l] x s[0,?,o,zl I + 0 then gg to cl;

cornrnentS D_(P,R1 = 9, hence we will cornpute the cornrnon
q

factor of P(q) and R(q) and then cornpute an approxirnate

root of the cornrnon factor, ;

I2l[0, l] := (NS -21/2;
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IzZlO,l] := NS/Z;

cornfact (R, 0, l, IZ2, P,0, l, IZI) results: (as, NS);

cornrnent: the cornmon factor of P and R is now in the

attay as and the degree of the colnrnon factor is in NS.

'We will set the return switches to bI and go back to the

start.;

ss[I] := 2;

s s[3] := 2;

ss[4] := 2;

ss2;= ss[2] ;

go to St;

bl: cornrnent: b contains an approxirnate cornplex root of the

corrrrnon factor of P(q) and R(q). Therefore

y={-b

is an approxirnate root of f(y) = 0. ;

for i:= I step I ""!il 2_&

b[i] ;= -b[iJ ;

csqrt (b) results: (b) ;

-p. to return (ss2) ;

Cl: lf NS = 8 then -p. to M2 else

!f NS = 12 then gg to M2;

cornrnent: Sylvesterrs elirninant for P(g) and R(q) is



35

not zero. Thereforewewill proceed with Theorern IV of

Chapter II;

cees (as, NS) results: (c) ;

forrn PR(c, NS) results: (P,R);

rn:= NS/Z;

s := (NS-21/2;

t := NSx(NS-1)/2;

Sylvester (R, P, rn, s, t) results: (S, I2ll;

for i:= 0 step I until NS-z do

rn:= i* l;

ratrnult (S, i, I2l, S, rn, I2l, S, rn, I2l);

rn:= NS-l;

cornfact (S, m, l,IZl, S, rn, 2,,IZl) results: (IZ?, k)

l, NS = 4 thu1L eo te C2;

cornrnent: the degree of Sylvesterrs elirninant for Pr(e,a)

and Rr(e, a) is odd. Hence we will cornpute an approxi-

rnate real root of ,n(Ol, Rl) = 0. ;

{or i:= 0 step I until I2l [m, l] do

for k;= 1 step I until 2 do

IZZfi,k] := S[.rr, I, i,k] ;

k:= IZt[rn, I] ;

realroot (ep", f.,IZZ,k) results: (rs);

cornrnent: rs contains an approxirnate real root of
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D (P.,R.)=0.;
qII

colTrrylent: we can now evaluate c.(rs) (i=0 ,l,' '. , N). ;

for i:=0 step I until NS do

begin for k:= 0 step I until Ns-i do

for rn:= I step I until Z do

I2I[k, rn] := c[i, k, rn] ;

rn:= N-i;

f.(IZI, rn, rs) results: (II l);

Iztli, ll := Ill[i] ;

]ztfi,zl ; ItI[2] ;

end i;

cornment: form Pr(g, rs) and Rr(e, rs);

for i3= 0 -"tup I until (NS-21/2 do

begin for k:= I "I".p I until ? do

P[0, t, i, k] := IZI [Zt(i-l,k] X(- t)l i;

c. F. (P[0, t, i, 1] , P[0, I ,i,?f l;

endi;

ic-r i;= 0 -st..P 1 until NS/z do

begin for k;= I steP I until Z do

R[0, t,i,kJ z= IZtIZ*i, k]X(-1)ti;

end i;

IZllO,l]:= NS/2;

Izzfo,ll:= (NS-2]7/Z;
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cornfact (R,0, l,IZl, P,0,L,IZ2l results: (as, NS);

cornrnent: the attay rr astr contains the cornrnon factor of

Pr(e, rs) and Rr(g, rs). We will now cornpute an approxi-

rnate cornplex root of the cornrnon factor. ;

cornrnent: set all switches to return to bZ;

ss[1] :=3 ;

ss[Z] := 3 ;

ss[4] := 3 ;

ss3:= ss[3] ;

go to st;

b2: cornrnent: b contains an approximate complex root of the

cornrnon factor of Pr(g, rs) and Rr(g, rs), hence

Y= rs+(-b

is an approxirnate root of f(y) = 0. ;

lgr i:= I step I until 2 do

b[i] := -b[i] ;

csqrt (b) results: (b) ;

b[l] := rs[I] /rslzl +b[l] ;

gc to return (ss3);

c?: cornrnent: D^(P,,Rr)10 and N=4;qII

cornrnent: save the coeff icients of R, (C, h);

for i:= 0 step I until Z do
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lof k:= 0 $=, I until 4-?Xi do

for m:= I "t"p I until Z do

RS[i, k, rrr] := R[i, I, k, rn] ;

cornrnent: we will cornpute an approxirnate root of

'o('t'RI) = o' ;

for i;= 0 "t*? I l]g!!1 6 do

for k:= I step I until 2 do

b"gf" rn:= NS-l;

as[i, k] := S[rrr, l, i, k] ;

end;

NS:= 6;

cornrnent: set the return switches to b3;

ss[I]:= 4

ssl?f := 4;

s s[3] := 4;

ss4:= ss[4];

go to st;

b3: cornrnent: b contains an approxirnate cornplex root of

D (P.,R.) = 0;qII

cornrnent: we can now evaluate P, (C, b) and R, (e, b);

for i:= 0 step I until Z do

begin for k:= 0 step I until 4-2Xi &

begin Tzt[k, t] := RS[i,k, t] /nS1i,k,zJ ;
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T21[k, Z] ;= 0;

end ;

rn:= 4-ZXi ;

cf.(T 2I , rn, b) results : (T I I );

TZrfi,I]:= TtlIl] i

TZLfi,Zl := TLllzl ;

end ;

for i:= 0 "t.J> I until 2 do

for k:= I step I until Z do

as[i,k] := TzLl?Xi, tJ X(-l)l i;

case ii (as) results: (T I I, T I2l;

rnz= Zi

cf (as, rn, TI l) results (T13);

if Tl3[l] < .000I then -p. to c5 else

if T 13[2] < . 0001 then gc to c5;

Trz[ I := TII[1] ;

T t2l2.l ;= T 1 t[2] ;

c5: Trzftl:= -TI2[1];

TLzlzl:= -Tt2[l] ;

c sqrt (T I 2) results : (T I 2);

u[t] := b[1] +rtzll;
b[z] ; = b[zl +T rzfz] ;

-re. to return (ss4);
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M2: cornrnent: the rnethod that was developed in Chapter II does

not apply. 'W e will try the rnethod that was developed in

Chapter III;

cornrnent: cornpute the nurnber of factors of 2 in N;

t:= 0 ;

M3: i:= NS-2x entier (NS/Z);

lf i:= 0 then

begin t:= t* I;

NS: = NS/ Z;

gg to M3;

end ;

NS:= N;

for i:= I step I until t do

begin cees (as, NS) results: (c);

f orrn PR(C, NS) results: (P, R)

cornfnent: we will save the coefficients in the arrays

P and R for later use. ;

{=r k:= 0 step 1 until (NS-Z)/Z do

for rn:= 0 step 1 until NS-zXk-l do

for s:= I _g!g3 I u+til 2 do

PS[i, k, rn, s] := P[k, l, rn, s] ;

for k:= 0 step I unti.l NS/Z do

for rn:= 0 step I until NS-2Xk do
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{o" ":= I step I until ? do

RS[i, k, rn, s] := R[k, I, rn, s] ;

rn:= NS/2;

s:= (NS -Z)/ Z;

k:= NSx(NS_Ll/Z;

cornrnent: we will forrn Sylvesterrs elirninant;

Sylvester (R, P, rn, s, k) results: (S, 12l);

lgr k:= 0 gtg.1l I until NS-Z do

begin rn:= k*I;

ratrnult (S, k, IZ l, S ,rtt,I2l, S, rn, IZL! ;

end ;

rn:= NS-l ;

comfact (S, rn, l,IZl, S, rn, 2,I21) results: (I22, k);

rn:= NSX(NS - t)/Z;

for k:= 0 step I until rn do

for s:= 1 step I until Z do

as[k,rn]:= s[rn, l,k,sJ ;

Il t[i] ;= NS ;

NS:= rn;

end;

cornrnent: from Theorern VII of Chapter III, the degree of

Sylvester's elirninant is odd. Therefore, we will cornpute

an approxirnate real root of Sylvesterts eliminant. ;
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realroot (eps, f , as, NS) results (II Z);

u[r] := Irzltl /nzlzl;
b[Z] := 0;

cornrnent: we can now proceed as in Theorern VIII of Chapter

III;

for i:= I step I until t do

begin s:= Il t[i] ;

for k:= 0 step I until ls-Zl/Z do

beginrn:=0 step I until s-zxk-l do

begin T2l[rn, I] := PS[i, k, rn, 1] /PS[i, k, rn, 2] ;

T2l[rn, Z) z=0;

end;

rrr:= s -?Xk-I ;

cf. (TZ I , rn, b) results: (T I2) ;

TzI[k, 1] := TrzlLl;

TZI[k, Zf := Tlzlz];

end;

for k:= 0 step I .untll s/Z do

begin for rn:= 0 step I "rrtil s-Zxk do

begin Tezfk,l]:=RS[i,k, rn, 1]/RS[i,k, rn,2] ;

TZzfk,Z) z= 0;

"^d;
rn:= s -ZXk;
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cf.(TZZ, m, b) results: (T I2);

TZZlk,I] := TI2[1] ;

Tzzlk,zf := Trzlzl ;

end ;

r',i= s/ z ;

k:= (s A)/ Z;

cornplex cf.(T22, rn, T2l , k) results z (T23);

rn[o, I] := -T23[0, l] ;

TZ3l0, ?f 2= -T?310,2) i

jc.r k:= I step I "t!il Z do

begin TIZ[k] := T23[0,k] ;

T l3[k] := T23ft, k] ;

end;

cdiv(TlZ,T l3) results: (TlZl;

T lz[k] := -T t 2[k] ;

csqrt(T12) results: T (l?l ;

for k:= I step I until Z do

b[k] := b[k] +rI2[k] ;

end i;

stop:

end cornroot;
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procedure cf (a, N, z) results: (b);

real arrays a, b; integer N;

cgrnrng4!: the procedure cf will evaluate a function f(V) with

cornplex coeff icients .

The values for the formal parameter a are stored in the array

a[O:n, l'.2] . The values 0 to N for the first subscript refer to

the:' coef,ficien, "i. The values I and 2 for the second subscript

refer to the real and imaginary part respectively of the coefficient a.

specified by the first subscript. The formal pararneter b stands

for the value of the function evaluated for the cornplex value z.

The value for b is stored in the array b[ I:2] . The value for z

is stored in the array zlt:Zl . The values I and Z for the sub-

script refer to the real and irnaginary part respectively of the arrays

b and z.

begin integer i, k, rn; real array TIt:2] ;

for i:= I step I until 2 do

u[t] := a[N, i] ;

{or i3= 0 step I until N- I dj>

begin crnult lb, ,l results: (T);

for k:= I step I until 2 do

b[k] := T[k] + a[;.,t<] ;

n

f(v) = r ,rrt
i=0
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end;

end;
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procedure cees (a,N) results: (c) ;

integer arSel a, c; integer N;

cornrnent: the procedure cees will cornpute

c.(h) (i = 0 to N) ,

where

c.(h) =+ '

and

the values for the forrnal pararneter a are stored in the array

a[0:N, l:Z] . The values 0 to N for the first subscript refer to the

coefficient d. of hi. Each coefficient specified by the first sub-
1

script is expressed as the quotient of two integers. The values I

and Z for the second subscript refer to the nurnerator and denorni-

nator respectively of this quotient. The values for the forrnal pararrr

eter c are stored in the atray c[O:N, 0:N, lzz) . The values 0

to N for the first subscript refer to the polynornial c.(h). The

values 0 to N for the second subscript refer to the coefficients of

the polynornial in h denoted by the first subscript. The values I

and Z for the third subscript refer to the nurnerator and denorni-

nator respectively of the coefficients referred to by subscripts one

and two. ;

r(h) = ) "rnt
i=0
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begin integer i, k; integer array P[0:N, 0:N] ;

P[0,0] := 1;

p[ t, o] := r;

p[I, t] := t;

for k3= 2 step I until N do

for i:= 2 step I until k-Z do

P[k, i] := P[k- t, i- I] + P[k- t, i] ;

for k:= 0 step I until N do

!r i:= 0 step I until N-k 1!o

begin c[k, i, I] := P[i,k]Xa[N-t, I] ;

c[k, i, 2] := a[N- i,2] ;

C. F. (c[k, i, I] , c[k, i, z] )

end ;

end cees
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procedure realroot ("ps, f , a, N) re sults : (b);

real eps;

integer lEil- a, b;

real procedure f.;

integer N;

cornrnent: the procedure realroot will cornpute an approxirnate real

root of the equation

f(zl = Q,

where

The values for the forrnal pararneter a are stored in the integer

ar:ray a[0:N, l:2] . The values i(i= 0, I,' . ' N) for the first sub-

script of the array a refer to the coefficient a. of ,i. The co-
1

efficients a. are rational nurnbers and are stored as ordered pairs
1

of integers. The values I and Z for the second subscript refer to

the nurnerator and denorninator respectively of the coefficient speci-

fied by the first subscript. The forrnal parameter b stands for the

approxirnate root of f(z) = 9. The value for b is stored in the inte-

ger array U[t:2] . The values I and Z for the first subscript of

the array b. refer to the numerator and denorninator respectively.

The approxirnate root b rnust be accurate within the given toler-

ance eps.;

n

f(zl= ) "r,t.
i=0
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begin integer ar:.ay Fz0[I:Zf , FztIt:2] ,

:;'z2lr:Zl , tzlt:zl , ,ol.r:zl , rzlltt?,]

ideger i, k, m ;

z0[l] i= 0;
zlIt]:= I ;

zlf}l := I i

f(a, N, z0) results: (Fz0) ;

for i;= I step I until 5 do

begin for k:= I step I until ? do

begin f(a,N,Zl) results: (Fzt);

!f (F.z0[ l/rzolzl ) (Fz rlrl/rz1[2]) 0

then p_ to Rl;

zIIl] z-- -zlIt] ;

end;

zIII] i= zl[t]7r tof l;

C. F. (zl[I] , zr[z));

end;

cornrnent: we cannot find two values z0 and zl such that

f(20) f(zrl<0;

.ge to error;

R 1': if (zofrl / z|t?l ) (" t I r] / zllzll then

zz\l i= zt It] X z0lzl - ztlzlX zo[l] else

zzft):= z0lllX zllz) - z|lz)Xz1[l] ;

zzfzl := ZX zt[z]\, z0lzl ;
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C. r'. @2lI) , zz[z]l;

f (a, N, z2) results: (FzZ);

lf abs (FzZ[l/tzzlzl)<.p" then

begin

Io" i:= I step I "rr!!l Z do

b[i] := r'2[i];

gc to R2;

end; else

,f (F"all)/ r.zzl2l )X(F" tlrl /r'zr[2] ) < 0

then for i := I step I until 2 do

Fz0[i] z= FzZlil else

for i:= I step I until 2 do

Fzl[i] t= Fzz[i] ;

go to Rl;

R2:

end realroot;
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procedure f(c, N, z) results: (y);

integer array c, z, \i integer N;

comrnent: procedure f will cornpute a value for y where y is

def ined as follows:

The values for the forrnal pararneter c are stored in the integer

array c[0:N, LzZ] . The first subscript with values frorn 0 to N

refer to the coefficient of ,i. The second subscript with values I

and Z refers to the nurnerator and denorninator respectively of the

coefficient of ,i. The forrnal pararneters z and y are stored

in arrays zltzZl and yllzzl respectively. The subscript with

values I and 2 refers to the nurnerator or denorninator respec-

tively of the values for y and z.

begin integer i, k;

for i:= I .step I "rr!11 
2 do

y[i] := c[N, i] ;

{gr i:= 0 step 1 until N-l do

begin for k: = I step I until ? do

y[t] ;= z[k]ty[t<] + c[N-i-1, t] ;

c. F. (vltJ ; vlzl );

end k;

end f.;

n
\-iy -- ) c,z/_, r
i=0



5Z

procedure caseii(a) results: (bl , b?l;

real array a, bl, b2;

cornment: the procedure caseii will cornpute two approxirnate

cornplex roots of an algebraic equation f(y) = 0, where the coeffi-

cients of f(y) are cornplex and the degree of f(y) is Z. The

values for the forrnal pararneter a are stored in the array

af0:2, LzZf . The values 0 to Z for the first subscript refer to the

cornplex coefficients of f(y). The values I and Z f.or the second

subscript refer to the real and irnaginary part respectively of the

cornplex coefficient designated by the first subscript, The forrnal

parameters bI and bZ stand for the two approxirnate roots of

f(y) = 0. The values for these roots are stored in the arrays

blII:Z] , and bZ[lz?]. The values I and Z for the subscript

refer to the real or irnaginary part respectively of the cornplex root.

begin integer i; real array tO[t:2] , T1[l:Z] , TZltzZ) ,

T3lt..Zl , T4U;zl ;

for i:= I step 1 until 2 do

begin T0[i] := a[0, 1] ;

TI[i] := a[l, iJ ;

Tz[iJ z= afZ,if ;

end i;

crnult (TI,Tl) results: (T3);

crnult (T 0, T2 ) results: (T4);
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for i:= I step I until 2 do

r3[i] := T3[i] -+[,.T+[t] ;

csqrt (T3) results: (Ta);

for i:= I step I until 2 do

besin T3[i] := -T1[i] + Ta[i] ;

To[i] := zX Tzlil ;

rI[i] := -rt[i] -r+[ i] ;

end i;

cdiv (T3,T0) results: (bl);

cdiv (T I , T0) results: (b2);

end caseii
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procedure forrn PR(c, N) results: (P,R);

integer array c, P, R; integer N;

qellnqe4t: the procedure forrn PR will forrn the coefficients of

two polynornials P(q, h) and R(q, h).

n-?
2

P(q,h) =cr(h)-cr(h)r... (-l) - .rr_

n-2
2

Iq

The values for the forrnal pararneter c are stored in the array

c[O:N, 0:N, l:Z] . T he values in the array c are the results of

the procedure cees. The values for the forrnal pararneters P

and R are stored in the arrays e[O:(N-Z/2, l:2, 0:N, I:2) ,

and R[0:N/2, I:?, 0:N, l:2] respectively. The values O to

(N-Z)/Z for the first subscript in the array P refer to the poly-

nornial in h that is a coefficient of qi . The values 0 to N

for the second subscript refer to the coefficients of the polynornial

in h that was specified by the first subscript. The values I and

Z for the third subscript refer to the nurnerator and denorninator

respectively of the coefficient specified by the first two subscripts.

Sirnilarly, the values 0 to N/2 for the first subscript of the array

R refer to the polynornial in h that is a coefficient of qi . The

second and third subscripts for the array R have the sarne rneaning

as the second and their subscripts for the array P respectively.
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begin integer i, k, L;

lgr i: = 0 step I until (N-Z\/Z do

lgr k:= 0 step I until N-ZXi- I do

begin for L:= I step I until ? do

P[i, I , k, L] 2= sfXi- I, k, L] .(- I ) | i;

c. F. (P[i, 1,k, lJ , P[i, 1,k,2J );

end k;

lgr i:= 0 step I until N/2 do

lgr k:= 0 step I l*!il N-2'i d9

begin for L:= I step I until Z do

R[i, l, k, L] := c[zxi, k, L] X(- t) I i;

c.F. (R[i, l,k, l], R[i, l,k,?l;

end k;

end forrn PR ;
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procedure csqrt (a) results: (b);

real array a, b;

cornrnent: the procedure csgrt cornputes the square root of the

cornplex nurnber a and stores the result into b. The values for

the {orrnal pararneters a and b are stored in the arrays alt:Zf ,

and U[t:2] respectively. The values I and ? f.or the sub-

script in the arrays a and b refer to the real and irnaginary

part respectively of the cornplex nurnber. ;

begin real z, Tl, PI;

PI:= 3. 1416

z:= sgrt(sqrt(a[ t] | z+alzl I z) I ;

T t:= arctan(a[zl /^[t] l/ z;

lf "[t] < 0 then T1:= TI*PI;

b[I] := ztcos(Tl);

b[Z] := zXsin(Tl);

end csqrt ;
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procedure cdiv (a, b)results: (c);

real array a, b, c;

cornrnent: the procedure cdiv divides the cornplex number a by

the complex nurnber b and stores the quotient into c. The values

for the forrnal pararneters a, b, and c are stored in the arrays

alt zl , b[ t:Z] , and c[t:Z] respectively. The values I and Z

for the subscript in the arrays 3, b, and c refer to the real and

irnaginary part respectively of the cornplex nurnber;

begin real z, TL, TZ, T3, PI;

PI:= 3. l416

z:= sqrt(alr] 1 z+a[z]l z)/sqrt(b[rl1 z+blz]1zl;

T I := arctan(a[ z] /a[ tl) ;

T2:-- arctan(b[ z] /b'rll;

f! "[t] < 0 then Tl:= Tl * PI;

ff b[1] < O then T?:= T2 * PI;

T3;= TL-T?;

"II] := zXcos(T3);

clTl := zXsin(T3);

end cdiv ;
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procedure crnult (a, b) results: (c);

real artay 2, b, c;

cornrnent: the procedure crnult rnultiplies two cornplex nurnbers

a and b together and stores the product into c. The values for

the forrnal pararneters &, b, and c are stored in the arrays

alt:Zl , b[t:2] , and c[t:Z] respectively. The values I and Z

for the subscript in the arrays ?, b, and c refer to the real and

irnaginary part respectively of the cornplex nurnber.

begin integer i ;

cIl]:= altlXultl -a[z]Xb[zJ i

clzf ,:,= a[z] Xt[ r ] +a[ I J Xb[z] ;

end crnult ;
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procedufs corrplex cf (a, r, b, rn) results: (c);

array a, b, c;

integer n, rn;

cornrnent: the procedure cornplex cf will cornpute the comrnon fac-

tor of two polynornials f(V) and g(V) with cornplex coefficients.

The cornrnon factor is assurned to be linear.
n
\.if(v) = )_ "iY
i=0

and

The values for the forrnal pararneters a and b are stored in the

arrays a[0:n, l:2] and b[0:rn, l:Z) respectively. The values

i(i=0, 1,... n) and k(k=0, 1,. -. rn) for the first subscript of the ar-

rays a and b respectively, refer to the coefficients a and b

respectively. The coefficients a and b are cornplex nurnbers

and are stored in ordered pairs of real nurnbers. The values I

and 2 f.or the second subscript refer to the real and irnaginary part

respectively of the coefficient that was specified by the first sub-

script. The forrnal pararneter c stands for the linear corrlrrron

factor of f(y) and g(V). The values for c are stored in the ar-

ray c[0:I , l:Zf . The values 0 and I for the first subscript

ITI

e(v) = ) ouru

k=0
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refer to the coefficient "0 and .l respectivel"y, where

c(y) = crY * cO. The values I and Z f.or the second subscript

refer to the real and irnaginary part respectively of the coefficient

referred to be the first coefficient. The rnethod of cornputation is

based on the Euclidean algorithrn, ;

begin integer i, k, s, p, NS, ms

array R[0:m, I:Zf , as[ 0:n, I:21 , bs[ 0:rn, IzZ] ;

NS:= n; rns:= rn;

lgr i:= 0 step I until n dg

for k:= 0 step I until 2 do

as Ii,k]:= a[i,t];

for i3= 0 step I until rn do

for k:= I step I until ? do

bs [i, k] := b[i, k] ;

for i:= 0 step I until rn do

begin polydiv (as, Ns, bs, rns) results (R,p);

for k:= 0 steq I until rns do

Io" ":= I step I until p do

as [k, 2] := bs[k, 2] ;

for k:= 0 step I until p do

Ior ":= I step I until Z do

bs[k, 2] := R[k, s] ;

NS:= rns;
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rns:= p ;

end ;

{or i:= 0 ,step I until I do

fork:= I Jtep. I until Z do

c[i, t] := R[i, k] ;

end cornplex cf ;
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pr-ocedufe polydiv (a, n, b, rn) results: (R,p);

atray a, b, R;

integer ln, n, p;

comrnent: the procedure polydiv cornputes the rernainder when

polynornial f(V) is divided by polynornial g(y).

n
\.if(v) = / arv-

i=0

and 
rrr

e(y) = ) ooro

k=0

The values for the formal parameters a and b are stored in the

arrays a[0:n, l:Z] and b[0:rn, L:Z] respectively. The values

i(i=O, 1, "'n) and k(k=0, 1,... rn) for the first subscript of the

arrays a and b respectively, refer to the coefficients a. and

bt respectively. The coefficients "i and bt are corrrplex nurn-

bers and are stored in ordered pairs of real numbers. The values I

and Z for the second subscript refer to the real and irnaginary part

respectively of the coefficient that was specified by the first subscript.

The forrnal pararneter R stands for the remainder polynornial. The

values for R are stored in the array R[O:rn, l:Z) . The values

(0,1,2,... rn-l) for the first subscript refer to the coefficients of

the rernainder polynomial. The values I and Z for the second

subscript refer to the real and irnaginary part respectively of the
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coefficients referred to by the first subscript. The integer p con-

tains the degree of the rernainder polynornial. n ) rn;

begin integer i, k, s;

arrjry Q[0:n-rn, l:Z) , TlIl:2] , TzU:?f , as[0;n, lz2];

for i:= 0 step I until n do

fork:= I step I until Z do

as[i, k] := a[i, t<] ;

for i:= n-rn step - I until 0 do

begin

fork: = I s.tep I until ? dg

begin T1[k] := as[n,kJ ;

Tz[kJ := b[ m, k] ;

end ;

cdiv (T I, TZ) results: (T l) ;

for k:= 0 step I until rn-l do

!q9,
for s:= I step I until 2 do

T2[s]:= b[rn-k-I, s] ;

crnult (T I , T 2) results: (T 1) ;

{o" ":= I step I until 2 do

as[n-k, s] ;= as[n-k-1, s] ;

I""":=rn step I until n-l do

b.g as[n-si l] := as[n-s-I, l] ;
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as[n-s, 2f t= as[n-s-1, 2l ;

ends;

endk;

endi;

jg.r i:= 0 step I until rn- l do

begin R[i, l] := as[n-rn*l*i, l] ;

R[i, 2]:= asI n-rn+ l+i, 21 ;

end ;

end polydiv ;
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APPENDIX B

The procedures in Appendix B were copied frorn a thesis

written by John Ries Ho1royd, Oregon State University, 1962,
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rrJocedure ratrnult (I, i, L, f , j, M, K, k, N) ;

cornrnent: I is a forrnal pararneter corresponding to an array for

storage of polynornials. i corresponds to the subscript of the

elernent in the array I. L is a forrnal pararneter corresponding

to an array for the storage of the degree of the polynornial referred

to by I and the subscript i. Sirnilarly for the sets of three J,

j, M, and K, k, N. I and J refer to the polynornials being

rnultiplied and K to the product;

integer i, j, k;

array I, J, K, L, M, N;

begin

rnult (I, i, l, L, J, j, l, M, K, k, l, N);

rnult (I, i, ?, L, J, j, Z, M, K, k, 2, N);

cornfact (K, k, l, N, K, k, 2, N);

N[k, lJ := L[i, IJ + MU, l] ;

N[K, ?f := Lli, ?,1 + MU, 2f ;

end ratrnult ;
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procedure mult (I, i, u, L, J, j, v, M, K, k, w, N);

cornrrlent: I corresponds to an atray for the storage of polynornials.

i corresponds to the value of a subscript of a polynomial elernent

stored in that array. u corresponds to a real pararneter which rnay

have value I or ? as to nurnerator or denorninator of the poly-

nornial referred to by the array and value corresponding to I and i.

L corresponds to an array for degree storage for this polynornial.

The correspondence in the parameter list for the sets of four J, j, v,

M and K, k, w, N is the same. I, J, and K correspond to

arrays which contain the two polynornials rnultiplied and the product

re spectively.

integer i, j, k, u, v,

arrav I, j, K;

integer arrav L, M,

begin

integer array

integer rn, t,

a:= L[i, u] ;

N;

w;

H[0:r,

arerf

rzZ) ;

,

N[k, w] := a+Mh, v]

for rn:= 0 
"!g-1l 

I

begin

for t:=

H[rn, t]

;

until r do

dol, z,

:= 0;
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end

for rn:= 0 glsjl I ""!il MU, .r] do

begin

end ;

end ;

for rn:= 0 step I lrrr!11 N[k, w] do

begin

for t:= 1, 2 do

K[k, w, rn, tJ := H[rn, t] ;

for t:= 0 step I until a do

begin

e:= I[i, u, t, l] X JU, v, rn, I] ;

f:= r[i, u, t, z] X J[i, v, m, Z];

e:= exH[ rn*t, ?,1 * fxH[rn*t, I] i

f:= fxH[rn*t, Z);

!f e ) f then C. F. (e, f) else C. F. (f , e);

H[rn*t, l] := e;

H[rn*t, ?f := f.;

end ;

end rnult;
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procedure corrdact (I, i, u, L, J, j, v, M), results: (E, rn);

cornrnent: correspondence between the sets of forrnal pararneters

I, i, u, L and J, j, v, M is the sarrre as described in the pro-

cedures rnult and sub, This procedure finds any colrrrrlon factors

of the polynornials stored in the arrays corresponding to i, u and

j, -.. Let a and b represent the polynornials stored in the ar-

rays corresponding to I and J respectively. Let c be the

corrrrnon factor.

a=cal

b=cbl

The cornrnon factor c is rernoved and at and br are stored in

arrays corresponding to I and J in respective order.

integer i, j, u, v;

arrav I, J ;

integer L, M;

begin

integer rn, r, s, t i

arrav E[0:L[i, u] + Mh,.,r] , t:?1, F[O:L[i, u] + MU,..], tzZl,

G[0:L[i, u] + vr[5, v], r:?f , H[0:L[i, u] + M[j , vf , r;Zf ,

rn:= L[i, u] ;

s:= M[i, v] ;

g rn ) s th*-re. to Hl;
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for t:= 0 9Fp I until rn do

begig

tr[t, l] := I[i, u, t, l] ;

E[t, 2f := I[i, u, t, 2) ;

end ;

{gr t:= 0 step I until s do

begin

F[t, t] := J[ j, v, t, 1] ;

l.lt, ?7:= J[ j , Y, t, 2l ;

end ;

pto HZ ;

HI: {or t:= 0 _"tg.p I until m do

begin

F[t , t] := I[i, u, t, l] ;

F[t, 2] := I[i, r, t, 2f ;

end ;

s:= rrr ;

rn:= M[ i, ,] ;

jgr t:= 0 step I until rn do

begin

E[t, 1]:= J[ j, v, t, lJ ;

e[t, Zl:= J[ j, .rr, t, Zf ;

end ;
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Euclid' s algortihrn for

finding corrrlrron factors. Let a and b represent the two

given polynomials; also let r[i] and q[i] be polynornials. As-

sume thedegreeof thepolynomial a is less than that of b.

b = a,q[l]+r[t]

a = r[l] q[z] + r[2]

rIr] = r[2] q[3] +r[3]

(r)

(z)

(3)

r[n- l] = r[n] q[n+t] + r[n+t]

,[n] = r[n* l] q[n+z]

(n)

(n+I)

r[n*lJ ir the cornrnon divisor of a and b. The condition

that the degree of the polynornial represented by a be less

than that of the polynornial represented by b is satisfied by

the iJ statements above. The following staternents carry out

the steps (l) through (n+l) stopping when the rernainder

r[n+2] = 0 is reached. These steps rnay be accornplished

recursively in the following rnanner. After step (I) denote

the polynornial a by the name b and the polynornial ,[1]

by the narrre a. Divide the polynornial b by the polynornial

a giving the remainder tl?l . After step i which yields

the remainder r[i] , denote r[i-t] UV the narne b and

"[iJ by the narne a. Carry out the division above. Note

that the actual pararneters C and t are not used after
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the call in this case.

H?: div (F, s, E, m, G, t, H, r) ;

!f H[0, 1] = OAv = 0 then gg to H3 ;

for t:= 0 glg-1r I until m do

begin

F[t, 1] := E[t, tJ ;

t[t, Z]:= E[t , 2f ;

end ;

Jor t:= 0 step I until r do

begin

E[t, I] := H[ t, t] ;

E[t, z7:= H[t, Z] ;

end ;

s:= In ;

m:=f;

goto H2;

cornrnent: the following procedures divide out the cornrnon

factors and correct the degree storage. on entrance through

the label H3 the cornmon factor is stored in the array E;

H3: for t:= 0 step. I until s do

s:= L[i, u] ;

begin

F[t, l] := I[i, u, t, I] ;
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Flt, Z) := I[i, u, t, Z1 ;

end ;

div (F, s, E, rn, G, r, H, t);

for t:= 0 _g!gp i until r do

begin

I[i, u, t; I] := G[t, l] ;

1[i, u, t, Zf ;= Glt, z] ;

end ;

L[i,u]:=r;

s:= M[j, ,] ;

for t:= 0 step I until s do

begin

F[t, 1] := J[j, v, t, I] ;

F[t, z] := J[j, v, t, Zf ;

end ;

div (F, \tr/, E, rn, G, r, H, t) ;

for t:= 0 step I until r do

begin

J[j, v, t, t] := G[t, l] ;

J[j, v, t, 2l:= Glt, ?];

end ;

MU, ..] := r ;

end cornfact ;
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procedure C. f'. (a, b);

cornrnent: this procedure rerrroves the corrrrnon factors frorn the

integers a and b. On entry to this procedure the integer cor-

responding to b is less than the integer corresponding to a. The

procedure is based on Euc1id's algorithm. ;

integer a, b ;

begin

integer g, h, g, T ;

g:=a;

h:=b;

Hl: r:= (g-hx entie" (g/hll;

if r=0 then go to HZ ;

o.=h'b' " t

h:=r;

goto Hl;

}JZ: ai= a/h ;

az= b/h ;

end C. F. i
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cornment:
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Sylvester (A, B, m, s, r) results: (C, e) ;

the procedure Sylvester is a recursive procedure for the

reduction of Sylvesterrs elirninant for the polynomials A and B.

The values for the formal parameters A and B are stored in the

arrays A[0:n, l:2,0:r, L:Z] and B[0:n, lzZ,0:r, t:Z) respec-

tively. The values 0 to n for the first subscript refer to the coef-

ficients "i and bi for the polynornials A and B respectively.

The coefficients "i and b, are the quqtient of two polynomials.

The values I and 2 for the second subscript refer to the nurnera-

tor and denominator respectively of the rational polynornials a and

b. The values 0 to r for the third subscript refer to the coef -

ficients of the polynornials that are specified by the first two sub-

scripts. The values I and Z f.or the fourth subscript refer to the

nurnerator or denominator respectively of the rational nurnber that is

specified by the first three coefficients. The Sylvester's elirninant is

the product of all polynomials stored in the array C. The degree of

the polynomials whose coefficients are stored in the array C are

stored in the array e[0:n, l:Z) . The values 0 to n for the

first subscript refer to the polynornials stored in the array C. The

values I and Z for the second subscript refer to the numerator

and denominator respectively of the rational polynornial that is speci-

fied by the first subscript. The actual procedure is not included be-

cause of its excessive length.
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APPENDIX C

EXAMPLE

We will compute a root of f(y), where

f(v) = y6 -24y3 + t96yz -336y + zlg.

Using the division algorithrn, dividing f(y) by (y2+q) we get,

)
f (v) = Q(y,q)(y-+q) + P(q)y + R(q) .

P(q) = 24q.- 336 ,

and

R(q) = qz -t95q+288.

lMe can test Sylvester's eliminant D (P,R) to deterrnine if the
q

polynornials P(q) and R(q) have a comrnon factor

Dn(P, R) =

-1 0 -196 288 0

0 -1 0 -196 288

024-33600

0024-3360

00024-336

(r)

Frorn evaluation of (I) we get
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D (P, R) = -7 t 884800 .
q

D^(P,R) I 0, hence the polynomials P(q) and R(q) do not have aq

cornrnon factor.

By expanding f(V) we get,

f (y) = .r(r-h)6 + cu (v-h)5 + 
" n(l-h)4+c, (v -h) 

3i. 
r(r-h )z r " t(x-h)+ c 

o.

' 6 - znt' + t96hz - 335h + 288.a0=rr

.t = 6h5 -lz]hz+392h-336.

e = tqh4 - 7zh+ t96.-z

"3 = zoh3 -24'

.,qhZ 
.-4 - LJ

c- = 5h.
5

t6 = l'

Using the division algorithm, dividing f(y) by ((y-fr)2+ q) we get,

f(y) = e(q,y,h) ((y-h)z+ q) + pr(q,h) (v-h) + R(q,h) .

Pt(q,h)="5q2-"39*"1,

and
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Rr(u,h) = -.6n' r .n' - .za* .o .

'n(oI'RI)=

-c6 .4 -cZ .O 0

O -"6 .4 -cZ .O

.5 -ca "I 0 0

O .5 -ca "l 0

o 0 .5 -ca tI

(2)

From (2) we get,

,o(or,Rt) = k.(h-r).(h-2).(h+3).(h- i ii).(h - 1ri,

(h- r -zi). (h- r+zrr.(h+ r+i). (h+ r -i).(h+ * - iu

o,*j* Zrr'rnr*ri) (h+ i i,
,n(OI,RI) is a polynomial in h that has a degree of 15. There-

fore, we can cornpute a real root s. of ,n(O, , *, ). If a = I ,

then

)
Pr(t, 1) - 6q" * 4q - Io ,

and

Rr(o, I) = -q3 + t5qz - I39q + rz5.

Using the Euclidean algorithrn to compute the corrlrnon factor of
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Pr(t, I) and Rr(o, l) , we get

9(-q3+ tlq,z - r39q+ rz5) = ( -3q*4t l. (6qz++q- to)/ ?+l 360(-q+ r ),

$q2+qq-rol/z = (-q*l)'(-3q-5) .

Hence (-q+I) is a corrrrnon factor of Pr(t, 1) and Rr(t, l). There-

fore Pl(I,t) = Rl(I,I) -0, thusmaking y- l+i rootsof

f(Y)=o'

If, when we computed a real root of Dl(PI,Rl), we had

f ound that e. = Z, then

Pr(e,2) = Lznz - I35q + 352 ,

and

Rr(e,2) = -q3 + 6oqz - z9zq, + z7z .

Using the Euclidean algorithrn to cornpute a comrnon factor, we get

9(-q3+60q2 -z9zq*ztz1 = (-3q* 1461.{zqz -34q+88)+ z6oo(q-4),

zqz -z+q+aa = (3q- zz).@-g .

Hence q-4 is the cornrnon factor of Pr(O, 2) and Rr(e, 2) .

Therefore P l(4,2) = Rr(4, Zl = 0, thus making y = Z*Zi roots

of f(y) = O. If we find a = -3 for a root of ,n(rI,RI) = 0,

then
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Pr(e, -3) = -|gqZ* 564q- 35I8,

*r(o, -3) = -q3 + l35qz -L6z7q+ 4437

Using the Euclidean algorithrn to cornpute the cornrnon factor of

or(n, -3) and Rr(t, -3), we get

g(-q3 + r35q2-1627q+4437) = (9q- g33).prcqz+s+6q-36r8)/z

+ (q-9))'(147s70) ,

(-rsqz+s6 4q-3618)/z = (q-9). (-9q+z0I) .

Hence q-9 is a cornmon factor of 
"r.(n, 

-3) and Rr(e, -3).

Therefore Pr(9, -3) =\(9, -3) = 0, thus rnaking y= -3 + i3 roots

of f(y)=0.




