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Reasoning about System-Level Failure Behavior from Large Sets of Function-
Based Simulations

Abstract
This paper presents the use of data clustering methods applied to the analysis results of
a design-stage, functional failure reasoning tool. A system simulation using qualitative de-
scriptions of component behaviors and a functional reasoning tool are used to identify the
functional impact of a large set of potential single and multiple fault scenarios. The im-
pact of each scenario is collected as the set of categorical function “health” states for each
component-level function in the system. This data represents the space of potential sys-
tem states. The clustering and statistical tools presented in this paper are used to identify
patterns in this system state space. These patterns reflect the underlying emergent failure
behavior of the system. Specifically two data analysis tools are presented and compared.
First, a modified k-means clustering algorithm is used with a distance metric of functional
effect similarity. Second, a statistical approach known as Latent Class Analysis is used to
find an underlying probability model of potential system failure states. These tools are used
to reason about how the system responds to complex fault scenarios and assist in identifying
potential design changes for fault mitigation. As computational power increases, the ability
to reason with large sets of data becomes as critical as the analysis methods used to collect
that data. The goal of this work is to provide complex system designers with a means of us-
ing early design simulation data to identify and mitigate potential emergent failure behavior.

Keywords: Fault Reasoning, Complex System Design, Clustering, Emergent Behavior,
Big Data



1 Introduction

Unexpected and under analyzed interactions between components and subsystems is a causal

factor for many catastrophic system failures. While individual component failure modes

can be modeled and predicted, the system level effect of multiple faults across subsystem

boundaries (software, hardware, etc) is challenging to identify. Methods of risk-based and

safety-centric design have been developed to address this challenge and impact the design

decision making process. A few methods use qualitative simulation of component behavior to

provide an analysis of the system level impact failures in terms of lost functional capability.

Reasoning on the functional effect of failures provides designers with the information needed

to understand the potential impact of faults in a risk-informed approach to design.

The challenge of risk assessment at the design stage is the lack of refined system in-

formation. Traditional methods of failure and risk analysis rely on statistical failure data

and apply methods where expert knowledge of the system is needed to know the impact

and path of fault propagation. For this reason, risk assessment traditionally occurs at the

validation stage of a well refined design, where specific component failure probabilities and

likely fault propagation paths can be defined. However, to achieve the benefits of early

risk-based decision making, several methods of failure analysis based on functional system

descriptions have been developed. While some of these design-stage methods use historic

failure rates associated with the component types or functions to identify risk (Stone et al.,

2005; Grantham-Lough et al., 2009) others have used a behavioral approach to determine

the potential impact of failures (Krus and Grantham Lough, 2007; Kurtoglu et al., 2008;

Huang and Jin, 2008). By including component behavior information in the analysis, these

latter approaches can simulate fault propagation and identify the effect of a fault within the

context of the designed system.

Early design-stage failure analysis is a powerful decision making tool allowing designers

to make changes to decrease the risk of single, multiple or cascading faults (Kurtoglu et al.,

2010). However, the functional approach also enables a high degree of failure characteriza-
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tion. Understanding the ways in which a system design can fail provides designers with the

information to develop more robust alternatives.

The Function Failure Identification and Propagation (FFIP) framework is one of the

methods for assessing the functional impact of faults in the early design stage (Kurtoglu

et al., 2008). The results of using an FFIP-based analysis of a design is an evaluation of the

state of each function in the system in response to a simulated failure scenario. In previous

work these results have been used to evaluate the consequence of different fault scenarios

for a system design (Jensen et al., 2009b; Papakonstantinou et al., 2011; Sierla et al., 2012)

and for making design decisions based on fault consequence (Kurtoglu et al., 2010). In this

work we take a different approach. Instead of looking at the functional effect of a single

fault scenario, we reason on the total set of effects from different scenarios to make design

decisions.

Identifying the system-level functional effect is key to using potential failure behavior

information for design decision making. For example, the decision between using two different

technologies should be informed by how faults in those technologies and faults in the rest of

the system interacting with that technology affect the mission objectives. For this reason,

top-down safety based design methods such as STAMP (Dulac and Leveson, 2005; Leveson,

2011) use the control of undesired system functional states to develop the system architecture

requirements. The challenge for top-down methods is providing assurance of completeness

in capturing the potential low-level causes that might lead to the undesirable system state.

Similarly, with bottom-up simulation methods like FFIP, interpreting the overall system-level

functional effect from a composite set of component-level functional effects is challenging for

complex systems. For example, an electrical short is simple to simulate and identify the

functional effect to that component and other components on the same circuit. However,

identifying system-level functions affected by this fault is challenging and usually relies on

expert knowledge of the system. We see that there is a connection between the top-down

and bottom-up approaches and this paper demonstrates that data analysis and clustering
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techniques can be used to identify classes of potential system behavior from the simulation

at the component level.

To summarize, the overarching objective of this work is to develop a design-stage simula-

tion and analysis tool set that uses simulation data to reason about the functional robustness

of systems to potential component faults and fault propagation. This type of approach is

intended to enable designers to compare potential system architectures, identify component

and subsystem behaviors that leads to undesired system states, and assess the impact of

complex fault scenarios. In order to achieve this high-level objective there are three specific

objectives that this presented method addresses. These are:

1. Characterize the impacts of a large space of the potential complex failure scenarios.

(In what types of ways does the system fail?)

2. Identify the system-level importance of the sets of potential system failures. (What

does each type of failure mean in terms of system functionality?)

3. Determine how this analysis can be used to make system design decisions. (Can we

use this data for a systems view of functional robustness?)

By addressing the first objective, this method moves beyond single scenarios analysis and

begins to develop a system-level characterization based on simulation of component behavior.

The result of completing the first objective is distinct types of system failure analogous to

failure modes for the system. However, since these are identified through simulation and

data analysis, the types of system failure must be related to the system-level functionality.

In this way, objective two enables this method to link top-down and bottom-up analysis

methods. Finally, the third objective begins to address how this approach can fit within the

overall systems design processes.

1.1 Terminology

Due to the need to use terms that are found and defined differently in multiple disciplines
the following definitions are intended for this paper.

3



Component: Any physical, software, or human element in a systems that has nominal
and failure behavior.

Fault/Failure Mode: A discrete behavior of a component different from the nominal
behaviors.

Fault Scenario: The set of nominal and faulty component modes provided to the system
simulation. Each component is in exactly one state at one time.

Flow: The energy, material and signal that connects the functions of the system.

Function: The action a designer intends in the system that affects the flow of material,
energy, or signal.

Function Health State: The evaluation of the relationship between a components be-
havior and its intend function. With the following categories:

Healthy: Function acts on flow as intended.

Degraded: Function acts on flow but not as intended.

Lost: Function does not act on flow.

No Flow: There is no flow on which the function could act. (A type of Lost)

System State: The set of health states for all functions resulting from the simulation of
one fault scenario.

2 Background

This section discusses the three technical areas used in this paper and presents some detail of

the example system. First, we discuss the design-stage fault simulation tool (FFIP) which is

the source of the data on which the analysis and clustering methods will be applied. Second,

we provide background on the method of clustering data using a k-means algorithm. Finally,

we present a categorical data clustering approach for identifying an underlying probabilistic

model for the structure of the data, namely, Latent Class Analysis.

2.1 Function-Failure Analysis in Early Design

The Function Failure Identification and Propagation (FFIP) framework (Kurtoglu and Tumer,

2008; Jensen et al., 2008, 2009b; Kurtoglu et al., 2010; Jensen et al., 2009a; Tumer and

4



Smidts, 2010; Papakonstantinou et al., 2011; Coatanéa et al., 2011; Sierla et al., 2012) was

introduced as a design-stage method for reasoning about failures based on the mapping be-

tween components, functions, and nominal and off-nominal behavior. The goal of the FFIP

method is to identify failure propagation paths by mapping component behavior states to

function ‘health’. This approach uses simulation to determine fault propagation and fault

effect, thus providing the designer with the possibility of analyzing component and inter-

action failures and reasoning about their effects on the rest of the system. The two main

advantages of the FFIP method are: 1) a functional abstraction which allows it to be used

in complex systems employing both software and physical components; and, 2) a simulation-

based approach allowing analysis of multiple and cascading faults.

An FFIP analysis begins with a functional representation of a system and utilizes the

mapping of functions to components in a component structural representation. A system

simulation is built following the structural representation. The nominal and faulty behavior

of generic components are stored as state machines in a component library. Each state

represents a behavioral mode of the component where the qualitative intervals (high, low,

etc.) of the input flow attributes are converted to output flow attributes. For example,

in the nominal mode of a fuel line the input flow level of fuel is the same as the output.

However, in the blockage fault mode, the output flow level is reduced to zero. Finally,

the main contribution of the FFIP approach is the Function Failure Logic (FFL) reasoner

which relates the input and output attributes of the component simulation to the expected

change in the function mapped to those components. The result of the FFIP analysis is an

evaluation of the health state of each function in the system. There are four potential health

states for a function defined below. These states are based on the concept that a function

is the expression of the designer’s intent and describes the actions that affect the flows of

energy, material and signal in the system.

1. Healthy: The function affects the flow as intended

2. Degraded: The function affects the flow different than intended
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3. Lost: The function does not affect the flow

4. No Flow: There is no flow for the function to act on (usually due to an upstream

failure)

In FFIP, a failure event is the triggering of one or more component transitions. Based

on the behavioral simulation the functional impact is identified by the FFL reasoner. Each

event scenario simulated produces one record. These records will be used by the clustering

approaches demonstrated in this paper.

2.2 Data Clustering

Separating data into clusters or partitions has been a useful activity in the data mining

community to elicit meaning from large data sets (Han et al., 2006). Starting with the

classification of human traits and personality in the 1930-40s, clustering analysis continues

to be an important tool to enable machine learning. Multiple methods and algorithms have

been developed based on different perspectives on the meaning of a cluster (Estivill-Castro,

2002). There are three main approaches to clustering with multiple methods and algorithms

supporting them.

Hierarchical clustering assumes that some category or classification captures all the data

and that data points can further be sub-classified into more specific groups in a tree structure.

In biology, the Linnaeus taxonomy of living things is an example of hierarchical clustering.

Hierarchical methods often relate one or more data points by their similarity.

In contrast to hierarchical methods, partitioning methods separate the data space into

different clusters without implying a higher level relationship between those clusters. Data

points are related based on a measure of the distance between values. Algorithms that

implement partitioning identify centroids of the clusters and then group all data points into

a predetermined number of clusters based on their distance from that centroid. K-means

clustering is one method of data partitioning that evaluates the Euclidean distance between
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data points (Lloyd, 1982).

Two significant issues of k-means clustering are that the number of clusters must be

selected first and that data points may only have membership in one cluster. To address the

first issue, heuristic rules such as choosing k based on the square root of half the data set

size can provide an initial assessment (Mardia et al., 1980). Evaluation of the correctness of

the value of k can be done through heuristic metrics as well. Variations of k-means known

as soft or fuzzy clustering methods use a similar approach but instead provide membership

percentages.

The third category of data clustering methods is model-based. These methods assume

some structure to the data and try to find the correct statistical model to match that struc-

ture. Methods in this category use different means of estimating and finding the maximum

likelihood of the data fitting the parameters of a statistical model (MacKay, 2003; Pearl,

2000). These methods assume that the reason some data points are related to other data

points is due to some unobserved (or latent) variable. Unlike k-means, data points have a

probability of being within a particular cluster based on their dependence to that unobserved

variable. There are many variations of model-based clustering depending on the form of the

data and the likely form of the clusters. For the analysis of function-based failure simulation

data, the most appropriate model-based method is Latent Class Analysis. The details of

this analysis and the justification for its use in this work are presented next.

2.3 Latent Class Analysis

Social scientists have used the concept of latent classes since the 1950s (Lazarsfeld and Koch,

1959). Manifest (or observed) variables are the data of empirical studies. A latent variable is

one not directly tested but is nevertheless correlated to observations of the manifest variables.

If the latent variable is continuous then methods such as factor analysis and multivariate

mixture estimation can be used to find this structure. However, if the latent variables have

discrete categories then the structure fits a latent class model (Vermunt and Magidson, 2004).
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As an example, survey questions on personal views of several political topics can form the

parameters of a statistical model. Latent class analysis (LCA) on the survey data could be

used to identify subgroups into which the respondents are classified. Groups identified within

this data would likely correspond to labels like “conservative”,“liberal”, etc. There are three

main results from performing an LCA. First, each data point has a probabilistic membership

to each class of the latent variable (e.g., the respondent’s likely political leaning). Secondly,

each discrete variable state is correlated to a latent class (e.g., liberals have a high probability

of answering affirmatively to question three.) The final component of the LCA output is

class membership percentages for the entire data set (e.g., 40% conservative, etc.)

Formally, the latent class model is based on the concept that the probability of observing

a specific pattern (Y) of manifest variable states y, denoted P (Y = y), is a weighted

average of the C class-specific probabilities P (Y = y|X = x), where X is a latent variable

with C number of classes. Weighting with the proportion of that class to the latent variable

P (X = x) results in Equation 1.

P (Y = y) =
C∑
x=1

P (X = x)P (Y = y|X = x) (1)

Further, the manifest variables within a class, Yl are assumed to be locally independent.

Therefore, Equation 2 defines the probability of observing a pattern in the L manifest vari-

ables within a class.

P (Y = y|X = x) =
L∏
l=1

P (Yl = yl|X = x) (2)

Using the political example above, (Y) is the pattern of answers associated with a political

group answering the specific questions y. This pattern is independent within each of the

discrete political groups in X.

As with k-means data clustering, algorithms for implementing LCA use expectation max-

imization for a predefined number of groups. Therefore, LCA must be executed iteratively

in order to identify the correct number of classes for the latent variables. Identifying the
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goodness of fit of the latent class model is typically accomplished by examining either the

Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC). These are

metrics to estimate the information entropy (information lost) when a statistical model is

used to describe reality. The AIC formulation modifies the log-likelihood estimation by the

number of parameters, punishing over-fitting models. The objective in checking goodness of

fit with AIC is to find the minimum of Equation 3, where K is the number of parameters

and L the likelihood function for the statistical model. The BIC formulation is similar but

accounts for the sample data size.

AIC = 2K− ln(L) (3)

LCA was chosen as a clustering method over other clustering methods because the man-

ifest variables are the discrete health states of each function in the system. Additionally, the

hypothesis of this work is that the failure behavior of a system is also categorical. This cat-

egorical system-level failure is the latent variable in our analysis. The discrete (and ordinal)

nature of the variables rules out other multivariate mixture models.

2.4 Example System

To demonstrate the clustering approaches applied to function failure analysis results, we

perform an FFIP analysis on a design concept of an electrical power system (EPS). This ex-

ample system will be used to simulate numerous fault scenarios, identify the set of functional

impacts for each scenario and apply the clustering algorithms to find patterns of system fail-

ure behavior. This EPS example is an early design-stage model that uses batteries to provide

power for a set of AC and DC loads. This example is based on the design of the Advanced

Diagnostic and Prognostic testbed located at the NASA Ames Research Center (Poll, 2007).

In previous work, various potential design architectures were compared using a quantified

interpretation of the FFIP results (Kurtoglu et al., 2010). The example used in this work
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expands upon a similar but less complex example (Jensen et al., 2012).

As seen in Figure 1, the concept for the EPS is a fault tolerant software controlled

hardware system. At the system level, three operational states are recognized. Specifically,

Nominal, when both load banks of AC and DC loads are operational; Degraded, when only

one of the load banks is operational; and Lost, when neither load bank is operational. The

purpose of the software control is to automatically maintain operation at a nominal state if

possible and a degraded state otherwise. By evaluating the voltage levels in both the load

banks and both battery banks the controller decides to open or close Relays 1 through 4.

The first rule implemented in the software control is that no two batteries can be connected

together. For example, Relays 1 and 4 cannot both be closed while there is power available

from both batteries or an electrical over current will occur. After this rule, the controller

observes the voltage and relay position sensor values to determine which relays to open or

close to ensure continued operation. In a fault scenario, the controller can decide to swap

power so that the first battery powers the second load and vice versa or simply to shut

down one line and run at a degraded state. The control logic is implemented with a truth

table where values of sensors correspond to specific relay positions. The control attempts to

keep the system in the best operating state as described in Table 1. In this table the term

“Batt1→ Load1” indicates that Battery Bank 1 is powering Load Bank 1.

Table 1: Operational States the Software Control Attempts to Maintain

Nominal Degraded Lost
State 1 State 2 State 3 State 4 State 7

Batt1→ Load1 Batt1→ Load2 Batt1→ Load1 Batt2→ Load2 No Action
Batt2→ Load2 Batt2→ Load1

State 5 State 6
Batt1→ Load2 Batt2→ Load1

This fault tolerant example system enables the identification of high-level system goals

such as maintain load operation and illustrates fault propagation over both software and

hardware components. This example system is complicated enough to demonstrate the

clustering methods yet still provides clarity in the impact of complex faults. The FFIP

10



analysis has also been demonstrated on a more complicated system (nuclear power generation

(Papakonstantinou et al., 2011; Sierla et al., 2012)).
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Figure 1: Architecture of the Electrical Power System (EPS) used for function-based failure
analysis and reaults clustering.

3 Methods

The development and justification of the functional effect analysis using the FFIP method-

ology is documented in previous work (Kurtoglu and Tumer, 2008; Jensen et al., 2009a;

Kurtoglu et al., 2010; Papakonstantinou et al., 2011; Sierla et al., 2012) and will not be

repeated here. Because the motivation of this work is to use data analysis techniques to

identify underlying system behavior, we begin with collecting the analysis results from the

FFIP-based simulation. Other methods of design analysis and simulation could be used

instead. The two things that are needed to apply these techniques is a large number of

behaviors to simulate (many scenarios) and multiple data points to describe each scenario.

FFIP provides this by the ability to simulate single and multiple fault scenarios as well as

variations in flow parameters. Further, for each scenario simulated, the result is the health
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state of each component-level function in the system. These function health states are the

variables that describe the system state in response to the simulated scenario. In the follow-

ing sections we discuss the simulation and collection of functional effect failure data and the

application of the similarity clustering and probabilistic latent class analysis.

3.1 Identifying the Functional Impact of Component Faults and

Interactions

The impact of different component fault modes is identified for the EPS using a simulation

of the system built by connecting component models created with the Stateflow toolbox

in Matlab Simulink. A scenario is simulated where one or more faults is triggered and

the resulting changes in system dynamics are allowed to propagate. The output of each

simulation is the function health state of each component-level function. For example, one

scenario includes triggering the failure behavior for both batteries. To simulate this scenario,

the system simulation begins with all components operating nominally. Then after 25 time

steps the first battery’s operating mode is changed to “Failed-Disconnected.” The effects of

this change is the loss of current and voltage from that component. After 50 time steps the

second battery’s operating state is changed in the same way. The effect of these changes is

allowed to propagate through the system. In this example, the software controller attempts

to switch between sources by changing which relays are closed. Finding no solution that

provided power to the loads the software controller defaults to opening all relays as a failure

safety measure. After 100 time steps the simulation is ended and the final function health

states for each component-level function is recorded as the result for that scenario. The

injection of failures at 25 and 50 time steps is arbitrary. Through analysis of numerous

simulation it was found that the state machines used need four to eight time steps to reach

a steady state. Further, reducing the time between failure mode insertion resulted in no

change to the final system state. However, the order of the fault mode changes did affect

the final system state results for many scenarios (excluding the one above). Therefore, every
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order of faults is also simulated. Because this system has 58 component-level functions, the

result of simulating a scenario is a vector where each element corresponds to the health state

of each of the 58 functions. These function health states are recorded as integers from 1 to

4 to ease data handling.

Using a Matlab script, a large set of scenario results is generated; first simulating each

component fault mode as a single fault scenario and then two fault combinations. Three or

more fault scenarios can also be generated in the same manner. While simulating three or

more scenarios is possible, for this example system the limited number of components resulted

in few unique system states for more than two failure scenarios. For this system, simulating

every possible combination of two faults is not computationally expensive. However, for

more complex systems there are three possible ways for guiding the scenario selection and

simulation process. First, expert knowledge can provide direction on the components that

are likely to negatively interact and have known fault causation or simply using proximity.

An alternative to this approach is simulating fault modes based on the relationship between

causes and symptoms of faults (Jensen et al., 2009b). This latter approach is based on

triggering failure modes in components with fault symptoms (e.g. leaking) which are of the

same type as fault causes (e.g. exposure to liquid). Finally, the clusters generated using the

approach may provide guidance in identifying fault modes that should be simulated together

in an iterative approach.

Function failure analysis results are collected from each scenario in a matrix where each

row is a separate scenario and the columns correspond to the resulting identified health

state of the component functions. For the clustering analysis, three sets of scenarios were

generated. The first set of results tested each failure mode of each component resulting in 193

simulations. The second and third set of scenarios tested two fault scenarios. The difference

between these last two sets was a reversal of the order in which the faults where tested (e.g.,

battery fault then relay fault, and reversed order in the third set). For the three sets this

generated 37,299 fault simulation records. Both fault orderings were included because it is
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possible that the order of faults may change the system level effects.

3.2 Pre-processing to Enhance Clustering Effectiveness

The clustering methods demonstrated in this work are applied to find similarities and struc-

ture between different fault scenarios. However, the first level of grouping is to identify which

fault scenarios resulted in identical functional results. These represent scenarios that cannot

be functionally distinguished from each other. For example, faults in two loads that both

cause high current draw can trip a breaker. The large number of combinations of two load

faults results in a large set of identical faults, that is, they all result in the same tripped

breaker and subsequent loss of power. This grouping is accomplished through a simple sort-

ing algorithm which groups identical scenario results into bins. Selecting one scenario result

from each bin represents the set of unique system states. When applied to the EPS example

system the 37,299 total scenarios were sorted and 3,509 unique system states were identified.

The significant reduction reflects a large number of identical functional impacts. Many of

these identical impacts are related to faults in the sensors which all had five failure modes

but resulted in little effect to the system because the controllers that use those sensors were

not simulated. The exception to this was failures in the sensors used by the controller,

where faults did result in a change in the behavior of the system. The unique system states

represent one or more failure scenario results and are the data provided to the clustering

methods.

3.3 Clustering of Results Based on Functional Similarity

The motivation for implementing similarity clustering is to identify groupings of failure sce-

narios and aid designers in creating robust mitigation methods. For example, if a system

designer knows of a particular undesirable system state, then finding all scenarios that lead

to a similar functional state can identify if adequate control methods have been implemented.

In order to identify the relationship between two system states we must develop a metric of
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distance between function health states. In data clustering methods, the distance between

variables can be determined based on the Euclidean distance between the variable values

(Distance =
√
a2 + b2). However, the values chosen to represent health states are categori-

cal numbers not nominal numbers, which violates an underlying assumption in the Euclidean

formulation. Therefore, we introduce a functional distance metric based on functional im-

pact. A relational table (Table 2) is generated to define the similarity between function

health states. For this analysis, we identify “Lost” and “No Flow” as having no significant

functional difference to the system. Here, designers could choose to increase the distance of

off-nominal states to effectively punish and group those scenarios as being worse. Since a low

system-knowledge approach is being used for this example, all states have a single unit of

difference. For example we can consider a system with two functions and compare the simi-

larity of two fault scenarios. If the resulting system state from scenario 1 is {Healthy, Lost}

and the system state from scenario 2 is {Degraded,NoF low}, then the Euclidean distance

between these two using the relation matrix in Table 2 is
√

12 + 02 or 1.

Table 2: Relational Matrix for Identifying the Distance between Function Health States.

State Healthy Degraded Lost No Flow
Healthy 0 1 2 2

Degraded 1 0 1 1
Lost 2 1 0 0

No Flow 2 1 0 0

Table 2 is one way to quantify the qualitative distance between functional health states.

The k-means clustering algorithm was also applied to the same simulation results using dif-

ferent distance values and where “No Flow” and “Lost” were not equivalent. The cluster

centroid and and distances between centroids changes when this scale is changed. However,

when comparing the population of scenarios between clusters using different distance ma-

trices, the average error is about .5%. This is within the normal variation of the algorithm

when repeated with the same relational matrix. As a result of this finding, it is clear that

the concept of functional similarity is strongly dependent on the scale used in this relational

matrix. However, population of the clusters and the resulting meaning of those clusters is
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consistent across scales.

3.3.1 Results of Similarity Clustering

The total distance is calculated by summing over the distance for each function health state.

A weighting for functional importance could be incorporated into this step. However, for this

analysis each function is given equal importance. This algorithm identifies the functional

similarity using Table 2 for each low-level function. Since there is no way to know a priori

how many clusters to expect, we repeatedly call the k-means algorithm to cluster the data

using 1-10 clusters. Additionally, the algorithm is replicated 100 times for each clustering to

avoid local minimums. There are several recognized methods of identifying the appropriate

number of clusters. The first approach implemented is the “knee method” (MacKay, 2003),

where the within cluster sum of square (WCSS) distance to the cluster centroid is plotted.

When additional clusters do not substantially change the WCSS there is no need to further

cluster the data. Using the EPS example data, the inflection point appears between 5 and

7 clusters (see Figure 2a). This ambiguity results in the need for a second cluster validation

method. By comparison of the dispersion of the scenario similarities within a cluster and

the dispersion of the impacts of those scenarios it is possible to identify the appropriateness

of the clustering groups. For this work a plot is developed where cluster centroids are

plotted against the sum of their function health states normalized by the total number of

functions. That is, a vertical value of 1 indicates that all functions are at the healthy state

(a nominal scenario). If all component functions in the system had failed in a scenario

then the normalized impact would be 4. Vertical position gives an estimate of the scope

of the system affected by the fault. Each scenario in a cluster is then plotted based on a

horizontal position representing the distance of that scenario to the cluster centroid and a

vertical position based on the normalized sum of function health states. Selecting to use five

clusters for the k-means algorithm, the plot shown in Figure 2b illustrates the variance of

the distances from the cluster centroid in the horizontal direction and the variance of the
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Table 3: Evaluating Cluster Distance and Impact Mean and Coefficient of Variation

Metric Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Distance Centroid
Mean =11.99 Mean =7.54 Mean =7.48 Mean =8.03 Mean =5.73
CV= 0.39 CV = 0.3 CV = 0.90 CV =0.26 CV = 0.92

Normalized Scenario Impact
Mean = 1.44 Mean =1.11 Mean =1.28 Mean =1.08 Mean = 1.31
CV =0.10 CV =0.02 CV =0.18 CV =0.02 CV =0.04

scenario impacts in the vertical direction.

For this example system, Table 3 records the the mean and coefficient of variation for

each cluster for the distance from the centroids and the normalized impact of the scenario.

The coefficient of variation (CV) is the ratio of the standard deviation and the mean of a

population where larger numbers indicate greater dispersion of the data. For the distance

metric, the CV indicates how similar the scenarios in the cluster are to each other. For the

impact metric, the CV shows the variation in the impact for scenarios in that cluster. Based

on this data that the scenarios with the least similarity are in clusters 3 and 5. Similarly,

the most diverse set of impacts is in found in clusters 1 and 3. Based on this analysis cluster

3 has the potential to have very dissimilar scenarios with somewhat significant differences

in total functional impact. Since there was ambiguity in the the correct number of clusters

between 5 and 7 and the potential for cluster 3 to be subdivided, 6 clusters where selected

for the analysis of scenario similarity.

3.4 The Latent Class Analysis Method

The second method of grouping the failure results is focused on identifying patterns of

failure behavior. For this method a Latent Class Analysis (LCA) is performed on the 3,509

unique fault simulation results using the package poLCA (Linzer and Lewis, 2011b,a) for

the statistical software tool R (R Development Core Team, 2011). The poLCA package

treats the manifest variables as categorical. The manifest variables in this analysis are the

function health states and the latent variable describes the system failure behavior. Similar

to the k-means clustering, the number of latent variable classes must be specified prior to

the analysis. Therefore, an iterative approach is also taken to fit multiple latent class models
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(a) The sum of the within cluster square dis-
tance of scenarios to the centroid of their re-
spective cluster.

(b) Graphing clusters based on their distance from centroid and total scenario impact with 5 clusters. Cluster
3 has both vertical (impact) variance and horizontal (similarity) variance and could be separated into two
clusters.

Figure 2: Summary of results for applying a modified k-means clustering to the unique
system failure states.

with different numbers of classes. In order to avoid local maxima, the poLCA classification

algorithm is executed 10 times for each specified number of classes. The correct number of

classes is identified as the LC model with the lowest Akaike Information Criterion (AIC) and

lowest Baysian Information Cirterion (BIC).

Once the correct latent class model is identified, there are three desired outputs from the
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LCA. The first output is a set of conditional probability tables for each manifest variable.

These tables identify the probability of finding a manifest variable at a specific state for

each category of the latent variable. In the context of this analysis, this indicates that if a

failure event is of a particular class of system failure then the function is likely to be in a

specific state (healthy, degraded, etc.) The second output uses these probability tables to

identify the posterior probability of a scenario belonging to each class of the latent variable.

This is the output used for the probabilistic classification of the failure events. Finally, the

proportion of each classification is reported. This leads to the identification of the class with

the largest membership of failure events.

3.4.1 Results of Model-Based Clustering

The AIC and BIC tend to flatten when evaluating latent models with more classes. Imple-

menting a LCA on the example system data set, minima of AIC and BIC can be seen at 5

classes and 8 classes. Unlike k-means clustering, LCA can identify probabilistic membership

of scenarios into each class. Due to the low level of emergent behavior in this system, sce-

nario were classified into each class with very high confidence. The classification of individual

scenarios in both 5 or 8 latent classes was compared and 5 classes was selected due to the

tendency to split 100% confident classification in the 5 class model into two or more groups

with partial classification in the 8 class model.

The meaning of the different classes is not directly found but must be inferred from

the resulting groups. That is, if the system is found to have 5 different classes of failure,

providing a description of those failure classes cannot be generated from the analysis but

requires expert knowledge. The normal approach in an LCA is to compare the probabilities

of observing a particular variable (function) state within a class to develop descriptions for

that class. However, given 58 function variables that each have 4 different states, this task

can be very challenging and is not scalable to large systems. Instead, by comparing the

classification provided by LCA to the clustering found through the modified k-means, these
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groups can be readily identified. This will be discussed in the next section.

3.5 Comparing and Validating Clustering Methods

The modified k-means clustering partitioned all of the unique scenario result states into 6

clusters. Each scenario result then has two properties: 1) The normalized total impact of

that scenario; and 2)The distance of that scenario from the theoretical centroid of the cluster

in which it belongs. This distance is a measure of functional similarity over the identified 58

functions in the space. Scenarios very near the centroid are the “typical” scenarios for that

cluster.

The result of the LCA model is a predictive description of the latent failure behavior

and the probabilities of observing a particular function’s state. Comparing this model-based

approach to the k-means approach has two benefits. First, LCA provides a mathematical

validation of the partitioning of the k-means method when the two clustering methods agree.

Second, the centroid of the k-means cluster can be used to identify the meaning of the

matching LCA cluster.

In Figure 3, the k-means clusters are plotted based on total normalized impact and

their distance from the cluster centroid. The classification of scenarios by the LCA and

the modified k-means was inconsistent for 26 of the 3509 unique scenarios. The scenarios

that where classified differently by the two methods are noted with diamonds in Figure 3.

Because this plot compares similarity and normalized impact, some of the markers overlap.

This means that these scenarios are equally different from the cluster centroid and have

affect the same number of functions. It does not mean that the final system state of these

scenarios is identical.

There are two metrics for evaluating the consistency of the clusters found by the two

algorithms. In Table 4 both metrics are shown for the 5 class LCA results and the 6 clusters

from the k-means algorithm. First, to compare if the scenario populations are consistent,

the union of cluster membership is evaluated. In Table 4, the number below each cluster
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Figure 3: Comparing the clustering found through the k-means and LCA method. Discrep-
ancies are marked with diamonds. Note that some markers overlap.

name is the total number of scenarios classified into that cluster or class. The integers within

the table show the membership union. For example, 2 of the scenarios found in the third

LCA class are also found in second cluster from the k-means algorithm. The numerical

order provided by the algorithm is random. The second metric for comparing clusters is

the distance between centroids. Since the LCA gives a probability distribution of health

states for each function as the centroid, it cannot be directly compared to the single value

centroids from the k-means algorithm. Instead, the centroid of the resulting classification

from the LCA is used. That is, if a class contained scenarios 1-3, then the centroid is based

on the centroid of those three scenario results and not the probabilistic centroid of the model

of that class which the LCA algorithm used to fit scenarios 1-3. In Table 4, the centroid

to centroid distance is reported for each cluster and class as a real number in units of the

distance between functional states. From Table 4, both metrics identify the same overlap in

the k-means clusters and LCA classes (as indicated in the colored cells). Using this example

it is clear that the fourth LCA class is the combination of first and third k-means cluster.
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Table 4: Comparing the Centroid to Centroid Cluster Distance and Scenario Membership
Overlap

LCA Classes
Clusters LCA 1 LCA2 LCA3 LCA4 LCA5

# of scenarios 243 209 245 2605 206
K1 10.19 7.95 11.41 2.33 8.25
213 0 0 0 213 0
K2 12.07 9.27 815 5.17 2.60
213 0 2 2 3 206
K3 10.99 7.79 11.05 0.30 7.75
2385 0 0 0 2385 0
K4 7.94 2.60 12.02 5.17 9.35
218 8 207 0 3 0
K5 3.51 5.77 12.73 7.40 10.64
243 235 0 8 0 0
K6 12.99 10.62 3.67 7.39 5.76
235 0 0 235 0 0

3.6 Relating Clusters to System-Level Functionality

The centroid of each cluster found through the modified k-means analysis represents a point

in the functional state space defined by 58 functions. In this space each function may have

the value between 1-3 representing Nominal, Degraded, and Lost or Now Flow respectively.

By observing what scenario is closest to the cluster centroid and what functional dimensions

have the largest impact for a cluster, the meanings of the clusters become apparent. In

Table 5 the k-means clusters are sorted so that the highest functional impacts are grouped

together. All component functions that do not appear in Table 5 have values near 1 and

are considered predominately Nominal for the scenarios in that cluster. Additionally, the

representative scenario for that cluster is also listed in the second row. The non-nominal

functions are listed for each cluster along with the centroid’s location along that functional

axis. By looking at these characteristic functions and the health states for each cluster

centroid, the clusters can be described in terms of their dominant system level effects. Thus

each cluster is defined by a set of functions in some off-nominal health state. While the

clustering algorithm identifies that there are dependencies between these functions (and

thus clusters them together), it can not directly reveal causality. For this reason we take
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the component-level functions identified in each cluster and use the model to organize the

connectivity of the graph shown in Figure 4. Care should be taken not to interpret this

as the direction of fault propagation. Instead Figure 4 shows the relationship between the

functional dependencies in the clusters and the physical system architecture. Finally, as can

be seen in Table 5, the K3 cluster centroid does not have any characteristic functions in

the degraded or lost state. This means that scenarios within this group have few failures

that affect multiple functions and there is minimal dependencies between the faulty states of

functions. Since the degraded and lost state functions are used to characterize the clusters,

the K3 cluster is not included in Figure 4.

Table 5: Off-Nominal Functional Impact for Each Cluster and Representative Scenario

K1 K2 K3 K4 K5 K6
Breaker 5 Breaker 6 Fan 2 Breaker 3 Breaker 1 Battery 2

Open Open Failed Off Open Open Disconnected
DC 1 3 Fan Relay 2 2.99 Fan 2 1.28 Fan Relay 1 2.99 Breaker 3 3 Breaker 6 3
DC 1 Relay 2.33 Pump Relay 2 2.99 Fan 1 1.19 Pump Relay 1 2.99 Inverter 1 3 Inverter 2 3
Fan 1 2.06 Pump 2 2.99 DC 2 1.19 Pump 1 2.99 Breaker 4 3 Breaker 7 3
Fan 2 1.14 Light 2 Relay 2.99 Light 2 1.14 Light 1 2.99 Fan Relay 1 3 Fan Relay 2 3

Light 2 2.99 Light 1 1.14 Light 1 2.99 Pump Relay 1 3 Pump Relay 2 3
Inverter 2 2.97 Inverter 1 2.97 Pump 1 3 Pump 2 3
Fan 2 2.97 Fan 1 2.97 Light Relay 1 3 Light Relay 2 3
Breaker 7 2.34 Breaker 4 2.35 Light 1 3 Light 2 3

Breaker 5 3 Breaker 8 3
DC Relay 1 3 DC Relay 2 3
DC1 3 DC2 3
Fan 1 2.99 Fan 2 2.99
Relay 2 2.93 Relay 4 2.93
Battery 1 2.91 Battery 2 2.91
Breaker 1 2.91 Breaker 2 2.91

4 Results

In this section we will present how the results of conducting the clustering approach address

the three objectives of: 1) characterizing the impacts of a large number of failure scenarios; 2)

Identifying the system-level meaning of those characterizations; and 3) determining how this

analysis can be used to make system design decisions. The first objective of characterization

is accomplished through identifying an underlying pattern of failure behavior exhibited in

the system states that result from numerous fault simulations. This underlying pattern of

behavior is found through applying the Latent Class Analysis (LCA) to the set of unique

systems states. The result of applying the LCA to the 3,509 unique systems states that
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Figure 4: The clusters identified through the modified k-means and LCA are mapped to the
system model.

result from fault scenario simulation for the example system best fit a model with 5 discrete

classes of system failure. Further, the probability of scenarios fitting exactly one of the five

classes is very high (most are 100%). This confirms that five different patterns of system

failure emerge from the simulation of combinations of component fault behavior. Because

the LCA approach fits a structure to the data, each class is fully defined by the probability

of a function being at a health state. The health state of a function as a result of simulating

a scenario is deterministic and has a known value after simulation. However, the class of

system failure is a model where each function has a probability of being at each health state.

The system-level failure behavior classes are the result of the interactions of component

behaviors. For this reason the five classes represent emergent failure behavior observed at

the system level in the scenarios simulated. This does not represent all potential emergent

behaviors of the system. The clustering algorithm uses the simulation dataand thus if the

behavior is not present in the simulation it will not be identified by the algorithm. However,

due to the large number of scenarios that form the data for each class model, this approach
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does provide some confidence that this system will not experience significantly different

behavior. While the LCA-based clustering was able to address the first objective by finding

underlying classes of system behavior to characterize scenarios, those classes must also be

related to the system level functions of interest.

The second objective, to identify the system-level meaning (for designers) of the classes

of behavior, is accomplished using a k-means clustering on scenario impact similarity. By

using the cluster centroids, each cluster is described with a set of functions and their health

state. Limiting the focus to degraded and lost functionality provided five of six clusters that

can be used to relate the system functionality to the scenario clusters. Figure 4 shows the

characteristic functions and their health states for each cluster and uses the system model

to identify physical connections. The third cluster centroid did not exhibit consistently de-

graded or lost functionality and is not included. By comparing the system model to the

cluster’s representative functions, the relation to system-level functions begins to emerge.

For example, the scenarios classified in Cluster 4 are predominately scenarios affecting the

first load bank. When certain fault scenarios result in loss of power to that load bank the

function of those components is lost or degraded. For this simple system this demonstrates

that, without a priori knowledge of component connectivity, the clustering approaches iden-

tified behavior-based connections. For more complex systems with emergent behavior, these

connections could be identified in components in different subsystems where interactions

may be harder for designers to predict.

The third objective of this work was to determine whether the discrete failure behavior

of the system identified through the clustering analysis could be used for system-level design

decision making. As described in Section 2.4, the example system is designed to be fault

tolerant where the software control attempts to operate as many of the loads as possible.

The software control was designed to recognize and operate the system at the best available

of the 7 potential states identified in Table 1. Comparing these 7 control action states

to the clusters provides an assessment of the effectiveness of the system architecture and
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control. Table 6 shows how the degraded control states address faults from certain clusters.

One example of a design decision that could be made after application of this analysis is

to redesign the architecture and control to address the individual load faults that are seen

in Cluster 3. The application of this approach has shown that the current control method

addresses four of the fundamental failure behaviors of the system, but has no specific action

states to address the other two.

Table 6: Relation of Degraded Software Control States to Scenario Clusters

State 3 State 4 State 5 State 6
Batt1→ Load1 Batt2→ Load2 Batt1→ Load2 Batt2→ Load1

Cluster 6 Cluster 5 Cluster 4 Cluster 2
Cluster 2 Cluster 4

Finally, the small set of scenarios that k-means classified in Cluster 5 and that the

LCA grouped in cluster 6 (see Figure 3), correspond to scenarios where both battery banks

could provide no power. These special scenarios that are hard to cluster indicate important

scenarios for the system designer to investigate. For this system, scenarios where both

batteries are disconnected (and other similar scenarios) are unrecoverable by the software

control. Based on the probability, and the consequence of those faults, designers may want

to redesign the system redundancies.

5 Conclusions

This paper proposed two different approaches for clustering the results of a function-based

failure analysis method in the early design stage. In contrast to others methods which

focus on single faults or single failure scenarios, the goal of this work is to characterize a

design’s overall failure behavior. The results of implementing these clustering approaches on

an example fault tolerant, software-controlled electrical power system (EPS) demonstrates

the ability to both identify system-level failure behavior and use the classification of that

behavior for design decision making.
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The first clustering approach was a modified k-means algorithm where the distance be-

tween failure scenarios was determined based on the functional similarity of the impact of

those scenarios. This method partitions the fault scenarios into discrete clusters. Each clus-

ter has a centroid which is the representative set of functions and their health states for that

cluster. The second clustering approach was a model-based method that used Latent Class

Analysis (LCA) to identify a latent variable with a set of discrete classes. The latent variable

is a single unmeasurable variable that describes the system’s failure state or failure modes.

The LCA provides a probabilistic model that is used to characterize the system behavior.

By comparing these methods the k-means clustering was mathematically validated when the

scenario groupings agreed with the LCA classifications. Further, the challenge of describing

the system failure modes found through LCA is addressed by using the centroids of the

corresponding k-means clusters.

The example EPS describes how the designed control addressed some but not all of the

system failure behavior modes. When informed by other variables such as cost, this could

be used in a multi-objective decision making process. A future challenge that this work can

address is that large-scale system modeling may be impossible at the component fidelity level.

However, the LCA classes are models of the system state and could be used as abstractions

for the component details. For example, the EPS can be described as having a few nominal

modes and the identified five failure modes. This simplified model can then be incorporated

into a larger model without the need to specify low-level component behavior.

Additionally, more work is needed in applying the presented methodology to complex

systems to develop a relationship between the completeness of the analysis and the number

and types of failures to simulate.

The objective of this work is to aid designers in identifying the potential system-level

failure behaviors and use the classification of those behaviors to improve system design. By

using data analysis techniques on large sets of design-stage analysis data, designers can make

better risk-informed decisions and provide stake-holders with safer systems.
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