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DIFFUSION OF FLUID IN A FISSURED MEDIUM
WITH MICROSTRUCTURE*

R. E. SHOWALTER AND N. J. WALKINGTON$

Abstract. A system of quasilinear degenerate parabolic equations arising in the modeling of
diffusion in a fissured medium is studied. There is one such equation in the local cell coordinates at
each point of the medium, and these are coupled through a similar equation in the global coordinates.
It is shown that the initial boundary value problems are well posed in the appropriate spaces.
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1. Introduction. We shall study the Cauchy-Dirichlet problem for degenerate
parabolic systems of the form

(1.1b)

(1.1c)

Here is a domain in ]R’ and for each value of the macrovariable x E is specified
a domain with boundary Fx for the microvariable y E fl. Each of a, b, # is a
maximal monotone graph. These graphs are not necessarily strictly increasing; they
may be piecewise constant or multivalued. The elliptic operators in (1.1a) and (1.1b)
are of p-Laplacian type, i.e., they are nonlinear in the gradient of degree p- 1 > 0 and

i i>iq- 1 > 0, respectively, with + , so some specific degeneracy is also permitted
here. Certain first-order spatial derivatives can be added to (1.1a) and (1.1b) with no
difficulty, and corresponding problems with constraints, i.e., variational inequalities,
can be treated similarly. A particular example important for applications is the linear
constraint

(1.1c’), U(x,y,t) u(x,t), y e F, x E

which then replaces (1.1c). The system (1.1) with #(s) 71slq-2s is called a regu-
larized microstructure model, and (1.1a), (1.1b), (1.1c’) is the corresponding matched
microstructure model in which (formally) e --+ 0. An example of such a system as a
model for the flow of a fluid (liquid or gas) through a fractured medium will be given
below. In such a context, (1.1a) prescribes the flow on the global scale of the fissure
system and (1.1b) gives the flow on the microscale of the individual cell at a specific
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point x in the fissure system. The transfer of fluid between the cells and surrounding
medium is prescribed by (1.1c) or (1.1c’). A major objective is to accurately model
this fluid exchange between the cells and fissures.

Systems of the form (1.1) were developed in [21], [22], [10] in physical chemistry
as models for diffusion through a medium with a prescribed microstructure. Similar
systems arose in soil science [5], [14] and in reservoir models for fractured media [11],
[16]. An existence-uniqueness theory for linear problems which exploits the strong
parabolic structure of the system was given in [24]. Alternatively it is possible to
eliminate U and obtain a single functional differential equation for u in the simpler
space L2(), but the structure of the equation then obstructs the optimal parabolic
type results [18]. Also see [13] for a nonlinear system with reaction-diffusion local
effects.

These systems also arise from methods of homogenization. There an exact model
is assumed periodic and described by a parabolic equation with periodic coefficients
corresponding to the properties of the two components, the cells and fissures. The
limit of this highly singular problem as the period tends to zero is the system (1.1),
which is thereby justified as an approximation for the exact model. Homogenization
theory provides not only a justification of the linear case of (1.1) as a model but also
a means of calculating the coefficients in (1.1) in terms of those of the exact model,
and a deeper analysis may describe the convergence itself [25], [17], [2], [3]. Here we
study the nonlinear system directly. The task of determining the coefficients in (1.1)
directly from, e.g., boundary observations, is an intriguing open problem.

The plan of this paper is as follows. In 2 we shall give the precise description
and resolution of the stationary problem in a variational formulation by monotone
operators from Banach spaces to their duals. In order to achieve this we describe
first the relevant Sobolev spaces, the continuous direct sums of these spaces, and the
distributed trace and constant functionals which occur in the system. Theoperators
are monotone functions or multivalued subgradients and serve as models for nonlinear
elliptic equations in divergence form. We develop an abstract Green’s theorem to de-
scribe the resolution of the variational form as the sum of a partial differential equation
and a complementary boundary operator. Then sufficient conditions of coercivity type
are given to assert the existence of generalized solutions of the variational equations.
In 3 we describe the restriction of our system to appropriate products of Lr spaces.
The Hilbert space case, r 2, serves not only as a convenient starting point but also
leads to the generalized accretive estimates we shall need for the singular case of (1.1)
in which a or b is not only nonlinear but multivalued. The stationary operator for
(1.1) is shown to be m-accretive in the L space, so we obtain a generalized solution
in the sense of the nonlinear semigroup theory for general Banach spaces. As an inter-
mediate step we shall show the special case of a b identity is resolved as a strong
solution in every Lr space, 1 < r < c, and also in appropriate dual Sobolev spaces.

In order to motivate the system (1.1), let us consider the flow of a fluid through
a fissured medium. This is assumed to be a structure of porous and permeable blocks
or cells which are separated from each other by a highly developed system of fissures.
The majority of fluid transport will occur along flow paths through the fissure system,
and the relative volume of the cell structure is much larger than that of the fissure
system. There is assumed to be no direct flow between adjacent cells, since they are
individually isolated by the fissures, but the dynamics of the flux exchanged between
each cell and its surrounding fissures is a major aspect of the model. The distributed
microstructure models that we develop here contain explicitly the local geometry of
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the cell matrix at each point of the fissure system, and they thereby reflect more
accurately the flux exchange on the microscale of the individual cells across their
intricate interface.

Let the flow region be a bounded domain in ]Rn with boundary F 0. Let
p(x, t) and p(x, t) be the density and pressure, respectively, at x 6 and t > 0, each
being obtained by averaging over an appropriately small neighborhood of x. At each
such x let there be given a cell , a bounded domain in ]Rn with smooth boundary
F 0. The collection of these , x 6 , is the distribution of blocks or cells in
the structure. Within each there is fluid of density (x, y, t) and pressure iS(x, y, t),
respectively, for y , t > 0. The conservation of fluid mass in the fissure system
yields the global diffusion equation

(1.2a)

in which the total concentration p / ao(p) includes adsorption or capillary effects, the
function kj gives the permeability of the fissure system in the jth coordinate direction,
q(x, t) is the density of mass flow of fluid into the cell at x, and f is the density of
fluid sources. Similarly, we have within each cell

o
+ V o

j----1

where b0 denotes adsorption or capillary effects and the function j gives the local
cell permeability. Assume the flux across the cell boundary is driven by the pressure
difference and is also proportional to the average density on that pressure interval.
Thus, we have the interface condition

(1.2c) j Oy y / #(fi(15- p)) 9 0, y e F

where 7 is the unit outward normal on F and # is the relation between the flux across
the interface and the density-weighted pressure difference as indicated. The total mass
flow into the cell is given by

(1.2d) q(x, t) E -y ds.
j=l

In order to complete the dynamical system we need only to add a boundary condition
on F to (1.2a) and to postulate the state equation

(1.2e) p- s(p)

for the fluid in the fissure and cell systems. Here s(.) is a given monotone function (or
graph) determined by the fluid.
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In order to place (1.2) in a more convenient form, we introduce the monotone
function

S(w) =_ s(r) dr

and the corresponding flow potentials for the fluid in the fissures and cells

s(p), u

In these variables with a change of notation the system (1.2) can be written in the form
(1.1) together with boundary conditions on F for u or A(Vu). and initial conditions
at t 0 on a(u), b(U). Note that the average density on the pressure interval p,15 is
given by

1 Lps(r) dr- u-UP--p_ p_

As an alternative to (1.2c), we could require that 15 p on F and this leads to (1.1c’)
in place of (1.1c). Finally, we note that the classical Forchheimer-type corrections to

3the Darcy law for fluids lead to the case p q .
2. The variational formulation. We begin by stating and resolving the sta-

tionary forms of our systems. Let gt be a bounded domain in IR with smooth bound-
cry, F 0. Let 1 _< p < and denote by Lp(2) the space of pth power-integrable
functions on gt, by Lc(t) the essentially bounded measurable functions, and the
duality pairing by

(u, f)L() it U(X)f(x) dx, ueLP(t), f e LP’

1 1for any pair of conjugate powers, + 1. Let C(f) denote the space of infinitely
differentiable functions with compact support in f. Wm,p(") is the Banach space of
functions in Lp(f) for which each partial derivative up to order m belongs to Lp(f2),
and W’P(f) is the closure of C(t) in Wm,p(t). See [1] for information on these
Sobolev spaces. In addition, we shall be given for each x EFt a bounded domain gt
which lies locally on one side of its smooth boundary F. Let 1 < q < oc and denote
by - Wl,q(gt) ---, Lq(F) the trace map which assigns boundary values. Let T be
the range of ")’; this is a Banach space with the norm induced by "y from W,q(f).
Since Fx is smooth, there is a unit outward normal /(s) at each s E F. Finally,

T/171,q c}we define .o) to be that closed subspace consisting of those W,a(2) with
/ , i.e., each ,() is constant almost everywhere on F. We shall denote by

the gradient on W,a(2) and by the gradient on W,p(2).
The essential construction to be used below is an example of a continuous direct

sum of Banach spaces. The special case that is adequate for our purposes can be
described as follows. Let S be a measure space and consider the product (measure)
space Q gt x S, where f has Lebesgue measure. If U Lq(Q) then from the Fubini
theorem it follows that V(x)(z) =_ U(x,z), x e ft, z e S defines V(x) e Lq(S) at
almost everywhere x t, and for each Lq’ (Q)
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Thus Lq(Q) is naturally identified with Lq(, Lq(S)), the Bochner qth integrable
(equivalence classes of) functions from to Lq(S).

In order to prescribe a measurable family of cells (, x E , set S ]Rn, let Q c
]Rn be a given measurable set for which each section (y E ]Rn (x, y) Q}

is a bounded domain in ]Rn. By zero-extension we identify Lq(Q) Lq( ]l:tn) and
each Lq(x) Lq(]Rn). Thus we obtain from above

Lq(Q) - {U Lq(,Lq(]Rn)) U(x) Lq(t) a.e. x }.
We shall denote the duality on this Banach space by

(U, )L(Q) / If U(x, Y)(x, y) dyl dx

U Lq(Q), Lq’(Q).

The state space for our problems will be the product LI() LI(Q).
Note that WI,q(2) is continuously imbedded in Lq(2), uniformly for x . It

follows that the direct sum

)/Yq =_ Lq(, W,q()) =_ (U e Lq(Q) U(x) e W,q() a.e. x e ,
and ,q

is a Banach space. We shall use a variety of such spaces which can be constructed in
this manner. Moreover, we shall assume that each 2 lies locally on one side of its
boundary F, and F is a C2-manifold of dimension n- 1. We assume the trace maps
/ W,q() Lq(F) are uniformly bounded. Thus for each U Yq it follows
that the distributed trace /(U) defined by (U)(x,s) =_ "(U(x))(s), s
belongs to Lq(g, L(F)). The distributed trace maps Yq onto Tq Lq(,T)
Lq(,Lq(r)).

Next consider the collection {WI’q() :x } of Sobolev spaces given above
and denote by YY Lq(, T11’q x)) the corresponding direct sum. Thus for each
U E /Y it follows that the distributed trace "(U) belongs to Lq(). We define YY0’p
to be the subspace of those U VI; for which /(U) W3’P(2). Since " )4; Lq(2)
is continuous, Y]’P is complete with the norm

This Banach space W’p() YVq will be the energy space for the regularized problem
(1.1) and W’P will be the energy space for the constrained problem in which (1.1c) is
replaced by the Dirichlet condition (1.1c). Note that W’P is identified with the closed
subspace ([U, U]: U e Y0’p} of W’P(2) )4;q. Finally, we shall let 4;0 denote the
kernel of /, )/Yo (U /)q :/U 0 in

1,qWe have defined W (2) to be the set of w WI,q() for which /w is a
constant multiple of 1, the constant function equal to one on F. Thus w’q(x)
is the pre-image by "),x of the subspace IR.I of T. We specified the subspace
similarly as the subspace of /Yq obtained as the pre-image by " of the subspace Lq() of
Tq. To be precise, we denote by A the map of Lq() into Tq given by )v(x) v(x). 1,
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almost everywhere x E 2, v Lq(); A is an isomorphism of Lq(t) onto a closed
subspace of Tq. The dual map A taking T into Lq’ () is given by

’g(v) g(v) =/ g(lx)" v(x) dx, g e Tq’, v e iq(),

so we have ,h’g(x) gx(l), almost everywhere x
Moreover, when g Lq’ (F) it follows that

g(l) [ gx(y) dy,

the integral of the indicated boundary functional. Thus, for g Lq’ (, Lq’ (F)) C T,
,Vg Lq’ (2) is given by

(2.1) A’g(x) g(y) dy a.e. x

The imbedding A of Lq() into Tq and its dual map will play an essential role in
our system below.

We consider elliptic differential operators in divergence form as realizations of
monotone operators from Banach spaces to their duals. Assume we are given A

]Rn ]Rn such that for some 1 < p < , gl Lp’ (’/), go e Ll(g/), c and co > 0

(2.2a) A(x, is continuous in E IRn and measurable in x, and

I(, ()1 < 11- + (x),
(2.2b) (.(x, () .(x, if), (- ) _> 0,

(.c) (, (). (>_ 0l(l o()
for a.e. x fi and all - 6 ]R’.

Then the global diffusion operator ,A" W’P(2) W-,P (g/) is given by

,() f, (,())(), , e w,"().

Thus, each ,4u is equivalent to its restriction to C(g/), the distribution

au Au[c() -. .(., u),

which speeifies the value of this nonlinear elliptic divergence operator.
In order to specify a collection of local diffusion operators,

W,q(), assume we are given B Q ]R

h Lq’ (Q), hoe L(Q), c and c0 > 0

(2.3a) (x, y, () is continuous in (E ]Rn and measurable in (x, y) Q, and

I(, , ()1 <_ lgl- + (, ),
(Z.3b) (h(x, y, () -/(x, y, if), (- if) _> 0,

(2.3c) (x, y, (). (>_ col(la ho(x, y)
o a.e. (, u) e Q nd q e
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Then define for each x E 2

w, v e W,q(t).

The elliptic differential operator on is given by the formal part of B, the distri-
bution

Bw BWlc(a -V B(x,., Vw)

in w’q(x)t. Also, we shall denote by B" /)q "-- / the distributed operator con-
structed from the collection {B :x E f} by

u(x) (U(x)) a.e. x6gt, U6I/Yq,

and we note that this is equivalent to

BU(V) =_/ B(U(x))V(x)dx, U, V e Wq.

The coupling term in our system will be given as a monotone graph which is a
subgradient operator. Thus, assume rn :JR - ]R+ is convex and bounded by

(.4) .() < c(ll + ), e R,

hence, continuous. Then by

((x, )) x, g Lq(,Lq(r)),

1 >we obtain the convex continuous h" Lq(, Lq(F)) --+ ]P+. Assume + so

that W’P(’) Lq(t), and consider the linear continuous maps. W0’(t) Lq(gt, Lq(F,)), /" Vq Lq (, Lq(F,)).

Then the composite function

M[u, U] h(/U Au), e w]’(a), u e w,

is convex and continuous on W’P(t) ;q. The subgradients are directly computed
by standard results [12]. Specifically, we have Oh(g) if and only if

(x,s) EOm(g(x,s)) a.e. sFx, a.e. xegt,

and we have If, F] e OM[u,U] if and only if f -A’(#) in W-I,p’() and F- 7’(#)
in ]/Y for some # O(’U- Au).

The following result gives sufficient conditions for the stationary regularized prob-
lem to be well posed.

1>1PIOPOSITION 1. Assume 1 < p, q, +- , and define the spaces and operators, " as above. Specifically, the sets {t x } are uniformly bounded with smooth
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boundaries, and the trace maps {z} are uniformly bounded. Let the functions A, B,
and m satisfy (2.2)-(2.4), and assume in addition that

(2.5) re(a) aols{q, s e .
Then for each pair f e W-I,P (), F E W there exists a solution of

(2.6a) u e W’P() A(u)- ’(#) f in W-,p

(2.6b)

(2.6c)

U e Wq: B(U) + ’(#) F in W,

# Lq’ (, L’ (F,)) # q O(n(TU- Au).

For any such solution we have

(2.7) Jfr #(x, s)ds (F(x), lz) a.e. x e ,
where 1 denotes the constant unit function in Wl,q(x).

Proof. The system (2.6) is a "pseudo-monotone plus subgradient" operator equa-
tion of the form

(2.6’)
[u, U] e W’p() Vq" for all Iv, V]
Au(v) / BU(V) + OM[u, U] (Iv, V]) f(v) / F(V).

It remains only to verify a coercivity condition, namely,

(2.s) .au() + u(u) + (u- u) - +Ilullw,() + Ilvll
a IIllw.,(a) / IlVllv - /.

Choose k max{lyn] y e z, x e 2} and let z (,’" ,) be the unit normal
on Fz. For v e Wi,q(z) we have by Gauss’ theorem

f (Ivla + y,qlvlq-xO,v) =/ o= (y=lv(y)la) dy

()=1"() ds

HSlder’s inequality then shows

I(r) + qkllvll()ll&vll(),
and from this follows

IlvllE.() < 2kllwvll,(r) / (2k)q(q- 1)a-XllO=vll a

by Young’s inequality. From here we obtain

(2.9) ollVIl() < IIyVll a ILa(),Lq(,Lq(Fx)) / IIVVI q VeWq.
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Thus from the a priori estimate

4u(u) + BU(U) / M(’yU- Au)

the Poincar-type inequality (2.9) and the equivalence of IIVUIIL(a) with the norm on

W’P(), we can obtain the coercivity condition (2.8). Specifically, if (2.8) is bounded
by K, then (2.10) is bounded above by

and the last term is dominated by the first. This gives an explicit bound on each of
these terms and, hence, on IlUllw.(n + IIUIlvq.

Finally, we apply (2.6b) to the function Y e )/Yq given by Y(x, y) v(x) for some
v e Lq(), and this shows

(F,

since BU(V) 0, and thus

zV#(x)v(x) dx #(Av) #(/v) /a (F(x), l>v(x)dx.

The identity (2.7) now follows from (2.1).
For the more general case of the degenerate stationary problem corresponding to

(1.1), we obtain the following result.
COROLLARY 1. Let JR JR+ and p ]R ]R+ be convex and continuous,

with (0) (0) O, and assume

(2.11) (s) <_ C(Islq + 1), (I)(s) < C(l la + 1), s e JR.

For each pair f e W-1,p’ (), F E )zy, there exists a solution of

(2.12a)

(2.12b)

(2.12c)

(2.12d)

For any such solution we have

(2.13) b(x, y) dy + r #(x, s)ds (F(x), lz)
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Proof. This follows as above but with the continuous convex function

[u,U]=/a(u(x))dx+ fafa ((U(x,y))dydx

+ u] e

The subgradient can be computed termwise because the three terms are continuous
on Lq(2), Lq(Q), and Lq(, Lq(Fx)), respectively.

Remark. The lower bound (2.5) on m(.) may be deleted in Corollary 1 if such
a lower estimate is known to hold for (I). It is also unnecessary in the matched mi-
crostructure model; see below.

In order to prescribe the boundary condition (1.1c) explicitly, we develop an
appropriate Green’s formula for the operators Bx.

Note that we can identify Lq’(x) C W-l,q’(x) since W’q(2) is dense in
Lq(), so it is meaningful to define

Dx {w E Wl,q() Bw Lq’ (ft,)}.

This is the domain for the abstract Green’s theorem.
LEMMA 1. There is a unique operator O Dx T’ for which Bw Bw +

/’Ow for all w D,. That is, we have

(2.14) Bxw(v) (Bzw, V)L(a,) + (Ow, 7v>, v 6 WI,q(),

for every w 6 Dx.
Proof. The strict morphism 7 of W,q(z) onto T has a dual 7’ which is an

isomorphism of T’ onto w’q(2z)+/-, the annihilator in W,q(x) of the kernel of 7.
For each w 6 D, the difference Bzw- Bw is in W’q(2x)+/-, so it is equal to
for a unique element Ow 6 T’.

Remark. The identity (2.14) is a generalized decomposition of B into a partial
differential operator on and a boundary condition on Fx. If Fz is smooth,
denotes the unit outward normal on F, and if/(x,., uw) 6 [WI’q’(x)]n, then
w 6 Dx and from the classical Green’s theorem we obtain

B=w(v) (Bw, V)L(a,) B(x, s, Vuw)=(s)/v(s) ds,

v e W,(a).

Thus, Ow (x,., uw). v is the indicated normal derivative in Lq’(Fx) when
B(x,., Vuw) is as smooth as above, and so we can regard Ow in general as an extension
of this nonlinear differential operator on the boundary.

The formal part of B ]/Yq --, ]4; is the operator B ]4;q ]4; given by the
restriction B(U) =_ BUIwo. Since ]do is dense in Lq(Q) we can specify the domain

D {U e Vi;q’B(U) e Lq’ (Q)}

on which we obtain as before a distributed form of Green’s theorem.
LEMMA 2. There is a unique operator O: D --, T such that

B(U)(V) (B(U), V)L(Q) + (OU, 7V), U 6 D, V 614;q.
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PROPOSITION 2. Let the Sobolev spaces and trace operators be given as above.
We summarize them in the following diagrams"

Lq(f) Lq(r,) Lq(Q) Lq(f, Lq(r))

U U U U
W,q()

U
q ci ]R,’I Wi 1 Lq(fl)

U U T
(o} Wo {o}

in which "T1 i8 the restriction of’y to W1. W’q(x), Wo are dense in Lq(), Lq(Q),
respectively. Let operators Bx, x E , and B be given and define their formal parts
B, B as above. Then construct the domains D, D and boundary operators 0, 0 as
in Lemmas 1 and 2, respectively. It follows that .for any U Wq,
(a) BU(x) B(U(x)) in w’q(x) for a.e. x E [2, and U E D if and only if

V(x) e Dx for a.e. x e [2 and x BU(x) belongs to Lq’ (Q);
(b) for each U E D,

OU(x) Ox(U(x)) in T for a.e. x e

and
BU SV + "y (A’OU) in

and .for each V V1;1 we have

a
BU(x) (V(x)) dx =/QBU(x)V(x) dy dx

-I-/ (OU(x), l)(’lV)(x)dx.

Proof. (a) For V E Wo we obtain from the definitions of B, B, and B, respec-
tively,

/ BU(x)V(x) dx / BU(V) dx / BU(x) (V(x)) dx

] BU(x)V(x)dx,

and so the first equality holds since W Lq’ ([2, W’q(f)’). The characterization of
D is immediate now.

(b) For V Wq we obtain from the definitions of "y, 0, 0, respectively, and (a)

=/ o(u(x))v()
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Since the range of y is T Lq’ (t,Tx), the first equality follows. The second is
immediate from Lemma 2 since on 14;1, ’ A o yl and "),’ ’A’, and the third follows
from the preceding remarks.

COROLLARY 2. IYt the situation of Corollary 1, f E Lq’ () and F Lq’ (Q) if
and only if Au Lq’ () and B(U) Lq’ (Q), and in that case the solution satisfies
almost everywhere

a(x) + An(x) +/ b(x, y)dy f(x) + F(x, y)dy,

u(s) 0, s e r,

b(x, y) e OO(U(x, y)), b(x, y) + BU(x, y) F(x, y), y e ,
(, ) e O.(V(, ) (x)), O (V(x))() + (x, ) 0, e r.

Finally, we note that corresponding results for the stationary matched microstruc-
ture model are obtained directly by specializing the system (2.6p) to the space l/V] ’p.
This is identified with {[’U, U]" U e l/Y0’p} as a subspace of W’P(2) )ZYq, and we
need only to restrict the solution In, V] and the test functions Iv, Y], v "yV, to this
subspace to resolve the matched model. Then the coupling term M does not occur in
the system; see the proof of Proposition 1, especially for the coercivity. These obser-
vations yield the following analogous results for the matched microstructure model.

> 1 and define the spaces and operatorsPROPOSITION 1 p. Assume 1 < p,q, +-ff -,
)t, as before. Let the functions A,B, and m satisfy (2.2)-(2.4). Then for each pair
f W-I,p (), F ]/Y there exists a unique solution of

(2.15a) u e W’P() A(u) f / (F, 1) in W-I,P

U E 14;1 :B(U) F in

"yU Au in Lq() C Tq.

(2.15b)

(2.15c)

COROLLARY 1. Suppose , are given as before and assume (2.11). For f, F as
above there exists a unique solution of

(2.16a)

(2.16b)

(2.16c)

(2.16d)

u e W’P() a + (b, 1) + A(u) f + (F, 1) in W-l,p (),

U ]d;1 :b + B(U) F in

"IU .u in Lq() C Tq,

a O(u) in 54 (t), b O(U) in Lq’ (Q).
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In addition, f e Lq’ (f) and F E Lq’ (Q) i/and only if Au Lq’ (f) and B(U) e
Lq’ (Q), and in that case the solution satisfies almost everywhere

() e o(()),
() + A()+/ (,) S(x)+ [ (,), e ,
u(s) O, s r,

b(x,y) e O(V(x,y)), b(x,y) + SV(x,y) f(x,y), y e ,
v(, ) (x), e r

Remark. For the very special case of p q 2 and a(u) u, b(U) U in the
situation of Proposition 1 it follows from [7] or [20] that the Cauchy-Dirichlet problem
for (1.1) is well posed in the space Lp(0,T; W’P() x W) with appropriate initial
data u(x, 0), U(x, y, 0) and source functions f(x, t), F(x, y, t). A similar remark holds
in the case of Proposition 1 for the matched model with (1.1c). These restrictive
assumptions will be substantially relaxed in the next section.

rthermore, variational inequalities may be resolved for problems corresponding
to either the regularized or the matched microstructure model by adding the indicator
function of a convex constraint set to the convex function . Thus such problems can
be handled with constraints on the global variable u, the local variables U, or their
difference Au-U on the interface.

3. The Lr-operators. Assume we are in the situation of Proposition 1. We
define a relation or multi-valued operator C2 on the Hilbert space L2() x L2(Q) as
follows: C2[u, V] 9 If, F] if and only if

(.) u e L() W’(U) A() a,, e L(),

(3.1b) V L2(Q) Wq: B(U) +’ F L2(Q)

for some e O(U- Au) in Lq’ (,Lq’ (F)).
Thus, C2 is the restriction of (2.6) to L2() x LZ(Q). Note that ’ e L2() by (2.7).

LEMMA 3. If q iS monotone, Lipschitz, and a(O) O, then for each
pair

C2[uj, Uj] 9 [fj,Fj] j 1,2,
there follows

( , (u ))() + (F f, (V V))() 0.

Proof. Since a is Lipschitz and a(0) 0, we have a(u -u2) e W’() and
a(U U2) Wq. Also the chain rule applies to these functions, so we compute

( A, (u,))

f, (J(, x) (,w))V( ),( )d,

(nv v, (v v))

y(U Uz)a’(U U2) dy dx
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Both of these are nonnegative because of (2.1b), (2.2b), and a _> 0. The remaining
term to check is

(-,( ),( ))+ (,( ), (v v)

Since a is a monotone function and 0m is a monotone graph, this integrand is non-
negative and the result follows.

As a consequence of Lemma 3 with a(s) s, the operator E is monotone on the
Hilbert space L() L(Q). Moreover, we obtain the following.

PaOeOSTO 3. The operator is maximal monotone on L() L(Q). Let
j + be convex, lower-semicontinuous, and j(O) O. IOm is a nction, then

is also single valued and

(a.) (c[, u] c[, u], [,])()() 0

M ay stions o( ) i L(n) a Oi(U U) i L(Q).
Proof. To show E is maximal monotone it suces to show that for any pair,E L() L(Q) there is a solution of

(a.a) L() WJ’(n) + A() ,() I i W-,’ (n),
(.) U L(Q) U + (U) + ’() F i

(a.a) ’ (n,’()) O(u- ).

The existence of a (unique) solution of (3.3) follows as in Proposition 1, but by con-

iein te ueuomootoe oto [A, ] otout L(n)W’(n)
(Q) ,toe umio, ll() +U() +(U ), o, tat
space.

To establish the estimate (3.2), we consider the lower-semicontinuous convex func-
tion

[, ul L(n) x L(Q).

The subgradient of is given on this product space by

5 [al, a2] e O[u, U] if and only if

5[v, Vl (a(x)v(x) + a2(x,y)V(x,y)dy) dx,

[v, V] e n(a) L2(Q),

where
a (x) e Oj (u(x)), a.e. x e
a2(x, y) e Oj (U(x, y)), a.e. (x, y) e Q.

The Yoshida approximation of is given as in (3.4) but with j replaced by j.
Since the derivative of j is Lipschitz, monotone, and contains the origin, it follows by
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Lemma 3 that the special case of (3.2) with j is true. Thus, C2 is 0-monotone [8]
and the desired result follows, since the single-valued C2 equals its minimal section.

We define the realization of (2.6) in Lr() x Lr(Q), 1 <_ r < oc, as follows. For
r >_ 2, Cr is the restriction of C2 to Lr() x Lr(Q), and for 1 _< r < 2, Cr is the
closure in Lr(t) x Lr(Q) of C2.

COROLLARY 3. The operator Cr is m-accretive in Lr(t) x Lr(Q) for 1

Proof. Let (I + C2)([uj, Uj]) 9 [fj,Fj], j 1, 2, and assume [fj, Fj] e nr(f) x
nr(Q) if r k 2. Set j(s) [sl r, s e JR. From Proposition 4.7 of [8] it follows that

Taking [f2, F2] [0, 0], we see that L(gt) x Lr(Q) is invariant under (I + eC2) -1,
and then the estimate shows this operator is a contraction on that space. We have
Rg(I+eCr) Lr(gt) x Lr(Q) directly from the definition for r k 2, and for 1 _< r < 2,
Rg(I + eC) D L2(t) x L2(Q), which is dense, so the result follows easily.

Remarks. The Cauchy-Dirichlet problem for the regularized model (1.1) is well
posed in Lr(gt) x Lr(Q) when a(u) u, b(U) U, and r > 1. This follows from
Corollary 3 and the theory of evolution equations generated by m-accretive operators
in a uniformly convex Banach space. For example, from [19] we recall the following:

If E WI,(0, T; X) and wo e D(Cr), where Cr is m-accretive on the uniformly
convex Banach space X, then there exists a unique Lipschitz function
w’[0, T] X for which

w’(t) + Cr (w(t)) f(t), a.e. t e (0, T),

w(t) e D(Cr) for all t e [0, T], and

(0) 0.

See [4] for details (Theorem III.2.3) and references. By applying this result to the
operator Cr given in X _= Lr(t) x Lr(Q), 1 < r < oc, we obtain a generalized strong
solution w(t) -[u(t), V(t)] of the system

o(, ) [ OU(x, , )
Ot + Au(x, t)+ Ja -fit dy

f(x, t) +/a f(x, y, t)dy, x e gt, t e (0, T),

u(s, ) o, s r,

Ot + BU(x, y, t) F(x, y, t),

(, , ) e o.(u(x, , ) .(x, )), ou(x, , ) + (, , ) o,

(x, o) o(), U(x, , o) Vo(, ).

sFx,

The restrictions on the data [(t) -[f(t),F(t)] and w0 --[uo, U0] can be considerably
relaxed in the Hilbert space case r 2 [8].
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By applying Proposition 1’ similarly, it follows that corresponding results for
the matched model are obtained. Thus we obtain a generalized strong solution in
Lr(f) x Lr(Q), 1 < r < oc, of the system

o(, ) f ov(, , )
Ot + Au(x, t)+

j
dy

f(x, t)+ / F(x, y, t)dr, x e f, t e (0, T),

u(s, ) 0, s e r,

OU(x,y,t) + BV(x, y, t) F(x, y, t), y eot

v(, , ) u(x, ), e r,

u(x, o) o(), V(x, , o) Vo(x, ).

This follows as above from the analogue of Proposition 3 and Corollary 3.
We return to consider the fully nonlinear model (1.1). The generator of this

evolution system will be obtained by closing up the composition of C2 with the inverse
of [0qo, 0] in Ll(f) LI(Q). Thus, we begin with the following.

DEFINITION. C[a, b] If, F] if C2[u, V] If, F] and a e Oqo(u) in L2(), b e
O(V) in L2(Q) for some pair [u, V] as in (3.1).

LEMMA 4. The operatorC is accretive on L(f)L(Q) if either Om is a function
or if both 099 and 0 are functions.

Proof. Let e > 0 and suppose that (I + eC)[aj, bj] [fj, Fj] for j 1, 2. Thus
we have eC2[u, Uj] [f -a,Fj -b], a e Oqo(uj), bj e O(Uj) as above. First we
choose a(s) sgn-(s), the Yoshida approximation of the maximal monotone sgn+,
apply Lemma 3 and obtain

(a a2, sgn-(u u2))L:(a) + (bl b2, sgn-(U U2))L(Q)
_< J[(fx f2)+[[LI(G) W [[(El F2)+[ILX(Q).

If 0o and 0 are functions, then

(hi a2)sgno+(u u2) (a a2)+,
(b b2) sgno+(U1 V2) (b b2)+,

so letting 5 0 gives

(3.5)
II(a a2)/llL,(.) / II(bx b2)+llL(O)

--< II(f f2)+llLx(,) q-II(F F2)+IILI().
The same holds for negative parts, so it follows that (I + eC)- is an order-preserving
contraction with respect to L(fl) L(Q) for each > 0.

Next we suppose Om is a function. Choose j(s) s+, so that Oj sgn+, and
then set

a(x) sgno+(U u2 + a a2) e sgn+(u u2) n sgn+(a a2),
a2(x,y) sgno+(Vl U2 + b b2) e sgn+(U U2) n sgn+(b b2).
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Proposition 3 applies here to give (3.5). A similar estimate for negative parts yields
the result.

Although C is not accretive on Lr for 1 < r, we can obtain L estimates when
the graphs 0, 0(I) are not too dissimilar.

COItOLLAItY 4. If (I + eC)[a, b] 9 If, F] with e > O, then

(3.6)
IIb+IIL (Q) max(bo(k),

where k
_
max(aX(JJf/JlL ), b-X(JJF/[I)).

Remarks. Here a0 is the minimal section (0)o, a1 is the minimal section of
(0)-1, and b0, bl are defined similarly from 0. Specifically, we obtain an ex-
plicit a priori bound on I[a+[[L(a) and [[b+[[L(Q when [[f+[[L(a)inRg(Oqo) and
[[F+[[L(Q) E Rg(O). By similar estimates for negative parts, we obtain explicit esti-
mates on ][al[L( and I]bl]L,(Q) for any pair f e Lc(fl), F e Lc(gt) if Rg(Oo) lit
and Rg(O() ]R or (trivially) if both Rg(Op) and Rg(O) are bounded in ]R. Finally,
we note that in the special case , we obtain

Proof. By the choice of k > 0 we have

for some pair 11, 2. Subtract these from the operator equation, multiply by either

sgn-(u k), sgn2(U k)

or by
sgn0+ (a tl "" U k), sgn0+ (b- t2 -- U k),

depending on whether 0qa and 0(I) are functions or Om is a function, respectively.
Apply Lemma 3 and let i 0 or apply Proposition 3, respectively, to obtain

[l(a 1)+[IL1() + ]](b_
[l(f+ tl)+llLl() --[[(F/

The right side is zero, so the result follows.
PROPOSITION 4 (Moser). Let (u, U) 6 W’P(I2) x YYq be a solution to

B(U) + 7’# F in "W,
e Om(TU- u).

(a) If (f, F) e Lr’ (12) Lr’ (Q) with r’ > , and

(2.2c’)

where go e L’ (2), then u
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(b) If, additionally, F e L[2; Lt’ ()] with t’ > ,
(2.3c’)

where ho e Lc[; L (f)], and m satisfies the growth condition (2.5) and re(O) O,
then U e L(Q).

Proof. (a) Estimate (2.7) of Proposition 1 shows that A# E L’ (), so that

A(u) f- A’# ] E Lr’ ().

Lemma 3 of [23] can now be used to conclude u

(2) Define U U- ul. Since B(U) B(U), it follows that

B(U) / "’# F in PP, # Om(/U),

and for almost every x , and every V PPq

with #(x) E Om(’U(x)). We will now use Moser iteration with (,) to conclude

IIU(x)llLOo(f) C, where C is to be chosen independently of x

If U(x) Lr(f) (r q suffices for the first iterate), define s 1 + (r- t/tq)
( + , 1). Let H e CI(]R) satisfy H(s) Isl 8 if Isl _< so, H affine for Isl > so, and
define G(s) f IH’()lq d. Since H has linear growth, it follows that G() e PYq.
Substituting G(U) for V in (,) gives

The first term of the formula above is bounded below using (2.3c). To estimate the
second term, use

(i) #U >_ m(U) (as m(0)--0), and

(ii) sgn() sgn(G()) (so that G()/ >_ 0 when : 0)
to get

,v(u) ,u v(U)lU > v(U)lU
>  olVl  (V)lV colVl - l (V)l,

co IVyuIqa’(u) + co IU]q-]G(U)[ 5 FG(U) + hoG’(U).

The first term may be written as [VvH(U)q which, using the Sobolev embedding
theorem, is bounded below by

Ln-q
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where e > 0 can be chosen arbitrarily small (see (2.9)). The right-hand side is bounded
using Hblder’s inequality.

c(e)llH(U)llqL" + Jr IUla-la(U)l-q/(n--q) (v)_
1__ (IIFIILt,()llG(f)llLt(f) + iihOiiLt
CO

I 1.,
(r as minq<r< r/(r), it follows that;(1+ -t/qt))q. If is chosen

< max[l,
The result now follows by iteration of the above estimate.

THEOREM 1. Assume the hypotheses of Proposition 1, Corollary 1, Lemma 4,
and Proposition 4. Also, assume that Rg(Oo) and Rg(OO) are both bounded or that
both are equal to JR. Then C, the closure of C in LI() x LI(Q), is m-accretive.

Proof. Let f E L(ft) and F L(Q). Corollary 1 asserts there is a solution of
(2.12). If the graphs 0o and 00 have bounded range, then a L(), b Lc(Q),
and it follows from Proposition 4 that u E L2() and U E L2(Q). This shows
C2[u, V] ) [a f, b F], so (I + C)([a, b]) 9 [f, F]. Thus, Rg(I + -) is dense in and,
hence, equal to L(ft) L(Q).

If the ranges of 0o and 0(I) equal JR, then by Corollary 4 any solution satisfies

Ilalls_,<><,() < K, IlbllL() K,

where K depends on f and F. Replace 0o,00 by the appropriately truncated
0K, 0OK.

The solution with these truncated graphs, then, is a solution of the equation with
the original graphs, so we are done.

COROLLARY 5. Under the hypotheses of Theorem 1, problem (1.1) has a unique
generalized solution (a,b) e C[O,T;L(2) L(Q)], provided the data satisfy (f,f) e
LI[0,T; n(gt) L(Q)], and (a(0), b(0)) e D(C).

This follows from the Crandall-Liggett theorem [9], which is proved by showing
that the step functions (aN, bg), constructed from solutions to the differencing scheme

(3.7) (an,bn) -(an-,bn-) + TC(an, bn) T(fn, Fn)

(T --), converge uniformly when the operator C is m-accretive. Benilan [6] proves
that these generalized solutions are unique.

All of our results hold for the matched microstructure model problem. Specifically,
Lemma 4 and Corollary 4 are obtained from Proposition 3, and Proposition 4 is
actually simpler for the matched problem. The analogues of Theorem 1 and Corollary 5
show that the matched problem (1.1a), (1.1b), (1.1c’) has a unique generalized solution
(a, b) e C[0, T; Ll(a) L(Q)].

The next theorem shows that if the data is further restricted, the generalized
solutions will satisfy the partial differential equation (1.1). The following notation is
used:

nr(T) Lr [0, T; nr(gt) x Lr(Q)], 1 _< r <_ x,
v
])(T) LP [0, T; Wo’P(2)] Lq[0, T; Wq],

9(T) W, [0, T; W-,p (gt)] W,q [0, T; W].
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THEOREM 2. Assume the hypotheses of Theorem 1 hold and in addition that
(f,f) e LI(T) N V(T)’ and (a(0), b(0)) e D(C) Y’. Then the generalized solutions
of Corollary 5 satisfy

(3.8a) (a, b) e 9(T), (u, U) e ;(T),

(3.8b)
0
O--(a,b) / (Jr(u)- ’#, B(U) d-/’#) (f,F) in V(T)’,

(3.8c) (a, b) e (0(u), O(U)), # e OCn()u

Proof. The results of Grange and Mignot [15] show that the step functions (aN, bN)
and (uN, UN) generated from the differencing scheme (3.7) converge weakly in V(T)
and V(T), respectively. Moreover, equation (3.8) will be satisfied in the limit, pro-
vided the weak limits (a, b) and (u, U) satisfy (a, b) e (0(u), O(U)). To establish
this inclusion, let (v, V) E V(T) and (5,5) E~(O(v),O(Y)). The growth conditions
on and (I) guarantee that (aN, bN) and (, b) V(T)’ are functions, so it is possible
to define (aN 5, bg b)s to be the pair of functions truncated above and below by
:t=s (s > 0): This pair of functions is bounded in L(T) and converges in LI(T) to
(a- 5, b- b)8, and so converges in Lr(T) for 1 _< r < c. If r >_ max(p’, q’), it follows
that Lr(T) C ))(T)’, so the sequence (aN -5, bN -)s converges strongly in V(T)’.
The monotonicity of 0 and 0(I) imply

0(_ I (aN 5, bN )s, (uN-v, Un V) l.
Passing to the limit as N c and then letting s - c yields

0<_ ((a-5, b-), (u-v, U- V)/, (a, e

Since (0(.), 0(I)(.)) is maximally monotone, it follows that (a,b) e (0(u), O(U)).
Finally, we note that the corresponding solution of the matched problem satisfies

(3.8a’) (a, b) e 9(T), (-U, U)e V(T),

(3.8b’) O---(a b)4- (Jt(’U) B(U)) (f,F) in Vo(T)’tot

(3.8c’) (a,b) e (O(’U),O(U)), U e Wo,

where the space ];o(T) is given by

with the appropriate norm for which (’(U), U) V(T) for each U )o(T).
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