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Declarative visual programming languages (VPLs), including spreadsheets, make

up a large portion of both research and commercial VPLs. Spreadsheets in particular

enjoy a wide audience, including end users. Unfortunately, spreadsheets and most other

declarative VPLs still suffer from some of the problems that have been solved in other

languages, such as ad-hoc (cut-and-paste) reuse of code which has been remedied in

object-oriented languages, for example, through the code-reuse mechanism of

inheritance. We believe spreadsheets and other declarative VPLs can benefit from the

addition of an inheritance-like mechanism for fine-grained code reuse. This dissertation

first examines the opportunities for supporting reuse inherent in declarative VPLs, and

then introduces similarity inheritance and describes a prototype of this model in the

research spreadsheet language Forms/3. Similarity inheritance is very flexible, allowing

multiple granularities of code sharing and even mutual inheritance; it includes explicit

representations of inherited code and all sharing relationships, and it subsumes the

current spreadsheet mechanisms for formula propagation, providing a gradual migration

from simple formula reuse to more sophisticated uses of inheritance among objects.

Since the inheritance model separates inheritance from types, we investigate what notion

of types is appropriate to support reuse of functions on different types (operation

polymorphism). Because it is important to us that immediate feedback, which is

characteristic of many VPLs, be preserved, including feedback with respect to type

errors, we introduce a model of types suitable for static type inference in the presence of

operation polymorphism with similarity inheritance.
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Similarity Inheritance:

A Model of Inheritance for Declarative
 

Visual Programming Languages
 

Chapter 1: Introduction 

We are interested in advancing the expressive power of visual programming 

languages (VPLs), especially those that are both declarative and responsive. By 

declarative we mean that programming is a matter of specifying the relationships among 

data in the program. (This is in contrast to languages in which data is changed directly or 

by sending messages to objects to modify their state.) By responsive, we mean that 

whenever any new piece of information enters the systemsuch as when the system 

computes new values or the programmer edits the programthe effects are immediately 

and automatically reflected in the displayed portion of the program's results. 

This research has been prototyped using a spreadsheet language. Spreadsheets 

are not only declarative and responsive, they are also used by a wide audience, including 

end users. We believe some of the powerful features of modem programming languages 

could benefit end users as well as programmers as long as the features are provided by 

mechanisms that allow for gradual migration from very simple use to sophisticated use. 

Spreadsheets have proven to be a popular programming paradigm, accessible even to 

non-programmers. Current spreadsheets, however, suffer from some of the problems 

that have been solved in other programming languages. For example, in other 

programming languages, object-oriented inheritance mechanisms have improved upon 

ad-hoc (cut-and-paste) reuse of code, but spreadsheets still support only ad-hoc reuse 

through copy/paste and formula replication. Thus spreadsheet users must remember the 

reuse relationships themselves and maintain them manually whenever a reused formula 

changes. Some commercial spreadsheets such as Excel® have a few additional 

conveniences, such as automated formula adjustment when a new copy of a linked 
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spreadsheet is made. However, these features are simply editing conveniences, and the 

user is still left to manually maintain the reuse relationships. 

Incorporating inheritance into declarative VPLs could result in stronger support 

for formula reuse than is found in current spreadsheets. However, existing models of 

inheritance do not seem suitable for the spreadsheet paradigm because they introduce 

concepts foreign to spreadsheets, such as message passing. The main goal of this 

research was to find an approach to inheritance-like code reuse suitable for declarative 

VPLs such as spreadsheet VPLs. 

We use the term spreadsheet VPLs to refer to a variety of systems that follow the 

spreadsheet paradigm, from commercial spreadsheets to more sophisticated research 

VPLs that follow the declarative, one-way constraint evaluation model. The essence of 

the paradigm is summarized by Alan Kay's value rule for spreadsheets [Kay 1984], 

which states that a cell's value is defined solely by the declarative formula explicitly 

given it by the user. In addition, as mentioned earlier, spreadsheets are responsive. We 

clarify the definition of responsiveness in terms of Tanimoto's liveness scale [Tanimoto 

1990]. Liveness describes the amount and availability of semantic feedback provided to 

the programmer. At level 1, no feedback is provided. At level 2, the programmer can 

receive semantic feedback on request (such as from an interpreter). At level 3, 

incremental semantic feedback is automatically provided after each program edit, and all 

affected on-screen values are automatically redisplayed (as in the automatic recalculation 

feature of spreadsheets). At level 4, the system responds to edits as in level 3, as well as 

other events such as system clock ticks. Responsive refers to level 3 or greater liveness. 

In this dissertation we present a new approach to inheritance suitable for 

declarative VPLs, and an instantiation of the approach in the research spreadsheet VPL 

Forms/3 [Atwood et al. 1996; Burnett and Gottfried 1998]. The approach, called 
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similarity inheritance, provides a concrete way of sharing behavior among objects in a 

declarative, responsive VPL. The unique attributes of similarity inheritance are that it: 

is flexible enough to allow sharing at multiple granularities and even allows mutual 

inheritance; 

includes an explicit visual representation of all the object's unique and shared 

behaviors, rather than leaving some behaviors implied through parenthood; 

subsumes the current spreadsheet edit-based mechanisms for formula propagation, 

unifying formula reuse with inheritance; 

brings object-oriented concepts to declarative VPLs without using external languages 

or macros. 

1.1 Inheritance and Reuse 

Inheritance as a language feature is one way to enable reuse; however, the 

literature uses the term reuse in many contexts. The majority of uses of the term fall into 

the following categories: 

1. Code sharing: the structured programming technique of encapsulating procedures 

for use from different parts of a program is widely used in almost all programming 

languages. In object-oriented languages, code sharing is usually realized through 

inheritance, which allows methods (procedures) to be shared by many objects. 

Polymorphism allows code to be shared over a wide range of types. 

2. Code components in repositories: pieces of code are collected in a library where 

they are available for reuse. 

3. Design and other noncode artifacts: design patterns, specification reuse, and reuse 

of any other product of the software development process. 

4. Organizational or management issues: nontechnical ways to facilitate and promote 

reuse in the workplace. 

While the context for similarity inheritance is the first category (code sharing), we 

will also explore opportunities for supporting reuse already present in declarative VPLs 

(such as spreadsheet VPLs) in the context of the second category (code repositories). 

Additionally, we will spend some time discussing the implications of similarity 
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inheritance for static typing and, specifically, polymorphism. Thus reuse provides a 

context for all of the research described. 

1.2 Introduction to Forms/3 

The ideas in this dissertation have been prototyped in the research spreadsheet 

language Forms/3 [Atwood et al. 1996; Burnett and Gottfried 1998]. This section 

provides the necessary background in Forms/3 to understand the examples in later 

chapters. 

A Forms/3 programmer creates a program by using direct manipulation to place 

cells on forms (spreadsheets) and to define a formula for each cell using a flexible 

combination of pointing, typing, and gesturing. A program's calculations are entirely 

determined by these formulas (see Table 1.1). The formulas combine into a network of 

one-way constraints, and the system continuously ensures that all values displayed on 

the screen satisfy these constraints. 

formula ::= BLANK I expr 
expr ::= CONSTANT I ref I infixExpr I prefixExpr I ifExpr 

infixExpr : := subExpr infixOperator subExpr 
prefixExpr .. unaryPrefixOperator subExpr I binaryPrefixOperator subExpr subExpr 
ifExpr ::= IF subExpr THEN subExpr ELSE subExpr I 

IF subExpr THEN subExpr 

subExpr CONSTANT I ref I (expr) 
infixOperator +1-1*1/IANDIORI=1... 
unaryPrefixOperator ROUND I CIRCLE I ... 
binaryPrefixOperator ::= APPEND I ... 

ref ::= CELL I MATRIX I ABS I ABS [CELL] I MATRIX [subscripts] I ABS [MATRIX] I 
ABS [MATRIX] [subscripts] 

subscripts ::= matrixSubscript @ matrixSubscript 
matrixSubscript ::= expr 

Table 1.1 A subset of the grammar for the formula language used in this 
dissertation. Not included in this subset are the complete set of operators and 6 "pseudo 
references " I, J, NUMROWS, NUMCOLS, LASTROW, and LASTCOLwhich are 
used in matrix subscripts. 
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As this brief description shows, like other spreadsheet languages, Forms/3 is 

declarative and responsive. One of our goals was to maintain these two features, 

incorporating them into the support for reuse. 

Even before the addition of similarity inheritance, Forms/3 has long supported an 

extensible collection of types. Attributes of a type are defined by formulas in the cells on 

a type definition form (called a visual abstract data type form, or VADT form). An 

instance of a type is the value of a cell, which can be referenced just like any other cell. 

For example, the built-in circle type shown in Figure 1.1 is defined by cells defining its 

radius, line thickness, color, and other attributes. One way to instantiate a circle is to 

copy the circle form, changing any formulas necessary to achieve the desired attributes 

(as in the figure); another way is to graphically define its attributes [Gottfried and Burnett 

1997], such as by sketching a new circle or by stretching an existing circle by direct 

manipulation. The graphical way is a shortcut for the first way, and we will use only the 

first way in this dissertation. 

45,50LID 

radius DASH 

L,DOUBLY -DAS 

I, 1;1,1,1 

OLID 

radius v.DASH 
newCircle DOUBLE .5 

thickness lineStyle 

newCircle
 .151_4195j 

fillforeColor fillBackColor
 

Figure 1.1 The built-in circle type. The white form primitiveCircle is a built-in form 
that defines a prototypical instance of type primitiveCircle. The gray form 
392-primitiveCircle is a copy that has been modified to describe a different instance. The 
circle in cell newCircle is defined by the other cells, which specify its attributes. To refer 
to the circle elsewhere in the program, a formula can reference 
392-primitiveCircle:newCircle. The programmer cannot view the formula (primitive 
implementation) of cell newCircle, but can view and specify the other cells' formulas by 
clicking on their formula tabs (CI). Radio buttons and popup menus (e.g., cell 
lineForeColor) provide a way to reliably enter constant formulas when only a limited set 
of constants are valid. 
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VADT forms define not only types, but also the data and behavior of objects. 

User-defined objects (and types) are constructed by the programmer on VADT forms and 

then used in the same way as built-in objects like the circle. To implement a new type of 

object, the Forms/3 programmer provides cells and formulas to construct one (or more) 

prototypical objects which, as one would expect on a spreadsheet, respond with 

immediate visual feedback as each new formula is entered. The formulas specify the 

internal data of the object, how it should appear visually on the screen, and operations 

that it provides. 

In addition to cells, Forms/3 provides collections of cells as matrices (groups of 

cells in an indexable grid) and abstraction boxes (unordered groups of cells and 

matrices). Collectively, cells, matrices and abstraction boxes are called referenceable 

objects (ROs) because they are the programming objects that can be referenced in a 

formula. Because the term "referenceable object" is not particularly evocative, we will 

sometimes refer instead concretely to the possible ROs for greater clarity, e.g., "cell or 

cell group." 

The internal data of an object is defined by cells and matrices that are placed 

inside abstraction boxes. The default formula for an abstraction box is the composition of 

its components. For example, Figure 1.2 shows a stack implemented by a one-

dimensional matrix (inside abstraction box Stack), in which the programmer has added 

the sample value "hi." Because Stack has a sample value, as soon as the formula for cell 

top is entered, cell top displays Stack's top element ("hi"). Likewise, the programmer 

specifies the stack's image to be the top element displayed above a stack of lines, and 

then sees how the image appears for the sample stack immediately after entering the 

formula. The other formulas are also programmed in this concrete way; they reference 

abstraction box Stack (or its contents) and immediately display their own results based 

on the sample. The sample values on copies of form Stack can be replaced by references 
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to other cells in the program, which provides the functionality of incoming parameters in 

traditional languages. 

lines LJ aline 

Stack [items] [1@lastcol] 
if (Stack [items] [NUMCOLS] < 1.) then "<<empty>>" 
else (compose top at (0 0)

with lines at (0 (height top) ) ) 

127 ! 
rhi 1271 

items append Stack [items] new-matrix 

Hide 

Foos 

Qt Cell (Stack [items] [NUMCOLS] - 1 

P22Le_r_l 
items Stack [items] 

Figure 1.2 Type definition form for a stack object. (Left): The user's view of Stack 
hides the internal implementation and displays stacks using the formula the programmer 
has provided for the distinguished cell Image. (Right): The stack implementor's view of 
object Stack with most of the cell formulas visible. (Matrices in Forms/3 are not required 
to be homogeneous.) 

1.3 Organization 

The next chapter examines related work, and then we begin in Chapter 3 with an 

analysis of opportunities for explicit support for reuse already present in declarative, 

responsive VPLs. Chapter 4 introduces similarity inheritance, which further enables 

reuse of code. Chapter 5 defines a new static type system supporting similarity 

inheritance and providing polymorphism for user-defined operations. Chapter 6 

discusses future work and Chapter 7 concludes. 
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Chapter 2: Related Work 

This chapter discusses related work for each of the topics of the next three 

chapters. First, we examine previous research on reuse in general for VPL code. 

Second, we examine related aspects of inheritance research: applying inheritance to the 

spreadsheet paradigm, fine-grained approaches to inheritance, and approaches to 

inheritance without classes. Third, we discuss previous research in the areas of type 

inference and type systems for visual programming languages. 

2.1 Reuse of VPL Code 

We have been able to locate little previous literature on any aspect of reuse for 

VPLs. The previous approaches that are reported differ from ours in both the nature of 

the repository and the type of reuse supported. For example, reuse is facilitated in 

HOLON/VP [Koike et al. 1996] by allowing generic code modules to be composed by 

sharing objects. The emphasis is on supporting the composition of objects within a given 

program, however, not a general code repository. Pree's work on design books [Pree 

1995] discusses reuse in the context of understanding and using frameworks. This 

approach has a producer-intensive focus on reuse for specific domains, and is not geared 

toward general support for arbitrary components. 

A few VPLs provide some environmental support for a subset of the reuse 

questions we will identify in Chapter 3. One example is the "what kinds of components 

does the repository contain?" question. Fabrik [Ingalls et al. 1988] provides overview 

support in a simple parts bin that allows drag-and-drop access to components filed under 

different categories. While this is an effective strategy for easily categorized components, 

it does rely on the component producer to provide meaningful categorizations. National 

InstrumentsTM LabVIEW® provides similar support by placing component icons in a 
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hierarchical menu. The producer, to add a component, must define connectors 

(identifying the inputs and outputs) and save the component into a library (which 

determines its categorization). The producer is also encouraged to give the component a 

custom icon. Pictorius® Prograph CPX provides a hypertext class hierarchy browser that 

automatically includes new classes as they are created. The browser requires no extra 

producer work, but includes code from only the current project. 

The Jacquard editor [Gorlick and Quilici 1994] addresses the question of finding 

relevant components. Each user action may narrow the search space by constraining the 

input or output of an empty socket (component placeholder). The user can then zoom in 

on an empty socket to examine the compatible components. If the number of possible 

components is still large, they are displayed hierarchically. To use this technique 

effectively, the consumer must be certain of the number and types of inputs and outputs 

for the needed component. 

Vista [Schiffer and FrOhlich 1995] helps the consumer figure out how to use 

components by making "public processors" explicit. Public processors are the 

(sub)components that the producer anticipates the consumer will modify via substitution. 

Public processors therefore specify expected reuse of the component. 

In the field of software reuse outside of VPLs, recent research has emphasized 

systematic reuse incorporating reuse into the business of software development 

with important responsibilities expected of the producers, consumers, and management 

[Mili et al. 1995; IEEE Software 1994; Sitaraman 1996]. While these roles are 

appropriate for software professionals, the context of our approach is to enable reuse in 

situations where institutionalized support is not available, such as for informal or end-

user repositories. 
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2.2 Inheritance 

Perhaps the most widely-used device for reuse at the level of code sharing is 

object-oriented inheritance. The concept of similarity inheritance is related to object-

oriented inheritance, although we do not claim that our approach is object-oriented 

because it does not fall under standard definitions of object-oriented programming (for 

example, that of [Wegner 1987]). Specifically, we do not require dynamic binding of 

message to method and our approach is declarative, so there is no notion of mutable 

instance variables. 

2.2.1 Combining Spreadsheets with Object-Oriented Programming 

There has been little work to date on approaches to inheritance for spreadsheets 

and more advanced spreadsheet languages, perhaps because there has been only a little 

work that incorporates support for objects. Commercial spreadsheets provide support 

only for a few built-in typesnumbers, Boo leans, and stringsas first-class values, 

and do not provide a formula-based mechanism allowing users to add new types of 

objects. Although some spreadsheets gain partial support for additional objects through 

the use of macro languages and incorporation of other programming languages (such as 

Visual Basic), these approaches do not maintain a seamless integration with the 

spreadsheet paradigm, because they use notions such as global variables, state 

modification, and imperative commands in a language different from the formula 

language of the spreadsheet. 

A few research spreadsheet languages have also incorporated external languages 

to support object-oriented features. ASP (Analytic Spreadsheet Package) is a 

spreadsheet language in which every cell can be any object, and every formula is written 

in Smalltalk code [Piersol 1986]. Smedley, Cox, and Byrne have incorporated the visual 

programming language Prograph and user interface objects into a conventional 
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spreadsheet for GUI programming [Smedley et al. 1996]. Both of these approaches add 

some of the power of object-oriented programming, but do not enforce consistency with 

the value rule, since global variables and state-modifying mechanisms circumvent it. 

C32 [Myers 1991] is a spreadsheet language that is part of the Garnet and Amulet 

user interface development environments [Myers et al. 1990; Myers et al. 1997]. C32 

uses graphical techniques along with inference to specify constraints in user interfaces. 

C32 does not itself feature the graphical creation and manipulation of objects. Instead, 

this function is performed by another part of the Garnet/Amulet package. The 

combination of tools in the Garnet/Amulet package features strong support for 

programming with built-in GUI objects via visual techniques, but does not support any 

other kinds of objects, which must be written and manipulated in Lisp/C++. 

Some research spreadsheet languages have moved toward expanding the types of 

objects supported without the use of external programming languages. One of the 

pioneering systems in this direction was NoPumpG [Lewis 1990] and its successor 

NoPumpII [Wilde and Lewis 1990], two spreadsheet languages designed to support 

interactive graphics. These languages include some built-in graphical types that may be 

instantiated using cells and formulas, and support limited (built-in) manipulations for 

these objects, but do not support complex or user-defined objects. 

Penguims [Hudson 1994] is a spreadsheet language for specifying user 

interfaces. Penguims supports composition of objects by collecting cells together, and 

formula inheritance at the object level. Unlike our work, it employs several techniques 

that do not conform to the spreadsheet value rule, such as interactor objects that can 

modify the formulas of other cells, and imperative code similar to macros. 
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2.2.2 Fine-Grained Inheritance 

Although most approaches to inheritance operate at the granularity of entire 

classes or objects, there is some research exploring inheritance at finer granularities. 

Mixins [Bracha and Cook 1990] are a technique for providing inheritance on a more fine-

grained scale than whole classes. Also known as abstract subclasses, mixins are partial 

classes that exist only to be inherited by other, complete classes. They usually define just 

a small piece of functionality and, combined with multiple inheritance, can cut down on 

the code duplication that arises when the language allows inheritance only at the class 

level. Another approach to fine-grained inheritance is found in the language I+ [Ng and 

Luk 1995]. I+ inheritance is not deteimined by subclassing, but by explicitly listing the 

methods to inherit. 

The fine-grained aspects of similarity inheritance are closer to the 1+ approach 

than to the mixin approach. Some differences however, are that similarity inheritance 

allows even finer-grained inheritance than methods, and is flexible enough to allow 

mutual inheritance. Also, our approach is particularly focused on maintaining attributes 

important to spreadsheet languages, such as concreteness and immediate visual feedback, 

attributes that are not present in I+. 

2.2.3 Inheritance Without Classes 

Similarity inheritance supports inheritance without subclassing or subtyping, 

because we believe these concepts introduce an unnecessary cognitive burden on the 

programmer or end user. Without subclassing or subtyping, the programmer need not 

spend time contemplating the best relationship among classes, organizing subclasses into 

a hierarchy, or understanding the subtle distinctions among subclasses, subtypes, and 

interfaces. We believe these concepts are beyond the capabilities of end users with no 
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formal programming training, and even for programmers, they require valuable time and 

effort. 

Traditionally, object-oriented inheritance is a sharing mechanism between a class 

and its subclass. In contrast, prototype-based languages let programmers work directly 

on the objects themselves. Our approach extends the prototype idea of concreteness to 

the spreadsheet paradigm, by allowing programmers to see and interact with objects as 

directly as a spreadsheet user interacts with numbers and text in a typical spreadsheet, 

while also including the power of inheritance. 

In most prototype-based languages, inheritance is accomplished through 

delegation. With delegation, if an object cannot handle a message directly, it delegates it 

to its parent object, which in turn handles it or delegates it to its parent, and so on. 

Prototypes remove the need for the concepts of class, subclass and instance since any 

object can be used as the basis for defining a new object. 

Self [Ungar and Smith 1987; Ungar et al. 1991a; Ungar et al. 1991b] is a 

prototype-based language that uses a parent slot in each object to keep track of which 

object it inherits from. Multiple inheritance is provided by multiple parent slots that may 

be given priority levels. Name conflicts are resolved first by priority level, then by a 

special tie-breaker rule and if conflicts still occur, a run-time ambiguous message error is 

generated. Parent slots can even be altered dynamically, a technique the Self developers 

call dynamic inheritance. Because prototype languages are known for their lack of 

structure compared to class-based languages, Self uses traits objects as an optional 

technique to factor out common behavior. Similar to mixins, these objects contain only 

the shared behavior and data to be inherited by other objects. 

Object World [Penz 1991; Penz and Wollinger 1993] is a language that, like 

Forms/3, uses visual mechanisms to emphasize concreteness and does not use 

delegation. However, unlike our approach, Object World does not use any inheritance 
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mechanism, instead achieving code reuse through object composition combined with 

automatic message propagation. An important difference between our similarity 

inheritance approach and most prototype-based languages (including Self and 

Object World) is that our model does not use any sort of message passing. 

Kevo [Taivalsaari 1993] is one of the few prototype-based languages that does 

not use message passing. Kevo emphasizes the concreteness and self-sufficiency of 

objects. Operations can be marked as applying to individual objects or to clone families 

which are groups of similar objects automatically inferred by the system. Thus Kevo 

does not require a designated parent prototype for a collection of objects, but there are no 

change propagation mechanisms for objects outside the clone family. Kevo approximates 

multiple inheritance and fine-grained inheritance via a cut/copy/paste metaphor, but 

changes to the original code do not propagate, and must be recopied and pasted by the 

programmer. 

2.3 Type Inference 

Because similarity inheritance allows the programmer a great deal of flexibility in 

the process of creating program objects, it relies on extensive language support to help 

the programmer manage programs. Static type inference is one of the techniques we 

provide to support the programmer. Existing approaches to types are not entirely 

compatible with similarity inheritance, however, so we developed a new approach that is 

fully compatible. This section reviews some of the issues involved in static type 

inference in general and then describes the current state of static type inference in the area 

of VPL research. 
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2.3.1 Type inference in textual programming languages 

Languages differ in the degree of type checking they perform and when it is 

performed. Dynamic typing refers to type checking performed at run-time. Static typing 

refers to type checking performed at compile-time. Static typing's advantage is that it 

detects type-related programming errors earlier, but it is also considered less flexible. 

More flexibility can be added to a statically typed language through polymorphism, 

which allows code and data structures to work with more than one type. While 

polymorphism is inherent in object-oriented languages, it is also possible in other 

language paradigms. 

A statically typed language may have explicit type declarations or it may rely on 

type inference to reconstruct the types of variables and values in a program, relieving the 

programmer of the burden of declaring these types. Because of the advantages of static 

typing, much work has been accomplished in extending type inference algorithms 

originally written for functional languages [Milner 1978] to other language paradigms. 

As type systems become more sophisticated, it also becomes more challenging to 

communicate effectively with the programmer about type errors since not every 

programmer will be an expert in type theory. 

2.3.1.1 Static types in the presence of inheritance 

Two well-known languages representing the class-based approach and the 

prototype-based approach respectively are Smalltalk [Goldberg and Robson 1983] and 

Self [Ungar and Smith 1987]. Although these languages were initially dynamically 

typed, there is research on incorporating static type inference into both. A type inference 

algorithm for a simplified Smalltalk that includes inheritance, late binding, and 

polymorphic methods was presented in [Palsberg and Schwartzbach 1991]. The 

algorithm guarantees that all objects understand all messages sent to them. Self is a 
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prototype-based language that includes both dynamic and multiple inheritance. Like the 

Smalltalk algorithm, the approach for Self in [Agesen et al. 1993] is to derive and solve 

sets of type constraints. Both of these approaches handle types on the coarse-grained 

level of classes or prototypes. 

Imposing a static view of types on a language with inheritance sometimes leads to 

problematic theoretical issues. These issues arise because a fundamental difference 

exists between subtypes and subclasses [Cook et al. 1990; Harris 1991; Liskov and 

Wing 1994]. Subtypes reflect the property of substitutability; they should be able to 

replace supertypes without introducing type errors [Sebesta 1996]. This definition of 

subtypes allows substitutivity of subtypes for supertypes but does not allow overriding 

in order to specialize a subtype. [Castagna 1995] has argued that such overriding is a 

useful mechanism and should not be ruled out of a language. The problem with having 

both is the difficulty of typing methods whose arguments and return type vary from 

supertype to subtype. 

The solution is to separate the notions of subclass and subtype. In separating 

these two concepts, the problem of covariance versus contravariance becomes clear. 

Covariance typifies the conventional use of inheritance for reuse; method arguments and 

results in a subclass are allowed to be subtypes of the arguments and results of the class 

methods. On the other hand, subtyping requires method arguments of a subclass's 

methods to be supertypes (or the same types) as the method arguments of the parent 

class's method. This is called contravariance because the types of a subclass method's 

arguments vary in the opposite way from the method results, which are still allowed to 

be subtypes (or the same types) of the class's method results. Schwartzbach succinctly 

captures the problem's essence as follows: "for programming purposes [in many cases] 

we would like to use covariant specialization. However, [without re-type-checking a 

method in each subclass where it is inherited] only contravariant specialization is 



18 

guaranteed to preserve static type-correctness" [Schwartzbach 1997]. Schwartzbach 

summarizes a variety of proposed solutions to this dilemma, some of which include: 

supporting only covariance despite sacrificing type safety, as in Eiffel [Meyer 1992]; 

restricting a language to invariant specialization, in which a subclass method's type 

signature must match that of the parent class method, as in C++ [Stroustrup 1992]; 

incorporating templates or generic types; incorporating at least some dynamic typing; and 

type-checking each method again in every subclass in which it is inherited. Since our 

approach to type inference is fine-grained, our solution to this problem is most similar to 

this last approach. 

F-bounded polymorphism [Canning et al. 1989] is used to model the inheritance 

that can happen between two classes of objects that are not in a subtype relationship. It 

allows recursive type definitions and supports polymorphism over all objects having a 

specified set of methods. This model expands on the bounded polymorphism model 

[Cardelli and Wegner 1985], which did not allow inheritance apart from subtyping. 

Bruce's bounded matching [Bruce et al. 1995; Bruce et al. 1997] implements the 

equivalent of F-bounded polymorphism. To use bounded matching, the programmer 

provides a type that all suitable types must match in order to type-check correctly. The 

requirement for a match is that a type supports at least the methods of the type it matches. 

For example, an insert method for a binary search tree class might take as argument an 

object whose type matches Comparable, where Comparable is defined to have equal, 

greater-than and less-than methods that operate on the same type as their receiver. 

Formally, two object types, ObjectType{mi:Ti; ...; mk:Tk } and Obj ectType {miai; ...; 

rrin:T}, are said to match if and only if where m, is a method with type signature 

The type expression MyType is used as the type of the self variable. The matching 

technique succeeds in separating subtypes from subclasses but also promotes the use of 

abstract types that define only the minimum required for matching. 
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The functional language Haskell [Peterson et al. 1997] has both types and type 

classes, and this combination provides some inheritance-like characteristics at a finer 

granularity than traditional classes. Type classes are declarations of a type's interface 

and can also include default implementations of interface methods. A type class can 

inherit interface specifications and default methods from other type classes. A type must 

implement (or use a default implementation, if one exists) every method in every type 

class to which it belongs. While most of Haskell's type system allows implicit types 

which are resolved automatically through unification, explicit declarations are needed of 

type classes and of user-defined types' membership in them. 

None of the languages discussed here provide a type system fine-grained enough 

to support similarity inheritance. Most of them reason at the granularity of entire classes 

or objects, and while Haskell reasons at the granularity of interfaces (groups of 

operations), it does so at the added cost of type class declarations. 

2.3.1.2 Understandability of type inference results 

The intent of static type inference is to ease the programmer's burden by both 

eliminating type declarations and preventing type errors from reaching run-time. 

Unfortunately, figuring out what is wrong when a program does not type check correctly 

can be a difficult task for a programmer. 

For Milner-based type inference systems, which reason primarily about 

functions, understandability of the types is a well-known problem. One reason for this 

problem is that when higher-order functions are present, types may grow exponentially 

with respect to the size of the program, as demonstrated in Figure 2.1 and Figure 2.2. 

Even when no higher-order functions are present in a program and the types are small, 

the presence of polymorphic type variables, type constraints and function typesall of 

which must be understood by programmers in order to understand why even an 
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(erroneous) first-order program will not type check-can be barriers to the acceptance of 

type inference systems. 

fun pair x y = fn z => z x y; 

let val x 1 = fn y => pair y y in 

let val x2 = fn y => xl (xl (y)) in 

let val x3 = fn y => x2 (x2 (y)) in 

let val x4 = fn y => x3 ( x3 (y)) in 

x4 (fn z => z) 

end 

end 

end 

end; 

Figure 2.1 A small program 
[Schwartzbach 1997]. 
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To address this problem, Wand presented an algorithm to isolate and explain type 

errors [Wand 1986]. In the algorithm, the two types being compared are each 

represented by a type tree. A type tree is created by expanding a type variable. When a 

type variable is expanded, the reason for expansion is saved. In this manner, each tree 

has a collection of reasons for previous type bindings. When a type error occurs, these 

reasons are reported. Type error explanations, however, may not be scalable with 

respect to program size. For large programs, the two type lists may grow to be very 

large. Bent and Duggan furthered Wand's algorithm by using and modifying the naive 

graph unification algorithm used in the Glasgow Haskell compiler and almost all other 

ML and Haskell compilers [Duggan and Bent 1996]. Their algorithm adds the ability to 

handle aliased type variables, but it does not handle Haskell's type classes. 

Jun and Michaelson presented an approach to improve the ease with which type 

errors can be recognized, by encoding types with colors [Jun and Michaelson 1998]. 

This color visualization approach has been implemented in a visual environment for a 

subset of Standard ML. Each function type is represented as a rectangular block with 

colored blocks inside representing argument and result types (see Figure 2.3). 

Polymorphic types are represented by multi-striped blocks with each stripe representing a 

different type. A scalability issue, however, is that since each type has a representative 

color, the number of colors grows linearly with the number of types, and the 

programmer has to learn and remember which color is associated with which type. 
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Figure 2.3 Type visualization from [Jun and Michaelson 1998]. In the paper 
describing the approach, colors were replaced by these black and white line patterns. 
(The label "real" is not a type, but rather a name for the function.) In this example, the 
vertical striped block represents a real type, and a diagonally striped block represents an 
int. 

2.3.2 Type systems in VPLs 

Few VPLs use explicit type declarations. The reason may be that many VPLs 

have as a goal reducing the number of mechanisms required to specify a program, and 

requiring explicit declarations seems at odds with this goal. In the absence of explicit 

type declarations, language designers are left with the choice of either dynamic typing or 

static typing with type inference. To date, most VPLs (e.g., Prograph [Cox et. al. 

1989], Kid Sim/Cocoa [Cypher and Smith 1995], Chimera [Kurlander 1993], VIPR 

[Citrin et al. 1997], and Formulate [Ambler and Broman 1998]) have chosen dynamic 

typing. 
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Interestingly, the disadvantage of dynamic typing's inability to provide feedback 

about type errors until runtime bears re-examination for responsive VPLs. For 

responsive VPLs, dynamic type checking can indeed produce immediate feedback about 

type errors in many cases, because at level 3 liveness and above, "run-time," "translation 

time," and "program-entry time" are intertwined. For example, in spreadsheet 

languages, concrete, immediate feedback about type errors can be provided by eagerly 

evaluating a formula as soon as it is entered, which is even earlier than the feedback 

about type errors in static approaches for traditional textual languages. If any type error 

occurs in the course of this evaluation, a special value such as "Error" is displayed in the 

cell. This approach features simplicity and immediate visual feedback, but unfortunately, 

it cannot detect all type errors. For example, if cellA had the value "true", the type error 

in the formula "if cellA then (3+4) else (cellA + 4)" would not be detected. 

Our search through VPL literature has revealed only seven VPLs that have 

incorporated static type inference. In about half of these VPLs, systems like Milner's are 

fully incorporated into the VPL, and hence soundness and completeness are preserved. 

ESTL [Najork and Go lin 1990] and CUBE [Najork 1996] are VPLs in this category. 

For example, Milner's type system has been incorporated into ESTL as follows. ESTL, 

an extended version of the dataflow VPL Show and Tell [Kimura et al. 1990], has a 

feature termed consistency, with which values can be compared, conditions tested, etc. 

If such conditions are not met, an inconsistency is said to exist. In this case, the 

inconsistent area is rendered in a different pattern, and processing of affected areas 

ceases to produce output. This feature originally was developed for Show and Tell as a 

visual mechanism to replace Boo leans. In ESTL, the consistency concept also is used to 

reflect type validity. The entire type system is visible to the user, including the 

polymorphic type variables. The types and type variables are represented as icons. 

Since the type system is a visual rendition of Milner's type system, the programmer is 
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required to thoroughly understand the Milner system, including polymorphic types, type 

variables, and types of higher order functions. 

The type system of the functional VPL VisaVis [Poswig et al. 1992; Poswig and 

Moraga 1993] differs from the above in that VisaVis incorporates implicit less ad hoc 

polymorphism. Ad hoc polymorphism means that, for each different monomorphic type 

a function supports, a different implementation is required. That is, only a one-to-one 

relationship is present between a function's supported types and its implementations. 

For example, overloaded built-in operators such as "+" use ad hoc polymorphism. 

(Explicit) less ad hoc polymorphism allows a many-to-one relationship, in which a single 

implementation can be shared by a set of several (explicitly-declared) types. Implicit less 

ad hoc polymorphism infers the elements of each set. This approach is similar to the 

implicit aspects of type classes of Haskell. Some differences are that in VisaVis no 

inheritance-like structure is supported, no explicit declarations are required, and new 

user-defined type classes cannot be added. 

Clover [Braine and Clack 1996] is a functional and object-oriented VPL. Clover 

combines traditional object-oriented features such as (single) inheritance, subtyping and 

method overloading with functional features that include referential transparency, 

polymorphism, curried partial applications, higher-order functions and lazy evaluation. 

The language is completely type safe, but places some restrictions on subtypes such as 

invariant method signatures (subclass method signatures must exactly match the type 

signatures of the class methods) and requires explicit declarations of upper bounds on the 

types of method arguments and results. 

The remaining VPLs with type inference systems have aimed for greater 

understandability of type systems, primarily by emphasizing concreteness in the types 

themselves. Fabrik [Ingalls et al. 1988; Ludolph et al. 1988], which was the first VPL 

to report the use of type inference, is an example. Fabrik is a dataflow VPL that includes 
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an interactive polymorphic type system with some type inference. Fabrik's type system 

is simple, concrete and highly visible. Each node in the dataflow graph contains input 

and output "pins". Wires, which connect nodes, are attached to these pins. Each pin has 

a type that may be either a primitive type, a compound type constructed from only 

primitive types or an unspecified (polymorphic) type. These types can be declared by the 

user explicitly, or they can be derived implicitly. Type checking is performed when a 

user attempts to connect two pins. A pin with an unspecified type acquires a type when 

it is attached to a pin with a known type. If a type mismatch occurs, a message is 

displayed, and the connection is not made. This approach to implicit polymorphism 

seems consistent with the concreteness of the language, but the type system is not as 

fully developed as that of the other languages discussed here. For example, type 

information does not seem to propagate beyond the pins that are directly connected. 

In an unusual application of type inference in VPLs, Pacull introduces a visual 

type system whose goal is not type safety; rather the system infers and propagates 

information for rendering purposes [Vion-Dury and Pacull 1997]. The inference 

system's primitives are a set of visual items referred to as "basic glyphs", such as lines, 

points, polygons, and text. These glyphs are defined by tuples of visual attributes such 

as position, color, size, shape and orientation. The attributes define the way a basic 

glyph should be rendered on the screen. Complex glyphs are a composite of basic 

glyphs, and acquire their attributes through the inference process. 

Forms/3's previous approach to types borrowed heavily from Milner's approach 

but was more concrete [Burnett 1993; Mishra 1998]. The goal was to design a concrete 

approach to types analogous to "naive physics" where the user sees and experiments 

with certain concrete entities and draws conclusions about the way things work without 

proving theorems or dealing with abstract concepts. A significant difference between our 

previous type system and Milner-like systems is that matrices, user-defined types and the 
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primitive types were the only types in Forms/3. No function definition types, tuple 

types, subtypes, recursive types, union types, higher-order types or type constructors 

were included. Our previous system was sufficient to handle Forms/3's features at that 

time, but it did not have the power to support more advanced features such as 

inheritance. 

A common limitation in many of the VPLs' type systems discussed above is that 

they do not support user-defined types. Of those systems that do support user-defined 

types, only the type system of Clover supports inheritance. 
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Chapter 3: Analysis of Opportunities for Explicit Reuse Support in
 
VPLs
 

The main motivation for similarity inheritance is code reuse, in the form of code 

sharing, but other kinds of reuse are also useful. This chapter explores the kinds of reuse 

opportunities that are present, even without inheritance mechanisms in the language, for 

supporting evolving, informal repositories of VPL code. 

3.1 Component Reuse 

It has long been clear that if programmers would reuse code more often, rather 

than reimplementing the same logic again and again, there would be great potential for 

software development cost savings, including not only the cost of creating the code, but 

also the costs of documentation, debugging, testing, and maintenance. Unfortunately, 

enabling programmers to reuse code effectively has not been easy. There are many 

reasons why this is true, including the lack of tools for finding and composing reusable 

code and programmers' perceptions that writing code is easier than locating it, 

determining what it does, and finding out if it works [Tracz 1995]. 

Even though the problems with reuse have been significant, there have still been 

some assumptions upon which potential solutions could be built. These assumptions 

have included the notion that a repository of code was owned by an entity that could 

devise standards and procedures for including code in the repository; the notion that code 

producers would be required to conform to these standards and procedures before their 

code would be allowed into the repository; and the notion of a structured, mature 

repository, organized, for example, into a hierarchy of categories. However, the recent 

advent of informal, evolving, shared repositories of code for collaborative development 
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violates all of these assumptions. The use of the Web as a repository of shared code is a 

prime example. 

The notion of informal, evolving repositories seems to be of rising interest for 

visual programming languages (VPLs). For example, one of Visual AgenTalk's goals is 

that "Environments should allow [end-user programmers] to share, with very little effort, 

programs and program fragments" [Repenning and Ambach 1996]. For VPLs with this 

kind of goal, we have been working on an approach to facilitate code reuse under such 

an informal, evolving repository, and in this chapter we present our results. 

We will confine our definition of reuse in this chapter to the use of an existing 

code component in place of creating a new component. In general, a component is any 

artifact of the software process; we will concentrate on code components, but our 

approach is not limited to code; it also can incorporate on-line documentation, test plans, 

specifications, and other artifacts. We use the term repository to mean a collection of 

components. To distinguish between reuse tasks, even if they are performed by the same 

person, we use the term producer to mean the programmer who is building reusable 

components, and the term consumer to mean the programmer who is interested in using 

these components. Finally, packaging tasks are the work traditionally required of 

producers to prepare a component for inclusion in a formally-controlled code repository, 

such as conforming to standards, preparing documentation, providing test suites, etc. 

In this chapter, we will assume an evolving repository that consists of 

components written using a VPL. We imagine several possible scenarios such as Web-

based repositories of end-user-produced shareware, evolving repositories of code written 

by novices, or informal repositories for new software projects early in their 

development. In these cases, it is reasonable to assume a repository numbering in the 

hundreds of components. Because of our interest in informal, evolving repositories, 
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these are the only two assumptions we make. In particular, we emphasize that our 

approach is designed to work even in the absence of: 

A managing body to enforce standards and oversee the repository. 

A set repository structure such as a hierarchy of component categories or collections. 

Component producers who meticulously provide component packaging to aid the 

consumer. 

While each of these provides valuable assistance to the consumer, informal, 

evolving repositories do not usually feature this level of support. 

3.2 Concrete manifestations of four fundamental reuse problems 

[Biggerstaff and Richter 1989] identify four fundamental reuse problems a 

successful reusability system must address: 

1. Finding components 

2. Understanding components 

3. Modifying components 

4. Composing components 

Given no requirement for classification or packaging by the code producer and a 

constantly evolving repository, how can a consumer deal with these problems? To focus 

our investigation into this question, we have devised several concrete versions of each of 

these problems from the consumer's perspective, in the form of an initial assumption 

(such as "I am not familiar with this repository") and a goal (such as "what kinds of 

components does this repository contain?"). This chapter shows how our approach helps 

the consumer with some of these goals. 

3.2.1 Finding components 

I know precisely what I want; is it here? 

I know generally what I want; which components are relevant? 

I am not familiar with this repository; what kinds of components does it contain? 



30 

There is a component that I've used before from this repository, but I forget the name 

and several other details of it. Where is it? 

This component is not quite what I need; which other components are similar? 

3.2.2 Understanding components 

For this set of questions, the initial assumption is that the consumer has 

somehow narrowed down the search to some potentially useful components for the task 

at hand. 

How do I choose from among these similar components? 

What does this component do (in the most general sense)? 

Does this component do what I need? 

How does this component do what it does? 

Do I need to modify this component? 

What will I save by using this component? 

3.2.3 Modifying components 

At this point, the consumer is considering one potential component, and is 

deciding whether and how to customize it. 

Can I change this component to suit my needs? 

How do I make the changes? 

3.2.4 Composing components 

The consumer is considering one or a group of potential components. These 

questions relate to how to fit them together with each other and with the application in 

which the consumer is trying to place them. 

How do I use this particular component? 

Are these components compatible? 

Which version of this component should I use? 

The work presented in this chapter concentrates on eight of the above questions. 
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3.3 Answering reuse questions 

Our strategy in answering reuse questions for evolving repositories of VPL code 

is to take advantage of the integration between the language and environment in ways that 

remove the assumption that producers must package their code for reuse, but also give 

the consumer help that would not be available in a traditional textual environment. To 

experiment with our ideas, we have integrated a prototype into the Forms/3 language 

environment. The basic reusable component of Forms/3 programs is the form. Saved 

forms have previously only been accessible by file name via a file dialog box. We have 

incorporated interactive access to a code repository in Forms/3, including capabilities 

aimed at answering some of the consumer questions we identified in Section 3.2. 

3.3.1 Overview 

I am not familiar with the repository; what does it contain? 

In our prototype, the consumer encountering the repository for the first time can 

call up an interactive overview of it by pushing the "Repository" button on the main 

Forms/3 window. A repository window opens (Figure 3.1), in which a large scrolling 

pane displays a component graph. Each node in the graph represents one component and 

edges indicate some sort of relationship between components. Edges can indicate 

dataflow (which includes calling and shared-data relationships) or similarity relationships 

which will be described in the next chapter. (In the current prototype, similarity edges 

have not yet been implemented.) 

Every form that has been saved in the Forms/3 directory hierarchy with world-

readable permissions is included in this component graphno special tasks are required 

to prepare the code for submission to the repository. The presence of an edge is 

determined from derived information, made possible by the integration of the language 

with the language environment. This derivation not only relieves the producer from 
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having to document the component's relationship to other components, but also 

guarantees that the relationship information will not become obsolete as changes are 

made. 

Nodes in the graph are labeled with the name of the component. More details 

about the origin of individual components are easily accessible in a popup window. In 

Figure 3.2 the consumer is looking at the detailed view of a node, and can see the 

component's location, author, date, and any packages to which it belongs. 

The Forms/3 language uses packages (similar to Ada packages) to group related 

forms into larger units. The consumer can browse the list of packages found in the 

repository as another way to become familiar with the repository at a coarser granularity. 

The list of these packages can be pulled down from the query menu bar (see Figure 3.1, 

top left). 

Recall our assumption of a repository with hundreds of components. To support 

a larger repository, more sophisticated visualization and browsing techniques would be 

required, for example [Bederson et al. 1996b; Chalmers et al. 1996; Johnson and 

Schneiderman 1991; Spenke et al. 1996]. However, these systems are typically oriented 

toward textual data. VPL-specific features such as browsing a VPL's source code 

according to its visual characteristics might be able to draw from the work on visual 

databases [Corridoni 1996; Egenhofer 1996], but we have been unable to find reports of 

any research to test this idea. 
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Figure 3.1 Repository overview. The large scrolling pane displays components as 
nodes connected by dataflow edges. 
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Package(s): animation/OtherSorts/sort.matrix.avi.pretty/matrixSort.package
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Figure 3.2 Detail view of a repository component. This detail view is pulled down 
from the Sort component (upper left), and shows file name, date, author, packages, and 
the first line of the help file. 

In order to support the capabilities described thus far, an environment either 

needs full parsing capabilities or a source-level understanding of the stored executable 

code. This understanding is necessary to automatically derive relationships, thus freeing 

the producer from having to explicitly document them, a task that would otherwise be 

part of the packaging process. Adding parsing capabilities to a programming 

environment is not difficult for most textual languages, if there is an accessible grammar 

specification. For visual languages, visible grammars and parsing methods are still an 

area of active research. The strategy used in the Forms/3 prototype is to operate on the 

executable code, which is stored in a tokenized representation. 

3.3.2 Search
 

I know generally what I want; which components are relevant? 

Suppose the consumer needs to sort some products according to price and is 

looking for a component that performs sorting. The interactive query facility currently 

allows queries such as on name substring or any component text. For example, the 

consumer can type "sort" into the name field to highlight all nodes that include the 

substring "sort" and then press the "Reduce Graph" button to hide all nodes that are not 
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selected. The query facility also allows searching on author, package and directory, and 

all can be combined. Future work on our approach could allow consumers to search 

based on other attributes such as the types (inferred according to the axioms presented in 

Chapter 5) of a component's inputs and outputs. 

I want a component that I've used before, but I forget the name and other details. Where is it? 

Suppose instead that the consumer has a particular sort in mind. There are many 

components with "sort" in the name in the Forms/3 repository; upon seeing this, the 

consumer may continue to refine the query on this subset of the repository using other 

criteria. For example, the consumer may remember working on the component with two 

other programmers, and thinks one of them may have been the producer of the sort. 

Adding both producers to the query (called authors in the query environment) by 

selecting them from the query menu turns off the highlighting on nodes not associated 

with those authors. The final results of this query are shown in Figure 3.3. 
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(sort2)
 

Figure 3.3 Query results. Before the authors were added to the query, all of the 
components here appeared highlighted. 
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I know precisely what I want; is it here? 

Finally, suppose the consumer is specifically looking for a bubblesort. Queries 

can also include searches over the textual contents (comments, cell names, formulas, and 

even sample values) of a component and any associated on-line documents such as help 

files, test plans, and specifications. The consumer can type "bubblesort" into the 

"Contents query" text box to highlight any component that contains this term in its textual 

contents or associated documents. 

Although the query facility described in this section is not unusual in the features 

it offers consumers, it is innovative in two ways. First the approach supports the ability 

to query without requiring any packaging on the producer's part; and second, its tight 

integration into the language environment prevents the consumer from switching between 

separate tools for searching for code, testing it, and changing it, as will be seen in the 

next section. 

3.3.3 Exploration 

What does this component do? 

When the consumer is ready to investigate the purpose of a particular component, 

a repository browser for a traditional textual language (e.g., CodeFinder [Henninger 

19941) is likely to display the component's source code, but to provide no additional 

support for exploring the component. This is where three features found in many VPLs 

can be leveraged to provide support for component exploration, allowing the consumer 

not only to view the source code, but also to interact with executions of it. 

The first two of these three features are sample values and immediate feedback. 

Returning to the sorting example, to explore a component of interest in the Forms/3 

repository, the consumer double-clicks on its node in the graph. Without switching 

environments, the consumer immediately sees not only the code (formulas), but also its 
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effects on sample values. For example, see Figure 3.4. (The formula tab hanging from 

the bottom of the "input" matrix indicates that new input can be entered here to sort 

values that are different from the sample.) 

These sample values give concrete examples of the computations, illustrating the 

component's function. Sample values are provided by the producer of the component, 

but since providing sample values is the natural way to program and test in Forms/3, no 

special step or extra work is required of the producer. This leveraging of sample values 

to help answer the "What does this component do?" question can be accomplished by 

any VPL, such as by-demonstration and spreadsheet-based languages, that supports 

sample values. 

Does this component do what I need? 

The information provided by the sample values is greatly enhanced by the 

presence of immediate semantic feedback (found in responsive VPLs) because the 

consumer can interact with the system by entering new sample values and immediately 

see the results. Different sample values suited to the consumer's needs, such as an input 

matrix that includes duplicate values, may give the consumer more confidence in the 

suitability of this component. 

How does this component do what it does? 

This question arises in customization situations. When the consumer displays 

hidden cells (local variables) and detailed comments and then allows the system to move 

through time as in Figure 3.4, the synchronized changing values of the cells resulting 

from responsiveness automatically function as a low-level visualization of the code. In 

fact, this same interaction style even allows the consumer to change any formula desired 

and immediately see the results, thereby allowing experimentation with changes and the 

development of customization ideas. VPLs with somewhat less liveness can still offer a 
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degree of interaction, even though more steps (such as pressing an execute button or 

asking for individual values) will be necessary. 
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Figure 3.4 Sort component. (a) shows the sort component as it appears when first 
loaded. In (b) the consumer has displayed most of the formulas and all the hidden code 
and comments. By manipulating the timeslider (c), the consumer can watch the sort 
progress. 
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While no special effort is assumed of the producer in the Forms/3 repository, if 

any extra work is associated with a component as it matures, the results of that work are 

available in the same environment. One such extra is algorithm animation, the third 

feature of special utility in VPLs for answering the question of what a component does. 

Algorithm animation is "the process of abstracting the data, operations, and semantics of 

computer programs, and then creating dynamic graphical views of those 

abstractions....[it involves] program views that conceptually portray how a program 

works" [Stasko 1990]. In contrast to the detailed visualizations discussed above, an 

algorithm animation allows a higher-level view of what a program does. 

Forms/3 includes full support for algorithm animation [Carlson et al. 1996], and 

whenever a producer of a component in Forms/3 has prepared an associated animation, 

the component graph will show an edge to an animation component. In case the 

consumer has reduced the graph (as in the example query above), the "Expand 

Connections" button adds back into the graph all components that have an edge to or 

from those already in the graph. Figure 3.5 shows a part of the graph after expansion. 

The consumer can click on the associated animation directly from the graph to see a high-

level visualization of the original component. For example, Figure 3.6 shows an 

algorithm animation in the midst of execution. The consumer controls the animation's 

speed and direction while the algorithm and the animation execute synchronously. 

Algorithm animation is one way to cultivate abstract understanding, which is an 

important factor in the ability of novice programmers to reuse code [Hoadley et al. 

1996]. 
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it with the time-slider at the lower right. 
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3.3.4 Use 

How do I use this particular component? 

A recent study of professional Smalltalk users [Rosson and Carroll 19961 

observed that consumers make extensive use of previous usage contexts when figuring 

out how to use unfamiliar components. The dataflow graphs of the overview 

automatically display these contexts, and the consumer can interact with any of them 

using the same mechanism described earlier to find algorithm animations. 

For example, in Figure 3.5 the consumer can see that one of the highlighted sorts 

is connected to a component named "quiz-stats." The consumer can load the sort and this 

context by double-clicking both nodes on the graph. Or, if the producer has set up a 

package, double-clicking on either node will produce a dialog box allowing the consumer 

to choose between loading the component alone or an entire package. 

By running the quiz-stats program, which uses the sort component, the consumer 

can see by example how to use the sort. In Figure 3.7, the quiz-stats program has run 

and the consumer can see that it uses a Boolean value to indicate whether the sort has 

finished. From this example, the consumer concludes that the same Boolean test would 

be useful in new programs that use this sort. 

We believe this ability to browse, retrieve and experiment with usage contexts is 

critical to allowing consumers to successfully reuse code that has not been packaged by 

its producers. This ability permits an alternative to documentation and standardization 

procedures that would normally be producer tasks, a feature that is especially important 

in immature repositories of developing code and in cooperative repositories not "owned" 

by any organization. 
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Figure 3.7 The quiz-stats program. This screenshot shows time advanced far enough 
so that the cell finished has a true value. The consumer can see that the statistics are 
computed only if the sort has finished. 

3.4 Implementation Status 

The user interface for the repository presented in the examples throughout this 

chapter was written using the Garnet user interface development environment [Myers et 

al. 1990]. Although functional, the graph portion of the interface turned out to be too 

slow for practical use. After some investigation, we decided to reimplement the graph 

portion using the Graphviz tools [North and Eleftherios 1994] from AT&T. Although 

requiring a separate process and socket communication, the new implementation resulted 

in major speed improvements. The functionality of the new version is largely the same, 

the main difference being that the overview window of Figure 3.1 is now separated into 

two windows, one displaying just the graph and another displaying the query interface. 

A few improvements were also added into the new interface, such as the ability to zoom 

in and out, open a reduced (birdseye) view of the entire graph, and load a package 
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directly from the popup menu rather than a separate dialog box. Figure 3.8 is a screen 

shot of the new implementation. 
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Figure 3.8 Revised implementation of the repository interface. Shown here are the 
birdseye view (left) repository window (middle) and query window (right). 

3.5 Conclusion 

In this chapter, we have presented an approach to facilitating reuse in evolving 

repositories of shared VPL code. An important aspect of the approach is that it takes 

advantage of features already present in many VPLs. The techniques presented here are 

suitable for locating and using components, but they do not address code reuse at smaller 

granularities, such as object-oriented methods. The next chapter explores the further step 

of integrating support for code reuse at the language level. 
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Chapter 4: Similarity Inheritance 

In this chapter we show how the existing approach to objects in spreadsheets 

described in the introduction (Section 1.2) can be extended to support inheritance-like 

code sharing. Our motivation was to support, without adding the extra trappings of 

object-oriented classes, the kind of code reuse that might otherwise be achieved by 

copying code from one place to another. As a result, our approach emphasizes 

implementation over interface. Our approach, called similarity inheritance, defines "like­

a" relationships between objects rather than the "is-a" relationships often associated with 

subclasses. Further, similarity inheritance adds code sharing mechanisms to spreadsheet 

languages without violating the value rule or incorporating other programming languages 

or macro languages. We begin by describing our new model of inheritance, 

independently of any language implementation. Next we present the prototype 

implementation of similarity inheritance in Forms/3 and describe how it implements the 

model. 

4.1 Similarity inheritance model 

In the model description, we will use object-oriented terminology to facilitate 

comparison with other models of inheritance, although it will later be demonstrated 

(Section 4.2.5) that the approach is not restricted to relationships among objects, and can 

be used for relationships among Excel-like spreadsheets as well. 

We define the similarity inheritance model to consist of both a semantic model 

and a model of interaction (between the programmer and the computer). The interaction 

model is composed of the tuple (C, F, L, R) where C is the copy operation, which 

creates a shared definition, F is the formula definition operation, L is a liveness level 3 

or higher from Tanimoto's liveness scale [Tanimoto 1990] indicating that immediate 
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semantic feedback is automatically provided, and R is a representation mechanism that 

explicitly includes all shared formulas and relationships in each object's definition. 

Three important points about the interaction model are: (1) it separates the syntax 

with which the human communicates to the computer about program semantics from that 

used by the computer to communicate to the human about program semantics (for 

example allowing animations or graphical views), (2) it does not necessarily map to a 

static textual syntax (for example, it allows dynamic syntaxes) and (3) it depends on 

environmental characteristics that are not usually guaranteed by textual programming 

languages but are common in visual ones. Note that the elements of the interaction model 

are not mere editing details of an environment, but rather define the general 

characteristics upon which our semantics rest. 

The semantic model can now be defined as follows. Each object definition D in a 

program is a set of behaviors {Dbi,Db2,...,Dbn} . For example, in Forms/3, an object 

definition is a VADT form. Each Dbi is a formula residing in a cell (or cell group). The 

symbol (pronounced "shares with") indicates a shared behavior; the arrow points 

from the original version to the copied one. It defines a "like-a" relationship between the 

original and the copy, and describes how the programmer has arranged similarities 

among program objects. The semantics of are 

Abi=Bbi 

The operations C and F determine when holds, as summarized in Table 4.1. 
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Operation Precondition	 Postcondition 
C used to copy A	 A is an object definition B exists and 

B does not exist 'V i, Abi-->Bbi 
C used to copy from Abk	 A and B are object definitions Abk-->Bbk 
to B	 and A#13 

F applied to Bbk	 B is an object definition v A, Abk-/->Bbk 

Table 4.1 How C and F affect "like-a" relationships. (i The table omits 
postconditions that duplicate preconditions.) 

The first row of Table 4.1 defines large-grained similarity, and means that if C is 

applied to an object definition A, a similarity relationship) will be created between A and 

a new object definition B such that all of A's behaviors share with B (this can be 

abbreviated A-->B). Because Abi -Bbi holds for all A's behaviors, additions to the 

definition of A will also propagate to B in order to maintain that condition. The second 

row defines fine-grained similarity, which allows a single behavior Abi to be copied to 

object definition B to create a "like-a" relationship between Abk and Bbk. C may also be 

applied to groups of behaviors, in which case the semantics are the same as if applied to 

each individually. The third row implies that overriding removes "upstream" sharing 

relationships, but not "downstream" relationshipsa formula that is redefined may still 

share with others but nothing shares with it. 

Due to element R of the interaction model, objects in the similarity inheritance 

model have the property of self sufficiency from the programmer's perspective, meaning 

that every supported operation for an object and every piece of data it contains can be 

determined by examining the object's own definition rather than also requiring the 

inspection of parent objects or descriptive classes. The implication of the L element of 

1[Perrone and Repenning 1998] recently proposed a technique called analogies that bears 
a surface resemblance to similarity inheritance. Their technique, however, does not create 
a relationship between source and copy, but is a one-time editing convenience. 
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the model is that the programmer, rather than working with abstract descriptions (as in 

the class-based model), creates and manipulates concrete descriptions, in which live 

objects reside. A significant difference in the concreteness just described from that of the 

prototype model is that in our model the sharing relationships are created statically rather 

than dynamically. 

From this model, the granularity difference between similarity inheritance and 

other approaches becomes clear. Both the class-based and prototype-based models 

support at the granularity of methods (overriding), but neither supports at the 

granularity of methods, for example the ability to inherit just one method. Multiple and 

mutual inheritance are direct by-products of fine-grained similarity. Multiple inheritance 

occurs in cases such as A--->B, and Cbi Bbi. Mutual inheritance occurs in cases such 

as Bbl Cb2 and Cb3-->Bb3 

4.2 Similarity inheritance in Forms/3 

4.2.1 Interaction model 

The interaction model is instantiated in Forms/3 as follows. Operation C is 

supported by a copy form button, which copies the form selected in a scrolling list, and 

by a paste button on each form, which pastes selected cells onto the form. Recall that C 

is not simply an edit operation, but defines the relationship. Operation F is supported 

by allowing the programmer to edit any formula that is visible. Liveness level L is level 

4, so after every formula edit, immediate visual feedback is given about the edit's effect 

on the program. In Forms/3's representation R, each behavior (cell and formula), 

whether the result of sharing or not, is visible, which allows it to be edited by operation 

F. Shading indicates whether a form or cell is the result of sharing. Section 4.3 explains 

additional features of Forms/3's representation. The explicit representation of all 
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behaviors is a significant difference from most object-oriented languages in which 

inherited code is found strictly in the superclass or parent object. The yo-yo problem 

[Budd 1991, p. 90] is a result of this non-localization of code which requires a 

programmer to potentially search many objects or classes up and down the inheritance 

hierarchy in order to understand the behavior of a single object or class. Similarity 

inheritance's explicit representation prevents the yo-yo problem. 

4.2.2 Large-grained inheritance 

The stack in Figure 1.2 is an example of an object created from scratch. Multiple 

stack objects can be created with the copy operation C, but suppose the programmer 

wants not another stack but something else that is similar to a stack, for example, a 

queue. Taking advantage of that similarity, the programmer can start with a copy of form 

Stack, then modify the behavior using operation F. Inheritance and overriding of cell 

names as well as of cell formulas are allowed. A change to the operation push and some 

renaming of cells are all that is required to turn the copy into a Queue (see Figure 4.1). 

27 

new 

hi	 hi 
front

Image 

Figure 4.1 A Queue created with similarity inheritance from a Stack. Several names 
and one matrix are unshaded to indicate that they have been overridden. The cell Image 
could also be overridden to create a custom appearance for a Queue. 
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Note that using similarity inheritance, the programmer simply identifies that two 

objects are similar in implementation or purpose. In contrast to this, in a class-based 

language, the programmer may spend extra time wondering what the "right" relationship 

is between a stack and a queue. One is not a subtype of the other, yet they are similar. In 

fact, extra work to reorder the inheritance hierarchy may be needed in some cases just to 

add one new class. As we saw above, however, similarity inheritance allows the 

programmer to create a similarity relationship without implying "is-a" subtype or 

subclass relationships. Instead, it defines a "like-a" relationship. For example, a queue is 

like a stack except that new items are inserted at the opposite end. 

Because of the relationship between Stack and Queue, any change to a 

formula definition on Stack will propagate to Queue unless the Queue's cell formula has 

been overridden. For example, a fix in the formula of cell push on Stack would not have 

any effect on Queue, but a fix in cell pop would propagate to the dequeue operation on 

form Queue. Some prototype-based languages lose this ability to propagate changes to 

groups of objects because of their emphasis on object individuality; instead, shared parts 

must be abstracted out of the objects, as in Self's traits [Ungar et al. 1991a]. 

4.2.3 Fine-grained and multiple inheritance 

As noted in the discussion of the model, the combination of large-grained and 

fine-grained similarity allows multiple inheritance. For example, in Forms/3 suppose a 

new form Deque is created via large-grained similarity from Queue. (A deque is a 

double-ended queue.) This new object needs to allow items to be added to either end of 

the queue. The programmer may notice that Stack's push is exactly the required behavior 

for Deque and can use fine-grained similarity, copying push, to allow Deque to inherit 

just that one operation from Stack. Because of the interaction element R, the programmer 

now sees the new cells as part of the definition of Deque also (Figure 4.2). 
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Multiple inheritance in other languages can lead to conflicts when more than one 

method of the same name are unintentionally inherited. By providing inheritance on the 

level of cells, the similarity model allows the programmer to select only the operations 

that are actually needed, avoiding unintentional inheritance. (If the programmer does 

accidentally attempt to introduce a conflict, the system provides options for resolving it at 

the time of the edit.) 

Like Queue...Stack
 

Phil 1271 

items 
push 

Figure 4.2 A Deque in progress. The Deque was created by copying the Queue form 
and the operation push from Stack. The name of the abstraction box Queue has also been 
changed to Deque causing the name to appear white instead of shaded. 

4.2.4 Mutual inheritance 

Suppose, as in Figure 4.3, someone added the new operations size and empty? to 

Queue. Another programmer might find those operations useful for Stack as well and 

copy them to the Stack form. Stack and Queue now both inherit from each other. Like 

multiple inheritance, mutual inheritance is not a new concept in the language, but rather a 

feature of the flexibility of similarity inheritance, which makes mutual inheritance 
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straightforward. To the best of our knowledge, similarity inheritance is the first model to 

support mutual inheritance. 
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Figure 4.3 Mutual inheritance between Queue and Stack. The new cells size and 
empty? appear white on the Queue form where they originated, and shaded on the Stack 
form. 

4.2.5 An end-user example 

In the previous sections, we have discussed our approach from the standpoint of 

how it can be used to share behavior among objects. However, as has been noted earlier, 

the approach is general enough to allow sharing of other pieces of programs, even when 

there is no relationship among the types of objects involved. This allows the same 

approach to be used for simple formula reuse as for object inheritance, instead of prior 

approaches, which relied on copy/paste and "replicate" options. The advantage of using 

inheritance for reusing spreadsheet formulas is that the relationships among originals and 

copies are maintained, supporting automatic propagation of bug fixes and explicit 

depiction of relationships. 

For example, consider Figure 4.4, which shows a spreadsheet (written in 

Forms/3) to compute course grades. Suppose the user teaches several sections of the 
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course, and keeps each section in a separate spreadsheet for convenience.There are two 

reuse situations in this example: the reuse of the formula for the top row down through 

the remaining rows of this section, and the reuse of these formulas in other sections. In 

the first case, traditional spreadsheets use a "replicate" mechanism (copy down the 

rows). Our system does not apply inheritance to this case; instead, like some other 

spreadsheets, it has a way to group cells with a common formula. It is the second case in 

which we apply similarity inheritance. In the second case, traditional spreadsheets use a 

"copy/paste" mechanism (copying into other sections), and then if the weights need to be 

changed, the user would have to remember to do all of the copy/pasting again. However, 

if a system implements copying using similarity inheritance to make the relationships 

explicit, as does Forms/3, then a change to the grading weights in the first section can 

automatically propagate to all the other students. 

Section 1 Grades
 

Abbot, M. 10351 84 183 86 86
191 

Han, Y. 176591 92 190 194 92 92 

Kamahele, S. 23141 75 76 
178 18° 

Smith, M. 19408 84 88 90 86 87
 
a
 197 

Tr090, C. 78331 182 87 90 87 
room Help! 91 1°3 round ((hwkl[iej] * 0.1) +
 
Cut Cell name ID hwkl hwk2 hwk3 quiz final tote ((hwk2[iej] * 0.1) +
 

((hwk3[iej] * 0.2) +
 
1
 

veece
 
((ouiz[iej] * 0.2) +
 

roes) (final[iej] * 0.4)))))

Waco
 

Figure 4.4 A spreadsheet to compute grades. The cells in the total column are 
grouped into a matrix and thus need only one formula (shown) to define their values. 
The formula computes the course grades via a weighted average. 

As this example demonstrates, similarity inheritance can be used not only to 

maintain relationships among objects, types, and operations, but also among pieces of 

any sort of calculation. An attractive feature of this generality is that it affords a gradual 

migration path for users to move from using only simple numbers and strings in their 
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formulas to using more complex objects with inheritance as they gain expertise, since the 

same mechanism for inheritance is employed for reusing formulas in both situations. 

4.3 Explicit representation 

The interaction model requires the existence of an explicit representation, R, that 

explicitly includes all shared formulas and relationships in each object's definition. 

Previous sections have illustrated the representation of shared formulas. This section 

describes the representation of "like-a" relationships both between forms and between 

cells. 

The "upstream" relationships are made explicit by legends at both the form and 

cell level. A legend under each cell formula lists the cell that it was directly copied from. 

If that cell was in turn copied from another, ellipsis follow and the name of the original 

cell is also given. Figure 4.5 illustrates examples of both cell and form legends. 

Queue 

hi 
Deque[items][1@lastcol] 

like Queue:front Stack:top 

Figure 4.5 Explicit representation. The Deque form on the left has a form legend at 
the top indicating it is copied from Queue which in turn was copied from Stack. (If there 
were intermediate forms, the legend would take the form "Queue...3...Stack" and the 
programmer could click on the 3 for a full list.) Deque's front cell illustrates a formula 
legend. Copy dependencies among cells are also explicitly depicted with optional arrows 
such as the one from Queue's new cell. 
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The "downstream" relationships are represented by different kinds of arrows. At 

the cell level, optional similarity arrows, such as the one shown in Figure 4.5, point 

from a cell to the cells created from it. At the form level, additional arrows in the 

repository view described in the previous chapter indicate both large-grained similarity 

and fine-grained similarity (at least one cell) between forms (see Figure 4.6). 

dataflov 
cell similarity 
form similarity 

MatrixDemo 

Figure 4.6 An example summary view. Only the dataflow arrows are implemented 
so far; the other two have been manually added to the screen shot. 

To help evaluate and improve the design of R in Forms/3, we used a set of 

design benchmarks [Yang et al. 1997] that are a concrete application of several of the 

cognitive dimensions for programming systems [Green and Petre 1996]. The evaluation 

of this final version of the design appears in the Appendix. 

4.4 Discussion 

This section discusses the similarity inheritance model according to two 

perspectives from the literature. The first is an evaluation of the mechanism according to 

the concept it supports. The second is a comparison of the outcome of the mechanisms 

(in terms of sharing achieved) among different approaches to inheritance. 

Inheritance mechanisms have been used to express a wide variety of 

programming concepts. [Evered et al. 1997] identify sixteen different concepts which 

can be (and have been) realized using inheritance (see Table 4.2). Different languages 
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use inheritance to support different subsets of these concepts and with different degrees 

of success. In order to evaluate the support for each concept, the authors list the 

requirements for an inheritance mechanism to provide good support for that concept. For 

the category of general code reuse (the concept targeted by similarity inheritance), their 

list of requirements is: 

selective inheritance of operation implementations 

redefinition of operation implementations with access to the inherited implementation 

multiple inheritance 

decoupling the type inheritance hierarchy from the implementation inheritance 

hierarchy 

Modeling concepts Design concepts Implementation concepts 
specialization modularity data abstraction 
decremental specialization behavior extension subtype implementation 
dynamic, incremental behavior restriction substitutability 

specialization genericity general code reuse 
generalization polymorphism 
attribution importation 
components 

Table 4.2 Concepts supported by inheritance mechanisms [Evered et al. 1997]. 

Although they provide support for many of the requirements associated with 

other concepts, none of the common object-oriented languages provide good support for 

general code reuse according to this list. Similarity inheritance aims at supporting the 

concept of general code reuse, so we would expect that it meet all four requirements. In 

fact, all of these requirements are indeed met: operations can be selectively chosen for 

inheritance using C on groups of cells; inherited implementations can be redefined using 

F and the original implementation can be also be accessed by referencing cells on the 

original form; multiple inheritance is supported as described in Section 3.2.3; and the 
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structure of inheritance relationships is not tied to a type hierarchy (as will be described 

in Chapter 5). 

As an additional approach to comparing inheritance mechanisms, [Bardou 1996] 

introduces a formalism for characterizing the kinds of sharing achieved by each. In this 

section we informally adapt this technique as an aid to the comparison of similarity 

inheritance with class-based inheritance and prototype delegation. 

We begin with a few definitions. A property is any named attribute of an object; 

in different languages, properties go by various names such as instance variables, 

methods, attributes, fields, slots or in the case of Forms/3, cells. We differentiate 

between two kinds of sharingl: 

code sharing2: using the same code (constant value or lambda-expression/formula) for 

a property in two objects. If objectl shares code for property x with object2, then 

changing the code for objectl will change the code for object2. If the code sharing is 

one-way then changing the code for object2 will end the code sharing and will not 

affect the code for object 1. If the sharing is two-way, changes to object2 also change 

objectl. 

name sharing: using the same name for the same property in two objects. Objectl 

shares a name with object2 if changing the name of property x in objectl causes 

object2's name for property x to change also. 

Although the specific rules change from language to language (especially among 

prototype-based languages), the different sharing mechanisms can be described generally 

using these definitions. 

Class-based inheritance: Instance variables must use name sharing. Class 

variables must use name and code sharing. Methods must use name and code sharing 

1Bardou defines three kinds of sharing, but the third, property sharing, is not necessary 
for this discussion. 

2Bardou uses the term "value sharing" to refer to the contents of a property (constant 
value or lambda-expression/formula). We use the term "code sharing" instead to 
emphasize that it is the contents (such as the formula) that is shared, not the return value 
or result of the formula. 
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among objects of the same class and must use name sharing with optional code sharing 

for objects of a subclass. An object must share all shareable names in a class if it shares 

one (we disregard names that are never inherited, such as private methods in a C++ 

superclass). All of these relationships are determined statically. 

Delegation: Relationships are dynamically created and in some languages (such as 

Self [Agesen et al. 1993]) can be dynamically altered. An object must share all names in 

another object if it shares one. Code sharing implies name sharing, but name sharing 

does not imply code sharing, that is, code sharing is the default for all properties that 

share names, but the sharing can be broken (overridden). Code sharing is usually two-

way, which can lead to the accidental corruption of a prototype instead of a clone [Meuter 

et al. 1996], but depending on the language can also be one-way (Act 1 [Lieberman 

1986a]) or the choice can be left to the programmer (Newton Script [Smith 1995]). 

Similarity Inheritance: Relationships are created statically. The programmer can 

choose between sharing all properties or sharing only specific properties. Name and 

value sharing are independent of each other (both are shared by default, but either can be 

overridden). 

Relationships Code sharing Sharing at Sharing at Two-way 
created implies name object (class) property code sharing 

sharing granularity granularity 
Class-based 
Delegation 

statically 
dynamically 

Y 
Y 

Y 
Y 

N 
N 

N* 
y** 

Similarity statically N Y Y N 
Inheritance 

Table 4.3 Comparison of sharing achieved by various approaches. 
*class variables could be considered two-way, but regular instance variables and methods are not 
**in some languages 
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Table 4.3 summarizes the differences among these three approaches. Similarity 

inheritance differs from both class-based inheritance and prototype delegation by 

allowing name and code sharing to exist independently and by providing sharing at the 

granularity of properties. 
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Chapter 5: Type Inference 

In adding inheritance to a declarative VPL, we did not wish to compromise any of 

the existing features of the language and particularly did not want to introduce explicit 

type declarations. Static type inference seemed attractive because it would allow early 

feedback (at edit time) to the programmer about possible errors in the program. In 

addition, since inheritance has traditionally been associated with subtyping, it seemed 

important to us to provide an approach to types compatible with similarity inheritance. 

Unfortunately, the previous type inference algorithm for Forms/3 [Burnett 1993; Mishra 

1998] was not powerful enough for use with similarity inheritance. Neither are other 

approaches to type inference with inheritance for textual languages usable because of the 

complexity of the types. Thus we required a new approach to type inference with the 

following properties: 

Fine-grained inference: Most static type inference systems derive type information at 

the granularity of entire classes, and this level of granularity inhibits these languages 

from supporting more fine-grained approaches to inheritance. 

Understandability: If a type inference system detects a type error, the error should be 

communicated to the user. The types in existing models have become so complex that 

they present difficulties communicating type errors even to professional 
programmers. This lack of understandability is especially unacceptable in VPLs aimed 

at end users. 

Power without the addition of explicit declarations: A model of type inference that is 

suited to both end users and programmers would allow VPLs to retain the benefits of 

static typing without requiring the user to engage in the programming mechanics of 

explicitly declaring types. In implicitly typed languages, the introduction of 
inheritance has typically re-introduced explicit declarations. 

In this chapter, we present a model for static type inference with these properties 

in mind. Our model aims for understandability to both programmers and end users by 

basing its reasoning on concrete references to objects and operations attempted rather than 
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reasoning in terms of complex type names. This strategy turns out to be powerful enough 

to support similarity inheritance without the need for explicit declarations. 

5.1 Organization of this chapter 

The next section introduces a subset of Forms/3 used for formal reasoning, 

including the translation between full Forms/3 and this subset. Next, we briefly review 

the basic concepts of polymorphic type inference and introduce the kind of polymorphism 

we want the type inference to support. Section 5.4 presents the new model of types and 

the rules for determining when a program is type safe. Example derivations of type 

information are provided in Section 5.5 and properties and implications of the model are 

discussed in Section 5.6. 

5.2 Core Forms/3: the subset for formal reasoning' 

This section contains a formal definition of Core Forms/3, which supports the 

complete semantics of Forms/3, but eliminates syntactic sugar and other programming 

conveniences. Because Core Forms/3 is small, it allows the type system to be defined, 

without loss of generality, using a small axiom set. The main difference between full 

Forms/3 and Core Forms/3 are the basic formula model (cell formulas can contain only a 

constant, single cell reference, or composition of parts) and simplification of attributes. 

1Section 5.2 is taken from [Djang et al. 1998] and is the work of all the authors. 
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5.2.1 Programming objects and notational conventions 

The following define the basic programming objects in Core Forms/3: 

A program is a set of forms. 
Aform is a tuple: (formlD, modelName, ROset), where
 

ROset is a set of referenceable objects having unique cellIDs, and
 
modelName indicates the form copied from
 

(modelName = formlD if this form is not a copy or has been renamed) 
A referenceable object (RO) is a cell or a cell group. 
A cell group is a matrix or an abstraction box. 
A cell is a tuple: (cellID1, ROset, formula, value) whose ROset contains only (zero or more) virtual 

ROs. (defined below) 
A matrix is a tuple: (cellID, ROset, formula) whose ROset contains only cells, including one whose 

cellID is " <MID >[numrows]" and one whose cellID is "<MID>[numcols]", where <MID> is the 
matrix's cellID. (The term gridROset will be used to denote the set difference ROset 
{<MID>[numrows], <MID>[numcols] 1.) 

A formula is as defined in Table 5.1. 

The Core Forms/3 programming objects also exist in full Forms/3, but in the full 

version they have additional cosmetic attributes, such as positions and borders, not 

present in Core Forms/3. The reason for the modelName element of forms is to explicitly 

track similarities among forms, which allows useful generalizations to be made during 

type inference. Note from these definitions that it is not possible in Core Forms/3 for a 

cell or cell group to exist without a formula. In full Forms/3, a cell or cell group might not 

yet be assigned a formula, and instead contains a special constant value "no value." Also 

note that matrices, unlike other ROs, have no value: rather, matrices are a flexible 

mechanism to support spreadsheet-like grids of cells (each of which has a value). 

However, we will occasionally refer to a matrix's value as an abbreviation for the set of 

values of the ROs in the matrix's ROset. 

1In full Forms/3, when communicating with the programmer about type errors, each 
cellID is converted to its cell name if the programmer has provided one. 
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In addition to the above objects, type definition forms (VADT forms) support 

both built-in and user-defined types: 

A VADT form is a form whose ROset includes a cell with cellID "Image", one abstraction box with 
cellID "MainAbs", and zero or more additional ROs. (VADT stands for visual abstract data type.) 

An abstraction box is a tuple: (cellID, ROset, formula, value) whose ROset contains only cells and 
matrices and that is an element of a VADT form's ROset. 

A virtual RO is a virtual cell or a virtual matrix. 
A virtual cell is a cell whose ROset is empty and that is an element of another cell's ROset. 
A virtual matrix is a matrix whose ROset contains only virtual cells and that is an element of 

another cell's ROset. 

In the previous chapter, we have referred to a VADT form as defining objects, but 

recall that it also defines a (monomorphic) type. Each VADT form's modelName T 

defines a type named T. An abstraction box on the VADT form defines the group of ROs 

ATRIX 

Def ine 
Gestures 

Top-Level
Gesture 

I gr'.'41 EE=7 
RADIO OPTION 

Hide 

Form Help 

Cut Cell 

Paste 

Shag, Teat 
Data 

Figure 5.1 The Point form defines two instances of type 
Point. Abstraction boxes aPoint and movedPoint each 
contain a value of type Point. 
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from which an instance of T is constructed, and hence the value of each abstraction box 

on form T is an instance of type T. For example, in Figure 5.1, the Point form defines the 

type Point and the abstraction boxes aPoint and movedPoint contain instances of type 

Point. If a cell X references an abstraction box A, the cell's ROset "virtually" corresponds 

to the abstraction box's ROset; that is, X's ROset is comprised of virtual ROs, one for 

each RO in A's ROset. These relationships will be formalized in the next subsections. 

The notational conventions used in this chapter pertaining to the programming objects are: 

"Dot notation" specifies elements of a tuple. For example, F.modelName refers to the 

modelName of F. 

< denotes the referencing operation. For example, X Y means that RO X's formula 

is a reference to RO Y. (The arrow points in the direction of data flow.) 

denotes the transitive closure of X 4-- Z iff either X Z, or X Y and Y Z. 

c denotes the constant specification operation. For example, X C means that RO 

X's formula is the constant C. 

denotes the transitive closure of e . X 6 Z is true iff either X E Z, or X E Y and 
Y 6 Z. 

5.2.2 Formula syntax and semantics 

As Table 5.1 shows, there are only three operators in Core Forms/3: the implicit 

operator referencing another RO ( "f- "), the implicit operator specifying equality to a 

constant ("c"), and the explicit operator "compositionOfParts ". Table 5.2 defines the 

semantics of each of these operators in terms of their preconditions and postconditions. 

Note that there are no arbitrary input values. As in most spreadsheets, all inputs are 

constants entered into the program via formula edits, which will be significant to our 

ability to apply static type checking to every part of the program. 
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formula composition0fParts I expr
 

expr constant I ref
 

ref ::= RORef I formRef : RORef
 

formRef ::= formID I modelName defSet
 

defSet ::= () ( defs )
I 

defs ::= def I def , defs 

def ::= RORef = expr 

RORef ::= cellID I matrixlD I matrixlD [subscripts] I absID I absID [cellID] I 

absID [matrixID] I absID [matrixlD] [subscripts]
 

subscripts ::= matrixSubscript@matrixSubscript
 

matrixSubscript ::= expr
 

Table 5.1 The grammar for Core Forms/3's formula language. (To minimize the 
amount of new notation, we also use the terms established here in the formal presentation 
of the model.) The divider separates the operator syntax from the ref operand syntax. 
Note that the defSet notation describes formulas that are unique to the form described, for 
example, the notation if(ifBm100) indicates a copy of form "if" on which cell ifB contains 
the constant formula 100. 

Formula for X Preconditions Postconditions 

< Y, where Y is an Y is an existing RO. X.value = Y.value. 
RO y 4 x. IX.ROset1 = IY.ROsetl. 

V Yi E Y.ROsetY is a matrix iff X is a matrix. 
3 Xi E X.ROset, 
Xi <-- Yi. 

c C, where C is a X is not a matrix. X.value = C. 
constant 
compositionOfParts X is a cell group. X.value = [Xi.value I Xi E X.ROset}. 

Table 5.2 Axiomatic semantics for each formula possibility in Core Forms/3. 
Implicit in the notion of equality is the principle that if valuel = value2, then their types 
are equal. Also note that the "Y 4- X" precondition prevents circular references. All the 
preconditions are easily checked statically, and in full Forms/3 are enforced by the 
environment. 
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5.2.3 Forms 

The above set of operators may seem too limited to get any computation done; for 

example, there are no conditional or arithmetic operators. However, the functionality 

normally found in these built-in operators is provided instead by built-in forms named 

"if", "+", and so on. These forms can be copied as many times as needed to get the 

desired number of instances, in which case all copies will have the same modelName. 

Some of the ROs on them have modifiable formulas, and these formulas can be set up to 

be references to other ROs in the program. The result ROs can then be referenced by 

other ROs in the program to propagate the results where needed. 

The semantics of each built-in form is defined through preconditions and 

postconditions. Table 3 gives the semantics for one of these forms, although we will 

expand the expression of type information about such forms later in this paper. 

Model Name ROset Preconditions Postconditions 

+ contains modifiable cells 
with cellIDs plusA, plusB, 
and unmodifiable cell with 
cellID plusC. 

plusA.value is a number. 
plusB.value is a number. 

plusC.value is a number that is 
the sum of plusA.value and 
plusB.value. 

Table 5.3 Semantics of form + (and of forms copied from +). The term modifiable 
means that the programmer is allowed to edit the formulas for these cells; unmodifiable 
means the formulas may not be edited. Since there is no state modification in Core 
Forms/3 (or in Forms/3), the preconditions are invariant. Form + is one of the forms built 
into Core Forms/3 to implement a primitive operation; the others are: -, *, /, mod, =, and, 
or, >, <, not, width, height, if, and compose. (See [Burnett 1991] for details of all 
primitive forms.) 

As Table 5.3 implies, all copies of + have the "same" cells on them, although their 

formulas may be different. More precisely (and more generally), this relationship is 

described as the first property [Copies] in Table 5.4, which says that forms with the same 

modelName always have the same cellIDs in their ROsets. 
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[Copies] F and G are forms, F.modelName = G.modelName 

IF.ROset1 = IG.ROsetl, V f c F.ROset, 3 g E G.ROset such that g.cellID = 11ID 

[VADTformExistsC] C is of type T, where C is a constant 

VADT form TC = T(MainAbs = C), TC.modelName = T 

[VADTformExistsR] X.value is of type T, where X is an RO 

3 VADT form TX = T(MainAbs -=- X), TX.modelName = T 

[Inst] 

X 

X.value is of type T, where X is a cell 

F:Y, where Y is an abstraction box and F.modelName = T 

[AbsType] T:X is an abstraction box 

X.value is of type TX.modelName = T.modelName 

[AbsStruc] T:X, T:Y are abstraction boxes, Xi E X.ROset 

IY.ROset1 = IX.ROsetl, Yi E Y.ROset, Yi is a matrix iff Xi is a matrix 

Table 5.4 Properties of forms. 

Recall from Section 1.2 that VADT forms can be used to define new types, and all 

built-in types are also described with these forms. This property stated formally in Table 

5.4. The only difference between user-defined types and built-in types is whether some 

of the formulas for the ROs on the VADT form had to be created by the language 

implementor. One abstraction box on each VADT form is distinguished by having cellID 

"MainAbs". (In full Forms/3, ROs have an optional user-defined name attribute which the 

programmer can use in place of the ID; hence in Figure 5.1, the RO with cellID MainAbs 

appears on the screen with name "aPoint".) Although there can be additional abstraction 

boxes, all abstraction boxes on the same form have ROsets of the same size and structure 

and their values have the same type (properties [AbsType] and AbsStruct]). For every RO 

X, there is a VADT form denoted Tx whose main abstraction box references X such that 
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X.value is of type T ([VADTformExsitsC] and [VADTformExistsR]; [Inst] follows from 

these). Further, each T1 has the same modelName as VADT form T. Hence a constant 

formula (c C) can always be replaced by a reference to Tc:MainAbs. 

5.2.4 Translating between Forms/3 and Core Forms/3 

Core Forms/3 includes all the programming objects of Forms/3 except radio cells 

and popup-menu cells (such as those seen on the built-in form circle from Figure 1.1). 

The translation of full Forms/3 programming objects to Core Forms/3 programming 

objects consists of removing their cosmetic attributes (such as positions, borders, 

cellnames distinct from cellIDs, etc.) Since radio cells and popup-menu cells are only 

cosmetically different from ordinary cells, eliminating cosmetics effectively reduces them 

to ordinary cells. 

However, one cosmetic attribute, position, is semantically significant in Forms/3 

in one situation: if RO X is positioned inside another RO Y, then not only is X an element 

of Y.ROset, but also Y.formula is implicitly defined to be compositionOfParts. Core 

Forms/3 makes this formula explicit: if the Forms/3 user has not given Y an explicit 

formula, the translation to Core Forms/3 explicitly defines Y.formula to be 

"compositionOfParts ". 

All other formulas in Forms/3 are explicit. Explicit formulas expressed by direct 

manipulation and gestures are translated to Core Forms/3 in two steps: first by translating 

them to a series of ordinary textual Forms/3 formulas (using equivalents presented in 

detail in [Burnett and Gottfried 1998]), and then proceeding as below. 

Since operands are the same in Forms/3 as in Core Forms/3, only the operators 

need to be translated. Translating a Forms/3 operator in a formula for RO X is done by 

expressing X.formula as a reference to an RO on another form. Consider a formula that 

contains only one operator. Hence there are no subexpressions, and each argument is an 
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expr (following Table 5.1). If the prefix version of X.formula is op expr1, expr2, 

then X.formula in Core Forms/3 is: 

op(Argl=expri, Arg2mexpr2, ...):Result 

where Argl, Arg2, ... are modifiable ROs on form op, and Result is an unmodifiable RO 

containing the result of the built-in operation. (The above notation is as defined for defSet 

in Table 5.1.) For Forms/3 formulas with embedded subexpressions, each embedded 

subexpression is replaced (bottom up) by a reference following the above translation 

scheme; this results in the parent expression having arguments of the required syntax, so 

that translation can proceed up another level of the tree, and so on to the root. See Figure 

5.2 for an example. 

a 

x y 

Figure 5.2 Translation from Forms/3 to Core Forms/3. Translation of the formula "(a 
+ (x * y))" proceeds bottom-up, first translating (x*y) to *(timesA = x, timesB 
y):timesC, and then incorporating that translation into the full expression, resulting in the 
Core Forms/3 formula being a reference to +(plusA = a, plusB = *(timesA = x, timesB -=­
y):timesC):plusC. 

Since all of Core Forms/3 except the explicit operator compositionOfParts is a 

legal subset of Forms/3 (assuming some default set of cosmetic attributes), then the only 

translation mechanism needed to translate Core Forms/3 to Forms/3 is to deal with 

compositionOfParts, making the formula implicit in the Forms/3 programming object Y 

by positioning all elements of Y.ROset within the bounding box of Y. 
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5.3 Polymorphism 

An important feature of many approaches to static type inference is 

polymorphism, or the ability to infer more than one type for a single program entity. 

Without this flexibility, static typing would be much more rigid, requiring the duplication 

of certain pieces of code in order to accommodate a variety of types. There might, for 

example, need to be two separate plus operations, one defined for integers and another 

for real numbers. 

This section provides a very brief introduction to the basic ideas of polymorphic 

type inference. For more comprehensive coverage, two excellent introductory surveys are 

[Cardelli and Wegner 1985] and [Schwartzbach 1997]. We then give examples of the 

kind of polymorphism we want our type system to allow. 

5.3.1 Basic concepts of static polymorphic type inference 

The term polymorphic types refers to "data or programs which have many types 

or operate on many types" [Cardelli 1987]. For a programming language that requires 

explicit type declarations, a polymorphic variable X may be declared as: 

var X: a 

where a is a type variable whose actual meaning varies contextually. This explicit 

approach is referred to as explicit polymorphism. The term implicit polymorphism is used 

to describe polymorphic approaches in which such type declarations are unnecessary. In 

these cases, type information is automatically inferred by the language processor. Most 

inferences are made statically. The goal is to preserve type safety, that is, if a program is 

statically determined to be type-safe, then the type system guarantees that no run-time 

type errors will arise. 

Most type inference systems include function types which allow languages with 

higher-order functions to employ type inference. Declarative languages with higher-order 
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functions are the class of languages in which type inference is most commonly found. 

For example, suppose in such a language, the following function has been defined 

(adapted from [Jun and Michaelson 1998]): 

fun sumfunc [ = 0 I 

sumfunc f (h::t) = f h+ sumfunc f t 

The function sumfunc sums the result of applying the function f to every element 

of a list. It has type (a -+ int) a list int, where a is a polymorphic type, and the 

arrows separate the arguments and the return value in a function's type (e.g., a int 

means a function taking a polymorphic type a and returning an integer). Thus as its first 

argument, sumfunc can take any function of one argument that returns an integer (with 

the additional caveat that the one argument must be the same type as the items in the list 

argument to sumfunc). Suppose two additional functions, cardinal and square, are 

defined with the following types: 

cardinal: int -+ string 

square: int int 

If cardinal is passed into sumfunc as the first argument (f), then a type error 

would occur because the system could not resolve the type conflict between int and 

string. If square is used, however, no type error would arise, and the following type 

schemes may result: 

sumfunc: (a int) a list -, int by initial definition 

square: int 4 int by initial definition 

sumfunc: (a -3 int) a list + int = a = int by substituting square for f 

sumfunc: (int -, int) 4 int list 4 int final result for this use of sumfunc 

In the same way, sumfunc could be used with function truncate of type real int 

or function length of type string -+ int. Such reusability is the benefit of polymorphism. 

The sumfunc function is an example of operation polymorphism [Blair et al. 

1989] because it is code that works on different types. This is in contrast to the kind of 

polymorphism generally associated with object-oriented languages, inclusion 
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polymorphism, which instead allows reuse based on an object belonging to more than 

one type. 

5.3.2 Polymorphic programming in Forms/3 

Our approach to polymorphism does not use inclusion polymorphism; each value 

belongs to exactly one type even in the presence of similarity inheritance. Instead, it uses 

operation polymorphism. Any operation on a user-defined form can be used 

polymorphically. The programmer creates a polymorphic operation in Forms/3 by 

referencing some example of a type that the operation operates on and, if warranted, the 

system generalizes the concrete references automatically to make the operation 

polymorphic. (Hence, the programmer need not plan in advance to use the operation 

polymorphically.) This generalization for polymorphism is an extension of the 

generalization of [Yang and Burnett 1994]. Without generalization for polymorphism, 

similarity inheritance would result in reuse of code only via inheritanceprocedural 

abstractions could not be used on types of input different from those of the original 

sample values. After generalization, however, a procedural abstraction can work on a 

number of different types in a way similar to the dynamic dispatching of object-oriented 

languages. IT is possible to apply static type inference to a dynamic dispatch situation 

because there is no arbitrary run-time input, as mentioned in Section 5.2.2. The reason 

static type inference is preferable to execution even when the inputs are available is that it 

is more general and can detect errors that a single test run would not find. 

Figure 5.3 shows a simple example (in full Forms/3) of how our extended 

generalization allows operation polymorphism. The Mirror form has three cells: the cell 

oldPoint contains a value of type Point; the cell x-offset contains a number indicating the 

desired change for the point's x value; the cell newPoint references cell movedPoint on a 

copy of the form Point (form 248-Point in this case). All of these formulas are concrete 
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(referring to cells on specific copies of forms) and therefore monomorphic. 

Generalization for polymorphism is only done when the system detects a type 

emergency'. When the programmer makes a new copy of the form Mirror (500-Mirror in 

the figure) and changes the formula of cell 500-Mirror:oldPoint so that it contains a value 

of type Color Point, such an emergency occurs. If the inherited formula of cell 

500- Mirror:newPoint were used in its concrete form, the system would incorrectly 

generate a copy of the form Point and attempt to set the formula of its abstraction box 

MainAbs to reference cell 500-Mirror:newPoint. Since abstraction boxes are only allowed 

to accept values of their monomorphic type (defined by the name of their model form), an 

abstraction box on any Point form can only accept values of type Point (this will be 

formalized in Section 5.4) and an error would be raised. Instead, generalization is 

triggered and a copy of the Color Point formrather than the Point formis generated, 

allowing the Mirror form to perform correctly for its new input. Intuitively what happens 

is the concrete reference to "the copy of Point named 248-Point" is generalized to "the 

VADT form whose abstraction box MainAbs references cell oldPoint and whose cell 

delta-x references cell x-offset." In the notation of this chapter, the generalized formula 

for 500-Mirror:newPoint is "Fold Point(aPointa-500-MirronoldPoint, delta­

xa-500-Mirror:x-offset):movedPoint." Because it can be (or has been) generalized for 

polymorphism, we will refer to a formula that references a VADT form as a polymorphic 

reference if the main abstraction box's formula is not composition0fParts. The 

programmer's view uses a legend notation (extended from [Yang 1996]) to represent the 

generalized formula, as shown in the figure. 

'Yang's approach included several triggers, including saving a form or removing it from 
the screen's display, because information needed for generalization would be lost 
otherwise. In the case of generalization for polymorphism, all required information is 
always available in the concrete formula, so only one trigger is necessary. 
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Figure 5.3 An example of operation polymorphism. (Top) The form Mirror as 
it was first programmed. The references to the copy of form Point are concrete. 
(Bottom) A copy of form Mirror after generalization for polymorphism. The 
formula for newPoint is shown with its legend visible. 
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In general, the notation "X Fay(Arg1=--expr1, Arg2a-expr2, ...):Op" reflects 

the results of generalization for polymorphism, and means that X references Op on the 

VADT form F whose main abstraction box references G:Y1. Thus, if the type of Y.value 

varies on different copies of form G, such as if Y is only one example of the elements of 

some matrix that must all be processed, then so does the selection of which VADT form's 

Op to reference. 

The example in Figure 5.3 illustrates operation polymorphism through the reuse 

of a form. Another way to use polymorphism in Forms/3 is with a heterogeneous matrix. 

For example, suppose the programmer filled a matrix named collections with stacks, 

queues, and other collections, then used another matrix to reference the sizes of the 

collections. In Forms/3 the second matrix would have one general formula to be used for 

each subcell in the matrix; in this case "the size cell on the VADT form for 

collections[i@j]" where i and j are used to indicate the corresponding subcell of the 

collections matrix. 

Theoretically, it would also be possible to use polymorphism over time. Forms/3 

has an explicit notion of time in which each formula actually defines a stream-like 

collection of values rather than a single atomic value. However, in order to simplify the 

type system and notation, our approach assumes homogeneous streams. Thus reasoning 

about streams can be done as a unit, in the same manner as if each formula did simply 

define an atomic value. As a result, we will ignore time in the rest of the discussion of 

types. 

1 The defSet is necessary here because some cells Argi on the generalized instances of F 
may have formulas of expri. This information is part of the system's generalization 
algorithmfrom the user's perspective the polymorphic reference is the same as a regular 
reference. 
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5.4 Model of Types 

5.4.1 Fine-grained reasoning in terms of guarantees versus
requirements 

One goal of our model of types is that it be comprehensible enough to be usable in 

VPLs for programmers with powerful features such as polymorphism and fine-grained 

inheritance, while at the same time being potentially understandable enough for use even 

in VPLs intended for end users. (We emphasize that we are speaking of a model of types 

being usable in these two different sorts of VPLs, not of a single VPL being usable by 

these two audiences.) In order to achieve the first goal without sacrificing the second, we 

needed to try an approach that departs from traditional approaches, reasoning at a very 

fine-grained level about individual operations guaranteed and required rather than about 

entire types as atomic units. Working at this granularity eliminates the need to reintroduce 

declarations of interfaces or subtype relationships, which would have run counter to the 

goal of potential use by end users. This need to eliminate reliance on such programmer-

oriented concepts is one of the main reasons a model of types different from those 

developed for textual languages is needed for use by VPLs aimed at end users. 

Hence, in our model, there are no subtypes, compositions of types, or interfaces. 

Further, type checking is not done based on types as atomic units; rather the sets of 

operations guaranteed by each RO X and required by formulas referring to X are 

compared. If the requirements are not a subset of the guarantees, then there is a type 

error. For example, if formulas reference the "grow" and "shrink" operations on cell X's 

VADT form then X can contain any type of value that provides the "grow" and "shrink" 

operations. The sets of required and guaranteed operations are statically inferred by the 

type system. The set of operations guaranteed by X are denoted G(X), and the set of 
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operations required of X are denoted R(X). In this new model of types, type safety is 

defined as follows: 

Definition: If V X 8 program P, R(X) c G(X), then P is type safe. 

5.4.2 Guarantee sets 

In general, each RO guarantees all the operations defined on its VADT form. 

Since in Core Forms/3, each operation is associated with an RO on the VADT form, each 

operation is synonymous with a cellID. 

The simplest kind of guarantee set to infer is that for an abstraction box. 

Abstraction boxes reside only on VADT forms, which identify their type. Thus the 

guarantee set for an abstraction box F:A is the collection of operations available on that 

same (VADT) form F. Since operations are cellIDs, the axiom is: 

[GA] G(A) =fx1x4 F.ROset} where A is an abstraction box on form F 

This axiom is applicable to both user-defined types and built-in types. For 

example, G(primitiveCircle:newCircle) includes all the ROs on form primitiveCircle: the 

operations radius, thickness, lineStyle, lineForeColor, etc., including the abstraction box 

newCircle (refer back to Figure 1.1 to view primitiveCircle). Other circle-related tasks 

that can be performed using these operations do not need to be included on the 

primitiveCircle form itself. In this paper, we abbreviate the set of low-level operations for 

these primitive types (the celllDs on their VADT forms) as "<primitiveType>Operations"; 

in this example "primitiveCircleOperations". 

ROs with constant formulas simply derive their guarantee set from the primitive 

form describing the constant's value (see Table 5.5). 
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[GC] X C where C is a constant 

G(X)=G(C) where G(C) ={yIy8 FC.ROset} 

Example constants C G(C) 

C = 3 numberOperations 
C = "hello" textOperations 
C = true booleanOperations 

Table 5.5 Every constant value guarantees exactly the operations on its primitive 
form. For succinctness, we name these sets <primitiveType>Operations rather than 
listing the individual cellIDs. 

For cells and matrices with a formula whose operator is "f- ", the guarantee set 

simply propagates from the referenced cell or matrix by the axiom below. The "where" 

clause restricts this axiom to cells and matrices only because it is not needed for 

abstraction boxes; they are already handled by axiom [GA]. However, removing this 

restriction would not cause any adverse effects, since it would not introduce any conflicts 

with [GA]. 

[Gref] X Y where X is a cell or matrix 

G(X)=G(Y) 

The above three axioms handle every legal Core Forms/3 formula except matrices 

with compositionOfParts formulas. In this case, the guarantee set is derived from the 

guarantees of the matrix's ROset. This axiom could have the precondition "M.formula = 

compositionOfParts," but it is not necessary since the resulting guarantee set will be the 

same whether [Gref] or [GM] is applied to a matrix with a reference ( "f ") formula. 

[GM] G(M) = n G(M[i]) for all M[i] E M.gridROset 
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[GM] is the first of several elements of this presentation that are different for 

matrices than for other ROs. It would have been possible to change the language 

definition of matrices to make them define a complex value, as do abstraction boxes, and 

this would eliminate most of the specialized matrix reasoning. We elected not to do so 

because reasoning about Core Forms/3 matrices show how the model can apply to other 

VPLs' groups of objects (such as grids in spreadsheets and in rule-based demonstrational 

systems) that do not produce a single value. 

Finally, regarding primitive operations, guarantees are provided for ROs on the 

primitive forms via the postconditions that define their semantics. For example, the result 

cell (plusC) of form + guarantees all the operations guaranteed for built-in type number 

(which are enumerated via axiom [GA] and [GC]). Postcondition guarantees for some of 

the primitive forms are given in Table 5.6. 

Model Name ROset Type-related postconditions: 
Guarantees 

+ contains modifiable cells with celllDs plusA, G(plusC) = numberOperations 
plusB, and unmodifiable cell with cellID plusC. 

> contains modifiable cells with celllDs G(greaterthanC) = booleanOperations 
greaterthanA, greaterthanB, and unmodifiable cell 
with cellID greaterthanC. 

append contains modifiable matrices with celllDs appA, G(appC) = G(appA) n G(appB) 
appB, and unmodifiable matrix with cellID appC. 

if contains modifiable cells with cellIDs ifA, ifB, G(ifD) = G(ifB) n G(ifC) 
ifC, and unmodifiable cell with cellID ifD. 

Table 5.6 Guarantee sets for some primitive forms. For the primitive forms 
implementing operations, type postconditions are stated as guarantees under our model of 
types; this table shows these postconditions for a few of the primitive forms. (Compare 
these with the previous type-related postconditions of Table 3). Preconditions for these 
forms will be given in the next subsection. 

If the guarantee set of a cell or cell group is empty, the cell or cell group 

guarantees only universally polymorphic primitive operations, such as height and width. 
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5.4.3 Requirement sets 

Although guarantees normally propagate with dataflow and in Core Forms/3 

usually have only one source (since a Core Forms/3 formula has no more than one 

reference in its formula), requirements propagate against dataflow, because they indicate 

how the RO is to be used by other parts of the program. Further, since there may be 

many parts of the program that make use of (reference) a single RO, all of these uses 

must be collected. The implication of these two differences is that requirement sets must 

be aggregated and propagated via set unions, rather than via the equality assertions that 

sufficed for most of the guarantee sets. 

There are two ways an operator Op can become part of R(Y): either because Op E 

R(X) and X references Y (X Y), or because some RO Z contains a polymorphic 

reference to Op on Y's VADT form (Z Fy:Op). The following axiom combines these 

to determine the requirement set for Y. The multiple Fy(defSeti) defSets allow for 

multiple copies of a VADT form whose main abstraction boxes reference Y, which could 

occur if some of the ROs on the form need new formulas to provide appropriate 

"parameters" for the referenced Opi. So, in addition, the axiom requires that these 

parameters (the ROs mentioned in the defSets) exist. 

[R1] X1, X2,...Xn Y and Z1 Fy(defSet}):Opi, Z2 < Fy(defSet2):0p2...Zm Fy(defSetm):Opm 

R(Y) = u i=1..n of R(X]) u (Op], Op2,...Opm} u k=1..m (Op I Op E defSetk} 

where Xi is not an abstraction box and each defSetk is "Argkimexprki, Argk2-exprk2, 

..." In addition, the lists of X's and Z's are complete, that is, if X is not an abstraction 

box and X Y then X E {X}, X2,...Xn}, and similarly for the Z's. 

Numrows and numcols cells are always known to require numberOperations. 

[RN] R(N) = numberOperations 
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Matrices require everything that the cells in their gridROsets require: 

[RM]	 R(M) = v R(M[i]) where M[i] E M.gridROset 

Preconditions on ROs on the primitive forms add to the requirements propagating 

through the system; see Table 5.7. 

Model Name ROset	 Type-related preconditions: 
Requirements 

contains modifiable cells with cellIDs plusA, R(plusA) = numberOperations 
plusB, and unmodifiable cell with cellID R(plusB) = numberOperations 
plusC. 
contains modifiable cells with cellIDs R(greaterthanA) = numberOperations 
greaterthanA, greaterthanB, and unmodifiable R(greaterthanB) = numberOperations 
cell with cellID greaterthanC. 

append	 contains modifiable matrices with celllDs if tempR = application of [R1] to appA, 
appA, appB, and unmodifiable matrix with then R(appA) = tempR u R(appC)1 
cellID appC. if tempR = application of [12.1] to appB, 

then R(appB) = tempR L.) R(appC) 

if contains modifiable cells with celllDs ifA, R(ifA) = booleanOperations 
ifB, ifC, and unmodifiable cell with cellID if tempR = application of [R1] to ifB, 
ifD. then R(ifB) = tempR L.) R(ifD) 

if tempR = application of [R1] to ifC, 
then R(ifC) = tempR L.) R(ifD) 

Table 5.7 Requirements sets for some primitive forms. For the primitive forms, type 
preconditions are stated as requirements under our model of types; this table shows these 
postconditions for a few of the primitive forms. (The preconditions are invariant, but to 
avoid clutter, we did not explicitly repeat them in the postconditions of Table 5.6.) 

10r, more formally, 

X1, X2,...Xn Y and Z1 Fy(defSet{):0P1, Z2 Fy(defSet2):0p2.-Zm Fy(defSetm):Opm
 

R(appA) = L.) i=1..n of R(Xi) L.) { Op , OP2,-.0pm } L.) k=1..m {Op I Op E defSetk }u R(appC)
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5.4.4 Recursion 

Although semantically valid recursive calls in Core Forms/3 eventually terminate, 

the point of termination is not statically known. These two axioms provide a conservative 

static determination of the guarantee set of an RO involved in recursion; they say that if 

one branch of an "if' is recursive, then it must have the same guarantee as the non-

recursive branch. 

[RecB] F:X if(ifA=Adef,ifB:eBdef,ifCmCdef):ifD, F':X E Bdef 

G(F:X) = G(ifA=Adef,ifBE-BdetifCaCdef):ifC) where F.modelName = F'.modelName 

[RecC] F:X if(ifA=Adef,ifB-Bdef,ifC=Cdet):ifD, F' :X 8 Cdef 

G(F:X) = G(ifA=-Adef,idef,ifC1-_-Cdef):ifB) where F.modelName = F'.modelName 

5.4.5 How similarity inheritance fits into the type inference model 

To add support for polymorphism based on similarity inheritance to the basic 

axioms already presented, it suffices to supplement one guarantee axiom. Recall that "" 

is the "shares with" relation introduced in the previous chapter. 

[GA'] G(A) = { x, like y I x E F.ROset, y 4 x} where A is an abstraction box on form F 

This allows more programs to be inferred to be type safe, since the guarantee sets 

are larger than before "->" relationships were present. The definition of type safe also 

needs to be adjusted; under similarity inheritance, a program is now type safe if the 

guarantees set for every RO contains either "Op" or "like Op" for every operation Op in 

its requires set. 

Revised Definition: V X 8 program P and V Op E R(X), if either Op E G(X) or "like Op" E G(X), 
then P is type safe. 
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Thus a type error is now defined as: 3 X such that Op E R(X), and Op 4 G(X) 

and "like Op" G(X). 

5.5 Examples of Type Inference in Forms/3 

In this section, we present several examples of the guarantee and requirement sets 

that can be inferred. We use full Forms/3 because it is a real environment and thus allows 

actual screenshots. Although the axiom set is given for Core Forms/3, formal reasoning 

about full Forms/3 is possible using the translations between Forms/3 and Core Forms/3 

specified in Section 5.2.4. 

5.5.1 Example: Type inference without inheritance 

The form in Figure 5.4 is an example of a program with no inheritance. The 

population program provides different sized circles to represent cities depending on their 

population. The types for each RO on the form population can be inferred using the 

axioms provided in Section 5.4. For conciseness, we omit form names where doing so 

does not introduce ambiguity. 
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Figure 5.4 The population program. 

Notice that in the case of ROs whose only purpose is to display answers on the 

screen, the requirement set will be empty. The matrix subcell population:location[l @1], 

which contains the value "Portland," is an example of such a cell, since there are no 

references to it: 

R(location[l @I]) = } [R1] 
G(location{1@1]) = G("Portland") = textOperations [GC] 

Obviously, R(location[1@1]) c G(location[1@1]), so there is no type error here. 

The same axioms apply to the other cells in location's gridROset with exactly the same 

results. 
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The city cell is another example of an RO with an empty requirement set, but the 

derivation is a little lengthier since city is referenced by other ROs in the program. Here 

the formula for the subcells in the graph matrix is first translated to the Core Forms/3 

equivalent, so, for example, there is a copy of the if form on which ifB.formula = 

population:city". 

R(city) = R(ifB) [R1] 

R(ifD) [Table 5.7] 
= R(graph[l @1]) u R(graph[2@1]) u R(graph[3@1]) u R(graph[4@1]) [R1] 
= {} [R1] 

G(city) = G(702-primitiveCircle:newCircle) = primitiveCircleOperations [GC] 

R(city) = c primitiveCircleOperations = G(city) 

The town and village cells have similar derivations with the same results. 

The matrix subcell graph[ 1 @ 1 s formula is a reference rather than a constant. 

Again translating the formula for the subcells in the graph matrix to the Core Forms/3 

equivalent, let ifl and if2 be the appropriate copies of "if'; for example, if2:C village, 

ifl:C if2:ifD, and so on. Then: 

R(graph[1@1]) = [R1] 

G(graph[l @1]) = G(ifl:ifD) [Gref] 

= G(city) n G(if2:ifD) [Table 5.6] 
= G(city) n (G(town) n G(village)) [Table 5.6] 
= primitiveCircleOperations [GC] 

R(graph[1@ I]) = } [R1] 

R(graph[ 1 @1]) = } c primitiveCircleOperations = G(graph[1@1]) 

The same results apply for the other cells in graph's gridROset. 

Turning to a cell with a non-empty requirement set, the population[l @1] cell has 

a requirement set of numberOperations. (Forms ">1" and ">2" are copies of form ">" on 

which greaterthanA population[1 @I].) 

R(population[1@1]) = R(>1:greaterthanA) u R(>2:greaterthanA) [R1] 

= numberOperations [Table 5.7] 
G(population[1@1]) = G(450000) [GC] 
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numberOperations 
R(population[1@1]) = numberOperations c numberOperations = G(population[1@1]) 

The same results apply to the other cells in population's gridROset. The 

population matrix itself is an example of a Forms/3 matrix with the implicit 

"compositionOfParts" operator, which translates to Core Forms/3's explicit use of that 

operator. Hence, its guarantee and requirement sets are derived solely from its subcells. 

R(population) = R(population[l @1]) L.) R(population[2@1]) L.) R(population[3@1]) L.) 
R(population[4@1]) [RM] 
= numberOperations [Table 5.7] 

G(population) = G(population[1 @1]) n G(population[2@1]) n G(population[3@1]) n 
G(population[4@1]) [GM] 
= numberOperations [GC] 

R(population) = numberOperations c numberOperations = G(population) 

In the same way, the matrix location can be shown to have an empty requirement 

set and a guarantee set of textOperations and the matrix graph can be shown to have an 

empty requirement set and a guarantee set of primitiveCircleOperations. 

Each of the three matrices on the population form also has a numrows cell and a 

numcols cell in its ROset. In this program, they happen to have the same requirement and 

guarantee sets, so we give only one example here. 

R(location[numrows]) = numberOperations [RN] 

G(location[numrows]) = G(4) = numberOperations [GC] 

R(location[numrows]) = numberOperations c numberOperations = G(location[numrows]) 

Since every RO on the population form satisfies the constraint that its requirement 

set be a subset of its guarantee set, the population program is type safe. 
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5.5.2 Example: Type inference in the presence of single inheritance 

The Stack and Queue examples introduced in Chapter 4 illustrate how our model 

of types works in the presence of inheritance. First consider what the main abstraction 

boxes on each form guarantee. These sets are lengthy, because they include the cellIDs of 

every ROE the ROset for the forms. (Note that type safety is separated from information 

hiding, which is solved in a different way [Burnett and Ambler 1994].) Although shared 

data structures in a system implementing this model can cut down on some duplication of 

these lengthy sets, not all copying can be avoided. (Refer back to Figures 1.2 and 4.1 to 

see the Stack and Queue forms.) 

G(Stack:Stack) = {Stack, push, pop, top, Image, new, lines, new-matrix, Stack[items], 
Stack[items][numrows], Stack[items[1@1]...} [GA'] 

G(Queue:Queue) = {Queue, enqueue, dequeue, front, Image, new, lines, new-matrix, Queue[items], 
Queue[items][numrows], Queue[items][1@1], like Stack, like pop, like top, like 
Stack[items], like Stack[items][numrows], ...] [GA'] 

Since Queue was created via similarity inheritance from Stack, the guarantee sets 

for abstraction boxes on a Queue form include shared ("like") operations. Notice, 

however, that it does not include "like push" because the programmer overrode the 

similarity between Stack's push and Queue's enqueue. 

Figure 5.5 shows a simple form illustrating some uses of operations on a stack. 

The cell collection references a Stack, so its guarantees set is the same as G(Stack:Stack). 

Assuming that cells removed-item and the-rest are the only polymorphic references to cell 

collection's VADT form, cell collection's requirements set contains two operations: 

R(collection) = {top, pop} [R1] 
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Since G(Queue) includes "like top" and "like pop," a reference to Queue would 

also result in a valid value for the cell collection according to the revised definition of type 

safety in Section 5.4. 

Side
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Show Test)
 
Data
 

Figure 5.5 Polymorphic references. The form Remove contains simple examples of 
polymorphic references in cells removed-item and the-rest. These are shown in their 
concrete form (they have not been generalized). 

5.5.3 Example: Type inference in the presence of multiple inheritance 

The Deque (double-ended queue) in progress from Figure 4.2 illustrates use of 

multiple inheritance. Deque inherits most of its ROset from Queue, but it also inherits the 

push operation from Stack. Deque's main abstraction box's guarantee set is not much 

different from that of Queue's. 

G(Deque:Deque) = {Deque, enqueue, dequeue, front, Image, new, lines, new-matrix, Deque[items], 
Deque[items][numrows], Deque[items[l ..., like Stack, like pop, like top, like 
Stack[items], like Stack[items][numrows], ..., push, like Queue, like Queue[items], like 
Queue[items][numrows], ...} [GA'] 

Due to the fine-grained granularity of our model, the presence of multiple 

inheritance in a program does not significantly affect the derivations of guarantee and 
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requirement sets of operations. The same axioms are applied regardless of the presence 

and the form of inheritance. 

5.6 Discussion 

This section analyzes properties of the model of types, first showing soundness 

and completeness of the axiom set, then investigating the potential understandability of 

type errors and finally examining the types of Forms/3's equivalent to function 

arguments. 

5.6.1 Soundness 

Let A be the axiom set presented in Section 5.4. In the context of this type 

system, our interest is in whether implementing A in a VPL will result in soundness with 

regard to type safety, ensuring that the VPL's users are informed of every type error. In 

order to be sound, a program with type errors cannot be proven type safe using A. For 

the purpose of proving soundness, we define a use of Op on X as a (polymorphic) 

reference to Op on X's VADT form. 

The model will be said to be sound with respect to guarantees if G(X) contains 

only operations guaranteed to be on X's VADT form, that is: 

(a) where X is not a matrix: If Op E G(X) according to A, then every use of Op 

on X will be successful (Op E Fx.ROset ) and if "like Op" E G(X) according to A, then 

every use of Op on X is defined as successful use of "like Op" on X (Op2 E Fx.ROset 

where Op '--=> Op2). 

(b) where X is a matrix: If Op E G(X) according to A, then every use of Op on 

X[i] will be successful (Op E Fx[ii.ROset ) and if "like Op" E G(X) according to A, then 

every use of Op on X[i] is defined as successful use of "like Op" on X[i] (Op2 

Fx[ii.ROset where Op 24 Op2). 
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Proof: 
(a) X is not a matrix 

Case 1: X is an abstraction box. 
Op E G(X) = Op 8 F.ROset (where F:X is X) by [GA'] 
Fx.modelName = F.modelName by [AbsType] 

Op e Fx.ROset by [Copies] 
every use of Op on X will be successful. 

By similar reasoning, "like Op" e G(X) = every use of Op on X will be successful. 
Case 2: X 4: F:Y, where F:Y is an abstraction box. by [Inst] 

G(X) = G(F:Y) by (repeated application of) [Gref] 
Op E G(X) Op E G(F:Y) 

Op '8 F.ROset by [GA'] 
Fx.modelName = F.modelName by [AbsType] and [VADTformExistsR] 
Op E Fx.ROset by [Copies] 
every use of Op on X will be successful. 

Again by similar reasoning, "like Op" E G(X) = every use of Op on X will be 
successful. 
Case 3: X 4c C. 
Because constants are shortcuts for referencing an abstraction box on a built in VADT form, the 
proof can be reduced to case 2. 

(b) X is a matrix. 
Op e G(X) = Op E G(X[i]) V X[i} E X.gridROset by [GM] 

Op 8 Fx[ii.Roset V X[i] E X.ROset by (a) above 
every use of Op on X[i] will be successful. 

By the same reasoning, "like Op" E G(X) = every use of Op on X will be successful. 

The model will be said to be sound with respect to requirements if R(X) contains 

every operation required of X, that is: 

(a) where X is not a matrix: If Op R(X) according to A, then there is no use of 

Op on X (71 Z such that Z Fx:Op) and there is no use of Op on some Y such that Y 

X. 

(b) where X is a matrix: If Op 4 R(X) according to A, then there is no use of Op 

on any X[i] Z such that Z Fx[ii:Op) 

Proof (by contradiction): 
(a) X is a cell or abstraction box.
 

Assume there is a use of Op on X. Then either Case 1 or Case 2 below must be true.
 
Case 1: 3 Z such that Z Fx:Op
 

Op E R(X). by [R1] 
But Op 4 R(X), so there is no such Z. 

Case 2: There is a use of Op on Y and Y '4 X 
3 Z such that Z Fy:Op 
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Op c R(Y) = Op e R(X). by [R1] 
But Op 4 R(X), so there is no such Z. 

Thus there is no use of Op on X. 
(b) X is a matrix. 

Assume there is a use of Op on X[i] 
3 Z such that Z Fx[ii:Op 
Op c R(X[i]) by [R1] 
Op E R(X). by [RM] 

But Op 4 R(X), so there is no such Z. 
Thus there is no use of Op on X[i]. 

The model is not complete because, like other static type systems, it is 

conservative. A requirements set may contain operations that are not used and a guarantee 

set may not include all operations on the relevant VADT form. Let R0(Y) be a set of 

requirements for Y inferred under a model sound and complete with respect to 

requirements, and let R1(Y) be the requirements inferred using A. It is possible for Op to 

be in R1(Y) when Op is never used for Y. For example, suppose X.formula = "If 

true=false then (Y div 2) else 3"; this will cause an inference under A that Y needs to be 

dividable, that is, R1(Y) = {div } . Yet, the division will never happen, that is, R0(Y) = 

{ }. However, we have shown that A is sound with respect to requirements R1(Y), and 

from this it is clear that R0(Y) is a subset of R1(Y), both in the case of this example and 

for any other arbitrary Y. In the presence of soundness, too many requirements produces 

too conservative a view of which programs are type safe, but it does not allow genuine 

type errors to be ignored. This is because if a program is inferred to be type safe under A, 

then for any Y in the program, R1(Y) is a subset of G(Y), which means that R0(Y) is 

also a subset of G(Y). Thus every program inferred to be type safe under A would also 

be inferred to be type safe under a complete system. 

Similarly, the model is not complete with respect to guarantees. In the cases in 

which guarantees are inferred by intersecting other sets of guarantees, the results can be 

overly conservative. However, because the model is sound with respect to guarantees, by 

similar reasoning to that for requirements, the lack of completeness results only in an 
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overly conservative measure of which programs are type safeit does not allow unsafe 

programs to be deemed to be safe under A. 

Hence, the soundness property is sufficient to guarantee that implementing A in a 

VPL will ensure type safety, enabling the VPL to notify its users of every type error in 

their programs. 

5.6.2 Understandability 

One of the goals of this work has been to devise a type system understandable 

enough that it could be used in end-user languages as well as languages for programmers. 

Although the question of understandability by a particular audience ultimately requires 

testing human subjects' actual use of the model in a particular implementation, it is 

possible to gain some early insights into the question in an implementation-independent 

way by considering the amount and kind of vocabulary necessary to communicate with 

the user about types. 

We consider the minimum communication necessary to be the generation of type 

error messages, since if no error messages were ever produced, there would be no benefit 

to having a type inference system. To be useful, a type error message must indicate three 

pieces of information: 

1. Where in the program the error occurs 

2. What the offending type is 

3. What the offending type should have been 

The second and third pieces of information require a vocabulary of types. Our model's 

vocabulary of types consists of only three different concepts: primitiveOperations 

(circleOperations), formIDs (Mirror) and celllDs (movedPoint). Since programmer-

assigned names are used in place of generated IDs, we expect these concepts to be 

familiar and thus understandable to the programmer. Because of this simple type 
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vocabulary, we believe our model of types offers a potential for greater understandability 

than existing type inference models. In particular, the absence of polymorphic types, 

function types and compositions of types, simplifies the type vocabulary required of the 

programmer, whereas type inference models that use these concepts must also 

communicate about them, complicating the type vocabulary. 

5.6.3 Permitted types of arguments 

Polymorphic references can be viewed as the spreadsheet-based language 

equivalent of polymorphic function calls. Under this analogy, the RO referenced is the 

return value and the ROs listed in the defSet list are the arguments. For example, the 

polymorphic reference illustrated in Figure 5.3 could be interpreted as a function called 

newPoint which takes arguments oldPoint and x-offset. In most statically typed object-

oriented languages, the types of the arguments are constrained to be supertypes or 

subtypes of some declared type (recall the discussion of covariance and contravariance 

from Section 2.3.1.1). According to the requirements axiom [R1], however, our model 

of types only requires that the arguments exist; it says nothing about their types. The 

reason this omission is acceptable is that type checking will still be performed on the 

arguments at edit time for any new use of this "function." For example, to reuse the 

function newPoint, the Forms/3 programmer makes a copy of the form Mirror and 

provides a new formula for cell oldPoint (and possibly for x-offset). Because of the 

responsiveness of the language, the edit of cell oldPoint's formula causes the formula for 

cell newPoint to be re-evaluated, generating a new copy of the VADT form appropriate 

for the value of oldPoint. On this new copy, the "aPoint" and "delta-x" cells have by 

definition new formulas, referencing cells oldPoint and x-offset respectively, which are 

statically type checked before they are evaluated. Thus the arguments to a function are 

always statically type checked at the edit time of the original function call (in the example, 
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the edit of the argument oldPoint). Since each function call is statically type checked 

separately from others, there is no reason to impose relationships among the allowed 

types of the arguments, so the question of contravariance versus covariance of arguments 

is avoided. 



94 

Chapter 6: Future Work 

An important next step in the area of similarity inheritance will be empirical work 

to learn whether users make fewer reuse errors or reuse formulas more often using 

similarity inheritance as opposed to the current copy/paste/replicate techniques. Two 

other questions that we would like to explore are whether users are as comfortable with 

similarity inheritance as with copy/paste/replicate, and whether the explicit representation 

succeeds at making the flexibility inherent in the approach manageable. Finally, we 

would like to gather empirical data about whether and how people use mutual 

inheritance. 

Another area for investigation is the issue of priority for name versus similarity. 

If form Queue, for example, contained both a cell "like top" (but named front) and a cell 

named top, which one should take priority for polymorphic references to cell top? The 

current solution is to disallow both name and similarity, that is, the programmer either 

must not name a cell top or must first break the similarity between Stack's top and 

Queue's front. We would like to explore whether it is reasonable to make this restriction, 

or whether both should be allowed, but one given priority. Perhaps a better solution 

would be to allow both, so that Queue's front can benefit from updates to Stack's top, 

but give priority to the name top (for polymorphic references) so that the programmer can 

emphasize interface over implementation. 

We would also like to fine-tune the explicit representation devices. For example, 

the current technique of shading does not distinguish between cells created via large-

grained similarity and those created via fine-grained similarity. One solution would be to 

make the shading for the cells created via fine-grained similarity a little darker than for 

large-grained similarity. This visual cue would help the programmer see the difference at 

a glance, rather than having to look at each cell's formula legend. For example, on the 
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form Deque (Figure 4.2) the abstraction box push and the ROs inside it would appear 

slightly darker, indicating that they did not come from the form Queue. 

Chapter 3 introduced techniques for answering eight of the reuse questions 

identified in Section 3.2. Future work could investigate ways to help the programmer 

find answers to the remaining questions. For example, in seeking an answer to the 

question "what version of this component should I use?" the programmer might benefit 

from information such as how often a component has been changed, the date of the last 

change, how often it has been used, and other information regarding the history of the 

component. Besides additional query attributes such as dates, the repository would 

benefit from an empirical investigation into how people use it, what they use it for, and 

in what ways the query interface could be improved. 

The current repository focuses on the granularity of entire pre-existing forms, 

while similarity inheritance supports reuse at a finer granularity on forms as they are 

currently being programmed. An unresolved research issue is how to extend the 

repository support to this finer granularity thereby integrating it modelessly into the 

programming process. The issue of keeping similarity information current in both the 

repository and the current workspace is complicated by the fact that forms can be affected 

even when they are not loaded (for example, overriding similarity on the form Queue 

affects form Stack and how it might appear in the repository even if Stack is not currently 

loaded). 

The type inference system has not yet been implemented. Although we expect 

most of the translation from axioms to algorithm to be straight-forward, one case 

deserving special attention is polymorphic references. According to axiom [Gref], a cell 

picks up its guarantee set from the cell it references. Usually the reference can only 

change when the cell's formula is edited. In the case of polymorphic references, 

however, the actual cell referenced (and its type) may change. As discussed in Section 
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5.6.3, this change also only happens as the result of a program edit, but since the edit is 

to a cell different from the one containing the polymorphic reference, care should be 

taken that this case is not missed. 

An implementation of a type inference algorithm is also needed to ascertain how 

significantly the increased space (to store guarantee and requirement sets) and time (to 

retype-check each use of a polymorphic operation) affect performance, both in terms of 

overall speed and in terms of maintaining responsiveness. It is possible that even if the 

speed is much worse than in traditional type checking approaches, it will still be fast 

enough to be viable for some VPLs, for example, those aimed at end users for writing 

small programs. 

Currently there is a restriction that the type of a cell's value be homogeneous over 

time. We would like to remove this restriction, investigating the extension of the model 

to include heterogeneous time, that is, allowing the type of a cell's value to change over 

time. Removing the restriction would allow formulas that would result in different types 

at different values of logical time. Such an extension would probably include the 

intersection of guarantee sets over time. Thus an interesting research question is whether 

all possible types (over time) can be inferred statically in all cases. 

This research was not directly concerned with user interface issues, but because 

of the visual nature of VPLs it encroaches on that area. A concentration on the user 

interface aspects of this work would find many areas for design and improvement. For 

example, the interface for communicating with the user about type errors has not yet been 

designed. Such an interface could explore the advantages of the live environment of most 

VPLs to provide the programmer with quick access to the parts of the program involved 

in the type error. Other user interface features, such as the copy operation C, have been 

designed and implemented as simply as possible. A more sophisticated C might include 
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copying a form directly (by manipulating the form) rather than from the control panel and 

the ability to copy cells by dragging and dropping from one form to another. 

Implementation details: Since Forms/3 is a research prototype, it is undergoing 

constant development. This is a list of incomplete or missing aspects of the similarity 

inheritance implementation intended to inform current and future Forms/3 implementors. 

saving and loading similarity information 

cell legend pop-up list (for ancestor lists of more than two) 

similarity arrows in the repository view (needs saving of similarity information) 

inclusion of newly-created forms in the repository (before they are saved) 

propagating cell adds and cuts to copied forms 

generalization: there is a limitation in the current implementation of generalization that 

restricts the formulas possible in defSets. The defSet cells with "local" formulas do 

not generalize correctly, so all changes to the copy must use references to off-form 

cells. (The example in Figure 5.3 did not originally have the cell x-offset on the form 

Mirror, but instead overrode the 248-Point:delta-x formula as "- (x + x)" which does 

not generalize properly.) 

an interface for resolving name conflicts when the programmer attempts to paste a cell 

onto a form that already contains a cell of the same name. 
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Chapter 7: Conclusion 

This dissertation has contributed a model of inheritance called similarity 

inheritance for declarative, responsive visual programming languages. Adding 

inheritance to declarative VPLs may improve the ability of the programmer to reuse code, 

and it is this potential for reuse that we wished to bring not only to programmers but also 

to end users. 

Within this context of reuse, we first explored avenues of support inherently 

available in declarative VPLs that feature a tight integration between language and 

environment. The techniques we presented leverage characteristics found in these VPLs 

to promote code reuse features needed for informal, evolving repositories. Among these 

features are: 

No special work required of component producers: Our approach supports reuse by a 

consumer even if the producer has not gone to the work of doing "reusability 
packaging." 

Saving the consumer from task separation: One of the problems traditionally present 

in code reuse is that it is often perceived to be easier for consumers to write new code 

than to find previously-written code, figure out whether it produces the desired 

results, and learn how to interface with it. By integrating the repository access into 

the language environment, we are working to address this problem by dissolving the 

obstacles that separate reusable code from the consumer's working environment. 

Support for informal repositories: Informal repositories do not feature the kinds of 

controls traditionally followed in "owned" repositories, and hence support cannot be 

based on the assumption that a particular classification scheme or formalized 
documentation standard is present. In our approach, components may be only 
partially-documented or standardized, but they may be explored for reuse using 

features supported by many VPLs, such as sample values and automatic executions, 

automatically-derived dataflow views, and the low-level visualizations that are often 

found in VPLs. 
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Our repository approach derives the kind of information formerly only available 

through packaging efforts by code producers and repository administrators, doing so by 

drawing upon the complete knowledge of language semantics inherent in tightly-

integrated VPLs, along with other characteristics found in many such VPLs, such as 

sample values, liveness, and animation. 

From this starting point, we moved on to demonstrate how the code sharing 

mechanism of similarity inheritance could be integrated into declarative VPLs. We 

prototyped our approach in the paradigm most widely used by end users: spreadsheets. 

We have demonstrated how similarity inheritance can be incorporated into the 

spreadsheet paradigm, using only cells and declarative formulas, without violating the 

value rule or requiring users to learn other programming languages or macro languages. 

We have shown also that the approach to inheritance can be used to manage reuse 

relationships among cells even in simple formula reuse, which traditionally has been 

supported only by copying or replicating a formula to other cells. This flexibility not only 

increases the support for this kind of operation, it also affords a gradual path for a user to 

progress from simple formula copy/paste to more advanced applications of the technique 

such as inheritance among user-defined types. 

An important feature of similarity inheritance is object self-sufficiency. Self-

sufficiency enables a concrete style of programming, and avoids the yo-yo problem. 

These features are a result of the semantic model's reliance on an interaction model. We 

expect the model to generalize well for incorporation into other kinds of declarative 

VPLs, the main requirement being that the language be responsive, a characteristic often 

found in VPLs. Although two of the four elements in the interaction modelthe copy 

operation and the formula definition operationcould be accomplished textually, the 

other two elementsan explicit representation and a liveness level of 3 or higher 

require visual elements in the environment that textual languages usually do not 
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guarantee. Hence, it is unlikely that similarity inheritance would be possible for a textual 

language. 

Approaches to inheritance have traditionally been tied to subtyping, thus allowing 

(via inclusion polymorphism) objects of subtypes to reuse functions created for 

supertypes. Since similarity inheritance does not create subtypes, we demonstrated how 

polymorphic functions can still be attained by introducing a new model of types and an 

extension of generalization for polymorphism. The model of types for first-order 

declarative VPLs is suitable for static type inference in the presence of similarity 

inheritance with operation polymorphism. Static type inference increases the amount of 

immediate visual feedback that VPLs can potentially provide, because VPLs afford the 

possibility of immediate (edit-time) feedback as soon as the user introduces a type error. 

We believe our approach is suitable both for VPLs aimed at programmers and those 

aimed at end users. Two unique aspects of our model are: 

it separates type requirements from type guarantees, and 

reasoning about each portion of the program is done at the granularity of each 

operation, rather than at the granularity of entire types. 

These aspects have several interesting and desirable effects. The separation of 

requirements and guarantees allows support even of flexible, fine-grained approaches to 

inheritance, which supersedes support of traditional, coarse-grained approaches to 

inheritance. Additionally, this support for fine-grained inheritance is provided without 

the traditional measure of re-introducing explicit type declarations. Finally, the model 

allows reasoning to be performed in terms of concrete program units that were explicitly 

created by the user (such as cells, in Forms/3), rather than in terms of abstract type 

names, and this is the main reason why the user vocabulary associated with use of this 

model is small. These properties, while potentially useful in traditional programming 

languages, are much more critical in declarative VPLs, because their absence prevents the 
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possibility of using static type inference either in VPLs incorporating similarity 

inheritance or in VPLs aimed at end users. 

Together, the repository techniques and the models of inheritance and types 

provide powerful language-level code reuse via similarity inheritance for declarative 

VPLs. The models presented are intended for either programmers or end users and 

enable a gentle progression toward more sophisticated use as users gain expertise. 
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determined, the flexibility to work with the customer interactively during the design 
process, making modifications rapidly to deteimine the specifications. 
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[Batory et al. 1994] Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart 
Geraci, and Marty Sirikin. The GenVoca model of software-system generators. IEEE 
Software, September 1994. 

Annotation: Talks about Predator, a data structure generator, that scales better than a 
library of individual data structures and also optimizes well. 

[Baumgartner et al. 1996] Gerald Baumgartner, Konstantin Laufer, and Vincent F. 
Russo. On the interaction of object-oriented design patterns and programming 
languages. Technical Report CSD-TR-96-020, Purdue University, February 1996. 

[Bederson et al. 1996a] Benjamin B. Bederson, James D. Ho llan, Allison Druin, Jason 
Stewart, David Rogers, and David Proft. Local tools: An alternative to tool palettes. 
In ACM Symposium on User Interface Software and Technology, pages 169-170, 
Seattle, Washington, November 1996. 

Annotation: Rather than keeping tools in a palette, they are allowed to lie around on 
the workspace, as on a real desktop. Testing with children has indicated that this is 
an easier way for them to understand tools. They continue to refine the UI with 
further user feedback. 

[Bederson et al. 1996b] Benjamin B. Bederson, James D. Ho llan, Ken Perlin, Jonathan 
Meyer, David Bacon, and George Furnas. Pad++: A zoomable graphical sketchpad 
for exploring alternate interface physics. Journal of Visual Languages and 
Computing, 7(1):3-31, 1996. 

Annotation: Some of the interesting user interface ideas discussed in this article 
include: different representations of an object depending on the size available to 
display it (title vs. abstract), representations that depend on the size of the entity 
displayed (lines of a small file vs. pages of a large file), lenses that change the 
appearance of entities (column of numbers to bar chart), and visual bookmarks. 

[Bhavnani and John 1997] Suresh K. Bhavnani and Bonnie E. John. From sufficient to 
efficient usage: An analysis of strategic knowledge. In CHI Proceedings: Human 
Factors in Computing Systems, pages 91-98, Atlanta, GA, March 1997. 

Annotation: Neither good design nor user experience can guarantee efficient use of 
computer tools. (An example is resizing several spreadsheet columns to be width X 
except one in the middle should be width Y. The efficient way is to resize all to X 
then resize the exception rather than resizing all individually.) This paper discusses 
strategic knowledge and the particular strategy of aggregation as a powerful tool for 
efficient operation. Unfortunately, based on empirical study, they find that users tend 
to have trouble with effective use of aggregation. 

[Biddle and Tempero 1995] Robert Biddle and Ewan Tempero. Understanding OOP 
language support for reusability. In Workshop on Institutionalizing Software Reuse, 
1995. 

Annotation: The authors are interested in the affect of programming language features 
on code production. They say the advantages of OOP for reuse are (1) design-by­
analogy (00D) leads to using structures that have already been needed and designed 
before or that will be needed in the future, (2) encapsulation, (3) composition of 
objects, and (4) making the context code reusable by using inheritance for 
conformance which allows the context code to work with different subclasses. 
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[Biddle and Tempero 1996] R. L. Biddle and E. D. Tempero. Understanding the impact 
of language features on reusability. In International Conference on Software Reuse, 
pages 52-61, Orlando, Florida, April 1996. 

Annotation: The authors introduce a conceptual model of reusability concerned with 
programming language support. They distinguish between reuse of components and 
context. The model emphasizes dependencies. Checkability: can the language detect 
if dependencies are met? Customizability: how much control does the 
context/component have over how it meets the component/context dependencies? 
Flexibility: does the language introduce dependencies that do not contribute to the 
behavior of a segment? Intention: are dependencies deliberately introduced by the 
programmer or because the language requires them or on accident? Language 
support: can dependencies be described in programming language constructs and can 
it be automatically checked by the language environment? The authors demonstrate 
how to apply the model to well-known language features, such as user defined types 
and classes, that support reusability. 

[Biggerstaff and Perlis 1989a] Ted J. Biggerstaff and Alan J. Perlis, editors. Software 
Reusability: Applications and Experience, volume 2. Addison-Wesley, Reading, 
Massachusetts, 1989. 

[Biggerstaff and Perlis 1989b] Ted J. Biggerstaff and Alan J. Perlis, editors. Software 
Reusability: Concepts and Models, volume 1. Addison-Wesley, Reading, 
Massachusetts, 1989. 

[Biggerstaff and Richter 1987] Ted Biggerstaff and Charles Richter. Reusability 
framework, assessment, and directions. IEEE Software, 4(2):41-49, March 1987. 

Annotation: Identifies these reuse problems: conflict between generality and power, 
conflict between component size (payoff) and reuse potential (less modification), 
large initial investments. Identifies four problems a reusability system must address: 
finding components (including similar ones), understanding components (especially 
to modify them), modifying components, composing components (points out that 
math composition is straightforward, whole = sum of parts, but both global and local 
effects make composition more challenging). Problems for code reuse: large numbers 
of data types, domain not well-understood or constantly changing. Problem for 
design reuse: representation of design information that is either overly specific or not 
richly machine processable. A good design representation would represent 
knowledge about implementation structures in factored form (example, reuse a 
process table without the accompanying notion of indexed table), allow partial 
specifications (mixture of precision and fuzziness) that can evolve incrementally, 
allow flexible couplings between instances and their interpretations (example, 
process ID and table index), and express controlled degrees of abstraction (implies 
the first three properties) such that if information can be known based on design so 
far, it must be representable. Semantic binding (binding by analogy) is offered as a 
mechanism for breakthroughs in design representation. Their work on Prep is 
mentioned but no reference given. 

[Biggerstaff and Richter 1989] Ted J. Biggerstaff and Charles Richter. Reusability 
framework, assessment, and directions. In Ted J. Biggerstaff and Alan J. Perlis, 
editors, Software Reusability: Concepts and Models, volume 1, chapter 1. Addison-
Wesley, Reading, Massachusetts, 1989. 
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Annotation: Identifies reusability dilemmas which take the form of tradeoffs, 
generality vs. payoff, size (and payoff) vs. reuse potential, and investment vs. 
benefits (payoff). Identifies four fundamental problems a reusability system must 
address: finding components, understanding components, modifying components, 
and composing components. Gives an overview of existing work and research 
issues, including the reuse of design which they say requires some breakthrough in 
machine processable representation. 

[Biggerstaff 1994] Ted J. Biggerstaff. The library scaling problem and the limits of 
concrete component reuse. In Third International Conference on Reuse, November 
1994. 

Annotation: Attributes the library scaling problem largely to inadequate abstraction 
and composition mechanisms in conventional languages. Biggerstaff's solution is to 
compose at reuse-time and then optimize away the overhead of the levels of 
abstraction that are no longer necessary at compile-time. Booch's component library 
is suggested as a benchmark for reuse. Solving the library scaling problem will allow 
composition of concrete but custom variations generated in a fully hands-off manner 
(that is, without code glue, component modification, or any other non-black-box 
reuse technique that eliminates the benefits of reuse). The ideal factorization of 
features would result in libraries that grow linearly while the set of useful composites 
grows combinatorily. 

[Biggerstaff 1995] Ted J. Biggerstaff. Second order reusable libraries and meta-rules for 
component generation. In Workshop on Institutionalizing Software Reuse, 1995. 

Annotation: "First order reuse libraries" (those that are simply reusable building-
blocks) by themselves will not (have not) resulted in scalable reuse because 
composition, refinement and specialization are localized. A "second order reuse 
library" would allow for components with global effects or transformational rules. 

[Blackwell 1996] Alan F. Blackwell. Metacognitive theories of visual programming: 
What do we think we are doing? In Proceedings IEEE Symposium on Visual 
Languages, pages 240-246, Boulder, Colorado, September 1996. 

Annotation: Investigated claims (or perhaps discussion points) made in 140 papers 
about visual programming languages. Identified 12 themes (such as concreteness and 
improved productivity), each of which is discussed briefly. 

[Blair et al. 1989] Gordon S. Blair, John J. Gallagher, and Javad Malik. Genericity vs 
Inheritance vs Delegation vs Conformance vs ... Journal of Object Oriented 
Programming, pages 11-17, September 1989. 

Annotation: Reexamining Wegner's definition of object-oriented programming. The 
authors emphasize propertiesencapsulation, set-based abstraction, and 
polymorphismrather than mechanisms such as classes and inheritance. They 
separate polymorphism into inclusion polymorphism, when an object belongs to 
more than one type, and operation polymorphism, when code works with different 
types of objects. (Wegner did not include operation polymorphism.) Different 
mechanisms are evaluated according to these properties. 

[Blanchet 1995] Bruno Blanchet. Projet d'informatique inference de types avec 
dimensions sous caml light. Technical report, INRIA, 1995. In French. 
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Annotation: Information about the new features of Caml Dim which includes 
dimension types. Other Caml Light documents are available via ftp at ftp.inria.fr in 
the directory lang/cam1-light. 

[Borning et al. 1996] A. Borning, B. Freeman-Benson, and M. Wilson. Constraint 
hierarchies. Lecture Notes in Computer Science, 1106:23+, 1996. 

[Borning 1986] A. H. Borning. Classes versus prototypes in object-oriented languages. 
In Fall Joint Computer Conference, pages 36-40, Dallas, Texas, November 1986. 

Annotation: Proposes a kind of prototype language providing object classification 
and updating via constraints maintaining the inheritance relations. 

[Bracha and Cook 1990] Gilad Bracha and William Cook. Mixin-based inheritance. In 
Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), 
pages 303-311, October 1990. 

Annotation: Examines different mechanisms for using inheritance to implement 
incremental programming, traditional Smalltalk, Beta's prefixing, CLOS' s complex 
multiple inheritance. Presents a generalized inheritance mechanism with explicit 
support for mixins that also supports the styles of inheritance in the other three 
languages. An extension to Modula-3 illustrates their generalized inheritance. 

[Braine and Clack 1996] Lee Braine and Chris Clack. Introducing CLOVER: An object-
oriented functional language. In Werner Kluge, editor, Implementation of Functional 
Languages, 8th International Workshop, number 1268 in Lecture Notes in Computer 
Science, pages 1-20, 1996. 

Annotation: The authors describe CLOVER as 100% functional and 99% object-
oriented. Features include referential transparency (no side effects), no multiple 
inheritance, type-safe (upper bounds on types are known statically) dynamic dispatch 
based on a single distinguished object, overloading. An interesting aspect is that the 
distinguished object is the last argument in the list, in order to allow currying. 
Subclasses must implement (or inherit) every method of their superclass with exactly 
the same type signatures. The visual interface emphasizes laziness by using a "pull" 
winder. Methods/functions are stacks of pipes with the result on top. 

[Braine and Clack 1997] Lee Braine and Chris Clack. Object-flow. In Proceedings IEEE 
Symposium on Visual Languages, pages 418-419, September 1997. 

Annotation: CLOVER is an object-oriented, functional programming language with 
visual syntax. 

[Brooks Jr. 1978] Frederick P. Brooks Jr. The Mythical Man-Month. Addison-Wesley 
Publishing Company, July 1978. 

Annotation: A classic software engineering book. By chapters: (1) the difference 
between a program and a programming project (2) the problem of estimating project 
time and cost; more workers rarely means less time if you are behind schedule (3) the 
surgical team approach to programming (4) conceptual integritya few good 
architects should design the interface (5) the second-system effectfrills and 
embellishments creeping into the design (6) keeping everyone informed of the written 
specifications (7) communication (keeping a project workbook) and organization 
(who's the boss?) (8) time and productivitywhy only half the work is getting done 
(9) program size and how to control it (10) documents essential to the manager (11) 
plan to throw one away; you will anyhow. Plan for change in the program and the 

http:ftp.inria.fr
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organization. Maintenance is an entropy-increasing process leading to unfixable 
obsolescence (12) tools, program and document control (13) building programs that 
work: testing specifications, top down design, structured programming, debugging 
components, debugging system (14) staying on schedule (15) documentation 
combining it with program code. 

[Brooks 1997] Kevin M. Brooks. Programming narrative. In Proceedings IEEE 
Symposium on Visual Languages, pages 380-386, September 1997. 

Annotation: A tool for authors of fiction, in particular, stories that follow multiple 
characters and so incorporate multiple points of view. 

[Brown and Najork 1996] Marc H. Brown and Marc A. Najork. Collaborative active 
textbooks: A Web-based algorithm animation system for an electronic classroom. In 
Proceedings IEEE Symposium on Visual Languages, pages 266-275, Boulder, 
Colorado, September 1996. 

[Brown and Vander Zanden 1998] David R. Brown and Brad Vander Zanden. The 
whiteboard environment: An electronic sketchpad for data structure design and 
algorithm description. In Proceedings IEEE Symposium on Visual Languages, pages 
288-295, Halifax, Nova Scotia, Canada, September 1998. 

Annotation: Describes tools for the interactive design of data structures and 
demonstration of algorithms. Designed to be used by teachers of algorithms and data 
structures. 

[Bruce et al. 1993] Kim B. Bruce, Jon Crabtree, Thomas P. Murtagh, Robert van Gent, 
Allyn Dimock, and Robert Muller. Safe and decidable type checking in an object-
oriented language. In Object-Oriented Programming Systems, Languages, and 
Applications (OOPSLA), 1993. 

[Bruce et al. 1995] Kim Bruce, Luca Cardelli, Guiseppe Castagna, The Hopkins Object 
Group, Gary T. Leavens, and Benjamin Pierce. On binary methods. Theory and 
Practice of Object Systems, pages 221-242, 1995. 

Annotation: Covers the issues and diverse views on typing binary methods in an 
object-oriented language. Explains problems with subtyping and binary methods and 
privileged access to additional arguments. Evaluates avoiding binary methods, 
bounded matching, multi-methods and using precise typings as solutions. 

[Bruce et al. 1997] Kim B. Bruce, Leaf Petersen, and Adrian Fiech. Subtyping is not a 
good "Match" for object-oriented languages. In ECOOP Proceedings, volume 1241 
of Lecture Notes in Computer Science, pages 104-127. Springer-Verlag, 1997. 

Annotation: Describes LOOM, a language using matching that does away with 
subtyping. Introduces "Hash types" which provide some of the benefits of 
subtyping. The language is statically-typed (decidably and provably type safe), 
object-oriented, and provides modules and other information hiding mechanisms. 

[Bruce 1995] Kim B. Bruce. Typing in object-oriented languages: Achieving 
expressibility and safety. Technical report, Williams College, 1995. 

Annotation: Explains problems with current 00 typing systems: parameters cannot 
be changed in subclass overriding methods and return values of methods may return 
a more general type than we know we have. Introduces My Type as a partial solution. 
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Matching and bounded matching give the full solution. Bounded matching is 
comparable to Ada generics and equivalent to the use of F-bounded polymorphism. 

[Budd 1991] Timothy Budd. An Introduction to Object-Oriented Programming. 
Addison-Wesley, 1991. 

Annotation: A textbook suitable for an introductory course in OOP. Introduces 
concepts in a language-independent manner, but includes specific comparisons of 
C++, Smalltalk, Objective-C and Object Pascal. 

[Burnett and Ambler 1994] Margaret M. Burnett and Allen L. Ambler. Interactive visual 
data abstraction in a declarative visual programming language. Journal of Visual 
Languages and Computing, 5(1):29-60, March 1994. 

Annotation: Describes the declarative approach to visual abstraction taken by 
Forms/3. Examines the issues of enforced information hiding, supporting abstraction 
while preserving concreteness, and defining a type's appearance and behavior. 

[Burnett and Gottfried 1998] M. Burnett and H. Gottfried. Graphical definitions: 
Expanding spreadsheet languages through direct manipulation and gestures. ACM 
Transactions on Computer-Human Interaction, pages 1-33, March 1998. 

[Burnett et al. 1994] Margaret Burnett, Richard Hossli, Timothy Pulliam, Brian 
VanVoorst, and Xiaoyang Yang. Toward visual programming languages for steering 
in scientific visualization: a taxonomy. IEEE Computational Science and 
Engineering, 1(4):44-62, winter 1994. 

[Burnett et al. 1995a] Margaret M. Burnett, Marla J. Baker, Carisa Bohus, Paul Carlson, 
Sherry Yang, and Pieter van Zee. Scaling up visual programming languages. 
Computer, 28(3):45-54, March 1995. 

Annotation: Examines nine major sub-problems of the scaling-up problem for VPLs, 
static representation, screen real estate, documentation, procedural abstraction, 
interactive visual data abstraction, type checking, persistence, efficiency and 
noncoding issues. 

[Burnett et al. 1995b] Margaret M. Burnett, Adele Goldberg, and Ted G. Lewis, editors. 
Visual Object-Oriented Programming: Concepts and Environments. Prentice­
Hall/Manning Publications Co., Greenwich, CT, 1995. 

[Burnett et al. 1998] Margaret M. Burnett, John W. Atwood Jr., and Zachary T. Welch. 
Implementing level 4 liveness in declarative visual programming languages. In 
Proceedings IEEE Symposium on Visual Languages, pages 126-133, Halifax, Nova 
Scotia, Canada, September 1998. 

Annotation: Presents an implementation method that supports level 4 liveness in 
declarative VPLs, ensuring that all values on the screen are correctly updated without 
unreasonable cost. The method uses lazy evaluation, lazy marking, and culprit 
tracking. Includes comparisons to other methods. 

[Burnett 1991] Margaret M. Burnett. Abstraction in the Demand-Driven, Temporal-
Assignment, Visual Language Model. Ph.D. thesis, University of Kansas, August 
1991. 
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[Burnett 1993] Margaret Burnett. Types and type inference in a visual programming 
language. In Proceedings IEEE Symposium on Visual Languages, pages 238-243, 
Bergen, Norway, August 1993. 

Annotation: First paper on the Forms/3 type system. 

[Burnett 1995] Margaret M. Burnett. Seven programming languages issues. In Margaret 
M. Burnett, Adele Goldberg, and Ted G. Lewis, editors, Visual Object-Oriented 
Programming: Concepts and Environments, chapter 8. Prentice-Hall/Manning 
Publications Co., Greenwich, CT, 1995. 

[Caldiera and Basili 1991] G. Caldiera and V. R. Basili. Identifying and qualifying 
reusable software components. Computer, 24(2):61-70, February 1991. 

Annotation: Describes tools to aid in the process of extracting reusable components 
ready for the repository from legacy code. 

[Caldwell 1994] Bruce Caldwell. Software reuse comes of age. Information Week, 
November 14 1994. 

Annotation: Describes a study by QSM Associates of Pittsfield, MA, of 15 software 
development projects using reuse at nine different companies. They measured 84% 
reduction in programming costs, 70% reduction in schedule, and lower number of 
defects. They also note 25-30% more time to produce good reusable code. 

[Canning et al. 1989] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and 
John C. Mitchell. F-bounded polymorphism for object oriented programming. In 
Proceedings International Conference on Functional Programming Languages and 
Computer Architecture, pages 273-280, September 1989. 

Annotation: While bounded quantification allows polymorphism for all subtypes of 
some type, F-bounded quantification allows polymorphism for all types of a given 
form which may include references to itself (recursive types). 

[Cardelli and Wegner 1985] Luca Cardelli and Peter Wegner. On understanding types, 
data abstraction, and polymorphism. Computing Surveys, 17(4):471-522, 1985. 

[Cardelli 1987] L. Cardelli. Basic polymorphic typechecking. Science of Computer 
Programming, 8:147-172, 1987. 

[Carlson and Burnett 1995] Paul Carlson and Margaret M. Burnett. Integrating algorithm 
animation into a declarative visual programming language. In Proceedings IEEE 
Symposium on Visual Languages, pages 126-127, Darmstadt, Germany, September 
1995. 

[Carlson et al. 1996] Paul Carlson, Margaret Burnett, and Jonathan Cadiz. A seamless 
integration of algorithm animation into a visual programming language. In ACM 
Proceedings of the Workshop on Advanced Visual Interfaces, pages 194-202, 
Gubbio, Italy, 1996. 

[Carpendale et al. 1997] M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia. 
Making distortions comprehensible. In Proceedings IEEE Symposium on Visual 
Languages, pages 36-45, September 1997. 
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Annotation: Distortions such as fisheye views can disorient and confuse the user in 
some cases. Guidelines for avoiding this problem are discussed such as the use of 
grids and shading. 

[Cartwright and Fagan 1991] Robert Cartwright and Mike Fagan. Soft typing. In ACM 
Conference on Programming Language Design and Implementation, pages 278-292, 
Toronto, Ontario, Canada, June 1991. 

Annotation: An approach to combining the best of static and dynamic typing. Explicit 
run-time checks are inserted into code that does not statically type-check. No 
program is rejected, merely transformed. Includes an algorithm for frugally inserting 
run-time checks. 

[Castagna and Pierce 1994] Giuseppe Castagna and Benjamin C. Pierce. Decidable 
bounded quantification. In OOPSLA '94, 1994. 

Annotation: Introduction to the limits of F< (F-sub). 

[Castagna 1995] Giuseppe Castagna. Covariance and contravariance: Conflict without a 
cause. ACM Transactions on Programming Languages and Systems, 17(3):431-447, 
1995. 

Annotation: Contravariance and covariance can and should coexist safely in an 
object-oriented type system. Contravariance is the correct rule for substitution; 
covariance is the correct rule for overriding. 

[Chalmers et al. 1996] Matthew Chalmers, Robert Ingram, and Christoph Pfranger. 
Adding imageability features to information displays. In ACM Symposium on User 
Interface Software and Technology, pages 33-39, Seattle, Washington, November 
1996. 

Annotation: They use a bibliography example to illustrate their landscape view which 
has colored patches of background to indicate local density. Highlighting of a few 
randomly chosen objects keeps the display from getting too cluttered (the highlighted 
objects change so that over time the detail of all objects will have appeared). Titles are 
also dynamic features. Bias is given to objects closer to the viewer. Queries are as 
simple as clicking on a word in any visible text. Dynamically updated rings under 
objects increase in size with the relative search hit frequency. The authors also 
describe how the view works in a shared environment. 

[Chen and Cheung 1997] T. Y. Chen and Y. Y. Cheung. On program dicing. Software 
Maintenance: Research and Practice, 9:33-46, 1997. 

Annotation: Using program slicing to find bugs. Dicing is the set difference of slices. 
The idea is to narrow down places where the bug is likely to be by comparing 
statements executed for different test cases. 

[Cherinka et al. 1993] R. Cherinka, C. M. Overstreet, and R. Sparks. Using data flow 
analysis to determine bi-directional ripple effects during software maintenance. 
Technical report, Old Dominion University, September 1 1993. 

Annotation: Nice introduction and laying out of issues and motivations. Introduction 
of SCAP, Static Code Analysis Program, as a collection of software engineering 
tools to examine data flow of imperative languages. 
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[Citrin et al. 1997] W. Citrin, M. Doherty, and B. Zorn. A graphical semantics for 
graphical transformation languages. Journal of Visual Languages and Computing, 
8(2):147-173, April 1997. 

[Citrin 1996] Wayne Citrin. Integrating fisheyeing into a visual programming 
environment. In Proceedings IEEE Symposium on Visual Languages, pages 20-27, 
Boulder, Colorado, September 1996. 

Annotation: Discusses the challenges and solutions to incorporating fisheye views 
into the VIPR environment (a variant of Pictorial Janus). The result preserves 
containment, performs reshaping, scales both text and graphics, and incorporates 
zooming. 

[Clement et al. 1986] Dominique Clement, J. Despeyroux, T. Despeyroux, and G. 
Kahn. A simple applicative language- Mini-ML. In Proceedings ACM Conference on 
Lisp and Functional Programming, pages 13-27, August 1986. 

Annotation: A clear, well-written paper introducing a small type system. 

[Cook et al. 1990] William R. Cook, Walter L. Hill, and Peter S. Canning. Inheritance 
is not subtyping. In ACM Symposium on Principles of Programming Languages, 
pages 125-135, San Francisco, California, January 1990. 

Annotation: They explain why subtypes and subclasses are not the same and present 
an example functional, explicitly-typed language that allows static type checking. 

[Cook 1989] W. R. Cook. A proposal for making Eiffel type-safe. In European 
Conference on Object-Oriented Programming, Nottingham, GB, July 1989. 

[Cooper 1995] Alan Cooper. About Face: The Essentials of User Interface Design. IDS 
Books Worldwide, Inc., 1995. 
Annotation: Speaking of documents in the most general sense, the author advocates 
retrieval systems that "remember" information automatically so that the user can later 
find out if documents have been untouched for a long time, frequently edited, 
frequently viewed but infrequently edited, etc. (p.107). 

[Coplien and Schmidt 1995] James 0. Coplien and Douglas C. Schmidt, editors. Pattern 
Languages of Program Design. Addison-Wesley, 1995. 

Annotation: A collection of papers from the first PLoP (Pattern Languages of 
Programs) conference in August of 1994. These papers have undergone extensive 
review and editing both before and during the conference which is conducted as a 
series of writer's workshops. 

[Coplien 1991] Jim Coplien. Experience with CRC cards in AT&T. The C++ Report, 
1991. 

[Coplien 1995] James 0. Coplien. A generative development-process pattern language. 
In James 0. Coplien and Douglas C. Schmidt, editors, Pattern Languages of 
Program Design, chapter 13. Addison-Wesley, 1995. 

Annotation: A pattern for processes, rather than software design. 

[Corridoni et al. 1995] Jacopo Maria Corridoni, Alberto Del Bimbo, and Dario Lucarella. 
Navigation and visualization of movies content. In Proceedings IEEE Symposium on 
Visual Languages, pages 217-225, Darmstadt, Germany, September 1995. 
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Annotation: They define a syntax of movies, frames, scenes, and punctuation 
(dissolves, cuts, etc.) which can be automatically detected. Video information can be 
searched in a variety of ways providing support for many kinds of users, technical to 
novice. 

[Corridoni et al. 1996] J. M. Corridoni, A. Del Bimbo, S. De Magistris, and E. Vicario. 
A visual language for color-based painting retrieval. In Proceedings IEEE 
Symposium on Visual Languages, pages 68-75, Boulder, Colorado, September 
1996. 

[Corridoni et al. 1997] J. Corridoni, A. Del Bimbo, M. Mugnaini, P. Pala, and F. 
Turco. Pyramidal retrieval by color perceptive regions. In Proceedings IEEE 
Symposium on Visual Languages, pages 205-211, 1997. 

Annotation: Color-based searches are handled at different levels of color resolution 
(from individual pixels to one "average" color for the picture). Only a few levels are 
needed for good retrieval results. 

[Cox and Pietrzykowski 1988] P. T. Cox and T. Pietrzykowski. Using a pictorial 
representation to combine dataflow and object-orientation in a language-independent 
programming mechanism. In Proceedings International Computer Science 
Conference, pages 695-704, 1988. 

Annotation: Uses the topological sort example to introduce Prograph's dataflow and 
control concepts. Classes and persistent data are introduced with an and/or game tree 
example and an employee database. 

[Cox and Smedley 1996] Philip T. Cox and Trevor J. Smedley. A visual language for 
the design of structured graphical objects. In Proceedings IEEE Symposium on 
Visual Languages, pages 296-303, Boulder, Colorado, September 1996. 

Annotation: A vision of how extensions to Prograph might enable the "programming 
of pictures," that is, a generic graphical description of a family of related pictures. 
Their goal is to combine the power and flexibility of textual design languages with 
the human comprehension of visual representations. 

[Cox and Smedley 1997] Philip T. Cox and Trevor J. Smedley. A declarative language 
for the design of structures. In Proceedings IEEE Symposium on Visual Languages, 
pages 438-445, September 1997. 

Annotation: The language (LSD) is a logic language in which the programmer works 
more with the objects (that are being designed) than with functions. This is their 
VL'96 idea with a different and improved approach. 

[Cox et al. 1989] P. T. Cox, F. R. Giles, and T. Pietrzykowski. Prograph: a step 
towards liberating programming from textual conditioning. In Proceedings IEEE 
Workshop on Visual Languages, pages 150-156, Rome, Italy, October 1989. 

Annotation: Introduces Prograph languages. Explains classes, methods, multiplexes 
and controls using a database browser example. Gives some description of the 
environment (editor, interpreter and application builder). 
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[Cox et al. 1995] P. T. Cox, F. R. Giles, and T. Pietrzykowski. Prograph. In Margaret 
M. Burnett, Adele Goldberg, and Ted G. Lewis, editors, Visual Object-Oriented 
Programming: Concepts and Environments, chapter 3, pages 45-66. Prentice­
Hall/Manning Publications Co., Greenwich, CT, 1995. 

Annotation: Reprint of [Cox et al. 1989]. 

[Cox et al. 1998] Philip T. Cox, Hugh Glaser, and Stuart Maclean. A visual 
development environment for parallel applications. In Proceedings IEEE Symposium 
on Visual Languages, pages 144-151, Halifax, Nova Scotia, Canada, September 
1998. 

Annotation: Programmer directives for parallelizing Prograph programs. 

[Curtis 1989] Bill Curtis. Cognitive issues in reusing software artifacts. In Ted J. 
Biggerstaff and Alan J. Perlis, editors, Software Reusability: Applications and 
Experience, volume 2, chapter 13. Addison-Wesley, Reading, Massachusetts, 1989. 

Annotation: Introduces programmer memory and knowledge models. Points out that 
even "expert" programmers are novices in some domain and thus are less able to 
organize information about programming in that domain. Programmers tend to move 
toward uniform ways of organizing domain knowledge as they become more 
experienced. "...library interface and retrieval aids need to be flexible in order to 
serve both novice and expert users." Novices need more information to make correct 
choices among similar solutions, while experts want concise descriptions and fast 
access. 

[Cypher and Smith 1995] A. Cypher and D. Smith. Kid Sim: End user programming of 
simulations. In CHI Proceedings: Human Factors in Computing Systems, pages 27­
34, Denver, Colorado, May 1995. 

Annotation: They describe informal user testing on kids and some design changes 
made. They switched from deep inheritance to simple one-level inheritance. They 
created jars, groups of objects, that compensate somewhat for the lack of inheritance. 
They also decided that they needed to allow objects to be larger than one square. 
They are interested in generalization from concrete examples and they have a notion 
of 'type' in the generalized rules. 

[Czarnecki et al. 1996] Krzystof Czarnecki, Reinhard Hanselmann, Ulrich W. 
Eisenecker, and Wolfgang Kopf. Class Expert: A knowledge-based assistant to 
support reuse by specialization and modification in Smalltalk. In International 
Conference on Software Reuse, pages 188-194, Orlando, Florida, April 1996. 

Annotation: Class Expert is a knowledge-based tool for locating Smalltalk classes 
according to a functional specification. 

[Damas and Milner 1982] Luis Damas and Robin Milner Principal type-schemes for 
functional programs. In ACM Symposium on Principles of Programming 
Languages, pages 207-212, Albuquerque, New Mexico, January 1982. 

Annotation: They show that their type inference (type assignment) algorithm for 
purely applicative ML, proved semantically sound elsewhere, finds the most general 
type possible for every expression and declaration. They also show that it is 
decidable whether a program is well-typed. 
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[Dawkes et al. 1996] Huw Dawkes, Lisa A. Tweedie, and Bob Spence. VICKIthe 
visualisation construction kit. In ACM Proceedings of the Workshop on Advanced 
Visual Interfaces, pages 257-259, Gubbio, Italy, May 1996. 

Annotation: An interesting aspect of this work is the color coding used to indicate 
degree of mismatch. Rather than hiding all data points that miss, they are shown 
ranging from black to white depending on the number of criteria for which they fail. 
The user can see how relaxing one criteria would include more data points, and can 
do so interactively. 

[Djang and Burnett 1998] Rebecca Walpole Djang and Margaret M. Burnett. Similarity 
inheritance: A new model of inheritance for spreadsheet VPLs. In Proceedings IEEE 
Symposium on Visual Languages, pages 134-141, Halifax, Nova Scotia, Canada, 
September 1998. 

[Djang et al. 1998] Rebecca Walpole Djang, Margaret M. Burnett and Roger D. Chen. 
Static Type Inference for First-Order Declarative Visual Programming Languages 
with Inheritance. Submitted to Journal of Visual Languages and Computing, July 
1998. 

[Dony et al. 1992] Christophe Dony, Jacques Malenfant, and Pierre Cointe. Prototype-
based languages: From a new taxonomy to constructive proposals and their 
validation. In Object-Oriented Programming Systems, Languages, and Applications 
(OOPSLA), pages 201-217, 1992. 

Annotation: Forms/3 doesn't fit their taxonomy because they put message passing as 
a top-level requirement. If we ignore that, Forms/3 ends up in one of the categories 
they deem "uninteresting". 

[Druin et al. 1997] Allison Druin, Jason Stewart, David Proft, Ben Bederson, and Jim 
Hollan. Kid pad: A design collaboration between children, technologists, and 
educators. In CHI Proceedings: Human Factors in Computing Systems, pages 463­
470, Seattle, Washington, November 1997. 

Annotation: Describes iterative design experience and collaboration with children. 
The goal was a new learning environment incorporating zooming. One of the results 
of the collaboration is the notion of local tools. 

[Duggan and Bent 1996] Dominic Duggan and Frederick Bent. Explaining type 
inference. Science of Computer Programming, 27(1):37-83, July 1996. 

Annotation: also available as University of Waterloo technical report CS-94-14. 

[Edwards 1996] Stephen H. Edwards. Representation inheritance: A safe form of "white 
box" code inheritance. In International Conference on Software Reuse, pages 195­
204, Orlando, Florida, April 1996. 

Annotation: We can safely customize components in a "white box" fashion if the 
subclasses respect the invariants of the superclass. 

[Egenhofer 1996] Max J. Egenhofer. Spatial-query-by-sketch. In Proceedings IEEE 
Symposium on Visual Languages, pages 60-67, Boulder, Colorado, September 
1996. 

[Eifrig et al. 1995] Jonathan Eifrig, Scott Smith, and Valery Trifonov. Sound 
polymorphic type inference for objects. In Object-Oriented Programming Systems, 
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Languages, and Applications (OOPSLA), Austin, Texas, October 1995. Also in 
ACM SIGPLAN Notices 30(10). 

Annotation: Recursively constrained types allow type inference for I-LOOP, a 
language including let-polymorphism, and multiple inheritance. The distinction 
between inheritance and subtyping is preserved. Since the types are nonstandard, 
communicating meaningfully with the programmer about types is a significant 
problem. 

[Eisenstadt 1997] Marc Eisenstadt. My hairiest bug war stories. Communications of the 
ACM, 40(4):30-37, April 1997. 

Annotation: Analysis of debugging anecdotes collected by the author from 
newsgroup-reading programmers. Categorization of why the bug was difficult to 
track down (top two reasons were Cause/Effect Chasm and Tools Inapplicable or 
Hampered), how the bugs were found (Data Gathering and "Inspeculation"­
inspection, hand simulation, and speculation-were most common), and underlying 
causes (clobbered memory and vendor problem were at the top). Concludes with 
suggestions for debugging tools. 

[Endres 1993] A. Endres. Lessons learned from an industrial software lab. IEEE 
Software, 10(5):58-61, September 1993. 

Annotation: Describes the three factors seen as contributing most to the great increase 
in quality and productivity experienced at one IBM lab. In a period of 10-12 years, 
they experienced more than ten times greater quality in shipped code (measured in 
residual errors after shipment per 1,000 lines of code), doubled productivity and cut 
project duration roughly in half. The contributing factors named are training in formal 
methods (although the author advocates semi-formal methods or automation of 
formal methods), developing for and with reuse, and greater visibility of the 
organization's process goals (education). 

[Erwig and Meyer 1995] Martin Erwig and Bernd Meyer. Heterogeneous visual 
languages integrating visual and textual programming. In Proceedings IEEE 
Symposium on Visual Languages, pages 318-325, 1995. 

[Evered et al. 1997] M. Evered, J. L. Keedy, A. Schmolitzky, and G. Menger. How 
well do inheritance mechanisms support inheritance concepts? In Joint Modular 
Languages Conferences, number 1204 in Lecture Notes in Computer Science, pages 
252-266, Linz, Austria, March 1997. Springer-Verlag. 

Annotation: Defines sixteen concepts that have been realized via inheritance along 
with lists of requirements for supporting each concept well. Evaluates a few 
inheritance mechanisms in light of these requirements and offers suggestions for 
improved inheritance mechanisms. 

[Fafchamps 1994] Danielle Fafchamps. Organizational factors and reuse. IEEE 
Software, 11:31, September 1994. 

Annotation: Examines four models of producer-consumer-manager organizational 
models. For Hewlett-Packard, the team producer model (with separate manager) 
worked best. 

[Flanagan and Felleisen 1997] Cormac Flanagan and Matthias Felleisen. Componential 
set-based analysis. In ACM Conference on Programming Language Design and 
Implementation, 1997. 



118 

Annotation: This paper provides an improvement over simple set-based analysis. The 
new algorithm can handle larger programs. 

[Flanagan et al. 1996] Cormac Flanagan, Matthew Flatt, Shiram Krishnamurthi, 
Stephanie Weirich, and Matthias Felleisen. Catching bugs in the Web of program 
invariants. In ACM Conference on Programming Language Design and 
Implementation, pages 23-32, PA, USA, May 1996. 

Annotation: This paper is difficult to classify because it is about debugging, yet it is 
static program analysis of sets of values, i.e. types. Sets of possible values are 
computed for each expression in the program. A (data) flow graph models how 
values flow through the program and errors typically caught only at run-time can be 
detected, such as subscript out of bounds, division by zero, and dereferencing nil 
pointers. MrSpidey includes a user interface for this analysis which displays value 
sets, arrows to value sources, etc. for the Scheme language. 

[Frakes and Terry 1995] William Frakes and Carol Terry. Software reuse and reusability 
metrics and models. Technical Report TR-95-07, Virginia Polytechnic Institute and 
State University, 1995. 

[Frakes et al. 1995] W. Frakes, R. Prieto-Diaz, and C. Fox. DARE: Domain analysis 
and reuse environment. In Workshop on Institutionalizing Software Reuse, St. 
Charles, Illinois, 1995. 

[Freeman et al. 1996] Elisabeth Freeman, David Gelernter, and Suresh Jagannathan. 
Uniformity of environment and computation in MAP. In Proceedings IEEE 
Symposium on Visual Languages, pages 130-137, Boulder, Colorado, September 
1996. 

Annotation: Describes how the MAP language's meta-commands allow visual 
program characteristics (such as color and transparency) to be changed 
programatically. 

[Friedman et al. 1994] D. Friedman, M. Wand, and C. Haynes. Essentials of 
Programming Languages. MIT Press/McGraw-Hill, second edition, 1994. 

Annotation: Programming Languages textbook using small interpreters built in 
scheme to teach the basics. Includes some more advanced topics as well, such as 
type inference in the new chapter for the 2nd Edition. 

[Gamma et al. 1995] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 
Design Patterns. Addison-Wesley, 1995. 

Annotation: A collection of 23 design patterns for object-oriented programming with 
an emphasis on C++ and Smalltalk. The catalog is composed of patterns that help 
with creating, structuring, and organizing the behavior of classes and objects. The 
introduction describes what a pattern is and how to select and use an appropriate 
pattern. A case study of the design of a document editor illustrates the use of eight 
patterns. 

[Gannon and Horning 1975] John D. Gannon and J. J. Horning. Language design for 
reliability. IEEE Transactions on Software Engineering, 1(2), June 1975. 

Annotation: Discusses some language features (for imperative languages) that can 
reduce the frequency and/or persistence of errors. 
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[Gar lan et al. 1995] David Gar lan, Robert Allen, and John Ockerbloom. Architectural 
mismatch: Why reuse is so hard. IEEE Software, pages 17-26, November 1995. 

Annotation: Even if the programming language, platforms, and database schemas are 
compatible, software components and connectors are difficult to reuse together 
because of architectural mismatchincompatible assumptions about the system 
structure. These assumptions include: where the control lies (can two event loops be 
merged?), how component data is manipulated, what infrastructure is necessary, the 
kinds of data that can be communicated, and the topology of system 
communications. Suggested forward directions: make the architectural assumptions 
explicit, create components whose architectural assumptions are not spread 
throughout and can be modified by module substitution, create bridging technologies 
that mediate between components or negotiate interfaces, codify and disseminate 
principles and rules for software composition. 

[Garzotto et al. 1996] Franca Garzotto, Luca Mainetti, and Paolo Paolini. Modal 
navigation for hypermedia applications. In ACM Proceedings of the Workshop on 
Advanced Visual Interfaces, pages 59-66, Gubbio, Italy, May 1996. 

Annotation: Argues for different levels of hypermedia interaction for different users. 
They identify six modes that can vary independent of the others: type of media, 
rhetorical style, language, fruition (degree of active involvement), length, and 
topology (sequence, lattice, etc.). The Polyptych system, a museum presentation for 
casual visitors, intentional visitors, and experts, is described. They also point out that 
decisions on modality can be made at installation, initially (and at any further time) by 
the user, by some default that is modifiable by the user, or by automatic adaptation of 
the system. 

[Gilmore et al. 1995] David J. Gilmore, Karen Pheasey, Jean Underwood, and Geoffrey 
Underwood. Learning graphical programming: An evaluation of KidSim(tm). In 
INTERACT: Proceedings of the IFIP Conference on Human-Computer Interaction., 
1995. 

Annotation: Children using KidSim did not learn abstraction or other programming 
skills. One of the problems was the ability to overwrite rules rather than edit them; if 
something didn't work right, it was rewritten instead of edited. 

[Gilmore 1995] David J. Gilmore. Interface design: Have we got it wrong? In 
INTERACT: Proceedings of the IFIP Conference on Human-Computer Interaction., 
1995. 

Annotation: Gilmore suggests that we examine the goals of our interfaces more 
carefully. His experiment suggests that speed and learning are opposing goals and 
that "better" may not have the same meaning for all interfaces. That is, when we 
make the interface very fast and easy to experiment with, users perform faster but do 
not learn the concepts related to success. 

[Gindling et al. 1995] Jim Gindling, Andri Ioannidou, Jennifer Loh, Olav Lokkebo, and 
Alexander Repenning. LEGOsheets: A rule-based programming, simulation and 
manipulation environment for the LEGO programmable brick. In Proceedings IEEE 
Symposium on Visual Languages, pages 172-179, 1995. 

[Glaser and Smedley 1995] Hugh Glaser and Trevor J. Smedley. P sh-the next 
generation of command line interfaces. In Proceedings IEEE Symposium on Visual 
Languages, pages 29-36, Darmstadt, Germany, September 1995. 
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Annotation: They compare the development of scripting and shell needs on 
Macintoshes with the development of Pidgin languages. They propose an interpreted 
Prograph-like visual shell for creating, modifying and executing shell commands. 

[Gold and Rosson 1991] Eric Gold and Mary Beth Rosson. Portia: An instance-centered 
environment for Smalltalk. In Object-Oriented Programming Systems, Languages, 
and Applications (OOPSLA), pages 62-74, 1991. 

Annotation: A development environment that strives to mirror the programmer's style 
of thinking by allowing the programmer to tinker with real instances in the 
environment. 

[Goldberg and Richardson 1993] David Goldberg and Cate Richardson. Touch-typing 
with a stylus. In Proceedings of CHI'93 Human Factors in Computing Systems, 
pages 80-87, Amsterdam, The Netherlands, April 24-29 1993. 

Annotation: Most handwriting recognition systems have only novice mode 
corresponding to hunt-and-peck on a keyboard. Using a modified alphabet of one-
stroke letters can result in nearly 3 letters per second entry rate (touch typists can 
achieve 6-7). Letters can be written on top of each other since the end of a stroke = 
end of letter. They conjecture that further speedup would result from combining 
Speedwriting with unistrokes. 

[Goldberg and Robson 1983] A. Goldberg and D. Robson. Smalltalk-80: The Language 
and its Implementation. Addison-Wesley, Reading, MA, 1983. 

[Gorlick and Quilici 1994] Michael Gorlick and Alex Quilici. Visual programming-in­
the-large versus visual programming-in-the-small. In Proceedings IEEE Symposium 
on Visual Languages, pages 137-144, St. Louis, Missouri, October 1994. 

Annotation: Describes a visual software engineering environment and how it 
addresses some of the scaling problems for visual programming-in-the-large. Uses 
zooming to handle documentation and annotation. Uses partial construction (types of 
inputs and outputs) to aid component discovery. 

[Gottfried and Burnett 1997] H. Gottfried and M. Burnett. Graphical definitions: 
Expanding spreadsheet languages through direct manipulation and gestures. In 
Proceedings IEEE Symposium on Visual Languages, pages 246-253, February 
1997. Also Oregon State University TR 97-60-2. 

Annotation: Adding gestural specification of types (even user-defined types) to the 
spreadsheet paradigm. 

[Graham et al. 1996] T. C. Nicholas Graham, Catherine A. Morton, and Tore limes. 
Clockworks: Visual programming of component-based software architectures. 
Journal of Visual Languages and Computing, 7:175-196, 1996. 

Annotation: Pieces of the architecture can be grouped; groups can be arbitrarily 
nested. They claim that the flexibility encourages programmers to maintain 
reasonable structure and "create elegant group definitions, aiding the development of 
reusable component libraries". They also say that the key to scalability is good 
support for hiding information and that designing a visual language is more closely 
related to designing a user interface. 

[Green and Petre 1996] T. Green and M. Petre. Usability analysis of visual 
programming environments: A 'cognitive dimensions' framework. Journal of Visual 
Languages and Computing, pages 131-174, 1996. 
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Annotation: Cognitive dimensions are terms describing the cognitively important 
aspects of a programming language, such as "closeness of mapping to the domain" 
and "hidden dependencies.". 

[Griss and Wentzel 1995] Martin L. Griss and Kevin D. Wentzel. Hybrid domain-
specific kits. Journal of Systems Software, 30:213-230, 1995. 

Annotation: Defines hybrid kits for systematic, domain-specific software reuse and 
discusses how to create and use them. Presents a kit evaluation framework and 
sample evaluations of Visual Basic and their own to-do-list management kit. Notes 
the importance of openness (the ability to add components) to a reuse kit. 

[Griss and Wosser 1995] Martin Griss and Marty Wosser. Making reuse work at 
Hewlett-Packard. IEEE Transactions on Software Engineering, 12(1):105-107, 
January 1995. 

[Griss 1995] Martin L. Griss. Software reuse: Objects and frameworks are not enough. 
Object Magazine, pages 77-79,87, February 1995. 

[Grundy and Hosking 1995] John C. Grundy and John G. Hosking. ViTABaL: a visual 
language supporting design by tool abstraction. In Proceedings IEEE Symposium on 
Visual Languages, pages 53-60, Darmstadt, Germany, September 1995. 

Annotation: Vitabal is a visual language and environment supporting the design and 
implementation of software using the tool abstraction paradigm which supports 
functional evolution. 

[Grundy et al. 1995] John Grundy, John Hosking, Stephen Fenwick, and Warwick 
Mugridge. Connecting the pieces. In Margaret M. Burnett, Adele Goldberg, and Ted 
G. Lewis, editors, Visual Object-Oriented Programming: Concepts and 
Environments, chapter 11. Prentice-Hall/Manning Publications Co., Greenwich, CT, 
1995. 

Annotation: Describes a visual software engineering environment that supports both 
visual and textual representation, allowing the programmer to choose which to use 
for a given task. Different views are automatically kept consistent. 

[Hall 1993] Robert J. Hall. Generalized behavior-based retrieval. In International 
Conference on Software Engineering, pages 371-380. ACM Press, 1993. 

Annotation: Based on Behavior Sampling, proposed by Podgurski and Pierce, the 
GBR prototype searches for components and small combinations of components that 
return the desired output given sample input-output pair(s). Functional models are 
used when components are not side-effect free, and constants or optional inputs 
allow the user to supply only the most important arguments as input. 

[Harris 1991] Warren Harris. Contravariance for the rest of us. Journal of Object-
Oriented Programming, 4(7):10-18, November/December 1991. 

Annotation: Describes the notion of contravariance and why it is important to object-
oriented programming. Gives five ways that C++ programmers circumvent the 
problem of subclasses not being subtypes and overloading not performing what is 
actually desired. 

[Harrison 1995] Susan M. Harrison. A comparison of still, animated, or nonillustrated 
on-line help with written or spoken instructions in a graphical user interface. In CHI 
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Proceedings: Human Factors in Computing Systems, pages 82-89, Denver, 
Colorado, May 1995. 

Annotation: "Results consistently revealed that visuals, either still graphic or 
animated, in the on-line help instructions enabled the users to significantly perform 
more tasks in less time and with fewer errors" than users with only textual help. 
Animation alone did not appear to benefit participants in this study. 

[Hearst 1995] Marti A. Hearst. Tilebars: Visualization of term distribution information in 
full text information access. In CHI Proceedings: Human Factors in Computing 
Systems, 1995. 
Annotation: Tilebars indicate at a glance the distribution and density of occurrences of 
keywords in a text file. 

[Hendry 1995] David G. Hendry. Display-based problems in spreadsheets: a critical 
incident and a design remedy. In Proceedings IEEE Symposium on Visual 
Languages, pages 284-290, Darmstadt, Germany, September 1995. 

Annotation: Users of spreadsheets don't always want relative vs. absolute, 
sometimes a relative-with-offset is desired. The system can easily compute this kind 
of offset given two examples and the user doesn't have to bother with dollar sign 
syntax any more. 

[Henninger 1994] Scott Henninger. Using iterative refinement to find reusable software. 
IEEE Software, pages 48-59, September 1994. 

Annotation: People often lack a clear idea of what they are searching for when they 
construct a query. Code Finder allows incrementally constructed queries and supports 
retrieval of related items. Example retrieved items facilitate quick modifications to the 
query by direct manipulation of the description. Thesaurus construction is automatic. 

[Hi ld and Poulovassilis 1996] Stefan G. Hi ld and Alexandra Poulovassilis. Hyper log: a 
system for database querying and browsing. In ACM Proceedings of the Workshop 
on Advanced Visual Interfaces, pages 260-262, Gubbio, Italy, May 1996. 

Annotation: The interesting thing about Hyper log is that it uses the same 
representation for data, query and results. 

[Hirakawa et al. 1998] Masahito Hirakawa, Priyantha Hewagamage, and Tadao 
Ichikawa. Situation-dependent browser to explore the information space. In 
Proceedings IEEE Symposium on Visual Languages, pages 108-115, Halifax, Nova 
Scotia, Canada, September 1998. 

Annotation: They explore the use of a new framework for personal information 
management (as opposed to the desktop metaphor) called Situation Information 
Filing and Filtering (SIFF). The browser organizes information based on time, place 
and kind of document/activity and allows searching and filtering based on these same 
attributes. 

[Hoadley et al. 1996] Christopher M. Hoadley, Marcia C. Linn, Lydia M. Mann, and 
Michael J. Clancy. When, why and how do novice programmers reuse code? In 
Empirical Studies of Programmers, Norwood, NJ, 1996. 

Annotation: Both negative attitudes toward reuse and poor program comprehension 
contribute to students not reusing code. 20% of the studied students thought they 
shouldn't reuse code; reasons ranged from viewing reuse as tedious, deficient, or 
plagiarism. Students with an abstract (top-level rather than algorithmic) 
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understanding were more likely to reuse code. They conclude that CS classes should 
emphasize the benefits of reuse and foster abstract understanding of code. 

[Hooper and Chester 1991] James W. Hooper and Rowena 0. Chester. Software Reuse: 
Guidelines and Methods. Software Science and Engineering. Plenum Press, NY, 
1991 

Annotation: A summary of current research in software reuse and practical 
suggestions for integrating reuse into the software engineering process. 

[Hudson et al. 1997] Scott E. Hudson, Roy Rodenstein, and Ian Smith. Debugging 
lenses: A new class of transparent tools for user interface debugging. In ACM 
Symposium on User Interface Software and Technology, pages 179-187, October 
1997. 

Annotation: Debugging lenses make visible the parts of user interfaces that normally 
must be explored textually such as location attributes, bounding boxes, and 
constraint relationships. Their example lenses have tools along the sides that affect 
the display. 

[Hudson 1994] Scott E. Hudson. User interface specification using an enhanced 
spreadsheet model. ACM Transactions on Graphics, 13(3):209-239, July 1994. 

Annotation: A language based on the spreadsheet paradigm for specifying user 
interfaces. Cells are grouped into objects which can inherit from other objects (each 
object has a "like" cell naming the parent, if any). Inheritance is on the level of an 
entire object with overriding of individual cells. Penguims has a procedure for 
handling object deletion in the presence of inheritance. Features that violate the 
spreadsheet paradigm include imperative code and interactors. 

[Ibrahim 1998a] Bertrand Ibrahim Diagrammatic representation of data types and data 
manipulations in a combined data- and control-flow language. In Proceedings IEEE 
Symposium on Visual Languages, pages 262-269, Halifax, Nova Scotia, Canada, 
September 1998. 

Annotation: Abstract visual representations of data types and their manipulations. 

[Ibrahim 1998b] Bertrand Ibrahim. Optimizing cut-and-paste on directed graphs, with a 
user-controlled edge reconstruction strategy. In Proceedings IEEE Symposium on 
Visual Languages, pages 90-91, Halifax, Nova Scotia, Canada, September 1998. 

Annotation: (poster) A mechanism for graph editing that has the potential to save the 
user a few steps in cleaning up edge connections. The default selection consists of all 
nodes within the user's rubberband selection area plus edges such that entry and exit 
points are isolated (the strategy is to try to have one entry point and one exit point for 
the selection). The user may of course adjust the selection before cutting. Pasting can 
be performed "in space" or at a graph point; in the latter case, the selection's entry 
and exit points are matched to the paste point when possible. 

[IEEE Software 1996] Special issue on systematic reuse. IEEE Software, September 
1996. 

[Igarashi et al. 1998] Takeo Igarashi, Jock D. Mackin lay, Bay-Wei Chang, and Po lle T. 
Zellweger. Fluid visualization of spreadsheet structures. In Proceedings IEEE 
Symposium on Visual Languages, pages 118-125, Halifax, Nova Scotia, Canada, 
September 1998. 
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Annotation: Techniques for making spreadsheet dataflow visible. Includes static and 
dynamic views as well as navigation techniques. Some neat stuff! Also a nice video 
at the conference. 

[Ingalls et al. 1988] D. Ingalls, S. Wallace, Y. Chow, F. Ludolph, and K. Doyle. 
Fabrik, a visual programming environment. In Object-Oriented Programming 
Systems, Languages, and Applications (OOPSLA), pages 76-190, San Diego, 
California, September 1988. 

[Jamal and Wenzel 1995] Rahman Jamal and Lothar Wenzel. The applicability of the 
visual programming language LabVIEW to larger real-world applications. In 
Proceedings IEEE Symposium on Visual Languages, pages 99-106, Darmstadt, 
Germany, September 1995. 

Annotation: They present a case study of ultrasonic scanners, commenting on 
debugging, documentation, rapid prototyping and experimental programming. They 
emphasize the ease of use for the engineers and the speed of development and change 
made possible by the key concepts of virtual instrument abstraction, hierarchy and 
integrated user interface. 

[Jerding and Stasko 1995] Dean F. Jerding and John T. Stasko. The information mural: 
a technique for displaying and navigating large information spaces. In Proceedings 
IEEE Visualization Symposium on Information Visualization, pages 43-50, Atlanta, 
GA, October 1995. 

[Johnson and Shneiderman 1991] Brian Johnson and Ben Shneiderman. Treemaps: a 
space-filling approach to the visualization of hierarchical information structures. In 
Proceedings of the International IEEE Visualization Conference, pages 284-291, San 
Diego, California, 1991. 

[Jones 1995] Mark P. Jones. Simplifying and improving qualified types. In ACM 
Conference on Functional Programming Languages and Computer Architecture, La 
Jolla, CA, June 1995. 
Annotation: An improved type inference algorithm for qualified types. 

[Jones 1997] Mark P. Jones. First-class polymorphism with type inference. In ACM 
Symposium on Principles of Programming Languages, January 1997. 

Annotation: In the Hindley-Milner type system, polymorphic values are not first-
class. The type system FCP supports first-class polymorphism without giving up 
type inference. 

[Joos 1994] Rebecca L. Joos. Software reuse at Motorola. IEEE Software, 11:42-47, 
September 1994. 

Annotation: Experience with introducing reuse into the software development process 
at Motorola. Describes what happened pointing out what they did right and wrong at 
each step in hindsight. Two pilot programs are also described. The first is a cash 
reward incentive program that has more than paid for itself. 

[Jouvelot and Gifford 1991] Pierre Jouvelot and David K. Gifford. Algebraic 
reconstruction of types and effects. In ACM Symposium on Principles of 
Programming Languages, pages 303-310, Orlando, Florida, January 1991. 
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Annotation: (By reconstruction, they mean inference.) They present a type inference 
algorithm for a polymorphic typed language with types and effects (effects describe 
how expression compute-they mention store, communication and control effects) and 
with first class procedures. Effects seem to generally be useful for scheduling 
concurrency safely. What caught my attention is the use of constraints in their type 
system and the fact that they say record types are the closest related work in algebraic 
reconstruction. 

[Jun and Michaelson 1998] Y. Jun and G. Michaelson. A visualization of polymorphic 
type checking. Journal of Functional Programming, 1998. to appear. 

Annotation: Describes the use of colors to visualize types in a functional language. 

[Kamba et al. 1996] Tomonari Kamba, Shawn A. Elson, Terry Harpold, Tim Stamper, 
and Piyawadee "Nor Sukaviriya. Using small screen space more efficiently. In CHI 
Proceedings: Human Factors in Computing Systems, pages 383-390, 1996. 

Annotation: Transparent icons. Using icons at 20% visibility and overlapping 
hypertext at 80% visibility along with a delay for selecting the secondary item, this 
study found that users initially made mistakes selecting, but learned quickly. Users 
overwhelmingly preferred that the icons be the secondary item and wanted the shorter 
delay time. They also expressed a desire for more immediate response when selecting 
icons that did not overlap selectable text. 

[Karsenty 1996] Laurent Karsenty. An empirical evaluation of design rationale 
documents. In CHI Proceedings: Human Factors in Computing Systems, pages 150­
156, 1996. 

Annotation: The conclusions of this study are: designers attempting to understand a 
new design do ask design rationale (DR) questions, some designers use DR 
documents opportunistically while others read the entire document to understand each 
issue, 41% of designers questions were answered by the DR document. 

[Katzenelson and Pinter 1992] Jacob Katzenelson and Shlomit S. Pinter. Type matching, 
type graphs, and the Schanuel conjecture. ACM Transactions on Programming 
Languages and Systems, 14(4):574-588, 1992. 

[Kay 1984] Alan Kay. Computer software. Scientific American, pages 53-59, 
September 1984. 

Annotation: Includes Kay's value rule for spreadsheets which states that a cell's 
value is defined solely by its formula. 

[Kennedy 1994] Andrew Kennedy. Dimension types. In European Symposium on 
Programming, number 788 in Lecture Notes in Computer Science. Springer-Verlag, 
1994. 

Annotation: Extends a strongly typed programming language with the notion of 
dimension types (seconds, kilometers, etc.). Discusses some problems with the 
system and sketches some more powerful systems. 

[Kimura et al. 1990] T. D. Kimura, J. W. Choi, and J. M. Mack. Show and tell. In E. 
P. Glinert, editor, Visual Computing Environments. IEEE Computer Society Press, 
Washington, DC, 1990. 
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[Kiper et al. 1997] James D. Kiper, Elizabeth Howard, and Chuck Ames. Criteria for 
evaluation of visual programming languages. Journal of Visual Languages and 
Computing, 8:175-192, 1997. 

Annotation: Identifies five criteria with metrics for evaluating and comparing VPLs. 
The criteria are visual nature, functionality, ease of comprehension, paradigm 
support and scalability. 

[Koike and Chu 1997] Hideki Koike and Hui-Chu Chu. VRCS: Integrating version 
control and module management using interactive three-dimensional graphics. In 
Proceedings IEEE Symposium on Visual Languages, pages 168-173, September 
1997. 

Annotation: A visual interface and visualization system for RCS version control. 

[Koike et al. 1996] Yuichi Koike, Yasuyuki Maeda, and Yoshiyuki Koseki. Enhancing 
iconic program reusability with object sharing. In Proceedings IEEE Symposium on 
Visual Languages, pages 288-295, Boulder, Colorado, September 1996. 

Annotation: Describes two mechanisms for enabling reuse of objects in their 
language: customization (which appears to be extension) and combination. They 
require the ability to propagate changes and flexibility since the designer cannot 
anticipate all future needs. Their method is specifically for node-and-wire languages, 
what they call iconic languages. Claimed advantages are: propagation of changes, 
flexibility, ease of use, and supporting inheritance. Examples are from the GUI 
domain. The editor for sharing objects displays only valid choices: shareable objects. 

[Koltun and Hudson 1991] Philip Koltun and Anita Hudson. A reuse maturity model. In 
Workshop on Institutionalizing Software Reuse, Reston, Virginia, November 1991. 

[Korson and McGregor 1990] Tim Korson and John D. McGregor. Understanding 
object-oriented: A unifying paradigm. Communications of the ACM, 33(9):40-60, 
September 1990. 

Annotation: Basic concepts, including two roles of inheritance: "is-a" and reuse. 

[Korson 1996] Tim Korson. Managing reuse: Applying the law of gravity. Object 
Magazine, 6(2):34-36, April 1996. 

Annotation: Lists four axioms of reuse: (1) reuse limited to class libraries will not 
fundamentally increase productivity (2) a component is not ready for general reuse 
until it has been used three times (3) the likelihood that a developer will reuse a 
component decreases greatly as the distance to it increases (4) an organization should 
not try to attain the maximum amount of reuse. The author advocates a corporate 
reuse portfolio consisting of a set of reuse assets at various levels of abstraction. 

[Kristensen and Osterbye 1996] Bent Bruun Kristensen and Kasper Osterbye. A 
conceptual perspective on the comparison of object-oriented programming languages. 
ACM SIGPLAN Notices, 31(2):42-54, February 1996. 

Annotation: Uses concepts rather than language features to compare 00 languages. 

[Krohn 1996] Uwe Krohn. VINETA: Navigation through virtual information spaces. In 
ACM Proceedings of the Workshop on Advanced Visual Interfaces, pages 49-58, 
Gubbio, Italy, May 1996. 

Annotation: They use flying arrows to represent keywords in three-dimensional 
space. Documents are spheres with markers, color, and dimness indicating a 
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document's contents with respect to the keywords selected. Locations of documents 
and keyword arrows are determined by a biplot of a document-keyword matrix. Most 
of the paper is devoted to an explanation of the math involved. 

[Kurlander 1993] D. Kurlander. Chimera: Example-based graphical editing. In A. 
Cypher, editor, Watch What I Do: Programming by Demonstration, chapter 12. MIT 
Press, 1993. 
Annotation: Uses a comic-strip style graphical history to record user actions. The 
histories are then editable and can also be made into reusable macros (procedures). 

[Landauer and Hirakawa 1995] Jurgen Landauer and Masahito Hirakawa. Visual AWK: 
a model for text processing by demonstration. In Proceedings IEEE Symposium on 
Visual Languages, pages 267-274, Darmstadt, Germany, September 1995. 

Annotation: PBD has problems with control structure and generalization. They 
propose visual awk which uses the simple do-for-every control structure. 
Generalization uses vertical demonstration or as many examples as possible and takes 
advantage of human visual scanning abilities. They use a spreadsheet metaphor for a 
text editing prototype. 

[Laufer and Odersky 1994] Konstantin Laufer and Martin Odersky. Polymorphic type 
inference and abstract data types. ACM Transactions on Programming Languages 
and Systems, 16(5):1411-1430, September 1994. 

Annotation: They treat abstract types as first class. 

[Laufer 1996] Konstantin Laufer. Type classes with existential types. Journal of 
Functional Programming, June 1996. 

Annotation: Introduces a language with type classes and existential types and 
develops a type system and inference algorithm for it. Also includes a formal 
semantics using 2nd order lambda-calculus and shows soundness of the type system. 

[Launchbury 1991] John Launchbury. A Strongly-Typed Self-Applicable Partial 
Evaluator, volume 523 of Lecture Notes in Computer Science, pages 145-164. 
Springer-Verlag, Cambridge, MA, USA, 1991. 

Annotation: A partial evaluator written in and for a strongly-typed language. 

[Launchbury 1993] John Launchbury. A natural semantics for lazy evaluation. In 
Twentieth Annual ACM Symposium on Principles of Programming Languages, 
pages 144-154, January 1993. 

Annotation: The author defines an operational semantics for lazy evaluation which 
provides an accurate model for sharing. The model is suitable for studying space 
behavior of terms under lazy evaluation. 

[Lawrence et al. 1994] A. W. Lawrence, A. M. Badre, and J. T. Stasko. Empirically 
evaluating the use of animations to teach algorithms. In Proceedings IEEE 
Symposium on Visual Languages, pages 48-54, St. Louis, Missouri, October 1994. 

Annotation: This paper describes a user study examining the effects of algorithm 
animation on learning. Their results indicate that active involvement in the animation 
(in the study this consisted of providing a graph for the Kruskal MST algorithm) did 
significantly improve students' understanding. 
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[Leopold and Ambler 1997] Jennifer Leopold and Allen Ambler. Keyboard less visual 
programming using voice, handwriting, and gesture. In Proceedings IEEE 
Symposium on Visual Languages, pages 28-35, September 1997. 

Annotation: Explores using the combination of voice, handwriting and gestures as 
input mechanisms for Formulate formulas and for some navigation and object 
manipulation. 

[Leroy and Mauny 1991] Xavier Leroy and Michel Mauny. Dynamics in ML. In J. 
Hughes, editor, Functional Programming Languages and Computer Architecture, 
Proceedings of the 5th ACM conference, volume 523 of Lecture Notes in Computer 
Science, pages 406-426. Springer-Verlag, 1991. 

Annotation: Using dyn type to integrate required run-time type checks (needed for 
eval and intern) into a statically-typed language. 

[Leroy and Weis 1991] Xavier Leroy and Pierre Weis. Polymorphic type inference and 
assignment. In ACM Symposium on Principles of Programming Languages, pages 
291-302, Orlando, Florida, January 1991. 
Annotation: integrating imperative programming style with applicative kernel of ML, 
allows generic functions over mutable data structures to have fully polymorphic types 
by restricting type generalization-they prohibit the use of a reference with two 
different types. 

[Lewis 1990] Clayton Lewis. NoPumpG: Creating interactive graphics with spreadsheet 
machinery. In Ephraim P. Glinert, editor, Visual Programming Environments: 
Paradigms and Systems, pages 526-546. IEEE Computer Society Press, Los 
Alamitos, California, 1990. 

[Li et al. 1997] Xiaosong Li, Warwick Mugridge, and John Hosking. A petri net-based 
visual language for specifying GUIs. In Proceedings IEEE Symposium on Visual 
Languages, September 1997. 

Annotation: Introduces a mechanism for procedural abstraction for Petri nets, 
through a generative technique reminiscent of Forms/3's constr-names. 

[Lieberman and Fry 1995] Henry Lieberman and Christopher Fry. Bridging the gulf 
between code and behavior in programming. In CHI Proceedings: Human Factors in 
Computing Systems, pages 480-486, Denver, Colorado, May 1995. 

Annotation: They introduce ZStep 94, a program debugging environment designed to 
help the programmer understand the correspondence between static code and 
dynamic execution. The programmer can step backward as well as forward through 
the program, either by code fragment or according to the next (previous) graphical 
step. Also provides exploration of previous program values. 

[Lieberman 1986a] Henry Lieberman. Concurrent object-oriented programming in Act 1. 
In Yonezawa and Tokoro, editors, Concurrent Object-Oriented Programming, pages 
9-36. MIT Press, Cambridge, MA, 1986. 

Annotation: Actors as objects: classic prototypes with delegation along with lots 
about concurrency. 

[Lieberman 1986b] Henry Lieberman. Using prototypical objects to implement shared 
behavior in object oriented systems. In Object-Oriented Programming Systems, 
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Languages, and Applications (OOPSLA), pages 214-223, 1986. Also in SIGPLAN 
Notices 21(9). 

[Lieberman 1995] Henry Lieberman. The visual language of experts in graphical design. 
In Proceedings IEEE Symposium on Visual Languages, pages 5-12, Darmstadt, 
Germany, September 1995. 

Annotation: Graphic Design knowledge is passed on by means of visual examples. 
Text cannot adequately represent the information. Students generalize from the 
examples and make analogies from them. Conditionals and abstraction in this visual 
realm are achieved through multiple examples and representative sketches 
respectively. 

[Lim 1996a] Wayne C. Lim. Legal and contractual issues in software reuse. In 
International Conference on Software Reuse, Orlando, Florida, April 1996. 

Annotation: Considers the benefits and drawbacks of copyright, trade secrets, and 
patents for property protection. Discusses issues that should be covered in contracts 
governing software reuse. 

[Lim 1996b] Wayne C. Lim. Reuse economics: A comparison of seventeen models and 
directions for future research. In International Conference on Software Reuse, pages 
41-50, Orlando, Florida, April 1996. 

Annotation: Discusses the similarities and differences among seventeen different 
reuse economic models. Identifies the most common inputs and outputs of the 
models and suggests areas for future research. 

[Liskov and Wing 1994] Barbara H. Liskov and Jeanette M. Wing. A behavioral notion 
of subtyping. ACM Transactions on Programming Languages and Systems, 
16(6):1811-1841, November 1994. 

Annotation: A definition of subtype, and two formal methods for proving that types 
do not violate the defined properties. They require a subtype to be transparently 
substitutable for any of its supertypes even in the presence of aliasing and concurrent 
data sharing. 

[Ludolph et al. 1988] Frank Ludolph, Yu-Ying Chow, Dan Ingalls, Scott Wallace, and 
Ken Doyle. The Fabrik programming environment. In Proceedings IEEE Workshop 
on Visual Languages, pages 222-230, Pittsburgh, Pennsylvania, October 1988. 

[Mackay 1995] Wendy E. Mackay. Ethics, lies and videotape... In Proceedings of 
CHI'95 Human Factors in Computing Systems, pages 138-145, Denver, Colorado, 
May 7-11 1995. 

Annotation: Sets forth guidelines for ethical use of video. Gives several examples of 
potentially embarrassing or slanderous use of video. 

[Malefant 1996] Jacques Malefant. Object-centered programming. In ECOOP Workshop 
on Prototype Based Object Oriented Programming, 1996. 

Annotation: In this position paper the author argues "concreteness need not be the 
enemy of abstraction." Instead of rejecting abstraction in the form of classes and then 
letting it in the back door in the form of traits and maps (as in Self), language 
designers should realize that the focus of prototype-based languages is that the 
programming experience be object-centered. Abstractions must be introduced at some 
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stage in the development process, why not allow development to progress from 
concrete objects to generalizations in the later stages? 

[Malenfant et al. 1996] Jacques Malenfant, Christophe Dony, and Pierre Cointe. A 
semantics of introspection in a reflective prototype-based language. Lisp and 
Symbolic Computation, 9(2/3):153-180, May/June 1996. 

[Marriott and Meyer 1997] Kim Marriott and Bernd Meyer. On the classification of 
visual languages by grammar hierarchies. Journal of Visual Languages and 
Computing, 8, 1997. 
Annotation: Presents a grammar hierarchy for VPLs similar to the Chomsky 
Hierarchy. Since all VPLs are context sensitive in the Chomsky sense, they redefine 
what context sensitive means for VPLs. 

[Martin and Hankin 1987] Chris Martin and Chris Hankin. Finding Fixed Points in 
Finite Lattices, pages 426+. Lecture Notes in Computer Science. Springer-Verlag, 
1987. 

Annotation: abstract interpretation of declarative languages, strictness analysis, 
finding fixpoints of recursive functions. 

[McWhirter 1996] Jeffrey D. McWhirter. Algorithm Explorer: A student-centered 
algorithm animation system. In Proceedings IEEE Symposium on Visual Languages, 
pages 174-181, Boulder, Colorado, September 1996. 

Annotation: A student-centered approach to animation allowing 3 tiers of 
sophistication and complexity. The system is available for outside use. 

[Meuter et al. 1996] Wolfgang De Meuter, Tom Mens, and Patrick Steyaert. Agora: 
Reintroducing safety in prototype-based languages. In ECOOP Workshop on 
Prototype Based Object Oriented Programming, 1996. 

Annotation: Addresses two safety issues most prototype-based languages have. The 
encapsulation problem exists in languages that provide dynamic object extension. 
The prototype corruption problem is when a prototype is modified accidentally 
instead of a clone. The authors propose encapsulated versions of extension and 
cloning that do not allow these problems. 

[Meyer 1992] B. Meyer. Eiffel: The Language. Prentice-Hall, 1992. 

[Meyer 1998] Bernd Meyer. Competitive learning of network diagram layout. In 
Proceedings IEEE Symposium on Visual Languages, pages 56-63, Halifax, Nova 
Scotia, Canada, September 1998. 

Annotation: A fast and pretty good graph layout algorithm based on a competitive 
learning algorithm (which extends self-organization strategies from neural networks). 
A very nice demonstration applet is available via 
http://www.bounce.to/BerndMeyer.
 

[Mili et al. 1995] Hafedh Mili, Fatma Mili, and Ali Mili. Reusing software: Issues and 
research directions. IEEE Transactions on Software Engineering, 21(6):528-561, 
June 1995. 

Annotation: A discussion of reuse research including managerial aspects but 
concentrating on the technical aspects. Covers process, measurement, acquiring 

http://www.bounce.to/BerndMeyer
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components, object-oriented analysis and design, object-oriented programming, 
component retrieval, component composition and adapting components. 

[Milner 1978] Robin Milner. A theory of type polymorphism in programming. Journal 
of Computer and System Sciences, 17(3):348-375, December 1978. 

[Minas and Shklar 1996] Mark Minas and Leon Shklar. A high-level visual language for 
generating web structures. In Proceedings IEEE Symposium on Visual Languages, 
pages 284-285, Boulder, Colorado, September 1996. 

Annotation: Describes a system to provide web access to large amounts of 
heterogeneous information without requiring relocation or restructuring. 

[Mishra 1998] Sunanda Mishra. A formal proof of soundness and completeness of the 
type inference system in Forms/3. Master's thesis, Oregon State University, 1998. 

[Mitchell et al. 1995] Richard Mitchell, John Howse, and Ian Maung. As-a: a 
relationship to support code reuse. Journal of Object-Oriented Programming, pages 
25-33+, 1995. 
Annotation: Distinguishes between "is-a" (classification relationships) and "as-a" 
(code reuse relationship) and points out the need for programming languages that 
support this distinction. 

[Mitchell 1990] John C. Mitchell. Toward a typed foundation of method specialization 
and inheritance. In ACM Symposium on Principles of Programming Languages, 
pages 109-124, San Francisco, California, January 1990. 

[Moher 1988] Thomas G. Moher. PROVIDE: A process visualization and debugging 
environment. IEEE Transactions on Software Engineering, 14(6):849-857, June 
1988. 

Annotation: A pioneering visual debugging and visualization environment for a 
simplified C-like language. It does not deal with error handling and is oriented 
toward debugging-in-the-small, but it does provide support for the programmer to 
observe and control program execution and to interactively create data visualizations 
that are automatically updated. The programmer need not explicitly program graphics 
at a low level. Graphics and animations must be in a separate window, separating 
them from program code. 

[Mukherjea and Stasko 1993] Sougata Mukherjea and John T. Stasko. Applying 
algorithm animation techniques for program tracing, debugging, and understanding. 
In International Conference on Software Engineering, pages 456-465, Baltimore, 
Maryland, May 1993. 

Annotation: The Lens system is a prototype software visualization system meant to 
aid in program tracing, debugging and understanding rather than instruction. 
Supports rapid development of animations as a problem solving tool for 
programmers. Geared toward program exploration and high-level debugging. 

[Mulet and Cointe 1993] Philippe Mulet and Pierre Cointe. Definition of a Reflective 
Kernel for a Prototype-Based Language. In Object Technologies for Advanced 
Software, volume 742 of Lecture Notes in Computer Science, pages 128-144. First 
JSSST International Symposium, November 1993. 
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[Mulholland and Watt 1998] Paul Mulholland and Stuart Watt. Hank: A friendly 
cognitive modelling language for psychology students. In Proceedings IEEE 
Symposium on Visual Languages, pages 210-216, Halifax, Nova Scotia, Canada, 
September 1998. 

Annotation: Cognitive modeling is the overlap between AI and psychology and 
involves building computational models of psychological theories in order to learn 
more about them. Hank is a VPL designed for use by psychology students studying 
cognitive modeling. The design requirements of Hank included that the language be 
appropriate for psychology students, suitable for the non-programmer, suitable for 
working in groups, good at showing the execution path, and usable on paper. The 
conference presentation of this paper was extremely good and included comments 
(mostly positive) from students who had used Hank. 

[Myers and Vander Zanden 1992] Brad A. Myers and Brad Vander Zanden. 
Environment for rapidly creating interactive design tools. The Visual Computer: 
International Journal of Computer Graphics, 8(2):94-116, 1992. 

Annotation: Overview of different Garnet tools. 

[Myers et al. 1990] Brad A. Myers, Dario Giuse, Roger B. Dannenberg, Brad Vander 
Zanden, David Kosbie, Ed Pervin, Andrew Mickish, and Philippe Marchal. Garnet: 
Comprehensive support for graphical, highly interactive user interfaces. Computer, 
23(11):71-85, November 1990. 

[Myers et al. 1992] Brad A. Myers, Dario A. Giuse, and Brad Vander Zanden. 
Declarative programming in a prototype-instance system: Object-oriented 
programming without writing methods. In Object-Oriented Programming Systems, 
Languages, and Applications (OOPSLA), pages 182-200, 1992. 

[Myers et al. 1997] Brad A. Myers, Richard G. McDaniel, Robert C. Miller, Alerrency, 
Andrew Faulring, and others. The Amulet environment: New models for effective 
user interface software development. IEEE Transactions on Software Engineering, 
23(6):347-365, June 1997. 

Annotation: Amulet is a user interface development environment for C++. It is 
Garnet's successor. 

[Myers 1991] B. Myers. Graphical techniques in a spreadsheet for specifying user 
interfaces. In CHI Proceedings: Human Factors in Computing Systems, pages 243­
249, May 1991. 

[Najork and Golin 1990] Marc A. Najork and Eric Golin. Enhancing Show-and-Tell 
with a polymorphic type system and higher order functions. In Proceedings IEEE 
Workshop on Visual Languages, pages 215-220, 1990. 

Annotation: ESTL's types provides a visual syntax for Milner's type system. 

[Najork 1996] M. Najork. Programming in three dimensions. Journal of Visual 
Languages and Computing, 7(2):219-242, June 1996. 

[Ng and Luk 1995] K. W. Ng and C. K. Luk. /±: A multiparadigm language for object-
oriented declarative programming. Computer Languages, 21(2):81-100, 1995. 
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Annotation: Includes object-oriented, logic and functional paradigms in one 
language. An interesting feature of the language [F is its approach to inheritance that 
allows fine-grained method-by-method inheritance from other objects. 

[Nipkow and Prehofer 1993] Tobias Nipkow and Christian Prehofer. Type checking 
type classes. In ACM Symposium on Principles of Programming Languages, pages 
409-418, Charleston, South Carolina, January 1993. 

Annotation: They claim to have the simplest algorithm published so far that extends 
ML-style type inference to type classes. They claim soundness and completeness and 
show the existence of principal types. They allow types to belong to more than one 
class, where classes are not ordered, and show that subclasses are merely syntactic 
sugar and can be eliminated. Also includes a brief discussion of ambiguity which 
affects most type systems with overloading. 

[Norman 1989] Don A. Norman. The Design of Everyday Things. Doubleday, New 
York, 1989.
 
Annotation: Discusses what makes things useful and how everyday items are (or are
 
not) designed for usability.
 

[North and Koutsofios 1994] Stephen C. North and Eleftherios Koutsofios. 
Applications of graph visualization. In Graphics Interface '94, pages 235-245, May 
1994. 

Annotation: More information about the Graphviz tools is available from AT&T 
Research at http: //www. research . att .com/sw/tools/graphviz/. 

[Novak et al. 1992] G. S. Novak, F. N. Hill, M. L. Wan, and B. G. Sayrs. Negotiated 
interfaces for software reuse. IEEE Transactions on Software Engineering, 
18(7):646-653, 1992. 
Annotation: Subroutine interfaces are rigid, making them difficult to reuse. LINK is a 
tool that automatically writes an interface conversion program given a subroutine and 
calling program that both use GLISP types. NI uses menu-based negotiation with 
user input to generate customized matching procedures from generic ones. Both tools 
help to reuse components quickly and without requiring a detailed understanding of 
the data representations of the reused component. 

[Nuchprayoon and Korfhage 1997] Assadaporn Nuchprayoon and Robert Korfhage. 
GUIDO: Visualizing document retrieval. In Proceedings IEEE Symposium on Visual 
Languages, pages 184-188, September 1997. 

[Odersky and Wadler 1997] Martin Odersky and Philip Wadler. Pizza into Java: 
Translating theory into practise. In ACM Symposium on Principles of Programming 
Languages, January 1997. 

Annotation: Pizza, a superset of Java, incorporates three ideas from the academic 
community: parametric polymorphism, higher-order functions and algebraic data 
types. 

[Olston et al. 1998] Chris Olston, Michael Stonebraker, Alexander Aiken, and Joseph 
M. Hellerstein. VIQING: Visual Interactive QueryING. In Proceedings IEEE 
Symposium on Visual Languages, pages 162-169, Halifax, Nova Scotia, Canada, 
September 1998. 
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Annotation: Visual incremental query on top of visual database display. The 
described techniques work pretty well for the examples given, but I wonder how 
generalizable they are. 

[Palsberg and Schwartzbach 1991] Jens Palsberg and Michael I. Schwartzbach. Object-
oriented type inference. In Object-Oriented Programming Systems, Languages, and 
Applications (OOPSLA), pages 146-161, October 1991. 

Annotation: Presents a type inference algorithm for a simplified Smalltalk that 
includes inheritance, state modification, late binding and polymorphic methods. It 
guarantees all messages are understood and provides type annotations for instance 
variables and methods. Inheritance is handled by expanding all classes before doing 
inference. Conditional type constraints are solved by least fixed-point derivation 
rather than unification. 

[Pandey and Burnett 1993] R. Pandey and M. Burnett. Is it easier to write matrix 
manipulation programs visually or textually? An empirical study. In Proceedings 
IEEE Symposium on Visual Languages, pages 344-351, Bergen, Norway, 1993. 

Annotation: A study comparing construction of matrix programs in three languages: 
OSU-APL (APL with English-like syntax), Pascal and Forms/3. 

[Penz and Wollinger 1993] Franz Penz and Thomas Wollinger. The ObjectWorld, a 
classless, object-based, visual programming language. OOPS Messenger, 4(1):26­
35, January 1993. 
Annotation: For concreteness, every object conceptually contains all its data and 
methods (no inheritance or delegation). Data abstraction is enforced. Polymorphism 
is achieved through dynamic binding. Reuse is enabled by cloning objects and 
subparting with automatic message propagation. Once locked, objects can be reused 
but not modified. For simplicity, there are no types. 

[Penz 1991] Franz Penz. Visual programming in the ObjectWorld. Journal of Visual 
Languages and Computing, 2:17-41, 1991. 

Annotation: New objects are constructed by direct manipulation of prefabricated 
objects. A short example of programming in ObjectWorld, a stopwatch, is explained 
in text and figures. 

[Perrone and Repenning 1998] Corrina Perrone and Alexander Repenning. Graphical 
rewrite rule analogies: Avoiding the inherit or copy & paste reuse dilemma. In 
Proceedings IEEE Symposium on Visual Languages, pages 40-46, Halifax, Nova 
Scotia, Canada, September 1998. 

Annotation: Describes graphical rewrite rule analogies that facilitate reuse in rule-
based languages such as Agentsheets. For example, the rule "cars move on roads like 
trains move on tracks" (expressed visually by the programmer) generates a set of 
rules for cars and roads that mirrors the rules for trains and tracks. Currently, this is 
a one-time editing shortcut, although they have plans to explore retaining the 
connection between the source and copy. 

[Peterson and Jones 1993] John Peterson and Mark Jones. Implementing type classes. 
In ACM Conference on Programming Language Design and Implementation, pages 
227-236, Albuquerque, New Mexico, June 1993. 

Annotation: Good intro material and definitions of terms. They explain type classes 
with Haskell examples, and most of the paper is devoted to implementing type 
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classes, although they do briefly discuss extending ML style type inference to 
support type classes. Also discussed are dictionary conversion and monomorphic 
restriction. 

[Peterson et al. 1997] J. Peterson, K. Hammond, L. Augustsson, B. Boutel, W. 
Burton, et al. Haskell 1.4: a non-strict, purely functional language. 
http: //haskell . systemsz .cs .yale.edu/report, April 1997. 

Annotation: An updated version of Hudak et al. "Report on the Programming 
Language Haskell, A Non-strict, Purely Functional Language," ACM SIGPLAN 
Notices, May 1992. 

[Peterson 1994] John Peterson. Dynamic typing in Haskell. Technical Report 
YALEU/DCS/RR-1022, Yale University, 1994. 

[Pfeiffer 1995] Joseph J. Pfeiffer, Jr. Ludwig2: Decoupling program representations 
from processing models. In Proceedings IEEE Symposium on Visual Languages, 
pages 133-139, Darmstadt, Germany, September 1995. 

Annotation: Ludwig2 uses different visual representations in order to enhance 
readability. Pointers are arrows, mathematical equations are equations. 

[Piersol 1986] K. Piersol. Object oriented spreadsheets: The Analytic Spreadsheet 
Package. In Object-Oriented Programming Systems, Languages, and Applications 
(OOPSLA), pages 385-390, 1986. 

[Pirolli et al. 1996] Peter Pirolli, James Pitkow, and Ramana Rao. Silk from a sow's ear: 
Extracting usable structures from the web. In CHI Proceedings: Human Factors in 
Computing Systems, pages 118-125, 1996. 

Annotation: Web pages are not highly structured or typed, so they propose some 
ways to extract structure and type information about a locality of Web pages. The 
data they extract consists of (1)topology of hyperlinks among pages (2)meta­
information such as file size and URL (3)Usage frequency and paths (4)textual 
similarity. Page types are determined by weighting attributes and ranking the top 
pages for each category. They suggest using this data for extracting groups of pages 
suitable for a WebBook [same proceedings]. 

[Poswig and Morara 1993] Jorg Poswig and Claudio Morara. Incremental type systems 
and implicit parameter overloading in visual languages. In Proceedings IEEE 
Symposium on Visual Languages, pages 126-133, Bergen, Norway, August 1993. 

Annotation: Explains the incremental type inference system of VisaVis. See [Poswig 
et al. 1994] for more language description. 

[Poswig et al. 1992] J. Poswig, K. Teves, G Vrankar, and C. Moraga. VisaVis­
contributions to practice and theory of highly interactive visual languages. In 
Proceedings IEEE Workshop on Visual Languages, pages 155-162, Seattle, WA, 
September 1992. 

Annotation: VisaVis allows polymorphic functions, but no user-defined types. 

[Poswig et al. 1994] Jorg Poswig, Guido Vrankar, and Claudio Morara. VisaVis: a 
higher-order functional visual programming language. Journal of Visual Languages 
and Computing, 5(1):83-111, March 1994. 
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Annotation: VisaVis is a functional visual language supporting higher-order 
functions. The authors introduce interactive substitution as a means to provide an 
easy learning metaphor and to prevent syntactical errors. Only briefly mentions type 
inference. 

[Poulin 1993] Jeffrey S. Poulin. Issues in the development and application of reuse 
metrics in a corporate environment. In Proceedings International Conference on 
Software Engineering and Knowledge Engineering, pages 258-262, San Francisco, 
California, June 1993. 

[Poulin 1995] Jeffrey S. Poulin. Measuring the level of reuse in object-oriented 
development. In Workshop on Institutionalizing Software Reuse, St. Charles, 
Illinois, August 1995. 

[Pree 1995] Wolfgang Pree. Framework development and reuse support. In Margaret M. 
Burnett, Adele Goldberg, and Ted G. Lewis, editors, Visual Object-Oriented 
Programming: Concepts and Environments, chapter 12. Prentice-Hall/Manning 
Publications Co., Greenwich, CT, 1995. 

Annotation: Describes visual tools (design book, active cookbook) for reusing 
frameworks. 

[Price and Demurjian Sr. 1997] Margaretha W. Price and Steven A. Demurjian Sr. 
Analyzing and measuring reusability in object-oriented designs. In Object-Oriented 
Programming Systems, Languages, and Applications (OOPSLA), pages 22-33, 
October 1997. 

Annotation: Presents a technique for analyzing and measuring the reusability of an 
00 design. Also gives guidelines for ways to improve a design once analyzed. 

[Prieto-Diaz and Freeman 1987] Ruben Prieto-Diaz and Peter Freeman. Classifying 
software for reusability. IEEE Software, 4(1):6-16, January 1987. 

Annotation: Suggests an environment that helps locate components and estimates the 
adaptation and conversion effort necessary for reuse. The user provides a set of 
functional specifications; 'similar' components are those that match some but not all 
the requirements. Similar components are ranked according to degree of match and 
effort to adapt. Rather than an enumerative classification (that divides everything into 
successively narrower classes, including all compound classes, arranged in a 
hierarchy), they use faceted classification (from library science) that builds up 
(synthesizes) compound classes from elemental ones. They describe software 
functionality with <function, object, medium> and its environment with <system 
type, functional area, setting> using a controlled vocabulary to avoid duplicate and 
ambiguous descriptors. Examples are <add, characters, table, relational DB, 
accounts payable, advertising> and <compress, files, disk, file handler, DB 
management, catalog sales>. A weighted graph models the conceptual closeness of 
terms. Three evaluations were performed that seemed to indicate success in retrieval 
(as compared to a database system); ease of use, accuracy and consistency of 
classification scheme; and estimation of reuse effort. Open questions mentioned: 
standardization of classification schedules, validation of reuse effort metrics. 

[Prieto-Diaz 1989] Ruben Prieto-Diaz. Classification of reusable modules. In Ted J. 
Biggerstaff and Alan J. Perlis, editors, Software Reusability: Concepts and Models, 
volume 1, chapter 4. Addison-Wesley, Reading, Massachusetts, 1989. Based on 
[Prieto-Diaz and Freeman 1987]. 
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[Prieto-Diaz 1996] R. Prieto-Diaz. Reuse as a new paradigm for software development. 
In M. Sarshar, editor, Systematic Reuse: Issues in Initiating and Improving a Reuse 
Program. Springer-Verlag, 1996. 

Annotation: Reuse in software is not the same as in other areas; a better analogy for 
software reuse is an assembly line. When software components are harder to create 
and easier to buy, then the software engineer will generate a good design (not the 
"best") forcing some compromises on the requirements. We can't change the pay-off 
of reusing a component, but we can change how easy it is to reuse. What we want, 
then, are large, easy to reuse components, and higher-level components. Also, 
effective reuse must be systematic and involve a reuse infrastructure, in other words, 
there is much more to it than having a repository of reusable components, no matter 
how easy they are to reuse. Systematic reuse requires an infrastructure, domain 
analysis, derivation of domain models (for our particular product), process definition 
and performance measures. 

[Rader et al. 1998] Cyndi Rader, Gina Cherry, Cathy Brand, Alexander Repenning, and 
Clayton Lewis. Designing mixed textual and iconic programming languages for 
novice users. In Proceedings IEEE Symposium on Visual Languages, pages 187­
194, Halifax, Nova Scotia, Canada, September 1998. 

Annotation: More of a case study about experience using a VPL with children and the 
resulting improvements made to the language design. They list five design guidelines 
for program comprehension and composition that they discovered during their 
experience. 

[Raj and Levy 1989] R. K. Raj and H. M. Levy. A compositional model for software 
reuse. The Computer Journal, 32(4), 1989. 

Annotation: Emerald supports object encapsulation, subtyping (substitutability), 
complete separation of type and implementation, locality of definition (no 
implementation inheritance, so no "hidden parts" of object). The Smalltalk-like 
browser (Jade) allows textual component location based on categories (components 
may belong to as many categories as are applicable), synonyms (programmer­
provide), role (operation, function, object, type), conformity (which components are 
substitution compatible), clients (where is this component used), and sub­
components. 

[Raj et al. 1991] Rajendra K. Raj, Ewan Tempero, and Henry M. Levy. Emerald: A 
general-purpose programming language. Software-Practice and Experience, 
21(1):91-118, January 1991. 

Annotation: Describes Emerald, comparing it to other programming languages. 
Emerald embraces the concept of self-sufficient objects. 

[Raj 1991] Rajendra K. Raj. Composition and reuse in object-oriented languages. 
Technical Report 91-03-06, University of Washington, March 1991. Reformatted 
version of author's Ph.D. dissertation. 

Annotation: Discusses metrics for measuring reuse in object-oriented languages, the 
difference between conformance (shared object interfaces) and inheritance (shared 
object implementations), and reuse via composition using the Jade model. "For reuse 
to be effective, the Jade language constructs must be complemented by programming 
environment support." (Sec 4.4). 
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[Redmiles 1993] David F. Redmiles. Reducing the variability of programmers' 
performance through explained examples. In CHI Proceedings: Human Factors in 
Computing Systems, pages 67-73, Amsterdam, The Netherlands, April 1993. 

Annotation: An empirical study demonstrating that explained examples are better than 
traditional on-line help facilities. Subjects using the EXPLAINER used less trial-and­
error and performed the task more directly. 

[Repenning and Ambach 1996] Alexander Repenning and James Ambach. Tactile 
programming: A unified manipulation paradigm supporting program comprehension, 
composition and sharing. In Proceedings IEEE Symposium on Visual Languages, 
pages 102-109, Boulder, Colorado, September 1996. 

Annotation: Programmed agents can be placed on a web-based repository and 
dragged onto other worksheets. 

[Repenning and Ioannidou 1997] Alexander Repenning and Andri Ioannidou. Behavior 
processors: Layers between end-users and Java virtual machines. In Proceedings 
IEEE Symposium on Visual Languages, pages 402-409, September 1997. 

Annotation: Introduces the analogy of Java as a "Postscript" for programs. Ristretto 
is a tool for turning Agentsheet programs into Java applets. 

[Risley and Smedley 1998] Christopher C. Risley and Trevor J. Smedley. Visualization 
of compile time errors in a Java compatible visual language. In Proceedings IEEE 
Symposium on Visual Languages, pages 22-29, Halifax, Nova Scotia, Canada, 
September 1998. 

Annotation: Using a Prograph-like syntax for Java semantics, compile time errors are 
made visible at edit time. "Used before set" errors are highlighted (and propagated), 
type errors cause dataflow lines to appear dotted, exceptions are handled with little 
icons and highlighting. 

[Robbins et al. 1996] Jason E. Robbins, David J. Morley, David F. Redmiles, Vadim 
Filatov, and Dima Kononov. Visual language features supporting human-human and 
human-computer communication. In Proceedings IEEE Symposium on Visual 
Languages, pages 247-254, Boulder, Colorado, September 1996. 

Annotation: Describes a diagram-based visual object-oriented language for designing 
and programming visual simulations of factories. Interesting aspects include 
multiple, overlapping views (rather than hierarchical views) and customizable 
presentation graphics. They use the metaphor of machines with push-buttons for 
both direct manipulation and programming. 

[Rosson and Carroll 1996] Mary Beth Rosson and John M. Carroll. The reuse of uses in 
Smalltalk programming. ACM Transactions on Computer-Human Interaction, 
3(3):219-253, September 1996. 

Annotation: The authors observed heavy use of previously-existing usage contexts 
by Smalltalk programmers. 

[Ruger et al. 1996] Michael Riiger, Bernhard Preim, and Alf Ritter. Zoom navigation: 
Exploring large information and application spaces. In ACM Proceedings of the 
Workshop on Advanced Visual Interfaces, pages 40-48, Gubbio, Italy, May 1996. 

Annotation: Adds aspect-of-interest (AM) function to the degree-of-interest (DOI) 
usually associated with fish-eye views. 
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[Schiffer and Frohlich 1995] Stefan Schiffer and Joachim Hans Frohlich. Visual 
programming and software engineering with vista. In Margaret M. Burnett, Adele 
Goldberg, and Ted G. Lewis, editors, Visual Object-Oriented Programming: 
Concepts and Environments, chapter 10. Prentice-Hall/Manning Publications Co., 
Greenwich, CT, 1995. 

Annotation: Vista is a visual object-oriented language that strives to achieve such 
software engineering principles as weak coupling between building blocks, 
procedural and data abstraction, safety through static type checking, and component 
reuse (and direct integration of documentation). Although class-based, the 
programmer first constructs a concrete prototypical object from which to generate the 
class definition. One of the consequences of its integration with Smalltalk is that 
some information hiding enforced in Vista can be circumvented in low-level 
Smalltalk code. The type system uses available information to detect and prevent 
obvious type incompatibilities, but does not guarantee the absence of run-time type 
errors. 

[Schmidt and Omohundro 1993] Heinz W. Schmidt and Stephen M. Omohundro. 
CLOS, Eiffel, and Sather: A comparison. In Andreas Paepcke, editor, Object-
Oriented Programming: The CLOS Perspective, pages 181-213. MIT Press 
Cambridge, Massachusetts, London, England, 1993. 
Annotation: Discusses the approaches taken by each of the three languages with 
respect to many object-oriented (and more general) language issues such as multiple 
inheritance, the relationship between classes and types, garbage collection and 
language environment. (Also available as International Computer Science Institute 
TR-91-047). 

[Schmidt 1995] Douglas C. Schmidt. Using design patterns to develop reusable object-
oriented communication software. Communications of the ACM, 38(10):65-74, 
October 1995. 
Annotation: Describes an example design pattern, the Reactor, and discusses lessons 
learned from using design patterns to develop 00 communication frameworks for 
several different projects. These lessons include: patterns enabled reuse of high-level 
componentrythe software architecture, pattern descriptions should contain concrete 
examples for better understandability, patterns improve communication by providing 
a shared vocabulary and high-level concepts about essential properties of the 
software, pattern names should be chosen carefully and used consistently (more 
verbose aliases can help), patterns are no substitute for design and implementation, 
patterns are validated by experience rather than testing, pattern descriptions contain 
explicit documentation of tradeoffs and alternatives and where the pattern does and 
does not apply, patterns facilitate new developer training (project understanding) by 
giving a big-picture view, managing expectations is crucial to using patterns 
effectively. 

[Schmidt 1996] David A. Schmidt. Programming language semantics. In Allen Tucker, 
editor, CRC Handbook of Computer Science. CRC Press, 1996. Summary of ACM 
Computing Surveys article, 28(1), 1996. 

Annotation: A survey of programming language semantics. 

[Schwartzbach 1997] Michael I. Schwartzbach. Object-oriented type systems: Principles 
and applications. Lecture notes available at 
http : / /www. daimi aau dk/ -mis /ootspa ps, May 1997. 
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[Sebesta 1996] R. W. Sebesta. Concepts of Programming Languages. Addison-Wesley, 
Menlo Park, CA, third edition, 1996. 

[Seidewitz 1996] Ed Seidewitz. Controlling inheritance. Journal of Object Oriented 
Programming, 8(8):36-42, January 1996. 

Annotation: Advocates the use of abstract classes for interface inheritance combined 
with mixin classes for implementation inheritance. Addresses the problems of 
classification tied to implementation, rigid hierarchy, and distribution of object 
definitions (yo-yo problem). 

[Selby 1989] Richard W. Selby. Quantitative studies of software reuse. In Ted J. 
Biggerstaff and Alan J. Perlis, editors, Software Reusability: Applications and 
Experience, volume 2. Addison-Wesley, Reading, Massachusetts, 1989. 

[Selfridge and Srivastava 1996] Peter Selfridge and Divesh Srivastava. A visual 
language for interactive data exploration and analysis. In Proceedings IEEE 
Symposium on Visual Languages, pages 84-85, Boulder, Colorado, September 
1996. 

Annotation: The IDEA language can be viewed as a dataflow diagram or a history of 
actions. A diagram can be saved for later reuse. 

[Sengupta et al. 1994] Samudra Sengupta, Takayuki Dam Kimura, and Ajay Apte. An 
artist's studio: A metaphor for modularity and abstraction in a graphical diagramming 
environment. In Proceedings IEEE Symposium on Visual Languages, pages 128­
136, St. Louis, Missouri, October 1994. 
Annotation: Supports sharing of objects in a graphical editor meant to be parsed as a 
visual language. Suitable for any node-and-wire VPL that consists of a graphical 
diagramming environment and an interpreter. 

[Shizuki et al. 1998] Buntarou Shizuki, Masashi Toyoda, and Esuya Shibayama. Visual 
patterns + multi-focus fisheye view: An automatic scalable visualization technique of 
data-flow visual program execution. In Proceedings IEEE Symposium on Visual 
Languages, pages 270-277, Halifax, Nova Scotia, Canada, September 1998. 

Annotation: A technique for automatic animations of dataflow VPL execution. 
Includes a framework for browsing different animations that highlight different 
aspects of the program. They use both fisheye techniques and semantic zooming. 
Based on the visual design patterns from the authors' VL'97 paper. 

[Shneiderman 1996] Ben Shneiderman. The eyes have it: A task by data type taxonomy 
for information visualizations. In Proceedings IEEE Symposium on Visual 
Languages, pages 336-343, Boulder, Colorado, September 1996. 

Annotation: The author proposes a taxonomy of information visualizations of large 
amounts of data. The designer's goal should be comprehension, control and 
responsibility, avoiding confusion, frustration and remorse. Seven data types are 
listed: one-dimensional, two-dimensional, three-dimensional, temporal, multi­
dimensional, trees, and networks. The user should be able to perform all seven tasks 
in a continuous, visual manner: overview, zoom, filter, details-on-demand, relate, 
history, and extract. 

[Sitaraman 1996] Murali Sitaraman, editor. Proceedings of the IEEE Conference on
 
Software Reuse, Orlando, FL, April 1996.
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[Slonneger and Kurtz 1995] Kenneth Slonneger and Barry L. Kurtz. Formal Syntax and 
Semantics of Programming Languages: a laboratory based approach. Addison-
Wesley Publishing Company, Inc., 1995. 

[Smedley et al. 1996] T. Smedley, P. Cox, and S. Byrne. Expanding the utility of 
spreadsheets through the integration of visual programming and user interface 
objects. In Advanced Visual Interfaces, pages 148-155, May 1996. 

[Smith et al. 1994] Randall B. Smith, Mark Lentczner, Walter R. Smith, Antero 
Taivalsaari, and David Ungar. Prototype-based languages: Object lessons from class-
free programming. In Object-Oriented Programming Systems, Languages, and 
Applications (00PSLA), Panel summary appeared in the proceedings addendum, 
1994. 

Annotation: Panelists talked about the good and bad aspects of various prototype-
based languages. One theme that seemed to emerge was the problem of operating on 
groups of objects or a notion of "collectionness" for prototypes. 

[Smith 1995] Walter Smith. Using a prototype-based language for user interface: The 
Newton project's experience. In Object-Oriented Programming Systems, Languages, 
and Applications (OOPSLA), pages 61-72, Austin, Texas, October 1995. Published 
as SIGPLAN Notices 30(10). 

Annotation: Describes NewtonScript, a prototype-based object oriented language 
designed for user interface construction. Objects can inherit from both a prototype 
and a parent (container inheritance). The result is a very flexible programming 
language; they indicate that they would consider enforcing more program structure 
through either the language or environment. They end with a plea for more research 
on prototype-based languages and programming environments. 

[Sondergaard and Sestoft 1990] Harald Sondergaard and Peter Sestoft. Referential 
transparency, definiteness and unfoldability. Acta Informatica, 27:505-517, 1990. 

Annotation: Definitions of referential transparency (preserving substitutivity of 
identity) and closely related concepts. 

[Spenke et al. 1996] Michael Spenke, Christian Beilken, and Thomas Berlage. FOCUS: 
The interactive table for product comparison and selection. In ACM Symposium on 
User Interface Software and Technology, pages 41-50, Seattle, Washington, 
November 1996. 

Annotation: need to do. 

[Stasko and Muthukumarasamy 1996] John Stasko and Jeyakumar Muthukumarasamy. 
Visualizing program executions on large data sets. In Proceedings IEEE Symposium 
on Visual Languages, pages 166-173, Boulder, Colorado, September 1996. 

Annotation: They describe techniques for visualizing programs working on large data 
sets where the data outnumbers the display pixels. Graphical objects in the display 
can represent individual values or cumulative or clustered data. Semantic zooming is 
defined as including an overview (usually abstracted) of all data in one window 
without scrolling. Users interactively zoom in on a portion of the program data by 
selecting a representative graphical object. At the most detailed view, the visualization 
uses recognized algorithm animation or program visualization presentation styles. 
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[Stasko et al. 1993] John Stasko, Albert Badre, and Clayton Lewis. Do algorithm 
animations assist learning? an empirical study and analysis. In CHI Proceedings: 
Human Factors in Computing Systems, pages 61-66, Amsterdam, The Netherlands, 
April 1993. 

Annotation: Found no significant benefit from the sort animations used for 
instruction. Their conjectures: animations must be motivated by comprehensive 
motivational instruction, must be geared to specific instructional goals, and should 
include rewind-replay capabilities. 

[Stasko 1990] John T. Stasko. Simplifying algorithm animation with TANGO. In 
Proceedings IEEE Workshop on Visual Languages, pages 1-6, Skokie, Illinois, 
1990. 

[Stein et al. 1989] Lynn Andrea Stein, Henry Lieberman, and David Ungar. A shared 
view of sharing: The treaty of Orlando. In Won Kim and Frederick H. Lochovsky, 
editors, Object-Oriented Concepts, Databases, and Applications, chapter 3, pages 31­
48. ACM Press, Addison-Wesley, 1989. Also in SIGPLAN Notices 23(5). 

Annotation: 00 is not a dichotomy of class/inheritance languages and 
prototype/delegation languages. Rather OOLs are characterized by variations on two 
fundamental mechanisms, templates (for creating new objects like old ones) and 
empathy (allowing an object to act as if it were another, thus sharing state and 
behavior). The variations fall into three independent dimensions: is the sharing 
defined statically or dynamically, implicitly or explicitly, and per object or per group? 
"The true value of object-oriented techniques as opposed to conventional 
programming techniques is not that they can do things the conventional techniques 
can't, but that they can often extend behavior by adding new code in cases where 
conventional techniques would require editing existing code." (p. 44). 

[Stroustrup 1992] B. Stroustrup. The C++ Programming Language. Addison-Wesley, 
second edition, 1992. 

[Stroustrup 1996] B. Stroustrup. Keynote address: Language-technical aspects of reuse. 
In International Conference on Software Reuse, pages 11-19, Orlando, Florida, 
April 1996. 

Annotation: A PL can simplify the expression of clean design and provide facilities 
for tailoring components (class hierarchy, type parameterization). 

[Szypersky and Omohundro 1993] Clemens Szypersky and Stephen Omohundro. 
Engineering a programming language: The type and class system of Sather. 
Technical Report TR-93-064, International Computer Science Institute, 
http: / /www. icsi . berkley. . edu/, November 1993. 

[Taivalsaari 1993] Antero Taivalsaari. A critical view of inheritance and reusability in 
object-oriented programming. Ph.D. thesis, University of Jyvaskyla, 1993. 

Annotation: Detailed discussions of inheritance and reuse and introduction to Kevo. 
Kevo is a prototype-based language emphasizing concreteness and self-sufficiency of 
objects. Objects are created by cloning an existing object. Objects are true 
individuals, and can be modified on an individual basis. Groupwise modifications 
are made possible by clone families , which are automatically managed by the 
system. A small syntactic reminder (a "*") indicates whether an operation should 
apply to the entire family rather than the individual object. Thus Kevo does not 
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require a designated parent prototype for a collection of objects. Similar objects that 
do not belong to the same clone family still must be modified separately, however, 
and it is not clear that the clone families automatically inferred by the system are 
equivalent to the families the programmer has in mind. Kevo approximates multiple 
inheritance and fine-grained inheritance via a cut/copy/paste metaphor, but it is not 
truly inheritance since changes to the original code do not propagate, but must be 
recopied by the programmer. To facilitate program structuring, facets , partial objects 
used as building blocks for other objects (similar to mixins or abstract classes) are an 
optional programming technique. 

[Tanimoto 1990] S. Tanimoto. VIVA: A visual language for image processing. Journal 
of Visual Languages and Computing, 2(2):127-139, June 1990. 

Annotation: Includes definition of liveness and a scale from 1 to 4. A language at 
level 1 liveness provides no semantic feedback without compilation. At level 2 the 
user can obtain semantic feedback on request (as in interpreters). At level 3, 
incremental semantic feedback is automatically provided after each program edit, and 
all affected on-screen values are automatically redisplayed (as in the automatic 
recalculation feature of spreadsheets). At level 4, the system responds to edits as in 
level 3, as well as other events such as system clock ticks. 

[Tracz 1987] Will Tracz. Reusability comes of age. IEEE Software, pages 6-8, July 
1987. 

Annotation: Reusing software is like buying a used caran extended analogy to 
explain why some are leery of used software. Successful used-software needs 
quality parts, standard interfaces, documentation, choice of options. 

[Trazc 1995] Will Trazc. Confessions of a Used Program Salesman: Institutionalizing 
Software Reuse. Addison-Wesley, 1995. 

[Ungar and Smith 1987] David Ungar and Randall Smith. Self: the power of simplicity. 
In Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), 
pages 227-241, October 1987. 

[Ungar et al. 1991a] David Ungar, Craig Chamber, Bay-Wei Chang, and Urs Holze. 
Organizing programs without classes. Journal of Lisp and Symbolic Computation, 
4(3), June 1991. 
Annotation: Compares class-based organization to Self's prototype organization. 
Organization can be achieved by splitting the implementation of an object into two 
separate objects; in Self, a traits object holds shared behavior and data. 

[Ungar et al. 1991b] David Ungar, Craig Chamber, Bay-Wei Chang, and Urs Holze. 
Parents are shared parts of objects: Inheritance and encapsulation in Self. Journal of 
Lisp and Symbolic Computation, 4(3), 1991. 
Annotation: Describes inheritance, especially multiple inheritance, of Self and the 
mechanisms they use for resolving ambiguities. Encapsulation and the meaning of 
public, private and unspecified slots are also discussed. 

[Ungar 1995] David Ungar. Annotating objects for transport to other worlds. In Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA), pages 
73-87, Austin, Texas, October 1995. Also in SIGPLAN Notices 30(10). 
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Annotation: The authors claim that five missing pieces of information are needed for 
saving directly-constructed programs: which module to use, which value (actual or 
initial) to save, whether to create a new object in a new world or refer to an existing 
one, whether an object is immutable with respect to transportation, and whether the 
save should be low-level or an abstract type-specific expression. 

[Vaishnavi and Bandi 1996] Vikay K. Vaishnavi and Rajendra K. Bandi. Measuring 
reuse. Object Magazine, 6(2), April 1996. 

Annotation: Extends the Goal-Question-Metric (GQM) model to the Framework 
Assisted GQM Model that helps establish perspective when measuring reuse. 

[van Zee et al. 1996] Pieter van Zee, Margaret Burnett, and Maureen Chesire. Retire 
Superman: Handling exceptions seamlessly in a declarative visual programming 
language. In Proceedings IEEE Symposium on Visual Languages, pages 222-230, 
Boulder, Colorado, September 1996. 

Annotation: "Bad clock" and factorial examples of exception handling in Forms/3. 
All accomplished without added language constructs. 

[Vion-Dury and Pacull 1997] J.-Y. Vion-Dury and F. Pacull. A structured interactive 
workspace for a visual configuration language. In Proceedings IEEE Symposium on 
Visual Languages, pages 130-137, Capri, Italy, September 1997. 

Annotation: Type inference applied to graphical types and used for rendering 
purposes. Composite glyphs infer attributes from their subcomponents. 

[Walpole and Burnett 1997] Rebecca A. Walpole and Margaret M. Burnett. Supporting 
reuse of evolving visual code. In IEEE Symposium on Visual Languages, pages 68­
75, September 1997. 
Annotation: Forms/3 is used to prototype support for code reuse in VPLs with 
informal repositories (ones without an owning institution enforcing standards or 
producer packaging of code), such as one might find on the Web. Identifies ways 
VPL features can be leveraged to provide answers to common reuse questions. 
(What's evolving is the repository, we don't handle versioning, although that would 
be a nice addition.). 

[Walpole and Cook 1996] Rebecca A. Walpole and Curtis Cook. Software reuse primer. 
Technical Report 96-60-16, Oregon State University, June 1996. 

[Wand and O'Keefe 1991] Mitchell Wand and Patrick O'Keefe. Automatic dimensional 
inference. In J. L. Lassez and G. D. Plotkin, editors, Computational Logic: in honor 
of 1 Alan Robinson, pages 479-486. MIT Press, 1991. 

[Wand 1986] Mitchell Wand. Finding the source of type errors. In ACM Symposium on 
Principles of Programming Languages, pages 38-43, St. Petersburg Beach, Florida, 
January 1986. 
Annotation: Presents a modified Boyer-Moore unification algorithm to keep track of 
reasons for type inferences made. Type errors reported to the compiler include these 
reasons, one of which should be the actual source of the error. 

[Wand 1987] Mitchell Wand. Complete type inference for simple objects. In Proceedings 
IEEE Symposium on Logic in Computer Science, pages 37-44, 1987. Corrigendum, 
Proceedings 3rd IEEE Symposium on Logic in Computer Science, page 132, 1988. 
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Annotation: Simple objects are modeled with records. The unification algorithm in 
this paper was later found to be incorrect. See [Wand 1994] for his later work. 

[Wand 1994] Mitchell Wand. Type inference for objects with instance variables and 
inheritance. In Carl Gunter and John C. Mitchell, editors, Theoretical Aspects of 
Object-Oriented Programming, pages 97-120. MIT Press, 1994. Originally appeared 
as Technical Report NU-CCS-89-2, Northeastern University College of Computer 
Science, February 1989. 

Annotation: Type inference for objects with protected instance variables, public 
methods, single inheritance and first-class classes. Accomplished by extending 
polymorphic record typing (Remy) to allow infinite label sets and modeling objects in 
this new language. Appendix includes ML code for the unification algorithm. Results 
in a correct program or a "Unify Failed" message. 

[Wand 1993] Mitchell Wand. Type inference for record concatenation and multiple 
inheritance. Information and Computation, pages 1-15, 1993. 

Annotation: Introduces a lambda calculus with records, including record 
concatenation operator. An example of 00 programming including hidden instance 
variables and multiple inheritance may be coded in this calculus. 

[Wang and Ambler 1994] Guijun Wang and Allen Ambler. Applicability checking in 
visual programming languages. In Proceedings IEEE Symposium on Visual 
Languages, pages 31-38, St. Louis, Missouri, October 1994. 
Annotation: Automatic detection of boundary problems and assistance in resolving 
the formulas at the boundaries of matrices. 

[Wang and Ambler 1995] Guijun Wang and Allen Ambler. Invocation polymorphism. In 
Proceedings IEEE Symposium on Visual Languages, pages 83-90, Darmstadt, 
Germany, September 1995. 
Annotation: The authors define invocation polymorphism as an abstraction not on the 
definition of a function, but on its invocation (one programmed invocation may result 
in several invocations, for example). The system automatically analyzes structures of 
arguments to determine how a function should be invoked. 

[Wang and Ambler 1996] Guijun Wang and Allen Ambler. Solving display-based 
problems. In Proceedings IEEE Symposium on Visual Languages, pages 122-129, 
Boulder, Colorado, September 1996. 

Annotation: A follow-up to David Hendry's VL'95 paper [Hendry 1995]. 

[Wegner 1987] Peter Wegner. Dimensions of object-based language design. In Object-
Oriented Programming Systems, Languages, and Applications (OOPSLA), pages 
168-182, Orlando, Florida, 1987. Also in SIGPLAN Notices 22(12). 

Annotation: Includes definitions of object-based and object-oriented languages. 
Emphasizes class-based mechanisms. 

[Weiser 1984] Mark Weiser. Program slicing. IEEE Transactions on Software 
Engineering, SE-10(4):352-357, July 1984. 

Annotation: Program slicing is a method for automatically decomposing programs by 
analyzing their data flow and control flow. 
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[Whitley 1997] K. N. Whitley. Visual programming languages and the empirical 
evidence for and against. Journal of Visual Languages and Computing, 8:109-142, 
1997. 

Annotation: Excellent summaries of empirical studies involving visual languages and 
visual representations. Includes evidence both for and against the usefulness of 
VPLs. 

[Wilcox et al. 1997] E. Wilcox, J. Atwood, M. Burnett, J. Cadiz, and C. Cook. Does 
continuous visual feedback aid debugging in direct-manipulation programming 
systems? In CHI Proceedings: Human Factors in Computing Systems, pages 258­
265, Atlanta, GA, March 1997. 

Annotation: Continuous visual feedback did not help with debugging in general, but 
did aid accuracy for some situations. Significant differences were also noted with 
respect to behavior. Results also seemed to vary among three factors: type of user, 
type of bug, and type of problem. 

[Wilde and Lewis 1990] N. Wilde and C. Lewis. Spreadsheet-based interactive graphics: 
From prototype to tool. In CHI Proceedings: Human Factors in Computing Systems, 
pages 153-159, April 1990. 

[Wilde et al. 1993] Norman Wilde, Paul Matthews, and Ross Huitt. Maintaining object-
oriented software. IEEE Software, pages 75-80, January 1993. 

Annotation: Some aspects of good object-oriented design can make maintenance for 
00 programs difficult. Inheritance can obscure calling and dataflow relationships, 
making these dependencies harder to find and analyze. Program functions may not be 
in one place, but rather distributed among groups of cooperating objects. 

[Wirth 1988] Niklaus Wirth. Type extensions. ACM Transactions on Programming 
Languages and Systems, 10(2):204-214, April 1988. 

Annotation: Data types are treated as extensible records. This allows reuse of types 
defined in other modules without accessing the source code of that module. Extended 
types can be used in place of the original type (substitutability, polymorphism). The 
mechanism is purely composition; there is no overriding, selective inclusion, etc. 

[Wittenburg and Sigman 1997] Kent Wittenburg and Eric Sigman. Visual focusing and 
transition techniques in a Treeviewer for web information access. In Proceedings 
IEEE Symposium on Visual Languages, pages 20-27, 1997. 

Annotation: A browser for web statistics. Includes context vs. detail mechanisms 
(multifocus fisheye), direct manipulation with aggregate capabilities for 
collapsing/expanding search results, visual feedback regarding relevance, multiple 
foci and simple layouts for fast performance (table of contents format). A 4-step 
animation mechanism for view transitions is discussed in the context of visual 
cohesion. 

[Woodfield et al. 1987] Scott N. Woodfield, David W. Embley, and Del T. Scott. Can 
programmers reuse software. IEEE Software, pages 52-59, July 1987. 

Annotation: According to their study, people untrained in reuse performed poorly 
when asked to evaluate the reusability of data structure components. 

[Yang and Burnett 1994] S. Yang and M. M. Burnett. From concrete forms to 
generalized abstractions through perspective-oriented analysis of logical 
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relationships. In Proceedings IEEE Symposium on Visual Languages, pages 6-14, 
St. Louis, Missouri, October 1994. 

Annotation: The fibonacci example illustrates how formulas are generalized from the 
concrete examples in Forms/3. 

[Yang et al. 1996] Sherry Yang, Elyon DeKoven, and Moshe Zloof. Design benchmarks 
for VPL static representations. In Proceedings IEEE Symposium on Visual 
Languages, pages 263-264, Boulder, Colorado, September 1996. 

Annotation: Short version of [Yang et al. 1997]. 

[Yang et al. 1997] Sherry Yang, Margaret M. Burnett, Elyon DeKoven, and Moshe 
Zloof. Representation design benchmarks: a design-time aid for VPL navigable static 
representations. Journal of Visual Languages and Computing, 1997. 

Annotation: Identifies 3 categories for the design benchmarks: understandability, 
scalability and audience (or domain) specific. The benchmarks are designed to help 
VPL designers discover problems with their designs and compare alternate designs. 

[Yang 1996] Sherry Yang. Generalizing Abstraction in Form-Based Languages: From 
Direct Manipulation to Static Representation. Ph.D. thesis, Oregon State University, 
November 1996. 

Annotation: Includes generalization and static representation (design benchmarks). 
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Appendix 

We used the Representation Design Benchmarks [Yang et al. 1997] to evaluate 

and improve our design of the similarity inheritance representation introduced in Chapter 

4. The design benchmarks record how designed representation relates to various findings 

from cognitive psychology about information that helps programmers with their 

programming [Green and Petre 1996]. The benchmarks allow a designer to measure a 

static representation in nine categories, and to decide based upon these measurements 

whether changes in the design are needed. To do this, the designer evaluates a draft of 

the design, computing measurements in each category and subjectively evaluating the 

measurements to identify possible areas for improvement. Although originally developed 

for use with an entire language design, we were able to use the benchmarks on the subset 

of the language design affected by similarity inheritance. As a result of this process, we 

were able to identify weaknesses in and develop improvements for early versions of our 

design. Here we describe the evaluation of the final design, using the benchmark 

notation and terms defined in [Yang et al. 1997]. 

Visibility of Dependencies 

The first visibility of dependencies benchmark, D1, is the ratio of program 

dependencies that are explicitly visible to the programmer. Green and Petre noted hidden 

dependencies as a severe source of difficulty in understanding programs. The 

dependencies of interest in the similarity inheritance model are those created by the > 

relationship. The dependencies can be at either the form or cell level. For each, the 

programmer may be interested in both "what affects this?" and "what does this affect?" 

for a total of four kinds of dependencies. Because of the importance of explicit 



150 

representation to the similarity inheritance model, it was important that all four kinds of 

dependencies be explicitly represented so that D1=4/4=1. 

The two "what affects this" questions are handled by legends at both the form 

and cell level (refer back to Figure 4.5). The legends statically show the name of the 

directly affecting form or cell and (if different) the name of the indirectly affecting form 

or cell which is the original. The programmer has dynamic access to the list of 

intermediately affecting forms or cells (if any) and can directly access the forms by 

clicking on their names, but these interaction details do not affect the navigable static 

representation to which the benchmarks apply. 

The two "what does this affect" questions are answered by optional arrows 

pointing from a cell to all its copies (refer to Figure 4.5) and by optional arrows in the 

repository view pointing from a form to all its copies (refer to Figure 4.6). The design 

also includes dotted arrows in the repository view that point from a form to all forms that 

have copied at least one cell from it. 

The worst case number of steps required to navigate to the display of all 

dependency information, D2, is made up of four parts: 

cost to show form legends: none, they are always visible 

cost to show cell legends: n/2 where n is the total number of cells on the forms of 

interest. All formulas can be toggled on in one step, but if the programmer wants to 

see exactly half of them, the other half must be dismissed individually. 

cost to show copy dependency arrows among cells: n/2 where n is the total number of 

cells on the forms of interest. The design allows all arrows to be toggled on in one 

step, but if the programmer wants to see exactly half of them, the other half must be 

dismissed individually. 

cost to show repository arrows: According to the design, each kind of arrow is either 

on or off in the repository window, so the worst case number of steps is three, one 

step to open the repository window plus one step to turn each of the similarity arrows 

on. 

Thus D2=n/2+n/2+3. In practice, we would expect the programmer to be 

interested in only one chain of dependency over the whole program or all the 
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dependencies in a small part of the program, so we expect the average cost to be much 

lower than the worst case. 

Visibility of Program Structure 

The PS1 benchmark is the answer to the question, "Does the representation 

explicitly show how the parts of the program logically fit together?" For our subset of the 

language design, the structure in question is the set of overall inheritance relationships 

among objects, a higher-level view than for individual cells or forms. The repository 

overview design contains a view of these relationships, enabling the programmer to see 

chains of dependency at the form level. This copy dependency view is comparable to a 

class browser for a class-based language. PS2 is the worst case number of steps required 

to navigate to the display of the structure. The number of steps required to show the 

repository view and the two kinds of copy dependency arrows is three (one to show the 

repository window and one each to turn on the arrows). PS1=yes and PS2=3. 

Visibility of Program Logic 

Benchmark Ll is whether the representation explicitly shows how an element is 

computed. Since the design makes an inherited formula visible in every place where it is 

inherited, the logic that computes a cell's value is always explicitly represented as its own 

formula. This avoids the "yo-yo problem" in class-based languages where to see the 

program logic for a subclass, the programmer may need to visit several classes up and 

down the class hierarchy. The yo-yo problem is also exhibited in most prototype-based 

languages, where instead of class definitions, the programmer must examine multiple 

levels of parent objects to view inherited code. Thus Ll=yes. The navigation cost 

benchmark L2=n/2, where n is the number of cells on the forms of interest. This is the 

same measure as for the design of Forms/3 before adding similarity inheritance. 
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The third measure for program logic, L3, counts the number of 

misrepresentations of generality. Generality enters the design only in the representation 

of a polymorphic reference. If the representation of the formula for the cell 

Mirror:newPoint in Figure 5.3, for example, were "248-Point:movedPoint" for the copy 

of form Mirror as well as the original, that would be a misrepresentation of generality 

because the copy actually references a different form. Instead, the design calls for the 

generalized formula representation "VADT(oldPoint):like movedPoint." Since there are 

no misrepresentations of generality in the representation of polymorphic references, 

L3=0. 

Display of Results with Program Logic 

Benchmark R1 measures whether results can be displayed statically with program 

source code. In our design the results of cell formulas, whether inherited or not, are 

visible via liveness and sample values. Since the program logic (formulas) can be 

displayed at the same time, R1=yes. Because the results are always visible, the number 

of steps to display them, R2, is zero. We consider this aspect to be a valuable source of 

feedback for the programmer since the results of inherited code and its impact in the 

inheriting context are immediately visible. 

Secondary Notation 

The addition of similarity inheritance did not remove any of the secondary 

notation (documentation) available in the language nor add any new categories of 

secondary notation. However, it is interesting to note that the design does add non-

semantic notational devices, in the form of arrows and legends, that are automatic rather 

than provided by the programmer. 
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Abstraction Gradient 

Before the addition of similarity inheritance, the proportion of details that can be 

abstracted away (out of four: data details, operation details, other fine-grained details, 

and controls), which is AG1, was 4/4. The abstraction gradient benchmark is affected by 

the addition of similarity inheritance in two ways. First, the repository's query interface 

adds an additional set of controls. These controls can be collapsed into icon form, so the 

abstraction gradient for control is not adversely affected. Second, the repository view 

provides an additional mechanism for abstraction of form data. Thus for Forms/3 

language design overall, the benchmark AG1 remains 4/4=1 and the navigation 

benchmark AG2 is one step each for both abstractions provided by the similarity 

inheritance representation. 

Accessibility of Related Information 

The RI1 benchmark is whether it is possible to display all related information side 

by side. Any two forms can be placed side by side, any cells can be moved around on 

the form so that they appear side by side (or to the edge of a form to appear side by side 

with a cell on a different form), the repository window can be placed side by side with 

any form, and nodes within the repository graph can be dragged to any position. Thus 

RI1=yes since it is possible to display all related similarity information side by side. The 

number of steps to navigate to related similarity information, R12, depends on which 

information is being accessed. Through the form and cell legends, the programmer can 

access an affecting form or cell in two steps. Cell copies can be found by navigating the 

copy dependency arrows which require one step to turn on for each cell examined; to 

navigate to all direct and indirect copies of a cell, the cost is c steps where c is the number 

of directly and indirectly copied cells. Form copies can be displayed in one step from the 

repository window. 
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Screen Real Estate
 

Whenever features are added to a VPL's representation, the limited size of the 

screen must be taken into accounts. Our representation design added several real-estate 

consuming devices: the repository window, form legends, cell legends, and copy 

dependency arrows. Since the actual numbers of the benchmarks SRE1, the number of 

program elements that can be displayed on the physical screen, and SRE2, the number of 

non-semantic intersections present when obtaining the SRE1 score, are not very 

meaningful without some context, we will examine how the addition of each of these 

devices affects the previous use of screen real estate in Forms/3. 

The repository adds one or two extra (optional and iconifiable) windows to the 

programmer's workspace. The default view displays can easily display 30 forms at a 

time (the actual number displayed depends on the edges between forms; the current 

default layout average is closer to 16 forms). The repository's navigational devices allow 

a high degree of programmer control over the trade-off between screen space used and 

time to locate the needed information. The entire graph can be reduced or increased in 

size, a birdseye overview can be viewed alongside the normal view and used as a 

navigation tool, and queries can be used to display just a subgraph of the entire 

repository. There are very few non-semantic intersections when just the dataflow arrows 

are displayed. Adding similarity arrows to the design increases the likelihood of arrows 

crossing, which is why the design includes the ability to toggle on or off each kind of 

arrow. 

The other three representation devices, form legends, cell legends and copy 

dependency arrows, all take up space within the programmer's code. The display of 

form legends takes up at most one extra line on the form, no matter how long the 

1The screen real estate problem is also discussed as a part of the larger VPL problem of 
scaling up to large, complex programs [Burnett et al. 19954 
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inheritance chain becomes, because intermediate forms are normally elided. Likewise, 

cell legends take at most one line per formula, which slightly reduces the number of cells 

that are displayable without non-semantic intersections. Copy dependency arrows take 

up no extra space on the display, but they may introduce non-semantic intersections as 

the arrows cross other arrows and cells. The number of intersections varies with the 

actual dependencies in the program, but increases with the number of cells that have their 

arrows turned on. 

Table A illustrates the trade-offs between amount of information represented and 

real-estate space used; more features present results in fewer program elements on the 

screen (when non-semantic intersections are minimized). 
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SRE1 SRE2 
Design Options (units = cells) (units = intersections) 
Base: Design 1, all formulas 36 0 
showing 
Design 1 + dataflow arrows (if 36 (no change) a (a 0) 
request is for a small number of 
cells) 
Design 1 + dataflow arrows (if 36 (no change) b (b a 0) 
request is for all cells) 
Design 1 + program structure 29 (approximately 20% fewer) c (b ?_ c 0) 
view These arrows are a more coarse-

grained view than the dataflow 
arrows in the previous row. 

Design + legends 18 if each cell has one legend 0 
displayed (approximately one 
fewer per legend) 

Design 1 + cell icons in formulas 29 (approximately 20% fewer) 0 

Design 2 (all of above features) 22 (approximately 40% fewer) b 

Design 1 + form legends 35 (approximately 3% fewer) 0 
Design 1 + cell similarity 30 (approximately 17% fewer) 0 
legends 
Design 1 + copy dependency 36 (no change) d (d 0) 
arrows 
Design 1 + repository 25 (approximately 30% fewer) e (e 0) 

All similarity inheritance features 22 (approximately 40% fewer) d + e 

Table A Screen real estate benchmarks (expanded from [Yang et al. 1997]). 
Trade-offs between added features and the real-estate space cost become apparent in this 
comparison. Yang's Design 2 contains all the features described in [Yang et al. 1997]. 
Design 1 is the equivalent of turning all the features off. The variables a, b, c, d and e 
represent numbers of line crossings, and their values vary with the actual dependencies 
in each program. In each case, the screen layout that minimized SRE2 was chosen. The 
last five rows expand the comparison to include representations added for similarity 
inheritance. 




