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Soft robotics is an emerging field that heavily relies on the ability of 3D printers. The limitations

in soft robotics lie in the area of the 3D printers and the predictive models of the printed materials.

There are currently no reliable models for optimizing the gradients required to create soft robots.

These gradients are necessary to go from soft to hard materials which are used in electronics and

soft robotics grips. This is achievable with the soft materials printed by the Stratasys Objet 500

Connex3, which can print a gradient in materials from hard to soft. Here we show the ability to

print a homogeneous gradient on the printer, characterize these homogeneous materials, and model

the optimized parameters of the nonlinear elastic material model according to techniques based

upon Ogden.
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Chapter 1: Introduction

1.1 Introduction

As the field of 3D printing grows in popularity, the need for predictive models of the printed

material becomes necessary. The more popular printing materials tend to be hard and have plastic

deformation when placed under stress. Recent advances though have allowed for printers to print

rubber-like materials that have elastic deformation, specifically the Stratasys Objet 500 Connex3

printer. This printer has the capabilities to print in hard, (Vero), materials and the soft (Tango),

materials. For this research Vero White plus and clear Tango Plus were used. The printer also

has capability to create a homogeneous gradient of mixes with different percentages of each of the

materials varying from hard to soft. These materials in the order of their Young’s modulus are

Tango Plus, FLX9740, FLX9750, FLX9760, FLX9770, FLX9785, FLX9795, RGD8430, RGD8425,

and Vero White. The ability to print these mixes allows for a complete transition from hard to soft

in discrete steps within a heterogeneous material sample. Utilizing the capabilities of printing the

predetermined homogeneous mixes from Vero White to Tango Plus this paper makes the following

contributions:

1. Creating a predictive model for each individual homogeneous material mix sample between

the Tango Plus and the Vero White within the gradient according to if they have plastic or

elastic deformation. This models the stress of the material for a specific strain value for the

materials that act elastically using the Ogden model for non-linear elastic deformation.

2. Creating a coefficient model of each individual homogeneous material mix sample for the

Ogden model to predict the coefficients for any percentage of materials mixture based upon

the Young’s modulus of each material in the printed gradient from Tango Plus to Vero White.

These models allow for better transitions from the hard to soft material while printing on the

Stratasys Objet 500 Connex3 by the changes being more predictable. The transitions from hard

to soft are necessary while creating soft robots mimicking nature [18], rolling robots that are soft

which need hard stabilization points [8], robots with hard electronics [17], and robots with gradients

on their outer shell [3]
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Chapter 2: Literature Review

A functionally graded material (FGM) is a polymeric material that exhibits varying physical prop-

erties due to a heterogeneous material composition [19]. The constituent materials used in the

FGM dictate how the FGM will perform overall, therefore the design of the FGM depends largely

on material models [10]. Graded polymeric materials have been studied for several decades [13]

and remain a continued source for extensive research and development with regards to material

modeling and manufacturing [5].

A group from University of Porto used a variety of models to fit experimental data of silicone

rubber specimens. Out of the seven models used, they found that Yeoh, Ogden, and Martins

models fit the experimental data almost exactly. In this paper, Martin’s model was tested with

experimental data for the first time [11]. This research has paved the way for modeling of other

hyper elastic materials, which, here, are extended to 3D printing materials.

Researchers at Harvard University have demonstrated that a 3D printed material gradient can

offer new advantages in the design of soft robots [18]; for example, a part can be designed to interface

between soft and hard structures with varying material composition to achieve compliance that

improves energy absorption. Despite this promise, the optimization of a heterogeneous material

gradient for soft robotics still requires much more research and optimization.

In addition to individual material models, the design of the complete FGMs depends on the

ability to model the material composition of heterogeneous objects as a whole [15]. Jackson et al.

[6] showed that it was possible to separate an object into a set of discrete elements made of different

materials. Siu et al. [14] introduced a method of spatially assigning material properties within a

component, based on proximity to specific geometric features in the component’s design. Dutta et

al. [12] demonstrated that material properties could be mapped based on physical simulations of the

materials. In order to optimize a part design, Chiu et al. [4] present a method of assigning material

distributions based on FEA simulation results. All of these models allow for better understanding

of FGMs but no mathematical models exist to illustrate each material and the coefficients used for

these materials.

There are many methods for manufacturing FGMs [16], including vapor deposition technique,

powder metallurgy and centrifugal methods [9]. But one of the most promising methods is additive

manufacturing [4]. Optimization and research has been done in the straight hard to soft intersection

of 3D printed materials within the field of additive manufacturing by [7] but there is no mixing

of the discrete hard and soft materials.Other studies have pursued a different route and looked at

mixing different soft materials using inkjet colored printing (ICP) technology similar to that used

in inkjet printers, but still does not mix hard and soft materials [20]. The lack of the mixing of the

materials does not allow for optimization of the FGMs.
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By combining material modeling, predictive coefficient modeling of materials, and digital man-

ufacturing, new frontiers in multi-material component design can be achieved. This work is the

first to present a material model for a set of digitally manufactured photopolymers and to optimize

coefficients used in the material models.
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Chapter 3: Materials and Methods

3.0.1 Materials

The materials selected to be modeled are the Vero White (hard) and Tango Plus (soft) material

(Stratasys). The Connex Objet 500 has the capability to print in a gradient of the homogeneous

materials varying from hard to soft based on how much of each material is in the mix. This totaled

ten mixtures including pure Tango Plus and Vero White. Tensile testing was performed on all ten

materials to create stress strain curves. Then the stress strain data was used to create the models

for the materials. This allows for the typical non-linear elastic material models to be compared, due

to them being based upon independent strain and dependent stress values. Ogden was the best fit

model for the soft material with elastic deformation, and the Young’s modulus on the materials that

had plastic deformation, and are hard. This is the typical approach difference to plastic and elastic

deforming materials because only the linear section of the plastic stress strain curve is considered

by calculating the Young’s modulus whereas the entire curve until break is considered for elastic

deforming materials. The young modulus values are illustrated in table one. These models help

predict the wear of the material and the proper coefficients of the model.

3.0.2 Testing the prints

All samples were printed facing the same way on the Connex tray [2] [1]. The support material was

removed by hand with no water due to the notice in change of material properties by water. The

material was pulled at 1 mm/s in a scaled size of the original specimen of Type IV for test D638

to allow all of the materials to be properly tested on the Mark-10 tensile tester using wedge grips.

This material was tested using D638 test because the materials are mixtures of plastic and elastic

deforming material and the best representation to have the same test for all is a plastic material

test. The dog bones were then tensile tested eight to ten days after they were printed which allowed

for full curing of the materials. Tensile testing was done in triplicate for each material mixture,

this is shown in figure 3.1. The stress and strain curves lied closely together for the samples of each

mixture type. After the stress and strain curve data was generated, the Ogden model coefficients

were generated using the materials.

3.0.3 Equations

The simplest stress/strain equation for no lateral stresses is as follows:

t1 = N ∗ k ∗ T (λ2 − 1/λ) (3.1)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.1: Tensile test plot for all samples of a) Tango Plus, b) FLX9740, c) FLX9750, d) FLX9760,
e) FLX9770, f) FLX9785, g) FLX9795, h) RGD 8430, i) RGD8425, and j) VeroWhite
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Material Type Youngs
Modulus
(MPa)

Toughness
(kJ/m3)

Elongation
at

break
(%)

Silicone (Dragonskin 10) 0.087 5.3318 110%
Tango Plus 0.0088 0.0322 100%
FLX 9740 0.0249 0.0347 90%
FLX 9750 0.0141 0.0634 75%
FLX 9760 0.5718 0.0962 70%
FLX 9770 0.3668 0.1437 65%
FLX 9785 2.5499 0.2482 60%
FLX 9795 60.4749 2.1298 55%
RGD 8430 95.5735 5.9956 30%
RGD 8425 159.0943 5.1023 17%
Vero White 342.6460 4.8602 17%

Table 3.1: Results of Chosen Material Characterizations

For equation 3.1, λ is the specified strain at a specific time, t1 is the stress at that specified

strain value, k is Boltzmann’s constant, N is the number of chains per unit volume, and T is the

absolute temperature based upon using Helmholtz free energy for an isothermal reversible process.

The constants are based upon the material type and N ∗ k ∗ t is equivalent to the shear modulus.

The model created by Ogden is based on equation 3.1 and has the general form:

W (λ1, λ2, λ3) = w(λ1) + w(λ2) + w(λ3) (3.2)

Where the function w is arbitrary, subject to:

w(1) = 0, w′(1) + w”(1) = 2µ

,

where µ is the ground-state shear modulus.

The application of these equations to silicone rubber is shown in equation 3.3:

Ω =

N∑
i=1

c(2i−1)

c2i

[
λc2i + 2

(
1√
λ

)c2i
− 3

]
(3.3)

based on [11] where Equation 3.8 was used specifically since N = 3 is the number of chains per

unit volume for their application.

σOgden = c1(λ
c2 − 2−1+c2λ

−c2
2 ) + c3(λ

c4 − 2−1+c4λ
−c4
2 )

+c5(λ
c6 − 2−1+c6λ

−c6
2 )

(3.4)
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All resulting equations were based on Equation 3.8 to model the heterogeneous materials

that have elastic deformation. The best fit equations using the Matlab optimizer of Levenberg-

Marquardt are stated below including their respective parameters, parameter bounds with 95%

confidence, and graphs. Equation 3.5 is the equation used in the optimizer for the modeled nine

materials.

f(λ) = c1(λ
b1 − 2−1+b1λ

−b1
2 ) + c2(λ

b2 − 2−1+b2λ
−b2
2 )

+c3(λ
b3 − 2−1+b3λ

−b3
2 ))

(3.5)

For the remaining heterogeneous materials the Young’s moduli’s were calculated and shown in

Figure 3.1.

3.0.4 Discrete Homogeneous Gradient Modeling

The prints that deformed elastically during the tensile tests were then able to be modeled using

a non-linear elastic model. The initial coefficients to be used in the model were created by using

Matlab’s curve fitting optimizer. The coefficients were then optimized by using Matlab’s fminsearch

function. This allowed for the best possible coefficients of the models for each material individually

to be achieved. The model formats and theory are based on [11]. The best fitting models for

tango plus and the FLX mixtures were those used for silicone and non-linear elastically deforming

materials. Yeoh equation 3.7, Ogden equation 3.8, and Martins equation 3.6 were selected to be

tested since they were the best fits for silicone in [11]. Ogden proved to be the best fit with six

parameters and resulted in Table 3.2. For the materials that had plastic deformation, their Youngs

modulis, are found in Table 3.1 during the linear section of their stress strain curve.

σMartins = 2(λ2 − 1

λ
)c1c2e

c1(I1−3) + 2λ(λ− 1)c3c4e
c3(λ−1)2 (3.6)

σY eoh = 2(λ2 − 1

λ
)(c1 + 2c2(I1 − 3) + 3c3(I1 − 3)2) (3.7)

3.0.5 Coefficient Modeling

The creation of the coefficient models was implemented in Matlab. The model illustrates the trend

in coefficients as the material mixtures change based on Young’s moduli values. The model is

implemented by using each materials coefficients for model 3.8, found in the discrete homogeneous

gradient modeling. Then the coefficients are fit into a matrix and then two degree polynomial

equation with the form m2 + m + 1, where m is the material. Coefficients are solved for so that

each equation is able to predict the coefficients as the material changes. The resulting matrix of the
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Material c1 c2 c3 c4 c5 c6

Tango Plus -0.1546 1.0796 0.5595 0.6907 0.2706 -0.2087
FLX 9740 0.0580 1.4886 0.8032 0.5359 0.4970 -0.4607
FLX 9750 0.0861 -0.5736 1.1267 0.6920 0.9529 -0.2853
FLX 9760 0.0788 -0.0430 1.9908 0.6798 1.6999 -0.3315
FLX 9770 0.0724 -0.0222 3.0960 0.6354 2.5677 -0.3099
FLX 9785 0.0822 -0.0216 5.3104 0.5107 4.0133 -0.2503
FLX 9795 0.2355 -0.0090 11.9248 0.2461 4.0390 -0.1936

Table 3.2: Results of Optimized Parameters

polynomials is processed through iterative least-squares optimization and then Matlab’s fminsearch

function is applied. This fitting process is illustrated in algorithm 1. This model results in figure

3.2 and the below equations:

c1 = −1.1003m2 + 1.2263m+−0.1408

c2 = −0.0046m2 +−0.5049m+ 1.4082

c3 = 15.3259m2 +−5.9351m+ 1.0001

c4 = −0.7300m2 + 0.4358m+ 0.5459

c5 = 3.6022m2 + 0.8816m+ 0.1686

c6 = 0.7538m2 +−0.6806m+−0.2277

which illustrates the trend of coefficients as the material mixture percentage changes for the

Ogden model.

Algorithm 1 Fit−Coefficient−Model Pseudo-code illustrating fitting the coefficient model of
all materials used.

1: for each material mi in M do
2: C0i ← Fit-Ogden(λi, σi)
3: CFi ← fminsearch-SSE(C0i, λi, σi)

4: for each coefficient cj in CF T do
5: Aj ← Fit-Quadratic(M , cj)

6: for each material mi in M do
7: A← fminsearch-SSE(A, mi, λi, σi)

σOgden = c1(λ
c2 − 2−1+c2λ

−c2
2 ) + c3(λ

c4 − 2−1+c4λ
−c4
2 )

+c5(λ
c6 − 2−1+c6λ

−c6
2 )

(3.8)
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.2: Tensile test plot with individual Ogden model and coefficient model for all samples of
a) Tango Plus, b) FLX9740, c) FLX9750, d) FLX9760, e) FLX9770, f) FLX9785, and g) FLX9795



10

Chapter 4: Results and Discussion

4.1 Discussion

The Ogden model and coefficient model fits well with the printed homogeneous material properties

of the gradient from Tango Plus to Vero White. This allows not only for each specific material to

be modeled but any new mixtures that may be created. We can see from image 4.1 the coefficient

model accurately predicts the stress strain curve for a model for a material between FLX 9750 and

FLX 9760. This is due to the model being based upon the Young’s modulus. Therefore a new

material mixture created on the range of young moduli values currently modeled will also be able

to have the coefficients required for that mixture Ogden model. The ability to model not only the

materials individually but as a whole allows for better prediction of how 3D printed material wear

when placed under strain. This addition of modeling the 3D printed materials to the field allows

for the materials to typically be taken from the level of prototyping to allowing them to be used

as final products. The use of the printed materials as final products allows for fewer iterations of

designs and less wasted material, saving time and money.

Figure 4.1: Extrapolation results for a material between FLX 9750 and FLX 9760.

Modeling 3D printed materials allows for the advances of the Stratasys Objet 500 Connex3

printer to have further applications than before. Future work can be continued in modeling and

Material Individual Ogden R-Squared Coefficient model R-Squared

Tango Plus 0.979939 -0.070096
FLX 9740 0.997883 0.613527
FLX 9750 0.994214 0.877822
FLX 9760 0.987388 0.929626
FLX 9770 0.999212 0.941874
FLX 9785 0.997022 0.945648
FLX 9795 0.990574 0.978788

Table 4.1: Calculated R-Squared values for goodness of fits for each equation.
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creating the mixtures that are between the already defined materials in the printer. This will allow

for future FGM’s to be better optimized and have increased possible applications.
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