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This thesis reports on computational research in two different areas. I first

discuss the Min-protein system found within Escherichia coli. Following this I

discuss an extended investigation into improving free energy functionals that are

used within Classical Density Functional Theory in order to model water.

Chapter 2 examines the dynamics of the Min-protein system within E. Coli,

which aid in regulating the process of cell division by identifying the center of the

cell. While this system usually exhibits robust bipolar oscillations in a variety

of cell shapes, recent experiments have shown that when the cells are mechan-

ically deformed into wide, flattened out, irregular shapes, the spatial regularity

of these oscillations breaks down. We employ widely used stochastic and deter-

ministic models of the Min system to simulate cells with flattened shapes. The



deterministic model predicts regular bipolar oscillations, in contradiction with the

experimentally observed behavior, while the single molecule nature of the stochas-

tic model, which is based on the same reaction-diffusion equations, leads to the

disruption of the regular patterns of protein concentration. We further report on

simulations of symmetric but flattened cell shapes, and find that it is the flattening

and accompanying lateral expansion rather than the asymmetry of the cell shapes

that causes the irregular oscillation behavior.

Chapter 3 begins our discussion of Classical Density Functional Theory research

by introducing many of the key concepts used in the following chapters.

Chapter 4 investigates the value of the distribution function of an inhomoge-

neous hard-sphere fluid at contact. This quantity plays a critical role in statistical

associating fluid theory, which is the basis of a number of recently developed clas-

sical density functionals, including ones developed within my research group. We

define two averaged values for the distribution function at contact and derive for-

mulas for each of them from the White Bear version of the fundamental measure

theory functional, using an assumption of thermodynamic consistency. We test

these formulas, as well as two existing formulas, against Monte Carlo simulations

and find excellent agreement between the Monte Carlo data and one of our aver-

aged distribution functions.

Chapter 5 details our modifications of our recently published statistical associ-

ating fluid theory-based classical density functional theory for water, incorporating

this improved distribution function at contact. We examine the effect of this al-

teration by studying two hard-sphere solutes and a Lennard-Jones approximation



of a krypton-atom solute, and find improvement.

Finally, Chapter 6 introduces an approximation for the pair distribution func-

tion of the inhomogeneous hard sphere fluid. Our approximation makes use of the

new distribution function at contact referred to above. This approach achieves

greater computational efficiency than previous approaches by enabling the use of

exclusively fixed-kernel convolutions, which allows for an implementation using

fast Fourier transforms. We compare results for our pair distribution approxima-

tion with two previously published works and Monte Carlo simulation, showing

favorable results.
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1 Introduction

My doctoral work at Oregon State University naturally divides along two avenues

of research. I have contributed to three peer reviewed publications that fall within

the realm of classical Density Functional Theory, which is the primary research

area of my advisor, Dr. David Roundy. Along side of this I have also completed a

research project in the realm of systems biology, in which I simulate the dynamics

of the Min system of proteins within Escherichia coli.

Contrary to how this may appear, these two lines of research actually have quite

a deal in common with each other. The basic concepts are really not too different,

and many of the skills used in completing one also applied to the other. Both

lines of research simulate complex systems using a three dimensional grid. In the

case of DFT, we calculate thermodynamic densities as a function of space, while

in the case of the Min project, we calculate protein densities, also as a function of

space. The mathematics in both address interactions between the local densities

and their neighbor densities, and both simulate microscopic interactions that result

in macroscopic effects. The process of conducting both types of research requires

working out basic conceptual models, than coding up interactions, then managing

large data sets as the systems are simulated, and then plotting the data in various

ways to reveal the behavior of the systems. Also, in both projects we do the bulk of

our simulating in C++, the bulk of our plotting in python, and data management
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using the same Linux tools.

In essence, the two lines of research were not very much different than each other

at all, and moving from one to the other felt very natural. I therefore include them

both in this dissertation.
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2 Min Protein System in Escherichia Coli

This chapter discusses my biological simulation research. Section 2.1 introduces the

subject and briefly provides a historical context for the work. Section 2.2 discusses

the simulation model I use and outlines the program I’ve written. Sections 2.3

and 2.4 discuss the resulting data and our conclusions.

2.1 Introduction

It is vital that during the process of bacterial cell division a cell avoid minicelling,

or splitting into daughter cells with lopsided volumes. Instrumental to this process

in Escherichia coli is a long FtsZ polymer chain that develops on the cell wall in

the center region of the cell, helping dictate the plane of division [10,11]. Previous

experimental studies have shown that the MinC protein, known to inhibit the FtsZ

polymer [12], exhibits regular pole to pole oscillatory behavior between both ends

of the wild-type pill-shaped cell. It thus has a higher time averaged concentration

in the cell poles than in the center region, which aides in preventing the FtsZ from

developing in the wrong region. The MinC is recruited to these poles by MinD,

which itself interacts with another protein, MinE, in a system which exhibits pole-

to-pole oscillatory behavior [1, 13–17].

Previous experimental studies have shown that the MinD protein system is
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capable of exhibiting oscillations in round shapes [18, 19] as well as in connected

three pronged tube shapes [20], in which the oscillations seem to seek out the

extreme poles in the cell. Mannik et al. have recently shown that there are

limitations to this robust capability to oscillate [2,17,21]. They have experimentally

forced E. coli cells into microfabricated channels of thickness less than that of

the natural diameter of the cells, in which they area able to grow and divide.

Upon entering the channels, the cells undergo a mechanical deformation in which

they both widen and lengthen within the plane of the channel. This deformation

results in very wide (they can reach widths of over 5µm) flattened cells that when

viewed from the top down have irregular and asymmetric shapes. While these

cells are still able to divide into surprisingly equal volumes, the MinD oscillations

in these cells are spatially irregular. Seen with fluorescent microscopy, the MinD

maximize in multiple locations within the cell, in a seemingly random sequence.

These experiments allow for an opportunity to test theoretical models of the MinD

system against more extreme experimental cases than have been seen thus far. An

additional interesting question is whether the irregularity observed by Mannik et

al. indicates that the MinD system can become chaotic (as in e.g. Ref. 22), or if

this irregularity is the result of a stochastic but nonchaotic process.

A number of models of the MinD protein system have been developed that

accurately describe its basic oscillatory nature. Early models involved free pro-

teins that affect each others’ rates of diffusion and membrane attachment, but do

not combine into compound states [23]. In 2003 Huang improved upon this ap-

proach with a simple and very successful simulation model based on MinD-MinE
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combination, ATPase hydrolysis, and MinD membrane attachment that exhibits

accurate MinD oscillations in cylindrical cells [1]. In this model cytoplasmic MinD

is recruited to the membrane by MinD that is already clustered there (following

observed non-linear attachment of MinD on the cell membrane [24, 25]), and is

stationary once attached.

Several models [19, 26, 27] modify Huang’s original model to more accurately

reflect experimental findings, which were published after his 2003 paper [28, 29].

These models introduce diffusion along the membrane that is two to three orders

of magnitude slower than that within the cytoplasm, and increase the rate of cyto-

plasmic diffusion by a factor of about five, reflecting an experimental measurement

of these parameters [28]. They also increase or assume instantaneous [26] the nu-

cleotide exchange rate. In addition, they revise the process of MinD recruitment to

the membrane, removing recruitment of MinD to the membrane by MinD-MinE

complexes, behavior that has not been observed experimentally. The model of

Bonny et al. further more allows MinE to remain independently attached to the

membrane after disassociating with MinD [26].

There are only on the order of a thousand MinD proteins in a given cell, which

is fewer than the number of grid points used in our simulations, suggesting that the

deterministic continuum description–which requires fractional numbers of proteins

at each grid point—may break down, and that stochastic behavior may play a

significant role. To treat this, there have been a number of variations of the Huang

2003 model that stochastically simulate the similar reaction-diffusion equations [16,

19]. These studies largely confirm the results of Huang’s deterministic model when
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Figure 2.1: Reactions included in the model of Huang et al. [1].

applied to the wild-type, pill-shaped phenotype. However, the stochastic models

are slightly more successful in predicting experimentally observed oscillations in

round cell phenotypes [19, 30], and they enable prediction of fluctuations in the

predicted behavior [31]. Both deterministic and stochastic models are widely used

throughout systems biology [32–36], and have unique advantages and limitations.

The deterministic approach has an advantage in providing a simple prediction of

average behavior, while the stochastic approach enables prediction of fluctuations

from that mean, and reduces sensitivity to initial conditions.

In this paper we use Huang’s original 2003 model [1], which has been widely

used [16, 30, 37] in both deterministic and stochastic variants, to study flattened

cells of 0.4µm thickness that are similar to those observed by Mannik et al. [17].
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2.2 Materials and Methods

Model and Cell Shapes

We implement the reaction-diffusion model of Huang et al. [1]. Figure 2.1 shows

the reaction process. The cytoplasmic MinD:ADP complex undergoes nucleotide

exchange and is changed into the MinD:ATP complex. This will naturally diffuse

and attach to the cell membrane. A cytoplasmic MinE will attach to the wall

bound MinD:ATP complex and after a time will activate ATP hydrolysis. This

breaks up the complex, releasing MinE, phosphate, and MinD:ADP back into the

cytoplasm. The MinD:ADP will undergo nucleotide exchange and begin again the

cyclic process. The model is defined by a set of five reaction-diffusion equations:

∂ρD:ADP

∂t
= DD∇2ρD:ADP − kADP→ATPD ρD:ADP + δ(dw)kdeσDE,

(2.1)

∂ρD:ATP

∂t
= DD∇2ρD:ATP + kADP→ATPD ρD:ADP − δ(dw)[kD + kdD(σD + σDE)]ρD:ATP

(2.2)

∂ρE
∂t

= DE∇2ρE + δ(dw)kdeσDE − δ(dw)kEσDρE (2.3)
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∂σD
∂t

= −kEσDρE + [kD + kdD(σD + σDE)]ρD:ATP (2.4)

∂σDE
∂t

= −kdeσDE + kEσDρE (2.5)

where ρ is cytoplasmic protein density (proteins/µm3), σ is membrane bound den-

sity (proteins/µm2), DD andDE are the diffusion constants for MinD and MinE, re-

spectively, kADP → ATP
D is the rate of conversion from MinD:ADP to the MinD:ATP

complex, kD is the rate of MinD:ATP attachment to the membrane when no pro-

tein is already attached there, kdD is the increase of this rate when MinD:ATP is

present on the membrane, kde is the rate of hydrolysis of the MinD:MinE:ATP com-

plex, kE is the rate of cytoplasmic MinE binding to membrane bound MinD:ATP

complex, and dw is the distance from the point in space to the closest wall. The

Dirac delta function δ(dw), which we need to describe the location of the mem-

brane, has units of µm−1 and is zero everywhere except at the wall. Equations 2.4

and 2.5 are only relevant at the membrane because the membrane-bound density

values have no meaning in the cytoplasm.

Our diffusion and reaction rates are shown below. We are interested primarily

in the effect of cellular size and shape on the protein oscillations, so we use Huang’s

parameter values [1].
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DD = DE = 2.5µm2/sec

kADP → ATP
D = 1/sec, kD = 0.025µm/sec

kdD = 0.0015µm3/sec, kde = 0.7/sec

kE = 0.093µm3/sec.

Huang’s simulations use total MinD and MinE concentrations of 1, 000/µm

and 350/µm, respectively, in a cylindrical cell of radius 0.5µm, and in our (non-

cylindrical) cells we use the same number of proteins per unit volume. These

concentration values are 1273µm−3 and 446µm−3, respectively. We have written

our own simulation platform and membrane creation tools from scratch, instead

of using existing available software used in previous studies [16, 19, 26, 27]. Our

simulations take place within a three-dimensional Cartesian grid that has a grid

spacing of .05µm, and our cell shapes are specified as the zero of an analytic

function which can generate the geometry presented in this paper. This code is

publicly available on github [38], including scripts that generate the simulation

data used in this paper.

We have performed both a numerical, deterministic model simulation that is

spatially and temporally discrete, and a stochastic simulation that is spatially dis-

crete but continuous in time. Our stochastic model follows the work of Kraus [39]

which in turn follows a method introduced by Gillespie [40].

We mean to investigate the geometric limits of the Min system oscillations as
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observed by Mannik et al. [2], so we have modeled the Min system in several cell

shapes and sizes. Here we present a selection of these, beginning with naturally

occurring pill-shaped cells, followed by a number of flattened out shapes which

reflect the experiments of Mannik et al., in which bacteria are confined within thin

slits. These slits are fabricated with a width of .25µm, but they are coated with

a PDMS lining that the cells are able to deform, raising uncertainty in the actual

cell thickness. Tests with pure silicon, non-deformable slits show that the smallest

thickness for which cells are able to penetrate is .4µm [2,17]. We therefore assume

that the PDMS slits have been deformed to this thickness and simulate flattened

cells with a thickness of .4µm. Viewed from the top down the cells have the shapes

described below and viewed from the side they have at their edges a semicircular

cross-section (one may imagine the shape of a pancake). In this paper we focus on

four specific flattened cell shapes. Two of these shapes replicate those published

by Mannik et al., and the other two are ‘stadium’ shapes that respectively have

the same aspect ratio, thickness, and volume as the two cell shapes experimentally

observed by Mannik et al. [2]. Viewed from the top down, these stadium shapes

appear as rectangles with semi-circular end caps on the long axis ends.

Huang et al. [1] have performed a linear stability analysis on a cylindrical model

which shows an upper limit on a steady state solution of a 2µm half wavelength.

Cells with dimensions longer than this spontaneously develop spatial oscillations,

while cells that are shorter relax into a homogeneous steady state. We have per-

formed a similar linear stability analysis on an infinite slab with a thickness equal

to that of our flattened cells (0.40µm). We first solve the model’s five differential
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Figure 2.2: Images of the concentration of each protein species in a natural pill-
shaped bacterium at one-second time intervals. The upper plots shows results from
the deterministic model and the lower shows results from the stochastic model. The
order of frames is such that individual MinD proteins begin at the bottom of the
plot (in the MinD:ATP state in the cytoplasm), and progress upward until they
reach the MinE:MinD:ATP membrane-bound complex. At that point, they will
spontaneously dissociate into cytoplasmic MinE (the top row) and the starting
state of cytoplasmic MinD:ADP.
.
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equations for the steady state solution, under the constraint that the total number

MinD and MinE molecules matches our simulation. We write down as a matrix

the linear response of the time derivatives of the density to small, spatially har-

monic density perturbations around the steady-state density. The system is stable

at this wavelength provided all eigenvalues of the matrix are negative, indicating

that all perturbations with this wavelength will decay. We find the stability limit

by searching for the largest wavelength at which the system is stable. Through

this method we arrive at an upper half wavelength stability limit of 1.56µm for our

0.40µm flattened cells. As expected, when decreasing the lengths and widths of

our simulated flattened cells so that the longest distance across the cell is less than

this length, the cells stop exhibiting any oscillatory behavior. The deterministic

model relaxes into a motionless state and the stochastic model exhibits random

fluctuations without spatial oscillations.

2.3 Results and Discussion

Naturally Occurring Pill Shaped Cells

We begin with the naturally occurring pill cell shape. We piece this shape together

as a cylinder with hemispherical end caps. This shape follows the early simulations

of Huang et al. but differs in that we have added the end caps for a more natural

shape, expecting similar results.

Figure 2.2 shows a series of color plots of the density of proteins at each stage
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Figure 2.3: Temporal correlation function of the total MinD found in two opposite
polar regions of the pill-shaped cell, shown against the correlation time. Data for
both the the deterministic and stochastic models are shown. The stochastic model
shows an oscillation period of 39.5 seconds and coherence time of 307 seconds. The
correlation functions are scaled to have the same initial value.
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of the reaction cycle. Deterministic simulation data is shown above and stochastic

simulation data is shown below. The cells shown are 4µm in length, measured from

end to end. We have ‘smeared out’ the stochastic concentrations in a manner meant

to reproduce the images shown by diffraction limited fluorescence microscopy. We

do so using the two dimensional Gaussian approximation developed by Zhang et

al. [41]. In this approximation we use a numerical aperture value of 1.3, which is

the same as used by Mannik experimentally, and a wavelength of 650nm. Each

frame is 2.5 seconds ahead of the last, and each image shows the concentration of

a given state of protein (of the five described in the reaction model) summed over

the coordinate normal to the page.

Figure 2.2 begins about 300 seconds into the simulation and shows one period

of oscillation. At t = 0 there is a high concentration of MinD:ATP that has ac-

cumulated on the membrane at the bottom of the cell. An important aspect of

Huang’s model is that the MinD is attracted to and sticks to the membrane non-

linearly: as it accumulates there it begins to ‘recruit’ other MinD that is diffusing

in the cytoplasm nearby, causing peaks in concentration to build up on the walls.

Meanwhile, the MinE creeps downward as it reacts with the membrane-bound

MinD, forming the MinD:MinE:ATP complex, then breaks it apart and diffuses

downward a bit more before it again reacts with membrane-bound MinD. This

process can be seen in the form of the well-known “MinE rings” (actually, MinE

bound to MinD on the membrane). These rings are visible in the deterministic

model plots as a green band on the walls from 0 seconds to 4 seconds (and later

from 15 to 23 seconds). The appearance of these rings in the deterministic model
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alongside their less obvious appearance in the stochastic model highlights an ad-

vantage of the deterministic model: the idealization of deterministic data allows

one to see patterns in the averaged behavior that might otherwise be missed. In the

stochastic model the MinE still exhibits higher concentrations in the same regions

throughout the process, but what would ideally be a “ring” pattern is instead an

asymmetric collection of maxima, which would become a ring after phase-locked

averaging.

During the formation of these rings, cytoplasmic MinE is diffusing in the upper

portion of the cell and will naturally progress downward, where there is membrane-

bound MinD to react with, leading to a depletion of MinE in the upper portion of

the cell. As the MinE ring converges upon the lower end of the cell, MinD that has

been released is able to diffuse upward, past the ring, while still in its MinD:ADP

state and unable to bind to the membrane. After it undergoes nucleotide exchange,

resulting in MinD:ATP, it is ready to accumulate on the walls in at the top of the

cell, where the MinE has been depleted. This can be seen in seconds 10 through 20

in both models, followed by the subsequent MinE ring formation and movement

upward (beginning the same process in the opposite direction) that can be seen in

seconds 15 through 23.

Both Fig. 2.2 and its associated movies, show that the stochastic model ex-

hibits a “starry night” effect characterized by spatially fixed points of protein

density build up, as recruitment leads to clusters of MinD forming on the wall and

then subsequently dissipating. This results from the omission of diffusion along

the membrane from Huang’s model, which would allow these recruitment clusters
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to spread out. Experiments have confirmed that diffusion along the membrane

does occur, albeit with a rate two orders of magnitude lower than that in the cy-

toplasm [15]. The ‘stars’ in the effect typically last for around 10 seconds. The

membrane-bound proteins will diffuse by a distance of around one micron during

this time, which is enough to spread out across the polar section of the one micron

diameter wild-type pill cells. As we see below, the flattened, irregular cells are

large enough that this one micron blurring would not completely eliminate this

‘starry night’ effect.

We also analyze the temporal periodicity of the system, which we quantify with

the temporal correlation function of the total MinD found in two opposite polar

regions. This correlation function, which is displayed in Fig. 2.3, is given by

C(τ) ∝
∫

(Ntop(t)− N̄top)(Nbottom(t+ τ)− N̄bottom)dt (2.6)

where Ntop(t) and Nbottom(t) are the total MinD proteins in the top and bottom

thirds of a cell. These plots help us in studying the periods and the regularity and

stability of oscillations. These curves are well fit with a simple decoherence model,

given by the equation

C(τ) = − cos

(
2πτ

T

)
e−

τ
τc (2.7)

where T is the period and τc is the coherence time. In the case of the stochastic

model the pill exhibits coherence times of about 8 periods, indicating that the

system exhibits periodic oscillation, with some stochastic irregularity in the pe-

riod. In contrast, in the deterministic model the pill-shaped cell exhibits complete
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coherence, indicating that its behavior is perfectly periodic.

Comparison of Experimental and Stadium Shapes

As explained above, we focus on simulation of four illustrative flattened cell shapes:

two shapes created to replicate those shapes observed experimentally by Mannik

et al. [2] (shape A and shape B), and for comparison two ‘stadium’ shapes that

have the identical aspect ratio, thickness and volume (stadium A and stadium B),

shown in Figure 2.4. All of the flattened cells have lost the rotational symmetry

of the original pill shapes, but while shape A and shape B have only one mirror

plane symmetry (that is normal to the flattened plane), stadium A and stadium B

have three. This allows us to distinguish between the effect of flattening the cell

and the cell shape’s irregularity and asymmetry.

From each of these flattened simulations, we have chosen a typical 350 second

segment to compare with the published results of Mannik et al. [2], exemplified in

arrow plots in which the arrow heads show the location of sequential MinD maxima

within the cell (in Fig. 2.4). In addition to arrows between successive maxima in

space and time, we plot as a colored background the density of MinD proteins

averaged over the same time period. We note that we have manually verified

that our (computer-generated) arrow plots also reflect a human interpretation of

a movie of the same data. Finally, for comparison we present the same plot for a

wild-type cell, with a time period of 250 seconds to account for its short period of

oscillation.



18

3µm3µm3µm3µm3µm3µm3µm3µm3µm3µm

deterministic

stochastic

experiment

shape A stadium A shape B stadium B natural pill

0

150

300

450

600

750

900

1050

1200

1350

m
ol

ec
ul

es
/µ
m

2
0

250

500

750

1000

1250

1500

1750

2000

m
ol

ec
ul

es
/µ
m

2
Figure 2.4: We display here arrows depicting successive maxima in space and and
time overlayed on a color plot of the total MinD density averaged over the same
time period. The simulation time covered for the flattened cells is 350 seconds,
which is the same period of time depicted in the experimental data plots of Mannik
et al. [2]. For the wild-type pill shape, we only cover 250 seconds, in order to provide
a useful comparison due to its shorter oscillation period. The top row shows plots
published by Mannik et al. of the MinD maxima behavior and the bottom two rows
show our simulations using the stochastic and deterministic models, respectively.
We simulated approximations to the two shapes observed by Mannik, which we call
shape A and shape B. In addition, we studied two flattened stadium shapes which
we call stadium A and stadium B corresponding in aspect ratio and thickness to
the two experimental shapes. The spatial length scale of all the figures shown was
identical. Each of the flattened cell shapes uses the same color scale for the number
of proteins per unit area. Finally, we display the natural pill shape, which was also
featured in Figs. 2.2 and 2.3, with a different color scale to reflect the thicker cell
containing more proteins per cross-sectional area.
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Figure 2.5: Temporal correlation function of the total MinD found in two opposite
polar regions of the shape B (above) and the stadium B (below) cell shapes, shown
against the correlation time. Data for both the the deterministic and stochastic
models are shown, and the correlation functions are scaled to have the same initial
value. For shape B, the stochastic model shows an oscillation period of 58 seconds
and coherence time of 306 seconds, so that it takes roughly 5.3 periods for the
behavior to decohere. For the stadium B, the same model shows an oscillation
period of 51 seconds and coherence time of 442 seconds, so that it takes roughly
8.6 periods for the behavior to decohere.
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In every case, including the wild-type pill shape, we see irregularity in the

location of the maxima when using the stochastic model. The deterministic model

shows uniformly bipolar oscillation. We conclude that the model is not chaotic

(which would show irregularity in the deterministic computation), but rather that

the irregularity results purely from stochastic processes. From these results and

how they compare with experiment, we conclude that the deterministic model is

inadequate to explain experimental observations of the locations of density maxima

of the MinD protein.

The predictions of the stochastic model are roughly similar to the experimental

results in terms of irregularity of the locations of maxima, although there are

locations on the edges of the cells where experiment shows maxima occurring that

we never see in our simulations, suggesting that the model does not precisely reflect

the experiment. We also note that the stadium shapes in Fig. 2.4 appear to have

maxima location irregularity that is qualitatively similar to our irregular shapes

and to experiment.

However Fig. 2.4 leaves unclear the importance of the flattening and accompa-

nying lateral expansion of the cell versus cell shape irregularity and asymmetry in

the temporal regularity of the oscillations. Although in the movies the stadiums

appear to display, on average over long time scales, a somewhat more regular os-

cillation than appears in the irregular shapes A and B, the limited time range of

the arrow plots (350 seconds) is inadequate to make this comparison. We therefore

return to the correlation function between the number of proteins in a segment at

the top of the cell and the number of proteins in a segment at the bottom of the
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cell. Fig. 2.5 shows this plot for shape B and stadium B. Here we plot correlations

of correlation times up to 500 seconds, a biologically relevant timescale. E. Coli

cell doubling times vary widely depending on environmental conditions, but will

often be between 20 minutes to 100 minutes [42], while fluorescent microscopy ex-

periments have shown that the FtsZ ring builds itself with a half life of roughly 30

seconds [43].

We see that both in the shape B and stadium B, the deterministic model is

perfectly periodic. Both the deterministic and stochastic model correlations have

the same number of proteins in their cells, and have been normalized with the same

normalization factor, so that they can be directly compared against each other.

The stochastic simulation of shape B has a coherence time of 5.3 periods, while

the corresponding simulation of stadium B has a coherence time of 8.6 periods.

The correlation function for stadium A is similar to that of stadium B, with simi-

lar coherence time (13 periods, not shown), while shape A also exhibits a similar

coherence time (5.5 periods). This confirms that the stadium shapes do indeed

oscillate somewhat more regularly than the irregular shapes, but both are compa-

rable to the wild-type pill shape. From the stochastic correlation data, we conclude

that irregularity of shape has only a moderate affect on the temporal regularity of

the oscillatory behavior, with even the very distorted shape B exhibiting only a

factor of two greater decoherence.
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2.4 Conclusion

We find agreement between our stochastic simulations and experiments showing

disrupted bipolar MinD oscillation in asymmetric flattened E. coli cells [2]. As

observed experimentally, our simulations predict that MinD maxima will form in

a spatially irregular sequence of locations. This result builds upon existing results

showing that this model and its variants are effective in a variety of wild-type and

mutated cell shapes [19,20,31], and reinforces that stochastic variations of Huang’s

2003 model [16, 19] has considerable predictive power beyond the standard wild-

type cell.

In contrast to the stochastic model, the original deterministic version of the

model [1] predicts behavior that contradicts experimental observations. Specifi-

cally, the deterministic model predicts robust and periodic bipolar oscillation in

irregularly shaped cells. Thus we conclude that this method is inconsistent with

experiment, and cannot be relied upon for predictions of the behavior of the MinD

system. This is the most clear example of the inadequacy of the deterministic

simulation method in reproducing experimental behavior of the MinD system to

date. Until now the results of deterministic and stochastic simulation have largely

coincided, with the stochastic method showing minor differences in behavior when

compared to deterministic models [16,19,30,31]. The regular oscillations in the de-

terministic case also allow us to conclude that the model is non-chaotic. Because of

their similar construction, we anticipate that recent variants of the model [19,26,27]

would also prove to be non-chaotic.
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We find that flattened but regular and symmetric cells exhibit MinD oscillations

that are qualitatively similar to the oscillations observed experimentally (and in our

simulation) in irregular and asymmetric cells. This demonstrates that asymmetry

is not required in order to induce spatially irregular MinD oscillations. In addition,

the temporal regularity of oscillations is only moderately affected by irregularity in

the shape of flattened cells. Thus we conclude that it is the flattening of the cells,

and the accompanying expansion in the transverse direction, rather than their

irregular shape that primarily causes the disruption of regular bipolar oscillation

which is observed by Mannik et al. [2].
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3 Introduction to Classical DFT Research

We now move away from systems biology and into my research in Classical Density

Functional Theory. This chapter provides a general introduction to the concepts

that are used in the three projects to which I contributed. I tried to write it

as a primer for the following chapters, which discuss each of the three projects

individually. It is intended to be accessible to physicists with no familiarity with

the theory of liquids, and should provide the back round needed for the following

chapters.

3.1 Classical Density Functional Theory

A classical statistical ensemble is a collection of microstates that share certain

macroscopic properties, but have an otherwise appropriately random distribution

of positions and momenta. In the canonical ensemble, the number of particles N ,

the total volume of the system V , and the temperature T are constant. In this

ensemble the free energy, defined as F = U−TS, where U is the internal energy and

S is the entropy of the system, is minimized in thermodynamic equilibrium. In the

grand canonical ensemble, the number of particles is allowed to vary while V , T and

the chemical potential µ are constant. In this ensemble it is the grand potential,

defined as Ω = F − µN , that is at a minimum in thermodynamic equilibrium.

In the case of inhomogeneous fluids, a treatment of the inhomogeneous external
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potential φ(r) affects the positions of the particles in the system and stands in the

place of the volume V in the thermodynamic equations. In such a system, a change

in the internal energy is

δU = TδS +

∫
δn(r)φ(r)dr + µδN (3.1)

where n(r), which I will refer to as the ‘density profile’, is discussed in the next

subsection.

3.1.1 Discussion of the density profile n(r)

Because our work deals very heavily with the concepts associated with particle

density, it’s worthwhile to discuss these concepts specifically.

One can define n(r)dr as the average number of particles at r within a volume

dr. I’ll define it throughout this document in this fashion (as one does when

working in Classical DFT), but the reader should be aware that during the DFT

process, this definition is not always strictly accurate. As I’ll discuss below, one of

the steps of Classical DFT is to minimize the grand potential function, and during

this process, n(r) is actually often a ‘trial density profile’ or ‘possible density

profile’ as opposed to the physical equilibrium density profile. However, after the

function has been minimized and a thermodynamic solution has been reached,

n(r)dr is indeed the average number of particles found in the volume dr in thermal

equilibrium. For our purposes, we can always define in this way.
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The density profile n(r) is actually the one particle limit of a more general

multi-particle density. In the grand canonical ensemble, this multi-particle density

can be calculated as

n(n)({rn}) =
1

Ξ

∞∑
N=n

exp(Nβµ)

Λ3(N − n)!

∫
exp(−βVN)dr(N−n). (3.2)

n(n)({rn}) has the general form of a statistical mechanical probability, with an

integration over possible states of Boltzmann factors divided by the grand canonical

partition function,

Ξ =
∞∑
N=0

exp(Nβµ)

h3NN !

∫ ∫
exp(−βH)drNdpN . (3.3)

VN in Eq. 3.2 is the total interaction potential between all of the particles in the

system, and the spatial integral is taken over all the potential positions of the

particles other than the superscript n particles at positions rn. Chapters 4 and 6

refer to the two particle limit of this function, the ‘pair density’ profile, n(2)(r1, r2).

The exp(Nβµ) term in Eq. 3.2 accounts for the chemical potential’s regulation

of the average number of particles in the system. When implementing density

functional theory, one adjusts µ in order to constrain the system’s average number

of particles,

∫
system

n(r)dr = 〈N〉 (3.4)

to be a desired value.
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3.1.2 Summary of derivation of Classical Density Functional Theory

Using Classical DFT involves creating free energy functionals of the density profile,

finding the density profile that minimizes the grand potential energy, and then of

course running test after test to see how things went. I could just write that this

is what we do and then define the terms, but I’d like to give an idea of why we do

these things, so I’ll discuss in this subsection a derivation of the theory. While the

theory was originally derived and published in 1965 by Mermin [44], I use here the

notation of Hansen [45].

The probability density, which is closely related to the n-particles density, is

f0(rN ,pN ;N). f0(rN ,pN ;N)drN is the probability that there are N particles in

the system and that those particles are found within the infinitesimal range of

positions rN and momenta pN . Its definition is

f0(rN ,pN ;N) =
exp(−β(H−Nµ))

Ξ
(3.5)

where Ξ is once again the grand canonical partition function.

Classical DFT assumes that the Hamiltonian can be split into linearly combined

parts:

H(rN ,pN) = KN(pN) + VN(rN) +
N∑
i=1

φ(ri) (3.6)

The three terms on the right are the kinetic energy, potential interaction between

particles, and external potential, respectively. The kinetic energy is a function of
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only the momenta of the particles, and the two potentials are functions of only

their positions.

Substituting this for the Hamiltonian term in Eq. 3.5 and taking the natural

logarithm, we have:

ln f0 = βΩ− βKN − βVN − β
N∑
i=1

φ(ri) +Nβµ (3.7)

where we have used the relation

Ω = −kBT ln Ξ, (3.8)

which is the basic connection between thermodynamics and statistical mechanics

in the grand canonical ensemble.

Eq. 3.7 is true for each microstate. We can relate this equation to the density

profile by averaging over all the micro states in an ensemble. Because the external

potential
∑N

i=1 φ(ri) and µ are both constant and n(r) is the average ensemble

equilibrium density at r, the two right most terms average to

〈ΦN〉 =

∫
n(r)φ(r)dr and 〈Nµ〉 = µ

∫
n(r)dr (3.9)

Using these relations, taking the average of Eq. 3.7, and switching terms around

results in the equation

〈KN + VN + kBT ln f0〉 = Ω−
∫
n(r)φ(r)dr + µ

∫
n(r)dr (3.10)
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The thermodynamic definition of the grand potential gives us F = Ω + µN .

From this we can see that the right hand side of Eq. 3.10 is analogous to the

free energy of the inhomogeneous system minus the energy due to the external

potential. We call this function the ‘intrinsic free energy’ F since it only includes

the interaction energy between the particles within the system (but not the external

potential):

F = Ω−
∫
n(r)φ(r)dr + µ

∫
n(r)dr = 〈KN + VN + kBT ln f0〉 (3.11)

It can be shown [44, 45] that for a given µ, T , and defined function VN de-

scribing the potential interaction between particles, there is a one-to-one relation

between the external potential function and the equilibrium density profile n(r)

at thermodynamic equilibrium. The grand canonical density function f0 (Eq. 3.5)

for a given function VN , µ, and T is a function of only the external potential, so

as a result it is completely determined by n(1). VN is also wholly determined by

n(1) and KN is determined by temperature. Thus the right hand side of Eq. 3.11

is a function of only the external potential and therefore also of only n(1), which

means that for a given µ, T , and defined function VN , F is wholly determined by

n(r).

Thanks to all of this, we can write

Ωφ[n(r)] = F [n(r)] +

∫
n(r)φ(r)dr− µ

∫
n(r)dr (3.12)
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where n(r) is a density profile that we will adjust systematically in order to mini-

mize Ωφ[n(r)]. The function n(r) that minimizes Ωφ[n(r)] becomes the minimized

grand potential of the system, and the density profile n(r) of the system is the

density profile in thermodynamic equilibrium. It is finding this density profile in

thermodynamic equilibrium, and then the properties that can be derived from it,

that is the ultimate goal of Classical Density Functional Theory.

We begin the process of Classical DFT by designing the functional form of

an approximation for the intrinsic free energy F . This is the major theoretical

part of the process. We then decide upon an external potential φ(r) that defines

the external restrictions of the system we wish to examine, set the temperature

T and chemical potential µ, and systematically adjust the density profile until

we have found the global minimum of this grand potential. I won’t discuss the

process of finding the density profile that minimizes the grand potential in this

dissertation, except to say that it is performed with standard methods such as

conjugate gradient minimization. My research has been centered around the first

part of the process, namely constructing the functional form for F .
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3.2 Introduction to SAFT and explanation of first free energy term

Work on Classical Density Functional Theory for inhomogeneous fluids involves

creating the intrinsic free energy functional of the density profile, F [n(r)]. This is

typically written as a sum of terms that individually address different conceptual

aspects of the system. Terms that treat different types of interaction between

particles are added to the free energy of a reference system.

The free energy functional that we use in much of our work is one of a widely

used family of models in the development of classical density functionals called

Statistical Associating Fluid Theory (SAFT) [46]. SAFT is a theory for liquids

based on a model of hard spheres with weak dispersion interactions and hydrogen-

bonding association sites, which has been used to accurately model the equations

of state of both pure fluids and mixtures over a wide range of temperatures and

pressures [47, 48]. We will discuss the concept of hard spheres in detail in the

following sections.

A SAFT functional is broken into the following terms:

FSAFT = Fideal + Fhardsphere + Fassociation + Fchain + Fdispersion (3.13)

We will discuss the meaning of these terms below in much more detail, but write

them down now to illustrate the general structure of the total functional.

Although we work specifically with the SAFT functionals, our contributions

described in the chapters 4, 5, and 6 are applicable to many different types of fluid

functionals. Chapter 4 details a functional that we’ve created, the distribution
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function at contact gσ(r), which accurately describes correlations between particles

within a system, while chapter 5 discusses its use within a specific SAFT functional

and its effect upon that functional’s results. Chapter 6 introduces another function,

the pair distribution function g
(2)
HS(r1, r2), that is closely related to the first. While

we discuss these functions in terms of their place within the SAFT free energy,

they and their conceptual basics are also applicable to other Classical DFT.

The first three terms in the SAFT free energy, Fideal and Fhard sphere, describe

the hard-sphere reference system. The Fideal is ubiquitous, and describes particles

that have no interactions between them. While the Fhard sphere term does treat

particle interactions, it is so large that it cannot be treated perturbatively, so it is

used as a reference term and is incorporated into many very different functionals.

I will discuss it more thoroughly in Section 3.4, but I’ll state briefly that it is

defined to describe a potential between particles that is everywhere zero, except

at a distance of one diameter or less, for which the potential becomes infinite.

Section 3.4 gives a detailed introduction to the particular functional that we use

for the Fhard sphere term below (that of the White Bear free energy), because while

we don’t actually modify it in our implementation of inhomogeneous SAFT, we do

draw heavily from its ideas when creating our functions. The rest of the terms in F

address different types of attractions between particles. SAFT itself departs from

other theories in these last three terms. Each of these terms is itself a functional

of the density profile.

The first term in the SAFT functional is the ideal free energy term Fideal, which

treats a system of particles that do not interact with each other. This is an obvious
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place to start if one is to build the description of particle interaction terms upon

a reference system. Its lack of interaction actually causes this term to be the only

one that we can construct exactly, with no approximations. To see why, we observe

that a system of non-interacting particles is able to satisfy what is usually called

the local density approximation (although we shouldn’t call it this here because

for non-interacting particles it’s not an approximation!). The idea is that the free

energy functional can be written as an integral of a completely local function of

the density profile:

Flocal density[n(r)] =

∫
f(n(r))dr (3.14)

where f(n(r)) is the free energy per unit volume of a homogeneous fluid at a density

n(r). In essence, each bit of volume becomes its own thermodynamic system, with

a free energy equal to that of a homogeneous density of particles at the same local

density, and the free energies from all these bits of volume are added up to get

the total. The construction neglects any interaction between the particles, so that

any spatial variation in the density will be entirely due to the varying external

potential. As an approximation for interacting fluids, it does in fact apply to

external potentials that modulate the density slowly over space, much more slowly

than correlation lengths. It has thus been used in the past to construct portions

of the intrinsic free energy functionals beyond the reference Fideal term. It breaks

down rather quickly, however, near hard walls for interacting systems, where often

the spheres will stack up in ‘layers’ and the local densities become greater than
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bulk freezing densities.

However, Fideal can be constructed exactly in this local density form, so all we

need to do is integrate the free energy of an ideal homogeneous system at the local

density. Going back to basic thermodynamics and statistical mechanics, we have:

F = −kBT lnQN = −kBT ln

(
V N

N !Λ3N

)
(3.15)

where QN is the ordinary canonical partition function and Λ is the de Broglie

thermal wavelength, Λ =
(

2πβh2

m

)1/2

. Using the Stirling approximation for N !,

we have

F id = NkBT (ln Λ3n− 1) (3.16)

Taking this as the free energy divided by volume and integrating, we have

Fideal[n] =
1

β

∫
drn(r)(ln(Λ3n(r))− 1) (3.17)

This will be the reference Fideal term, which is commonly used in Classical Density

Functional Theory.
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3.3 Virial Equation, Mayer functions, and the Carnahan Starling

Equation

The second term in the SAFT intrinsic free energy functional, Fhard sphere, is also

part of the reference system. The specific hard sphere free energy functional that

we use for this term is widely used in the field. I’ll introduce the functional and

the theory behind it in some detail in Section 3.4 because it is so widely used and,

more importantly, because an understanding of the ideas involved is necessary for

an understanding of our own work. Before describing the term itself, however, I’ll

explain in this section some important things that lead up to this theory, namely

the Virial equation, Mayer functions, and the Carnahan Starling Equation.

The Virial Equation applies to homogeneous fluids. It equates a thermody-

namic, intensive quantity (likes the pressure) to an expansion of the homogeneous

density n of the fluid. Its standard form is

βP

n
= 1 +

∞∑
i=1

βiη
i. (3.18)

where

η ≡ πnσ3

6
(3.19)

is the ‘packing fraction’. Here σ is the diameter of the spherical particles of the

fluid. The packing fraction is really just a more convenient way to refer to the

density, where we give each particle the volume of a sphere and think in terms
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of how much of the volume is occupied by particles. We use this dimensionless

measure of density extensively throughout our work.

The expansion of Eq. 3.18 comes out of a formulation of the partition function

that is most often expressed as a series of diagrams that have well defined rules of

construction. A single term (or diagram) in this expansion of the partition function

is in fact a spatial integral of particle densities multiplied by a number of what are

called Mayer Functions. The derivation starts with the partition function,

Ξ =
∞∑
N=0

exp(Nβµ)

h3NN !

∫
...

∫
exp(−βH)drNdpN (3.20)

=
∞∑
N=0

exp(Nβµ)

h3NN !

∫
...

∫
exp(−β(VN +KN +

∑
i

φ(ri))dr
NdpN (3.21)

where VN is the interaction potential between all the particles in the system, KN

is the total kinetic energy, and φ(r) is the external potential. If the the interaction

potential can be written as a summation of pairwise superimposable interactions,

i.e.

VN =

all particles∑
i<j

v(ri, rj) (3.22)

than the partition function can be written as

Ξ =
∞∑
N=0

1

N !

∫
...

∫ (
N

Π
i<j

(1 + f(ri, rj))

)(
N

Π
i=1

exp(β(µ− φ(r)))

Λ3

)
drN (3.23)

where f(ri, rj) = exp(−βv(ri, rj))−1 is the Mayer function between two particles.
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Because the f(ri, rj) are small, we can expand Ξ as a power series in the f(ri, rj).

The diagrams mentioned above aid in keeping track of terms in the expansion and

taking the logarithm of Ξ. One of the results is an equation of the form

βP

ρ
= 1 +

∞∑
i=1

βiη
i (3.24)

where the βi are explicit functions of the f(ri, rj).

The virial formulation of thermodynamic properties is useful, but it requires

an expansion of coefficients, which can be a nuisance computationally, particularly

since it tends to converge only slowly. Carnahan and Starling [49, 50] were able

to develop a rule for coefficient generation that give approximations to the βi, but

that results in integers that one can use to make a geometric series. Written in

its analytic form, this series is a simple, easy to use, and accurate approximation

of the pressure in a homogeneous hard-sphere fluid as a function of density (or

packing fraction η):

βP

n
=

1 + η + η2 − η3

(1− η)3
(3.25)

Integrating this pressure yields the excess free energy:

βF ex

N
=
η(4− 3η)

(1− η)2
. (3.26)

This equation is specifically very successful in predicting the pressure of the ho-
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mogeneous hard sphere fluid at different densities.

3.4 Fhard sphere, Fundamental Measure Theory, and White Bear

We now return to analyzing the terms that make up the SAFT free energy:

FSAFT = Fideal + Fhard sphere + Fassociation + Fchain + Fdispersion. (3.27)

Remember that the Fideal term treats particles that do not interact with one an-

other. In fact, this one term addresses any aspect of the system that is non-

interactive, in the sense that every other term in FSAFT specifically deals with a

different type of potential interaction among the particles. Thus, Fideal is in a sense

the most basic reference term in the system. However, when using perturbation

theory, the second term, Fhard sphere, which I will describe here, is also treated as

part of the reference system, because it is large and cannot be treated as a small

perturbation.

The potential interaction it describes is based on the fact that every atom

has at its core a ‘hard-core’ repulsion to any other atom. In other words, as two

particles approach each other in space, there is a sudden, sharp spike in potential

energy that prevents the two particles from ‘overlapping’. The forces here can

be complicated, deriving from electrostatics and the exclusion principle, but our

classical theories seek to approximate these in simple ways.

The hard sphere potential interaction is characterized by an impenetrable
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spherical volume that is centered at a particle’s position. The potential between

two of these hard spheres discontinuously jumps from zero to infinity when the

spheres are a distance apart that is equal to their combined radii:

v(r) =∞, r < rA + rB (3.28)

= 0, r > rA + rB (3.29)

where r is the distance between the two particles, and rA and rB are the radii of

the two particles. This hard sphere potential that we use is not the only commonly

used method for treating the hard-core repulsion between particles. The Leonard-

Jones potential, for example, another widely used potential energy description,

approximates the repulsion with a positive term proportional to 1
r12 . However,

analytic and continuum theories of liquids are most commonly based on the hard-

sphere reference system.

After deciding upon this form for the potential, one must turn to the much

more difficult step of designing an appropriate free energy functional. One of the

first methods by which people attempted to deal with these interactions, which is

actually not limited to hard spheres, was to modify the form of the local density

approximation free energy discussed above,

F [n] =

∫
f(n(r))dr (3.30)

to incorporate information about the particle densities immediately surrounding
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each point. They did this by redefining the density at each point to be a convolution

of the surrounding density with a weighting function:

n̄(r) =

∫
w(|r− r′|)n(r′)dr′ (3.31)

and then using a function of this weighted density as a weighting function in the

local density approximation formulation of the free energy:

FWDA[n] =

∫
f ex(n̄(r))

n̄(r)
n(r)dr (3.32)

Eq. 3.31 allows one to shape the nature of the interaction indirectly, by changing

the structure of the weighting function. For example, if one were to choose for

the weighting function the step function Θ(|r − r′|), than the modified density

would incorporate in an equal way all the density within a sphere surrounding

the particle. A functional constructed in this way would be an oversimplified

example of a ‘Weighted Density Approximation’ (WDA). WDA theories become

very complicated, and will often include a weighted function that is itself a function

of the density [51].

Fundamental Measure Theory (FMT), created by Rosenfeld in 1989 [52, 53],

also defines the free energy in terms of a series of convolutions of densities, but it

is a considerable departure from the weighted density approximation theories. It

is based on an involved derivation worked out by Perkus and Yevick of an equation

of state for the homogeneous hard-sphere fluid. Like the derivation of the Virial

Expansion and Carnahan-Starling Equation discussed above, this derivation also
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dealt with correlation functions and ultimately expressed thermodynamic proper-

ties in terms of homogeneous density. Rosenfeld compared this theory with the

derivations of another theory call Scaled Particle Theory, which has to do concep-

tually with a system of spheres and a growing cavity in which they are not allowed

to go. He recognized that the density portion of the Perkis-Yevick equations can

be reformulated in terms of densities and functions constructed to describe the ge-

ometric properties of spheres. Rosenfeld then discovered that for inhomogeneous

systems, he could write down the intrinsic free energy in terms of convolutions

of densities with these spherical functions in such a way that the Perkus-Yevick

correlation equations were reproduced in the limit of homogeneous density. For

the derivation of this functional, which is not directly related to our research, see

Rosenfeld’s original publication [52], or alternatively see the derivation of Tarazona

and Rosenfeld [54–57], which gets to the same functional through different means.

The result of all this is an intrinsic free energy which has the form:

Fhard sphere[n] =

∫
Φ(ni(r))dr (3.33)

The integrand Φ here is a local function of ni(r), which are the convolutions of

density with weighting functions that are geometrically related to spheres. In FMT

the weighted densities are referred to as ‘fundamental measures’. They are defined
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as:

n3(r) =

∫
n(r′)Θ(σ/2− |r− r′|)dr′ (3.34)

n2(r) =

∫
n(r′)δ(σ/2− |r− r′|)dr′ (3.35)

n2V (r) =

∫
n(r′)δ(σ/2− |r− r′|) r− r′

|r− r′|dr
′ (3.36)

nV 1 =
nV 2

2πσ
, n1 =

n2

2πσ
, n0 =

n2

πσ2
(3.37)

where σ is the hard-sphere diameter.

We can see the spherical nature of the theory by inspecting the ni. The n3(r)

weighting function is a step function that is designed so that the density is inte-

grated over the volume of a sphere of diameter σ, but will make no contributions

outside of this sphere. n2 only allows for integration of densities on the surface of a

sphere, but incorporates no density within or outside of it. n2V is a vector version

of n2 and is also the gradient of n3. The others are different versions of the same,

modified to have different units.

The form of Φ(ni(r)) is restricted to a certain extent by dimensional analysis

(the units of each term have to be right!) throughout the derivation, but even

given this constraint the theory allows for a certain amount of freedom in its

design. Since his derivation of FMT was originally based on concepts in the Perkus-

Yevick derivation of the equation of state, Rosenfeld constructed the form of his

functional so that in the limit of homogeneous density, the free energy of the system
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approaches that given by the Perkus-Yevick equation of state.

While the theory has been a resounding success [52, 53, 58], the use of the

Perkus-Yevick equation of state as the underlying, homogeneous limit equation

causes problems. The construction of FMT obeys a theorem called the ‘contact

value theorem,’ which states that the pressure at a wall is equal to the temperature

multiplied by the density in contact with that wall, p = kTncontact. This theorem

is very important in our own work, so I’ll discuss it in detail below. I mention

it here though because for the hard sphere fluid, the Perkus-Yevick equation pre-

dicts a pressure that is too high as the bulk freezing density are approached. It

consequently overestimates the density at contact at these temperatures. This is

problematic, since much of the reason we use classical density functional theory in

analyzing inhomogeneous fluids in the first place is to estimate what happens at

walls!

In 2002 Roth et al. addressed this issue in their version of FMT which they

named ‘White Bear’ [59, 60], anecdotally after a pub that they frequented while

developing the theory. They keep the same general form of Rosenfeld’s FMT but

adjust it so that in the limit of homogeneous density the free energy approaches

that of the Mansoori-Carnahan-Starling-Leland equation, a modified version of the

Carnahan-Starling equation of state, which we discussed above and which we use

directly in our own work. The Carnahan-Starling equation is more accurate at

high density than the Perkus-Yevick, so the White Bear hard-sphere free energy

functional, Fhard sphere, is overall a more accurate one. It is therefore the hard

sphere free energy reference system that we choose to use in our own work.
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Below is the entire energy functional written in terms of the fundamental mea-

sures, ni(r):

Fhard sphere[n] = kBT

∫
(Φ1(r) + Φ2(r) + Φ3(r)) dr , (3.38)

with integrands

Φ1 = −n0 ln (1− n3) (3.39)

Φ2 =
n1n2 − nV 1 · nV 2

1− n3

(3.40)

Φ3 = (n3
2 − 3n2nV 2 · nV 2)

n3 + (1− n3)2 ln(1− n3)

36πn2
3 (1− n3)2 , (3.41)
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Figure 3.1: A cartoon of our hypothetical system. The wall of the system is either
flat or includes a small protrusion that juts out into the volume.

3.5 Contact Value Theorem

The contact value theorem is used directly in our own work and a conceptual

understanding of its origin will aid in the conceptual understanding of the functions

that we’ve created. A derivation of it is both justified and sort of awesome, so I

dedicate this section to it.

We start by considering a thermodynamic system of a fixed number of particles

in contact with a hard wall of arbitrary shape. The thermodynamic equations are:

F = U − TS (3.42)

dU = TdS − pdV (3.43)

dF = dU − TdS − SdT = −SdT − pdV. (3.44)
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The volume of our system will be fixed except for a tiny (infinitesimally small)

protrusion into it, jutting out from the wall, illustrated in Figure 3.1. We will

allow the protrusion to either stick out or not, allowing the wall to either be flat

and smooth there or protruding. We’ll call the free energy in the two different

scenarios Fflat and Fout, and investigate the difference between them, or in other

words what happens as the system loses the bit of volume, dV . The partition

functions for these scenarios are

Zflat =

∫
V

...

∫
V

exp(−φ{rN})drN (3.45)

Zout =

∫
V−dV

...

∫
V−dV

exp(−φ{rN})drN (3.46)

where φ({rN}) is the interaction energy between all the particles and where we

have ignored the kinetic energy terms and momentum integrals, since in both

systems, which are at the same temperature, these will be the same, and will later

cancel out. We would like to write Zflat in terms of Zout, so we’ll spatially break

up the Zflat integral. The first term will integrate over the same volume as Zout.

The next set of terms will treat the integration for one particle within the bit of

volume, interacting with all the other particles outside of the volume. The terms

after that will integrate for two of the particles within the bit of volume and all

the remaining particles in the rest of the volume. The series will continue on in
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this fashion, with three particles in the volume, then four, etc.:

Zflat =

∫
V−dV

...

∫
V−dV

exp(−φ{rN})drN

+

∫
V−dV

...

∫
V−dV

∫
dV

exp(−φ{rN})drN (3.47)

+

∫
V−dV

...

∫
dV

∫
V−dV

exp(−φ{rN})drN ...

+

∫
V−dV

...

∫
V−dV

∫
dV

∫
dV

exp(−φ{rN})drN (3.48)

+

∫
V−dV

...

∫
dV

∫
V−dV

∫
dV

exp(−φ{rN})drN ... (3.49)

The term on the first line is just Zout. Looking at the next set of terms, because

every particle is identical it doesn’t matter which of them is within the little bit

of volume. Every one of these terms will be the same, so they can be replaced by

one of them multiplied by N . We will throw away the terms that are of higher

order in dV , and there are two arguments that allow us to do this. The simplest

one is that dV is small, and so terms with two dV s multiplied together will be

smaller. One must be careful with this, however, because the integration is really

of the boltzmann factor over these volumes. If the interaction potential between

the particles is constructed so that they are highly attracted to each other, then

a state in which there are two particles in the bit of volume may have the same

order of magnitude probability as the one in which there is just one. In this case we

would not be able to say for certain that these terms are so much smaller than the

order one dV terms that we could reasonably ignore them. Thus the validity of the

derivation depends upon the size of the smallest measurement one can make along
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the wall, and the nature of the attractive potential between the particles. In our

case and for physically reasonable interactions we deal with an interaction between

hard spheres, which exclude other spheres from being too close to them. Thus it’s

reasonable for us to imagine, given that dV is an arbitrarily small volume, that if

there is one hard sphere in the bit of volume, then there is only the one, and any

terms that address the situation in which there are two in the bit of volume can

be ignored. After applying these arguments we have:

Zflat = Zout +N

∫
V−dV

...

∫
V−dV

∫
dV

exp(−φ({rN}))drN (3.50)

Now we consider the statistical mechanical definition of the particle density,

n(r) =
N
∫
V
...
∫
V

exp(−φ({rN}))drN−1

Zflat
(3.51)

which is the sum of the boltzmann factors of all the states for which a particle is

at position r, divided by the partition function for the system. Comparing this

with the right-most term in the Eq. 3.50 we see that:

N

∫
V−dV

...

∫
V−dV

∫
dV

exp(−φ{rN})drN = Zflat

∫
dV

n(r)dr (3.52)

≈ Zflatn(r)dV (3.53)

where we make the approximation that because the volume is arbitrarily small
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n(r) is constant over it. Thus we have

Zflat = Zout + Zflatn(r)dV (3.54)

Zout = Zflat(1− n(r)dV ) (3.55)

Now we’ll consider the change in the free energy when the system goes from one

in which a tiny protrusion sticks out from the wall, to one in which the wall is flat,

so that the dV during the change will be positive:

dF = Fflat − Fout = −kT ln(Zflat) + kT ln(Zout)

= kT ln

(
Zflat(1− n(r)dV )

Zflat

)
= kT ln (1− n(r)dV )

= −kTn(r)dV (3.56)

Then relating this back to thermodynamics:

dF = −pdV = −kTn(r)dV (3.57)

p = kTn(r) (3.58)

Eq. 3.58 is the standard formulation of the contact value theorem. It tells us that

the pressure on a hard wall is directly proportional to the density of the particles

that are in contact with it.
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3.6 Remaining terms in SAFT

Going back to the terms in the overall SAFT free energy functional,

FSAFT = Fideal + Fhard sphere + Fassociation + Fchain + Fdispersion (3.59)

we come to the last three terms. These terms describe attractive interactions, and

are the focus of Chapters 4, 5, and 6. Instead of discussing them all here, I’ll

describe them in the context of those chapters.
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3.7 The convolution theorem

Lastly within this introduction I will introduce a theorem, the convolution theorem,

that is of practical importance to the rest of this text. This theorem motivates our

preference of using density convolutions within our functionals.

One of the largest advantages to using Fundamental Measure Theory, and one

that may not be immediately obvious, is that the convolutions that combine to

construct this functional allow for very efficient computation. For an example, let’s

look at a free energy term,

F =

∫∫
n(r1)n(r2)w(|r1 − r2|)dr1dr2, (3.60)

in which particles interact according to the weighting function w, which depends

on the distance between two particles. The White Bear free energy is composed of

integrals similar to this. It may seem at first glance that the size of the computa-

tional calculation of this double integral would scale as N2, where N is the number

of grid points in the system. It is true that in the case of FMT, the weighting func-

tions cut off the integrals at a size on the order of a sphere of particle radius, but

this can still be a large enough volume so that a double integral for which one of

the volumes is this size and the other is the size of the whole system is likely be

too costly for practical computation. FMT is saved, however, by what is called the

convolution theorem, combined with the Fast Fourier Transform algorithm. The

convolution theorem states that when one takes the Fourier transform of a spatial

convolution of two functions, the result in k-space is simply the product of the two
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functions:

h(x) = (f ∗ g)(x) =

∫
f(y)g(x− y)dy (3.61)

ĥ(k) = f̂(k)ĝ(k) (3.62)

The Fast Fourier Transform algorithm allows one to take Fourier transforms for

a complete range of wave vectors k at a cost of N lnN , as opposed to N2, even

though it may seem that a separate integral at every value of k would be necessary.

Writing Eq 3.60 as

F =

∫
n(r1)n̄(r1)dr1 (3.63)

n̄(r1) =

∫
n(r2)w(|r1 − r2|)dr2 (3.64)

The convolution theorem allows us to state that

ˆ̄n(k) = n̂(k)ŵ(k) (3.65)

So if we take the Fourier transforms of n(r) and w(r) for all k values (which

computationally scales as N lnN), multiply to get ˆ̄n, and then take the Fourier

transform of ˆ̄n to get n̄ (which once again scales as N lnN), we can arrive back at
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the equation

F =

∫
n(r1)n̄(r1)dr1 (3.66)

(3.67)

having only every taken N lnN time. This integral can be done in real space

(computationally scaling as simply N), and Voila! We’re able to perform a double

integral in real space in an N lnN amount of time. For large systems this can cer-

tainly be the difference between practically possible and impossible computations.

The proof is short and pretty so I’ll relate it here.

Say there is a function h(x) such that

h(x) = (f ∗ g)(x) =

∫
f(y)g(x− y)dy (3.68)

The Fourier transforms of the two input functions are

f̂(k) =

∫
f(y) exp(−k · y)dy (3.69)

ĝ(k) =

∫
g(y) exp(−k · y)dy. (3.70)

and the Fourier transform of h is

ĥ(k) =

∫
h(z) exp(−k · z)dz =

∫ (∫
f(y)g(z− y)dy

)
exp(−k · z)dz (3.71)

because the two integrals are taken over all space, we can use a change of variables
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to

x ≡ z− y (3.72)

and then reorder the integrals to find

ĥ(k) =

∫
f(y) exp(−k · y)dy

∫
g(x) exp(−k · x)dx (3.73)

= f̂(k)ĝ(k) (3.74)

This concludes the general introduction to the Classical DFT and liquid state

concepts that are used throughout my research. The following three chapters

describe three of my research projects individually.
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4 Contact Distribution Function

4.1 Introduction

In this chapter we discuss our investigation into the value of the distribution func-

tion of an inhomogeneous hard-sphere fluid at contact. This is a function that

contains information about how densities at two positions, separated by a distance

of one diameter so that spheres located at the positions are in contact, are corre-

lated with each other. I will define it in more detail below. It plays a critical role

in SAFT, since the ability to accurately estimate contact between spheres dictates

the ability to accurately estimate when interaction sites on the surface of those

spheres are overlapping, and it’s this overlap that dictates how particles interact

within the ‘chain’ and ‘association’ free energy terms in SAFT. We define two av-

eraged values for the distribution function at contact, and derive formulas for each

of them from the White Bear version of the FMT functional, using an assumption

of thermodynamic consistency. We have tested these formulas, as well as two exist-

ing formulas against Monte Carlo simulations, and have found excellent agreement

between the Monte Carlo data and one of our averaged distribution functions.

A key input to the SAFT free energy functionals is the distribution function

evaluated at contact, which is identical to the contact value of the cavity correlation

function for hard spheres, and is required for the association term in the SAFT

free energy, and as well for a term labeled the ‘chain’ term, which is used in SAFT
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free energy functionals for polymers.

Yu and Wu introduced in 2002 a functional for the association term of the

free energy, which included a functional for the contact value of the distribution

function (described in Section 4.3.5) [4], which has subsequently been used in the

development of other SAFT-based functionals [61, 62]. Also, two functionals for

the chain term have recently been introduced, one which uses the distribution

function of Yu and Wu [62] and another which introduces a new approximation for

the contact value of the distribution function [3]. Here we will briefly describe how

the contact value of the distribution function has been used in two of these recent

papers introducing SAFT-based classical density functionals. For simplicity, we

will use our own notation to describe the work of these authors.

In his paper presenting a density functional based on the PCP-SAFT equation

of state [3], Gross introduces the chain free energy in SAFT as

Fchain

kT
= −(m− 1)

∫
n(r)

(
ln
(
nA(r)gAσ (r)

)
− 1
)
dr (4.1)

where nA(r) is a weighted density defined as

nA(r) =

∫
n(r′)

δ(σ − |r− r′|)
4πσ2

dr′ (4.2)

and gAσ (r) is the local value of the distribution function at contact, which we define
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as

gAσ (r) =
1

n(r)nA(r)

∫
n(2)(r, r + r′)

δ(σ − |r′|)
4πσ2

dr′ (4.3)

In Section 4.3.4 we describe Gross’s approximation for this function.

In a paper describing a classical density functional for inhomogeneous associ-

ating fluids [4], Yu and Wu define the association free energy as

Fassoc

kT
=
∑
i

∫
ζ(r)n0(r)

(
lnXi(r)−

1

2
Xi(r) +

1

2

)
dr (4.4)

Xi(r) =
1

1 +
∑

j
n0(r)gSσ (r)

ζ(r)
Xj(r)κij (eβεij − 1)

. (4.5)

where Xi(r) is the fraction of interaction sites of type i at position r that are

unoccupied, n0(r) is a weighted density defined in Equation 4.8, ζ(r) is a non-

local measure of the density gradient defined in Equation 4.27 and discussed in

Section 3.4, and gSσ (r) is a form of the distribution function at contact, which we

define in Equation 4.7. In Section 4.3.5 I present the approximation to gSσ (r) in-

troduced by Yu and Wu. Given these differing approaches, it seems valuable to

examine this property of the hard-sphere fluid through direct simulation, in order

to establish the advantages and disadvantages of each approach.

Although these recent works have introduced approximate functionals for the

contact value of the distribution function for an inhomogeneous hard-sphere fluid

[3,4], there had not been a study that specifically addressed this functional. In our

work we introduced two definitions for the locally averaged distribution function of
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an inhomogeneous system. Given these definitions, I’ll present a thermodynamic

derivation for each distribution function from the free energy functional. We will

then discuss the distribution functions of Yu and Wu and of Gross, and will end

by comparing all four approximations with Monte-Carlo simulations of the hard-

sphere fluid at a variety of hard-wall surfaces.

4.2 Distribution function with inhomogeneity

We define our terms using the two-particle density n(2)(r1, r2), which gives the

probability per unit volume squared of finding one particle at position r1 and the

other at position r2. The pair distribution function is defined in terms of the pair

density (See Eq 3.2):

g(r1, r2) ≡ n(2)(r1, r2)

n(r1)n(r2)
(4.6)

In a homogeneous fluid, the pair distribution only depends on the distance |r1−r2|

and can be expressed as a function of a single variable, and the contact value of

the distribution function is its value when evaluated at a distance of the diameter

σ. The pair distribution function of an inhomogeneous fluid is not as simple,

but it is desirable for reasons of computational efficiency to construct classical

density functionals using only one-center convolutions. Moreover, a local function

is helpful when defining functionals based on perturbation theory, such as those in

Equations 4.1-5.6. This leads us to seek a local value for gσ that is dependent upon
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only one position variable r. There are two reasonable options for defining such a

local function: a symmetric formulation such as that used in Equation 4.4 (which

we refer to as S) and an asymmetric formulation such as that used in Equation 4.1

(which we refer to as A).

For the symmetric S case, the distribution function at contact is given by:

gSσ (r) ≡ 1

n0(r)2

∫
n(2)(r− r′, r + r′)

δ(σ/2− |r′|)
πσ2

dr′ (4.7)

where σ is the hard sphere diameter and the density n0 is one of the fundamental

measures of Fundamental Measure Theory (FMT). The functional gSσ (r) is defined

to treat the geometrically symmetric possibility of spheres touching at the position

r as illustrated in Figure 4.1.

n0(r) =

∫
n(r′)

δ(σ/2− |r− r′|)
πσ2

dr′ (4.8)

This functional n0(r) gives a density averaged over all spheres that touch at the

position r. Together, n0(r) and gSσ (r) are used in the association free energy given

in Equations 4.4-4.5.

In contrast, the asymmetrically averaged A distribution function is given by

gAσ (r) ≡ 1

n(r)nA(r)

∫
n(2)(r, r + r′)

δ(σ − |r′|)
4πσ2

dr′ (4.9)

where the density nA(r) is analogous to n0(r), but measures the density of spheres
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r

r'

Figure 4.1: Set of hard spheres that are included in n0(r), which consist of those
which just touch the point r.

r

r'

Figure 4.2: Set of hard spheres that are included in nA(r), which consist of those
which just touch a sphere centered at r. The dashed line illustrates the surface
over which contact is possible.
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that are touching a sphere that is located at point r, as illustrated in Figure 4.2.

nA(r) =

∫
n(r′)

δ(σ − |r− r′|)
4πσ2

dr′ (4.10)

Thus gAσ corresponds to an average of the two-particle density over spheres touching

a sphere that is located at the position r. The functionals nA(r) and gAσ (r) are

used in the chain free energy given in Equation 4.1.

4.3 Theoretical Approaches

4.3.1 Homogeneous limit

In order to motivate our derivation of the distribution function at contact for the

inhomogeneous hard-sphere fluid, we begin by deriving the well-known formula for

gσ for the homogeneous fluid that comes from the Carnahan-Starling free energy.

The contact value of the distribution function density can be found by using the

contact-value theorem, discussed in Chapter 3, which states that the pressure on

any hard surface is determined by the density at contact:

pSAS(rc) = kBTn(rc) (4.11)

where rc is a position of a sphere that would be in contact with the hard surface,

n(rc) is the density at this point rc, and pSAS(rc) is the pressure that the spheres

exert on the surface at the same point. This pressure is understood as the ratio of
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force to an infinitesimal element of solvent accessible surface (SAS) area. In the

homogeneous fluid, the contact-value theorem implies that

pSAS = kBTngσ (4.12)

where pSAS is the pressure on a hard sphere’s solvent accessible surface. This

pressure can be readily computed from the dependence of the Carnahan-Starling

free energy on hard sphere radius:

FHS = NkBT
4η − 3η2

(1− η)2
(4.13)

where η ≡ π
6
σ3n is the filling fraction. We compute the pressure using the total

force with respect to a changing radius of all the spheres. To find the pressure, we

divide this force by 4πσ2, which is the SAS area of a single hard sphere, illustrated

in Figure 4.2. Finally, we divide by N to account for the total area of all the

spheres in the fluid.

pSAS =
1

N4πσ2

dAHS
dR

(4.14)

=
1

N4πσ2

1

2

dAHS
dσ

(4.15)

= kBTn
1− η

2

(1− η)3
(4.16)
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Using the contact-value theorem, we thus find the well-known distribution function

evaluated at contact.

gσ =
1− η

2

(1− η)3
(4.17)

Extending this derivation to the inhomogeneous fluid requires that I find the pres-

sure felt by the surface of particular spheres.

4.3.2 Asymmetrically averaged distribution function

We will begin the derivation of the locally averaged distribution function with the

asymmetric definition of gAσ (r) given in Equation 4.9, which is averaged over con-

tacts in which one of the two spheres is located at position r. This distribution

function is related to the contact density averaged over the solvent accessible sur-

face of a sphere located at r, and can thus be determined by finding the pressure on

that surface. We find this pressure from the change in free energy resulting from

an infinitesimal expansion of spheres located at position r. From this pressure, we

derive a formula for the distribution function gAσ (r) as was done in the previous

section:

pSAS(r) =
1

n(r)4πσ2

1

2

δFHS
δσ(r)

(4.18)

gAσ (r) =
1

n(r)nA(r)

1

kBT4πσ2

1

2

δFHS
δσ(r)

(4.19)
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where σ(r) is the diameter of spheres located at position r. Details regarding the

evaluation of the functional derivative δFHS
δσ(r)

are discussed in Appendix A. Equa-

tion 4.19 is an exact expression for gAσ (r) as defined in Equation 4.9. However,

since we do not know the exact hard-sphere free energy, we approximate FHS

using FMT. The equation for gAσ found using FMT requires finding convolutions

of local derivatives of the free energy, making this formulation computationally

somewhat more expensive than the free energy itself.

4.3.3 Symmetrically averaged distribution function

We now address the symmetrically averaged distribution function, which is defined

in Equation 4.7. This corresponds to the distribution function averaged for spheres

touching at a given point. In this case, we conceptually would like to evaluate the

pressure felt by the surface of spheres where that surface is located at point r. We

can approximate this value by assuming that this pressure will be simply related

to the free energy density at point r. Through a process similar to the previous

derivations, this leads to the expression

gSσ (r) =
1

n0(r)2

1

4πσ2

1

2

∂Φ(r)

∂σ
(4.20)

where Φ(r) = Φ1(r) + Φ2(r) + Φ3(r) is the dimensionless free energy density. This

expression is an approximation—unlike the analogous Equation 4.19—because it

assumes that there is available a local functional Φ(r) whose derivative provides
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the pressure needed to compute gσ(r). Equation 4.20 requires that we evaluate

the derivatives of the fundamental measures nα(r) with respect to diameter, which

leads me to derivatives of the δ function, which we can simplify and approximate

using an assumption of a reasonably smooth density:

∂n2(r)

∂σ
=

1

2

∫
δ′(
σ

2
− |r− r′|)n(r′)dr′ (4.21)

=
2

σ
n2(r)− 1

2

∫
δ
(σ

2
− |r− r′|

) r− r′

|r− r′| · ∇n(r′)dr′ (4.22)

≈ 2

σ
n2(r) (4.23)

In the systems that we study, the density is not reasonably smooth, but we can

state empirically making this approximation nevertheless improves the predictions

of our functional gSσ , while at the same time reducing its computational cost by

avoiding the need to calculate any additional weighted densities or convolutions.

4.3.4 Gross’s asymmetrically averaged distribution functional

One approximation for the distribution function is that of Gross [3], which is of

the asymmetrically averaged variety (gAσ ):

gGross,A
σ (r) =

1− 0.5η̄(r)

(1− η̄(r))3 (4.24)
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where η̄ is defined as

η̄ =
1

8

∫
n(r′)Θ(σ − |r− r′|)dr′ (4.25)

This formula is arrived at by using the density averaged over all spheres that

overlap a point r in the Carnahan-Starling equation for the distribution function

at contact, given in Equation 4.17.

4.3.5 Yu and Wu’s symmetrically averaged functional

Yu and Wu developed a functional for the distribution function evaluated at con-

tact which is symmetrically averaged [4]. However, instead of using n0 as the

corresponding density, they use a density given by

nYu(r) = n0(r)ζ(r) (4.26)

ζ = 1− n2 · n2

n2
2

(4.27)

where the function ζ is a measure of local inhomogeneity at the point of contact,

and has the effect of reducing this density at interfaces. Because of this difference,

the distribution function of Yu and Wu cannot be directly compared with gSσ as

defined in Equation 4.7. Therefore in order to make a comparison we move the
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factors of ζ in Equation 4.26 from the density into the distribution function itself.

gYu,S
σ = ζ2gYu

σ (4.28)

= ζ2

(
1

1− n3

+
1

4

σn2ζ

(1− n3)2
+

1

72

σ2n2
2ζ

(1− n3)3

)
(4.29)

where gYu
σ is the distribution function as defined in reference [4], and gYu,S

σ is the

function we will examine in this paper.

4.4 Comparison with simulation

We performed a Monte-Carlo simulation of the hard sphere fluid to measure the

contact value of the distribution function for several simple inhomogeneous config-

urations. For each configuration, we compute the mean density, and the contact

values of the distribution function, averaged as defined in Equations 4.9 and 4.7.

We compare these with the four functionals presented in sections 4.3.2 to 4.3.5.

We constructed our functionals using both the original White Bear functional [59]

as well as the mark II version of the White Bear functional [60], but the results

were visually indistinguishable on our plots, so we exclusively show the results due

to the original White Bear functional.

We simulate the inhomogeneous hard sphere fluid at four hard-wall interfaces.

The first and simplest is a flat hard wall. We then study two convex hard surfaces.

One is an excluded sphere with diameter 2σ, which corresponds to a “test particle”

simulation with one of a hard sphere at the origin with diameter σ. The second is an
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excluded sphere with diameter 6σ, which demonstrates behavior typical of mildly

convex hard surfaces. Finally, we study a concave surface given by a hard cavity

in which our fluid is free to move up to a diameter of 16σ, which demonstrates

behavior typical of mildly concave surfaces. In each case, we performed a low-

density (filling fraction 0.1) and high-density (filling fraction 0.4) simulation. We

performed additional computations over a wider range of curvatures and densities,

but chose these to present as typical examples.

4.4.1 Low density

We begin by presenting our low-density results, corresponding to a filling fraction

of 0.1, which are shown in Figure 4.3. At this low density, the contact value of

the distribution function in the bulk is only 1.3, indicating that correlations are

indeed small and that the fluid should be relatively easy to model. Indeed, the

contact density at the hard surface is only around 50% higher than the bulk, and

the FMT predicted density is close to indistinguishable from the true density for

each of the four configurations, as seen in the bottom subpanel of each subfigure

within Figure 4.3.

The gAσ distribution function in each configuration (plotted in the top panel

of each subfigure within Figure 4.3) is very flat, with only small, smooth changes

as the surface is approached. Our functional gAσ very closely matches the Monte

Carlo predictions in each case, while that of Gross consistently underestimates the

distribution at the interface by a significant margin. We note that the theoretical
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Figure 4.3: Density and distribution function in systems with a “low density” bulk
filling fraction of 0.1. The subplots each show a different system: (a) next to a flat
hard wall, (b) around a hard sphere with an excluded diameter of 6σ, (c) around
a hard sphere with an excluded diameter of 2σ, and (d) within a spherical cavity
with an included diameter of 16σ. In the top and middle panels of each subfigure
respectively are the asymmetrically averaged distribution function gAσ (defined in
Equation 4.9) and the symmetrically averaged distribution function gSσ (defined
in Equation 4.7). The results of Monte Carlo, our functional, and one previously
published functional [3,4] are compared in each case. The bottom panels show the
density computed with Monte Carlo and with DFT.
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curves extend into the region from which the fluid is excluded. This value cor-

responds to the distribution function that would be observed in the vanishingly

unlikely scenario in which there was a sphere present at that location. Naturally,

we are unable to observe this quantity in our Monte Carlo simulations.

The gSσ distribution function (plotted in the middle panels of Figure 4.3) shows

considerably more structure, as well as additional variation due to the curvature

of the hard surface. The symmetric distribution function is nonzero at locations

where spheres may touch, which for a convex hard surface means that gSσ may be

nonzero in the volume in which hard spheres are excluded. In every configuration

studied, the agreement between the theoretical predictions and the Monte Carlo

simulation in each case is very poor in the region where there should be no contacts

at all. Because n0 is comparable to its bulk value in this region, this means that

these functionals predict a significant number of contacts in the region where there

should be none. The distribution function of Yu and Wu [4] and ours described in

Section 4.3.3 give similar results, with slightly larger errors in our prediction.

4.4.2 High density

At a higher density corresponding to a filling fraction of 0.4, correlations are much

stronger, with the bulk contact value of the distribution function of 3.7, as seen in

Figure 4.4. This results in larger oscillations in the density at the hard surfaces,

and correspondingly more interesting behavior in the distribution function near the

interface, as shown in the bottom panels of the plots in Figure 4.4. The density
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Figure 4.4: Density and distribution function in systems with a “high density” bulk
filling fraction of 0.4. The subplots each show a different system: (a) next to a flat
hard wall, (b) around a hard sphere with an excluded diameter of 6σ, (c) around
a hard sphere with an excluded diameter of 2σ, and (d) within a spherical cavity
with an included diameter of 16σ. In the top and middle panels of each subfigure
respectively are the asymmetrically averaged distribution function gAσ (defined in
Equation 4.9) and the symmetrically averaged distribution function gSσ (defined
in Equation 4.7). The results of Monte Carlo, our functional, and one previously
published functional [3,4] are compared in each case. The bottom panels show the
density computed with Monte Carlo and with DFT.
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predicted by the White Bear functional agrees reasonably well with the simulation

results, although not so well as it did at lower density. The discrepancies are largest

in the case of the spherical cavity (Figure 4.4d), in which the DFT considerably

underestimates the range of the density oscillations.

The asymmetric version of the distribution function (plotted in the top panels

of Figure 4.4) once again displays relatively smooth behavior with a few small

oscillations near the interface, and a somewhat elevated value within a diameter

of the hard surface, with the magnitude of this elevation somewhat different in

each configuration. As was the case at low density, our distribution function gAσ

matches very closely the Monte Carlo data, reproducing quite well the structure

near the interface in each configuration, although in the spherical cavity there is

a small, but significant discrepancy, comparable to the discrepancy found in the

density itself. In each case, the distribution of Gross dramatically underestimates

the value at the interface, at one extreme by 40% in the case of the spherical

cavity (Figure 4.4d), and at the other extreme by 15% in the test-particle scenario

(Figure 4.4c).

The symmetrically averaged distribution function (plotted in the middle panels

of Figure 4.4) shows considerably more structure near the interface at high density,

and this structure varies considerably depending on the curvature of the hard

surface. In each case, this structure is not reflected in the theoretical predictions,

neither that of this paper, nor that of Yu and Wu [4]. As was the case at low

density, both functionals give significant and finite values in the region in which

there are no contacts, but at high density they also miss the large oscillations that
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are present near the flat wall and the concave surface (Figures 4.4a and 4.4d). As

was the case at low density, the functional of Yu and Wu [4] gives slightly better

agreement with the simulation results than that which we derive in Section 4.3.3.

4.5 Conclusion

We investigated several approximations to the contact value of the distribution

function for inhomogeneous fluid distributions corresponding to flat, concave, and

convex walls. We defined and simulated two averages of the distribution func-

tion, an asymmetric A average centered at the location of one of the two spheres

that is in contact, and a symmetric S average centered at the point of contact of

touching spheres. For each average, we derived a functional form from FMT, and

also found an approximation that has been used in the literature. When compared

with essentially exact Monte Carlo simulations, the A distribution function derived

from Fundamental Measure Theory in Section 4.3.2 gives excellent results for each

surface, at both high density and low density. The other three approximations

that we studied all showed significant and systematic deviations under some cir-

cumstances. Thus, we recommend that creators of SAFT-based classical density

functionals consider using the gAσ functional defined in Section 4.3.2.



74

5 Improved Association Term in SAFT Classical DFT for water

5.1 Introduction

In this chapter we present a modification to a SAFT-based classical density func-

tional theory for water that was recently published by my research group [63]. In

Chapter 4 we developed and tested a functional for the averaged radial distribution

function at contact of the hard-sphere fluid that is dramatically more accurate at

interfaces than earlier approximations. We now incorporate this improved func-

tional into the association term of our free energy functional for water, improving

its description of hydrogen bonding. We examine the effect of this improvement

by studying two hard solutes (a hard hydrophobic rod and a hard sphere) and

a Lennard-Jones approximation of a krypton atom solute. The improved func-

tional leads to a moderate change in the density profile and a large decrease in the

number of hydrogen bonds broken in the vicinity of the hard solutes. We find an

improvement of the partial radial distribution for a krypton atom in water when

compared with experiment.

Water, the universal solvent, is of critical practical importance, and a contin-

uum description of water is in high demand for a solvation model. A number of

recent attempts to develop improved solvation models for water have built on the

approach of classical density functional theory (DFT) [64–70]. There are two gen-

eral approaches used to construct a classical DFT for water. The first is to choose
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a convenient functional form which is then fit to properties of the bulk liquid at

a given temperature and pressure [64–71]. Using this approach, it is possible to

construct a functional that reproduces the exact second-order response function

of the liquid under the fitted conditions. However, this class of functional will be

less accurate at other temperatures or pressures—and in the inhomogeneous sce-

narios in which solvation models are applied. The second approach is to construct

a functional by applying liquid-state theory to a model system, and then fit the

model to experimental data such as the equation of state [61,63,72–80].

The association contribution to the SAFT free energy uses Wertheim’s first-

order thermodynamic perturbation theory to describe an associating fluid as hard-

spheres with strong associative interactions at specific sites on the surface of each

sphere [81–84]. These association sites have an attractive interaction at contact,

and rely on the hard-sphere pair distribution function at contact gHS
σ in order to

determine the extent of association. While this function is known for the homo-

geneous hard-sphere fluid, it must be approximated for inhomogeneous systems,

such as occur at liquid interfaces.

In Chapter 4 we examined the pair distribution function at contact in various

inhomogeneous configurations. We tested the accuracy of existing approximations

for the pair distribution function at contact [3, 4], and derived a significantly im-

proved approximation for the averaged distribution function at contact. In this

chapter we apply this improved gHSσ to the SAFT-based classical density func-

tional for water developed by Hughes et al. [63]. This functional was constructed

to reduce in the homogeneous limit to the 4-site optimal SAFT model for water
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developed by Clark et al. [72]. The DFT of Hughes et al. uses the association free

energy functional of Yu and Wu [4], which is based on a gHSσ that we have since

found to be inaccurate [85]. In this chapter, we will examine the result of using

the improved functional for gHSσ to construct an association free energy functional.

5.2 Method

The classical density functional for water of Hughes et al. consists of four terms:

F [n(r)] = Fideal[n(r)] + FHS[n(r)] + Fdisp[n(r)] + Fassoc[n(r)] (5.1)

where Fideal is the ideal gas free energy and FHS is the hard-sphere excess free

energy, for which we use the White Bear functional [59]. Fdisp is the free energy

contribution due to the square-well dispersion interaction; this term contains one

empirical parameter, sd, which is used to fit the surface tension of water near one

atmosphere. Finally, Fassoc is the free energy contribution due to association, which

is the term that we examine in this chapter.

5.2.1 Dispersion

The dispersion term in the free energy includes the van der Waals attraction and

any orientation-independent interactions. Following Hughes et al., we use a dis-

persion term based on the SAFT-VR approach [86], which has two free parameters

(taken from Clark et al. [72]): an interaction energy εd and a length scale λdR.
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The SAFT-VR dispersion free energy has the form [86]

Fdisp[n] =

∫
(a1(x) + βa2(x))n(x)dx (5.2)

where a1 and a2 are the first two terms in a high-temperature perturbation expan-

sion and β = 1/kBT . The first term, a1, is the mean-field dispersion interaction.

The second term, a2, describes the effect of fluctuations resulting from compression

of the fluid due to the dispersion interaction itself, and is approximated using the

local compressibility approximation (LCA), which assumes the energy fluctuation

is simply related to the compressibility of a hard-sphere reference fluid [87].

The form of a1 and a2 for SAFT-VR is given in reference [86], expressed in

terms of the packing fraction. In order to apply this form to an inhomogeneous

density distribution, we construct an effective local packing fraction for dispersion

ηd, given by a Gaussian convolution of the density:

ηd(x) =
1

6
√
πλ3

ds
3
d

∫
n(x′) exp

(
− |x− x′|2

2(2λdsdR)2

)
dx′. (5.3)

This effective packing fraction is used throughout the dispersion functional, and

represents a packing fraction averaged over the effective range of the dispersive

interaction. Eq. 5.3 contains an additional empirical parameter sd introduced by

Hughes et al., which modifies the length scale over which the dispersion interaction

is correlated.
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Figure 5.1: Comparison of Surface tension versus temperature for theoretical and
experimental data. The experimental data is taken from NIST [5]. The length-
scaling parameter sd is fit so that the theoretical surface tension will match the
experimental surface tension near room temperature.

5.2.2 Association

The association free energy for our four-site model has the form:

Fassoc[n] = kBT

∫
nsite(x)

(
lnX(x)− X(x)

2
+

1

2

)
dx (5.4)

where nsite(r) is the density of bonding sites at position r:

nsite(r) =


4n(r) this work

4n0(r)ζ(r) Hughes et al. [63]

(5.5)

where the factor of four comes from the four hydrogen bond sites, the fundamental

measure n0(r) is the average density contacting point r, and ζ(x) is a dimensionless
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measure of the density inhomogeneity from Yu and Wu [4], defined in Eq 4.27. The

functional X(r) is the fraction of association sites not hydrogen-bonded, which is

determined for our 4-site model by the quadratic equation

X(x) =

√
1 + 2n′site(r)κag

SW
σ (x) (eβεa − 1)− 1

n′site(r)κag
SW
σ (x) (eβεa − 1)

, (5.6)

where

n′site(r) =


4
πσ2

∫
n(r′)δ(σ − |r− r′|)dr′ this work

4n0(r)ζ(r) Hughes et al.

(5.7)

is the density of bonding sites that could bond to the sites nsite(r), and

gSWσ (x) = gHS
σ (x) +

1

4
β

(
∂a1

∂ηd(x)
− λd

3ηd

∂a1

∂λd

)
, (5.8)

where gHS
σ is the correlation function evaluated at contact for a hard-sphere fluid,

and a1 and a2 are the two terms in the dispersion free energy given in Eq. 5.2.

The radial distribution function of the square-well fluid gSWσ is constructed as a

perturbative correction to the hard-sphere radial distribution function gHS
σ . The

functional of Hughes et al. uses the gHS
σ from Yu and Wu [4]. In this work, we use

the gHS
σ derived in Chapter 4.

As in Hughes et al., we use Clark’s five empirical parameters, and fit the cal-

culated surface tension to experimental surface tension at ambient conditions by

tuning the parameter sd, which adjusts the length-scale of the average density
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Figure 5.2: Density profiles for a water around a single hard rod of radius 0.1 nm.
The solid red profile is from the functional developed in this chapter and the
dashed blue profile is the result from Hughes et al.. For scale, under the profiles
is a cartoon of a string of hard spheres touching in one dimension. The horizontal
black dotted line is the bulk density for water and the vertical line on the left at
0.1 nm represents the rod wall.

used for the dispersion interaction. With the improved association term, we find

these agree when sd is 0.454, which is an increase from the value of 0.353 found

by Hughes et al.. In order to explore further the change made by the improved

association term, we compared the new functional with that of Hughes et al. for

the two hydrophobic cases of the hard rod and the hard spherical solute.

5.3 Results

We will first discuss the case of a single hard rod immersed in water. Figure 5.2

shows the density profile of water near a rod with radius 1 Å. The density computed
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Figure 5.3: Broken hydrogen bonds per nanometer for hard rods immeresed in
water. The solid red line uses the functional developed in this chapter while the
dashed blue line uses the functional from Hughes et al.. For large enough rods,
the graph increases linearly for both functionals.

using the functional of this chapter is qualitatively similar to that from Hughes

et al., with a comparable density at contact—consistent with having made only a

moderate change in the free energy. The first density peak near the surface is higher

than that from Hughes et al., and the peak has a kink at the top. This reflects

the improved accuracy of the gHS
σ compared with Hughes et al., since beyond the

first peak water molecules are unable to touch—or hydrogen bond to—molecules

at the surface of the hard rod. This is illustrated under the profiles in Figure 5.2

by a cartoon of adjacent hard spheres that are increasingly distant from the hard

rod surface.

In addition to the density, we examine the number of hydrogen bonds which
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are broken due to the presence of a hard rod. We define this quantity as

Nbroken HB = 2

∫
(X(r)−Xbulk)nsite(r)dr (5.9)

where Xbulk = 0.13 is the fraction of unbonded association sites in the bulk. The

factor of 2 is chosen to account for the four association sites per molecule, and the

fact that each broken hydrogen bond must be represented twice—once for each of

the molecules involved. In Fig. 5.3 we show the number of hydrogen bonds broken

by a hard rod per nanometer length, as predicted by the functional of Hughes

et al. (dashed line) and this work (solid line), as a function of the radius of the

hard rod. In each case in the limit of large rods, the number of broken bonds is

proportional to the surface area. At every radius, the functional of Hughes et al.

predicts approximately four times as many broken hydrogen bonds as the improved

functional.

A common test case for studying hydrophobic solutes in water is the hard-

sphere solute. Figure 5.4 shows results for the number of broken hydrogen bonds

caused by a hard-sphere solute, as a function of the solute radius. As in Fig. 5.3,

the number of broken bonds scales with surface area for large solutes, and the

number of broken bonds is about four times smaller than the number from the

functional of Hughes et al.. For solutes smaller than 3 Å in radius, there is less

than a tenth of a hydrogen bond broken. This is consistent with the well-known

fact that small solutes (unlike large solutes) do not disrupt the hydrogen-bonding

network of water [88].
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Figure 5.4: Broken hydrogen bonds for hard spheres immeresed in water. The
solid red line uses our the functional developd in this chapter while the dashed
blue line is from Hughes et al..

Finally, in order to compare with experimental results, we examined the hy-

dration of Krypton. To describe the interaction of water with krypton, we use a

Lennard-Jones potential with values ε = .9518 kJ/mol and σ = 3.42 Å calculated

using the Lorentz-Berthelot mixing rules and the Lennard-Jones parameters for

water from SPC/E calculations [89]. Figure 5.5 shows the krypton-oxygen partial

radial distribution function gKr−O(r), which gives the relative probability density

that an oxygen atom resides at a distance r from a krypton atom centered at the

origin. We present theoretical curves computed using both this work and the func-

tional of Hughes et al., which we compare with experimental data from extended

x-ray absorption fine structure spectroscopy (EXAFS) [6]. The new functional

shows improved agreement with experiment in the height and position of the first
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Figure 5.5: The Kr-O partial radial distribution function at low temperature (5◦ C)
and high pressure (110 bar) in the limit of low concentration of krypton in water.
The dashed blue line is computed using using the functional from Hughes et al.,
the solid red line is this work, and the black dotted line is from experiment [6].

maximum as well as the hight and position of the first minimum in gKr−O(r) when

compared with that of Hughes et al.

5.4 Conclusion

We have modified the classical DFT for water developed by Hughes et al. [63] with

the more accurate radial distribution function at contact developed in Chapter 4,

which affects the predicted hydrogen bonding between water molecules. We found

that while this modification has a relatively mild effect on the free energy and

density profiles, it predicts fewer broken hydrogen bonds around hard hydrophobic

solutes and at aqueous interfaces. The improved functional does indeed show better
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agreement with experiment when used to compute the partial radial distribution

function of a krypton atom dissolved in water.
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6 Pair Distribution Function

6.1 Introduction

In this chapter we introduce an approximation for the pair distribution function of

the inhomogeneous hard sphere fluid. Our approximation makes use of our recently

published averaged pair distribution function at contact, detailed in chapter 4,

which has been shown to accurately reproduce the averaged pair distribution func-

tion at contact for inhomogeneous density distributions. This approach achieves

greater computational efficiency than previous approaches by enabling the use of

exclusively fixed-kernel convolutions and thus allowing an implementation using

fast Fourier transforms. We compare results for our pair distribution approxima-

tion with two previously published works and Monte-Carlo simulation, showing

favorable results.

Within standard liquid state theory, the perturbation theory treatment of in-

termolecular interactions relies on the pair distribution function of the reference

fluid: g
(2)
HS(r1, r2). Unlike the radial distribution function of a homogeneous fluid,

there does not currently exist a tractable form for the pair distribution function

of an inhomogeneous hard-sphere fluid, suitable for use in constructing a density

functional [75,90].

At its core, thermodynamic perturbation theory (TPT), sometimes referred to

as the high-temperature expansion, is an expansion of the free energy in powers of
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a small parameter, which is the product of a pairwise attractive interaction with

the inverse temperature β:

F = F0 + F1 + βF2 +O(β2) (6.1)

where the terms Fn are corrections to the free energy of order n in the small

interaction. The first and largest term in this expansion is

F1[n(r)] = 1
2

∫∫
g

(2)
HS(r1, r2)n(r1)n(r2)Φ(|r1 − r2|)dr1dr2 (6.2)

where g
(2)
HS(r1, r2) is the pair distribution function of the hard-sphere reference fluid,

and Φ(r) is the pair potential. Formally, this requires the pair distribution function

as a functional of the density n(r). In Section 6.2, we introduce existing theoretical

approaches for computing g
(2)
HS(r1, r2) given the external potential felt by the hard

spheres. In Section 6.3, we introduce existing approximations for the hard-sphere

pair distribution that are expressed as a functional of the density distribution n(r),

which is a form that is more directly useful in the construction of classical density

functionals—which are themselves expressed as a functional of the density.

In this chapter, we introduce a new contact value approach (CVA) to approxi-

mating the hard-sphere pair distribution function which is suitable for use in the

creation of classical density functionals based on thermodynamic perturbation the-

ory. The resulting function is based on a fit to the radial distribution function that

is separable in a way that enables efficient evaluation of the integral in Eq. 6.2.
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6.2 Pair distribution from the external potential

Given the external potential V (r) felt by a hard-sphere fluid, there are several

approaches that have been used to compute the pair distribution function. We

review these approaches here. The classic (and earliest) approach for computing

the pair distribution function given the external potential is Percus’ trick of treating

one sphere as an additional contribution to the external potential, and to find the

pair distribution function from the resultant equilibrium density [45]. This elegant

approach lends itself to computation using DFT, and can be used to compute and

plot the pair distribution function, but requires a full free-energy minimization for

each position r1 in g(2)(r1, r2), and hence would be prohibitively expensive as a

tool in constructing a free energy functional.

The canonical inhomogeneous configuration for the hard-sphere fluid is the sys-

tem consisting of a hard sphere at a hard wall. In 1986, Plischke and Henderson

solved the pair distribution function of this system using integral equation theory

under the Percus-Yevick approximation [91]. Lado recently introduced a new and

more efficient algorithm for implementing integral equation theory for inhomoge-

neous fluids, which computes g(2)(r1, r2) [92]. While this approach is two orders

of magnitude more efficient than previous implementations, it remains a compu-

tationally expensive approach, and unsuitable for repeated evaluation within a

free-energy minimization as required by DFT.

Another inhomogeneous configuration that is of interest is the test-particle

configuration, in which one hard sphere is fixed. Where the hard-wall is a sur-
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face with no curvature, the test-particle configuration has a surface with curvature

at the molecular length scale. In this case, the density gives the radial distri-

bution function—this is just Percus’ trick—and the pair distribution function of

this inhomogeneous test-particle system gives the triplet distribution function of

the homogeneous fluid. The triplet distribution function of the homogeneous fluid

has been computed by González et al. using the test-particle approach with two

spheres fixed [93].

6.3 Pair distribution from the density

The alternative to specifying the external potential is to specify the density dis-

tribution n(r). One may move between these representations by either computing

the external potential corresponding to a given density of hard spheres by taking

a functional derivative of the hard-sphere free energy functional, or by minimizing

the free energy given an external potential. However, in general it is simplest to use

an approach that makes use of the natural variables, which in the case of classical

density functional theory is the density.

The most direct and rigorous approach to find the pair distribution function

given the density is to take a second functional derivative of the hard-sphere free

energy to find the direct correlation function. One can then solve the Ornstein-

Zernike equation numerically to find the pair distribution function. This approach

was used by Götzelmann et al. to solve for the pair distribution function near a

hard wall using an early hard-sphere free energy functional [94]. While this ap-
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proach is rigorous, solving the inhomogeneous Ornstein-Zernike equation remains

computationally challenging, although more efficient approximate algorithms have

been developed [95]. This approach, while appealing, remains unsuitable for use

in the construction of a classical density functional due to its significant computa-

tional cost.

In addition to the above exact approach, there are a number of analytic ap-

proximations for the inhomogeneous pair distribution function, which extend the

radial distribution function to inhomogeneous scenarios. These approximations

differ both in what density to use when evaluating the radial distribution function

g(r;n), and in how to combine the radial distribution function evaluated at these

densities [96].

Early approximations to the pair distribution function used the density at one

or two positions to determine the pair distribution function. There are three

common approaches:

g(2)(r1, r2) ≈ g

(
r12;n

(
r1 + r2

2

))
midpoint (6.3)

g(2)(r1, r2) ≈ g

(
r12;

n(r1) + n(r2)

2

)
mean density (6.4)

g(2)(r1, r2) ≈ g(r12;n(r1)) + g(r12;n(r2))

2
mean function (6.5)

These approaches have been successfully and widely used in treating the surface

tension of simple fluids [97–105]. The mean density approximation has also been

quoted (as a goal) by recent papers that proceed to make further approximations [3,
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75]. However, these approximations fail dramatically when applied to strongly

inhomogeneous systems such as a dense fluid at a solid surface. Such systems

exhibit a strongly oscillatory density distribution, with density peaks that can

have local packing fractions greater than unity, which cannot occur in the bulk

reference system that defines g(r;n). The above papers restrict themselves to the

liquid-vapor interface, which does not exhibit this pathology.

Non-pathological approaches use an average of the density over some volume.

Fischer and Methfessel introduce the approximation [9, 106]:

g(2)(r1, r2) ≈ g
(
r12;n3

(
1
2
(r1 + r2)

))
(6.6)

where n3 is an integral of the density over a spherical volume that is now used as

one of the fundamental measures in Fundamental Measure Theory [52]:

n3(r) =

∫
n(r′)Θ(1

2
σ − |r− r′|)dr′ (6.7)

Equation 6.6 is computationally awkward, because it treats as special the midpoint

1
2
(r1+r2). Moreover, the approach of Fischer and Methfessel is intended to approx-

imate the pair distribution function only at contact, when the distance between r1

and r2 is the hard-sphere diameter. Tang et al. employed an approximation for

the pair distribution function that is similar to that of Fischer and Methfessel, but

with a self-consistent weighted density computed with a weighting function that

is itself dependent on the weighted density [107]. This weighted density was com-

puted using the hard-sphere weighted density of Tarazona, which was developed
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using the direct correlation function of the homogeneous hard-sphere fluid [108].

Sokolowski and Fischer addressed the shortcomings of the theory of Fischer

and Methfessel by modifying this approach to use density averages centered on the

two points r1 and r2:

g(2)(r1, r2) ≈ g
(
r12; 1

2
(n̄(r1) + n̄(r2))

)
(6.8)

where their averaged density n̄(r) given by

n̄(r) ≡ 3

4π(0.8σ)3

∫
n(r′)Θ(0.8σ − |r− r′|)dr′ (6.9)

is the density averaged over a sphere with diameter 0.8σ [8]. The value 0.8 in this

formula was arrived at by fitting to Monte Carlo simulation. Although Eq. 6.8 has

the advantage of only involving density averages at the points at which the pair

distribution function is desired, it remains sufficiently computationally cumber-

some that it has only been used in two papers studying the one-dimensional liquid

vapor interface [109,110]. Because it cannot be written as a single-site convolution,

this approach is particularly computationally demanding when applied to systems

featuring inhomogeneity in more than one dimension.

In Chapter 4, we introduce a functional that gives a good approximation for

the pair distribution function averaged over positions r2 that are in contact with
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r1, defined as:

gσ(r1) ≡
∫
g(2)(r1, r2)δ(σ − |r1 − r2|)n(r2)dr2

ñ(r1)
(6.10)

where the weighted density ñ(r1) is defined by:

ñ(r) ≡
∫
n(r′)δ(σ − |r− r′|)dr′. (6.11)

In Chapter 4 we use the contact-value theorem to derive the exact formula:

gσ(r) =
1

2

1

kBTn(r)ñ(r)

δFHS
δσ(r)

(6.12)

where σ(r) is the diameter of hard spheres located at position r, and FHS is the

Helmholtz free energy of the hard-sphere fluid. The functional derivative of the

free energy with respect to the hard-sphere diameter in Eq. 6.12 requires that we

be able to evaluate the change in free energy resulting from a change in the diam-

eter of specifically the hard spheres located at position r. This somewhat unusual

construction is mathematically straightforward within Fundamental Measure The-

ory (FMT) [52]. We employ the White Bear variation of the FMT free energy

functional [59], which provides an excellent approximation for this averaged value

of the pair distribution function at contact for a variety of interfaces, and over a

wide range of densities.
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6.4 Contact value approach

In the approaches for the pair distribution function mentioned above, the radial

distribution function used in the approximation was dependent upon the density

averaged over some volume. We seek to achieve greater accuracy by making use of

a function dependent upon our averaged gσ(r) discussed above, which holds more

information about an inhomogeneous system than does a simple convolution of

the density. We construct the CVA with the average of two radial distribution

functions, evaluated at the distance between the two points, that are themselves

functions of the averaged pair distribution function at contact gσ(r) evaluated at

the two points:

g(2)(r1, r2) =
g(r12; gσ(r1)) + g(r12; gσ(r2))

2
. (6.13)

This CVA for g(2)(r1, r2) is constructed to reproduce the exact value for the integral:

F contact
1 = 1

2

∫∫
g

(2)
HS(r1, r2)n(r1)n(r2)δ(|r1 − r2| − σ)dr1dr2 (6.14)

which is the mean-field correction to the free energy (see Eq. 6.2) for a purely

contact interaction.

The CVA requires the radial distribution function expressed as a function of r

and gσ. We construct a functional form for g(r, gσ) that allows for improved com-

putational efficiency. We introduce the general form that allows for this efficiency

in Section 6.5, and we detail our specific approximation for g(r, gσ) that uses this
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general form in Section 6.6.

6.5 Making the CVA efficient

The existing approaches to approximating the pair distribution function outlined

in Section 6.3 have not been widely used in the construction of density functionals

based on thermodynamic perturbation theory, largely due to their computational

complexity. While our CVA provides only an incremental improvement in accuracy,

its construction enables significant gains in computational efficiency, allowing for

practical application in density functionals. We achieve this gain by developing

a separable fit to the radial distribution function of the hard-sphere fluid (see

Section 6.6 for details). This separable fit is of the form

g(r; gσ) =
∑
i

ai(r)bi(gσ) (6.15)

where the notable aspect is that the radial distribution function is written as a

sum of terms that are each a simple product of a function of radius with a function

of gσ. This enables us to write integrals—such as Eq. 6.2—that are linear in the

pair distribution function as a summation of fixed-kernel convolutions, which may

be efficiently computed using Fast Fourier Transforms (FFTs).

Computation of the free energy correction from Eq. 6.2 for a periodic system

by direct integration requires a nested integration over the volume of the sys-

tem Vcell, and the volume over which the interaction is nonzero VΦ. Thus the cost
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of computation scales as O
(
VcellVΦ

∆V 2

)
where ∆V is the volume resolution of the com-

putational grid. Direct integration is the most efficient algorithm when using the

existing functionals for g(2)(r1, r2) described in Section 6.3. The one exception is

the “mean-function” approximation (Eq. 6.5), which could in principle be made

more efficient using the same technique we describe here. Because the CVA allows

the integral in Eq. 6.2 to be written as a sum of fixed-kernel convolutions, it can

be computed without a nested integral, at the cost of performing a few FFTs.

This approach scales as O
(
Vcell
∆V

log Vcell
∆V

)
, as do most widely used DFT functionals

such as FMT [52,59]. With this scaling, when examining systems with long inter-

action distances or high resolution—which is often necessary when working with

hard-sphere functionals—the CVA has the potential to be far more efficient than

existing methods.

To see how we obtain this improved scaling, we examine the lowest-order cor-

rection in TPT, given by Eq. 6.2. The two terms that are averaged in Eq. 6.13

give equal contributions to the integral

FCVA
1 = 1

2

∫∫
g(r12; gσ(r2))n(r1)n(r2)Φ(|r1 − r2|)dr1dr2. (6.16)

When we introduce the separable form for g(r12; gσ) we can further simplify this

integral as

FCVA
1 =

∑
i

1
2

∫
n(r1)

∫
ai(r12)Φ(r12)bi(gσ(r2))n(r2)dr2dr1 (6.17)

where the functional is written as a summation of integrals of simple convolutions
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Figure 6.1: Plot of the hard-sphere radial distribution function of the homogeneous
fluid at several values for packing fraction η. The blue lines show our separable fit,
the black dots show the true radial distribution function g(r) as found from Monte
Carlo simulation, and the dashed lines are results of the Gil-Villegas fit [7]. The
dotted extension of each fitted curve indicates the value of the function outside of
the fitted region.
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in three dimensions. Thus, each of these integrals may be computed in O(N logN)

time, where N is the number of grid points in the computational cell. This is the

same scaling as is required to compute the fundamental measures such as n3 which

are used in FMT.

6.6 A separable fit for the radial distribution function

Having settled on the basic structure of our function, we further refine it by per-

forming a separable fit to the radial distribution function from Monte Carlo simu-

lation. We focus our fit on the range of distances r12 ≤ 4R. This range is relevant

to the widely used [46–48] Statistical Associating Fluid Theory of Variable Range

(SAFT-VR) free energy with square-well dispersive attraction developed by Gil-

Villegas et al. [7]. Although we consider this range of radii particularly interesting,

this is not a fundamental limit of the approach, as one could readily extend the

fit to larger radii by including additional fitting parameters. For comparison, in

Fig. 6.1 we plot our fit, Monte-Carlo data, and the radial distribution function of

Gil-Villegas et al., which we have extracted from their approximation for the first

term in the dispersion free energy given by Eq. 6.2.

For ease of implementation and future extension to larger radii, we fit the radial

distribution function using a fourth-order polynomial. We constrain our functional

form such that g(r; gσ) reduces to gσ at contact and approaches g(r) = 1 in the



99

κ =


−1.754 0.027 0.838 −0.178
−2.243 4.403 −2.48 0.363
0.207 0.712 −1.952 1.046
−0.002 −0.164 0.324 −0.162


Table 6.1: The fitted κij matrix.

low-density limit. Incorporating these constraints we have the functional form

g(r; gσ) = gσ +
4∑
i=1

4∑
j=1

κij(gσ − 1)i
(
r
σ
− 1
)j
, (6.18)

where the matrix κij is determined from a least-squares fit to Monte Carlo data

for the radial distribution function, over the range 2R ≤ r ≤ 4R, and for packing

fractions η ≤ 0.45. The resulting parameters are displayed in Table 6.1. The

maximum error in g(r) within this range is 0.2, which occurs at η = 0.45 and

r = 3.7R. Fig. 6.1 displays our approximation at just under half of the densities

that were included in the fit.

6.7 Results

6.7.1 Pair distribution function

We begin by examining the pair distribution function near a hard wall, with a

focus on the case where one of the two spheres is in contact with the hard wall.

Figures 6.2a and 6.2c compare the results of the CVA with Monte Carlo simulations
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Figure 6.2: The pair distribution function near a hard wall, with packing fractions
of 0.1 and 0.3 and r1 in contact with the hard wall. On the left are 2D plots of
g(2)(r1, r2) as r2 varies. The top halves of these figures show the results of Monte
Carlo simulations, while the bottom halves show the CVA, truncated beyond the
range of the fit. On the right are plots of g(2)(r1, r2) on the paths illustrated in the
figures to the left. These plots compare the CVA (blue solid line), Monte Carlo
results (black circles), the results of Sokolowski and Fischer (red dashed line) [8],
and those of Fischer and Methfessel (green dot-dashed line) [9]. The latter is only
plotted at contact, where it is defined.
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at packing fractions of 0.1 and 0.3 respectively. We see reasonable agreement at

the lower density, with a flatter angular dependence when the two spheres are

in contact. At the higher density, we see significant structure developing in the

simulation results that is not reflected in our approximation.

Figures 6.2b and 6.2d show the pair distribution function as plotted along paths

illustrated in Figures 6.2a and 6.2c. These plots compare the CVA with Monte

Carlo results, as well as the approximations of Sokolowski and Fischer [8] and

of Fischer and Methfessel [9] at the same packing fractions of 0.1 and 0.3. The

approach of Fischer and Methfessel is only defined when the two spheres are in

contact, and is therefore only plotted on that segment of the path. As an input to

the previous approximations we use the hard sphere radial distribution function

found with Monte Carlo simulation, interpolated as necessary. We find that both

previous approximations to the pair distribution function predict stronger angular

dependence of the pair distribution function at contact than this work. The pre-

vious approximations each have a systematic error at contact—either too high or

too low. In contrast, our errors at contact have a tendency to cancel when used in

a perturbation expansion. At higher densities, the approximation of Fischer and

Methfessel requires evaluating the radial distribution function at densities signif-

icantly higher than the freezing density, which poses numerical difficulties when

using the radial distribution function from simulation. When the two points r1

and r2 are both more than a radius away from contact, we find that any of these

approaches gives a reasonable prediction.



102

6 4 21 3 5 7
0

2

4

6

8

10

g
(3

) (
〈0
,0
,0
〉,
〈0
,0
,σ
〉,

r)

x/R z/R

b)

Monte Carlo

Sokolowski

CVA

A B C D E

−2 0 2 4 6

z/R

−4

−3

−2

−1

0

1

2

3

4

x
/R

a) g(3)(〈0, 0, 0〉 , 〈0, 0, σ〉 , r) at η = 0.3

0.0

0.8

1.6

2.4

3.2

4.0

4.8

5.6

6.4

7.2

2 3 4

4

5

−6 −4 −2 0 2 4 6 8 10
0

1

2

3

4

5
g

(3
) (
〈0
,0
,0
〉,
〈0
,0
,2
.1
σ
〉,

r)

x/R z/R

d) A B C D E

Monte Carlo

Sokolowski

Fischer

CVA

−4 −2 0 2 4 6 8

z/R

−4

−3

−2

−1

0

1

2

3

4

x
/R

c) g(3)(〈0, 0, 0〉 , 〈0, 0, 2.1σ〉 , r) at η = 0.3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

3 4 5 6

2.0

2.5

Figure 6.3: The triplet distribution function g(3)(r1, r2, r3) at packing fraction 0.3,
plotted when r1 and r2 are in contact (a,b) and when r1 and r2 are separated by
a distance 2.1σ (c,d). On the left are 2D plots of g(3)(r1, r2, r3) as r3 varies. The
top halves of these figures show the results of Monte Carlo simulations, while the
bottom halves show the CVA, truncated beyond the range of the fit. On the right
are plots of g(3)(r1, r2, r3) on the paths illustrated in the figures to the left. We
also plot these curves along a left-right mirror image of this path. The data for
the right-hand paths (as shown in the 2D images) are marked with right-pointing
triangles, while the left-hand paths are marked with left-pointing triangles.
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6.7.2 Triplet distribution function

Just as the radial distribution function of a homogeneous fluid may be computed

from the density of an inhomogeneous one using Percus’ test-particle trick, the

triplet distribution function of a homogeneous system can be computed using an

approximation of the pair distribution for an inhomogeneous fluid, such as we have

developed. The triplet distribution function of a homogeneous fluid with density

n is given by:

g(3)(r1, r2, r3) =
nTP(r1)(r2)nTP(r1)(r3)

n2
g

(2)
TP(r1)(r2, r3) (6.19)

where the TP(r1) subscript indicates quantities computed for the inhomogeneous

density configuration in which one sphere (the “test particle”) is fixed at posi-

tion r1. This method treats one of the three positions—the location of the test

particle—differently from the other two, which means that a poor approximation

to the pair distribution function may break the symmetry between r1 and r2 which

is present in the true triplet distribution function.

Figures 6.3a and 6.3c compare the triplet distribution function at a packing

fraction of 0.3 computed using the CVA with results from Monte Carlo simulations.

In Figure 6.3a the spheres at r1 and r2 are in contact; in Figure 6.3c they are spaced

so that a third sphere can just fit between them; and in both figures r3 is varied.

The test-particle position for the CVA in each case is r1, which is on the left-hand

side of the figure. As before, we see reasonable agreement with simulation. Also,

the Monte Carlo results have the expected left-right symmetry, while the CVA
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has a small asymmetry introduced with the test particle due to errors in the pair

distribution function.

Figures 6.3b and 6.3d show the triplet distribution function as plotted along the

paths illustrated in Figures 6.3a and 6.3c. We also plot the results along a left-right

mirror image path, corresponding to swapping r1 and r2. The two mirror-image

paths are distinguished by arrows (triangles) along the curves, with right-facing

arrows indicating the paths shown in Figures 6.3a and 6.3c, and left-facing arrows

indicating the mirror image path. As the work of Fischer and Methfessel is only

defined when r2 and r3 are in contact, we only plot it along the central portion of

the path, which is in contact with r2, and arrows are omitted. All methods tested

perform similarly over their range of validity.

6.8 Accuracy in thermodynamic perturbation theory

A particularly relevant quantitative test of a pair distribution function is how well

it predicts the interaction energy due to a pair potential. To this end, we have

computed the error in the first term in a high-temperature perturbation expansion

F1 for two typical pair potentials. In order to focus on effects at the interface, we

have defined a position-dependent pair interaction energy as

dF1

dz
= 1

2

∫
g

(2)
HS(r, r′)n(r)n(r′)Φ(|r− r′|)dr′ dxdy (6.20)
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Figure 6.4: Plot of dF1

dz
near a hard wall, with arbitrary vertical scale. (a) shows

a sticky hard-sphere fluid defined by a pair potential δ(σ − r + δ) where σ is the
hard-sphere diameter, and δ is an infinitesimal distance; and (b) shows a square
well fluid defined by a pair potential Θ(1.79σ − r).
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which gives the contribution to the mean-field free energy due to molecules located

in a plane of fixed z.

We plot this quantity for two representative pair potentials near a hard wall in

Fig. 6.4. We have chosen to illustrate a delta-function interaction at contact (i.e.

“sticky hard spheres”), and a hard-core square-well fluid, with the length-scale

of interaction taken from the optimal SAFT model for water found by Clark et

al. [72]. These pair potentials represent both a very short-range interaction and a

medium-range interaction.

Figure 6.4a shows the results for the sticky hard-sphere fluid. The CVA is

constructed to produce this result exactly, provided the averaged pair distribu-

tion function at contact from Schulte [85] is exact. As expected, we see excellent

agreement with the Monte Carlo simulation results, while the approximations of

Fischer and Sokolowski each show deviations near the interface. Figure 6.4b shows

the same curve from Eq. 6.20 for the square-well fluid. In this case both the CVA

and Sokolowski’s approximation give excellent agreement with simulation.

6.9 Conclusion

We have introduced and tested the contact value approach for the pair distribution

function g(2)(r1, r2) of the inhomogeneous hard-sphere fluid. The pair distribution

function plays a key role in thermodynamic perturbation theory, which is widely

used in the construction of classical density functionals. The CVA—unlike existing

approximations—is suitable for use in classical density functionals based on per-
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turbation theory, as it may be efficiently computed using exclusively fixed-kernel

convolutions. We have tested this function at a hard wall and near a single fixed

hard sphere, and find that it gives excellent agreement with simulation. Tests of

the pair distribution function in integrals that arise in thermodynamic perturba-

tion theory suggest that the CVA is accurate for attractions up to the distance to

which the radial distribution function is fit, and is a significant improvement over

existing approximations near contact. But most importantly, the computational

cost of using the CVA in a classical density functional scales much more favorably

than existing methods in high resolution computations.
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7 Conclusion

This dissertation has discussed my investigation into the dynamics of the Min-

protein system within E. Coli. We tested a widely-used simulation model [1] in

its deterministic and stochastic forms within flattened cells shapes and compared

them against recent experimental findings [2]. We found that the deterministic

model predicts strong bipolar oscillations, in contradiction with the experimen-

tally observed behavior, while the stochastic model, which is based on the same

reaction-diffusion equations, does predict spatially irregular oscillations as observed

in experiment. We find as well that it is the flattening and accompanying lateral

expansion rather than the asymmetry of the cell shapes that causes the irregular

oscillation behavior.

The dissertation then discussed my research in improving free energy function-

als that are used within Classical Density Functional Theory in order to model

water. In Chapter 4 we defined two averaged values for the distribution function

at contact gσ, and derived formulas for each of them using the White Bear version

of the fundamental measure theory functional and the Contact Value Theorem.

We tested these formulas, as well as two existing formulas, against Monte Carlo

simulations and found excellent agreement between the Monte Carlo data and one

of our averaged distribution functions.

In Chapter 5 we examined of the effect of incorporating this function into
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our recently published statistical associating fluid theory-based classical density

functional theory for water. We studied two hard-sphere solutes and a Lennard-

Jones approximation of a krypton-atom solute, and found improvement in the

theory.

Finally, in Chapter 6 we derived an approximation for the pair distribution

function of the inhomogeneous hard sphere fluid, that uses our gσ. This approach

achieves greater computational efficiency than previous approaches by enabling

the use of exclusively fixed-kernel convolutions, which allows for an implementa-

tion using fast Fourier transforms. We compared results for our pair distribution

approximation with two previously published works and Monte Carlo simulation,

and showed favorable results.
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APPENDIX

A Evaluation of the functional derivatives in gAσ (r)

The expression for the asymmetric correlation function gAσ (r) (Equation 4.19) in-

volves the functional derivative δAHS
δσ(r)

. In this appendix we will explain how this

derivative is evaluated. We begin by applying the chain rule in the following way:

δAHS
δσ(r)

=

∫ (∑
α

δAHS
δnα(r′)

δnα(r′)

δσ(r)

)
dr′ (A.1)

This expression requires us to evaluate δAHS
δnα(r′)

and δnα(r′)
δσ(r)

. The former is straight-

forward, given Equations 3.39-3.41, and we will write no more about it. The

functional derivatives of the fundamental measures, however, require a bit more

subtlety, and we will address them here.
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We begin with the derivative of n3, the filling fraction, which we will discuss in

somewhat more detail than the remainder, which are similar in nature. Because the

diameter σ(r) is the diameter of a sphere at position r, we write the fundamental

measure n3(r′) as

n3(r′) =

∫
n(r′′)Θ

(
σ(r′′)

2
− |r′ − r′′|

)
dr′′ (A.2)

where we note that σ(r′′) and n(r′′) are the diameter and density, respectively, of

spheres centered at position r′′. Thus the derivative with respect to the diameter

of spheres at position r is

δn3(r′)

δσ(r)
=

1

2

∫
n(r′′)δ

(
σ(r′′)

2
− |r′ − r′′|

)
δ(r− r′′)dr′′ (A.3)

= n(r)δ(σ(r)/2− |r′ − r|) (A.4)

This pattern will hold for each fundamental measure: because we are seeking the

change in free energy when spheres at point r are expanded, the integral over

density is eliminated. To compute the correlation funtion gAσ , we convolve this

delta function with the product of the density and a local derivative of Φ(r):

δAHS
δσ(r)

=

∫
∂Φ(r′)

∂n3(r′)
n(r′)δ(σ/2− |r′ − r|)dr′ + · · · (A.5)

As we shall see, there are only four convolution kernels, leading to four additional

convolutions beyond those required for FMT.



The functional derivative of n2 introduces our second convolution kernel, which

is a derivative of the delta function.

δn2(r′)

δσ(r)
=

1

2
n(r)δ′(σ(r)/2− |r′ − r|) (A.6)

The derivatives of the remaining scalar densities n1 and n0 reduce to sums of the

terms above:

δn1(r′)

δσ(r)
=

n(r)

4πσ(r)
δ′(σ(r)/2− |r′ − r|)− n(r)

2πσ(r)2
δ(σ(r)/2− |r′ − r|) (A.7)

and

δn0(r′)

δσ(r)
=

n(r)

2πσ(r)2
δ′(σ(r)/2− |r′ − r|)− 2

n(r)

πσ(r)3
δ(σ(r)/2− |r′ − r|) (A.8)

The vector-weighted densities nV 1 and nV 2 give terms analogous to those of n1

and n2:

δnV 2(r′)

δσ(r)
= −1

2
n(r)δ′(σ(r)/2− |r′ − r|) r− r′

|r− r′| (A.9)

δnV 1(r′)

δσ(r)
= − n(r)

4πσ(r)
δ′(σ(r)/2− |r′ − r|) r− r′

|r− r′|

+
n(r)

2πσ(r)2
δ(σ(r)/2− |r′ − r|) r− r′

|r− r′| (A.10)
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Thus there are four convolution kernels used in computing gAσ : one scalar and

one vector delta function, and one scalar and one vector derivative of the delta

function.


