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The Melnikov method is applied to a model of parametrically generated cross-waves in

a long rectangular channel in order to determine if these cross-waves are chaotic. A great

deal of preparation is involved in order to obtain a suitable form for the application of the

Melnikov method. The Lagrangian for water waves, which consists of the volume

integrals of the kinetic energy density, potential energy density, and a dynamic pressure

component, is transformed to surface integrals in order to avoid constant conjugate

momenta. The Lagrangian is simplified by subtracting the zero variation integrals and
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Ordinarily, the first order evolution equations obtained from derivatives of the

Hamiltonian are suitable for applications of the Melnikov method. However, the cross-

wave model results in extremely complicated evolution equations which must be simplified
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before a Melnikov analysis is possible. A sequence of seven canonical transformations are 

applied and yield a final set of evolution equations in fairly simple form. The unperturbed 

system is analyzed to determine hyperbolic fixed points and the equations describing the 

heteroclinic orbits for near resonance cases. The Melnikov function is calculated for the 

perturbed system which must also satisfy KAM conditions. 

The Melnikov results indicate the system is chaotic near resonance. Furthermore, the 

heteroclinic orbits, about which chaotic motions occur, are transformed back to the original 

set of variables and found to be extremely complicated; this orbit would be impossible to 

determine analytically without the canonical transformations. 

The theoretical results were verified by experiments. Poincare maps obtained from 

measurements of the free surface displacement indicate both quasi-periodic and chaotic 

motions of the water surface. Power spectra and time series of the water surface 

displacement are also analyzed for chaotic behavior, with less conclusive results. Stability 

diagrams of cross-wave generation confirm behavior consistent with parametric excitation. 
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CHAOS IN A LONG RECTANGULAR WAVE CHANNEL 

Chapter I. Introduction 

A long rectangular wave basin has a horizontal flat bottom, two rigid vertical side 

walls, a wavemaker at one end, and a sloping beach at the far end. Waves of a variety of 

frequencies and heights can be generated by the wavemaker which propagate down the 

channel and dissipate on the beach. The wavemaker may be a piston, a flap on a hinge, or 

a combination of the two. The wave generated by the forcing is called a progressive wave 

since it travels from the wavemaker and dissipates on the beach. 

Sometimes a standing wave develops between the side walls of the channel. This 

standing wave can be forced if the wavemaker is configured to have an amplitude variation 

across the tank. An example of this type of wavemaker motion is a series of narrow flaps, 

all hinged at the bottom, but moving independently of one another. The standing wave that 

develops from this type of wavemaker forcing will be called a sloshing wave. 

The particular wave of interest here is also a standing wave between the side walls, but 

one that forms without any wavemaker variation across the channel, and forms in addition 

to the progressive wave. This type of standing wave will be called a cross-wave and is a 

result of parametric forcing. 

The terms sloshing wave and cross-wave are used here to distinguish between standing 

waves generated by different forcing mechanisms, but the distinction in name is not 

consistent throughout the literature. The terminology used here is the same as that used by 

Kit, Shemer, and Miloh [1987]. Sloshing waves are not studied here, but the following 

references are provided: Barnard, Mahony, and Pritchard [1977], Shemer, Kit, and Miloh 

[1987], Kit, Shemer, and Miloh [1987], and Miles [1988]. 

The parametrically generated cross-waves are of particular interest. Again it is 

emphasized that they form in addition to a progressive wave that travels from the 

wavemaker to the end of the channel and dissipates on the beach. Cross-waves generally 
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oscillate with a frequency half that of the forcing, but as will be shown, this is not always 

the case. The channel width determines the wavelengths A., of possible cross-wave 

modes, A,,= 2(basin width)/n, where n is the mode number, which is equal to the 

number of half-wavelengths across the channel. The amplitude of the cross-wave can be 

much larger than both the wavemaker forcing amplitude and the progressive wave 

amplitude. 

The cross-waves studied here form in a long channel, although they may be generated 

in much shorter channels as well. A short channel generally has a vertical wall opposite the 

wavemaker, instead of a sloping beach, and the longitudinal wave generated by the 

wavemaker will also be a standing wave. Some references on cross-waves in short 

channels include the important theoretical work by Garrett [1970], which will be discussed 

in some detail, and the theoretical papers by Miles [1988], Shemer [1990], and Tsai, Yue, 

and Yip [1990]. Lin and Howard [1960] provide experimental work on cross-waves in 

short channels. 

Garrett [1970] seems to have compiled one of the earliest theoretical works on cross-

waves and identified them as an example of parametric resonance. Garrett proposed a 

channel that had two wavemakers opposite each other, rigid vertical side walls, and a flat 

bottom. The wavemaker motions were assumed to be of small amplitude, so the 

wavemaker boundary conditions were linearized. The free surface boundary conditions 

included second order terms and the free surface position and the velocity potential were 

assumed to be the sums of the primary motion (longitudinal wave) plus all the free modes 

of the channel. Garrett's analysis showed that the amplitude of the cross-waves was 

governed by a form of Mathieu's equation, an example of parametric forcing, and thus 

accounted for the cross-wave frequency being half that of the forcing. 

Garrett takes some pains to point out that the general theory of parametric forcing [see 

Bogoliubov and Mitropolsky, 1961] allows for the phenomenon of resonance to occur 

whenever the forcing frequency is close to 2 colM , where M is an integer and w is the 
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free oscillation frequency, in this case the cross-wave frequency. The strongest resonance 

is for the case M =1, which is called the primary resonance. Garrett provided the analysis 

for the primary resonance only, as other cases would have required higher order terms in 

the free boundary conditions. This discussion is significant because later papers often fail 

to mention the possibility that cross-wave frequencies can be other than half that of the 

forcing. A further significance is that cross-waves for M = 2 (or the cross-wave 

frequency equals the forcing frequency) have been observed in experiments at the 0. H. 

Hinsdale Wave Research Laboratory at Oregon State University. The analysis carried out 

in this research initially assumes many resonance cases are possible, although at some point 

M =1 must be specified since higher order terms would also be needed to carry out 

analyses of M > 1 resonances. 

Finally, Garrett determined that the cross-wave growth is due to the rate of working of 

the wavemaker against the transverse stresses associated with the cross-waves, one at the 

surface and one equal to the depth-independent second order pressure. The energy of the 

cross-waves comes from the wavemaker, not the primary wave field. 

An early theoretical work on cross-waves in long channels is that of Mahony [1972]. 

Mahony assumed a slight transverse disturbance of order c in the free surface position and 

the velocity potential, and ignored order c2 and higher terms in the free surface boundary 

conditions. Mahony found a smaller order of magnitude of resonance bandwidth and 

growth of cross-waves than Garrett did. Mahony also found that the long channel results 

in some small amount of damping, requiring some minimum amplitude of excitation in 

order for a cross-wave to occur. Mahony suggested, as did Garrett, that the wavemaker 

motion and not the primary progressive wave field is responsible for the instability leading 

to the cross-waves. 

Jones [1984] also studied cross-waves in a long wave channel. He used an approach 

that initially retained all the nonlinear terms and developed a uniformly asymptotic solution 

based on the small amplitude of the wavemaker. An important result of Jones' work is that 
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only the order e interactions of the cross-waves with cross-waves and the cross-waves with 

progressive waves contributed to resonance effects. The order e interaction of progressive 

waves with progressive waves did not contribute to resonance. 

Lichter and Chen [1987] used the perturbation method of multiple scales to study cross-

waves in long channels. Kit and Shemer [1989] sought to include the effects of dissipation 

on cross-waves in long channels. Miles and Becker [1988] have formulated the cross-

waves in a long channel in terms of a Lagrangian formulation. 

This research seeks to expand the understanding of cross-waves in a long tank by 

formulating the problem in terms of Hamiltonian mechanics. This method builds on the 

Lagrangian formulation of Miles and Becker [1988]. 

Experimental studies of cross-waves in long channels begin with Barnard and Pritchard 

[1972]. Stability diagrams were determined for various cross-wave modes; these 

diagrams indicate the regions in which cross-waves occur, each mode requiring some 

minimum amplitude of wavemaker forcing, and the cross-waves occur in a narrow band 

about a forcing frequency twice that of the cross-wave. (This corresponds to the primary 

resonance described by Garrett.) Barnard and Pritchard also showed that the amplitude of 

the cross-wave varied with time, indicating a continual growth and decay of the waves. 

Cross-wave amplitudes decreased with distance from the wavemaker. The channel used 

was 30.6 cm wide, the water depth was 16 cm, and the length was 270 cm; although the 

channel was long compared to its width and depth, it was also small enough that surface 

effects were profoundly important. In particular, an absorbent cotton bandage was placed 

on the wavemaker, the channel sides at the waterline, and on the beach to reduce the effects 

of uneven wetting. Water surface contamination was a crucial factor, necessitating 

skimming the water surface before each experimental run. 

Lichter and Shemer [1986], Shemer and Lichter [1987], and Shemer and Kit [1989] all 

used a channel 1.2 m wide, 0.9 m deep, and 18 m long, where surface effects were 

negligible. All experiments used the primary parametric resonance case. Lichter and 



5 

Shemer studied the evolution of the wave energy spectrum with distance from the 

wavemaker. Shemer and Lichter classified different regions in the stability diagrams based 

on the presence or absence of an amplitude modulation. Shemer and Kit studied the long­

time modulation patterns of the cross-waves. 

Underhill, Lichter, and Bernoff [1991] studied parametrically forced cross-waves and 

found three prominent frequencies present: the primary subharmonic and two slow 

temporal modulations. The stability diagrams were very precisely divided into regions 

where the cross-wave motion was periodic, quasi-periodic, or chaotic. As this channel 

was also fairly small (30.9 cm wide, 30 cm deep, and 121 cm long), surface tension effects 

were notable and a surfactant was added to the water. Shemer and Lichter [1987] also 

defined the neutral stability curve for a cross-wave and the boundaries between steady, 

quasi-periodic, and chaotic behavior. 

Quasi-periodic behavior is motion that consists of two or more incommensurate 

frequencies. Chaotic behavior describes a motion that is sensitive to different initial 

conditions. Motion from one set of initial conditions cannot be used to predict the motion 

when the conditions are slightly varied. It is the chaotic behavior of cross-waves that is 

studied here. 

There are various theoretical tools for studying chaotic behavior. One common strategy 

is to obtain the homoclinic orbit in the mathematical model of a dynamical system and then 

to apply a mathematical technique called the Melnikov method to determine if the system 

has chaotic motions. The strategy requires that the system be described in terms of a set of 

first order ordinary differential equations of the phase space variables. In a classical 

mechanics problem, these are the evolution equations which are the derivatives of the 

Hamiltonian. The unperturbed (or free oscillation) system is then studied in the phase 

space to find the location of any saddle points and the time-dependent equations describing 

the motion along the homoclinic orbit, which is the orbit that results when the stable and 
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unstable manifolds of the saddle point intersect. The Melnikov method is then applied to 

the Poincare map of the perturbed system. 

The Melnikov method, which has been described by Moon [1987] as a Reynolds­

numberlike criteria for chaos, is a method used to measure the distance between the stable 

and unstable manifolds of Poincare maps of continuous phase space flows. When the 

manifolds intersect, the Melnikov function has a simple zero, which indicates the presence 

of Smale horseshoes and therefore indicates chaotic motion. For more background on this 

method and homoclinic orbits, see the original work by Melnikov [1963], Guckenheimer 

and Holmes [1983], and Wiggins [1988 &1990]. A more general review may be found in 

Moon [1987 & 1992] or Abraham and Shaw [1992]. 

The original method [Melnikov, 1963] was applied only to two phase space variables (a 

one-degree of freedom problem), but has been expanded to include higher dimensional 

problems [Wiggins and Holmes, 1987; Wiggins, 1988; and Wiggins, 1990]. This 

technique has also been applied to other water wave problems, including Holmes [1986] 

and Allen, Samelson, and Newberger [1992]. 

There are also various experimental tools available for studying chaotic motions. Moon 

[1987] provides a good summary of these methods. The two simplest tools are the Fourier 

spectrum and the Poincar6 map. The Fourier spectrum of a chaotic signal has a broad band 

of frequencies present, even if the input is of a single frequency. The Poincare map is a 

periodic sampling of the phase space variables. A single point in a Poincare map indicates 

periodic motion; additional finite points show subharmonic oscillation; a closed curve 

indicates quasi-periodic motion; a fractal collection of points, or points filling a strange 

attractor, indicates chaotic motions. As mentioned earlier, Underhill, Lichter, and Bernoff 

[1991] applied these two techniques to their experimental cross-wave data. They also 

calculate the Lyapunov exponent, a positive exponent indicating chaotic motion. 

The purpose of this research is to apply the global perturbation technique of the 

Melnikov function to determine if cross-waves parametrically excited in a long wave 
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channel are chaotic. Experiments were performed in the 0. H. Hinsdale Wave Research 

Laboratory to support the theoretical analysis. The channel is quite large, 12 ft. wide, 12 

ft. deep, and over 300 ft. long, making surface tension effects entirely irrelevant. The most 

striking observation of the cross-waves was the simultaneous generation of cross-waves of 

the primary resonance (2:1) and secondary resonance (1:1). This effect has not been 

reported before. 

This chapter serves as an introduction to Chapters II and III, each of which are 

complete on their own, and it contains some material redundant to each. Chapter II 

describes the theoretical analysis, which is the set-up involved to apply the Melnikov 

method and the calculation of the Melnikov function indicating chaos. Chapter In provides 

all the experimental results and discussions. Chapters II and DI each have their own 

conclusion and reference sections. Chapter IV is a brief discussion of recommended future 

research. 
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Chapter II. Theoretical Results 

1. Cross-waves in a long rectangular channel 

Cross-waves in a long rectangular channel are parametrically excited standing surface 

gravity waves that oscillate in a direction transverse to the wavemaker forcing. These 

basins have a horizontal bottom, rigid side walls, and a wavemaker at one end. A short 

channel generally has a vertical wall opposite the wavemaker, while a long channel has a 

sloping beach far from the wavemaker that simulates a semi - infinite domain. Cross-waves 

in a short channel occur in addition to any standing longitudinal waves produced by the 

wavemaker, while cross-waves in a long channel occur in addition to the longitudinal 

progressive waves generated by the wavemaker. The term cross-wave is used here to 

specify a parametrically forced transverse wave, while a transverse wave generated by 

wavemaker motion antisymmetric about its midpoint is referred to as a sloshing wave. 

The progressive wave frequency cop is equal to that of the wavemaker forcing and the 

deep water dispersion relation co', = gk provides the wavenumber k associated with the 

frequency cop. The channel width determines the wavelengths A., = 2(basin width)/n of 

possible cross-wave modes where n is the mode number and is equal to the number of half-

wavelengths across the tank. The cross-wave frequency co, is related to the wavelength by 

the deep water dispersion relation co,2 = g K, K = 2r/A.,, where K is the wavenumber of 

the cross-wave. Cross-waves generally have half the frequency of the wavemaker forcing 

(co, = i cop), although additional resonances can occur. The following general discussion 

based on Bogoliubov and Mitropolsky [1961] illustrates the possible frequency 

relationships. 

Assume the motion of a parametrically forced oscillator is described by Mathieu's 

equation 
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+ a2 ecosvOx =0, E «1. (1.1) 

Resonance occurs when the natural frequency a is related to the parametric forcing 

frequency v by a = Nv /M, N and M integers. Bogoliubov and Mitropolsky expand in 

perturbation series the displacement x, the time-derivative of the amplitude as /at, and the 

time derivative of the phase deldt, and solve by the method of successive approximations. 

An instability due to parametric resonance occurs for some range of parametric forcing 

frequency v and for some values of the nonlinearity parameter E. In the parameter space 

defined by v as the abcissa and c as the ordinate, the region in which the parametric 

resonance occurs is called the zone of instability and is delineated by a neutral stability 

curve. A typical neutral stability curve is somewhat V-shaped. The primary (fundamental) 

resonance of N= 1 and M= 2 has the largest zone of instability (the widest V-shape). If 

the forcing frequency lies within the interval described by the zone, the instability (such as 

a cross-wave) will occur. The zone of instability thus determines the bandwidth of the 

resonance. Letting N vary and carrying out the perturbations, Bogoliubov and 

Mitropolsky show that the bandwidth of the zone of instability diminishes with order N as 

eN. They also show that the neutral stability curve minimum (the bottom of the V-shape) 

occurs at e= 0 without damping and at higher values of E when damping is included. This 

minimum value increases as N increases. Thus the primary resonance case a = v/2 is of 

the most practical interest. 

Laboratory experiments have shown that the amplitude of the cross-wave can be much 

larger than both the wavemaker forcing amplitude and the progressive wave amplitude. 

The wavemaker forcing will parametrically generate a cross-wave in the lab when two 

conditions are met: 1) some minimum amplitude of wavemaker forcing is exceeded, and 2) 

the wavemaker (and progressive wave) frequency cop is in some narrow bandwidth about 

McoIN. These two conditions are the same as those described in the discussion from 
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Bogoliubov and Mitropolsky above. The primary resonance is for N =1 and M = 2 , 

which is the general case explored in the cross-wave literature. 

Garrett [1970] showed that the amplitude of cross-waves in a short channel was 

governed by a form of Mathieu's equation and that their growth was due to the rate of 

working of the wavemaker against the transverse stresses associated with the cross-waves. 

Garrett is the only one to review resonance cases other than the primary. Mahony [1972] 

obtained similar results for cross-waves in a long channel. Jones [1984] determined that 

the order c interactions between the cross-wave with the progressive wave and the cross-

wave with itself contributed to the parametric resonance effect, but that the order c 

interaction of the progressive wave with itself did not contribute. Miles [1988] and Miles 

and Becker [1988] applied a Lagrangian formulation to cross-waves in both short and long 

channels and applied classical perturbation theory. 

Of the various experiments on cross-waves in long channels, two are of particular note. 

Shemer and Lichter [1987] defined a neutral stability curve for cross-waves that indicated 

boundaries between steady, quasi-periodic, and chaotic behavior. Underhill, Lichter, and 

Bernoff [1991] found three prominent frequencies present: the primary subharmonic and 

two slow temporal modulations. Their stability diagrams were divided very precisely into 

regions where the cross-wave motion was periodic, quasi-periodic, or chaotic. Quasi-

periodic motion consists of two or more incommensurate frequencies while chaotic motion 

is sensitive to initial conditions. 

Here, parametrically generated cross-waves in a long channel are formulated in terms of 

a Hamiltonian that is used to apply a mathematical technique called the Melnikov method to 

predict the chaotic behavior of cross-waves. The Melnikov method is a global perturbation 

technique that is used to prove the existence of chaos in dynamical systems [Melnikov, 

1963; Guckenheimer and Holmes, 1983; Wiggins, 1988]. The method has been applied to 

numerous mechanical systems and has been successfully applied to a fluid continuum by 

Holmes [1986] and Allen, Samelson, and Newberger [1991]. Holmes [1986] applied the 
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Melnikov method to surface waves in a cylindrical basin generated by vertical oscillations 

of the basin and found chaos. Allen, Samelson, and Newberger [1991] applied the 

Melnikov method to quasi-geostrophic flow over a variable topography and also found 

chaos. 

The original planar method of Melnikov [1963] was a technique applied to a system of 

first order ordinary differential equations of two phase space variables. The first step in the 

technique was to characterize the unperturbed (unforced and undamped) system by 

determining the fixed points that were saddles and finding the homoclinic or heteroclinic 

orbits. The method cannot be applied without a homoclinic or heteroclinic orbit. Melnikov 

then defined a function, which has since been called the Melnikov function, that described 

the distance between the stable and unstable manifolds near the homoclinic orbit when the 

perturbation is applied. A distance of zero indicates the manifolds intersect transversely, 

and an infinite number of intersections indicates chaotic motion. 

Wiggins and Holmes [1987] extended the planar method to a system with three phase 

space variables. The basic procedure remained the same, but the Melnikov function 

contained additional terms and there was a requirement that the averaged third equation 

contain at least one simple zero (see Proposition 2.2, Wiggins and Holmes, 1987) in order 

for an orbit to survive the perturbation. Wiggins [1988 & 1990] further generalized the 

method to apply to systems having more than three degrees of freedom. 

Since the Melnikov method is applied to a system of first order ordinary differential 

equations, the general approach to obtaining these equations is through a Hamiltonian 

formulation. The evolution equations are derivatives of the Hamiltonian and describe the 

motion of a system in terms of first order ODEs. This approach is such a natural way of 

obtaining the appropriate system that most forms of the Melnikov function now include the 

Hamiltonian [Guckenheimer and Holmes, 1983; Wiggins and Holmes, 1987; Wiggins, 

1988; Wiggins, 1990; and Moon, 1987]. 
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The global perturbation technique of the Melnikov method is used to show that cross-

waves parametrically excited in a long wave channel are chaotic. The application of the 

method requires a great deal of preparatory work to formulate the mathematical model in an 

appropriate way. The approach used is to obtain the Hamiltonian formulation in terms of 

classical mechanics. The Lagrangian is expressed in terms of progressive and cross-wave 

velocity potentials in §2. The conjugate momenta are calculated from a Legendre 

transformation. The Hamiltonian is obtained in §3 from the Lagrangian. A sequence of 

seven canonical transformations follow in order to simplify the Hamiltonian and provide 

evolution equations which can be integrated to calculate the homoclinic orbits. A complete 

analysis of the unperturbed phase space is given in §4; this section also includes the 

Melnikov function calculations showing chaos. Cross-wave experiments were performed 

at the 0. H. Hinsdale-Wave Research Laboratory (OHH-WRL) at Oregon State University 

to support the theoretical conclusions (Chapter HI). The most intriguing observation from 

the experiment was the simultaneous excitation of two cross-wave modes of different 

resonance cases: the primary resonance, where the mode 1 cross-wave had half the forcing 

frequency, and a secondary resonance, where the mode 4 cross-wave frequency equaled 

the forcing frequency. Poincare maps obtained from the data showed strange attractors that 

also indicate chaos. 
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2. Lagrangian formulation 

All dependent and independent dimensional variables are denoted with a prime to 

distinguish them from nondimensional variables. The fluid is assumed to be 

incompressible and inviscid and the flow to be irrotational. The fluid particle velocities u' 

and the pressure in the fluid P' are defined by 

P'
u' = = g 'z ' + 11T 0'12 (2.1a,b) 

where 0' is the dimensional velocity potential, V' is the three-dimensional gradient 

operator, and the over-dot indicates the partial derivative with respect to time, dIde. The 

Bernoulli function is assumed to be incorporated into the velocity potential. The fluid 

domain shown in Figure 1 is a rectangular channel with x' = 0 the equilibrium vertical 

position of the wavemaker, y' = 0 the centerline of the channel, and z' = 0 the still water 

level. The channel is semi-infinite (although Figure 1 shows the channel to be of finite 

length) so the length extends to x' > ce , the side walls are vertical at y' = ±b' , and the 

horizontal bottom is z' = h'. The free surface position of the water is defined as 

z' = ir(x',y',e) and the wavemaker displacement from equilibrium is defined as 

x' = x'(z',/, which does not allow for any variation in wavemaker amplitude across the 

channel. 

The dimensional boundary value problem for 0', where subscripts denote partial 

differentiation, is described by the following: 

V'20' = 0 (,c' < x' <00,b'<y'<b',h'<z'<ri'), (2.2a) 

(z' = (2.2b)11"12 = 

= n yt (z' = ry), (2.2c) 

=0 (z' = h'), (2.2d) 

(x' = x'), (2.2e)= 

a'0'x, + c'' " =0 (x' > 00), (2.20 



14 

IItI 

' = 0 

1111 
1 1 1
 
I 1."'
 

I I
 
I I
 
I I
 
I I
 
I I
 

I 
I I 

z' = h' 
I I 1 
I I 
I I ' = b'I I
 
I I
 
I I , 

/1
 
x' = 0 x = Y = _b,
 

Figure I. Definition sketch of the rectangular wave channel. 

(K, = 0 (y' = (2.2g) 

where the boundary condition (2.2f) is a generic linear radiation condition. For outgoing 

waves at infinity, condition (2.2f) has a' =1 and c'=7Fik', k' the wavenumber, for a time 

dependence of e±t"' [Mei, 1989]. Equation (2.20 may also be used for the null condition 

(no motion), a' =1 and c' = 0, which was used by Miles and Becker [1988]. Mahony 

[1972], Jones [1984], and Lichter and Chen [1987] do not explicity state the radiation 

condition used. 

The Hamiltonian is found from the Lagrangian. Luke [1967] determined that the 

Lagrangian L' for a free surface wave is given by 

(2.3)17=511[17'012 -0'+ef]clif',
V' 
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where the volume V' is the fluid domain and the integrand is the Lagrangian density L'v. 

Luke proved that this Lagrangian is correct for an unbounded fluid by applying Hamilton's 

principle (the first variation of the time-integrated Lagrangian is zero) and obtained the 

boundary value problem (2.2a-d) for deep water waves. Luke also pointed out that this 

Lagrangian is not the classical kinetic minus potential energies. A classical mechanics 

approach would normally follow by calculating the conjugate momentum density from 

p dIa'd d0', with the Hamiltonian density determined from a Legendre transformation. 

However, this result does not yield a set of evolution equations for the canonical variables 

because the momentum density p' is constant. This problem is avoided by following 

Miles [1988] and writing E' in terms of surface integrals. Using Green's First Identity 

, a0' 
(2.4)iff[0'w20' -i-v0'-v01 5.1 0 

v, 

the transport theorem 

d 
0' dV' = 555 0' dV' + oiqu'. 1i) dS', (2.5)

de -ILIV' v' 

and the divergence theorem 

(2.6)fif[g'f] c117' =iffri-fg'z'21cl d17' ii[ig'z'21(.11] dS% 
v' v' s, 

where k is the unit normal in the z' direction and all unit normals point out of the fluid 

domain, the Lagrangian (2.3) can also be written as 

0' v,20, dv, 55 [(Kir ,i,dS7'1, -4 .15[0'0: L,,.i,dS;,L' 
V' .3;7, Sf 

(2.7)d rrr+4 if g'h' dSh, jjj 0' dV',
at' 

where x' = > 3h' is a distance down the channel which is assumed to be large but not 

infinite and is at least three water depths away from the wavemaker to avoid contaminating 

the radiation condition with the evanescent eigenmodes. Note that the integral of the fluid 

domain is to x' = l' and not to x' = +.0; the integrand [0'0:11 cannot be replaced by any 

http:ii[ig'z'21(.11
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form of the radiation condition (2.2f). Also note that since deep water is assumed, 

k'h' > it, so that l' > 3h' >37tIk' 

Again following Miles [1988], the terms with zero variation are identified as 

, g'h' dS'. 
d rr 

(2.8)x=x' z ill 0' dI7', 
Si, Sii, V' 

and a new Lagrangian, L' = L , which has the zero variation terms subtracted out, is 

given by 

= -555+0' v-20' dV'+4.111[0'ir+g'71'2] z,=irdS,i, 

(2.9) 
4.11[0'0:1=rd-51' 4 ff [0'±'].,=z,dS; 

Si 

which still yields the boundary value problem (2.2) when Hamilton's principle is applied. 

From here the formulation departs from Miles. 

In order to proceed further with the classical mechanics approach, the Lagrangian must 

be expressed in terms of a generalized coordinate or field variable, which may be either 0' 

or if . Miles [1977] and Milder [1977] suggest the use of 17' as the field variable because 

it is analogous to using the particle displacement as the coordinate in classical mechanics 

problems. They further define 0' on the surface as the conjugate momentum. However, 

Miles and Milder were using only integrals over the free surface; the surface integrals over 

the wavemaker and the far x' position (and the volume integral) in (2.9) further complicates 

the problem. The velocity potential 0' is chosen as the field variable, and n' and ir are 

written in terms of 0' by using both free surface boundary conditions (2.2b,c). The 

Lagrangian (2.9) is decomposed into the following integral terms: 

L' = + L;,+ + Ln, + (2.10) 

_ill v,2 
(2.11a) 

v, 
b' 

= (2.11b) 
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L', = 5[0' dy', (2.11c) 
b' h' 

Lr 
= fotc,-Fv2w-v2'(0'+v'12)] dx' dy', (2.11d) 

b' x;0 

b' 

Lnz 1*(0'2
b' 

±-i170141 d/ (2.11e) 

The term zo is the free surface position at the wavemaker, ii'(x' = x: is the 

wavemaker displacement at the instantaneous free surface, x'(z' = tr,e), and z; is the free 

surface position at the far field x' location, 11' = (x' = 

The velocity potential is assumed to be a linear sum of a progressive wave potential and 

a cross-wave potential, 0' = 0; + 0:. The progressive wave potential 0; will not have any 

y' dependence, and the cross-wave potential 0: will not have any x' dependence. The 

dimensional (primed) variables are related to the nondimensional (unprimed) variables by 

the following scales: 

,,, y z t 
(2.12a-d)v K, ,

'Y 1C le 

l ( 0: = Ca:L- (2.13a,b)0; = 0 a' Al" 
tc'P k'
 

g ' 
11' = a:71, X' = a:Z, L' = , (2.14a-c)

'tc' 

where k' and a; are the respective wavenumber and amplitude of the progressive wave, K' 

and a' are the respective wavenumber and amplitude of the cross-wave, and a: is the 

amplitude of the wavemaker motion. The time scale used in (2.12d) is the cross-wave 

frequency for linear waves in deep water. The following dimensionless parameters are 

defined: 

E = 13 = = I cop, y = F = a;/a:, (2.15a-d) 

a = = k'1', b = K'b', (2.15e-h) 

where e is an the ordering parameter, 13 is a frequency ratio, y is a perturbation (forcing) 

parameter, and a and are large but not infinite. The parameter y < e because 
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experiments show the cross-wave amplitude is larger than the forcing amplitude. The 

parameter order is then 

0 < y2 < ey < E2 < y < e <1, or 0< --Y2 < y < --r <1. (2.16a,b) 

The higher order terms to be neglected are 0(e2), O(ey), and 0(y2). 

Ignoring these higher order terms, the nondimensional Lagrangian is then given by the 

following components: 

L= Lx + + 472, (2.17) 

4 = --ifff(1560p + 0,)(Op- + Ocyy + Oczz)dx dy dz, (2.18a) 
V
 

b Ex0
 

Lx = i i[1-(rPOp 0,)] dz dy, (2.18b)
ba x=rx 

b EZA r
L = [-133(rso' + 0,)opx] dz dy, (2.18c) 

ba x=t 
b t 

= f [(roop oc )(rsopz ocz ) 
brx0 

(2.18d) 

+o(rpop 0,)(s4 opx Op. + T cy Ocy Z=En 
dx dy, 

b 

L f
n2 =fi n(r2s202p+(k+2rP0p0c) 

2 
(2.18e) 

e(rmkp (1), ) r opx I ocy + roop, + (pc, dx dy. 
Len 

where zo = ii(x = x,y,z,t), z4 = rj(x = 5, y,t), and xo = z(z =0,t). 

The integrands of Lni and L,72 are to be evaluated on the unknown surface z = En, so 

a Taylor series approximation will be used, 

f (z = en) f (z = 0)+4-(z = 0) + 0(E2), (2.19) 

where ri is found from the nondimensionalized, linearized boundary condition (2.2b) by 

11= (rfiOp Oct=0. (2.20) 
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The integrand of Lx is evaluated on the surface x = yx and is also expanded so that 

separation of variables and eigenfunction expansions can be used later, 

f (x = yx) f (x= 0) + af (x = 0) + 0(y2).
dx 

After these approximations, (2.18b,d,e) become 
b ex0 

Lx = + [I(F)30p + 0,)] dz dy, 
x=0
 

b
 

ba 

= f f kroop oc)(Foo 0 ) 
byx0 

r2 
+OF POp Oc) C5 P °P °c °c 

Y Y 

ErP(Ocopocz, 2OcYpz 0 (i),0cOpzz Op0,0z 

E1-202(0c0pOpzz 0,*z Op0p0, +20pOpz Ocz +Op0cOpzz) 

E((i)c0,0,z + +1-.3)630popOp +1-3)630p0 ;;z )1z=odx dy, 

b 

L +2F0,0,)nz =4) iL(F2P (202+kP
hyx0 

2 

e(FoOpi-40-opxi±ocy.1-Froopzk+Oczk 

+2e(kOcz +FPO +20 A)cipcz)) 

+26(1-2)32(0,0c, +20 p0,0 pz)+F3)3302p1 odx dy. 

The surface integral limits are also approximated by 
CZ, 0 

idz = 5[] dz+ ezo[]z=0+0(e2), 
a a 

ezo 0 

[ dz = f[] dz + szd L.0+ 0(e2),
a a 
f[ dx f[ dx mHx.c, +0(y2), 

7xo 

where zo = (FPO,' 0o)lx.0, z = (rPOp 40x= , and x, = z(z = 0,t). 

The Lagrangian (2.17) now has terms approximated by: 

(2.21) 

(2.22a) 

(2.22b) 

(2.22c) 

(2.23a) 

(2.23b) 

(2.23c) 
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b 

Lx = 1 ---r (r)90p 0,)i] dz dy 
-b- x=0 

(2.24a)
bI [rzo (F00,, +0,)idx,z=0dY, 

- b
 

b e
 

L =4 55 [integrand of (2. 35)]z=odx dy 
- 60	 

(2.24b)
b 

+4 f [rxo(rfic, 04(rsopz + b )] dy, 
b 

bt
 
412 = 2 J J [integrand of (2.36)]Z=o dx dy
 

- 60	 
(2.24c) 

P + +21E flip p1.5,)] dy,
x,z =0 

- b 

L = 4 b 0 

.1 (r/30
P 
+0

c 
)0Px dz dy
 

x't
 
(2.24d)

b 

Ez (r)00 + 0,)(Ppx] dy.22 3 p 
- b x=t4=0 

The forms of the velocity potentials are now to be specified. The cross-wave potential 

0, will be described by a deep water standing wave in the basin width, and the progressive 

wave potential Op will be described by a deep water traveling wave. As the chaos is 

assumed to be temporal, rather than spatial, the time dependencies of the potentials will 

remain unspecified variables. The deep water velocity potentials are 

0, = q(t)cos(y b)ez , cp = [Q1(t)cosx +Q2(t)sinx]ezls2, (2.25a,b) 

where the variables q, Q1, and Q2 are the generalized coordinates. 

A note on the progressive wave potential is in order here. A wave traveling in the 

positive x direction would normally be described by 

cos(x t) or (cos x cos t + sin x sin t).	 (2.26) 

However, this form of a traveling wave does not allow for any slow modulation of the 

traveling wave. Both Jones [1984] and Miles and Becker [1988] allow for a slow temporal 

modulation. By replacing the functions cost and sin t with the generalized coordinates 
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Qi(t) and Q2(t) , the system is expressed in a more general form and the progressive wave 

is allowed to vary according to the evolution equations obtained from the Hamiltonian. The 

system described in this way will contain the full richness of dynamics possible. This is 

also analogous to the whirling pendulum example in Wiggins [1988, p.440], where 

specifying a rotation rate is just a limiting case of allowing the rotation rate to be described 

by the equation governing the angular momentum. Furthermore, any assumed relationship 

between Q1 and Q2, such as 

Qi =Q, Q2 =-Q, or a =Q, Q2 =P, (2.27a,b) 

where P would be the conjugate momentum of Q, would also further diminish the full 

dynamical system. Except for the most simple dynamical systems, an assumed form for 

the conjugate momentum would probably be wrong. 

Before substituting the forms of the potentials into the Lagrangian, (2.18a) and (2.24) 

are simplified considerably by making both an assumption and an observation. The 

assumption follows from Jones [1984], where the cross-wave resonance effectwas found 

to be independent of 0(e) interactions of the progressive wave with itself. Accordingly, all 

0(e) interactions containing only progressive wave potential terms will be ignored. (If this 

assumption were not made, the Lagrangian would contain cubic Op terms that would 

contribute to the calculation of conjugate momenta, and greatly complicate the expression 

for the Hamiltonian expressed in terms of the canonical variables.) The observation that 

simplifies the Lagrangian components (2.24) follows from the form of the cross-wave 

potential specified in (2.25a). The cross-wave potential is a standing wave, with y-

dependence given by cos(y b) , which means that any term containing an odd-power of 

0, and time or spatial derivatives of 0, will be zero when integrated over the width of the 

basin. Furthermore, the potentials (2.25) satisfy Laplace's equation, so (2.18a) is zero. 

The surface integrals in the Lagrangian (2.17) may now be simplified to 
b 0 

Lz = 4 1 f Y (r730p )jd dz dy i f[y(F2/32(i) p0 + Oc0c)i] dy, (2.28a)
x,z=0-b- 6 x.0 -b 
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b 0 

L = 1 j (0 dz dy (9,0c0px)] dy, (2.28b)2 2 P Px 
-6 P3 x=t,z=0 

b 

L'11 = 1[(F2 132 0 p0pz 0c0)± EF )2(0c7Ocy) 
-b0
 

scp(OcOpOc. + Oc0c0p. + 20c OczOpz + POcOczz + p(p z)lz odx dy(2.28c) 

1, 

+4 [YX°(F2P2OPOP2 0c0c21,z.0dY, 
b
 

b
 

112 
= 2 55[(F2P24)2. er 13(0 pey ± pe, 2000 PzCZ) 

60 

+24)30cippipcz + FflkOpz + (kOcz dx dy (2.28d) 

b 
f[yx0(F2020p2 Oc2)] 

x,:=0 
- b 

It is convenient to rewrite the Lagrangian (2.17) by grouping terms according to their 

order rather than the surface over which each term is integrated. The ordering terms will 

be: Lo which are all 0(1) terms in (2.28); LE which are all 0(e) terms in (2.28); and L7 

which contains all terms in (2.28) with the perturbation parameter y. The Lagrangian 

(2.17) is given by the following components: 

L=Lo+Le-FLr, (2.29) 
b 

Lo = SR-1-'2 P2 p0pz Ococy)+ (r2 162 02) qz=odx dy
-b0
 

(2.30a)b 0 r r2 
dz dy,-+ fi-Ts(opop.)] 

- b- x=t
 
r,
 

Le = ;(0c0copz dy
2 13 xq,z=0 

b 

J[I" )6(0 .O pOczz Oc0c0pzz 20 c00p, p0c0c,, + Ope z) (2.30b) 

r132 (0Cy Oey ) -ri6(Opey + Op 2(1)C Op, OCz 

+2(r04)*(1)Cz (k(cZ )1z=0 dx dy, 
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b 0 

Ly = jr(1- )30 dz dy dy1i(r21620p0p± Oc0c)id 
-bx=0 

(2.30c) 

[xo (r2s2 op opz + ockz r21620; (k:)].,z=0 dy.
2 

The potentials (2.25) are now substituted into the Lagrangian (2.29). The wavemaker 

forcing is specified as 

{f(z)=1-.L for a full draft hinge,x = f(z)sin-t­
f (z) =1 for a full draft piston. 

A more generic planar wavemaker function is given by Hudspeth and Sulisz [1992]. Note 

that f(z = 0) =1, since the wavemaker displacement was nondimensionalized by the 

displacement at the still water level. All integrals may now be evaluated since the spatial 

dependencies are known. Equations (2.31) below show the integrated forms of the 

Lagrangian components. All subscripted coefficients a, b, and c indicate integrals over x, 

subscripted coefficients A, B, and d indicate functions of x evaluated at x = , and the 

coefficient f1 indicates the integral over z of the wavemaker depth function f(z) times the z-

dependence of Op. The subscripted coefficientsg are all functions of the frequency ratio 

parameter 13. All coefficients are defined in Table 1 in the Appendix. The Lagrangian 

components of (2.29), assuming 0(e-a ) << 1 because of deep water, are now: 

_r2b(a2 +dio r2b(b2 idli)Qi r2b(2c1l + id2 )QiQ2 

(r2f32ba2)az (r2/32bb2)viA? + (2F2,62bc11)0102 (2.31a) 

1)q2 +()42' 

Le = s(21-fiba1)q201 e(21"fibb1)q202+ e(rbayi )42a + e(rbbigi)4202 

B (2.31b)
Erb cy2 --ztjq4a 1­e Fb(big2 + 13)0Q2, 
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i 4 

L7 = '1 (rbfi cos Q, y r2f3bcostjaQi+ y r2b sin 
t 

Qi2 
E P 13 16 

t )474 ty 1-2112bsin! a y( b 
cos y 

b sin q2 (2.31c)
fi 2.fl 

(b+y sin 2-- q2.
2 )6 

The Lagrangian components Lo + Le represent the free oscillations of the system. The 

perturbed component L7 is the forcing. Each generalized coordinate has an associated 

conjugate momentum determined from the free oscillation components of L by a Legendre 

transformation [Goldstein, 1980]. These conjugate momenta are: 

LE) 
p =d(L0+ =(b4)q+ e(2Fbaiiii)40, ,e(21-bbyi)46,2

a4 
(2.32a) 

B,eriaill2.---)qQ1 Eriby2+ -11)qQ2.
2,63 2163 

a(4+ Le) I 2 2 1 / 2 2 NA 
r1 = k2r # ba2A+k2r # bcov2 e(21-pbai)(12V (2.32b) 

-1-6(rbajli )42 

.d(L°.- LE) 
e(21-Pbbi)q2 

2 (302 (2.32c) 

+E(rbbilli )42 

The Hamiltonian must be written in terms of the three pairs of canonical variables, 

(q,p), (QoPi), and (Q2, P2). This requires that the variables 4, a, and Q2 be expressed 

only in terms of the six canonical variables. The first step is to invert (2.32) to obtain 

Bp+ Erb al#2-2)61-3 )qa+ Erb(big2+ 1-±3 ijqQ2 
2)6

4 = , (2.33a)
b4 + E2rb(aikha + bil-402) 

_ P, cila + e( a1q2 qµ182
Q1 (2.33b)

2r2/32ba2 a2 173a2 21732a2 

C1101 kq2 ) e( b1µ182
Q2 

P2 (2.33c)
21-2fl2bb2 b2 173b2) 2F132b2 j 



25 

The variable 4 contains an 0(e) expression in the denominator and will be approximated 

using the binomial expansion to obtain 

p r r A 
E jaa E (u1/12 2/2;3 )4Q2 

(2.34)
2r2 

b (aiktia +144)p + 0(e2). 

Equations (2.33b-c) and (2.34) are solved simultaneously to 0(e2) and give 

p r ( B1 r Al 
q =ii c u. i42 2.3 Liszi c uo42 2#3 civ2 

(2.35a) 
#1 (aA #1 a2b,bic11 a1 

r/32b2 e 2 PPS s2b2 r 2a2b2 c121 a2b2 c121 P 2 

= P
1

( b2 ) P2 ( C11 )

Q1
 21-2162b 21"2$2b a2b2 41 

(2.35b) 
q2 alb2 biCii 111P2 aib2 bicii+E E 

2 c11 7rs a2b2 ci21 2r/32b2 

P1 c11 P2 )62= + 
21-2 )32b a2b2 21-2 )32b a2b2 

(2.35c) 
2q (a2k P1P2 azbi+E E rp a2b2 2r/32b22 a2b2 41 

Each equation (2.35) contains a term in the denominator (see Table 1) 

sin2ci2") =(a2b2 (2.36) 

which is always greater than zero since the parameter is some large = kT >> 1) but 

finite distance down the channel. 
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3. Hamiltonian formulation 

The Hamiltonian is determined from the Legendre transformation 

H = pq+ Pi(.21+ p202 L.	 (3.1) 

The Hamiltonian will also be written in component form with Ho the 0(1) terms, He the 

0(e) terms, and H7 the perturbed (forced) terms containing the parameter y. The 

Hamiltonian written in component form is: 

H = Ho+ He+ 117+0(e2,ey, y2),	 (3.2) 

r2D ,Ho = f2b(a2	 +dii) Qi2 D ++Clii)Q22. + f2b(2cll +02 )Q1Q2 

2 p2 b2/;) 2CiiPiP2 + a21'1. (3.3a)
++.b4 +	 + ,

2/4 41-2)32b(a2b2 ci1) 

r B 
HE = e+122 HaqP + e bikt2 + --1 )Q qP

2163	 2P3 2 

e (a1b2 bicujq2 e (a2k aiciii).72 
+	 (3.3b)rs a2b2 41 IFS a2b2 41 2 

ei.t1 (al/12 blcu jp EA (a2b1 evil jp 22 

2F$2µ22 a2b2 41 1P 21)32b2 a2b2 41 2P2 

t y (b2aPi ciaP2)H _ 7rbfa cos +	 cost 
7 e )3 213 a2b2 41 fl 

_yr2ba2 t y b22:Pi2 2b2ciiPIP2 + c1211);: .t. 
(3.3c) 

/3 4F2/32b (a2b2 c 1)2 0 

+ 2)(3/' qpcos-ti 4: q2sint + 2*-p2sins-t . 

The Ho + He components represent the free oscillations of the system and are autonomous, 

while the perturbed (forced) terms are all nonautonomous. 

The subscripted coefficients a, b, c, d, A, and B in (3.3) are all functions of the 

parameter = la , the nondimensional distance down the channel (see Table 1). The 

Hamiltonian may be simplified by approximating these terms according to their order of 4. 

http:aiciii).72
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All cos and sin terms are assumed to be 0(1), and recall that >> 1. For example, the 

Pi coefficient in H. is approximated by: 

b2 2(t cost sin 
= 2 0 1 ---- 2 (3.4) 

a2b2 4'1 (2 sin2 t) 

This type of approximation is used only for determining the order of the coefficient for each 

variable grouping, not to rank the importance of different variable combinations. This 

means that the coefficient in Ho is 0014 while the P1P2 coefficient in Ho is 2), 

which is not neglected. This sort of approximation of coefficients by order of will be 

used again later. Using these approximations, the Hamiltonian components are 

Ho = 4,1"214Q +-1F214Q +ir2baQ2 + 4b4q2 
2 P P (3.5a) 

21.2/32g 2r2s2g 1'2s2g2 

He= E -I-15 aqp+ 11112 115) Q2qp+ 2c a2P
1 

(3.5b)
2e 6/21 p ,2 411 p ,2 

1-13 4/ A To2b2t 11- rfi2b2t3 21" 7 

Hr = y
rbf1Q1 COSt ap, cos Q,P2 cost - yr2ba2 sin t

Pt )6 fit 1-3 

Y p2 ;, t 2Y DD y P2 (3.5c)+ r2s2b2 1 Sill r2p2bt3 I 11 2 Sul 1-2 Sulij 

+ qpcosl - 2P-q2 sing + sinl
2fit )3 2 fl 2bt 2 13. 

The Melnikov method requires first an analysis of the unperturbed (y = 0) system 

which involves calculating the first order evolution equations according to 

He) a(Ho +He)
4=.9(Ho+ , (3.6a,b)dq 

Next the fixed points of the system, which are the values of (qopn) such that 

4. = 0 and tin = 0, 

are computed. Finally, the fixed points are classified to determine the saddle points and 

then the homoclinic orbits are calculated about these saddles. 
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However, the above unperturbed system is very complicated, in part because it has 

three degrees of freedom, but also because of all the combinations of interactive terms. The 

beauty of formulating the problem in terms of the Hamiltonian is that any number of 

canonical transformations can be made, all of which preserve the dynamics of the evolution 

equations. Choosing canonical transformations that simplify the Hamiltonian will also 

simplify the calculation of the homoclinic orbits and the Melnikov function. Holmes 

[1986] used this property to great advantage to study chaotic waves in a cylindrical basin 

using two separate transformations. Cross-waves in a long channel are more complex and 

require seven transformations. The key to finding suitable transformations lies in 

concentrating on the 0(1) terms and simplifying Ho as much as possible. Each 

transformation will be discussed separately in the sections below. 

All of the canonical transformations must satisfy the requirements of the Poisson 

brackets, 

du dv du dv
[u,v]q.p = 1J (3.7a) 

dqn
 

where the (q,,, p) are a complete set of canonical variables, and (u,v) are any two 

variables from another set [Fetter and Walecka, 1980; Goldstein, 1980]. The conditions on 

the Poisson brackets are shown below. 

for u,v a canonical pair
[u,v]" 

1 

(3.7b)
0 for u,v not a canonical pair 

3a. Rotation of axes transformation 

{(q, p), (Q1, P1),(Q2, 2)} = {(qf pf),(Q[, P1,(VP;)} 

The first canonical transformation puts the Ho terms into a more classical form. The 

component Ho contains the two product terms Q1Q2 and P1P2 which can be removed 
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following a rotation of axes transformation. This simplifies the action/angle 

transformations in §3b. The new canonical variables and the transformed Hamiltonian 

components are denoted with primes. The rotation transformations are: 

q=q' p = 13' (3.8a,b) 

Q1 = Q; cose +Q; sin 0 P1 = Pi cos 0 + P; sin 0 (3.8c,d) 

Q2 = Q1 sin 0 Q;cose P2 = /Is; sin 0 P;,cose (3.8e,f) 

The value of the axes rotation angle 0= KR is chosen so that the new product terms, VQ; 

and in the new 0(1) component H: are zero. The transformed Hamiltonian and its 

components are: 

H = H:+H;+ H;+0(e2 ,ey, y2), (3.9) 

,2 p2 p2ir2bm2 +gq,2
"0 2-

1 2 (3.10a)
214 2I-2)32g 

ri./21/-27 rIff(p2 45)
H; e Zq'p'

2 2 
(3.10b)

pi 2,[f. pi,q2,
 
r)92b23 Plp
 

nif rbf 
(Q1' + q)cos -t-- + + WI+ Q1'1';+ Vncost'Jr 28
 

y t
 
+ q 'p cos ii-471-2b(Q;2 +Q22 +2VQ;)sinl- z ybe sink (3.10c) 

+;-p'2 sin it3 + 2r2f3Y2b2 (Pin + F,22 + 2P1'132)sin.
2b

The coefficients in Ho and H; are approximated according to their order of 4 as before. 

This approximation is not necessary for the HE coefficients. For example, the P1'2 

coefficient in H: includes the approximation 

1 1 ) 1 
(3.11) 

The importance of using this type of approximation by order of is as follows. The 

rotation of axes transformation was originally applied to the Hamiltonian without any 
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coefficient approximations. Without any approximations, the rotation angle 0 was a 

complicated arc tangent function of various square roots of a, b and cij combinations. 

This value of 0 did not have a numerical value without either specifying a value of or 

using an approximation of order This type of approximation by order of as in (3.4) 

and (3.11) for the coefficients allows the Hamiltonian to be expressed more simply, and 

illuminates the physics and diminishes the algebra. 

3b. Action/angle transformation 

{(q',0,(v,p1,(v,p;.)}{(4,p),(61,P1),(62, 12 )1 

The second canonical transformation is to action/angle variables. (This was Holmes' 

[1986] first transformation.) The goal is to eliminate the generalized coordinates from the 

0(1) component. The transformations are given by the following: 

q' 2fr p' =i2ii* cos4 (3.12a,b) 

2P
Qi=iir2sb sin a Pi' = .,12P11-2,ob cos Q, (3.12c,d) 

.11 2/3b2 

Q? 41:'; = V2132r213b COS 62 (3.12e,f)r2s '3;,Ill 

The new momenta variables must all be nonnegative for the Hamiltonian to be real. 

The transformed Hamiltonian and its components are: 

(3.13) 

f)1 )32140= (3.14a)
P 
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6(8 +21/113/3b1131P-7 cosacos2q"1322613171 cosvA, 

(3.14b) 

+EY2 r---1341)7 sinasin24 e(112 2115)14132- sin Q2sin24, 
.N1)(3b ..1,0b 

Hy = Z1 :;# s i n(61 + : ) + sin(61 !) -6.)] + -42 [3 sin(262 + !-) sin 2Q2 

+ -1[(1+ 2fl)sin(24 + + (1 213)sin(24 g 

(3.14c)+ r\1131132 [3sin( "i + 62 + 1) sin(a + Q2 I)]
213 )3 )3 

t+ rPt [3sin(26 + 1) sin 261 f+ Yilibj;2 sin Q2 + 1) + sin
(
Q2 74 

1 134ig Ho)] 2s ,W L L ) 3 

The 0(1) Ho component can now be used as a check on the physics of the problem. 

The action/angle transformation is used in classical mechanics problems to obtain the 

frequency of periodic motion without finding a complete solution to the motion of the 

system [Goldstein, 1980]. The frequency of the motion is given by the first evolution 

equation, 4, = dHl apt, which is unity for the cross-wave angle coordinate q and 

1113=copico, for the progressive wave angle coordinates Q1 and Q2. Recall that the cross-

wave frequency was used to scale time in (2.1d). This transformation provides a physical 

check on approximating the coefficients by their order of 

3c. Hamilton-Jacobi transformation 

{(4,13),(a,fii),(62,./32)}{(q.p.),(a.,pi..),(Q;,p;)} 

The next canonical transformation applies the Hamilton-Jacobi theory which is 

generally used in classical mechanics to obtain variables that are constant in time by 
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transforming the Hamiltonian to be identically zero [Goldstein, 1980]. This transformation 

will closely follow that of Holmes [1986]. The idea is to find a transformation that makes 

the 0(1) terms in the Hamiltonian zero when the system is exactly in resonance. This 

transformation will be nonautonomous, explicitly including the time variable in the 

transformations. A nonautonomous transformation requires the construction of a 

generating function because the transformed Hamiltonian depends on the time derivative of 

the generating function [Goldstein, 1980]. 

Since the transformed Hamiltonian 1-1* is 

aft 
11* 

dt' (3.15) 

the generating function 

Pit P2t 
(3.16) 

13` 

would transform the Ho component to zero. However, following Holmes [1986], this 

transformation is adapted to include near resonance cases by defining a detuning parameter, 

which transforms the 0(1) Ho component to be 0(s) rather than zero. Furthermore, 

Holmes included a mechanism to remove one of the canonical variables from the 

unperturbed Hamiltonian, which automatically makes one of the evolution equations zero 

and reduces the number of degrees of freedom. Another important aspect of Holmes' 

transformation was that some of the perturbed terms were transformed to be autonomous. 

This allowed Holmes to time average and greatly simplify his system. Note that without 

autonomous perturbed terms for the cross-wave system, averaging would remove all the 

perturbed terms and eliminate the possibility of applying the Melnikov method. 

As mentioned in the §1, it is a goal to formulate the problem in terms of various integer 

frequency ratios between the forcing and the cross-wave. With this in mind, the 

transformations that satisfy the Poisson brackets, generating function F, and detuning 

parameter SI are defined as 



33 

S 
. q MQ: Nt 

2N m = P 
2NP; 

(3.17a,b) 

MQ: 
N 

t 
/3 P' 

=NAP; 
(3.17c,d) 

Q2= 2q` +Ma MQ; 
N N P2 

NP; 
(3.17e,f) 

= qe p2Q; N t 
m p 

P2t 
Q:131+ Q2P2) (3.18) 

ea =1 
MO 

(3.19) 

The time-dependent terms in the angle coordinate transformations (3.17a,c,e) include 

the frequency of the motion. The time derivatives of Q1 and Q2 give the nondimensional 

progressive wave frequency 1/fi ; the time derivative of q gives the nondimensional cross-

wave frequency N/M/3, which reflects the various possible frequency ratios between the 

forcing and the response [Bogoliubov and Mitropolsky, 1961]. The terms in parentheses 

in equation (3.18) are needed because this generating function F is of type three 

[Goldstein, 1980]. 

The Q: variable may be eliminated from (3.14b) using the following angle sum 

identity: 

c0s(d = cos (3.20)[1
 
Equation (3.20) does not contain V, which is how the V coefficients in (3.17a,c) were 

chosen; however, it is an autonomous term only if M = 2N , which is the primary 

parametric resonance [Bogoliubov and Mitropolsky, 1961]. At present, only this primary 

parametric resonance contributes to autonomous 0(e) nonlinear terms in the transformed 

Hamiltonian. This is a very important point because when the system is later averaged 

(again following Holmes [1986]), only the nonlinear autonomous terms contribute to 

homoclinic orbits. To include parametric resonances other than the primary, the problem 

should be reformulated to include higher order 0(C2) terms. 
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Considering only the primary parametric resonance N =1 and M = 2, the Hamiltonian 

is written in the component form 

H 1-1* = + H:(t)+ H; + H (t)+ , er, Y2 ), (3.21) 

where He are the autonomous 0(E) components, H;(t) the nonautonomous 0(e) 

components, II; the autonomous perturbed components, and H;(t) the nonautonomous 

perturbed components. The division into autonomous and nonautonomous components is 

useful because the nonautonomous components will average to zero. The nonautonomous 

components, in particular the perturbed component, are fairly long equations shown in 

Table 2 in Appendix I. The autonomous components are: 

8 42)HE = CO* P;) E 
(122 r--- (j, P2)1113; P' cos 2q*

2 .\/21,i3 
(3.22a) 

E012 2/1s )1 r,*\
11r2 )P2 cos 2Q;

2 

H; = y A ilb(P:P*) sin2Q* 
(1 2q*+2q')

2E 2/3 4f3 
(3.22b) 

II]sin(2Q: + 2Q; + 2q*) 

Note the linear term E (p* P;) containing the detuning parameter from the H0 

component. Since the action variables must be nonnegative, the condition on the new 

momenta variables is 

pa 0 (3.23) 
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3d. Shift transformation 

{(qs, P*), (V, P3 (V, P;)} {(q",p"),(a-,P1,0P11 

Each term in the unperturbed Hamiltonian (3.22a) contains the common term (pa P;) 

which can be transformed to a single new variable with a shift transformation. The shift 

canonical transformations are: 

q* = q" P* := P" + P;.' (3.24a,b) 

Q: Qi" Pi = Pr+ P;.' (3.24c,d) 

Q; = Qc q" Qi" 13; = P;,' (3.24e,f) 

The shift transformation preserves the time dependencies of each component, so that 

autonomous components remain autonomous after the transformation. The new set of 

Hamiltonian components is given by 

II* H" = H' + H:(t)+ 11; + 117,"(t)+ 0(e2, ey, y2), (3.25) 

where the nonautonomous components 1/"(t) and H,7(t) are shown in Table 3 in Appendix 

I. The autonomous components are: 

(p2 8 21132
H: = clip" + e ) p"I--7? cos2q"

2 -\P.1;Ta 
(3.26a) 

(1/2 210- E --1. p"ArPT cos(2Q;' 2Q1" 2q")
2A/2big 

H" = i2ii iilb(P pi sin 2X+ y (14ig 2S) p" sin(2X+ 2q")
7 2/'g 

(3.26b) 

+11P1-1­ sin 20'2e 2g 

The condition (3.23) on the momenta variables is now: 

p" ?.. P;' 0. (3.27) 
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3e. Nonautonomous QZ transformation 

{(q",p"), P;')} I(4,15),(0,134 ( )2 )} 

This canonical transformation removes another variable from the autonomous 

components of the Hamiltonian by transforming them to nonautonomous components. The 

idea behind this transformation follows from Fetter and Walecka [1980, Chapter 6] that any 

generating function F generates some canonical transformation which guarantees that there 

will be a new Hamiltonian given by 

171 = H" + aF" , (3.28)
at 

and so provides the extraordinary flexibility of choosing an arbitrary generating function. 

The motivation behind the following transformations is the application of the averaging 

theorem: 

q =4 P" = 15 (3.29a,b) 

Qi" = 61 Pi"= (3.29c,d) 

Qi = 02+ PZ = 132 (3.29e,f) 

P"tF" = 41)" alI--2-+(q"p"+0,1"1-xpl (3.30) 
13 

Note the appearance of the time variable tin (3.29e). The parenthetical terms in F" in 

equation (3.30) indicate a generating function of type three [Goldstein, 1980]. 

The transformed Hamiltonian components are 

= Ho + HE + HE (t) + Hy +/-17(t)+0(e2,ey, y2), (3.31) 

where the nonautonomous components HE (t) and il,r(t) are shown in Table 4 in Appendix 

I and the autonomous components are: 

(3.32a) 
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e(y2 8 2/132) 1­
HE p-NI Pi p cos(24) (3.2b)

2 N2bfi 

f1 13(i'l 13) (1 2/3)iir = y 1 sin 2Q1 + 7 ' /5 sin(2a + 24) (3.32c)
2e 2/3 4/3 

The momenta condition (3.27) is now: 

151 /3 P2 O. (3.33) 

3f. Q1 transformation 

{(4,fr),(a,]-51), -62 P2 )} {(4% Cal (62M )} 

Another transformation is needed in conjunction with the transformation in §3g in order 

to satisfy Proposition 4.1.17 from Wiggins [1988] discussed in detail in §4. These two 

transformations cannot be combined into one single transformation because they are of 

different types. The transformations are: 

(3.34a,b) 

(3.34c,d) 

(3.34e,f) 

The Hamiltonian is transformed to 

= Ho + + ii;(0+ ii; + if; (t) + 0(e2, ey, y2), (3.35) 

where the nonautonomous components are shown in Table 5 in Appendix I. The 

autonomous Hamiltonian components are: 

(3.36a) 
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42 8 2/02 ) _,2 
HE = e CITY + P il cos 24' (3.36b)

2 2,-N/b)3 

fi iib(f);2_,3,) a ,(1._ 2/3) sinr:g Et)Ti; = y ' sin + (3.36c)
p-1,2E 2)6 4fg Pi' 

The momenta condition (3.33) is now: 

Pi'2 /3" P; 0. (3.37) 

3g. Nonautonomous Q1' transformation 

{(4'43'),(a,P11,(0;,i);)}{(q,p),(a, P1),(Q2, P 2)} 

The final canonical transformation is designed to satisfy the conditions of Proposition 

4.1.17 in Wiggins [1988]. This transformation makes the autonomous perturbed 

component (3.36c) become nonautonomous and makes two of the terms in the 

nonautonomous perturbed component shown in Table 5 in Appendix I become 

autonomous. The generating function used is of type two from Goldstein [1980]. The 

transformations and generating function are: 

4' = q 13' = P (3.38a,b) 
, 2pit 

(3.38c,d)P1= P1P 

a = Q2 P; = P2 (3.38e,f) 

1'' = p4' + P:a + P2a +1 (qp + QA + Q2P2) (3.39)
P
 

The transformed Hamiltonian and its components are:
 

H = 11'+-= Ho+ HE+ He(t)+ Hr+11,,,(0+0(e2,ey, y2) (3.40)
at 
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where the nonautonomous components 11 ,(t) and H 7(t) are shown in Table 6 in Appendix 

I and the autonomous components are: 

HE = E + ,8 22bgP2) p cos 2q (3.41b)
24 1 

.f1 P) ]sin 7(1- 216) sin ± 2g)H7 = y (3.41c)
2e 2/3 P1 413 Pl 

The momenta condition (3.37) is now in final form: 

Pi2?_pP2 (3.42) 

3h. The averaged system 

The Hamiltonian will now be time averaged following Holmes [1986]. [See also 

Wiggins, 1988, Guckenheimer and Holmes, 1983, and Grimshaw, 1993, for a detailed 

discussion of the averaging theorem.] The averaged system has hyperbolic and periodic 

solutions corresponding to those of the full system. 

The Hamiltonian, averaged over the progressive wave period 243, is then given by the 

following: 

H=-D p2 +cp+ E(112 8 42)I a2 pyIPi2 p cos2q
24-12b#4 

(3.43) 

+y fl 13) sin a + (1 213) psin Ql + 2q
2e 2/3 P1 4f3 Pl 

The evolution equations from the averaged Hamiltonian are: 

E A(21)12 3p)
4= EU cos2q 

211(P12 P) 
(3.44a) 

+{(1 2fi) sin( a 2g) b a]
4s4 JD, 4e 2/34 (Pi 13) P1 
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13 = 2E11 pliP12 p sin 2q + y (2 P 1) p cos Q1 + 24 (3.44b) 
L 

2g Pi 

2p1 eApPi 2-1)
Q cos2q + y pacos(gi+ 2q)gP 4-P1 P 43P i 

(3.44c) 
1 b sinQ+f1l'i fla ,b(P2 -p) cs 

P12e 2gW- p) 2E12 2,g P1 

El = y f1 ilb(P. 19) cosQl +(1-2S) pcos(-+ 2q)] (3.44d)2P1 2/3 P1 4gPi Pi 

(3.44e) 

P2 = 0 (3.44f) 

where 

(.12 8 2832)
A= (3.45)

2N2b,3 

Note that all equations (3.44a-f) are independent of Q2 and P2. 
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4. The Melnikov calculation 

Since the evolution equations (3.44) do not depend on either Q2 or P2, it suffices to 

analyze the four dimensional subsystem consisting of the qpP,Q, components 

shown below: 

e A(2P12 3p)
g=eS2	 cos2q 

21K-P12 p) 
(4.1a) 

+ y[ (1 2S) sin(Q1 + 2q1 b sin 211 
4/3 Pl	 ) 4e 2/3 j 

(2p-1) (Qi
p = -26A p1P12	 p sin 2q + p cos +2q (4.1b) 

(1 2fl)
/31 = yHjbW 13) cos Q1 + pcos(g-1+ 2q

2sPi V 2g 4MPI
 

.2pi APP1
Q	 cos2q + Y[(42/3/3i-pl? pQi cos(-91- + 2g) 
P pqi2 -p 

(4.1d) 
±fiPi I b sin a f1Q1 p) cos PQ­2e Al 2g(Pi P) P1 2E1'12 2g P1 

(See Wiggins [1988, p. 442] for an analogous situation.) This is an example of the type 

described by System HI from Wiggins [1988, Chapter 4], since the entire vector field is 

derived from a Hamiltonian. Note that the order of the a and P1 equations (4.lc,d) has 

been reversed from that of (3.44c,d) in order to be consistent with the notation in Wiggins 

[1988]. Using Wiggins' notation, 

(q = (q,p),P1,Q1) E 912n x 91"1 X 91m,	 (4.2) 

where n =1 and m =1 for (4.1). In general, Wiggins approaches the study of the 

perturbed System III with KAM type arguments. However, his discussion provides for a 

special case with n =1 and m =1 for which KAM theory is not needed and intersections of 

the stable and unstable manifolds result in ordinary Smale horseshoes [Wiggins, 1988, p. 

394]; equations (4.1) are analyzed without KAM theory. 
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4a. The unperturbed system 

The averaged system without forcing is analyzed first. Setting the perturbation 

parameter y = 0 in (3.43) and (4.1), the averaged unperturbed Hamiltonian and evolution 

equations are reduced to: 

17(y = 0). ----L + 1- +eL2peApAIP12 p cos2q 
)6 S 

(4.3) 

4 = ESIEIA 
(2P122 3p) 

cos2q
Pi P 

(4.4a) 

p = 2E ApAIP12 p sin 2q (4.4b) 

P1 = 0 (4.4c) 

Q _2Pi 
ti 

E A cosPP1 2q17..7; (4.4d) 

The unforced evolution equations (4.4) depend only on the variables (q,p,P1). Since PI is 

constant by (4.4c), the (q,p) phase planes may be determined for fixed values of P1. 

Figure 2 illustrates contours of the Hamiltonian function (4.3) on standard phase portraits 

for five different ranges of the detuning parameter S2. These phase portraits are n-periodic 

in q and bounded by the line p = .1.; , where 4 is undefined in (4.4a). 

The fixed points. The saddle points (hyperbolic fixed points) are given by 

(q,p)=(-icos-ipL2] 0 j' (4.5)
PIA 

where the detuning parameter must lie within the range 

PIA < SI < PIA . (4.6) 

Outside of this range there are no saddles as shown in Figures 2a,e. When SI = 0 the 

system is precisely in resonance (Figure 2c); although saddle points exist, there are no 

closed orbits connecting them. 
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a) b) 
p12 P121 

0 
E
0
 

E0
2 

E0 

0 0 

0 n/2 /C 0 it/2 It 

Generalized Coordinate q Generalized Coordinate q 
c) 

P
 

0 . 

E 

2 
E
0


0
 TE/2 It 

Generalized Coordinate q 
d) e) 

0
 it/2 0
 it/2 It 

Generalized Coordinate q Generalized Coordinate q 

Figure 2. The (q, p) phase plane for the unperturbed system (4.4) for fixed P1. For 
plotting purposes only, /3 = 0.5, b = = 24,r, E = 0.25, P1 = 1, and A = 0.0034. 
The detuning parameter range is: a) SI (S/ = 0.005); b) < S2 < 0 
(52 = 0.0025); c) S2 = 0; d) 0 < S2 < PIA = 0.0025); and e) PIA < S2 (SI = 0.005). 

It is the closed trajectories of the saddle points in Figures 2b,d that are important for the 

Melnikov method. There are two different values of q in each pair of saddle points 
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connected by the closed orbits because the arc cosine function in (4.5) is satisfied in two 

quadrants, 

q= + cos1 (a) = { 
291 (4.7)

+02= +(2n 0i). 

Although the trajectory connecting the saddle points at different values of q is heteroclinic, 

the Melnikov function may be computed in the same manner as for a homoclinic trajectory 

[Wiggins, 1988, p.470]. Furthermore, the entire line p = 0 in the final canonical variables 

corresponds to the (q,p) origin in the original canonical variables; the saddle points 

connected by the heteroclinic trajectory in Figure 2b represent the same physical state, and 

the saddle points in Figure 2d represent the same physical state. 

The unperturbed evolution equations (4.4) and the phase portraits in Figure 2 are 

similar to equations (2.13) and Figure 1 of Holmes [1986]. This is not surprising because 

Holmes' system of two modes in a vertically oscillating cylindrical basin was described by 

a Lagrangian given by Miles [1976] that differs from equation (2.3) only by the dynamic 

pressure component 0'. 

The heteroclinic orbits. The heteroclinic trajectories lie on the level set 

+ P12H(7 = 0,q = -icos-1[2 p = 0). (4.8) 
PI A P P 

Equation (4.3) for the unperturbed Hamiltonian can be solved for q in terms of p, P1, P2, 

and H. Substituting in the value of H of the level set in (4.8) gives the relationship 

between q and p on the heteroclinic trajectory, 

_i[
qh - COS 

SZ 
(4.9)-27 

Pi2 -p 

where the subscript h refers to the heteroclinic orbit. On the heteroclinic trajectories 

cos 2qh = sin 2q = (4.10a,b)
AArir--; A2 (P12 p). 
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The equations (4.10) are substituted into the right hand side of the unperturbed evolution 

equations (4.4a,b,d) and integrated to obtain the solutions for q, p, and Q1 on the 

heteroclinic trajectories: 

Ph = (A211' 02) sech2 [s t V A2 P 12 021 (4.11)
A2 

ESI i p(r)q, . 
1;s" 2 (r)dr 

_1[11A2P12 a2 tan+ tliA2P 02)140,±2 ,±z,...) (4.12) 

dr =_IIL'iah = i 21'1 dr e DPIS P(r) 2Pigh + ao (4.13) 
0 0P Pi AT) f3 

The sequence of constants of integration for qh in (4.12) are required to obtain the 

repeated saddle point locations on the q-axis for Figures 2b and 2d. The constant of 

integration Q10 for Qlh in (4.13) is unknown at this point but will be determined to have 

specific values for which the system is chaotic. The heteroclinic trajectory shown in Figure 

2b will be the case analyzed by the Melnikov method and is shown in more detail in Figure 

3. The positive sign for qh in (4.12) is used to plot the trajectory backward in time from 

t = 0 and the negative sign to plot the trajectory forward in time from t = 0. 

The heteroclinic trajectories, described by the two parametric equations (4.11) and 

(4.12) for ph and qh, are continuous functions of P1 and form a surface in the three 

dimensional q p Pi space shown in Figure 4. The manifold of the hyperbolic fixed 

points of the q p Pi components of (4.4) is denoted as 

po(Pi): (q,p,P1)=(12.-cos-1[1,O,P, (4.14)
PA }-0 

which is the heavy line in Figure 4. This figure represents the same conditions as in 

Figures 2b and 3; the hyperbolic manifold is bounded below by the point (42,0,0/A) 

and lies within the range i < q <*; the arrows indicate the direction of motion on the 

heteroclinic trajectories. 
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(q,p,t) = (T12, P12 S22/A2, 0) 

p,2 

E
 

E
 

0
 

0
 

Generalized Coordinate q
 

(q,p,t) = (1/2 cos-IQ/PAL 0, (q,p,t) = (1/2 cos-IQ/PAL 0, --.0) 

Figure 3. Details of the heteroclinic orbit of Figure 2b showing the (q,p) values at times 
t= 0, t=00, and t=.0. 

In the full q p F, Q, phase space, (4.4) has a two dimensional normally 

hyperbolic invariant manifold with boundary 

M= (Po(P1),Q1), P1 > (4.15) 

M has three dimensional stable and unstable manifolds which coincide in the three 

dimensional heteroclinic manifold. (See Wiggins, 1988, Proposition 4.1.15.) 

The unperturbed vector field restricted to M is given by 

1.)1 = 0 (4.16a) 

Ql (4.16b)-d(r C"o(Pi),P1)= 2P1T 
with flow given by 



47 

Figure 4. Schematic of the phase space structure of the unperturbed system (4.4a,b,c) for 
the same conditions as Figure 2b showing the one-dimensional manifold of hyperbolic 
fixed points po (P1) and the surface of separatrices containing the stable and unstable 
manifolds of p0. 

P1(0= P1 = constant (4.17a) 
-17 1 

10. (4.17b)
13a(t) rPy=°430(Pi),Pi)dt= 

2Pit 

So M has the structure of a one parameter family of one-tori. The tori on M for fixed 

P1 = Pl are denoted as 

{(q,Pi,Q1) E 912 XPI X 9i114 = Po(P1),Pi = 751}. (4.18) 
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4b. The perturbed system 

The perturbed system is studied next. By Proposition 4.1.16 [Wiggins, 1988], the 

perturbed system (4.1) possesses a two dimensional normally hyperbolic locally invariant 

manifold 147 denoted as 

Mr = (Pr (PO, ), Pi >A Pr(P0= Po(li)÷ '9(Y), (4.19) 

and M7 has local stable and unstable two dimensional manilfolds. (Note that the 

dimensions of the stable and unstable manifolds of M and m7 differ.) The procedure is to 

determine if M7 contains any periodic orbits and then to determine whether or not the stable 

and unstable manifolds of these periodic orbits intersect by calculating the Melnikov 

function. 

The flow on Mr. There must be recurrent (periodic) motions on My in order to apply 

the Melnikov method. For a dissipative system, which Wiggins [1988] denotes as his 

System I, the recurrent motions are found by averaging the perturbed PI equation and 

finding its fixed point. [See Proposition 4.1.6, Wiggins, 1988 or Proposition 2.2, 

Wiggins and Holmes, 1987.] This procedure was followed by Allen, Samelson, and 

Newberger [1991] for their quasi-geostrophic flow problem which was of type System I. 

This procedure would need to be followed here if dissipation were included in the cross-

wave problem. However, the perturbations in (4.1) are Hamiltonian since dissipation has 

not been included, and as mentioned earlier equations (4.1) are an example of System 1111 

[Wiggins, 1988]. Recurrent motions are guaranteed on m7 if [Theorem 4.1.17, Wiggins, 

1988]: 

d2r1 
y = 0,po(Pi),P1)]*0. (4.20) 

Applying (4.20) to (4.3) and evaluating on the manifold of hyperbolic fixed points (where 

p=0), 
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ad
2H2 (7 = °/Po(P1)7P1) 

2 
(4.21) 

The nondegeneracy requirement is satisfied and recurrent motions exist on thethe 

Melnikov function may be calculated. 

Calculation of the Melnikov function. The Melnikov function is now calculated in 

order to determine if the two dimensional stable and unstable manifolds of the periodic 

orbits intersect in the three dimensional energy surfaces given by the level sets of (3.43). 

In this case the Melnikov function is a scalar and is given by 

all ' 
dt (4.22)11010) = 

qh.Ph .Q 111,1 

[Wiggins, 1988, equations (4.1.92) and (4.1.85)] where 

H7 = [ f ilb(P12 p) Q1 (1 V) (Qipsm + 2q . (4.23)2 

Equation (4.22) applies to System III and represents the measurement of the distance 

between the stable and unstable manifolds. Careful reading of Chapter 4 in Wiggins 

[1988] shows several forms of the Melnikov function that differ slightly for Systems I, II, 

and HI with (4.22) applying only for System III. Furthermore, the Melnikov function may 

be a vector, depending on the dimensions of n and m in (4.2). For the case of System III, 

n =1, and m =1 the Melnikov function has only one component and may be computed by 

(4.22). (See examples 4.2ci, ii, and 4.2d in Wiggins, 1988 for uses of the above form of 

the Melnikov function.) 

The Melnikov function (4.22) for the cross-wave problem is given by 

Al(ao = f1 b(P12 P) cos.9[2ePi 2/g 
(4.24) 

(1 2,)p )]
cos(Qi + 2q dt.

4/gPi 
qhPhalh 
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Rather than substituting equations (4,11) and (4.12) into (4.24) to evaluate the Melnikov 

function on the heteroclinic orbit, equation (4.24) is evaluated first on Qih using (4.13) and 

then on Ti , 

M(Q10) = -J (112 13) cos Q10 2q + t-)
2EFA 2)g1 Pi P 

(4.25) 
(1 2,0)p (Q 211

+ cos 1 + 8 dt.
4MPI 

qh,Ph
I 

Equation (4.25) is then expanded with various angle sum and multiple angle identities. The 

evaluation of M(Q10) on qh will then use (4.10a,b) for cos2qh and sin 2qh rather than 

(4.12) for qh. Analyzing Figure 3 for the cases t = 0 and the small time increments 

t =-±St , the signs of the square roots used in equations (4.10) are 

cos 2qh = for 00 < t <00, (4.26a) 
AVP12 p 

sin 2qh = + 1 for 0 < t < (4.26b)
A2 (f) p) 

sin 2qh = 1 for 00<t<0. (4.26c) 
A2 (PI p) 

The Melnikov function is integrated in time from to oo, over which cos2qh is even 

and sin 2qh is odd by (4.25). Recalling also that cos 2t //3 is even and sin 2t/i3 odd, and 

keeping only even functions in (4.25), the Melnikov function is the sum of the following 

three components: 

M(Q10)= 2 cos Qi + /2 + /3) (4.27) 

I = (1 2P)j: ph cos? dt, (4.28a)
4/3Pi )3
 

fLi2 b 7 2t
cos dt, (4.28b)
2sPIA 2ig 

= fl V A2 (1512 ph) sinsm dt. (4.28c)
2s171A 2)g 
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These components are evaluated explicitly in Appendix I and are: 
-I 

I, = (1 2/3)7r 14)32 C13, A2E2 sink( )1 , (4.29a)
PEAI e 

/2 = 0. (4.29b) 

13I,. f IA16 b [ 
71-, sit-1h (4.29c)

2e/51A \ 2,i3 2 2e-Ve ( ef3A/6 /1
 
02/ / 2
for all Fi2 A and where 0 is defined as 

0 (A21,72 L-22 ). (4.30) 

Since all of the Melnikov components in (4.27) are bounded and do not sum to zero, 

the Melnikov function M(Q10) = 0 when 

Qlo ao = 75, ir(2n +1)/2, n = 0,±1,±2,... (4.31)cos = O,
ri 

/512 0 2/for all A2 Furthermore, (4.31) represents simple zeroes of the Melnikov 

function since 

dM 2 Q= --, sin 24 (II + /2 ± /3) (4.32)
dao PI PI 

is never zero when (4.31) is satisfied. The stable and unstable manifolds of the 

corresponding hyperbolic periodic orbit intersect transversely yielding Smale horseshoes 

on the appropriate three dimensional energy surface. (See Theorems 4.1.19 and 4.1.20 in 

Wiggins, 1988.) 
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5. Summary and concluding remarks 

In the original formulation of the model, the variables q(t), Q1(t), and Q2 (t) represent 

the velocity potential amplitudes of eigenfunctions describing the cross-wave potential 0, 

and the progressive wave potential Op, equations (2.5a,b). These generalized coordinates, 

along with their conjugate momenta p(t), P1(t), and P2(t) , were put through a series of 

seven canonical transformations that ultimately expressed the Hamiltonian and evolution 

equations in a form in which the Melnikov method could be applied. The results of §4 

provide the theoretical predictive criteria from the Melnikov function that cross-waves can 

be chaotic. In order to understand the Melnikov function results, a reversal of the canonical 

transformations is necessary. 

Recall that it was noted in §3g that both the final set of transformed variables and the 

original set of variables were denoted the same, without any overmarks. As this is no 

longer convenient, the original set of variables will now be designated as 

(gong P orig 9 Qlorig, Plorig 1Q2orig 9 P2orig) (5.1) 

The final set of transformed variables will still be referred to as 

QV P2)* (5.2) 

Beginning with the first canonical transformations in equations (3.8), the original 

variables are expressed in terms of the primed variables; the primed variables are then 

expressed in terms of the action/angle variables (3.12); the process continues using the 

successive canonical transformations (3.17), (3.24), (3.29), (3.34), and (3.38), until the 

original canonical variables are all written as functions of the final set of variables which 

were used to apply the Melnikov method. The original variables are then expressed as 

IlL3 sin( Q1 3t 
(5.3a)

2P1 431 

Porig =112W1 cos Q'-+q 3t (5.3b)
2132P)'1 
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aori = 111.1 sin(a +1+ 21)2 sin 2Q2 + (5.3c) 
g 2b/3 1'2 P, 4F2bfi 13) 

Plorig P cos(Q1 +1+ 11 2P2 cos(2Q2+ at-) (5.3d)
2big1-2 s 41-2big 

2 p sin(Qi 3t) 2P2 3t)
Q2orig = sin 2Q2 (5.3e)

2b/31-2 fi 41-21))6 

P2ortg = cos(Q1 + 3t 2P2 cos 2Q2 (5.3f)
2b/31-2 PI /3) Alztr2bfi 2 

Note that qorig and porig depend only on q, p, Q1, and P1 and not on Q2 and P2. 

As mentioned in §4, the successive canonical transformations were applied to the
 

system because the evolution equations obtained from the original Hamiltonian (3.5) were
 

fax too complicated to compute a homoclinic orbit; this separatrix may now be calculated.
 

A heteroclinic orbit in the final variables can be calculated using equations (4.11) ­

(4.13) for any constant value of P1 > fl/A, and in the transformed system the heteroclinic 

orbit looks like an upside down letter "U" or the intersection mark "n" from set theory. 

Figure 5 shows that this n-shaped heteroclinic orbit becomes a homoclinic orbit in the 

(q0epong) phase plane. The time zero point is indicated and corresponds to the time zero 

location at the top of the n-shaped orbit as noted in Figure 3. The trajectory shown in 

Figure 5 consists of two spirals; a counterclockwise spiral for negative time and a 

clockwise spiral for positive time. The origin represents the saddle points at t = The 

parameter conditions used in Figure 5 are e = 0.25, f2 = .0025, P1 =1, b =1, and 

=1.6441. These values are similar to those used for Figures 2b and 3, except for b and 

4, which were chosen to better illustrate the spiral motion. 

The homoclinic orbit shown in the (qorig,porig) phase plane of Figure 5 actually occurs 

in the six dimensional phase space of all the original canonical variables, and in the full six 

dimensional space the trajectory would not cross itself. Figure 6 clarifies the trajectory of 

the homoclinic orbit since the time axis is added for perspective. Figure 6 also shows that 

the spiral is clockwise about the positive time axis and counterclockwise about the negative 
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Figure S. The heteroclinic orbit in the original (q,p) phase plane. f2 = 0.0025, 
E = 0.25, P1 =1, b =1, and =1.6441. 

time axis, and at t = -1-00 there are saddle points for (gong D ong) = (0 ,0 ). Figure 6 also 

graphically justifies the necessity of the canonical transformations; an equation describing 

the trajectory in Figure 6 would be very difficult to obtain. 

Chaotic cross-wave motions occur about the homoclinic trajectory shown in Figure 6. 

Time series of these motion may also be calculated. 

The final set of perturbed evolution equations (4.1) are integrated in time using a 

fourth-order Runge-Kutta technique, starting from a set of initial conditions on the 

heteroclinic orbit. The final variable Q2 is also determined by integrating (3.44e), 
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Figure 6. The heteroclinic orbit of Figure 5 with the time axis added for perspective. 

(5.4)Q2 = V20 ' 

P2 may be any value since P2 = 0 in (3.44f). Using the same parameters as in Figures 2b 

and 3 and a perturbation parameter y= 0.5, f1 = 1, F =1, P2 = 1 , Q20 = 0, and the initial 

conditions of the time zero location at the top of the heteroclinic orbit in Figure 3, the time 

series of qorig and Q10,ig are as plotted in Figure 7. The time series are calculated from 

equations (5.3a,c) after (4.1) are integrated. The time series indicate that for regular motion 

in Q10rig (corresponding to periodic wavemaker forcing) the gong motion becomes irregular 

or chaotic. 

Figure 8 is the time series of the sum of the cross-wave and progressive wave time 

dependencies. Recall that the velocity potentials from (2.25a,b) are 

0, = gong (t) cos(y b)ez, 0,,.[Qh,g(t)cosx+ Q2orig (t)sinx]ezlfl2 

At the still water level z = 0, at a cross-wave crest location cos(y b) =1, and at integer 

multiples of the progressive wave wavelength where cosx =1 and sin x = 0, the total 
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Figure 7. Time series of the original q and Q1 variables showing chaotic behavior of the 
cross-wave variable q. Parameters used are the same as for Figures 2b and 3 with 
y = 0.5, f1 =1, and F =1. The initial conditions used for the final transformed variables 
are the time zero conditions on the heteroclinic orbit, q= 7r/2, p= 0.4593, P1 =1, and 
Q1 = 37r/2. 

velocity potential 0 = 0, + 0, is the sum of gong and Qiorig, as shown in Figure 8 for the 

two time series of Figure 7. 

The phase portraits in Figure 2 and the solutions for p, q1, and Q./ on the heteroclinic 

trajectory, (4.11) - (4.13), were compared to Holmes' [1986] results in §4 and found to be 

similar. However, the heteroclinic trajectory of the original system, Figures 5 and 6, and 

the time series of gong and Q10,i, in Figure 8 do not agree with Holmes' results. 
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Figure 8. Time series of the sum of the original q and Q1 variables. The sum is of the two 
time series shown in Figure 7. 

Holmes [1986, p.379, Figure 2] shows the heteroclinic trajectory of his transformed 

system becoming the classical figure-eight homoclinic loop in his original system. 

Reversing Holmes' two canonical transformations for one pair (q1, 2) of his original 

coordinates results in their expression as functions of Holmes' final variables 

(Qi P2), 

2o) P= -1 COS(Qi +Q2 +4"), (5.5a) 

014+Q2 (5.5b) 
C1 

These equations are similar in form to the cross-wave equations (5.3a,b) above; these 

equations are not conducive to plotting a figure-eight. It appears that Holmes assumed the 

shape of the homoclinic orbit in his original system rather than calculating it. Furthermore, 

if the original system did contain a classical figure-eight homoclinic orbit, canonical 

transformations would be unnecessary since solutions to such orbits exist in the literature 

[Guckenheimer and Holmes, 1983, p.191, e.g.]. 
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Holmes also plots time series of his two original coordinates qi and q2 [Holmes, 1986, 

p.381, Figure 3]. His time series shows one mode oscillating at w and the other at co/2, 

and a slowly varying envelope superimposed over both time series. Holmes describes this 

envelope as indicating an irregular exchange of energy between his two modes. Both of 

these time series differ significantly from those of Figure 8. As before, there is no clear 

evidence that Holmes actually computed these two time series. 

Some specific remarks about the Melnikov function calculated in §4 are now in order. 

1. It is important to remember that the Melnikov function is not valid exactly at 

resonance, CI = 0, because there is no heteroclinic orbit connecting saddle points under this 

condition. 

2. The Melnikov function has an infinite number of zeroes for P12 > 122/A2 as 

described in §4. However, as P-i2 -> 02/A2 , 0 -> 0 from (4.30) and the Melnikov 

L22/A2components // and 13 in (4.29a,c) approach infinity. The condition 17,12 

represents a case of weak chaos. 

3. The type of wavemaker motion has no effect on whether or not the system is 

chaotic. The wavemaker type is characterized by the parameter f,, defined in Table 1 of 

Appendix I as an integral of the wavemaker depth function f(z), 
0 

/a 2 
= f(z)e"P dz. (5.6) 

--a 

As f1 is finite for any physically realistic wavemaker, the Melnikov component 13 (4.29c) 

which contains the parameter f1 is finite. Furthermore, since 13 is the only Melnikov 

component to contain the wavemaker parameter f, , even if f1 = 0 for some f(z), chaos will 

still occur for the condition given by (4.31), cos(Q10/Ti) = O. The wavemaker parameter 

affects the time series obtained by integrating equations (4.1), but does not affect the zeroes 

of the Melnikov function and so does not determine if the cross-waves are chaotic. 
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4. Since damping was not included in the model, the Melnikov calculation allows for 

chaotic behavior for any non-zero forcing parameter 7. This result is not supported by 

experimental data (see §1), where a minimum wavemaker forcing (and thus a minimum 

progressive wave amplitude) must be exceeded to generate cross-waves. The parameter F, 

defined in (2.15d) as the ratio of the progressive wave amplitude to the cross-wave 

amplitude, does not appear in the Melnikov function; I' ceased to appear in the Hamiltonian 

after the action/angle transformations. The Melnikov function results thus do not supply 

any information about the relative amplitudes of the cross-waves and progressive waves. 

5. Finally, the Melnikov calculation provided no information on chaotic behavior for 

frequency ratios other than co;: (0: = 2:1. This is because in the Hamilton-Jacobi 

transformation of §3c, the frequency ratio had to be specified as 2:1 in order to retain 

autonomous nonlinear terms. A frequency ratio of 1:1 requires that higher order terms be 

retained in the Taylor series expansions of §2. This result agrees with those of Holmes 

[1986] and Garrett [1970]. 

The results of new cross-wave experiments from the 0. H. Hinsdale Wave Research 

Laboratory at Oregon State University will be compared to these theoretical results in a 

forthcoming paper. 
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Chapter III. Experimental Results 

1. Cross-wave experiments in a long rectangular channel 

Cross-waves are parametrically excited standing surface gravity waves that oscillate in a 

direction transverse to the wavemaker forcing. The cross-waves of interest here are 

generated in a long rectangular channel with rigid side walls, a horizontal flat bottom, a 

wavemaker at one end, and a sloping beach at the other. Thecross-wave forms in addition 

to a progressive wave that travels down the channel from the wavemaker and dissipates on 

the beach. 

The progressive wave frequency cop is equal to that of the wavemaker forcing and the 

deep water dispersion relation cop2 = gk provides the wavenumber k associated with the 

frequency cop. The channel width determines the wavelengths A,, = 2(basin width) /n of 

possible cross-wave modes where n is the mode number and is equal to the number of 

half-wavelengths across the tank. The cross-wave frequency 0), is related to the 

wavelength by the deep water dispersion relation coc2n = gicn, K=271-1A,,, where x. is 

the wavenumber of the cross-wave. The following general discussion based on 

Bogoliubov and Mitropolsky [1961] describes parametric resonance. 

Assume the motion of a parametrically forced oscillator is described by Mathieu's 

equation 

a2(1 s cos vt)x = 0, E (1.1) 

Resonance occurs when the natural frequency a is related to the parametric forcing 

frequency v by a = Nv /M, N and M integers. Bogoliubov and Mitropolsky expand in 

perturbation series the displacement x, the time-derivative of the amplitude dalat, and the 

time derivative of the phase dOldt, and solve by the method of successive approximations. 

An instability due to parametric resonance occurs for some range of parametric forcing 
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frequency v and for some values of the nonlinearity parameter E. In the parameter space 

defined by v as the abcissa and E as the ordinate, the region in which the parametric 

resonance occurs is called the zone of instability and is delineated by a neutral stability 

curve. A typical neutral stability curve is somewhat V-shaped. The primary (fundamental) 

resonance of N =1 and M= 2 has the largest zone of instability (the widest V-shape). If 

the forcing frequency lies within the interval described by the zone, the instability (such as 

a cross-wave) will occur. The zone of instability thus determines the bandwidth of the 

resonance. Letting N vary and carrying out the perturbations, Bogoliubov and 

Mitropolsky show that the bandwidth of the zone of instability diminishes with order N as 

EN. They also show that the neutral stability curve minimum (the bottom of the V-shape) 

occurs at E = 0 without damping and at higher values of E when damping is included. This 

minimum value increases as N increases. Thus the primary resonance case a = v/2 is of 

the most practical interest. 

Laboratory experiments show that the amplitude of the cross-wave can be much larger 

than both the wavemaker forcing amplitude and the progressive wave amplitude. The 

wavemaker forcing will parametrically generate a cross-wave in the lab when two 

conditions are met: 1) some minimum amplitude of wavemaker forcing is exceeded, and 2) 

the wavemaker (and progressive wave) frequency cop is in some narrow bandwidth about 

McocnIN. Cross-waves generally have half of the frequency of the wavemaker forcing 

2 ), although additional resonances can occur. The general case explored in the 

cross-wave literature is that of the primary, N =1 and M = 2. 

Experimental studies of cross-waves in long channels began with Barnard and 

Pritchard [1972]. Stability diagrams were determined for various cross-wave modes; 

these diagrams indicate the regions in which cross-waves occur, each mode requiring some 

minimum amplitude of wavemaker forcing, and the cross-waves occur in a narrow band 

about a forcing frequency twice that of the cross-wave. Barnard and Pritchard also showed 

that the amplitude of the cross-wave varied with time, indicating a continual growth and 
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decay of the waves. Cross-wave amplitudes decreased with distance from the wavemaker. 

The channel used was 30.6 cm wide, the water depth was 16 cm, and the channel length 

was 270 cm; although the channel was long compared to its width and depth, it was also 

small enough that surface effects were important. In particular, an absorbent cotton 

bandage was placed on the wavemaker, the channel sides at the waterline, and on the beach 

to reduce the effects of uneven wetting. Water surface contamination was a crucial factor, 

necessitating skimming the water surface before each experimental run. 

Lichter and Shemer [1986], Shemer and Lichter [1987], and Shemer and Kit [1989] all 

used a channel 1.2 m wide, 0.9 m deep, and 18 m long, where surface effects were 

negligible. All of these experiments studied the primary parametric resonance. Lichter and 

Shemer described the evolution of the wave energy spectrum with distance from the 

wavemaker. Shemer and Lichter classified different regions in the stability diagrams based 

on the presence or absence of an amplitude modulation. Shemer and Kit described the 

long-time modulation patterns of the cross-waves. 

Underhill, Lichter, and Bernoff [1991] studied parametrically forced cross-waves and 

found three prominent frequencies present: the primary subharmonic and two slow 

temporal modulations. The stability diagrams were very precisely divided into regions 

where the cross-wave motion was periodic, quasi-periodic, or chaotic. As this channel 

was also fairly small (30.9 cm wide, 30 cm deep, and 121 cm long), surface tension effects 

were notable and a surfactant was added to the water. Shemer and Lichter [1987] also 

defined the neutral stability curve for a cross-wave with boundaries between steady, quasi-

periodic, and chaotic behavior. Quasi-periodic behavior is motion that consists of two or 

more incommensurate frequencies. Chaotic behavior describes a motion that is sensitive to 

different initial conditions. Motion from one set of initial conditions cannot be used to 

predict the motion when the conditions are slightly varied. 

A number of cross-wave experiments were performed in order to provide experimental 

evidence to support earlier theoretical results that cross-waves can be chaotic. The 
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theoretical analysis was an application of the Melnikov method to a model of cross-waves 

in a long rectangular channel [Chapter II]. Experimental evidence of chaos can be obtained 

by identifying five characteristics of chaotic motions [Moon, 1992]: 

1) Sensitivity to initial conditions. 

2) Broad Fourier spectrum from a single forcing frequency. 

3) Fractal properties of the motion in phase space denoting a strange attractor. 

4) Increasing complexity of regular motions as some experimental parameter is 

changed. 

5) Transient or intermittent chaotic motions or nonperiodic bursts of irregular motion. 

The fractal properties of the motion in the phase space (characteristic 3 above) are 

generally measured by the Poincare map, which is a periodic sampling of the phase space 

variables. A single point in a Poincare map indicates periodic motion; additional finite 

points show subhamionic oscillation; a closed curve indicates quasi-periodic motion; a 

fractal collection of points, or points filling a strange attractor, indicates chaotic motions. 

Underhill, Lichter, and Bernoff [1991] used the Fourier spectrum and the Poincaremap to 

identify chaotic motion in some of their experiments. 

The experimental set-up is described in §2; the general results of the experiments are 

given in §3. Specific details of the experimental results are discussed as follows: §4 

contains stability diagrams for primary resonances of modes 1, 2, and 4; §5 contains wave 

power spectra, Poincare maps, and time series for some runs exploring the primary 

resonances of modes 2 and 4; §6 contains spectra and Poincare maps for two runs looking 

for a secondary resonance for mode 2; §7 contains the results of the mode 1 primary 

resonance, which includes a case of simultaneous generation of modes 1 and 4. 
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2. Experimental set-up 

The experiments were performed in the long wave channel at the 0. H. Hinsdale-Wave 

Research Laboratory (OHH-WRL) at Oregon State University. The wave channel is 12 ft. 

wide, over 300 ft. long, and was filled to a water depth of 11.5 ft; surface tension effects 

were irrelevant. The end of the channel was a sloping beach. The wavemaker is full-draft, 

hinged at the bottom and operates with water on one side only. This channel is 

substantially larger than the ones used in any of the previous research mentioned. The 

most striking result of the cross-wave experiments was the simultaneous generation of 

cross-waves of the primary resonance cop: co,,, = 2:1 and secondary resonance 

cop: co,,, =1:1, an effect which does not appear to have been reported previously. 

Seven instruments recorded data for each run, located as shown in Figure 9. The first 

instrument recorded the wavemaker motion and the other six instruments recorded the 

water surface displacement. Three sonic profilers were located across the width of the 

channel near the wavemaker and three resistance wave gauges were located at various 

distances down the channel. There were 40 experimental runs each following the 

procedure below: 

1. The water surface was allowed to settle to no motion. 

2. The wavemaker motion would begin, holding a constant frequency and amplitude of 

motion. 

3. Water surface displacement recordings began with the wavemaker motion. 

4. There were 64 data points per wavemaker forcing period recorded for each 

instrument. 

5. Wavemaker motion was stopped after a predetermined time, which was after 16384, 

32768, or 65536 data points per instrument were recorded, corresponding to 256, 512, or 

1024 forcing periods, respectively. Recording ceased when the wavemaker forcing ended. 

6. The water surface was allowed to settle. This sometimes required two hours if a 

large cross-wave had been generated. 
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The initial conditions of the fluid domain are the water surface displacement and 

velocity at every location on the water surface. Although the water was allowed to settle 

between runs, it was not possible to obtain a perfectly motionless free surface. Each run 

was, by definition, begun with slightly different initial conditions; however, these initial 

conditions were never completely known. Sensitivity to initial conditions, characteristic 1 

in §1, was not used as a diagnostic tool in these experiments since there is no way of 

knowing or specifying the entire set of displacements and velocities of the surface water 

particles. 

The wavemaker forcing frequencies for the 40 experimental runs were chosen to study 

cross-waves of modes 1, 2, and 4. The frequencies of these modes were calculated from 

the deep water dispersion relation defined in §1: 

wcl = 2. 903 5-1, 4.106 s-1, coe4 = 5.807 s-1, (2.1a,b,c)Coe2 = 

L1 = 0.462 Hz, fc2 = 0.653 Hz, fc4 = 0.924 Hz. (2.2a,b,c) 

Note that 

wca = 2coc1 and fc4 = 2fc1 (2.3a,b) 

because modes 1 and 4 are related by 'c4 = /4 for any rectangular wave channel and for 

deep water 

g2x lig8r r-­
coca= -4.(.4 = = =2 =Lwcp (2.4) 

IIAca Aci 

In deep water the cross-wave mode frequencies are integer multiples of each other, 

Wc4 = 2C°c17 a/c8 2a)c2, Wc12 = 2a)c3, Cpc16 = 20)c45 ' (2.5a,b,c,d) 

because the wavelengths are integer multiples of each other, 

4k4? Act = 4 "c8? Ac3 41c12, Ac4 = 41c16, (2.6a,b,c,d) 

In intermediate depth water, where the dispersion relation is more complicated, the 

cross-wave mode frequency must be determined by 

wc = tanh ich (2.7) 
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where h is the water depth. In intermediate depth water, even though the cross-wave mode 

wavelengths are still related by (2.6), the cross-wave mode frequencies are not integer 

multiples of each other. Mode 1 has a wavelength of 24 ft., and in a water depth of 11.5 

ft. does not quite meet the deep water condition h> 2,/2. The mode 1 frequency calculated 

from (2.7) was cod = 2.896 s-1 and fc, = 0.461 Hz, and so (2.3a) and (2.5a) are really 

(0,4 = 2coe1. All cross-wave modes other than n =1 were strictly deep water waves. 

As noted in §1, previous cross-wave experiments have concentrated on the primary 

resonance, co,. = I-cop. These experiments include the secondary resonance, co,. = cop. A 

properly chosen single forcing frequency may excite one cross-wave mode as a primary 

resonance and an additional mode as a secondary resonance. For example, if 

Cop = 2cod = 0,4 (2.8) 

generates cross-waves of modes 1 and 4 simultaneously (as occurred in one of the 

experiments) then mode 1 is a primary resonance and mode 4 is a secondary resonance. 

Each of the 40 experimental runs had a forcing (and progressive wave) frequency cop 

in some small bandwidth about one of the four conditions shown below: 

1) cop = 2coa, 

2) cop = w,2, 

3) cop = 2w,4, 

4) cop = 2c0c1 = Coca. 

The placement of the measurement devices for each of the four conditions above are 

shown in Figure 9; Figure 9a for conditions 1) and 2); Figure 9b for condition 3); and 

Figure 9c for condition 4) above. 

The gauges on the centerline of the channel shown in Figure 9a were positioned to 

measure peaks of mode 2; the other two locations near the wavemaker were positioned to 

record peaks of mode 8, should it occur. All locations shown in Figure 9b will record 

peaks of mode 4. Figure 9c shows a gauge 0.5 ft. from the side wall, which is as close as 

a gauge could be to the side, where mode 1 peaks occur. The gauges located 3 ft. from the 
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Figure 9. Wave gauge locations for sonic profilers (triangles) and resistance wave gauges
(circles). a) Mode 2 runs, b) mode 4 runs, and c) mode 1 runs. Numbers refer to 
instrument numbers during data collection. 

side in Figure 9c are at mode 4 peak locations and where mode 1 has an intermediate 

amplitude. The centerline location in 9c is a mode 1 node, but a mode 4 peak. 
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The sonic profilers were placed to determine if a secondary resonance cross-wave mode 

appeared. Since a secondary resonance cross-wave would have the same frequency as the 

forcing, its peak would be indistinguishable from that of the progressive wave in the wave 

power spectrum, and must be detected instead by comparing the water surface displacement 

measurements from the sonic profilers. 

The transducers (sonic profilers and resistance wave gauges) were calibrated to convert 

volts to displacement. Signal conditioning adjusts the voltage to be in a -5.0 to +5.0 range. 

Rockland analog filters removed noise above the folding frequency. Analog signals from 

the sonic profilers were not filtered because of wild points. The analog voltage was 

converted to a digital value between 0 and 4095 using a PDP-11 with a 12 bit A/D 

converter. 

Unfortunately, the data recorded from the sonic profilers, instruments 2, 3, and 4 

shown as triangles in Figure 9, was extremely noisy. Most data files exceeded 90% bad 

points. The sonic profilers were positioned to detect secondary resonance cross-waves that 

may be superimposed on the primary resonance cross-wave and the progressive wave. 

The secondary resonance wave is of the same order amplitude as the progressivewave, 

both of which are an order of magnitude smaller than the primary resonance wave. Thus 

only subtle differences were expected in measurements between instruments 2, 3, and 4. 

While interpolation techniques exist to estimate values for bad data points, therewere so 

many bad points that interpolating for subtle variations seemed suspect in a search for 

chaos. Therefore, the sonic profiler data was not used for any analyses. This means that 

there was no way to determine the amplitude of any secondary resonance cross-waves from 

these data. 

Table 1 in Appendix 11 is a list of the wavemaker frequency and amplitude for each of 

the 40 runs. The table also includes comments of observations made during the 

experiments. 
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3. General results 

The low numbered modes 1, 2, and 4 were studied because these modes can be easily 

generated in the long wave channel used at the OHH-WRL. Generating higher modes 

requires smaller waveboard strokes than for lower modes. The smallest waveboard stroke 

used to generate mode 4 was 0.3 in., a very small value for a water depth of 11.5 ft. 

The cross-waves appearing as a primary resonance had amplitudes about an order of 

magnitude larger than the progressive wave amplitudes. This was a problem for mode 1 

cross-waves. While the waveboard strokes used to produce mode 1 were well within the 

capabilities of the lab, the mode 1 cross-waves generated were so large that the wave 

resistance gauges were occasionally overtopped and some water sloshed over the side walls 

of the tank. This prevented a detailed analysis of the neutral stability curve for mode 1. 

The cross-waves generated as a primary resonance contained a slow streamwise 

modulation which was also reported by Underhill, Lichter, and Bernoff [1991] and by 

Barnard and Pritchard [1972]. Underhill, Lichter, and Bernoff described this modulation 

as a 'standing wave whose amplitude envelope across the width of the tank was uniform, 

but grew and decayed with a low frequency'. Barnard and Pritchard described this 

modulation as a wave that detaches itself from the wavemaker and propagates along the 

wave channel. Photographs of this modulation for mode 2 are shown in Figure 10. 

Underhill, Lichter, and Bernoff [1991] also discuss a second slow modulation that was 

spanwise. While no clean modulation of this type was seen in these experiments, the 

spanwise waves became less regular as the wavemaker forcing increased. 

The amplitudes of the cross-waves generated as a secondary resonance were somewhat 

smaller than the progressive wave amplitudes and decreased in amplitude with distance 

from the waveboard. These secondary resonance waves could be seen for two runs for 

mode 2 and one run for mode 4. The presence of these waves could not be determined 

from the sonic profiler data because of noise, but photographs and observations made 



70 

during the experiments indicated their presence. Figure 11 shows a mode 2 cross-wave 

generated as a secondary resonance. 

Primary resonances of cross-waves appeared much earlier as the wavemaker forcing 

amplitude increased. At large forcing amplitude the cross-waves appeared almost 

immediately. The run times of the experiments were limited in order to avoid very much 

contamination by any wave reflections from the beach. 
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a) 

b) 

Figure 10. Streamwise modulation for a mode 2 cross-wave generated as a primary 
resonance. The wavemaker frequency is fwm = 21.,2 =1.307 Hz. The cross-wave is seen 
superimposed over the crests of the progressive wave which has a significantly smaller
amplitude than that of the cross-wave: a) towards wavemaker. b) away from wavemaker. 
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Figure 11. Mode 2 cross-wave generated as a secondary resonance. The wavemaker 
frequency is f,, = fc2 = 0.653 Hz. The crests of the cross-wave can be seen 
superimposed over the progressive wave crests. 
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4. The cross-wave instability 

Garrett [1970] showed that cross-waves may be modeled by a form of Mathieu's 

equation 

a2 (1 ecosvt)x = 0, e« 1, (3.1) 

that allows for parametric resonance in some bandwidth about a = Nv /M, N and M 

integers with the primary resonance at N =1, M= 2 . The nonlinearity parameter s in 

(3.1) is related to (but not equal to) the wavemaker forcing parameter, denoted as 

7=kS, (3.2) 

where k is the wavenumber of the progressive wave and S the amplitude of the 

wavemaker displacement. 

If the forcing frequency lies within a narrow bandwidth about coc. = z top , then cross-

waves will appear in the system. The bandwidth over which cross-waves occur is the zone 

of instability. The wavemaker forcing frequency and amplitude are specified parameters. 

Changing either parameter only slightly can greatly affect the complexity of the motion if a 

cross-wave is generated. Thus the stability diagrams can be used to identify chaotic 

characteristic 4 listed in §1. 

Before the 40 experimental runs were recorded, there was about a week of laboratory 

time spent video taping and photographing various cross-waves in order to determine the 

best set of parameters (wavemaker forcing frequency and amplitude) to use for the 40 runs. 

During the course of this pre-run testing it was noted that experimental repeatability was 

difficult in the vicinity of the neutral stability curve. 

Figures 12, 13, and 14 are the stability diagrams obtained from the experimentalruns 

for modes 1, 2, and 4. The dotted line is an estimate of the neutral stability curve; the 

numbers beside each data point indicate the run number of the experiment. 
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Figure 12. Stability diagram for mode 1 cross-waves. Numbers refer to the experiment
run numbers for mode 1 (circles) and no cross-waves (triangles). 

Increasing the wavemaker forcing parameter y for mode 1 was not possible because 

then the cross-wave overtopped the walls of the channel. The curve in Figure 12 is only 

the lower portion of the neutral stability curve for mode 1 in this channel. The curve in 

Figure 12 indicates that the neutral stability curves are somewhat pointed and no rounded at 

the minimum. 

The stability diagram for mode 2 shown in Figure 13 indicates how difficult it is to 

determine the neutral stability curve. For example, run 5 generated a cross-wave but run 6 

did not; this makes it difficult to determine where the curve should actually be drawn 

between these two points. 
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Figure 13. Stability diagram for mode 2 cross-waves. Numbers refer to the experiment
run numbers for mode 2 (circles) and no cross-waves (triangles). 

These were additional difficulties in determining the neutral stabilitycurve in the 

vicinity of run 1 (Figure 13) and run 21 (Figure 14). These conditions were not 

consistently stable during the aforementioned pre-run testing, although no cross-waves 

developed for these runs during experimental recordings. 

Underhill, Lichter, and Bernoff [1991] also reported an uncertainty in the location of 

the neutral stability curve. Their neutral stability curve had a hysteresis effect due to a 

different experimental procedure. They conducted each experiment run with a constant 

frequency but with a varying amplitude. The beginning eamplitude was very small, 

increased slowly to some maximum, and then decreased slowly to zero. Amplitudes were 

recorded when cross-waves first appeared as the amplitude increased and when cross­
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Figure 14. Stability diagram for mode 4 cross-waves. Numbers refer to experiment run 
numbers for mode 4 (circles) and no cross-waves (triangles). 

waves disappeared as the amplitude decreased. The neutral stability curve had hysteresis; 

the cross-waves disappeared at lower amplitudes than for which they had appeared. 
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5. Primary resonances of modes 2 and 4 

Figure 15 shows a portion of the time series of run 3 obtained from instrument 5. This 

is a primary resonance condition for mode 2 cross-waves, (242/f,)2 
= 0.983. The 

progressive wave traveled to the location of instrument 5 in about 10 seconds. The cross-

wave first appeared at about 100 seconds and by 130 seconds is the dominant wave present 

in the channel. The slow modulation of the cross-wave amplitude is visible from 130 

seconds on. This modulation corresponds to the slow streamwise modulation described by 

Underhill, Lichter, and Bernoff [1991] and can be seen in Figure 10. 

The modulation or beat pattern appears at a later time for instrument 6 (farther down the 

tank) than for 5, and also later in instrument 7 than for 6. This is clearly not due to wave 

reflections from the beach. If this modulation is assumed to be a beat frequency of the 

progressive wave frequency (1.317 Hz for run 3) and twice the cross-wave frequency, 

then the beat frequency and period would be 

fbear= 44.2-242= 1.317 2(0.653) = 0.011 Hz -4 Tbew= 90 sec, (5.1) 

which is longer than the time between beat maxima at 150 and 220 seconds and longer than 

between maxima at 220 and 260 seconds. 

A portion of the time series from instrument 5 during run 19 is shown in Figure 16. 

This is another primary resonance condition for mode 2, (2f,2/fiv,)2 =1.002. The cross-

wave begins to develop at about 120 seconds. This time series does not have as regular a 

pattern of amplitude modulation as the time series in Figure 15. 

The time series shown in Figures 15 and 16 do not clearly indicate irregular or chaotic 

motion (characteristic 5 in §1). The time series do show an increasing complexity of 

regular motion (the entire run 1 looked like the first 100 seconds in Figure 15) as the 

experimental parameters of wavemaker forcing frequency and amplitude were changed 

(characteristic 4 from §1). 
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Figure 15. Time series of a mode 2 primary resonance cross-wave at instrument 5 for run 
3. 

Chaotic characteristics 2 (broad-banded spectra) and 3 (fractal properties in the phase 

space) were evident in the primary resonances of modes 2 and 4. Wave power spectra 

from five runs are shown in Figure 17 for mode 2 waves with corresponding Poincare 
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Figure 16. Time series of a mode 2 primary resonancecross-wave at instrument 5 for run 
19. 

maps shown in Figure 18. Figures 19 and 20 are spectra and Poincare maps for mode 4 

waves. 

Each time series was subdivided into four records of equal length and the Fourier 

components were computed by FFT . The four one-sided spectra were ensemble averaged. 
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All Poincare maps were obtained from instrument 5 data by first computing the water 

surface velocity from a finite difference, 

ti(t2) r/(4) 
(5.2)

t2 

and then plotting every 64th data pair (ii, /7). 

Figure 17 spectra are for five runs near the primary resonance of mode 2. Two runs 

(Figures 17a,b) did not develop cross-waves, and three runs (Figures 17c-e) had mode 2 

develop. 

All spectra in Figure 17 have peaks at the progressive wave/wavemaker frequency f,, 

and harmonics of f,. The spectra in Figures 17c-e also have peaks at the mode 2 

frequency and harmonics of fc2. Figure 17a is clearly not broad-banded. The spectra in 

Figures 17c-e are more broad-banded than 17a or b, but not as broad-banded as the spectra 

discussed by Moon [1987, 1992] as evidence of chaotic motion. 

The Poincare maps in Figure 18 correspond to the experiment runs with spectra shown 

in Figure 17. The Poincar6 map of a single periodic signal is a single point; a quasi-

periodic signal maps to a closed loop; a chaotic signal maps to a fractal collection of points 

denoting a strange attractor. In Figure 18a, the data from run 1 mapped into a small cluster 

rather than the idealized single point because of nonlinear harmonics. The data from run 6 

mapped as a wide loop in Figure 18b rather than the idealized smooth curve of a quasi-

periodic signal. The quasi-periodic loop indicates two or more incommensurate 

frequencies were present. 

The Poincare maps of Figures 18c-e from run 3, 9, and 19, respectively, generated 

mode 2 cross-waves that are clearly neither points nor closed loops, but rather fit into the 

fractal category. These fractal collection of points denote strange attractors and are 

evidence of chaos. The map in Figure 18c has more points because run 3 was twice as 

long as the other run shown. 
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Figure 17. Power spectra for mode 2 cross-waves. a) Run 1 and b) run 6: no mode 2 
cross-waves. c) Run 3, d) run 9, and e) run 19: mode 2 cross-waves developed. 
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These Poincare maps cannot be compared with Underhill, Lichter, and Bemoff [1991] 

because they actually used 'pseudo' Poincare plots, phase space maps of n(t) versus 

77(t+ r) where 1. is some time shift. Their data was sampled at the cross-wave frequency, 

and their time shift I- is not specified, only listed as being somewhere between 1/3 to 1/6 

of the streamwise modulation period. 

Figure 19 has spectra for four runs near the primary resonance of mode 4. One run 

(Figure 19a) did not have a cross-wave. Three runs (Figures 19b-d) contained mode 4 

cross-waves. 

The spectrum in Figure 19a is not at all broad-banded. The main spectral peak is at the 

progressive wave/wavemaker frequency; a small peak appears at the mode 4 frequency, 

although this wave was not visible to the eye. A mode 4 cross-wave would have probably 

become visible if the run had been longer. 

The spectrum in Figure 19b has multiple harmonics for both f,, and fc4. It is both 

broad-banded and peaked. The spectra in Figures 19c and d are broad-banded but not very 

peaked. These fit more closely the broad-banded spectrum characteristic of chaotic motion 

described by Moon [1992]. 

The Poincare maps corresponding to the data in Figure 19 are shown in Figure 20. 

Figure 20a for the case where no mode 4 was generated mapped as a small cluster of points 

rather than the idealized single point. Figure 20b could perhaps be labeled as a fractal 

collection of points, but Figures 20c and d seem to be more a collection of fuzzy points. 

According to Moon [1987], a fuzzy collection of pointsmay indicate any of the following: 

i) too much random or noisy input; strange attractor but very little dissipation; strange 

attractor in phase space with more than three dimensions; iv) quasi-periodic motion with 

three or more dominant incommensurate frequencies. It is likely that case i) above pertains 

to these runs since the progressive waves generated were less than 0.005 ft (0.6 in) in 

amplitude. 
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Figure 19. Power spectra for mode 4 cross-waves. a) Run 21: no cross-waves. b) Run 
22, c) run 24, and d) run 26: mode 4 cross-waves developed. 

The slow streamwise modulation shown in Figure 10 is not apparent in the wave power 

spectra of Figures 17 and 19. The ensemble averaging technique of using four records 

from the original time series of each run did not allow for a record length long enough to 

detect this modulation. Figure 21 shows the low frequency components of the wave 

spectrum obtained from run 3 without any averaging. There is no discernibly large peak 

indicating the slow streamwise modulation, and in particular no large peak at the 
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Figure 20. Poincare maps for mode 4 cross-waves. Cases are the same as for Figure 19. 
a) run 21: no cross-waves. b) Run 22, c) run 24, and d) run 26: mode 4 cross-waves 
developed. 

hypothesized beat frequency from (5.1). The experiment runs would need to be longer to 

obtain a spectral peak of the slow modulation. 
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Figure 21. Low frequency components of Run 3 spectrum without averaging. No large 
peak exists at the hypothesized beat frequency of 0.011 Hz. 
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6. Secondary resonance of mode 2 

A secondary resonance occurs when the forcing frequency equals a cross-wave mode 

frequency, cop = o.),,,. Figure 11 shows mode 2 as a secondary resonance for the same 

wavemaker frequency and amplitude as for run 11. A mode 4 secondary resonance also 

developed during run 33 and will be discussed in §7. 

Only runs 11 and 12 were designed to detect mode 2 as a secondary resonance. Run 

11 had a visible mode 2 and run 12 did not (see comments in Table 7). Fourier spectra and 

Poincar6 maps for these two runs are shown in Figures 22 and 23,. 

The spectra and Poincare maps show no evidence of chaos in either run. Both spectra 

contain peaks at harmonics of f, and are not broad-banded; both maps show quasi-

periodic loops. 
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Figure 22. Power spectra for mode 2 secondary resonance conditions. a) Run 11: mode 2 
cross-waves developed. b) Run 12: no mode 2 cross-waves. 
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Figure 23. Poincare maps for mode 2 secondary resonance cross-waves. a) Run 11: mode 
2 cross-waves developed. b) Run 12: no mode 2 cross-waves. 
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7. Simultaneous primary and secondary resonances: modes 1 and 4 

The most exciting experiment run was that of 33 in which two cross-wave modes were 

simultaneously generated: mode 1 as a primary resonance (cop = 2(0,1) and mode 4 as a 

secondary resonance (cop = 0),4). A series of four photographs in Figure 24 shows these 

cross-waves for the wavemaker frequency and amplitude in run 33. Figure 24a was near 

the beginning of the run and shows the mode 4 cross-wave superimposed on the 

progressive wave. A slight tilt of the water surface upwards on the left side of the channel 

indicates mode 1 was beginning to develop. Figure 24b taken at a slightly later time shows 

the mode 4 cross-wave had a streamwise modulation. The water surface still shows the tilt 

of mode 1 developing. In Figure 24c, mode 1 had developed. The mode 4 crests are 

visible on the left side of the channel and the progressive wave can still be clearly seen. 

The mode 1 wave was fully developed in Figure 24d. The mode 1 streamwise modulation 

and the progressive wave are visible but the mode 4 cross-wave is no longer visible. 

The wave power spectrum and Poincar6 map for run 33 are shown in Figure 25. The 

spectrum in Figure 25a shows peaks at harmonics of fa and f,, = f As was the case 

with the spectra for mode 2 in Figure 17, this spectrum is too peaked to label as broad-

banded, and so does not convincingly indicate chaos. The Poincare map in Figure 25b, 

however, seems to be a fractal collection of points denoting a strange attractor. 

Runs 32 through 40, n the stability diagram for mode 1 in Figure 12, were designed to 

be in the bandwidth of cop = 2coc1. Only run 32 developed a mode 1 cross-wave, and only 

near the end of the run. No other runs were observed to have mode 4 generated. No 

spectra were broad-banded, and Poincare maps for runs other than 33 showed quasi-

periodic loops. 
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a) 

b) 

Figure 24. Cross-wave modes 1 and 4 for run 33. a) Secondary resonance of mode 4 
cross-wave superimposed over the progressive wave. The small tilt of the water surface 
indicates mode 1 is growing. b) Streamwise modulation of secondary resonance mode 4. 
Tilted water surface indicates that mode 1 is still growing. 
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c) 

d) 

c) Primary resonance of mode 1 fully developed. Mode 4 crests are still visible on the left 
side of the channel. d) Streamwise modulation of primary resonance mode 1 visible. 
Progressive waves are still apparent, but there is no longer any visible mode 4 secondary 
resonance waves. 
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Figure 25. Power spectrum and Poincare map for run 33 with mode 1 as a primary
resonance and mode 4 as a secondary resonance. 
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8. Summary and concluding remarks 

The experiments at the OHH-WRL were designed to provide experimental evidence to 

support the theoretical analysis showing that cross-waves may be chaotic. Five 

characteristics of chaotic motions [Moon, 1992] were discussed for the experimental data. 

1) Sensitivity to initial conditions. This characteristic could not be evaluated. The 

initial conditions are the water surface displacement and velocity at every point on the water 

surface. While each experiment run began after allowing the water in the channel to settle, 

there was no guarantee that the surface was completely motionless everywhere for every 

run. Testing for sensitivity to initial conditions in a fluid continuum is inherently more 

difficult than for simple mechanical systems because of the infinite number of water 

particles on the free surface. 

2) Broad spectrum of Fourier transform from a single frequency input. A precursor to 

chaos is the appearance of subharmonics and harmonics of some dominant frequency 

component [Moon, 1992]. The analogous dominant frequency component here is the 

progressive wave frequency f which is also equal to the wavemaker forcing frequency 

All spectra shown exhibited harmonics of fp. The spectra for runs of primary 

resonance cross-waves also showed multiple harmonics of the subharmonic cross-wave 

frequency fcn = z f Moon cautions against assuming that all multiharmonic output 

implies the presence of chaos because the system may have many hidden degrees of 

freedom. In addition, for systems having many degrees of freedom the use of the Fourier 

spectra is not of much help in detecting chaos unless changes in spectra with parameter 

changes are observed. A fluid continuum is a system with many large degrees of freedom. 

While the spectra for runs generating primary resonance cross-waves are too peaked to 

describe as broad-banded, these spectra are at least broader than those for runs without 

cross-waves. For example, spectra in Figures 17c-e are broader than spectra in Figures 
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17a,b. It is noteworthy that the only subharmonic present in the spectra is -}fp. The 

spectra neither confirm or deny the presence of chaotic motions for cases with primary 

resonance cross-waves. 

3) Fractal properties of the motion in phase space denoting a strange attractor. The 

Poincare maps of primary resonances of mode 1 and 2 cross-waves showed fractal 

properties (Figures 18c, e, and e and 25b). The Poincare maps of primary resonance mode 

4 cross-waves (Figures 20b, c, and d) were a little too 'fuzzy' to label as fractal, probably 

due to too much noisy input. The case of the secondary resonance mode 2 cross-wave 

(Figure 23a) showed no evidence of chaos, but rather the classic quasi-periodic loop. 

4) Increasing complexity of regular motions as some experimental parameter is 

changed. This chaotic characteristic is evident in the stability diagrams of Figures 12, 13, 

and 14. Outside of the neutral stability curve, the motion is a regular progressive wave. 

Crossing the neutral stability curve by slightly varying the wavemaker amplitude or 

frequency results in a more complex system when the cross-wave develops. 

5) Transient or intermittent chaotic motions. This characteristic of chaotic motion is 

determined by observing the time series. Figures 15 and 16 are time series from primary 

resonances of mode 2 cross-waves. No irregular motion is visible in Figure 15, although 

Figure 16 has some slight irregularities. There were no time series from any of the 40 

experiment runs that confirmed conclusively that cross-waves were chaotic. 

The experimental results indicating that cross-waves generated as a primary resonance 

are chaotic are limited. Poincare maps show fractal properties and regular motions become 

complex upon varying the forcing frequency and amplitude parameters. Fourier spectra 

were only somewhat broad; only a few time series show slightly irregular motions. 
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Run 11 generated a secondary resonance cross-wave only and exhibited no evidence of 

chaos. Perhaps comprehensive testing of secondary resonances would provide some 

evidence of chaos. 

One last comment on the experimental results is in order. The experiment runs in the 

vicinity of the neutral stability curves were not always repeatable. Sometimes wavemaker 

frequency and amplitude conditions near the neutral stability curve would generate a cross-

wave and sometimes would not. This may have depended on the initial stillness of the 

water, the duration of the forcing, or slight differences in the forcing amplitude and 

frequency. The neutral stability curve should perhaps be considered a transition zone with 

an as yet undetermined structure. 
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Chapter IV. Recommendations for Future Research
 

There are quite a few directions that future research could take to further explore chaotic 

cross-waves both theoretically and experimentally. Each suggestion is discussed separately 

below, beginning with theoretical research ideas and ending with experimental research 

ideas. 

1) Add dissipative terms. Dissipative forces could be included in the Lagrangian as a 

perturbation, just as the wavemaker forcing terms are. As such, they would not be used to 

calculate the conjugate momenta variables. Miles [1976] and Holmes [1986] assumed that 

dissipation was proportional to the square of the vertical velocity of the free surface, /72. 

Including dissipation would result in evolution equations of the type System I from 

Wiggins [1988] and would require the application of an averaging theorem to the 

perturbations [Wiggins, 1988, p. 358, Proposition 4.1.6] to determine the orbits that 

survive the perturbation. Additionally, a different form for the Melnikov function would be 

required because equation (4.22) in Chapter II applied only to System III. 

2) Include higher order terms. The Melnikov method predicted chaotic behavior for 

primary resonance cross-waves when the wavemaker forcing frequency and the cross-

wave frequency have the ratio 2:1. Calculating the Melnikov function for the secondary 

resonance (1:1) cross-waves would require that 0(e2) terms be retained in the Taylor 

series expansions of the integrals (Chapter II, §3) in order to obtain autonomous nonlinear 

terms from the Hamilton-Jacobi theory. 

Several difficulties are anticipated with inclusion of higher order terms. First, the 

perturbations, which are 0(y), must be of lower order that the unperturbed terms. In the 

analysis of Chapter II, the ordering assumption was 

y2 e2 y < E <1. 
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Simply including 0(e2) terms would violate the assumption that the perturbations are 

smaller than the nonlinearities. This problem might be overcome by applying scales 

different from those of equations (2.12)-(2.14) in Chapter II. 

The second difficulty is Jones' [1984] assumption (Chapter II, §2) that progressive 

wave/progressive wave 0(e) interactions could be ignored because they do not contribute 

to cross-wave resonance at 0(e). However, Jones expands to 0(C2) in the analysis, and 

some progressive wave/progressive wave interaction result in cross-wave resonance at 

0(e2). Care must be taken to ignore non-essential terms only after all Taylor series 

expansions are calculated. 

3) Assume a slow streamwise modulation of the cross-wave. The assumed form of 

the cross-wave velocity potential in Chapter II had no streamwise x dependence. Figure 10 

shows a very distinct streamwise amplitude modulation of the cross-wave, and many other 

reports also describe this modulation [Underhill, Lichter, and Bernoff, 1991; Barnard and 

Pritchard, 1972]. Equations (2.25a) for 0c (Chapter II) could be modified to include a 

streamwise modulation with different time and length scales than those for Op [Jones, 

1984; Miles and Becker, 1988]. This would add a considerable number of terms to the 

Lagrangian since all a"0, /at" were zero (Chapter II). The Hamiltonian will likely require 

an entirely new sequence of canonical transformations. 

4) Determine a mechanical analog. The large number of terms in the Lagrangian and 

Hamiltonian equations illustrates the immense labor required to carry out the Melnikov 

analysis. Finding a mechanical system with similarities in behavior to the cross-wave 

system would aid considerably in understanding the chaotic behavior of cross-waves. For 

example, calculating a Melnikov function for a secondary resonance cross-waves is 

described in 2) above as requiring rescaling, higher order expansions, and additional terms 

previously neglected. A simple mechanical system, which would not require Taylor series 

http:2.12)-(2.14
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expansions and so would contain far fewer terms, could be used to explore the Melnikov 

function analysis for various frequency ratios of the forcing to the natural frequency. It is 

not known whether this mechanical analog system should contain two masses, one 

representing the cross-wave and one the progressive wave, each with one type of motion 

permitted, or if there should be one mass, representing the water surface, with two types of 

motion permitted. 

5) More secondary resonance experiments. The two examples of secondary resonance 

cross-waves described in Chapter III indicate the need for more experiments. Recall that 

mode 2 in run 11 developed as a secondary resonance (Figure 11) and that mode 4 was 

visible as a secondary resonance in run 33 until it was overwhelmed by the primary 

resonance of mode 1. The 1:1 resonance has not been pursued in any other experiments. 

Determining a neutral stability diagram for the secondary resonance case, whether or not it 

is chaotic, would aid in a better understanding of parametrically generated cross-waves. 

6) Determine the structure of the neutral stability curve for the primary resonance 

cross-waves. The neutral stability curve was described in Chapter BI as being ambiguous 

to define precisely. This ambiguity was hypothesized to be due to very slight differences in 

the free surface displacement (which are initial conditions), slight differences in wavemaker 

forcing frequency and amplitude from the conditions specified, or the duration of the 

forcing. It is the duration of the forcing that might help determine the structure of the 

neutral stability curve. 

The recommendation is to perform a large number of primary resonance cross-wave 

experiments in a wide region surrounding the neutral stability curve for one given mode. 

The experimental procedure would again require an initially still surface and a specified 

constant wavemaker forcing frequency and amplitude. However, the procedure would 

differ from that described in Chapter III by allowing the wavemaker forcing to continue as 
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long as necessary (within reason) to generate a cross-wave. The time to the generation of 

the cross-wave mode would be recorded for that particular wavemaker frequency and 

amplitude. If the stability diagram in the region of the neutral stability curve were densely 

filled in with points coded to express the time to cross-wave generation, the structure of the 

curve may become apparent. The Mandlebrot set, for example, uses a color coding to 

indicate the number of iterations required for convergence for each initial condition. The 

color coding in the region of the neutral stability curve would indicate the forcing time 

required to generate a cross-wave for each wavemaker frequency and amplitude condition. 

Perhaps this structure would be fractal. 
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Appendix I 

Table 1. Coefficients used in the La an an components. 

A1= cos A = sin 

4 4 

ai = icosx dx = Bi k = 5 siurix dx =1 Al 
o o 

4 4 

a2 = icos2x dx = 4( + AA) b2 = f sin2 x dx = 4( AA) 
o 0 

4 4 

a3= icos3x dx = IBI(Al2 +2) b3= isin'x dx = 4 A(/312 + 2) + i 
o 0 

t 
du = cosh sin k = AIBIc11 = Icosx sin x dx = 4/312 

0 

4 
Ai2 B;

C12 = jcosx sirt2 x dx = 4/313 d2 = cosg 
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t 1
 

c21 = icos2x sin x dx = 4(1 Ail Pi = ± 2P
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1 2 13 132 2 /3 133 

112 = + + 2 125 = T3 + 2 2
2,63 2 

(./2 8 2/02)fi = ff(z)ezii32 dz A =
 
-a 2N21:3e
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Table 2. Nonautonomous components of the Hamiltonian (3.21) following the Hamilton-
Jacobi transformation. 

22(p* 13;) Alp:H pa cos(2Q: + It))HE(t) = -E -6 $4112big 

(p2 + 8+ 2832) i * \ 1 

E g 21 kP P; )VP: pa cos(4Q: +2q* +1 
11 13 

1-0 2 2115) ( pill 2t+Cwiriekp . 2 P2 COS(4Q: + 2Q2* + 4q* +
 
fi
 

H;(t)-7(P*13Ps)[3sin(4V + 3t ) sin(4Q: +1
fi
 

YVP;(Pi* P*)[3sin(4Q:

+ + 2Q; +2q* +1sin(4Q: + 2Q2 + 2q* +-IL)]4g P 13 

+11±; [3sin(4Q1 + 4Q; + 4q* + !) sin 4Q` + 4Q; + 4q* +1-)]8g Sf3
 

A b(Pia pa) sin(2Qi 2r y(1+ 20 ) . .
+y (p P2 )Sill(2Q: + 2q*+-2t)
2E 2fi4 13 4/3 13 

iLIIPLC.-]sin(2v+ 2Q; + 2q* +
2E 2fl P 
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Table 3. Nonautonomous components of the Hamiltonian (3.25) following the shift 
transformation. 

2p"10) = p" cos(2Qi"+1 
)6 ,6%12b4 
(p2 + 8 + 2/$2) 

P"-\/ P" cos(4X+2q"
2 21-1g fi 
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+ riS [3 sin(4q'+ sin(4Z'+ 11] 
8)6 

rP"(1 + 2S) 2t+y ,lb(P1" P") sin(2Q1"+ 2t
2e V $ 4/g fi 

+if; iibPc]sin(2x 2t
 
2e 2$ /3
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Table 4. Nonautonomous components of the Hamiltonian (3.31) following the 
Nonautonomous Q2" transformation. 

,(t)= -E 213 cosi20 + 
132N2b,6 

e(1-12+ 8+ 2/02) -IL +Lt.)RV 1 13 cos 4Q +
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4132(131 /5) 
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Table 5. Nonautonomous components of the Hamiltonian (3.35) following the 61 
transformation. 

fre(t)= _E 215' 
cosCP 

lijP#2N2bg,P2 Pi )6 

(irt2 + 8+ 2/p2) (2a 2t 
8 p' cos --77+2q'+P#11P1

2 21)/g 

012 2#5) , 4r)
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Table 6. Nonautonomous components of the Hamiltonian (3.40) following the 
nonautonomous a transformation. 

2p
HE -e \i/212 - p cos(g--1) 

)32 21-F2b/3 Pi
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Calculation of the Melnikov integrals. 

The Melnikov function for the cross-wave problem is described in §4 as 

M(Q10)= 2 cos, (11+12+13), (A.1) 

(1 20) 
11 = Ph Los-2t dt, (A.2a)

4gTi 0 )3 

2 f12 b f cos-21. dt, (A.2b)
2EFIA 2/3 0
 

1 fi b Az tp72
 
ki Ph ) 12z sin dt. (A.2c) 

3 2E/1 A \ 2M 

Each of the component integrals will be described and evaluated below. These 

integrals use the definition 

e = (A2F12 (A.3) 

Component I. Applying (4.10) to (A.2a) makes this component
 

(1 20)C0 2t
 
= sech 

2 (Eta) cos dt. (A.4)
4gFIA2 

Using the definite integral from Gradshteyn and Ryzhik [1980, p.505, #3.982(1)], 

= (1 20)ir 14)32/71A2E2 sinh( (A.5)
PEAIT:1)}
 

7512 L-12/A2.
for all 

Component 12. The component 12 does not contain the variable ph, so the improper 

integral of (A.2b) must be evaluated. This may be done by applying Proposition 4.1.29 

from Wiggins [1988]. This proposition states that the Melnikov integral converges 

conditionally when the limits of integration and 00 are approached along the 

sequences of times T; and T.;, respectively, where j = 1, 2, ..., and j -3 00. For this 

problem T; = T; = AY is chosen so that 

http:cos-21.dt


111 

T s. 
r +PO ixI3 

.I. [ ] fit = iirri f [ ]Cit = lirn .1.[ ] dt = 21im J[ ] dt. (A.6)
J-4- J-0­ j'..-T! -lam -' 0 

(See p. 454 in Wiggins, 1988, for an example where time sequences are chosen.) The 

Melnikov component /3 is then zero, 

IZ = O. (A.7) 

Component /3. Applying (4.10) to the last Melnikov component (A.2c),

0 7
tanhk

Iet/N siny0) 2t 
dt. (A.8) 

3 2EPIA 2)34 

Integrating by parts and applying the time sequences of (A.6), 

.JT42t' cos2t /f3I =-1.1"--lt A( lim tanh(ehrd)cos=10 + t's " j dt, (A.9a) 
3 26-15-1A 2)64 2 j-)- 2 
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Applying the definite integral from Gradshteyn and Ryzhik [1980, p.505, #3.982(1)] to the 

remaining integral, 
-1 

/3 = f17I b [ + z sinh (A.10)
2eFIA 2 2E1[6 OVIT)) 

for all F12 u2/A2 

Since all of the Melnikov components in (A.1) are bounded and only /2 is zero, the 

Melnikov function M(Q10) = 0 when 

cos910 = 0, Q10 = Pl x(2n+1)12, n= 0,+1,+2,... (A.11) 

for all 1512 > 02/A2 and the stable and unstable manifolds of the corresponding hyperbolic 

periodic orbit intersect transversely yielding Smale horseshoes on the appropriate energy 

manifold. 
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Appendix II 

Table 7. Wavemaker forcing and amplitude for the experimental runs. The wavemaker 
frequency is fw, and the waveboard stroke is S, the amplitude of the wavemaker motion, 
measured at the drive piston. The comments are from notes made during the experiment 
runs. 

Run f,,,,, (Hz) S (ft) kS Comments 
1 1.317 0.025 0.055 No visible mode 2 
2 1.317 0.038 0.081 Very steady pattern of mode 2 
3 1.317 0.050 0.106 Larger mode 2, not as steady as run 2 
4 1.230 0.075 0.139 No visible mode 2 
5 1.239 0.075 0.141 No visible mode 2 
6 1.245 0.075 0.143 No visible mode 2 
7 1.515 0.075 0.211 No visible mode 2 
8 1.449 0.075 0.193 No visible mode 2 
9 1.285 0.075 0.165 Mode 2 appeared 
10 1.423 0.075 0.186 Mode 2 appeared at the very end 
11 0.653 0.150 0.078 Could see mode 2 near the wavemaker 
12 0.653 0.075 0.039 No visible mode 2 
13 1.441 0.050 0.127 No visible mode 2 
14 1.411 0.050 0.122 No visible mode 2 
15 1.371 0.050 0.115 No visible mode 2 
16 1.330 0.050 0.108 Mode 2 appeared 
17 1.280 0.050 0.100 No visible mode 2 
18 1.292 0.050 0.102 No visible mode 2 
19 1.305 0.050 0.104 Mode 2 appeared 
20 1.862 0.013 0.055 Mode 4 appeared near the end 
21 1.862 0.008 0.034 No visible mode 4 
22 1.862 0.025 0.106 Mode 4 appeared 
23 1.774 0.038 0.147 No visible mode 4 
24 1.814 0.038 0.153 Mode 4 appeared, breaking at board 
25 1.965 0.038 0.180 Very steady pattern of mode 4 
26 1.995 0.038 0.185 Mode 4 appeared 
27 1.975 0.038 0.182 Steady pattern of mode 4 
28 1.804 0.025 0.100 No visible mode 4 
29 1.834 0.025 0.103 Mode 4 appeared 
30 1.945 0.025 0.117 Steady pattern of mode 4 
31 1.965 0.025 0.118 No visible mode 4 

_ 

32 0.922 0.100 0.104 Mode 4 visible at waveboard, then mode 1 
33 0.922 0.125 0.130 Mode 4 first, then dominated by mode 1 
34 0.922 0.075 0.078 No visible mode 1 
35 0.880 0.125 0.119 No visible mode 1 
36 0.970 0.125 0.144 No visible mode 1, hint of mode 4 
37 0.895 0.125 0.123 No visible mode 1 
38 0.950 0.125 0.138 No cross-waves 
39 0.910 0.125 0.126 No cross-waves 
40 0.935 0.125 0.134 No cross-waves 
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Table 8, Notation 

a' 

a'
P 

a: 

b', b 

f(z) 

A 

fen 

fp 

f,, 

P,F",i''
 

g
 

h'
 

H 

110,11e,117, 

H' 

il 
H* 

H" 

Ti' 

H 

H7 

Appendix III 

dimensional cross-wave amplitude 

dimensional progressive wave amplitude 

dimensional amplitude of the wavemaker motion 

dimensional and nondimensional half width of the wavetank 

wavemaker depth function 

integral over depth of the wavemaker depth function 

cross-wave frequency in Hz for mode n in experiments 

progressive wave frequency in Hz during experiments 

wavemaker forcing frequency in Hz during experiments, also equals to 

the progressive wave frequency 

generating functions used in some canonical transformations 

gravitational acceleration 

still water depth 

the original Hamiltonian, before any transforamtions 

the same notation is also used for the final Hamiltonian 

the 0(1), 0(e), and the perturbed components of H 

subscripts on subsequent Hamiltonians mean the same thing 

transformed Hamiltonian after the rotation of axes transformation 

transformed Hamiltonian after the action/angle variables 

transformed Hamiltonian after the application of Hamilton-Jacobi theory 

transformed Hamiltonian after the shift transformation 

transformed Hamiltonian after the nonautonomous Q2" transformation 

transformed Hamiltonian after the Q1 transformation 

the time-averaged Hamiltonian 

the perturbed part of the fmal Hamiltonian 

ii 
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/0/2,/3 components of the Melnikov integral 

unit vector in the x or x' direction 

unit vector in the y or y' direction 

unit vector in the z or z' direction 

k' dimensional wavenumber for the progressive wave 

1' 

E' 

dimensional length of fluid domain down the wavetank 

total dimensinal Lagrangian from Luke, 1967, an integral over volume 

dimensional Lagrangian density from Luke, 1967 

L', L 

dimensional terms of the Lagrangian with zero variation 

dimensional and nondimensional total Lagrangian written as surface 

L:, 

L' ',x 

L' ',t 

L 

Lt 

integrals without the terms with zero variation 

the component of L', L integrated over volume 

the component of L', L integrated over the wavemaker surface 

the component of L', L integrated over the cross-section down the 

In 
Lill 

channel 

the component of L', L integrated over the first set of free surface 

L712'72 

terms 

the component of L' , L integrated over the second set of free surface 

M(ao) 

terms 

the Melnikov function 

M two dimensional normally hyperbolic invariant manifold of the 

Ivir 

unperturbed system 

two dimensional normally hyperbolic locally invariant manifold of the 

perturbed system 

n mode number of the cross-wave 

P' 

Pi ,P 2 

dimensional fluid pressure 

original momenta from Holmes' 1986 paper 
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1D2 

, Pi, Pi 

, .131,P2 

P ,P; 

P" P;.' 

T9,131,152 

P', Pi, P;
 

Porig Plorig P2orig
 

q1, q 

Q11 Q 

q,Q1,Q2 

q' ,X,Q; 

4,a,62 

q",X,X 

4,01,a 

, 1, 6; 

o riglaorig1Q2orig 

S 

t, t' 

u' 

final transformed momenta from Holmes' 1986 paper 

conjugate momenta in the original untransformed variables and in the 

final variables 

conjugate momenta after the rotation of axes transformation 

conjugate momenta after the action/angle transformation 

conjugate momenta after the Hamilton-Jacobi transformation 

conjugate momenta after the shift transformation 

conjugate momenta after the nonautonomous Q2" transformation 

conjugate momenta after the Q1 transformation 

original momenta, denoted this way to avoid confusion with the final 

transformed momenta in the summary section 

original coordinates from Holmes' 1986 paper 

final transformed variables from Holmes' 1986 paper 

generalized coordinates in the original untransformed variables and in 

the final variables 

generalized coordinates after the rotation of axes transformation 

generalized coordinates after the action/angle transformation 

generalized coordinates after the Hamilton-Jacobi transformation 

generalized coordinates after the shift transformation 

generalized coordinates after the nonautonomous Q2" transformation 

generalized coordinates after the Q1 transformation 

original coordinates denoted this way to avoid confusion with the final 

transformed coordinates in the summary section 

wavemaker stroke in experiments 

dimensionless and dimensional time 

dimensional fluid particle velocity 
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0 

x, x' dimensionless and dimensional position down the tank, with x=0 and 

x'=0 at the equilibrium position of the wavemaker 

y' dimensionless and dimensional position across the width of the tank, 

with y=0 and y'=0 at the centerline of the tank 

z, z' dimensionless and dimensional position at depth, with z=0 and z1=0 at 

the still water level 

a dimensionless depth parameter, ic'h' 

dimensionless wavenumber parameter, 
IC' 

y	 dimensionless waveboard stroke parameter, k'a,' , which is also called 

the perturbation pararmeter 
a' 

IT	 dimensionless ratio of wave amplitudes, 
a 

indicates the first variation, a derivative of a functional 

e dimensionless wave amplitude parameter, which is also used as 

the measure of nonlinearity 

Aen wavelength for cross-wave of mode n in experiments 

A coefficient defined in Table 1, used in Hamiltonian 

11'	 dimensionless and dimensional free surface elevation, measured from 

the still water level 

rotation angle for the rotation of axes canonical transformation 

coefficients used in Hamiltonians, defined in Table 1 

ics dimensional wavenumber for the cross-wave 

icn cross-wave wavenumber for mode n in experiments 

dimensionless length parameter down the channel, 

dimensional fluid density 

Po (P1) manifold of the hyperbolic fixed points in the unperturbed system 

Pr (PO manifold of the hyperbolic fixed points in the perturbed system 



117 

z(F1) 

0' 0' 

0,, 0: 

0,,, 0'p 

co: 

COI 

cocn 

a a a 
ax'' dy' dz' 

d d 
dx' ay' az 

a 

de 
a 

at 

VI 

V 

VP2 

V2 

v2 ve2 

tori on m for fixed P1 = P; 

dimensionless and dimensional fluid velocity potential 

dimensionless and dimensional cross-wave velocity potential 

dimensionless and dimensional progressive wave velocity potential 

dimensionless and dimensional wavemaker position measured from the 

equilibrium vertical position 

dimensional cross-wave frequency 

dimensional progressive wave frequency 

cross-wave frequency for mode n in experiments 

detuning parameter
 

partial derivatives with respect to the dimensional coordinates x', y', z'
 

partial derivatives with respect to the dimensionless coordinates x, y, z 

partial derivative with respect to the dimensional time t' 

partial derivative with respect to the dimensionless time t, also indicated 

by a dot over the variable 
d d d ­

dimensional gradient operator, 1+ + k 
dx ' dy' z' 

a a -; d ­
dimensionless gradient operator, 1 + j+ /3z k

ax dy 

d d
dimensional horizontal gradient operator, (971 +---,-j 

dimensionless horizontal gradient operator, 
1: + /31 

ax dy 

dimensionless and dimensional Laplacian, V V or V' V' 




