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A SURVEY OF OPTIMAL FREQUENCY DOMAIN DECONVOLUTION METHODS

1.0 INTRODUCTION

There are many applications in signal processing where

we wish to separate component signals of a convolution.

Most often a signal is contaminated by the introduction of

echoes, called reverberation, and it is necessary to

identify them prior to their subsequent removal. Such

applications where the resolution of multiple overlapping

signals is required include radar, sonar, speech, optical

and seismic signal processing. In speech processing, for

example, the speech waveform is the convolution of the

vocal tract impulse response with the excitation. In

seismic applications, the deconvolution of reflected

signals enables us to interpret the earths subsurface

structure. In this case the reflected waveform can be

considered as the convolution of the seismic wavefront with

an impulse train, each impulse representing a reflection

from a layer of the earth.

The decomposition of the composite waveform

(convolution result) y(n), into its components x(n) and

h(n) is called deconvolution or inverse filtering.
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Representing the convolution operator by a '*',

y(n) = x(n) * h(n) (1.1)

h(n) = x(n)
-1

* y(n) (1.2)

where x(n) -1 denotes the convolution inverse given by,

x(n)
-1 * x(n) = 6(n) (1.3)

Taking Fourier Transforms on both sides of the discrete

time convolution given in equation (1.1) yields,

Y(k) = X(k)H(k) (1.4)

H(k) = v(k)/X(k) (1.5)

where the capital letters with the index 'k' in equation

(1.5) denote the Discrete Fourier Transform(DFT) of the

time domain sequences. It is of importance to mention at

this point that the multiplication of DFT's in the

frequency domain corresponds to a circular convolution in

the time domain. Nevertheless, a circular convolution
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could be equated to a linear convolution if the lengths of

the sequences satisfies the following relationship.

N > Nl+N2-1 (1.6)

where N1 and N2 are the lengths of the component signals

(x(n) and h(n) in this case) and N is the length of the

convolution result (y(n)). Therefore, a linear convolution

as given by equation (1.1) transforms into the frequency

domain as in equation (1.4) only if the condition given by

(1.6) is satisfied. If not, the resulting DFT calculations

would produce an aliased version of the true signal.

1.1 THE DECONVOLUTION MODEL (3)

The reflected wave from a layered media could be

considered as a composite signal consisting of identical

wavelets, differing only in magnitude and the time of

arrival. Thus, the composite signal can be thought of as

the convolution of a reflector wavelet with a train of

pulses of different amplitudes and spacing. In order to

identify the echoes in the composite signal, it should be

processed to yield a single pulse at the time of arrival of

each echo. If there are a number of layers in the media,

multiple echoes would occur and a number of pulses equal to

the number of reflections or echoes should be generated.
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The generation of these pulses can be accomplished by

designing an inverse filter as follows.

s(n)-1 h(n) 1---y(n)

fig. 1.1 Representation of the Inverse Filter

as a Linear Discrete System

The output of the filter, y(n) is given by,

y(n) = s(n) * h(n) (1.7)

where, s(n) = composite signal

h(n) = inverse filter

The composite signal is the convolution of a reflector

wavelet w(n) with a reflector series r(n) as described in

the previous paragraph. Hence,

s(n) = w(n) * r(n) (1.8)

Substituting for s(n) in equation (1.7),

y(n) = w(n) * r(n) * h(n) (1.9)
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The desired output is the reflector series which signifies

the occurrence of the echoes. Thus,

r(n) = w(n) * r(n) * h(n) (1.10)

Equation (1.10) reduces to,

w(n) * h(n) = g(n) (1.11)

Writing equation (1.8) for the case of a single echo

yields,

w
b
(n) = w(n) * r

s
(n)

where wb (n) is called the basic wavelet and r s
(n)

represents a single pulse instead of a series.

(1.12)

Writing equations (1.11) and (1.12) in terms of the Z

Transform,

H(z) - 1/W(z) (1.13)

W(z) = Wh(z)/Rs(z) (1.14)
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Combining equations (1.13) and (1.14) yields,

H(z) - Rs(z)/Wb(z) (1.15)

It is seen from equation (1.15) that the inverse filter can

be designed by the deconvolution of the basic wavelet with

the reflector series for a single echo. In this

investigation it is assumed that the basic wavelet is

known. The reflector series can be chosen to be any narrow

width pulse train that allows reasonable resolution of the

overlapping echoes. A special case of equation (1.15)

would be selecting the reflector series to be a series of

spikes or impulses. An inverse filter that produces such a

spike output is called a spike filter. For such a case,

r
s
(n) . S(n) and R

s
(z) - 1

As a result,

(1.16)

W(z) = Wb(z) (1.17)

and the spike filter is given by,

H(z) - 1/wb(z) (1.18)
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Since the DFT corresponds to samples of the Z Transform

evaluated around the unit circle, the relationships in

equations (1.15) and (1.18) can be written in terms of the

DFT's as follows,

H(k) - Rs(k)/wb(k) (1.19)

H(k) 1/Wb(k) (1.20)

The deconvolution performed to obtain the inverse

filter can be carried out using time domain as well as

frequency domain techniques. Time domain techniques

involve the inversion of large matrices, thus making the

process tedious and time consuming. On the other hand,

frequency domain analysis of the problem involves simple

division of the Fourier Transforms of two waveforms. The

computation of the DFT's for the discrete time signals can

be accomplished with great efficiency by use of Fast

Fourier Transform(FFT) routines. The apparent simplicity

of the frequency domain deconvolution problem and its

reduced computation time makes it extremely useful

especially when dealing with long sequences.
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1.2 SCOPE OF THIS THESIS

Further investigation of frequency domain deconvolution

methods is carried out in the following chapters of this

thesis.

Chapter 2 deals with a number of problems encountered

in this apparently simple alternative to time domain

deconvolution methods. It also provides ways to overcome

entirely or reduce the adverse effects of the procedure in

designing the filter which is given by equation (1.20).

Chapter 3 describes two frequency domain deconvolution

methods that could be used to overcome the deconvolution

noise. An illustration of the methods for various types of

basic wavelets is shown. A performance measure for the

filter is derived and a comparison of the two methods is

carried out.

Chapter 4 illustrates the results of the resolution of

overlapping signals for a number of different composite

waveforms using the filters designed in Chapter 3.

Chapter 5 draws some conclusions concerning frequency

domain deconvolution based on the results of the previous

chapters.
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2.0 PROBLEMS IN FREQUENCY DOMAIN DECONVOLUTION

The procedure presented in the previous chapter for the

implementation of frequency domain deconvolution appears

simple and straightforward. This chapter deals with

situations which threaten the apparent simplicity of its

implementation. A brief survey of the number of

difficulties encountered in the process include,

1. Presence of deconvolution noise in the solution

for the filter unit sample response.

2. Aliasing of the solution in the time domain due

to FFT implementation of an Infinite Impulse

Response(IIR) filter.

3. Approximation of minimum phase, maximum phase

and mixed phase waveforms by a finite length

sequence.

4. Very large filter lengths due to poles of H(z)

being on or near the unit circle.

5. Reduced detection capability due to aliasing

and deconvolution noise.
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All of the above problems are associated with the

location of poles of H(z) on the z plane or in other words

location of zeros of W
b(z) on the z plane. A detailed

investigation into these problems and some suggested

techniques for overcoming them are discussed in this

chapter.

2.1 DECONVOLUTION NOISE

The division of Fourier Transforms of the input and

output as given by equation (1.5) could cause the problem

to be illconditioned when X(k)s0 or Y(k)/X(k) becomes

indeterminate. As a result it gives rise to noisy

solutions in the filter unit sample response h(n). Two

methods are described in chapter 3 which could be used to

minimize this deconvolution noise. The effectiveness of

these methods on a variety of basic wavelets in a noisy

environment is also demonstrated.

2.2 ALIASING IN THE TIME DOMAIN

When dealing with reflections from multilayered media

as given in chapter 1, it is most convenient to choose the

reflector wavelet to be a unit sample.



Then,

H(z) = 1/Wb(z) (2.1)

11

Since w
b
(n) is chosen to be a causal finite length

sequence, its z transform will be a polynomial in z-1, with

multiple poles at the origin and zeros located elsewhere on

the z plane. From equation (2.1), it can be seen that

these zeros of W
b
(z) become the poles of H(z). This

implies that the filter unit sample response is of infinite

length, thus producing an IIR filter. If time domain

sequences have real coefficients, the poles of its z

transform will occur in conjugate pairs and in turn the

characteristics of the real sequence will be determined by

the location of these poles on the z plane. When a

solution to h(n) is sought through a FFT method, a finite

length approximation to the IIR filter has to be performed.

First, consider a finite length sequence x'(n) of

length N and denote its N point DFT by X'(k). Then,

-12mkn

X'(k) =
)1-1

x'(n)e
n.0

(2.2)
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The z transform X(z) of an infinite length sequence x(n) is

related to X'(k) by the following equation,[1]

Since,

X'(k) = X(z) (2.2)
-j2nk

z=e N , k=0,1,...,N-1

X(z) = E x(n)z-n
n -c

from equation (2.2),

-j2nnk

X'(k) = E x(n)e

(2.3)

(2.4)

Writing the above summation in blocks of length N,

-12nkl -12nkl

X'(k) E x(1)e + E x(1).e
1.o lc ri

-j2nkn
61'1 00

= E E x(n + mN)e
11.0M1,--(c

Comparing (2.2) with (2.5),

00

x'(n) = E x(n+mN)

(2.5)

(2.6)
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Therefore, it is seen that the sequence obtained by FFT

methods is an aliased version of the true IIR filter. If

the significant coefficients of the filter can be included

in the length N, the filter can be approximated by a finite

sequence of length N with negligible error. In practice

the filter length could be increased to include the

significant components. This is true in the case of causal

minimum phase sequences. In the case of nonminimum phase

sequences some adjustment has to be carried out before

approximation is performed. The next section deals with

the approximation problem and explains how it is performed

for different types of sequences, namely minimum phase,

maximum phase and mixed phase.

2.3 APPROXIMATION OF NONMINIMUM PHASE SEQUENCES

A simple first order transfer function is chosen to

generate the minimum and maximum phase sequences.

Consider,

H(z) 1/(1-az
-1

) (2.7)

It can be seen from the above equation that the pole of

H(z) is located at z - a. h(n) will be either a minimum

phase or maximum phase sequence depending on whether a < 1

or a > 1.



From equation (2.7),

w
b
(z) = 1-az-1

and it follows that,

w
b
(n) = S(n) aS(n-1)

Also by writing in terms of the DFT,

H(k) = 1/Wh(k)

(2.8)

(2.9)

(2.10)

14

h(n) can be determined by first evaluating the FFT of

w
b
(n) (i.e. W

b
(k)) and then applying equation (2.10) to

produce H(k). The Inverse DFT's(IDFT) of H(k) for a < 1

and a > 1 produce a minimum phase and a maximum phase

sequence respectively.

In general if all the poles of H(z) are located inside

the unit circle stability requires the sequence h(n) to be

right handed. Such a sequence is called a minimum phase

sequence. A special case of this occurs if the z transform

converges at infinity making it a causal sequence.[1] The

above example for this particular case is shown in fig.

2.1(b).
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If the poles happen to be outside the unit circle, h(n)

will be a left handed sequence and is termed a maximum

phase sequence (fig. 2.2(b)). Accordingly, a mixed phase

sequence would have its poles both inside and outside the

unit circle and will produce a two sided sequence in the

time domain (fig. 2.3(b)).[1]

The example selected to illustrate the mixed phase

sequence is,

H(z) . 1/(1-az -1 )(1-bz
-1

)

The corresponding basic wavelet will be

(2.11)

wb(n) = 6(n) - (a+b)6(n-1) + ab5(n-2)

(2.12)

where a - 1.5 and b = 0.6.

Since we are dealing with frequency domain analysis, it

is of interest to observe the solution to h(n) using the

FFT when w
b
(n) is known. The results for the three cases

are shown in figs. 2.1(b),2.2(c) and 2.3(c).
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(b)
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fig. 2.1 A Minimum Phase Sequence

(a) Pole Zero Configuration in the Z Plane.
(b) Inverse Filter Unit Sample Response

Obtained by FFT.
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Z PLANE

0
"If

11'111111
20 -10

10 20

fig. 2.2 A Maximum Phase Sequence.

(a) Pole Zero Configuration in the Z Plane.
(b) Left Handed Sequence in the Time Domain.
(c) Inverse Filter Sequence Obtained by FFT.
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fig. 2.3 A Mixed Phase Sequence.

30
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(a) Pole Zero Configuration in the Z Plane.
(b) Two Sided Sequence in the Time Domain.
(c) Inverse Filter Sequence Obtained by FFT.
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It is seen that for minimum phase sequences the inverse

filter coefficients are significant at the left end of the

sequence and decay towards the right end. For a causal

sequence the coefficients start at the origin and the IIR

filter can be easily approximated by a finite length N that

includes only the significant coefficients. For the

maximum phase inverse sequence the significant coefficients

are concentrated at the right end while the left end

coefficients contribute only a very minimal energy. Such a

sequence obtained using FFT methods is shown in fig.

2.2(c). For a mixed phase sequence the significant

coefficients can be at both ends. Therefore, approximating

non minimum phase inverse sequences by a finite length

poses a problem. The desired output can be obtained from

this type of aliased filter only through circular

convolution, which is not a satisfactory alternative in

real time applications.

2.3.1 INTRODUCTION OF DELAY AT THE OUTPUT

By delaying the output, a circular shift can be induced

in the filter coefficients such that the significant

magnitudes start at the left end of the sequence. As

mentioned earlier this type of filter can be easily

approximated and implemented in a linear convolution in

later applications. In the case of non minimum phase
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sequences, a circular shift would produce a shifted version

of the true time domain signal. This delayed inverse

filter response will produce an accurate output with the

same delay.

An example of introducing an output delay is shown in

fig. 2.4. The mixed phase filter response for the basic

wavelet given by equation (2.12) is computed via a 64 point

FFT and an output delay of 32 samples. Fig. 2.4(a) shows

the resulting filter sequence which is essentially a

circular rotation of the same sequence obtained with zero

delay. In order to confirm the proper functioning of the

filter, its output is calculated by convolving the basic

wavelet with the designed filter response. Figs. 2.4(b)

and (c) show the outputs for zero and 32 sample delay

filters respectively. Output for a delay of 32 samples

proves to be satisfactory while the output for zero delay

appears to be aliased.

In general, causal minimum phase sequences will require

no output delay. A maximum phase sequence produces best

results when the delay is equal to the length N of the

sequence. For a mixed phase sequence, optimum delay is an

intermediate value between 0 and N.
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2.4 PROXIMITY OF POLES OF H(z) TO THE UNIT CIRCLE

Another problem encountered with the design of this

filter is the proximity of poles to the unit circle. As

mentioned in section 2.1, around frequencies on the unit

circle that are close to a pole, the value of H(k) could be

very large. This causes noisy solutions in the unit sample

response. Another major draw back is the generation of

very long filter sequences. The closer the poles are to

the unit circle the longer the sequence. In order to

prevent aliasing much longer FFT lengths must be used. An

example of such a situation is shown in fig. 2.5, where

w
b
(n) is chosen to be a sinusoid with the following

specifications,

w
b
(n) .s. sin

2
(nan),

n - 0,1 ..... 45
a .. 1/45

(2.13)

The zeros of W
b (z) are placed around the unit circle in

equally spaced intervals of 2n/N. Consequently the poles

of H(z) are placed in the same order. The aliased version

of the filter obtained using the FFT method can be seen in

fig. 2.6(a). An unsuccesful attempt to produce an impulse

at the output using wb(n) as the input to this filter is

shown in fig. 2.6(b). Although a linear convolution fails

to produce the correct result, it can be obtained using a
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fig. 2.5 A Sin Pulse

(a) Basic Wavelet in Time Domain
(b) Magnitude Response of Basic

Wavelet.
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fig. 2.6 Inverse Filter for Sin Wavelet.

(a) Unit Sample Response.
(b) Output Obtained by Linear Convolution.
(c) Output Obtained by Circular Convolution.
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circular convolution of the input with the aliased filter

response (refer fig. 2.6(c)). Circular convolution is not

very suitable in practical situations. Therefore, a

different approach which makes it possible to use linear

convolution should be thought of. There are a few

alternative approaches and the selection of one depends

entirely on the nature of the basic wavelet.

2.4.1 USE OF THE GAUSSIAN REFLECTOR SERIES

This problem of large filter lengths mainly occurs with

reflector series of impulses. If Rs(n) can be selected

such that it cancels the effects of the poles of Wb(z) to

a certain extent, then it is possible to obtain shorter

filter lengths. One such example is the use of Gaussian

reflector series with w
b
(n) for which the poles of H(z)

are constrained only to one side of the unit circle. The

unique relationship between its time and frequency domain

representations is clearly seen by observing the Fourier

Transform pair for a generalised Gaussian distribution.

1 exp[-(t-r))
2

exp[ -w
2

aw
2

] exp(-1/414]

at /2 n 2a? 2

(2.14)

This implies that the FFT of a Gaussian produces another

Gaussian in the frequency domain. The width of the
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Gaussian pulse is characterized by its standard deviation a

which relates to the amount of deviation of the

distribution from its mean value. The standard deviation

in the frequency domain is a.= Vat, from equation (2.14),

resulting in an inverse relationship. Thus, a Gaussian

with a larger at, i.e. a broader pulse in time domain will

result in a narrower pulse in the frequency domain and vice

versa. In order to maintain reasonable resolution, the

time domain pulse should be made as narrow as possible.

The limitation to this is the aliasing of the broader pulse

in the frequency domain. It has been observed in previous

work [2] that values of at greater than 2 are sufficient in

overcoming the problem of aliasing. A Gaussian pulse of

at= 2.5 and its FFT are shown in fig. 2.7. It can be seen

from the FFT that the zeros of the Gaussian pulse occur on

the left hand side of the unit circle. Hence it can be

used for basic wavelets with similar zero configurations to

cancel the effects of undesirable pole locations in the

filter response. One such example of a basic wavelet, a

triangular waveform and its FFT are shown in fig. 2.8. It

can be seen that this also has zeros on the left hand

plane. The corresponding spike filter designed for this

case proves to be grossly aliased because of its nearly

infinite length (fig. 2.9(a)). Fig. 2.9(b) shows that this

problem could be overcome with a Gaussian filter of much

shorter length.
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fig. 2.7 Gaussian Pulse - Mean = 64, Std. Dev. = 2.5

(a) Gaussian Pulse in Time Domain.
(b) Magnitude Response of Gaussian Pulse.
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(a) Basic Wavelet.
(b) Magnitude Response of Basic Wavelet.
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3.0 FREQUENCY DOMAIN DECONVOLUTION METHODS

The two frequency domain deconvolution methods

described in this chapter are used to obtain a solution for

the inverse filter specified by the deconvolution model

introduced in chapter one. They are

1. The optimal compensation technique.[4]

and 2. The least squares regression method.[5]

Although these filters are designed to overcome the

deconvolution noise and are particularly effective in this

respect, they seem to be useful in reducing some of the

other adverse effects mentioned in chapter 2 as well. The

first method is designed by imposing conditions entirely in

the frequency domain, while the second method is developed

through specifications in the time domain which is later

translated into its corresponding frequency domain version.

In both cases the resulting equation for the frequency

domain solution of the inverse filter frequency response

depends on the selection of a parameter. The value of the

parameter decides the tradeoff between the accuracy of the

solution and its noise content. Graphs are obtained which

allow a designer to select the region of suitable values of

the parameter that produce an optimum filter.
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It is also shown that the application of these two

procedures is equivalent to using an adaptive filter on the

true inverse filter and that the nature of the adaptive

filter is entirely dependent on the nature of the frequency

response of the basic wavelet.(6]

The derivation of the frequency domain expressions for

the two methods are presented in this chapter along with

illustrative applications. Also included are the effects

of the adaptive filtering process on the solution for the

filter unit sample response.

3.1 METHOD 1 - OPTIMAL COMPENSATION TECHNIQUE

In this method an optimal compensator is designed in

the frequency domain. The compensator developed by Riad

and Stafford (4] operates on the Fourier Transform of the

convolution result Y(ejw), to produce one of the inputs

to the convolution. In this case the unknown input is

taken as the filter frequency response. Hence, the

compensator C(ejw) is applied to Y(ejw) to yield an

estimate for H(ejw).

He(ejw) = Y(ejw)C(ejw) (3.1)
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There are two major design criteria to be imposed on

the design of the compensator.

1. Minimization of the squared error in the estimate

defined by,

Ee = Ili(ejw) He(ejw)I2 (3.2)

2. Minimization of noise which is attributed to

C(ejw) 1 / X(ejw) being an unbounded quantity.

Since H(ejw) is a bounded function, the criterion

is that of keeping Ec a finite quantity, where

E
c

[H(ejw).C(ejw)I2 (3.3)

These two criteria can be combined in one equation using an

optimization parameter.

E = E
e

+ 0.E , 0 > 0 (3.4)

The problem is to minimize Ee while maintaining Ec

finite. The value of 0 signifies the amount of weight

given to each criterion. If s is small, minimization of

error, Ee plays an important role whereas, if 0 is very

large it turns out to be an extreme of keeping Ec finite.



33

An expression can be developed for the compensator

using the above criteria as follows. Substituting

equations (3.2) and (3.3) in (3.4) yields,

E - 1H(ejw) He(e3w)I2 + 01H(e3w)C(e3w)12

(3.5)

Writing Y(ejw) H(ejw)X(ejw) in equation (3.1) gives

H
e
(ejw) = H(ejw)X(ejw)C(ejw) (3.6)

Substituting for He(ejw) in equation (3.5) and simplifying,

E 1H(ejw)12.P(ejw) (3.7)

where, P(ejw) IX(ejw)C(ejw) - 112 + 61C(ejw)12

(3.8)

In order to minimize the error for any general form of

H(ejw), P(ejw) must be minimized. Denoting real and

imaginary parts of X(ejw) and C(ejw) by subscripts R and I,
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P(ejw) can be written as,

P(ejw) (XR(ejw)CR(ejw) - yejw)CI(ejw) - 112

+ (X
R
(ejw).0

I
(ejw) + X (ejw)C

R
(ejw)12

2(ejw) 2(ejw)1
(3.9)

Taking partial derivatives and equating them to zero,

4(ejw) = CR(ejw)(1x(ejw)12 + 01 xR(ejw) = 0

C
R
(ejw)

(3.10)

Wajw) = Ci(ejw)(IX(ejw)12 + 0) + X1(eJw) - 0

C (ejw)

(3.11)

Manipulating equations (3.10) and (3.11), it can be shown

that,

C(ejw) = X*(ejw)/[1X(ajw)12 + 0 ] (3.12)

This is the expression for the compensating function with

the " denoting the complex conjugate.
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Substituting for C(ejw) in equation (3.1),

He(ejw) Y(ejw)X*(ejw)/(IX(ejw)12 + 0 ]

(3.13)

where 0 is the optimization parameter whose value has to be

decided for an optimum solution for h(r1).

3.2 APPLICATION OF METHOD 1

In this section an application of the optimum

compensation technique on the design of inverse filters is

illustrated. All computations in the frequency domain are

carried out using FFT's. Therefore, equation (3.13) takes

the form,

He(k) = Y(k)X*(k)/[1E(k)12 + 0 ] (3.14)

for where N > the length of y(n). For the

convolution model described in chapter one, X(k) should be

replaced by the DFT of the basic wavelet Wb(k) and Y(k)

should be replaced by the DFT of the reflector series for a

single echo Rs(k).
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3.2.1 EXAMPLES

Three basic wavelets with different frequency response

characteristics have been selected. Since a spike filter

is to be designed, the desired output will be a unit sample

of appropriate delay. Hence, Rs(k) = 1.0.

1. A low pass signal wb(n) n 0,1,...,45

A - 0.2

2. A narrow band signal - wb(n) - sin(2nn/A)cos(2mn/B)

n - 0,1,...,25

A - 50 , B - 5

3. A wide band signal - wb(n) = An, n = 0,1 ..... 3

A.(7-n), n = 4,...7

A - 1/3

A small amount of uniform random noise is added to all

the waveforms so that they represent noise contaminated

signals.

3.2.2 EFFECT OF THE PARAMETER

An application of the above technique first involves

the investigation of a selection criterion for the

parameter S. Although the introduction of 0 minimizes the

effects of small spectral values in IX(k)1, it has an
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adverse effect on the accuracy of the solution. Selection

criterion for the value of 0 depends on the amount of

tradeoff made between the accuracy and the noise in the

solution. As B is decreased, noise in the solution is

increased since the compensating effect diminishes. As it

is increased, the solution gets oversmoothed, producing a

dampening effect on the solution. These effects of a are

clearly seen from figs. 3.1(a),(b) and (c) which display

the unit sample response computed using example 1 for

0 . 1.0, 0.01 and 0.001 respectively. Fig. 3.1(c) with the

smallest value of B has the most noise while fig. 3.1(a)

with the highest value of a has the least noise. It can

also be seen from fig. 3.1(c) to fig. 3.1(a) that the

significant values of the signal around n - 60 acquire

smaller amplitudes as 0 is increased.

3.2.3 OPTIMIZATION CRITERION

The accuracy of the result and the noise produced in

the result are two good indicators that could be used in

deciding a reasonable value for 0 which in turn produces a

satisfactory inverse filter. Since an apriori knowledge of

the solution may not be available on many occasions, the

true value of the result is unknown. Hence, noise and

accuracy have to be measured using the deconvolution result

itself.
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fig. 3.1 Unit Sample Response of Inverse Filter [h(n)]

(a) 0 = 1.0 (0 dB)
(b) 0 - 0.01 (-20 dB)
(c) 0 = 0.0001 (-40dB)



The second difference of h(n) given by,

N = [E [h(i-1)-2h(i)+h(i+1)] 2
]6a

(3.15)
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can be used as a measure of the smoothness. For a noisy

solution N would be high and as the solution gets smoother

N would tend to zero. N is a good indicator of noise in

this instance since it only depicts the jaggedness of the

solution and is not affected by the errors produced by bias

and accuracy.

The area under the waveform of the unit sample response

of the filter is taken as the measure for accuracy. Hence

it is given by,

A = E h(i)
1.1

(3.16)

As 0 is increased the solution gets damped and the area

under the curve decreases.

Plots of noise(N) and accuracy(A) versus 0 for the 3

examples are shown in figs. 3.2(a),(b) and (c). It is

clearly indicated in all cases that both noise and accuracy

decrease as the value of 5 is increased. The net area of

the graph of h(n) is negative in the case of the narrow

band signal. Nevertheless, it can be observed that its

absolute value decreases with increase in 0 although at a
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(a) Using the Low Pass Basic Wavelet.
(b) Using the Narrow Band Basic Wavelet.
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slower rate than that of noise. These effects can also be

observed in the output y(n), for a single pulse of the

basic wavelet at the input which is computed using the

above estimate for h(n). It should also be noted that,

unlike h(n), the true value of the output y(n), is known.

Consequently, its deviation from this actual waveform could

be calculated in the form of the mean square error(mse).

In the resolution of multiple overlapped signals, it is

important that the output from an inverse filter be free of

noise and maintain a good S/N ratio for unambiguous

detection of echoes. Thus, it is more relevant to use the

output waveform rather than the unit sample response of the

designed filter to measure its performance. Plots similar

to that of h(n) are shown for y(n) in figs. 3.3(a),(b) and

(c). The effects of noise and accuracy with variation in 0

show more promising results. Here again, the relative rate

of decrease is different for the two indicators. This can

be explained because the regions where IX(k)I is very small

contribute more to deconvolution noise than to the

information content in the signal. The smaller values of 0

have a greater influence in these regions than in other

regions where IX(k)I is significant. Therefore for small

values of 0, the accuracy(A) will have a slower rate of
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(a) Using the Low pass Basic Wavelet.
(b) Using the Narrow Band Basic Wavelet.
(c) Using the Wide Band Basic Wavelet.
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decrease compared to that of noise(N). On the other hand

larger values of $ can contribute to an over correction

dampening the actual value and resulting in error in the

information content.

A reasonably good operating region can be found in

figs. 3.3(a) through (c) where the noise is much reduced

while the accuracy is still maintained close to that of the

true value. Analysing fig. 3.3(a), the region of operation

for this particular example would be,

-10 dB < 0 < 0 dB (3.17)

When the filter is to be used for the detection of

multiple echoes, an important factor would be the ability

to distinguish between noise peaks and signal peaks. For

example, if there are considerably high noise peaks, these

could be mistaken for echos of smaller amplitudes. An

appropriate measure for detecting this effect would be a

S/N ratio defined as follows,

R = signal peak
highest noise peak

(3.18)
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It should be noted that a high R indicates only that the

signal amplitude is high compared to that of noise; but it

does not necessarily indicate a good accuracy for the

signal. Therefore, all three measures should be consulted

before reaching a decision on a satisfactory value for B. A

comparison of R for the two methods described in this

chapter are given in section 3.4.

3.2.4 DESIGN OF THE INVERSE FILTER

Now that an optimum region has been established, the

application of this method for different types of basic

wavelets is observed by implementing examples 1, 2 and 3 as

mentioned earlier. The lowpass signal and its magnitude

response are shown in fig. 3.4. The frequency response of

the filter is determined by equation (3.13) with a value of

0 1.0 (0 dB) which falls within the region of operation.

The magnitude response, unit sample response and the output

of the designed filter are given in figs. 3.5(a),(b) and

(c) respectively.

Fig. 3.6 shows the narrow band wavelet given in example

2 and its magnitude response. The optimum compensation

filter designed for this basic wavelet and its unit sample

response are displayed in figs. 3.7(a) and (b). The output

of the designed filter for a single echo is shown in fig.

3.7(c).
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(a) The Low Pass Basic Wavelet.
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(a) The Narrow Band Basic Wavelet.
(b) Magnitude Response of Narrow Band

Wavelet.
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fig. 3.8 Example 3

(a) The Wide Band Basic Wavelet.
(b) Magnitude Response of Wide Band

Wavelet.
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Similar plots are obtained for example 3. The basic

wavelet and its magnitude response are shown in fig. 3.8.

The filter responses and the output are shown in figs.

3.9(a),(b) and (c).

As seen by fig. 3.4(b), the low pass signal has a

number of singularities in its magnitude response. As a

result fig. 3.5(a) shows considerable noise in the

bandwidth corresponding to the region of zero crossings in

fig. 3.4(b). The output produced by this filter has lost

its accuracy by about 50% as a result of establishing a

compromise between accuracy and noise content.

The narrow band signal also displays a number of

singularities in its magnitude response, resulting in a

noisy filter response. Here again, noise at the output has

been maintained at a reasonable amount at the expense of

accuracy. The output also displays more ringing around the

main pulse.

The wide band signal is the same as the low pass except

that it has a wider bandwidth covering most of the

spectrum. Consequently, the filter magnitude response does

not indicate as much noise as in the previous examples.

This output has the best accuracy, almost 90% of the true

value, while maintaining the noise reasonably low.
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3.3 METHOD 2 - LEAST SQUARES REGRESSION METHOD

In the previously decribed method, the frequency domain

formula was derived with the use of design criteria defined

on the frequency domain, and no constraints were placed on

the behaviour of the solution in the time domain. In

contrast, the frequency domain equation developed by Hunt

[5] starts its derivation in the time domain thus enabling

the use of constraints for the time domain version of the

solution.

Although ideally,

y(n) = x(n) * h(n) (3.19)

there is always a basic uncertainty in the result caused by

the errors in the process. As such,

y(n) - x(n) * h(n) + e(n) (3.20)

Or,

y(n). E h(k)x(n-k) + e(n) (3.21)

If the length of sequences x(n) and h(n) are p and q

respectively, the length of y(n) will be N = p+q-1.
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In matrix form this equation can be written as,

[Y] = [X].[H] + [E] (3.22)

where [Y],[H] and [E] are column matrices of Nxl,qx1 and

Nxl holding the corresponding sequences. [X] is the Nxq

matrix given by,

[X]
kj

for k

=

=

=

x(k-j),

0

0 ..... N-1

0 < k-j < p-1

otherwise

and j = 0 ..... q-1

(3.23)

As seen in chapter (1), one major problem of

deconvolution is that the problem can be ill conditioned,

leading to noisy solutions. Hence, it is appropriate to

minimize the second difference of the solution in order to

maintain smoothness. The sum of the squares of the second

difference for the sequence h(n) is given by,

S = E [h(i-1)-2 h(i)+h(i+1)] 2
(3.24)

i.z

In matrix form,

S = [CH]'[CH] (3.25)
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where C = 1 -2 1 0 0 . .

0 1 -2 1 0 0 . .

0 0 1 -2 1 0 0 . .

0 . . .

.

S can also be written as a convolution expression by,

S = [c*h]'[c*h] (3.26)

where the sequence c(n) = 1,-2,1,0,0...0

Equation (3.22) shows that there are more equations(N)

than unknowns(q) in the solution of this problem.

Therefore a least squares problem in constrained regression

can be formulated as follows,

Minimize UCI[M]]'[[C][H]l, (3.27)

Subject to [[X][H] - [Y]]'[[X][H] - [Y]] - [E]'[E]

(3.28)

The problem is to minimize the second difference while

constraining the error to a prespecified quantity E.



The solution to this problem using Lagrange multipliers

is,

[H] . [[x]l[x] + r[C]'[C]][X]1[Y] (3.29)
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where r - 1/0, 0 being the Lagrange multiplier. This

could be easily computed in the frequency domain via FFT's.

Rewriting (3.29) as,

[[X]'[X] + r[C]'[C]][H] - [X]'[Y] (3.30)

enables the conversion to be performed easily. Taking

Fourier Transforms on both sides of equation (3.30)

produces,

[X*(k).X(k) + r-C*(k).C(k)]He(k) - X*(k).Y(k)

(3.31)

which reduces to,

He(k) = X
*
(k).Y(k)/[IX(k)I

2 + ric(k)1
2

]

(3.32)
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H
e
(k) is computed for a particular r and then the

residual error is computed using the estimate obtained for

h
e
(n) as given by,

r . [y(n) - he(n)*x(n)FIY(n) he(n)*x(n)]

(3.33)

If r > e (prespecified), r is decreased; and if r < e, r

is increased and the iteration continues for a new value of

r.
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3.4 COMPARISON OF THE TWO METHODS

The same examples used on the optimum compensation

technique is used here for comparison. Similar analysis is

carried out as before and the results show that basically

the parameter r has the same effect as S on deconvolution

noise and accuracy. Figs. 3.10(a),(b) and (c) display the

comparison of accuracy while figs. 3.11(a),(b) and (c)

display the comparison of noise obtained by the two methods

for examples 1,2 and 3. It is observed that the noise is

less and decreases more rapidly in the regression method

than in the optimal compensation method as expected by its

derivation. The accuracy is also less in the regression

method for smaller values of the parameters. However, for

higher values of the parameters the accuracy in the

regression method improves over the other method. In all

three cases the region of operation was found to be in the

area which includes the lesser values of the parameter from

the crossover point. Therefore, the regression method

seems to provide better noise immunity at the expense of

lowering its accuracy. Figs. 3.12(a),(b) and (c) compares

R for the two methods, again using the same examples.

Analysing the methods for different types of basic

wavelets show that the more suitable method for low pass

signals is the least squares regression method. This may

be attributed to the fact that the compensating function
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rlc(k)1 2 contributes more for smaller values of IWb(k)I

and less for larger values of IWb(k)I. For the narrow

band signal, both methods provide equal noise with the

regression method providing better accuracy. An

interesting observation in fig. 3.12(b) reveals that the

maximum noise peak in the output derived from the

regression method is higher than that of the compensation

method. A further investigation showed that the noise peak

was due to aliasing. Therefore, the compensation method is

better at reducing aliasing in narrow band signals. The

wide band wavelet benefits by both methods to almost the

same extent with the regression method producing slightly

better noise immunity over the other method.

3.5 REDUCTION OF ALIASING USING THE TWO METHODS

Another observation in this study was that the output

displayed fairly significant values at the two extremes of

the graph for low values of the parameters (see fig.

3.13(a). This happens when the value of 0 or r is not

large enough to pull the poles of H(z) away from the unit

circle. Hence, the filter lengths tend to become very long

causing an aliased version to be computed by this

procedure. This is verified by implementing a circular

convolution to arrive at the output. The noise like

effects at the two extremes disappear as shown in
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fig. 3.13 Output of Inverse Filter for Example 2 (0=0.01)

(a) By Linear convolution with Narrow Band Wavelet.
(b) By Circular Convolution with Narrow Band Wavelet.
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fig. 3.13(b). It is shown here for the narrow band signal

since it is the type that is most susceptible to this

phenomenon.

The ratio of the output pulse height to that of the

peak at the extremes is most significant for this type of

basic wavelet. Thus, it is seen that introduction of S(or

r) is helpful not only in decreasing the noise content but

also in preventing aliasing.

3.6 ADAPTIVE FILTERING

The deconvolution methods can be viewed as adaptive

filtering processes on the true filter response. This is

explained by rewriting equations (3.13) and (3.32) in

sections 3.1 and 3.3 in the form,

He(k) - (Y(k)/X(k))F(k) (3.34)

F(k) is the adaptive filter used for noise reduction in the

deconvolution filters. In the case of the optimum

compensation technique it will be given by,

Fc(k) = 1/(1 + 0/1X(k)12] (3.35)
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In the least squares regression method it takes the form,

F
r
(k) 1/(1 + ric(k)I

2
/1x(k)1

2
] (3.36)

Ideally, from equation (3.34), F(k) should be equal to

unity at all frequencies. Thus, the inverse response f(n)

should be a unit sample at the origin.

It can be seen from figs. 3.14(a) and (b) that for the

low pass and narrow band signals the magnitude response of

the adaptive filter used by method 1 takes the same form as

that of the signals. The low pass signal uses a low pass

filter while the narrow band signal uses a narrow band

filter. The wide band signal produces an adaptive filter

that has a magnitude response given by fig. 3.14(c). It is

equal to 1 except in a small region corresponding to

singularities in the magnitude response of the signal

(compare with fig. 3.8(b)). The resulting unit sample

response of the adaptive filter is the closest to the ideal

case when compared with the results obtained by the other

two signals (figs. 3.15(a),(b) and (c)).

Similar plots of F(k) and f(n) generated by method 2

using equation (3.36) are shown in figs. 3.16 and 3.17.

Comparing with the results of method 1, it is seen that

both techniques employ a low pass type filter in the
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fig. 3.14 Magnitude Response of Adaptive Filter - Method 1

(a) For the Low Pass Wavelet.
(b) For the Narrow Band Wavelet.
(c) For the Wide Band Wavelet.



(a)

(b)

(c)

0.5

At

N.A.O.ANV 1AAvvAt met'
- 0.1

20 40 10 00 100 120

Os

- 0.2

Os

0.4

0.2

O 20 40 SO 00 100 120

Ilr AAA tt- AM

0 20 40 40 GO 100 120

66

fig. 3.15 Unit Sample Resp. of Adaptive Filter - Method 1

(a) For the Low Pass Wavelet.
(b) For the Narrow Band Wavelet.
(c) For the Wide Band Wavelet.
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case of the low pass signal (compare with fig. 3.4(b)). It

is also observed that the cutoff frequency of the two

filters are the same as that of the magnitude response of

the filter. In the case of the narrow band signal, the

narrow band filter used in method 1 is replaced by a low

pass filter in method 2 as shown in fig. 3.16(b). The low

pass filter extends its cutoff frequency to the highest

frequency of the narrow band signal magnitude response.

The difference could be explained by rewriting a general

equation for the adaptive filter as follows,

F(k) 1/[1 + P(k) /IX(k)I2) (3.37)

In the first method P(k) = 0, which is a constant for

all frequencies. For small values of IX(k)I the

denominator gets larger and F(k) acquires a stop band.

Since the filter has a stop band wherever IX(k)I is small,

it implies that the magnitude response of the adaptive

filter and the signal are essentially of the same shape.

On the other hand, in the second method P(k) = ric(k)I 2
.

The magnitude of IC(k)I is largest at large values of k.

Therefore, for higher values of k the stop bands in the

signal would result in stop bands in the filter; but, stop

bands at lower values of k would remain as pass bands

since IC(k)I also has a stop band in this region.
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fig. 3.16 Magnitude Response of Adpative Filter Method 2

(a) For the Low Pass Wavelet.
(b) For the Narrow Band Wavelet.
(c) For the Wide Band Wavelet.
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fig. 3.17 Unit Sample Resp. of Adaptive Filter Method 2

(a) For the Low Pass Wavelet.
(b) For the Narrow Band Wavelet.
(c) For the Wide Band Wavelet.
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In the case of the wide band signal both methods

utilize the same type of filter, the only difference being

the slight decrease in the magnitude of the middle lobe in

the response from method 2. These differences between the

two methods could be attributed to the fact that one uses a

constant parameter while the other uses a parameter that

increases with increasing values of frequency.
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4.0 RESOLUTION OF MULTIPLE OVERLAPPED SIGNALS

This chapter illustrates the resolution of multiple

overlapped signals using the filters designed in the

previous chapter. In appropriate situations the use of

Gaussian filters have been demonstrated in addition to the

corresponding spike filters. The composite signal is

analytically generated and represents a collection of 5

reflections with different amplitudes and arrival times.

The amplitudes and arrival times used for low pass and

narrow band signals are shown in Table 1. If the echoes of

the composite signal for the wide band wavelet are to be

indistinguishable before filtering, their arrival times

should be more closely spaced than in the other two

examples. Table 2 shows the amplitudes and arrival times

for the composite used in this case.

Table 1 - Amplitudes and arrival times of echoes

for figs. 4.1(a), 4.2(a) and 4.5(a)

arrival time 10 15 30 35 45

amplitude 0.9 0.5 -0.7 0.9 0.3
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Table 2 - Amplitudes and arrival times of echoes

for fig. 4.3(a)

arrival time 4 8 11 15 18

amplitude -0.3 0.5 0.5 0.8 -0.4

4.1 THE LOW PASS WAVELET

The composite for the low pass wavelet is shown in fig.

4.1(a). It was shown in section 3.4 that method 2 provided

better results over method 1 in the case of the low pass

wavelet. Hence, the unit sample response of the filter

designed in chapter 3 using method 2 is linearly convolved

with the composite to arrive at the output pulse series.

The pulse series shown in fig. 4.1(b) indicates the

presence of a reflection with a spike, its position

signifying the time of arrival and its amplitude signifying

the strength. Although all 5 reflections are not clearly

distinguishable in the composite signal, they can be easily

identified in fig. 4.1(b) after filtering. It is observed

that the peak noise level is kept down to around 10% of the

maximum pulse.
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(a) Composite Signal
(b) Filtered Signal Using Spike Filter
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Reflections which have strengths below this are difficult

to differentiate from noise. The noise and aliasing can be

minimized by using an appropriate Gaussian filter. A

Gaussian with a = 2.5 could be used with the low pass

signal since their bandwidths in the frequency domain are

almost the same. Fig. 4.1(c) shows the corresponding

Gaussian output. Although the noise has been taken care of

in this case, the resolution is very poor compared to the

output of the spike filter in fig. 4.1(b).

4.2 THE NARROW BAND WAVELET

The narrow band composite signal is shown in fig.

4.2(a). The resulting pulse series in fig. 4.2(b) is

obtained via filtering using the unit sample response

derived from method 1 (fig.(3.18)). This also displays

fairly accurate signal strengths and times of arrival

although the noise is higher than in the case of the low

pass wavelet.

4.3 THE WIDE BAND WAVELET

Fig. 4.3(a) shows the composite for the wide band

signal while fig. 4.3(b) displays the resolved pulse train.

The time domain version of a wide band signal is

characterized by a narrow signal width. Hence, filtering
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becomes necessary in such cases only when the reflections

are clustered very close together. Otherwise it is easily

detectable without any further processing. In fact using a

Gaussian filter with a = 2.5 for this particular example

does not serve any purpose since the Gaussian pulse is

wider than the basic wavelet. The Gaussian that is

narrower than the basic wavelet produces a wider bandwidth

in the frequency domain and cannot be made use of due to

aliasing. Therefore, with this type of basic wavelet a

spike filter has to be used for resolution of closely

spaced reflections.

4.4 THE CHIRP WAVELET

The chirp signal shown in fig. 4.4 is used as an

example to illustrate the effectiveness of using one of the

deconvolution methods described in chapter 3 in reducing

aliasing. Table 3 gives the corresponding information on

the composite for this case.

Table 3 - Amplitudes and arrival times for

fig. 4.5(a)

arrival time 10 25 38 50 65

amplitude 0.9 0.5 -0.7 0.9 0.3
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In previous work [2], circular convolution has been

used since the filter happened to be grossly aliased. The

spike filter designed by method 1 is used on a composite

signal of 5 echoes. Fig. 4.5(b) shows the resulting pulse

train obtained by linear convolution.

The magnitude response of the chirp signal shown in

fig. 4.4(b) has a bandwidth that is wider than that of the

Gaussian shown in fig. 2.11. Hence, using a Gaussian

filter may provide better results with less noise than in

fig. 4.5(b). Fig. 4.5(c) shows the resulting Gaussian pulse

train which gives an excellent representation of the

echoes.

Figs. 4.6(a) and (b) show the output of the respective

filters when the composite signal consists of echoes with

closer spacing than in the previous example. The

amplitudes and arrival times used to build the composite

for this case are same as those given in Table 1. The

spike output still provides good resolution, although

noisy, and the echoes are distinguishable from one another

while the Gaussian output has very poor resolution with

only 4 distinguishable echoes.
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(b) Magnitude Response of Basic Wavelet



(a:

(b)

t

(c)

20 100

1.4

o

bA

1.2

A

20 120
I

800
I

240

fig. 4.5 Resolution of Chirp Wavelets

(a) Composite Signal (as in Table 3)
(b) Filtered Signal Using Spike Filter
(c) Filtered Signal Using Gaussian Filter

80



(a,

(b)

( c

0.0

IA

20 40 MO

40 120 120 200

1.9 -

OA

0

0 40 W 120 1W 200

fig. 4.6 Resolution of Chirp Wavelets

(a) Composite Signal (as in Table 1)
(b) Filtered Signal Using Spike Filter
(c) Filtered Signal Using Gaussian Filter

81



82

5.0 SUMMARY/CONCLUSION

This thesis deals with the practicability of frequency

domain deconvolution in the design of inverse filters. It

was apparent that frequency domain deconvolution involved

only a simple division of DFT's. The complexity and

solution time required in time domain techniques is much

reduced with the availability of efficient FFT routines.

An application of frequency domain deconvolution on the

resolution of multiple overlapped signals revealed a number

of problems involving, 1. noisy solutions

2. aliased filters.

All of the associated problems are addressed in chapter 2,

and it is observed that they are greatly influenced by the

location of zeros of the basic wavelet. The true inverse

filter is shown to be an IIR filter. Using FFT's for the

calculation forces a truncation of the filter to a finite

length. Consequently, a problem arises if the significant

filter coefficients are not included in this finite length.

Sometimes an increase in the FFT length may solve the

problem. Otherwise the solution will be an aliased version

of the true filter.
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An important fact to investigate before proceeding

with the deconvolution is to find out what type of sequence

is represented by the filter unit sample response. If it

is a minimum phase sequence, no delay is necessary at the

output. If it is a maximum phase sequence, a delay equal

to the filter length would be required at the output. If

it is a mixed phase sequence, the output delay will be

something in between.

The location of zeros on the unit circle can be

identified by inspection of the FFT of the basic wavelet.

The two main problems encountered are noise due to

singularities in the denominator of the frequency domain

equation and aliasing due to long filter lengths. These

adverse effects can be controlled to some extent by the use

of an appropriate reflector series. The problem with the

zeros of the basic wavelet could be minimized if the zeros

of the reflector series are also in the same vicinity.

The Gaussian pulse of a = 2.5 is one such example where

zero cancellation could take place. As seen in chapter 2,

the Gaussian has all its zeros on the left hand side of the

z plane. Most basic wavelets fall in the category of low

pass signals which also have their zeros on the left hand

plane. For best results the band width of the Gaussian

pulse should be less than or equal to that of the basic

wavelet. This ensures that no poles of the filter will be

left on or near the unit circle without a zero in its
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vicinity. Unfortunately, although the noise and aliasing

problems are greatly reduced in this instance, it results

in poor resolution of closely spaced echoes. For values of

a less than 2.5, the bandwidth of the Gaussian gets larger

and aliasing becomes significant although there is an

improvement in the resolution. Therefore, a compromise has

to be made between output pulse width and the output noise.

There are still other signals that do not benefit by

the use of a Gaussian output. Narrow band signals fall in

this category. These signals are characterized by zeros

all around the unit circle. A spike output is the obvious

choice for this type although it tends to have a

considerable noise content and infinitely long filter

lengths.

One of the main contributions of this thesis was to

realize the importance of the problems mentioned above and

to address them using the optimal compensation method and

the least squares regression method described in chapter 3.

When implementing these methods, the noise in the solution

is reduced at the expense of accuracy. An optimization

parameter selects a filter which negotiates a reasonable

tradeoff between noise and accuracy. Plots of noise and

accuracy against the parameter provide adequate information

for a user to decide on a satisfactory region of operation.

An estimate of the ratio of signal to peak noise given by R

provide additional information about the relative
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amplitudes of the true signal and maximum noise peak. In

regions of satisfactory operation, it was found that in

general, the optimum compensation method provided better

accuracy while the least squares regression method provided

better noise immunity.

Analysing the effects of the two methods on different

types of basic wavelets revealed that for low pass

wavelets, the least squares regression method was more

suitable due to the nature of its compensating function in

the denominator of the frequency domain equation. In the

case of narrow band wavelets, although the noise in the

signals are approximately the same for both methods, the

signal to maximum noise ratio given by R shows that the

compensation method is better at reducing aliasing which is

a predominant problem in narrow band wavelets. Basic

wavelets such as the wide band signal in example 3 are

extremely narrow in the time domain. In order to

distinguish closely spaced echoes of such a signal, one of

the two methods described in chapter 3 has to be employed.

A Gaussian filter proves useless in this case since the

output pulse width would be too large to provide the

necessary resolution. In the design of spike filters for

this type of basic wavelet, both filters provide equal

results with the exception that the regression method gives

slightly better noise immunity over the other method.
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Both methods employ an adaptive filter on the true

frequency response of the inverse filter. The adaptive

filter utilized in method 1 is the same type as the basic

wavelet but the one used in method 2 is essentially a low

pass filter with a bandwidth extending to that of the

higher cutoff frequency of the basic wavelet.

Another important contribution of the thesis was the

implementation of the two frequency domain methods to

reduce aliasing, which is a common occurrence in the design

of spike filters. In the past circular convolution was

used to obtain the required output from such aliased

filters. It was found in this work that aliasing could be

reduced by utilizing the two methods to pull the zeros of

the basic wavelet slightly away from the unit circle.

Hence, the non aliased filter designed this way can be used

in a linear convolution to produce satisfactory results.

The chirp wavelet given in chapter 4 is a good example of

using the methods to reduce the problem of aliasing.

Chapter 4 illustrates the resolution of signals using

the filters designed in chapter 3. It was seen that spike

filters provide better resolution with more noise while

Gaussian filters provide poor resolution with less noise.



87

It was seen that higher resolution spike filters with

reduced noise and aliasing could be designed using the two

deconvolution methods. The next step would be to test

their performance in the face of practical real time

signals. The selection of a optimum value for the

parameter, possibly using the mean square error is another

area that requires future investigation. Finally, research

involving the design of a frequency domain function that is

based on the nature of the basic wavelet would result in an

improvement on the methods presented in this thesis.
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PROGRAM FOR FINDING THE INVERSE FILTER USING

1. THE OPTIMUM COMPENSATION METHOD

2. THE LEAST SQUARES REGRESSION METHOD

PROGRAM INVFILT
COMPLEX H(1213).X(1213).Y(128)
REAL REALX(128),REALH(128),REALY(128)

************** ************** *******************
INITIALIZE

********* ****************** ************ ***** ***
OPEN(1.FILEs'X.DAT',STATUS-)NEW)
OPEN(2,FILE='MAGX.DAT',STATUS4'NEW)
OPEN(3,FILEm'MAGH.DAT',STATUSm'NEW)
OPEN(4,FILE4.H.DAT',STATUS4'NEW)
OPEN(5.FILE4PY.DAT',STATUS4'NEW)
Plne.0*ASIN(1.0)
N4128
NPWR47

10 FORMAT( E10.3,5X0F10.4)
************** ********************* ** **********

COMPUTE THE BASIC WAVELET

WRITE(*p*).WHAT IS THE BASIC WAVELET? -(1-LOW PASS. 2-NARROW BAND.
*3-WIDE BAND, 4-CHIRP)'
READ(*,*)NTYPE
IF (NTYPE .EQ. 1) CALL LP(REALX,NX)
IF (NTYPE .E0. 2) CALL NB(REALX,NX)
IF (NTYPE .EQ. 3) CALL WB(REALX,NX)
IF (NTYPE 4) CALL CHIRP(REALX,NX)
WRITE(*,*)'SPECIFY AMOUNT OF NOISE TO BE ADDED'
READ( *. *)S
ISEED-3
DO 100 Iml,NX
CALL UNIFRV(ISEED,U)
REALX(I)=REALX(I)+(U-0.5)/S
WRITE(1,10)REALX(/),FLOAT(I-1)
X(I)=CMPLX(REALX(I),0.0)

100 CONTINUE
DO 200 /4NX+1,1213
REALX(I)40.0
WRITE(1,10)REALX(/),FLOAT(I-1)
X(I)*CMPLX(0.0,0.0)

200 CONTINUE
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*********** * ****** * ***** ********** ***** ********
COMPUTE THE REFLECTOR SERIES

******* ****** * ************** ******** ***********
WRITE(*,*)'SPECIFY TYPE OF FILTER TO BE DESIGNED
*(1-SPIKE, 2-GAUSSIAN)'
READ(*,*)IFILT
WRITE(*.*)PSPECIFY THE AMOUNT OF OUTPUT DELAY'
READ(*.*)M
IF (IFILT .E0. 1) THEN
DO 300 I=1,N
Y(I)=CMPLX(0.0.0.0)

300 CONTINUE
Y(M)=CMPLX(1.0,0.0)
ELSE
WRITE(*,*)'WHAT IS SIGMA?'
READ(*.*)SISMA
ROOT=S0RT(2.0*PI)
DO 400 I=1,N
R=10.0*(EXP(-0.5*FLOAT(I-M)**2/SIGMA**2))/(ROOT*SISMA)
Y(I)=CMPLX(R,0.0)

400 CONTINUE
ENDIF

************** ***** * ***** *** ************** *****
COMPUTE THE FFT's

*********** ********** * ****** ************** *****
CALL FFT(X,NPWR)
WRITE(2010)(CABS(X(I)),FLOAT(/-1),I=1,N)
CALL FFT(Y,NPWR)

******** ***** ******* * ***** ********** ***********
FIND THE INVERSE FILTER BY ONE OF THE *

DECONVOLUTION METHODS
***************************** ***** *************

WRITE(*,*)'SPECIFY THE METHOD TO BE USED'
READ(*.*)MTHD
IF (MTHD .E0. 1) CALL FILT1(X,Y,H,N)
IF (MTHD .E0. 2) CALL FILT2(X,Y,H.N,NPWR)
WRITE(3,10)(CABS(H(I)),FLOAT(I-1),I=1,N)
CALL IFFT(HpNPWR)
CALL IFFT(XINPWR)
DO 500 1=1,N
REALX(1)=(X(I)+CONJO(X(I)))/2.0
REALH(I)=(H(I)+CONJG(H(I)))/2.0

500 CONTINUE
WRITE(4.10)(REALH(I),FLOAT(I-1),I=1,N)
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******************************* ****** **********
COMPUTE THE OUTPUT OF THE FILTER FOR A *

SINGLE ECHO
******************** ******* *************** *****

WRITE(*,*)'TO OBTAIN OUTPUT BY LINEAR CONVOLUTION TYPE 1'
WRITE(*,*)'TO OBTAIN OUTPUT BY CIRCULAR CONVOLUTION TYPE 2'

READ(*.*)IOUT
N2=2*N-1
IF (IOUT .EQ. 1) CALL FOLD(N,REALX,N,REALH.N2,REALY)
IF (IOUT .EQ. 2) CALL CIRCON(REALX,REALH,REALY,N)
WRITE(5,10)(REALY(I),FLOAT(I-1),I=1,N2)
END

*********************** ***** ************ *******
* NOTE: THE ARRAYS REALX,REALH,REALY CAN BE *

PUT IN A COMMON STATEMENT TO BE
SHARED WITH SOME OF THE FOLLOWING
SUBROUTINES.

**************************************** *******

SUBROUTINE LP(REALX,NX)
* THIS SUBROUTINE COMPUTES THE SEQUENCE FOR THE LOW PASS WAVELET.

REAL REALX(128)
NX-46
DO 100 I -1,NX
X(I)*(FLOAT(I-1)*EXP(-0.2*FLOAT(I-1))

100 CONTINUE
RETURN

SUBROUTINE NB(REALX,NX)
* THIS SUBROUTINE COMPUTES THE SEQUENCE FOR THE NARROW BAND WAVELET.

REAL REALX(128)
NX-26
DO 200 In1,NX
X(I)=SIN(2.0*PI*FLOAT(I-1)/50.0)*COS(2.0*PI*FLOAT(I-1)/5.0)

200 CONTINUE
RETURN

SUBROUTINE WB(REALX,NX)
* THIS SUBROUTINE COMPUTES THE SEQUENCE FOR THE WIDE BAND
* WAVELET.

REAL REALX(128)
NX*7
NXIaNX+1
DO 100 Im1,NX1/2
REALX(I)*FLOAT(I-1)/3.0
REALX(NXI-I)=REALX(I)

100 CONTINUE
RETURN
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SUBROUTINE CHIRP(REALX,NX)
* THIS SUBROUTINE COMPUTES THE SEQUENCE FOR THE CHIRP WAVELET.

REAL REALX(128)
NX=46
DO 100 I=1,NX
REALX(I)=COS(2.0*PI*0.002*(FLOAT((-1))**2)

100 CONTINUE
RETURN

SUBROUTINE FILT1(XpH,Y,N)
* THIS SUBROUTINE IMPLEMENTS THE OPTIMAL COMPENSATION METHOD.
* X = FOURIER TRANSFORM OF INPUT, Y = FOURIER TRANSFORM OF OUTPUT,

* H = FOURIER TRANSFORM OF INVERSE FILTER.
COMPLEX X(128),H(128),Y(128)
WRITE(*pWWHAT IS BETA?'
READ(*,*)BETA
DO 100 I=1,N
H(1)=Y(I)*CON3G(X(1))/((CABS(X(1)))**2+BETA)

100 CONTINUE
RETURN

SUBROUTINE FILT2(X,HpY,N,NPWR)
* THIS SUBROUTINE IMPLEMENTS THE LEAST SQUARES REGRESSION METHOD.

* X = FOURIER TRANSFORM OF INPUT, Y = FOURIER TRANSFORM OF OUTPUT,

* H = FOURIER TRANSFORM OF INVERSE FILTER.
COMPLEX X(128),H(128),Y(128)
C(1)=CMPLX(1.0,0.0)
C(2)=CMPLX(-2.0,0.0)
C(3)=CMPLX(1.0,0.0)
DO 100 I=40N
C(I)=CMPLX(0.0,0.0)

100 CONTINUE
CALL FFT(C.NPWR)
WRITE(*.*)'WHAT IS GAMMA?'
READ(*OP)SAMMA
DO 200 I=1,N
H( I )=Y( I ) *COMM( X ( I I)/ ( (CABS( X ( I ) ) )**2+GAMMA*( CABS ( C ( I ) ) )**2)

ROO CONTINUE
RETURN
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SUBROUTINE FOLD(N1pREALX,N2pREALH,N3,REALY)
* THIS SUBROUTINE COMPUTES THE LINEAR CONVOLUTION OF TWO SEQUENCES
* INPUTS REALX,REALH OUTPUT - REALY

DIMENSION REALX(128),REALH(128),REALY(256)
N34N1+NE--1
DO 100 I41.N3
REALY(I)40.0

100 CONTINUE
DO 200 I41,141
DO 200 341)N2
K4I+3-1
REALY(K)4REALY(K)+REALX(I)*REALH(J)

200 CONTINUE
RETURN

SUBROUTINE CIRCON(REALX.REALHFREALY,N)
* THIS SUBROUTINE COMPUTES THE CIRCULAR CONVOLUTION OF TWO SEQUENCES

* INPUTS - REALX,REALH OUTPUT REALY
DIMENSION REALX(N),REALH(N),REALY(N)
DO 100 Ii41,INT(N/2)
T4REALX(I)
REALX(I)4REALX(N.-I+1)
REALX(N-I +1) 4T

100 CONTINUE
DO 200 IND41,N
TsREALX(N)
DO 300 I4(.1,2,1
REALX(I)4REALX(I.-1)

300 CONTINUE
REALX(1)4T
SUM40.0
DO 400 I-1,N
SUM4SUM+REALX(I)*REALH(I)

400 CONTINUE
REALY(IND)4SUM

200 CONTINUE
RETURN
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SUBROUTINE FFT(Z,M)
**********************************************************
* THIS SUBROUTINE FINDS THE FFT OF A SEQUENCE OF LENGTH *

* N AND PLACES THE COMPLEX FFT IN THE SAME SPACE THAT
* CONTAINED THE ORIGINAL SEQUENCE. NOTE : N = 2**M
**********************************************************

COMPLEX Z(12B).U,W.T
N=2**M
NV2=N/2
NM1=N-1
J=I
DO 7 1=1.NM1
IF (I .GE. J) GO TO 5
T=2(J)
2(J)=Z(I)
2(1)=7
K=NV2

6 IF (K .GE. 3) GO TO 7
J=J-K
K=K/2
GO TO 6

7 J=J+K
PI=2.0*ASIN(1.0)
DO 20 L=1.M
LE=2**L
LE1=LE/2
U=(1.0.0.0)
W=CMPLX(COS(PI/FLOAT(LE1)),SIN(PI/FLOAT(LE1)))
DO 20 J=1,LE1
DO 10 I=J,N,LE
IP=I+LE1
1.02(IP)*U
Z(IP)=Z(I)-T

10 Z(I) =Z(I) +T
20 U=LI*W

RETURN

SUBROUTINE IFFT(Z.M)
***** ***** ************* ********************************
* THIS SUBROUTINE FINDS THE INVERSE FFT OF A SEQUENCE *
* OF LENGTH N.
******************* ***** ********** ****** * ****** ********

COMPLEX .7.(128),U.W.T
N=2**M
DO 4 I=1.N
2(I)=CONJG(Z(I))

4 CONTINUE
CALL FFT(Z.M)
DO 9 I=1.N
2(I)=(CONJG(4-1(I)))/FLOAT(N)

9 CONTINUE
RETURN


