Supplement to

EFFECTS OF SHEAR DEFORMATION IN THE CORE OF A FLAT RECTANGULAR SANDWICH PANEL

DEFLECTION UNDER UNIFORM LOAD OF SANDWICH PANEIS HAVING FACINGS OF UNEQUAL THICKNESS

Infermation Reviewed and Reaffirmed

March-T956-INFORMAIION REVIEWED AND REAFFIRMED 1962

No. 1583-C

1019 cost

pleace returs tos
Wood Engimaorina monearch Forest Producte Laboratery madisom, Wisconelin 53705

This Report is One of a Series
Issued in Cooperation with the
AIR FORCE-NAVY-CIVIL SUBCOMMITTEE
on
AIRCRAFT DESIGN CRITERIA
Under the Supervision of the
AIRCRAFT COMMITTEE
of the
MUNITIONS BOARD
||||||||||||||||||||||||||||||

EFFECIS OF SHEAR DEFORMATION IN THE CORE OF A
 FLLAT RECTANGULAR SANDWICH PANEL

Deflection Under Uniform Load of Sandwich Panels
Having Facings of Unequal Thickness 1

By
WILHELM S. ERICKSEN, Mathematician
Forest Products Laboratory, ? Forest Service
U. S. Department of Agriculture

Introduction

The present report is a discussion of the problem of determining the deflection of a sandwich panel under normal uniform load. It is assumed that the core and facing materials are orthotropic and that the thicknesses of the two facings are different. Two types of edge conditions are considered, namely, all edges simply supported and all edges clamped.

The analysis used to determine the effect of the transverse shear deformations in the core is similar to that which was applied in the treatment of the buckling problem in Forest Products Laboratory Report No. 1583-B (1). 3 This approach consists in taking the components of displacement in the core as those in which normal plane sections, parallel to each of the two edges of the panel, remain plane but rotate as the panel undergoes deflection. In the case of simple support this type of analysis leads to results which

[^0]Report No. 1583-C
Agriculture-Madison
are the same as those obtainable by use of the equations of Libove and Batdorf (2). In the case of clamped edges, explicit approximations are obtained.

The present problem was treated for the case of facings of equal thickness in Forest Products Laboratory Report No. 1583 (7). A subsequent publication in the same series, Report No. 1583-A (3), gave comparisons between predicted central deflections and those measured in tests. These comparisons, showing satisfactory agreement between prediction and test, indicated that the approximate method used in Report No. 1583 for analyzing the effect of shear deformation in the core upon the central deflection was adequate.

In the analysis of Report No. 1583 (1) it was assumed that the elastic properties of the orthotropic materials of the sandwich were not greatly different in the two directions parallel to the edges of the panel. This restriction, which does not aeriously limit the applicability of the results in the range of present practical constructions, does nevertheless exclude the consideration of extreme cases. In the present analysis this limitation is removed.

The problem under consideration was solved for the case of a simply supported panel with isotropic facings and core, the facings being of equal thickness, by Hopkins and Pearson (2) and Reissner (10).

Notation

a, b	dimensions of the panel.
c	thickness of the core.
$\mathrm{f}_{1}, \mathrm{f}_{2}$	thicknesses of the facings.
x, y, z	coordinate and orthotropic axes.
Ef_{f}	Young's modulus of isotropic facings.
$E_{X X}, E_{Y}$	Young's modulus of orthotropic facings.
p	uniform normal load per unit area.
$\lambda=1-\sigma_{x y} \sigma_{y x}$	
$\lambda_{P}=1-\sigma^{2}$	
μ^{\prime}	shear modulus of isotropic core.
$\mu_{x y}$	shear modulus of facings.
$\mu^{\prime}{ }_{z x}, \mu^{\prime} \mathrm{yz}$	shear moduli of orthotropic core.
σ	Poisson's ratio of isotropic facings.
$\sigma x y^{\prime}$ Јyx	Poisson's ratios of orthotropic facings.

Formulas for determining the deflection of a uniformly loaded sandwich panel are given in this section. These formulas are derived in Appendix A for the case of simple support and in Appendix B for the case of clamped edges.

1. All Hages Simply Supported

The doflection, under uniform load, of a sandwich panel with orthotropic facings and core depends upon five physical constants:

$$
\begin{gather*}
\alpha=\sqrt{\frac{T_{x}}{E_{y}}} \tag{1}\\
\beta=\frac{\lambda}{\sqrt{W_{x} E_{y}}}\left\{\frac{m_{x} \sigma_{y x}}{\lambda}+2 \mu_{x y}\right\} \tag{2}\\
\gamma=\frac{\lambda \mu_{x y}}{\sqrt{H_{x} E_{y}}} \tag{3}\\
S_{x}=\frac{c f_{1} f_{2} \pi^{2} \sqrt{E_{x} E_{y}}}{\left(f_{1}+f_{2}\right) a^{2} \lambda \mu_{z x}^{\prime}} \tag{4}\\
S_{y}=\frac{c f_{1} f_{2} \pi^{2} \sqrt{E_{x} E_{y}}}{\left(f_{1}+f_{2}\right) a^{2} \lambda \mu_{y z}^{2}} \tag{5}
\end{gather*}
$$

and the two quantities

$$
\begin{gather*}
I_{f}=\frac{f_{1}^{3}+f_{2}^{3}}{12} \tag{6}\\
I=\frac{f_{1} f_{2}}{f_{1}+f_{2}}\left(c+\frac{f_{1}+f_{2}}{2}\right)^{2} \tag{7}
\end{gather*}
$$

If the panel is simply supported, the deflection is given by the formala

$$
\begin{equation*}
w=\frac{16 a^{4} p \lambda}{\pi^{6} I \sqrt{W_{x} E_{y}}} \sum_{\substack{m=I \\ m, n \text { odd }}}^{\infty} \sum_{n=I}^{\infty} \frac{\sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b}}{m n\left(v_{m m}^{(f)}+v_{m n}\right)} \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
\nabla_{\operatorname{mn}}^{(f)}=\frac{I_{f}}{I}\left\{\alpha m^{4}+\frac{2 \beta m^{2} n^{2} a^{2}}{b^{2}}+\frac{n^{4} a^{4}}{\alpha b^{4}}\right\} \tag{9}
\end{equation*}
$$

and

$$
V_{m}=\frac{a m^{4}+\frac{2 \beta m^{2} n^{2} a^{2}}{b^{2}}+\frac{n^{4} a^{4}}{a b^{4}}+\left\{\frac{S_{x^{2}} a^{2}}{b^{2}}+S_{y} m^{2}\right\} r_{m n}}{1+S_{x}\left(\alpha m^{2}+\frac{\gamma_{n}^{2} a^{2}}{b^{2}}\right)+S_{y}\left(\frac{n^{2} a^{2}}{a b^{2}}+\gamma_{m}^{2}\right)+S_{x} S_{y} F_{m n}}
$$

with

$$
\begin{equation*}
s_{m}=\left(1-\beta^{2}\right) \frac{m^{2} n^{2} a^{2}}{b^{2}}+\gamma\left(\alpha m^{4}+\frac{2 \beta m^{2} n^{2} a^{2}}{b^{2}}+\frac{n^{4} a^{4}}{a b^{4}}\right) \tag{10}
\end{equation*}
$$

If the thickness of the core is large as compared with the thickness of each facing, the expression $\nabla_{\mathrm{mn}}^{(f)}$ in formula (8) can normally be neglected. If the facings are isotropic,

$$
\begin{gather*}
\nabla_{m n}^{(f)}=\frac{I_{f}}{I}\left(m^{2}+\frac{n^{2} a^{2}}{b^{2}}\right)^{2} \tag{11}\\
\nabla_{m n}=\frac{\left(m^{2}+\frac{n^{2} a^{2}}{b^{2}}\right)^{2}\left\{1+\gamma\left(S_{x} \frac{n^{2} a^{2}}{b^{2}}+S_{y} m^{2}\right)\right\}}{1+S_{x m^{2}}+S_{y} \frac{n^{2} a^{2}}{b^{2}}+\gamma\left\{S_{x} \frac{n^{2} a^{2}}{b^{2}}+S_{y} m^{2}+S_{x} S_{y}\left(m^{2}+\frac{n^{2} a^{2}}{b^{2}}\right)^{2}\right\}} \tag{12}
\end{gather*}
$$

If both the facings and the core are isotropic, $\nabla_{m}^{(f)}$ remains as defined by formula (11) and

$$
\begin{equation*}
\nabla_{m i 1}=\frac{\left(m^{2}+\frac{n^{2} a^{2}}{b^{2}}\right)^{2}}{1+s\left(m^{2}+\frac{n^{2} a^{2}}{b^{2}}\right)} \tag{13}
\end{equation*}
$$

with

$$
\begin{equation*}
S=\frac{c f_{1} f_{2} \pi^{2} E_{x}}{\left(f_{1}+f_{2}\right) \mathrm{a}^{2} \lambda_{\rho} \mu^{\prime}} \tag{14}
\end{equation*}
$$

The central deflection is given by the formula

$$
\begin{equation*}
w_{\max }=\frac{16 \mathrm{a}^{4} p \lambda}{\pi^{6} I \sqrt{E_{X} E_{y}}} \sum_{\substack{m=1 \\ m, n}}^{\infty} \sum_{\substack{n=1}}^{\infty} \frac{\frac{m+n-2}{2}}{\infty} \frac{(-1)}{m n\left(v_{m n}^{(f)}+v_{m n}\right)} \tag{15}
\end{equation*}
$$

where $\underset{\operatorname{mn}}{\mathrm{V}^{(\mathrm{f})}}$ and V_{mn} are taken from the preceding formulas. In the range

$$
\begin{equation*}
1 \leq \frac{b}{a}\left(\frac{E_{x}}{E_{y}}\right)^{\frac{1}{4}} \leq 1.4 \tag{16}
\end{equation*}
$$

the term $\underline{m}=\underline{n}=1$ is expected to give satisfactory results (7).
The central deflection of an infinitely long panel, obtained from formula 15 by neglecting $\mathrm{V}(\mathrm{P})$ and summing with respect to m and n , is mn

$$
\begin{equation*}
w_{\max }=\frac{5 a^{4} p \lambda}{384 I E_{x}}\left\{1+\frac{48 E_{x} c f_{1} f_{2}}{5 a^{2} \lambda \mu_{z x}^{\prime}\left(f_{1}+f_{2}\right)}\right\} \tag{17}
\end{equation*}
$$

In the event that both the facings and core materials are isotropic and the facings are considered as membranes, the central deflection of a panel of any aspect ratio may be obtained by using the formula

$$
\begin{equation*}
w_{\max }=\frac{p a^{4} \lambda_{f}}{I E_{f}} \alpha_{1}\left\{1+S a_{2}\right\} \tag{18}
\end{equation*}
$$

in conjunction with the curves given in figure 1. For panels of this type, the bending and twisting moments, the transverse shear stress resultants, and the reactions at the edges and corners are independent of \underline{S}, and the formulas for these quantities are identical with those for homogeneous isotropic plates. Such formulas are given in reference (11)

Report No. 1583-C -5-
together with a table of maximum values. With the use of the formulas for the moments and shear stress resultants, the fiber stress in the facings and the shear stress in the core can be estimated.

2. All Bdges Olamped

For panels with all edges clamped, formulas have been derived only for the deflection at the center of the panel. The formulas which follow give approximate results and those which apply to a rectangular panel are limited in applicability to the range (16).

In the event that both the facings and core are orthotropic, the central deflection is given in terms of the quantities 1 to 7 above by the formulas

$$
\begin{equation*}
W_{\max }=\frac{p a^{4} \lambda}{3 \pi^{4} I \sqrt{H_{x}^{W} y}\left(v^{(f)}+V\right)} \tag{19}
\end{equation*}
$$

with

$$
\begin{equation*}
V^{(f)}=\frac{I^{\prime}}{I}\left\{a+\frac{2 a^{2} \beta}{3 b^{2}}+\frac{a^{4}}{a b^{4}}\right\} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
V=\frac{a+\frac{2 a^{2} \beta}{3 b^{2}}+\frac{a^{4}}{a b^{4}}+4\left\{\frac{s_{x} a^{2}}{b^{2}}+s_{y}\right\}}{1+4 s_{x}\left(a+\frac{a^{2} \gamma}{3 b^{2}}\right)+4 s_{y}\left(\frac{a^{2}}{a b^{2}}+\frac{\gamma}{3}\right)+16 s_{x} S_{y}} \tag{21}
\end{equation*}
$$

with

$$
r=\frac{a^{2}}{b^{2}}\left(1-\frac{\beta^{2}}{9}\right)+\frac{\gamma}{3}\left(a+\frac{2 a^{2} \beta}{3 b^{2}}+\frac{a^{4}}{a b^{4}}\right)
$$

 of each facing.

If the facings are isotropic,

$$
\begin{equation*}
W_{\max }=\frac{p a^{4} \lambda_{f}}{3 \pi^{4} I E_{f}\left(V^{(f)}+V\right)} \tag{22}
\end{equation*}
$$

with

$$
\begin{equation*}
\nabla^{(f)}=\frac{I_{f}}{I}\left\{1+\frac{2 a^{2}}{3 b^{2}}+\frac{a^{4}}{b^{4}}\right\} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla=\frac{1+\frac{2 a^{2}}{3 b^{2}}+\frac{a^{4}}{b^{4}}+4\left\{\frac{8 a^{4}}{9 \cdot b^{4}}+\frac{\gamma a^{2}}{3 b^{2}}\left(1+\frac{2 a^{2}}{3 b^{2}}+\frac{a^{4}}{b^{4}}\right)\right\}\left\{s_{x}+\frac{s_{y} b^{2}}{a^{2}}\right\}}{1+4 s_{x}\left(1+\frac{\gamma a^{2}}{3 b^{2}}\right)+4 s_{y}\left(\frac{a^{2}}{b^{2}}+\frac{\gamma}{3}\right)+16 s_{x} s_{y}\left\{\frac{8 a^{4}}{9 b^{4}}+\frac{\gamma}{3}\left(1+\frac{2 a^{2}}{3 b^{2}}+\frac{a^{4}}{b^{4}}\right)\right\}} \tag{24}
\end{equation*}
$$

with

$$
y=\frac{1-\sigma}{2}
$$

If both the facings and core are isotropic, $\boldsymbol{W}_{\text {max }}$ is given by formula (22), ∇^{f} by formula (23), and

$$
\begin{equation*}
\nabla=\frac{1+\frac{2 a^{2}}{3 b^{2}}+\frac{a^{4}}{b^{4}}+4 s\left\{\frac{8 a^{4}}{9 b^{4}}+\frac{\gamma a^{2}}{3 b^{2}}\left(1+\frac{2 a^{2}}{3 b^{2}}+\frac{a^{4}}{b^{4}}\right)\right\}\left\{1+\frac{b^{2}}{a^{2}}\right\}}{1+4 s\left(1+\frac{\gamma}{3}\right)\left(1+\frac{a^{2}}{b^{2}}\right)+16 s^{2}\left\{\frac{8 a^{4}}{9 b^{4}}+\frac{\gamma}{3}\left(1+\frac{2 a^{2}}{3 b^{2}}+\frac{a^{4}}{b^{4}}\right)\right\}} \tag{25}
\end{equation*}
$$

with 5 defined by (16).
The maximum deflection of an infinitely long panel is given by the formula

$$
w_{\max }=\frac{p a^{4} \lambda}{4 \pi^{4} E_{x} I\left\{\begin{array}{r}
I \tag{26}\\
I+\frac{4 c f_{1} f_{2} \pi^{2} I_{x}}{\left(f_{1}+f_{2}\right) a^{2} \lambda \mu_{z x}}
\end{array}\right\}}
$$

Panel Under Uniform Load

A1. Axes of Reference, Notation for Dimensions

The axes of reference x and y are taken in the undeformed surface of separation of the core and the facing of thickness denoted by f_{1}, and in coincidence with two of the edges of the panel. The z-axis is then perpendicular to the facings and is directed as shown in figure 2. It is assumed that the orthotropic core and facing materials are so oriented that these axes are perpendicular to their planes of elastic symmetry. The material in the two facings is considered the same and sinilarly oriented.

The dimensions of the panel are designated by a and \underline{b}, with a measured along the x-axis as indicated in figure 3, while $\underline{G}, \tilde{f}_{2}$ and f_{2} denote the thickw nesses of the core and of the two facings, respectively. It is convenient to designate a facing as 1 or 2 according as its thickness if f_{1} or $f_{Q^{\prime}}$

A2. The Strain Energy in the Sandwich

The increase in the deflection of a uniformly loaded rectangular panel, associated with shear deformation in the core, is to be determined by the method used in Forest Products Laboratory Report No. 1583-B (1). 4 In the case of simple support, the deflection is taken as

$$
\begin{equation*}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \prod_{\min }^{\infty}(x, y) \tag{A1}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{m n}=o_{m n} \sin \frac{n \pi x}{a} \sin \frac{n \pi y}{b} \tag{A2}
\end{equation*}
$$

This expression is taken as the deflection throughout the core and the two facings.

The analysis of the strain energy in the sandwich which was used in Forest Products Iaboratory Report No. 1583-B (1) was based on the assumption that in the core, plane elements initially parallel to the $x_{0} z$ plane remained plane under deformation but rotated about their intersections with the

> The method of analysis is one which was used by Filliams, Leggett, and Hoplins (12), and other British writers (4), (2). It was first used in the present type of problem by Hopkins and Pearson (2).
surface $z=q$ by an amount specified by a paramoter k. Floments initially parallel to the \mathbb{Z}, $\frac{p}{}$ plane were treated similarly with two other parameters, \underline{x} and h, determining their fixed lines and amounts of rotation respectively. In the present problem, where the series (Al) is used to describe the dem flection, the displacement associated with each term is analyzed in this manner, using sets of parameters $k_{m n}, q_{m n}, h_{m n}$ and $r_{m n}$ for each term, and the components of displacement in the core are assumed to be

$$
u_{c}=-\sum_{m=1}^{\infty}\left(z=q_{m n}\right) l_{m n} \frac{\partial m_{m}}{\partial=1}
$$

In facing 1 the components of displacement are taken in the forms

$$
\begin{align*}
& u_{1}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left(k_{m n} q_{m n}-z\right) \frac{\partial w_{m n}}{\partial x} \\
& v_{1}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left(n_{m n} r_{m n}-z\right) \frac{\partial w_{m n}}{\partial y} \tag{A4}\\
& w_{1}=w(x, y)
\end{align*}
$$

and the forms

$$
\begin{equation*}
v_{2}=-\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left\{v_{m n}\left(c-q_{m n}\right)+z-c\right\} \frac{\partial w_{m n}}{\partial x} \tag{A5}
\end{equation*}
$$

$$
\begin{equation*}
\left.v_{2}=\sum_{m}^{\infty} \sum_{n=1}^{\infty} h_{m m}\left(c-x_{m n}\right)+z-c\right\} \frac{\partial}{\partial m} \tag{A5}
\end{equation*}
$$

$$
w_{2}=w(x, y)
$$

aresassumed for those in facing 2.
Iove's (6) notation will be used for the components of strain, with the superscripts $c, l_{\text {, a }}$ and 2 used to denote components in the core, in facing $I_{\text {, }}$ and in facing 2 respectively. The components of transverse shear strain in the core, as obtained for expressions (A3), are

It is assumed that the bending strains associated with the displacement components (A3) contribute a negligible amount to the total strain energy and therefore need not be considered.

The state of strain in the facings is considered as the superposition of two states of strain. The first of these consists of the membrane strains or strains in their middle surfaces. According to formules (A.4) and (A5), the components of this type are

$$
\begin{align*}
& e_{x x}^{(1)}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left(k_{m n} q_{m n}+\frac{f_{1}}{2}\right) \frac{\partial^{2} w_{m n}}{\partial x^{2}} \tag{A7}\\
& e_{y y}^{(1)}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left(n_{m n} r_{m n}+\frac{f_{1}}{2}\right) \frac{\partial^{2} w_{m n}}{\partial y^{2}}
\end{align*}
$$

Report No. 1583-C

$$
\begin{equation*}
\theta_{x y}^{(1)}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left\{\sum_{m n} q_{m n}+n_{m n} r_{m n}+f_{1}\right\} \frac{\partial^{2} w_{m n}}{\partial x \partial y} \tag{A7}
\end{equation*}
$$

and

$$
\begin{align*}
& \theta_{x x}^{(2)}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left\{\sum _ { m n } \left(c-q_{m n}+\frac{2}{2} \frac{\partial_{m}^{2} w_{m n}}{\partial x^{2}}\right.\right. \\
& \theta_{y y}^{(2)}=-\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left\{h_{m m}\left(c-r_{m n}\right) \cdot+\frac{m^{2}}{2}\right\}^{\infty} \frac{\partial^{2} w_{m n}}{\partial y^{2}} \tag{A8}
\end{align*}
$$

The secomd state of strain in the facings is that associated with the bending of the facings about their own middle surfaces. This state, in either facing has the components

where z^{2} is measured from the middle surface of the facing under considera tion.

The strain energy for any of the abovestates of strain is computed from the expression, (8) (9)

$$
\begin{align*}
U & =\frac{1}{2 \lambda} \iiint \int_{v}\left[\pi_{x} \theta_{x x}^{2}+E_{y} \theta_{y y}^{2}+2 ت_{x} \sigma_{y x} e_{x x} \theta_{y y}+\lambda \mu_{x y} e_{x y}^{2}\right. \tag{A10}\\
& \left.+\lambda \mu_{z x} e_{z x}^{2}+\lambda \mu_{y z} e_{y z}^{2}\right] d z d y d x
\end{align*}
$$

where E denotes a Young's modulus, μ a shear modulus, τ a Poisson's ratio, and $\underline{\lambda}=1-\sigma_{y x} \sigma_{z y}$. The subscripts associate these constants with appropriate orthotropic axes. Primed letters will be used to denote the elastic constants of the core and unprimed letters those of the facings. The indicated integration is to be carried out over the entire volume of the core or facing under consideration.

With the substitution of formulas (A2) into (A6), and (A6) in turn into (A10), the strain energy in the core is expressed as

Now formally

Report No. 1583-0
and this result remains unchanged for the integral of the product two cosinecosine series or two cosinemsine series. When this formula is applied to (All),

$$
\begin{equation*}
u_{c}=\frac{a b c \pi^{2}}{\delta} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[\left(1-k_{m n}\right)^{2} \frac{m^{2} \mu^{2} n x}{a^{2}}+\left(1-h_{m n}\right)^{2} \frac{n^{2}}{b^{2}} \mu^{3} y z\right] 0_{m n}^{2} \tag{A13}
\end{equation*}
$$

The energy associated with the membrane strains in the facings is determined from formula (AlO), using formulas (A7) and (A8) with wm given by formula (A2). After integrating with respect to z and applying formula (Al2) for the integrations with respect to x and y, this component of the strain energy is given by

$$
\begin{align*}
& U_{M}=\frac{2 \mathrm{~b} \pi^{4}}{8} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[\frac{m_{x}}{\lambda}\left\{f_{1}\left(k_{m n} q_{m n}+\frac{f_{1}}{2}\right)^{2}+f_{2}\left(k_{m n}\left[c-q_{m n}\right]+\frac{f_{2}}{2}\right)^{2}\right] \frac{m^{4}}{a^{4}}\right. \\
& +\frac{D_{y}}{\lambda}\left\{f_{1}\left(h_{\operatorname{mn}} r_{m n}+\frac{f_{1}}{2}\right)^{2}+f_{2}\left(n_{m n}\left[c-r_{m n}\right]+\frac{f_{2}}{2}\right)^{2}\right\} \frac{n^{4}}{a^{4}} \tag{A14}\\
& +\frac{2 F_{x} \sigma x_{x}}{\lambda}\left\{f_{1}\left(x_{m n} q_{m n}+\frac{f_{1}}{2}\right)\left(h_{m n} r_{m n}+\frac{f_{1}}{2}\right)\right. \\
& \left.+f_{2}\left(k_{m n}\left[c-q_{m n}\right]+\frac{f_{2}}{2}\right)\left(n_{m n}\left[c-r_{m n}\right]+\frac{f_{2}}{2}\right)\right\} \frac{m^{2} n^{2}}{a^{2} b^{2}} \\
& +\mu_{x y}\left\{f_{I}\left(k_{\operatorname{mn}} q_{m n}+h_{m_{m} m_{m n}}+f_{2}\right)^{2}\right. \\
& \left.\left.+f_{2}\left(k_{m n}\left[c-q_{m n}\right]+h_{m n}\left[c-r_{m n}\right]+f_{2}\right)^{2}\right\} \frac{m^{2} n^{2}}{a^{2} b^{2}}\right] 0_{m n}^{2}
\end{align*}
$$

In a aimilar manner the strain energy in bending of the two facings is found from formulas (A9) and (AlO) to be

$$
\begin{equation*}
U_{T}=\frac{a b \pi^{4}}{8}\left(\frac{f_{1}^{3}+f_{2}^{3}}{12}\right) \sum_{m=I}^{\infty} \sum_{n=I}^{\infty}\left\{\frac{\mathbb{m}_{m^{4}}^{4}}{\lambda a^{4}}+\frac{\mathbb{m}^{n^{4}}}{\lambda b^{4}}+2\left(\frac{x^{0} x y}{\lambda}+2 \mu_{x y}\right) \frac{m^{2} n^{2}}{a^{2} b^{2}}\right\} 0_{m n}^{2} \tag{A15}
\end{equation*}
$$

The total strain energy in the sandwich

$$
\begin{equation*}
U=U_{C}+U_{M}+U_{B} \tag{A16}
\end{equation*}
$$

is now written in the form

$$
\begin{equation*}
u=\frac{b \pi^{2}}{8 a} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} T_{m n} \sigma_{m n}^{2} \tag{Aㄱ}
\end{equation*}
$$

wither $T_{m n}$ expressed as a quadratic in $\left(k_{m n} q_{m n}\right),\left(h_{m n} r_{m n}\right), k_{m n}$ and $h_{m n}$ as
follows

$$
\begin{align*}
& T_{m n}=B_{m n}^{(1)}\left(k_{m n} q_{m n}\right)^{2}+2 B_{m m}^{(2)}\left(k_{m n} q_{m n}\right)\left(h_{m n} r_{m n}\right) \\
& +B_{m n}^{(3)}\left(h_{m m} r_{m}\right)^{2}+2 B_{m n}^{(4)}\left(k_{m n} q_{m n}\right) k_{m n} \\
& +2 B_{m n}^{(5)}\left\{\left(k_{\operatorname{mn}} q_{m n}\right) h_{m n}+\left(h_{\operatorname{mn}} r_{m n}\right) k_{m n}\right\} \tag{AlB}\\
& +2 B_{m n}^{(6)}\left(h_{m n} r_{m n}\right) h_{m n}+B_{m n}^{(7)} k_{m n}^{2}+2 B_{m n}^{(8)} k_{m n} h_{\operatorname{mn}} \\
& +B_{\operatorname{mn}}^{(9)} h_{\operatorname{mn}}^{2}+2 B_{\operatorname{mn}}^{(10)}\left(k_{m n} q_{m n}\right)+2 B_{\operatorname{mn}}^{(11)}\left(h_{m n} r_{m n}\right) \\
& +2 B_{m n}^{(12)} k_{m n}+2 B_{m n}^{(13)} h_{m n}+B_{m n}^{(14)}+B_{m n}^{(15)}
\end{align*}
$$

With $B_{\operatorname{mn}}^{(i)}, 1=1-15$ obtained from formulas (A13). (A14), and (A15) in the form

$$
\begin{gathered}
B_{m n}^{(1)}=\left(f_{1}+f_{2}\right) A_{\operatorname{mn}}^{(1)}, B_{\operatorname{mn}}^{(2)}=\left(f_{1}+f_{2}\right) A_{\operatorname{mn}}^{(2)}, B_{m n}^{(3)}=\left(f_{1}+f_{2}\right) A_{m n}^{(3)} \\
B_{m n}^{(4)}=-c f_{2} A_{\operatorname{mn}}^{(1)}, B_{m n}^{(5)}=-c f_{2} A_{\operatorname{mn}}^{(2)}, B_{m n}^{(6)}=-c f_{2} A_{m n}^{(3)} \\
B_{m n}^{(7)}=c A_{\operatorname{mn}}^{(4)}+c^{2} f_{2} A_{\operatorname{mn}}^{(1)}, B_{m n}^{(8)}=c^{2} f_{2} A_{\operatorname{mn}}^{(2)}, B_{m n}^{(9)}=c A_{m n}^{(5)}+c^{2} f_{2} A_{m n}^{(3)}
\end{gathered}
$$

$$
\begin{gathered}
B_{\operatorname{mn}}^{(10)}=\left(\frac{f_{1}^{2}-f_{2}^{2}}{2}\right)\left(A_{\operatorname{mn}}^{(1)}+A_{\operatorname{mn}}^{(2)}\right), B_{\operatorname{mn}}^{(11)}=\left(\frac{f_{1}^{2}-f_{2}^{2}}{2}\right)\left(A_{\operatorname{mn}}^{(2)}+A_{\operatorname{mn}}^{(3)}\right) \\
B_{\operatorname{mn}}^{(12)}=-c A_{\operatorname{mn}}^{(4)}+\frac{c f_{2}^{2}}{2}\left(A_{\operatorname{mn}}^{(1)}+A_{\operatorname{mn}}^{(2)}\right) \\
B_{\operatorname{mn}}^{(13)}=-c A_{\operatorname{mn}}^{(5)}+\frac{c f_{2}^{2}}{2}\left(A_{\operatorname{mn}}^{(2)}+A_{\operatorname{mn}}^{(3)}\right) \\
B_{\operatorname{mn}}^{(14)}=c\left(A_{\operatorname{mn}}^{(4)}+A_{\operatorname{mn}}^{(5)}\right)+\frac{f_{1}^{3}+f_{2}^{3}}{4}\left\{A_{\operatorname{mn}}^{(1)}+2 A_{\operatorname{mn}}^{(2)}+A_{\operatorname{mn}}^{(3)}\right\} \\
B_{\operatorname{mn}}^{(15)}=\left(\frac{f_{1}^{3}+f_{2}^{3}}{12}\right)\left\{A_{\operatorname{mn}}^{(1)}+2 A_{\operatorname{mn}}^{(2)}+A_{\operatorname{mn}}^{(3)}\right\}
\end{gathered}
$$

where

$$
\begin{gather*}
A_{m n}^{(1)}=\frac{n^{2}}{a^{2}}\left(\frac{m_{x}}{\lambda} m^{2}+\mu_{x y} \frac{n^{2} a^{2}}{b^{2}}\right) m^{2} \\
A_{m n}^{(2)}=\frac{\pi^{2}}{a^{2}}\left(\frac{E_{x} \sigma_{y x}}{\lambda}+\mu_{x y}\right) \frac{m^{2} n^{2} a^{2}}{b^{2}} \\
A_{\operatorname{mn}}^{(3)}=\frac{\pi^{2}}{a^{2}}\left\{\frac{m_{y}}{\lambda} \frac{n^{4} a^{4}}{b^{4}}+\mu_{x y} \frac{m^{2} n^{2} a^{2}}{b^{2}}\right\} \tag{AZO}\\
A_{m m}^{(4)}=m^{2} \mu_{z x}^{1} \\
A_{\operatorname{mn}}^{(5)}=\frac{n^{2} a^{2}}{b^{2}} \mu_{y z}^{y}
\end{gather*}
$$

$\mathrm{S}_{\text {The }}$ terms $B_{m}^{(15)}$ are those obtained from (Al5). These terms are written separately because they of ten have a negligible effect upon the defleotion and may therefore be dropped.

The nork done by the applied uniform load of p pounds per unit area is

$$
\begin{equation*}
U_{L}=p \int_{-b}^{a} \int_{-0}^{b} w d y d x \tag{A2I}
\end{equation*}
$$

Upon substituting the series (Al) for W and integrating,

$$
\begin{equation*}
\pi_{L}=\frac{4 a b p}{\pi^{2}} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{c_{m n}}{m n} \tag{A22}
\end{equation*}
$$

The total potential energy of the sandwich, W, is

$$
\mathbb{W}=U-U_{L}
$$

With the substitution of formulas (A17) and (A22), this takes the form

$$
\begin{equation*}
\pi=\frac{b \pi^{2}}{8 a} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} m_{m n} c_{m n}^{2}-\frac{4 a b p}{\pi^{2}} \sum_{\substack{m=1 \\ m, n \\ m=1}}^{\infty} \sum_{n=1}^{\infty} \frac{a_{m n}}{m n} \tag{A23}
\end{equation*}
$$

The parameters $k_{m n}, q_{m n}, h_{m n}, r_{m n}$ and $\theta_{m n}$ are now determined by the condition that they minimize the potential energy An equivalent minimization is obtained by minimizing with respect to $\left(k_{m n} q_{m n}\right),\left(h_{m n} r_{m n}\right), k_{m n}, h_{m n}$, and and $C_{m n}$. With the use of expression ($\overline{418}$, the conditions for the vanishing of the partial derivatives of With respect to these parameters are respectively,

$$
\begin{aligned}
& B_{\operatorname{mn}}^{(1)}\left(k_{\operatorname{mn}} q_{\operatorname{mn}}\right)+B_{\operatorname{mn}}^{(2)}\left(h_{\operatorname{mn}}^{\left.r_{\operatorname{mn}}\right)}+B_{\operatorname{mn}}^{(4)} k_{\operatorname{mn}}+B_{\operatorname{mn}}^{(5)} h_{\operatorname{mn}}+B_{\operatorname{mn}}^{(10)}=0\right. \\
& B_{\operatorname{mn}}^{(2)}\left(k_{\operatorname{mn}} q_{\operatorname{mn}}\right)+B_{\operatorname{mn}}^{(3)}\left(h_{\operatorname{mn}}^{r_{\operatorname{mn}}}\right)+B_{\operatorname{mn}}^{(5)} k_{\operatorname{mn}}+B_{\operatorname{mn}}^{(6)} h_{\operatorname{mn}}+B_{\operatorname{mn}}^{(11)}=0 \\
& B_{\operatorname{mn}}^{(4)}\left(k_{\operatorname{mn}} a_{\operatorname{mn}}\right)+B_{\operatorname{mn}}^{(5)}\left(h_{\operatorname{mn}}{ }^{2}\right)+B_{\operatorname{mn}}^{(7)} k_{\operatorname{mn}}+B_{\operatorname{mn}}^{(8)} h_{\operatorname{mn}}+B_{\operatorname{mn}}^{(12)}=0 \\
& B_{\operatorname{mn}}^{(5)}\left(k_{\operatorname{mn}} q_{\operatorname{mn}}\right)+B_{\operatorname{mn}}^{(6)}\left(h_{\operatorname{mn}} r_{\operatorname{mn}}\right)+B_{\operatorname{mn}}^{(8)} k_{\operatorname{mn}}+B_{\operatorname{mn}}^{(9)} h_{\operatorname{mn}}+B_{\operatorname{mn}}^{(13)}=0
\end{aligned}
$$

and

$$
\begin{align*}
T_{\operatorname{mn}} O_{\operatorname{mn}} & =\frac{16 a^{2} p}{\pi_{m n}} \text { if } m \text { and } n \text { are odd } \tag{AC}\\
& =0 \text { if } m \text { or } n \text { is even }
\end{align*}
$$

The first four of these equations express the condition that $T_{m n}$ be a minimum with respect to the four variables in terms of which it is written. Design nate this minimum by $\mathrm{TI}^{1}{ }_{\mathrm{In}}$ * Then, solving the first four equations for $\left(k_{m n} q_{m m}\right),\left(h_{m n} r_{m n}\right), \frac{n n}{k_{m n}}$, and $h_{m n}$ and substituting into formula (A18), it is found that

Then the expressions (A19) are substituted for the elements of the deter minants in this formula it is found that

$$
\begin{gather*}
T_{\operatorname{mn}}^{\prime}=I_{f}\left\{A_{\operatorname{mn}}^{(1)}+2 A_{\operatorname{mn}}^{(2)}+A_{\operatorname{mn}}^{(3)}\right\} \\
+\frac{I\left[A_{\operatorname{mn}}^{(1)}+2 A_{\operatorname{mn}}^{(2)}+A_{\operatorname{mn}}^{(3)}+\left\{A_{\operatorname{mn}}^{(1)} A_{\operatorname{mn}}^{(3)}-\left(A_{\operatorname{mn}}^{(2)}\right)^{2}\right\}\left\{\frac{\phi}{A_{m n}^{(4)}}+\frac{\phi}{A_{\operatorname{mn}}^{(5)}}\right\}\right]}{\left.1+\frac{\phi A_{\operatorname{mn}}^{(1)}}{A_{\operatorname{mn}}^{(4)}}+\frac{\phi A_{\operatorname{mn}}^{(3)}}{A_{\operatorname{mn}}^{(5)}}+\frac{\phi^{2}\left\{A_{\operatorname{mn}}^{(1)} A_{\operatorname{mn}}^{(3)}\right.}{A_{\operatorname{mn}}^{(4)} A_{\operatorname{mn}}^{(5)}}\left(A_{\operatorname{mn}}^{(2)}\right)^{2}\right\}} \tag{ALb}
\end{gather*}
$$

with

$$
\begin{gather*}
I_{f}=\frac{f_{1}^{3}+f_{2}^{3}}{12} \tag{A27}\\
I=\frac{f_{1} f_{2}}{f_{1}+f_{2}}\left(c+\frac{f_{1}+f_{2}}{2}\right)^{2} \tag{A28}\\
\phi=\frac{c f_{1} f_{2}}{f_{1}+f_{2}} \tag{A29}
\end{gather*}
$$

The last of conditions (A24) may now be written

$$
\begin{align*}
c_{m n} & =\frac{16 a^{2} p}{\pi^{4} m n r^{\prime}} \text { if } m \text { and } n \text { are odd } \tag{A30}\\
& =0 \text { if } m \text { or } n \text { is even }
\end{align*}
$$

and the deflection of the panel is determined by the expression

A formula for the deflection, w, which is somewhat simpler is obtained by introducing the parameters

$$
\left.\begin{array}{c}
\alpha=\sqrt{\frac{E_{x}}{E_{y}}} \\
\beta=\frac{\lambda}{\sqrt{E_{x}^{E} y}}\left\{\frac{E_{x}{ }^{\prime} y x}{\lambda}+2 \mu_{x y}\right.
\end{array}\right\}, \begin{aligned}
\gamma= & \frac{\lambda \mu_{x y}}{\sqrt{E_{x}{ }_{x}}} \\
S_{x}= & \frac{\phi \pi^{2} \sqrt{E_{x}^{I I} y}}{a^{2} \lambda \mu_{z x}^{\prime}}
\end{aligned}
$$

$$
\begin{equation*}
S_{y}=\frac{\phi \pi^{2} \sqrt{E_{z} E_{y}}}{a^{2} \lambda \mu_{y z}^{\prime}} \tag{A32}
\end{equation*}
$$

When the facing material is isotropic

$$
\begin{equation*}
a=\beta=1 \text { and } \gamma=\frac{1-\sigma}{2} \tag{A33}
\end{equation*}
$$

If both the facing and core materials are isotropic, then in addition to the reductions, (A33), S_{x} and S_{y} both reduce to

$$
\begin{equation*}
S=\frac{\phi \pi^{2} E_{f}}{a^{2} \lambda_{f} \mu^{r}} \tag{A34}
\end{equation*}
$$

With the use of formulas (A32) and (A20), T'mn, formula (A26), may in the orthotropic case be written

$$
T_{m n}^{\prime}=\frac{\pi^{2} I \sqrt{E_{x} E_{y}}}{a^{2} \lambda}\left\{\begin{array}{c}
(f) \tag{A35}\\
m n
\end{array} V_{m n}\right\}
$$

with

$$
\begin{equation*}
V_{m n}^{(f)}=\frac{I_{f}}{I}\left\{a m^{4}+\frac{2 \beta m^{2} n^{2} a^{2}}{b^{2}}+\frac{n^{4} a^{4}}{a b^{4}}\right\} \tag{A36}
\end{equation*}
$$

and

$$
V_{m n}=\frac{a m^{4}+\frac{2 \beta m^{2} n^{2} a^{2}}{b^{2}}+\frac{n^{4} a^{4}}{a b^{4}}+\left\{\frac{S_{x} n^{2} a^{2}}{b^{2}}+S_{y^{m}}{ }^{2}\right\} F_{m n}}{1+S_{x}\left(a m^{2}+\frac{\gamma n^{2} a^{2}}{b^{2}}\right)+S_{y}\left(\frac{n^{2} a^{2}}{a b^{2}}+\gamma m^{2}\right)+S_{x} S_{y} F_{m n}}
$$

with

$$
\begin{equation*}
F_{m n}=\left(1-\beta^{2}\right) \frac{m^{2} n^{2} a^{2}}{b^{2}}+\gamma\left(a m^{4}+\frac{2 \beta m^{2} n^{2} a^{2}}{b^{2}}+\frac{n^{4} a^{4}}{a b^{4}}\right) \tag{A37}
\end{equation*}
$$

With the substitution of (A35) into (A31),

$$
\begin{equation*}
w=\frac{16 a^{4} p \lambda}{\pi 6 I \sqrt{\bar{v}_{x} y}} \sum_{\substack{m=1 \\ m, n}}^{\infty} \sum_{n=1}^{\infty} \frac{\sin \frac{m i x}{a} \sin \frac{n \pi y}{b}}{m n\left(v_{m n}^{(f)}+v_{m n}\right)} \tag{A38}
\end{equation*}
$$

The expression $\nabla_{m n}^{(f)}$ brings in the effect of the bending of the facings about their orm middle surfaces. Then the thickness of the core is large as compared with the thickness of each facing, this expression can be neglected. with no practical effect upon the results.
With the omission of the expression $V_{m n}(f)$, formula (A.38) is identical with a result obtainable in a different manner by the use of the equations of Libove and Batdorf (5) 6 who neglect the effect of the bending of the facings. This fact indicates that the steps taken in the preceding formal analysis are justified.

The central deflection is determined by the formala

$$
\begin{equation*}
\nabla_{\max }=\frac{16 a^{4} p \lambda}{\pi^{6} I \sqrt{\mathrm{E}_{x}^{\mathrm{B}} \mathrm{y}}} \sum_{\substack{m=1 \\ m, n}}^{\infty} \sum_{n=1}^{\infty} \frac{(-1)^{\frac{n+n-2}{n}\left(v_{\operatorname{mn}}^{(f)}+\nabla_{\operatorname{mn}}\right)}}{m} \tag{A39}
\end{equation*}
$$

For panels which are square or nearly so, the term $\underline{m}=n=1$ of this series often gives a good approximation to the complete sum. If the ratio $\frac{a}{b}$ is not near 1, however, a number of terms must be used to obtain satisfac tory results, In the extreme case that the side b is infinitely long, the formula yields

$$
\nabla_{\max }=\frac{4 a^{4} p \lambda}{\pi^{5} I I_{x}} \sum_{m=I^{m}}^{\infty} \frac{(-1)^{\frac{m-1}{2}}}{\left\{I_{f} m^{4}+\frac{m^{4}}{1+s_{x} a m^{2}}\right\}}
$$

[^1]If the expression $\frac{I_{f}}{I} \underline{m}^{4}$ in this formula is neglected, the summation with respect to 프 can be carried out to obtain

$$
\begin{equation*}
w_{\max }=\frac{5 a^{4} p \lambda}{384 I E_{x}}\left\{1+\frac{48 E_{x} \phi}{5 a^{2} \lambda \mu_{z x}}\right\}, b \text { infinite } \tag{A40}
\end{equation*}
$$

If both the facings and the core are isotropic, it is found with the use of expressions (A33) and (A34) that formulas (A36) and (A37) reduce to

$$
\begin{equation*}
\nabla_{m}^{(f)}=\frac{I_{f}}{I}\left(m^{2}+\frac{n^{2} a^{2}}{b^{2}}\right)^{2} \tag{A41}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{m}=\frac{\left(m^{2}+\frac{n^{2} a^{2}}{b^{2}}\right)^{2}}{1+s\left(m^{2}+\frac{n^{2} a^{2}}{b^{2}}\right)} \tag{A.42}
\end{equation*}
$$

respectively. The formula

$$
\begin{equation*}
w=\frac{16 a^{4} p \lambda_{f}}{\pi^{6} I \pi_{f}} \sum_{\substack{m=1 \\ m, n \text { oda }}}^{\infty} \sum_{m=1}^{\infty} \frac{\left\{1+s\left(m^{2}+\frac{n^{2} a^{2}}{b^{2}}\right)\right\}}{\left(m^{2}+\frac{n^{2} a^{2}}{b^{2}}\right)^{2}} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \tag{A43}
\end{equation*}
$$

obtainea by substituting (A42) into (A38) and neglecting $\nabla_{m n}^{(f)}$ in the latter is similar to that which has been derived by Meissner ((10 page 31) for the case of equal face thickness. Formula (A43) reduced to the case of equal face thiciness is identical with that obtained by Reissner provided S is replaced by $\frac{c+f}{c}$. This slight discrepancy, which affects only the additional deflection due to shear deformation in the core, arises from the fact that Reissner assumes that the stresses transmitted from the core to the facings act upon the middle surfaces of the respective facings.

A formula that is generally more suitable for use in computations can be derived from formula (A43) by making use of the following expansions, all of which are valid in the internel $0<y<b$:

$$
\begin{align*}
1 & =\frac{4}{\pi} \sum_{n=1,3,5}^{\infty} \cdots \tag{A44}\\
\cosh \frac{\min \frac{n \pi y}{b}}{n}\left(y-\frac{b}{2}\right) & =\frac{4}{\pi} \frac{a^{2}}{b^{2}} \cosh \alpha_{m} \\
n=1,3,5 & \frac{n \sin \frac{n \pi y}{b}}{\left(n^{2}+\frac{n^{2} a^{2}}{b^{2}}\right)} \tag{A+5}
\end{align*}
$$

and

$$
\begin{align*}
\frac{m \pi}{a}\left(y-\frac{b}{2}\right) \sinh \frac{m \pi}{a}\left(y-\frac{b}{2}\right)= & \frac{4 a^{2}}{\pi b^{2}} \alpha_{m} \sinh \alpha_{m} \sum_{n}=1,3,5-\frac{n \sin \frac{n \pi y}{b}}{\left(m^{2}+\frac{n^{2} a^{2}}{b^{2}}\right)} \\
& -\frac{8 a^{2}}{\pi b^{2}} m^{2} \cosh \alpha_{m} \tag{A.46}\\
n & =\sum_{1,3,5}^{\infty} \frac{n \sin \frac{n \pi y}{b}}{\left(m^{2}+\frac{n^{2} a^{2}}{b^{2}}\right)^{2}}
\end{align*}
$$

where

$$
\begin{equation*}
\alpha_{m}=\frac{m \pi b}{2 a} \tag{A47}
\end{equation*}
$$

From expansions (A44) and (A45) it is found that

$$
\begin{equation*}
\frac{\pi}{4 m^{3}}\left[1-\frac{\cosh \frac{m \pi}{a}\left(y-\frac{b}{2}\right)}{\cosh \alpha_{m}}\right]=\sum_{n=1,3}^{\infty} \frac{\sin \frac{n \pi y}{b}}{m n\left(m^{2}+\frac{n^{2} a^{2}}{b^{2}}\right)} \tag{Al}
\end{equation*}
$$

and from this expression together with (A45) and (A46)
$\frac{\pi}{4-m^{5}}\left[1-\frac{\cosh \frac{m \pi}{a}\left(y-\frac{b}{2}\right)}{\cosh \alpha_{m}}-\left\{\frac{\alpha_{m} \tanh \alpha_{m} \cosh \frac{m \pi}{a}\left(y-\frac{b}{2}\right)-\frac{m \pi}{a}\left(y-\frac{b}{2}\right) \sinh \frac{m \pi}{a}\left(y-\frac{b}{2}\right)}{2 \cosh a_{m}}\right\}\right]$

With the use of the last two expansions the summation with respect to n in (A43) is accomplished and

$$
\begin{align*}
& w=\frac{4 a^{4} p \lambda_{f}}{\pi^{5} I E_{f}} \sum_{m=3,5}^{\infty} \frac{1}{m^{5}}\left[1-\left\{\frac{2+\alpha_{m} \tanh a_{m}}{2 \cosh \alpha_{m}}\right\} \cosh \frac{m \pi}{a}\left(y-\frac{b}{2}\right)\right. \\
& \left.+\frac{\frac{m \pi}{a}\left(y-\frac{b}{2}\right) \sinh \frac{m \pi}{a}\left(y-\frac{b}{2}\right)}{2 \cosh a_{m}}\right] \sin \frac{m \pi x}{a} \\
& +\frac{4 a^{4} p_{f}^{\lambda_{f}} S}{\pi^{5} I \mathbb{s}_{f}} \sum_{m=1,3,5}^{\infty} \frac{1}{m^{3}}\left[1-\frac{\cosh \frac{m \pi}{a}\left(y-\frac{b}{2}\right)}{\cosh \alpha_{m}}\right] \sin \frac{m \pi x}{a} \tag{A50}
\end{align*}
$$

Here the first expression is recognized as that obtained by the method of
M. Levy for the deflection of homogeneous isotropic plates ((12), page 128) I being interpreted as the moment of inertia of a section. The second expression gives the additional deflection due to transverse shear deforms lion in the core.

By carrying out the summation of the first series in each expression of formula (A50), the central deflection, $x=\frac{a}{2}, y=\frac{b}{2}$, is obtained in the form

$$
\begin{equation*}
w_{\max }=\frac{p a^{4} \lambda_{f} \alpha_{I}}{I E_{f}}\left\{1+s a_{2}\right\} \tag{ALI}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{1}=\frac{5}{384}-\frac{2}{\pi 5} \sum_{m=1,3,5}^{\infty} \frac{(\infty 1)}{m} \sum_{1}^{\infty}\left\{\frac{2+\alpha_{m} \tanh \alpha_{m}}{\cosh \alpha_{m}}\right\} \tag{A52}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2}=\frac{1}{a_{1}}\left\{\frac{1}{8 \pi^{2}}-\frac{4}{\pi^{5}} \sum_{m=1,3,5}^{\infty} \frac{(-1)}{\frac{m-1}{3} \cosh \alpha_{m}}\right\} \tag{A53}
\end{equation*}
$$

The parameters α_{1} and α_{2} are plotted in figure 1 as functions of $\frac{a}{b}$. The curve representing α_{1} was constructed from values taken from reference (11), table 5, and converted for use in formula (A51). These values were used in computing a_{2} by means of (A53).

In his analysis of the deflection of a uniformly loaded, simply aupported, isotropic sandwich panel Reissner ((10), page 32) has demonstrated that the
 shear stress resultants, Quy and 0 are independent of the transverse shear deformations in the core (they are independent of S provided the boundary conditions are of the type

$$
w=u_{x}=\frac{\partial w}{\partial y}-\frac{Q_{y}}{(c+f) \mu^{1}}=0 \text { at } x=0, a
$$

It then follows that the reactions at the odges and corners, $\nabla x, \nabla y$, and R are also independent of S and are therefore the same as those obtained in the theory for homogeneous isotropic plates. Timoshenko (11) has given formulas
 uniform Ioad and has tabulated the maximum values of the first six, together With R, as functions of $\frac{b}{a}$ in table 5 of the same reference.

Deflections Under Uniform Load, Fidges Olamped

The deflection in the caso of clamped odges $w 1 l l$ be determined approximately by assuming the expression

$$
\begin{equation*}
w=0 \sin ^{2} \frac{\pi x}{a} \sin ^{2} \frac{\pi y}{b} \tag{BI}
\end{equation*}
$$

for the defloction surface. Results obtained on the basis of this assumption are considered applicable only in determining the central deflection of sandm wich pencls that are square or nearly so.
bor the case under consideration, the formulas for the components of dism placement and strain given in Appendix A apply, using the single term (B1) in place of the series (Al) and a single set of values k, q, h, and r in place of a series of sets $k_{m n}, q_{m n}, h_{m n}$, and $r_{m n}$. With the substitution of expressions for the components of transverse shear strain in the core obtained from (A6) in this manner into (A10), it is found that the strain energy in the core is given by

$$
\begin{equation*}
U_{c}=\frac{3 b c \pi^{2}}{32 a} o^{2}\left[\mu{ }_{z x}(1-k)^{2}+\frac{\mu^{\prime} y_{z}^{a^{2}}}{b^{2}}(1-h)^{2}\right] \tag{B2}
\end{equation*}
$$

Similarly, the strain energy associated with the membrane strains in the facing is obtained in the form

$$
\begin{align*}
U_{l} & =\frac{3 c^{2} n^{4} b}{8 a^{3} \lambda}\left[F_{x}\left\{f_{1}\left(k_{1}+\frac{f_{1}}{2}\right)^{2}+f_{2}\left[k(c-q)+\frac{f_{2}}{2}\right]^{2}\right\}\right. \\
& +m_{y} \frac{a^{4}}{b^{4}}\left\{f_{1}\left(h r+\frac{f_{1}}{2}\right)^{2}+f_{2}\left[h(c-r)+\frac{f_{2}}{2}\right]^{2}\right\} \\
& +\frac{2 \Xi_{x} v_{y} a^{2}}{3 b^{2}}\left\{f_{1}\left(k q+\frac{f_{1}}{2}\right)\left(h r+\frac{f_{1}}{2}\right)+f_{2}\left[k(c-q)+\frac{f_{2}}{2}\right]\left[h(c-r)+\frac{f_{2}}{2}\right]\right\} \\
& \left.+\frac{\lambda \mu_{x y^{2}}}{3 b^{2}}\left\{f_{1}\left(k q+h r+f_{1}\right)^{2}+f_{2}\left[k(c-q)+h(c-r)+f_{2}\right]^{2}\right)\right] \tag{B3}
\end{align*}
$$

from the states of strain (A7) and (AB), using (B1) in place of (Al). In thr same way the strain energy in bending the facings about thoir own midale planes,

Report No. 1583-0

$$
\begin{equation*}
U_{f}=\frac{3 c^{2} \pi^{4} b}{8 a^{3} \lambda}\left(\frac{f_{1}^{3}+f_{2}^{3}}{12}\right)\left[E_{x}+\frac{{ }^{E} y^{4}}{b^{4}}+\frac{2 a^{2}}{b^{2}}\left(\frac{x^{2} y x}{\lambda}+2 \mu_{x y}\right)\right] \tag{B4}
\end{equation*}
$$

Is derived from (A9).
The total strain energy, \mathbb{U}, in the sandwich is taken as

$$
U=U_{c}+U_{M}+U_{f}
$$

With the substitution of expressions (B2), (B3), and (B4) into this formula, U cen be expreasea tal the form

$$
\begin{equation*}
U=\frac{b \pi^{2}}{8 z} \Psi c^{2} \tag{B5}
\end{equation*}
$$

corresponding to formia (A17), with 9 cotained frou (AlZ) and ($\kappa 19$) by cuapressing the subseripts min thoughcut. Tie quantities $\&$ (i) are in the present case deifined as fciluws:

$$
\begin{gather*}
A^{(1)}=\frac{3 \pi^{2}}{a^{2}}\left\{\frac{x_{z}}{\lambda}+\frac{\mu y a^{2}}{3 b^{2}}\right\} \\
A^{(2)}=\frac{3 \pi^{2}}{a^{2}}\left\{\frac{E_{x} y x^{2}}{3 b^{2} \lambda}+\frac{\mu x y}{3 b^{2}}\right\} \\
A^{(3)}=\frac{3 \pi^{2}}{a^{2}}\left\{\frac{E_{y^{2}} a^{4}}{\lambda b^{4}}+\frac{\mu x y a^{2}}{3 b^{2}}\right\} \tag{B6}\\
A^{(4)}=\frac{3 \mu^{4} z x}{4} \\
A^{(5)}=\frac{3 \mu^{y} y z a^{2}}{4 b^{2}}
\end{gather*}
$$

The work done by the applied uniform load of p pounds per unit area is obtained by substituting formula (E1) into (A21). After integration

$$
\begin{equation*}
U_{L}=\frac{p \frac{c}{} a b}{4} \tag{B7}
\end{equation*}
$$

The total potential energy of the sandwich,

$$
W=U-U_{I}
$$

$$
\begin{equation*}
\pi=\frac{b \pi^{2}}{8 a} T c^{2}-\frac{p c a b}{4} \tag{B8}
\end{equation*}
$$

by the substitution of equations (B5) and (B7). The parameters k, g, \boldsymbol{k}, \underline{r}, and $\underline{\mathcal{O}}$ are determined by the conditions

$$
\begin{equation*}
\frac{\partial W}{\partial k q}=0, \quad \frac{\partial W}{\partial h r}=0, \quad \frac{\partial W}{\partial k}=0, \quad \frac{\partial W}{\partial h}=0, \quad \frac{\partial W}{\partial \theta}=0 \tag{B9}
\end{equation*}
$$

Since II in the present case is given by formula (A18) with the subscripts mn suppressed, the first four of the above conditions yield the first four equations of (A24) with the subscripts mn suppressed. If mi is used to denote the expression for I after imposing these conditions, it follows that T^{1} is obtained from formula (A26) with the suppression of the subscripts mm, namely:

$$
\begin{align*}
\text { T\& } & =I_{f}\left\{A^{(1)}+2 A^{(2)}+A^{(3)}\right\} \\
& +\frac{I\left[A^{(1)}+2 A^{(2)}+A^{(3)}+\left\{A^{(1)} A^{(3)}-\left(A^{(2)}\right)\right\}\left[\frac{\phi}{A^{(4)}} \frac{\phi}{A^{5}}\right\}\right]}{1+\frac{\phi A^{(1)}}{A^{(4)}}+\frac{\phi A^{(3)}}{A^{(5)}}+\frac{\phi^{2}\left\{A^{(1)} A^{(3)}\left(A^{(2)}\right)^{2}\right\}}{A^{(4)} A^{(5)}}} \tag{B10}
\end{align*}
$$

with $A^{(i)}, i=1-5$ given by (B6). The condition $\frac{\partial F}{\partial O}=0$, applied to (B8) yields

$$
0=\frac{p a^{2}}{T \pi^{2}}
$$

or, after imposing all of conditions (Bg)

$$
\begin{equation*}
0=w_{\max }=\frac{p a^{2}}{T^{1} \pi^{2}} \tag{B11}
\end{equation*}
$$

That this formula gives the central deflection of the pariel can be seen by reference to formula (BI).

With the introduction of the parameters (A32) into formula (B10), the central deflection can be given in the form

$$
\begin{equation*}
W_{\max }=\frac{p a^{4} \lambda}{3 \pi^{4} I \sqrt{D_{x} x_{y}}\left(v^{(f)}+v\right)} \tag{B12}
\end{equation*}
$$

with

$$
\begin{equation*}
V^{(f)}=\frac{I_{f}}{I}\left\{\alpha+\frac{2 a^{2} \beta}{3 b^{2}}+\frac{a^{4}}{\alpha b^{4}}\right\} \tag{B13}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla=\frac{a+\frac{2 a^{2} \beta}{3 b^{2}}+\frac{a^{4}}{a b^{4}}+4\left\{\frac{S_{x^{2}}}{b^{2}}+S_{y}\right\} F}{1+4 S_{x}\left(a+\frac{a^{2} y}{3 b^{2}}\right)+4 S_{y}\left(\frac{a^{2}}{a b^{2}}+\frac{Y}{3}\right)+16 S_{x} S_{y} B} \tag{B14}
\end{equation*}
$$

with

$$
F=\frac{a^{2}}{b^{2}}\left(1-\frac{\beta^{2}}{9}\right)+\frac{\gamma}{3}\left(\alpha+\frac{2 a^{2} \beta}{b^{2}}+\frac{a^{4}}{a b^{4}}\right)
$$

The term $V^{(f)}$ is negligible if the thickess of the core is large as compared with the thickness of either facing.
In the event that the ratio $\frac{b}{a}$ is large, the function

$$
\begin{equation*}
w=c \sin ^{2} \frac{\pi x}{a} \tag{B15}
\end{equation*}
$$

leads to better results than those obtained on the basis of formula (BI). This representation of the displacement is one which has been used with grood results in the treatment of an infinite plate in ordinary plate theory. With the use of this function in place of (Bl) the expressions for the energies per unit length of sandwich are

$$
\begin{gather*}
U_{c}=\frac{c \pi^{2} \mu^{1} z x}{4 a}(1-k)^{2} d^{2} \tag{B16}\\
U_{M}=\frac{\pi^{4} E_{x}}{a^{3} \lambda}\left[f_{1}\left(k q+\frac{f_{1}}{2}\right)^{2}+f_{2}\left\{k(c-q)+\frac{f_{2}}{2}\right\}^{2}\right] c^{2} \tag{B17}
\end{gather*}
$$

and

$$
\begin{equation*}
v_{f}=\frac{\pi^{4} w_{x}}{a^{3} \lambda}\left[\frac{f_{1}^{3}+f_{2}^{3}}{12}\right] \sigma^{2} \tag{B18}
\end{equation*}
$$

which replace (B2), (B3), and (B4) respectively, and

$$
\begin{equation*}
U_{L}=\frac{p_{1} C a}{2} \tag{B19}
\end{equation*}
$$

is obtained in place of (B7). When (B16), (B17), and (B18) are compared with (B2), (B3), and (B4), respectively, it is seen that the former can be derived by the latter by first multiplying each by $\frac{8}{3 b}$ and then taking the limit as b becomes infinite. On this basis formula (B5) is replaced by

$$
\begin{equation*}
U=\frac{\pi^{2}}{3 a} \sigma^{2} T_{\alpha} \tag{B20}
\end{equation*}
$$

Where $T \infty$ denotes the limit of T as $b \rightarrow \infty$. According to the discussion following formula. (B5) I is obtainē from formulas (Al8) and (AI9) by sup pressing the subscripts min. After taking the limet as becomes infinite, the quantities $A^{(i)}, i=I-5$, in terms of which $卫$ is given, raduce to

$$
\begin{gather*}
A_{\infty}^{(1)}=\frac{3 \pi^{2}}{a^{2}} \frac{\mathbb{x}_{x}}{\lambda^{1}} \quad A_{\infty}^{(4)}:=\frac{3 \mu_{x x}}{4} \tag{B21}\\
A_{\infty}^{(2)}=A_{\infty}^{(3)}=A_{\infty}^{(5)}=0
\end{gather*}
$$

Now from (B19) and (B20)

$$
W=\frac{z_{1}^{2} c^{2}}{3 a} T_{\alpha}-\frac{p a c}{2}
$$

and from the last of conditions (B9)

$$
\begin{equation*}
0=\frac{3 p a^{2}}{4 \pi^{2} T_{\infty}} \tag{ве2}
\end{equation*}
$$

The remaining conditions (B9) express the condition that T_{ω} be a minimum with respect to (kg) and k . This minimum, which is denoted by Th, is obtained from (Bl0) by taking the limit as b b $\rightarrow \infty$. Thus

$$
T_{\infty}^{\prime}=I_{f} A_{\infty}^{(1)}+\frac{I A_{\infty}^{(1)}}{1+\frac{p A^{(1)}}{A_{\infty}^{(4)}}}
$$

The central deflection obtained by substituting this expression for Too in (B22) and making use of (B21) is

$$
\begin{equation*}
w_{\max }=\frac{p a^{4} \lambda}{4 \pi^{4} \mathbb{F}_{x} I\left\{\frac{I_{f}}{I}+\frac{I}{1+\frac{4 \phi \pi^{2} \mathbb{E}_{x}}{a^{2} \lambda \mu_{z x}}}\right\}} \tag{B23}
\end{equation*}
$$

Again the ratio $\frac{I_{f}}{I}$ is usually so small that it can be neglected.

Literature Cited

(1) ERICKSEN, W. S., and MARCH, H. W.
1950. Compressive Buckling of Sandwich Panels Having Facings of Unequal Thickness. U. S. Forest Products Laboratory Report No. 1583-B.
(2) HOPKINS, H. G., and PEARSON, S.
1944. The Behavior of Flat Sandwich Panels Under Uniform Transverse Loading. Report No. S.M.E. 3277, British Royal Aircraft Establishment.
(3) KOMMERS, W. J., and NORRIS, C. B. 1948. Effects of Shear Deformation in the Core of a Flat Rectangular Sandwich Panel. U. S. Forest Products Laboratory Report No. 1583-A.
(4) LEGGETT, H. G., and PEARSON, S.
1941. Sandwich Panels and Cylinders Under Campressive End Loads. Report No. A. D. 3174 Royal Aircraft Establishment, June 1941, or R \& M No. 2262 (6134). A.C.R. Technical Report, 1949.
(5) LIBOVE, CHARLES, and BATDORF, S. B. 1948. A General Small-Deflection Theory for Flat Sandwich Plates. N.A.C.A. Technical Note No. 1526.
(6) LOVE, A. E. H. 1920. The Mathematical Theory of Elasticity, London.
(7) MARCH, H. W. 1948. Effects of Shear Deformation in the Core of a Flat Rectangular Sandwich Panel. U. S. Forest Products Laboratory Report No. 1583.
(8)
1942. Flat Plates of Plywood Under Uniform or Concentrated Loads. U. S. Forest Products Laboratory Report No. 1312.
(9)
1944. Stress-strain Relations in Wood and Plywood Considered as Orthotropic Materials. U. S. Forest Products Laboratory Report No. 1503.
(10) REISSNER, ERIC.
1949. Small Bending and Stretching of Sandwich-type Shells. N.A.C.A. Technical Note No. 1832.
(11) TILOSHBRKKO, S. 1940. Theory of Plates and Shells, New York.
(12) WILLIAMS, D., IRGGTM, D. M. A., and HOPKINS, H. G. 1941. Flat Sandwich Panels Under Compressive Ind Ioads. Report A, D. 3174, Royal Aircraft Istablishment, June 1941.

Report No. 1583-C

Figure 2.--Cross section of loaded sandwich panel. (M 85797 F)

Z M 85797 F

Figure 3.--Section of panel parallel to facings.
 (M 85798 F)

2. M 85798 F

[^0]: IThis progress report is one of a series prepared and distributed by the Forest Products Laboratory under U. S. Navy Bureau of Aeronautics Order No. NAer 01044 and U. S. Air Force No. USAF-(33-038)(51-4066-E). Results hare reported are preliminary and may be revised as additional data become available.
 ${ }^{-}$Maintained at Madison, Wis., in cooperation with the University of Wisconsin.
 3 Underlined numbers in parenthesis refer to Literature Cited at the end of this report.

[^1]: - 10 assure the identity of the two results, the physical constants of Libove and Batdorf are interpreted in terms of those of the present report as in Appendix C of reference (1).

