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Chapter 1 – Introduction

In this chapter, we first formulate the sequential supervised learning problem and de-

scribe its application in a variety of domains. Then we describe the research direction

on which this thesis focuses within the sequential supervised learning framework and

give a brief review of previous work that has been done in this direction. Finally, the

contributions of this thesis are summarized, and the outline of this thesis is given at the

end.

1.1 Sequential Supervised Learning

Many applications of machine learning involve assigning a class label to each element

of an input sequence collectively. For example, in natural language processing, the task

of part-of-speech (POS) tagging is to label each word in a sentence with a part of speech

tag (“noun”, “verb” etc.) (Ratnaparkhi, 1996). In computational biology, the task of

protein secondary structure prediction is to assign a secondary structure class to each

amino acid residue in the protein sequence (Qian and Sejnowski, 1988).

These kinds of problems can be formulated as follows:

Given: A set of training examples of the form (Xi, Yi), where each Xi = (xi,1, . . . ,xi,Ti
)

is a sequence of Ti feature vectors and each Yi = (yi,1, . . . , yi,Ti
) is a correspond-

ing sequence of class labels, where yi,t ∈ Y = {1, . . . , L}.
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Find: A classifier H that, given a new sequence X of feature vectors, predicts the

corresponding sequence of class labels Y = H(X) accurately.

These problems are called Sequential Supervised Learning (SSL) or Label Sequence

Learning (LSL) problems (Dietterich, 2002).

One of the most famous SSL problems is the NETtalk task, in which English words

are pronounced by assigning a phoneme and stress to each letter of the word (Sejnowski

and Rosenberg, 1987). Other applications of SSL arise in information extraction (Mc-

Callum et al., 2000), handwritten word recognition (Taskar et al., 2004), and so on.

We study sequential supervised learning problems where the number of labels is

large. Markov models are widely used for sequential supervised learning. However,

for a first-order Markov model, the time complexity of standard inference algorithms,

such as Viterbi and forward-backward, scales quadratically with the number of labels,

L. More generally, for an Nth order Markov model, the time cost scales as O(T ·
LN+1). When L number is large, this can be problematic when predictions must be

made quickly. Even more problematic is the fact that a number of recent approaches for

training Markov models, e. g. Lafferty et al. (2001), Tsochantaridis et al. (2004), and

Collins (2002), repeatedly perform inference during learning. As the number of labels

grows, such approaches quickly become computationally impractical.

1.2 Previous Work

This problem has led to recent work that considers various approaches to reducing

computation while maintaining high accuracy. One approach has been to integrate
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approximate-inference techniques such as beam search into the learning process (Collins

and Roark, 2004; Pal et al., 2006). A second approach has been to consider learning sub-

classes of Markov models that facilitate sub-quadratic inference—for example, using

linear embedding models (Felzenszwalb et al., 2003), or bounding the number of dis-

tinct transition costs (Siddiqi and Moore, 2005). Both of these approaches have demon-

strated good performance on a number of sequential supervised learning problems that

satisfy the assumptions of the models.

A third recent approach, which is the focus of this thesis, is sequential error-correcting

output coding (SECOC) (Cohn et al., 2005) motivated by the success of error-correcting

output coding (ECOC) for non-sequential problems (Dietterich and Bakiri, 1995). The

idea is to use an output code to “reduce” a multi-label sequence-learning problem to a

set of binary-label problems. SECOC solves each binary problem independently and

then combines the learned models to make predictions over the original large label set.

The computational cost of learning and inference scales linearly in the number of binary

models and is independent of the number of labels. Experiments on several data sets

showed that SECOC significantly reduced training and labeling time with little loss in

accuracy.

1.3 Contributions

While the initial SECOC results were encouraging, the study did not address SECOC’s

general applicability and its potential limitations. For non-sequential learning, ECOC

has been shown to be a formal reduction from multi-label to binary label classification
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(Langford and Beygelzimer, 2005). One contribution of this thesis is to show that this

result does not hold for sequential supervised learning. That is, there are sequential

supervised learning problems such that, for any output code, SECOC performs poorly

compared to directly learning on the large label set, even assuming optimal learning for

the binary problems.

Given the theoretical limitations of SECOC and the prior empirical success, the main

goals of this thesis are the following: 1) to better understand the types of problems for

which SECOC is suited, and 2) to suggest a simple approach to overcoming the limita-

tions of SECOC and to evaluate its performance. We present experiments on synthetic

and benchmark data sets. The results show that the originally introduced SECOC per-

forms poorly for problems where the Markovian transition structure is important, but

where the transition information is not captured well by the input features. These results

suggest that, when it is critical to explicitly capture the Markovian transition structure,

SECOC may not be a good choice.

In response, we introduce a simple extension to SECOC called cascaded SECOC

where the predictions of previously learned binary models are used as features for later

models. Cascading allows for richer transition structure to be encoded in the learned

model with little computational overhead. Our results show that cascading can signif-

icantly improve on SECOC for problems where capturing the Markovian structure is

critical.
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1.4 Outline

The remainder of this thesis is organized as follows.

In chapter 2, we review the conditional random field model, which has been suc-

cessfully applied to sequential supervised learning and which also serves as the base

learning algorithm in this thesis. Two training algorithms of conditional random fields

used in this thesis are outlined. Chapter 3 describes how to use the error-correcting

output coding algorithm in standard supervised learning and how to generalize this idea

in sequential supervised learning. Based on the analysis of the limitations of previous

work, we propose the core algorithm of this thesis in chapter 4. Experimental results on

both benchmark data sets and synthetic data sets are shown and analyzed in chapter 5.

And chapter 6 concludes this thesis with summary and future work.
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Chapter 2 – Conditional Random Fields

Conditional random fields (CRFs) proposed by Lafferty et al. (2001) have been widely

applied to many sequential supervised learning problems with excellent results, such as

POS tagging (Lafferty et al., 2001) and noun-phrase chunking (Sha and Pereira, 2003).

In this chapter, we first give a short review of conditional random fields. Then two

major algorithms for training CRFs are outlined, which will serve as the base training

algorithms in this thesis.

2.1 A Short Review of CRFs

Let (X,Y ) be a sequential labeled training example, where X = (x1, . . . ,xT ) is the

observation sequence and Y = (y1, . . . , yT ) is the sequence of labels, where yt ∈
{1, . . . , L) for all t. A conditional random field is a linear chain Markov random field

(Geman and Geman, 1984) over the label sequence Y globally conditioned on the obser-

vation sequence X . For a first-order Markov mode, the Hammersley-Clifford theorem

states that the conditional probability distribution P (Y |X) has the following form:

P (Y |X) =
1

Z(X)
exp

[∑
t

Ψt(yt, X) + Ψt−1,t(yt−1, yt, X)

]
,

where Ψt(yt, X) and Ψt−1,t(yt−1, yt, X) are potential functions defined on cliques yt and

(yt−1, yt), which capture (respectively) the degree to which yt is compatible with X and
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the degree to which yt is compatible with a transition from yt−1 and with X . These

potential functions can be arbitrary real-valued functions. The exponential function

ensures that P (Y |X) is positive, and the normalizing constant

Z(X) =
∑

Y ′
exp

[∑
t

Ψt(y
′
t, X) + Ψt−1,t(y

′
t−1, y

′
t, X)

]

ensures that P (Y |X) sums to 1. Normally, it is assumed that the potential functions

do not depend on t and can be represented as linear combinations of binary features

(Lafferty et al., 2001):

Ψt(yt,X) =
∑

α

λαfα(yt,X)

Ψt−1,t(yt−1, yt,X) =
∑

β

γβgβ(yt, yt−1,X) ,

where parameters λα’s and γβ’s are trainable weights, and functions fα and gβ are

boolean features. For example, in part-of-speech tagging f123(yt, X) might be 1 when

xt is the word “bank” and yt is the class “noun” (and 0 otherwise). It is natural to define

features that depend only on a sliding window wt(X) centered at xt.

Many algorithms have been proposed for training CRFs. Below we describe two

efficient training algorithms, which will be used in this thesis.
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2.2 TREECRF

The TREECRF algorithm for training CRFs was first proposed by Dietterich et al.

(2004). This algorithm uses functional gradient tree boosting to maximize the log-

likehood of the training data.

2.2.1 Functional Gradient Tree Boosting

This algorithm was first proposed by Friedman (2001). Suppose we are solving a super-

vised learning problem which is defined as minimizing the following loss function:

`(x, y, Ψ(x, y)).

Instead of explicitly representing function Ψ by a set of parameters and computing gra-

dient descent with respect to these parameters, Ψ is assumed to be represented as a sum

of functions

Ψm = Ψ0 + ∆1 + · · ·+ ∆m

in functional space and ∆m is the functional gradient computed as:

∆m = −ηm Ex,y

[
∂

∂Ψ(x, y)
`(x, y, Ψ(x, y))

]

Ψ(x,y)=Ψm−1(x,y)

.

It indicates how the function Ψm−1 should change on all possible points (x, y) in or-

der to decrease the loss function. In practice, the value of functional gradient descent

is computed at each training example (xi, yi) sampled from some fixed but unknown
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distribution P (x, y), that is,

∆m(xi, yi) =

[
− ∂

∂Ψ(xi, yi)

∑
j

`(xj, yj, Ψ(xj, yj))

]

Ψ(x,y)=Ψm−1(x,y)

.

Based on the set of functional gradient training examples ((xi, yi), ∆m(xi, yi)), it is

possible to train a function hm(x, y) to approximate the functional gradient ∆m(xi, yi).

In particular, if hm(x, y) is a regression tree that minimizes

∑
i

[hm(xi, yi)−∆m(xi, yi)]
2,

this method is called functional gradient tree boosting. Taking one step in the direction

of this fitted function will give us

Ψm = Ψm−1 + ηmhm,

where ηm is the step size. Friedman (2001) suggests growing hm(x, y) via a best-first

version of the CART algorithm (Breiman et al., 1984) and stopping when the regression

tree reaches a pre-set maximum number of leaves L. Overfitting is controlled by tuning

L (e.g., by internal cross-validation).
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2.2.2 TREECRF Algorithm

We can apply functional gradient tree boosting to train CRFs. Let

F yt(yt−1, wt(X)) = Ψ(yt, wt(X)) + Ψ(yt−1, yt, wt(X)) (2.1)

be a function that computes the “desirability” of label yt given values for label yt−1 and

input features wt(X). There are K such functions F k, one for each class label k ∈ Y .

Then the CRFs have the form

P (Y |X) =
1

Z(X)
exp

∑
t

F yt(yt−1, wt(X)) .

Assume, without loss of generality, that there is only one occurrence of wt(X) in each

sequence X . The functional gradient descent of the negative log-likelihood, which is

chosen as the loss function, with respect to F k(k′, wd(X)) can be computed as:

∆k(k′, wd(X)) =
∂ log P (Y |X)

∂F k(k′, wd(X))

= I(yd−1 = k′, yd = k)− P (yd−1 = k′, yd = k | wd(X)) ,

where I(yd−1 = k′, yd = k) is the indicator function whose value is 1 if the transition

k′ → k is observed from position d− 1 to position d in the sequence Y and 0 otherwise,

and where P (yd−1 = k′, yd = k | wd(X)) is the predicted probability of this transition

according to the current potential functions.

This functional gradient can be interpreted as our error on a probability scale. If
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the transition k′ → k is observed in the training example, then the predicted probability

P (yd−1 = k′, yd = k | wd(X)) should be 1 in order to minimize the loss. If the transition

is not observed, then the predicted probability should be 0. Based on the functional

gradient training examples ((k′, wd(X)), ∆k(k′, wd(X))), a regression tree hk can be

generated to update function F k. The pseudo code of the TREECRF algorithm is shown

in Table 2.1.

The TREECRF algorithm is able to deal with feature interactions. Each regression

tree can be viewed as defining several new feature combinations—one corresponding to

each path in the tree from the root to a leaf. The resulting potential functions still have

the form of a linear combination of features, but the features can be quite complex.

2.3 Voted Perceptron

The voted perceptron algorithm was first applied to train CRFs by Collins (2002). In

this algorithm, Equation 2.1 is re-written as

F yt(yt−1, wt(X)) = w · φ(xt, yt−1, yt) , (2.2)

where w is a weight vector and φ(·) is a feature vector defined over clique (yt−1, yt) and

conditioned on xt. Both of them are independent of position t. Let

Φ(X,Y ) =
∑

t

φ(xt, yt−1, yt)
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Table 2.1: Pseudo code of TREECRF algorithm

TREEBOOST(Data, L)
// Data = {(Xi, Yi) : i = 1, . . . , N}
for each class k, initialize F k

0 (·, ·) = 0
for m = 1, . . . , M

for class k from 1 to K
S(k) := GENERATEEXAMPLES(k, Data, Potm−1)

// where Potm−1 = {Fu
m−1 : u = 1, . . . K})

hm(k) := FITREGRESSIONTREE(S(k), L)
F k

m := F k
m−1 + hm(k)

end
end
return F k

M for all k
end TREEBOOST

GENERATEEXAMPLES(k, Data, Potm)
S := {}
for example i from 1 to N

execute the forward-backward algorithm on (Xi, Yi)
to get α(k, t) and β(k, t) for all k and t

for t from 1 to Ti

for k′ from 1 to K
P (yi,t−1 = k′, yi,t = k | Xi) :=

α(k′, t− 1) exp[F k
m(k′, wt(Xi))]β(k, t)

Z(Xi)
∆(k, k′, i, t) := I(yi,t−1 = k′, yi,t = k)−

P (yi,t−1 = k′, yi,t = k | Xi)

insert ((wt(Xi), k′),∆(k, k′, i, t)) into S
end

end
end
return S
end GENERATEEXAMPLES



13

and

F (X,Y ) =
∑

t

F yt(yt−1, wt(X)) = w · Φ(X,Y ) ,

then the predicted label sequence Ŷ for an observation sequence X is given as

Ŷ = argmax
Y ∈Y×···×Y

F (X,Y ).

The weight vector w is updated as follows

w = w + Φ(X,Y )− Φ(X, Ŷ )

whenever Ŷ 6= Y .

2.4 Time Complexity

Most of the existing methods involve the repeated computation of the partition function

Z(X) and/or maximizing over label sequences, which is usually done using the forward-

backward and Viterbi algorithms. The time complexity of these algorithms is O(T ·
Lk+1), where L is the number of class labels, k is the order of Markov model, and T is the

sequence length. So even for first order CRFs, training and inference scale quadratically

in the number of class labels, which becomes computationally demanding for large label

sets. In the next chapter, we describe the use of output coding for combatting this

computational burden.



14

Chapter 3 – ECOC for Sequential Supervised Learning

In this chapter, we first describe the idea of using error-correcting output coding (ECOC)

in standard supervised learning. Then we review one recent work which applies the

ECOC idea to sequential supervised learning. At the end, we analyze the limitations of

this recent work using a counter example.

3.1 Error-Correcting Output Coding (ECOC)

For non-sequential supervised classification, the idea of Error-Correcting Output Coding

(ECOC) has been successfully applied to solve multi-class problems by Dietterich and

Bakiri (1995). Suppose we wish to solve a multi-class classification problem where the

training examples have the form (xi, yi), i = 1, . . . , N and yi ∈ Y = {1, . . . , L}. The

first step is to build a code matrix M for this problem as shown in Table 3.1. Each class

label j ∈ Y is assigned a codeword Cj , which is a binary vector of length n. These

code words are taken as rows in matrix M . The second step is to take each column bk

in M as a binary partition of the original label set Y , that is, bk(y) ∈ {0, 1}. Then a

binary classifier hk can be learned using training examples {(xi, bk(yi)) : i = 1 . . . , N}.

Hence, in ECOC algorithm, a multi-class learning problem is reduced to a number of

binary-class learning problems.

To predict the label of a new instance x, we concatenate the predictions of each
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Table 3.1: ECOC code matrix and base classifiers

Class Code Words
Label b1 b2 · · · · · · bn

C1 1 0 · · · · · · 1
C2 0 1 · · · · · · 0
· · · · · · · · · · · · · · · · · ·
CL 0 1 · · · · · · 1

classifier h1 h2 · · · · · · hn

binary classifier to get a vector

H(x) = (h1(x), h2(x), . . . , hn(x)).

The predicted label ŷ is then given by

ŷ = argmin
j∈Y

∆(H(x), Cj),

where ∆ is some distance measure, such as the Hamming distance. In some implemen-

tations H(x) stores probabilities rather than binary labels.

The issue of how to design the error-correcting code is discussed by Dietterich and

Bakiri (1995).
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Table 3.2: Pseudo code for training in SECOC

TRAINSECOC(Data, CodeMatrix, BinaryCRF )
// Data = {(Xi, Yi) : i = 1, . . . , N}
// CodeMatrix is of length n
// BinaryCRF returns a binary-label CRF for a given training data set
Initialize the set H to be empty set
for k = 1, . . . , n

Let bk be the k-th column in CodeMatrix
Initialize TempData to be empty set
for i = 1, . . . , N

Insert (Xi, bk(Yi)) as a training example into TempData
end
// training a binary-label CRF hk based on data set TempData
hk = BinaryCRF (TempData)
Insert hk into H

end
return H
end TRAINSECOC

3.2 Sequential Error-Correcting Output Coding (SECOC)

The ECOC idea has recently been applied to sequential supervised learning problems by

Cohn et al. (2005) under the name sequential error-correcting output coding (SECOC),

with the motivation of reducing computation time for large label sets. In SECOC, in-

stead of training a multi-class CRF, we train a binary-class CRF hk for each column bk

in the code matrix M . More specifically the training data for binary-class CRF hk is

given by {(Xi, bk(Yi))}, where

bk(Yi) = (bk(yi,1), bk(yi,2), . . . , bk(yi,Ti
))

is a binary label sequence. The pseudo code for SECOC training is given in Table 3.2.
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Table 3.3: Pseudo code for testing in SECOC

TESTSECOC(X, CodeMatrix, H,∆)
// X = (x1,x2, . . . ,xT ) is an input observation sequence
// CodeMatrix is of length n
// H = (h1, h2, . . . , hn), where each hi is a binary-label CRF trained based on CodeMatrix
// ∆ is some distance measure between two vectors
Let ProbMatrix to be a T -by-n matrix
for k = 1, . . . , n

let prob = (p1, p2, . . . , pT )
// run forward-backward algorithm over X using binary CRF hk

pt = P (yt = 1|X, hk), t = 1, . . . , T
set the k-th column in ProbMatrix as prob′

end
let Y = (y1, y2, . . . , yT ) be a 1-by-T vector
for t = 1, . . . , T

let prob be the t-th row in ProbMatrix
yt = argminj∈Y ∆(prob, Cj) // Cj is the j-th row in CodeMatrix

end
return Y
end TESTSECOC

Given a set of binary classifiers for a code matrix and an observation sequence X ,

we compute the multi-label output sequence as follows. First, we use the forward-

backward algorithm on each hk to compute the probability that each sequence position

should be labeled 1. Then for each sequence element xt, we form a probability vector

H(xt) = (p1, ..., pn) where pk is the probability computed by hk for xt. After that,

we let the label for xt be the class label yt whose codeword is closest to H(xt) based

on the L1 distance. The pseudo code for this testing algorithm is given in Table 3.3.

The complexity of this inference process in a first-order Markov model is just O(n · T )

where n is the codeword length, which is typically much smaller than the number of

labels squared. Thus, SECOC can significantly speed inference time for large label sets.
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3.3 SECOC Counter Example

Prior work by Cohn et al. (2005) has demonstrated on several problems that SECOC

can significantly speed training time without significantly hurting accuracy. However,

this work did not address the potential limitations of the SECOC approach. A key char-

acteristic of SECOC is that each binary CRF is trained completely independently of

the others, and each binary CRF only sees a very coarse view of the multi-class label

sequences. Intuitively, it appears difficult to represent complex multi-class transition

models between yt−1 and yt using such independent chains. This raises the fundamental

question of the representational capacity of the SECOC model. The following counter

example gives a partial answer to this question, showing that the SECOC model is un-

able to represent relatively simple multi-label transition models.

Consider a simple Markov model with three states Y = {1, 2, 3} and deterministic

transitions 1 → 2, 2 → 3 and 3 → 1. A 3-by-3 diagonal code matrix

y b1 b2 b3

C1 1 0 0

C2 0 1 0

C3 0 0 1

is sufficient for capturing all non-trivial codewords for this label set—that is, all non-

trivial binary partitions of Y . Below we show an example label sequence and the corre-
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sponding binary code sequences.

y1 y2 y3 y4 y5 y6 y7

Y 1 2 3 1 2 3 1

b1(Y ) 1 0 0 1 0 0 1

b2(Y ) 0 1 0 0 1 0 0

b3(Y ) 0 0 1 0 0 1 0

Given a label sequence Y = {1, 2, 3, 1, 2, 3, 1, . . .}, a first-order Markov model learned

for b1(Y ) will converge to P (yt = 1|yt−1 = 0) = P (yt = 0|yt−1 = 0) = 0.5. It

can be shown that as the sequence length grows such a model will make independent

and identically distributed (iid) predictions according to the stationary distribution that

predicts 1 with probability 1/3. See Appendix A for details. The same is true for b2 and

b3. Since the i.i.d. predictions between the binary CRFs are independent, using these

models to make predictions via SECOC will yield a substantial error rate, even though

the sequence is perfectly predictable. Independent first-order binary transition models

are simply unable to capture the transition structure in this problem. Our experimental

results will show that this deficiency is also exhibited in real data.
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Chapter 4 – Cascaded SECOC Training of CRFs

Based on the analysis in Chapter 3, we know that each binary CRF in the SECOC

algorithm has very limited knowledge about the Markovian transition structure. In this

chapter, a simple extension of this algorithm is given to improve this situation.

4.1 c-SECOC algorithm

In order to better capture the Markovian transition structure, we can provide limited

coupling between the binary CRFs in SECOC. One way to do this is to include obser-

vation features in each binary CRF that record the binary predictions of previous binary

CRFs. We call this approach cascaded SECOC (c-SECOC), as opposed to the previous

algorithm, which we will call independent SECOC (i-SECOC).

Assume the training examples are given as S = {(Xi, Yi)}. Let Y
(j)
i be the predic-

tion of the binary CRF hj learned with the j-th binary partition bj in code matrix M ,

and y
(j)
it be the t-th element of Y

(j)
i . To train the binary CRF hk based on the k-th binary

partition bk, each training example (Xi, Yi) is extended to (X ′
i, bk(Yi)), where each x′it

is the union of the observation features xit and the predictions of the previous h binary

CRFs at sequence positions from t − l to t + r (l = r = 1 in our experiments) except
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position t:

x′it = (xit, y
(k−1)
i,t−l , . . . , y

(k−1)
i,t−1 , y

(k−1)
i,t+1 , . . . , y

(k−1)
i,t+r ,

. . . , y
(k−h)
i,t−l , . . . , y

(k−h)
i,t−1 , y

(k−h)
i,t+1 , . . . , y

(k−h)
i,t+r ).

We refer to h as the cascade history length. We do not use the previous binary predictions

at position t as part of x′it, since such features have significant autocorrelation which can

easily lead to overfitting. To predict label sequence Y for a given observation sequence

X , we make predictions from the first binary CRF to the last, feeding predictions into

later binary CRFs as appropriate, and then use the same decoding process as i-SECOC.

Via the use of previous binary predictions, c-SECOC has the potential to capture

Markovian transition structure that i-SECOC cannot. Our experiments in Chapter 5

show that this is important for problems where the transition structure is critical to

sequence labeling but is not reflected in the observation features. The computational

overhead of c-SECOC over i-SECOC is to increase the number of observation features,

which typically has negligible impact on the overall training time. As the cascade his-

tory grows, however, there is the potential for c-SECOC to overfit with the additional

features. We will discuss this issue further in the next chapter.
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Chapter 5 – Experimental Results

We compare CRFs trained using i-SECOC, c-SECOC, and beam search over the full

label set. We consider two existing base CRF training algorithms: gradient-tree boost-

ing (GTB) (Dietterich et al., 2004) and voted perceptron (VP) (Collins, 2002). GTB is

able to construct complex features from the primitive observations and labels, whereas

VP is only able to combine the observations and labels linearly. Thus, GTB has more

expressive power, but can require substantially more computational effort. In all cases

we use the forward-backward algorithm to make label-sequence predictions and mea-

sure accuracy according to the fraction of correctly labeled sequence elements. We used

random code matrices constrained so that no columns are identical or complementary,

and no class labels have the same code word.

First, we consider a non-sequential baseline model denoted as “iid” which treats all

sequence elements as independent examples, effectively using non-sequential ECOC at

the sequence element level. In particular, we train iid using i-SECOC with zeroth-order

binary CRF, that is CRFs with no transition model. This model allows us to assess

the accuracy that can be attained by looking at only a window of observation features.

Second, we denote by “i-SECOC” the use of i-SECOC to train first-order binary CRFs.

Third, we denote by “c-SECOC(h)” the use of c-SECOC to train first-order binary CRFs

using a cascade history of length h.
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5.1 Summary of Results

The results presented below justify five main claims: 1) i-SECOC can fail to capture

significant transition structures, leading to poor accuracy. Such observations were not

made in the original evaluation of i-SECOC (Cohn et al., 2005). 2) c-SECOC can signif-

icantly improve on i-SECOC through the use of cascade features. 3) The performance

of c-SECOC can depend strongly on the base CRF algorithm. In particular, it appears

critical that the algorithm be able to capture complex (non-linear) interactions in the

observation and cascade features. 4) c-SECOC can improve on models trained using

beam search when GTB is used as the base CRF algorithm. 5) When using weaker base

learning methods such as VP, beam search can outperform c-SECOC.

5.2 Nettalk Data Set

The Nettalk task (Sejnowski and Rosenberg, 1987) is to assign a phoneme and stress

symbol to each letter of a word so that the word is pronounced correctly. Here the

observations correspond to letters yielding a total of 26 binary observation features at

each sequence position. Labels correspond to phoneme-stress pairs yielding a total of

134 labels. We use the standard 1000 training and 1000 test sequences from Dietterich

and Bakiri (1995).
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Figure 5.1: Nettalk data set with window sizes 1 and 3 trained by GTB.
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5.2.1 Comparing to i-SECOC

Figures 5.1a and 5.1b show the results for training our various models using GTB with

window sizes 1 and 3. For window size 1, we see that i-SECOC is able to significantly

improve over iid, which indicates that i-SECOC is able to capture useful transition struc-

ture to improve accuracy. However, we see that, by increasing the cascade history length,

c-SECOC is able to substantially improve over i-SECOC. Even with h = 1, the accu-

racy improves by over 10 percentage points. This indicates that the independent CRF

training strategy of i-SECOC is unable to capture important transition structure in this

problem. c-SECOC is able to exploit the cascade history features in order to capture

this transition information, which is particularly critical in this problem where appar-

ently just using the information in the observation window of length 1 is not sufficient

to make accurate predictions (as indicated by the iid results).

Results for window size 3 are similar. However, the improvement of i-SECOC over

iid and of c-SECOC over i-SECOC are smaller. This is expected since the larger window

size spans multiple sequence positions, allowing the model to capture transition infor-

mation using the observations alone, making the need for an explicit transition model

less important. Nevertheless, both SECOC methods can capture useful transition struc-

ture that iid cannot, with c-SECOC benefiting from the use of cascade features. For

both window sizes, we see that c-SECOC performs best for a particular cascade history

length, and increasing beyond that length decreases accuracy by a small amount. This

indicates that c-SECOC can suffer from overfitting as the cascade history grows.

Figures 5.2a and 5.2b show corresponding results for VP. We still observe that in-
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cluding cascade features allows c-SECOC to improve upon i-SECOC, though compared

to GTB, longer cascade histories are required to achieve improvement. No overfitting

was observed up to cascade history length 50. However, we were able to observe over-

fitting after code length 160 by including all possible cascade history bits, denoted by

c-SECOC(all). All of our overfitting results suggest that in practice a limited validation

process should be used to select the cascade history for c-SECOC. For large label sets,

trying a small number of cascade history lengths is a much more practical alternative

than training on the full label set.

5.2.2 GTB versus VP

c-SECOC using GTB performs significantly better than using VP. We explain this by

noting that the critical feature of c-SECOC is that the binary CRFs are able to exploit

the cascade features in order to better capture the transition structure. VP considers

only linear combinations of these features, whereas GTB is able to capture non-linear

relationships by inducing complex combinations of these features and hence capturing

richer transition structure. This indicates that when using c-SECOC it can be impor-

tant to use training methods such as GTB that are able to capture rich patterns in the

observations and hence of the cascade features.
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5.2.3 Comparing to Beam Search

Here we compare the performance of c-SECOC with multi-label CRF models trained

using beam search in place of full-Viterbi and forward-backward inference, which is

a common approach to achieving practical inference with large label sets. For beam

search, we tried various beam-sizes within reasonable computational limits. Figure 5.3

shows the accuracy/training-time trade-offs for the best beam-search results and the best

results achieved for SECOC with 200 code-word bits and various cascade histories. The

graph shows the test set performance versus the amount of training time in CPU seconds.

First notice that GTB with beam search is significantly worse than for VP. We believe

this is because GTB requires forward-backward inference during training whereas VP

does not, and this is more adversely affected by beam search. Rather, c-SECOC using

GTB performs significantly better than VP with beam search.

5.3 Noun Phrase Chunking

We consider the CoNLL 2000 Noun Phrase Chunking (NPC) shared task that involves

labeling the words of sentences. This was one of the problems used in the original

evaluation of i-SECOC. There are 121 class labels, which are combinations of Part-of-

speech tagging labels and NPC labels, and 21,589 observation features for each word in

the sequences. There are 8,936 sequences in the training set and 2,012 sequences in the

test set. Due to the large number of observation features, we can not get good results for

GTB using our current implementation and only present results for VP.
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5.3.1 Comparing to i-SECOC

As shown in Figure 5.4a, for window size 1, i-SECOC outperforms iid and incorpo-

rating cascade features allows c-SECOC to outperform i-SECOC by a small margin.

Again we see overfitting for c-SECOC for larger numbers of cascade features. Moving

to window size 3 changes the story. Here a large amount of observation information is

included from the current and adjacent sentence positions, and as a result iid performs as

well as any of the SECOC approaches. The large amount of observation information at

each sequence position appears to capture enough transition information so that SECOC

gets little benefit from learning an explicit transition model. This suggests that the per-

formance of the SECOC methods in this domain is primarily a reflection of the ability

of non-sequential ECOC. This is interesting given the i-SECOC results in Cohn et al.

(2005), where all domains involved a large amount of local observation information.

IID results were not reported there.

5.3.2 Comparing to Beam Search

We compare the accuracy versus training-time for models trained with SECOC and

with beam search, using the already described experimental setup. Figure 5.5 shows

that beam search performs much better than the c-SECOC methods within the same

training time using VP as the base learning algorithm. We believe the poor performance

of c-SECOC compared to beam search is that using VP does not allow for rich patterns

to be captured in the observations which include the cascade features. We hypothesize,

as observed in Nettalk, that c-SECOC would perform as well or better than beam search
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given a base CRF method that can capture complex patterns in the observations.

5.4 Synthetic Data Sets

Our results suggest that i-SECOC does poorly when critical transition structure is not

captured by the observation features and that c-SECOC can improve on i-SECOC in

such cases. Here we further evaluate these hypotheses.

We generated data using a hidden Markov model (HMM) with 40 labels/states {l1, . . . , l40}
and 40 possible observations {o1, . . . , o40}. To specify the observation distribution, for

each label li we randomly draw a set Oi of ko observations not including oi. If the current

state is li, then the HMM generates the observation oi with probability po and otherwise

generates a randomly selected observation from Oi. The observation model is made

more important by increasing po and decreasing ko. The transition model is defined in

a similar way. For each label li we randomly draw a set Li of kl labels not including

li. If the current state is li then the HMM sets the next state to li with probability pl

and otherwise generates a random next state from Li. Increasing pl and decreasing kl

increases the transition model importance.

5.4.1 “Transition” Data Set

Here we use po = 0.2, ko = 8, pl = 0.6, kl = 2, so that the transition structure is

very important and observation features are quite uninformative. Figure 5.6a shows the

results for GTB training using window size 1. We see that i-SECOC is significantly
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better than iid indicating that it is able to exploit transition structure not available to iid.

However, including cascade features allows c-SECOC to further improve performance,

showing that i-SECOC was unable to fully exploit information in the transition model.

As in our previous experiments we observe that c-SECOC does overfit for the largest

number of cascade features. For window size 3 (graph not shown) the results are similar

except that the relative improvements are reduced since more observation information

is available, making the transition model less critical. These results mirror those for the

Nettalk data set.

5.4.2 “Both” Data Set

Here we use po = 0.6, ko = 2, pl = 0.6, kl = 2 so that both the transition structure

and observation features are very informative. Figure 5.6b shows results for GTB with

window size 3. The observation features provide a large amount of information and per-

formance of iid is similar to that of the SECOC variants. Also we see that c-SECOC is

unable to improve on i-SECOC in this case. This suggests that the observation informa-

tion captures the bulk of the transition information, and the performance of the SECOC

methods is a reflection of non-sequential ECOC, rather than of their ability to explicitly

capture transition structure.
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Chapter 6 – Summary and Future Work

In this chapter, we briefly review the research work that has been done in this thesis

and summarize our contributions. We also outline some research directions that deserve

further exploration.

6.1 Summary

In this thesis, we focus on sequential supervised learning problems where the number

of class labels is very large. Markovian models are commonly used to solve sequen-

tial supervised learning problems. However, even in first-order Markovian models, the

time complexity of standard inference algorithms, such as the Viterbi algorithm and the

forward-backward algorithm, scale quadratically with the number of class labels. When

this number is very large, a number of recent methods for training Markovian models

will become very expensive, because in those training methods inference is performed

repeatedly.

The recent SECOC algorithm successfully reduces the training cost of a multi-label

CRF by converting it into a set of binary-label CRFs based on the idea of error-correcting

output coding. However, we uncovered empirical and theoretical shortcomings of in-

dependently trained SECOC. Independent training of binary-label CRFs can perform

poorly when it is critical to explicitly capture complex transition models. In this thesis,
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we proposed cascaded SECOC and showed that it can improve accuracy in such situ-

ations. We also showed that when using less powerful CRF base learning algorithms,

approaches other than SECOC (e.g. beam search) may be preferable.

6.2 Future Work

Within the research direction of this thesis, there are several open problems that need to

be further explored. The first problem is how to design efficient validation procedures

for selecting cascade history lengths. The second problem is that instead of generating

a fixed code matrix beforehand, how can we incrementally generate a code matrix in

a column-wise style based on the performance of the current code matrix. It is also

desirable to provide a wide comparison of methods for dealing with large label sets in

sequential supervised learning problems.
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Appendix A – Proof of the Stationary Distribution in Counter Example

Assume the transition probabilities are given as

P (yt = 1|yt−1 = 0) = 0.5

P (yt = 0|yt−1 = 0) = 0.5

P (yt = 1|yt−1 = 1) = 0

P (yt = 0|yt−1 = 1) = 1.

The Stationary distribution P (y = 1) can be computed as follows.

P (yt = 1) = P (yt = 1|yt−1 = 1) · P (yt−1 = 1) +

P (yt = 1|yt−1 = 0) · P (yt−1 = 0)

= 0 · P (yt−1 = 1) + 0.5 · P (yt−1 = 0)

= 0.5 · [1− P (yt−1 = 1)]

So we have

P (y = 1) = 0.5 · [1− P (y = 1)]

P (y = 1) = 1/3




