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The focus of this thesis is to determine the biological impact of dose from

brachytherapy sources commonly used in cancer treatment. To achieve this goal, the

Monte Carlo code PENELOPE was used to simulate point sources of four different

isotopes (103Pd, 125j '37Cs, and 90Sr) in an infinite medium of water. These dose

distributions were then post processed, using the linear quadratic equation, to

calculate cell survivability distributions and to produce 3D maps of arrays of identical

sources.

Parametric studies performed with a simple shielding model showed several

important trends in the data: as particle emission intensity increases killing radius

(defined as the radius from the source at which only of the cells will survive)

increases, as the shielding attenuation factor increases kill radius decreases, as the
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linear lesion coefficient (a) increases the kill radius increases, as the quadratic lesion

coefficient (fi) increases the kill radius increases weakly, as the isotopic decay

constant increases the kill radius decreases, and as the rate of DNA damage repair

increases the kill radius decreases weakly.

Monte Carlo simulations of isotropic point sources showed that the difference

between the kill radius and survival radius (defined as the distance from the source at

which 1 O of the cells survive) was smaller relative to the survival radius, for electron

emitting isotopes than for photon emitting isotopes. This has been attributed to the

fact that uncharged photons interact with matter through collisions, whereas, charged

electrons interact through matter through collisions and Coulomb interactions.

Coulomb interactions cause a continuous slowing down of the electrons, decreasing

their range.
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NOMENCLATURE

Symbol Description
Units

A0 Initial Activity of Source [Bq]

i3 Initial Dose Rate [Gylhr]

i5 or D (t) Dose Rate at Time t
[GyIhrJ

Dose per Track [GyIBq]

G Dose Protraction Factor [I]

k Isotope Decay Constant [hr']

m Mass of Tally Region [kg]

N Number of Sources [I]

R Radius from Point Source [cm]

S Cell Survival Probability [I]

t Time
[hr]

X Source Intensity
[Gy*cm2lhr]

a Linear Lesion Coefficient [Gy'}

Quadratic Lesion Coefficient [Gy2]

£ Energy Imparted P1

2 Rate of DNA damage repair
-1[hr }

p Attenuation Coefficient [cm']



Predicting Dose and Cell Survival Distributions for Brachytherapy

Sources

1. Introduction

1.1. Introduction

The American Cancer Society predicts that in the year 2003 alone 1.3 million

new cases of cancer will occur in the United States (ACS 2003). There is ongoing

medical research dedicated to the detailed understanding of how cancer spreads,

methods of prevention, treatment techniques, and finding a cure. Cancer is defined as

a mass of aberrant cells that tend to grow in an uncontrolled fashion. Instead of

dividing at a rate to support regeneration of damaged tissue, cancer cells tend to

divide more frequently, such that they grow into large lumps (tumors) displacing

healthy tissue. Another characteristic of cancer cells is that they can break away from

the surrounding tissue matrix and spread to other parts of the body (i.e. metastasize).

Cancer cells can develop in any part of the body, which leads to a great diversity of

cancer types and tumors that have drastically differing properties. Difficulties

inherent in cancer treatment are: the diversity in location, the differing base tissue

type that the tumors develop from, and the proximity of organs critical to survival

(lungs, heart, spinal cord, etc.) to the tumor site. In this thesis, we will focus on a



specific treatment modality for prostate cancer: brachytherapy. The American Cancer

Society estimates that approximately 30 out of 100,000 men will die from prostate

cancer (ACS 2003). In 2003 it is estimated that there will be 220,900 new cases of

prostate cancer and 28,900 will die as a result (ACS 2003). Because of this even a 1%

improvement in effective treatment could save hundreds of lives.

1.2. Brachytherapy

Brachytherapy is a method of treating cancerous tumors with radiation. In

brachytherapy very small 'seeds' of radioactive material are implanted inside the

body in the vicinity of the tumor. The seeds are either implanted permanently in the

body or implanted and then removed sometime later (Veninga 2001), and their

purpose is to destroy the tumor over the lifetime of the radionuclide seed.

Figure 1-1. Brachytherapy Seed.

As illustrated in Figure 1-1, brachytherapy seeds are typically about 3 mm in

length and 0.5 mm in diameter (AAPM 1995), and are composed of three main parts:



the radionuclide, an x-ray marker, and the casing. The radionuclide is the source of

the radiation and its properties directly impact the destruction of the tumor tissue. The

important properties of the radionuclide are half-life and the type and energy

spectrum of the emitted radiation. The half-life is an inherent property of the

radioactive material that determines how quickly it decays. It is defined as the time

elapsed for half of the radionuclide (on average) to decay. Radionuclides with short

half-lives will decay very quickly emitting intense radiation for a short amount of

time; whereas, radionuclides with long half-lives will emit much lower intensity

radiation, but over much longer times. The type of particle emitted from the

radionuclide is important because differing decay types have vastly different

properties. Beta radiation is the emission of a high-energy electron. Electrons are

charged particles and interact with the surrounding material over a relatively short

range through Coulomb interactions. Gamma radiation is the emission of high-energy

photons from the radionuclide. Photons are uncharged and require collisions to slow

down and deposit energy in the media that they pass through. Gamma radiation has a

relatively long range. The emission spectrum is also an important factor to take into

account when selecting a radionuclide for use in brachytherapy. Higher energy

radiation tends to have a longer range. For example, a beta emitter that has an

emission energy of 20 keV will have a range on the order of micrometers; whereas, a

beta emitter that has an emission energy of about 100 keV will have a range on the

order of centimeters.



An x-ray marker is placed in the brachytherapy seed to allow the treating

physician to use an x-ray machine to verify that the seeds have been properly placed

within the patient.

The casing of the seed is composed of a material such as titanium or stainless

steel (AAPM 1995). The casing must be biologically acceptable or the body's

immune system will attack it and the patient can potentially have an adverse reaction.

Another major feature of the casing is that it shields the surrounding tissue from some

of the radiation emitted from the source. This partial shielding can have a drastic

effect upon the distribution of the energy deposited in the surrounding tissue.

The seeds are implanted in a specific pattern depending upon the location and

size of the tumor and the surrounding tissue environment. Radiation is an

indiscriminate killer. It will destroy anytissue within its range, whether tumor cells or

healthy tissue. It is extremely important to structure the pattern of seed placement to

maximize the killing to cancerous tumors while at the same time minimizing the

damage to surrounding tissue and critical organs.

The placement of brachytherapy seeds has been the focus of many recent

studies. For example, it is desired to have an effective kill (destruction of the tumor

such that it won't grow back) by placing enough of the radionuclide into the patient

such that it doesn't all decay away before it destroys all of the tumor cells (Wang



2003). The treatment plan must also avoid using excessive doses of radiation that will

unnecessarily damage surrounding tissues. Another consideration is that the spacing

of the seeds needs to be carefully determined such that the number of 'cold' spots

within the tumor is minimized (Wu 2002), since these cold spots are the places where

the radionuclide has the least chance of destroying the target cells. Again, this causes

a tradeoff: more seeds makes cold spots less common, and makes shaping the

radiation field easier, but more seeds is more work for the surgeon and more intrusive

for the patient. The primary method for determining the distribution of radiation dose

in the region to be treated with brachytherapy is by radiation transport numerical

simulation.

1.3. Monte Carlo

One technique for simulating radiation transport in brachytherapy is the

Monte Carlo method. Monte Carlo methods use random numbers to sample from

various probability distributions to determine what will happen in a real physical

situation. For the case of radiation transport, this is done by simulating the random

walk traversed by a particle emitted by radioactive decay. Thousands or millions of

tracks are simulated and the results are averaged to show the effect of the radiation on

the region of interest.



A typical track (see Figure 1-2), begins when a random number is sampled to

select a position within the radioactive source. The energy of the particle is then

determined by sampling randomly from the energy spectrum of the source. Next the

direction of the particle is selected with another random number. The particle moves

in the selected direction and the distance to collision is calculated by sampling from a

known distribution, which depends on the material properties and particle energy.

Once this particle reaches its destination, an energy deposition event is sampled. If

this event occurs within a region of interest, then the energy deposition is 'tallied'.

The particle's energy is reduced by this amount, and a new direction is randomly

sampled and the particle continues its travels. This process continues until the

particle's energy drops below a user defined cutoff energy the energy at which the

remaining energy of the particle is deposited at the point of interaction. Many particle

tracks are needed to reduce the variance in calculated statistical quantities. Radiation

transport simulations predict the energy deposited in the tissue around the source, but

this is only half of the problem. Biological effects must also be taken into account to

determine the actual effect of the radiation upon the tumor and surrounding healthy

tissue.
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Figure 1-2. Monte Carlo Method Flow Chart.

1.4. Biological Effects

Biological mechanisms complicate the correlation between dose and cell

survival. One of these mechanisms is that of DNA repair/misrepair (Sachs 1997).



When radiation is emitted from a radionuclide, a high-energy electron or photon is

released which, after colliding with a chromosome within a cell, can cause a DNA

strand break. This break does not necessarily mean the death of the cell because all

living things have several biological methods to 'heal' themselves. The damaged

DNA is detected within the cell and the cell then initiates a repair process. An

interesting case occurs when a double strand break occurs. When two DNA strand

breaks happen within 10 to 15 base pairs within a short amount of time, the situation

is more complicated. These breaks when they happen close enough together can

interact. When this happens, there are a variety of possible repair outcomes: a

successful repair, a fatal misrepair resulting in cell death, or a viable misrepair

resulting in cell mutation.

Two methods of creating lethal lesions are commonly considered. Those

created through unrepairable damage and those lethal lesions caused by misrepairs

created from interactions of double strand breaks. The direct lethal lesions from

unrepairable damage is dependent upon the total dose imparted to the DNA. In

contrast the non-lethal lesions undergo repair. The DNA can either repair correctly or

misrepair, and this is dependent upon the number of broken ends that can interact;

therefore, this mechanism of killing cells is dependent upon the distribution of dose in

time. The effects of a double strand break upon the cell survivability have been

modeled using a linear-quadratic relationship (Sachs 1997). The linear-quadratic



model accounts for the killing mechanisms and several attempts have been made to fit

parameters in the model to actual clinical data (Wang 2003).

1.5. Literature Review

The most complete report describing dosimetry as applied to brachytherapy

treatment is the AAPM report number 51 (Nath 1995). The AAPM report discusses

practical approaches to achieve accurate dosimetry for brachytherapy sources. It

discusses the characteristics of currently (as of 1995) available brachytherapy

sources, and contains recommended methods for calculating dose rates for both a

point source in one dimension (radial) and a finite cylinder in two dimensions (radial

and angular). Potential dosimetry problems are identified, including using

inappropriate standards. It also discusses methods of choosing standards and how to

recalculate data based upon old standards after a change has occured.

In 1995 Brenner studied the linear quadratic model describing the relationship

between radiation dose and cell survivability. He noted that the simple linear

quadratic model incorporates sublethal damage repair and repopulation, but it lacked

any parameters for the description of the other two 'R's of radiation cellular survival:

cell cycle redistribution and reoxygenization. Cell cycle distribution is defined as the

proportion of cells in a given phase of their cell growth cycle. Cell cycle

redistribution is the new distribution created by a radiation field preferentially killing
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cells in certain phases, while preferentially sparing cells in other phases.

Reoxygenization is a phenomenon that occurs because certain cells are starved for

oxygen (hypoxic), whereas other cells are rich in their oxygen levels. Radiation

preferentially kills the cells that are rich in oxygen allowing the hypoxic cells to have

access to oxygen; thereby, allowing them to reoxyegenate and increase their

sensitivity to radiation. Brenner proposed a more accurate model that would account

for these other two parameters: the LQR model, or linear quadratic with incorporation

of 'R's. Brenner added a Gaussian term with a specific deviation that changes to

account for new distributions in cell cycle and oxygenization as a function of energy

deposition.

Many people have spent a lot of time studying the dose distributions resulting

from point sources of various isotopes. Most of these studies are performed using

Monte Carlo computer codes.

In 1996 Nahum was interested in studying the effects of several beta emitting

sources (67Cu, 1311 186Re, 32P, 188Re, and 90Y) on what he calls tumor control

probability. The tumor control probability is defined as the negative exponential of

the survival fraction. The survival fraction can be based upon the linear quadratic

equation, or in this case Nahum uses only the linear term. Nahum performed his

simulations using the Monte Carlo code ETRAN, and modeled his sources in an

infinite medium of water.
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Also in 1996 Chen modeled many other beta emitting sources (H, '4C, 32P,

35s, °Sr, 90Y, '06Ru, and 131J) Chen was more interested in determining

microdosimetry dose distributions, rather than modeling survival effects. These

calculations were based upon data produced from a Monte Carlo code with an

unspecified name.

In 1998 Mainegra studied the dose constants resulting from several isotopes

that are used in brachytherapy ('25J, 103Pd, '69Yb, and '921r). Mainegra focused his

modeling on specific brachytherapy seed models in use. He used the EGS4 Monte

Carlo code for his computer simulations, compared his simulations to data collected

from phantoms, found agreement within 1.5%.

In 2002 Asenjo decided to model 90Sr-90Y brachytherapy seeds. The dose

distributions were simulated by the Monte Carlo code PENELOPE. The results of the

PENELOPE code were then compared to the ITS3 and EGS4 computer codes. It was

found that PENELOPE result lies between the results generated from ITS3 and

EGS4.

Whereas some researchers were interested in dose distributions, and the

ability to computationally reproduce experimental data, other people were interested

in relating the actual effects of radiation damage to biological effects.
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In 1997 Sachs reviewed the evolution of modeling the biological response to

radiation dose. Sachs begins by discussing double strand breaks and how they can

directly cause the death of a cell when undergoing misrepair. He reviews a rate

equation describing double strand breaks as a function of dose rate. Since not all

double strand breaks lead to the death of the cell, another equation is derived

describing the relation between double strand breaks and lethal lesions. The number

of lethal lesions is directly related to the natural logarithm of the survival fraction.

From this the linear quadratic equation is derived with the linear term dependent upon

the single-track lesion kinetics, and the quadratic term dependent upon two-track

lesion kinetics. Also included in the quadratic term is a factor that compensates for

time delays between the two-track interactions. Sachs also discusses the limitations of

the linear quadratic model (without the dose protraction factor); it is inaccurate at

high dose rates. A more accurate high dose rate model is the repair-misrepair model.

The repair-misrepair model predicts a linear increase in lesions for high doses,

whereas the linear quadratic model predicts a quadratic increase. Deviations between

the two appear to become significant above about 5 Gy.

In 2003 Wang studied the parameters used in the linear quadratic model by

fitting the model to clinical data of irradiated prostate tumors. Wang assumes that the

radiation from external beams, and 1251 and '°3Pd brachytherapy sources all behave in

the same maimer in damaging prostate tumor cells. This study arose because many



13

people have been trying to determine the optimum parameters for the linear quadratic

formula by fitting clinical data, but have been getting vastly different numbers. Wang

suggests the discrepancies arise because earlier studies neglected repopulation effects

when analyzing the clinical data. There comes a point when the brachytherapy seed

dose rate becomes low enough such that repopulation takes over and the seed no

longer has a net killing effect. The dose delivered by the seed before repopulation

dominates the killing rate is known as the effective dose. The effective dose divided

by the total dose is the effective dose fraction. The effective dose is the dose

parameter on which the linear quadratic equation is based. Wang proposed the

following values for the linear quadratic model applied to prostate brachytherapy: a =

0.15 ± 0.04 Gy', a/ = 3.1 ± 0.5 Gy, and 0 ln(2)/?. 90 minutes with a 16 minute

average value.

Also in 2003 Armpilia studied 125j and '°3Pd sources. Just like Wang et al.,

Armpilia studied the effects of dose upon cellular tissue using the linear quadratic

equation with repopulation. The difference between their works is that while Wang

was trying to determine the parameter values for prostate tumors, Armpilia was trying

to determine what isotopes would be most beneficial to use based solely upon their

half-lives.

When modeling brachytherapy sources there are a few more considerations

when actually attempting to model the biological effects of treatment.
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In 2002 Arnfield considers the fact that when many brachytherapy sources are

placed in cancerous tissue there is the potential for sources to move in the tissue. If

sources move it is possible that different points in the tissue will receive the same

dose, but with differing dose rates and/or dose rate patterns. Amfield points out that

the simple linear quadratic does not account for this (the linear quadratic model does

account for this through the use of the 'G' factor). Because of this Arnfield performed

an experiment to determine if such a difference in biological reaction does exist, and

the results of his experiments did show a difference.

In 2003 Rivard studied the anisotropy of the radiation emitted from a

brachytherapy seed. Most studies consider brachytherapy seeds as a uniform source

distribution, where in actuality brachytherapy seeds have a significant structure with a

source media inside a manufactured casing. Rivard also used superposition to

consider the relative importance of different individual sources in the contribution of

the overall source for the brachytherapy seed. Rivard found that at large distances the

source behaved as an isotropic source, but at short ranges the dose varies significantly

with direction from the source. Whether or not this effect plays a significant role in

the treatment of cancer is an open question.

The work done leading up to this thesis is intended to promote the

development of a computer code that can accurately model the biological effects of
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brachytherapy sources. The goal of this code is to provide the medical community

with a new tool that goes directly from simulation to biological effect in order to

enhance cancer treatment.

1.6. Research Questions

In this thesis, we ask the following questions: What kind of resolution is

required to keep the change in dose small over the width of an individual voxel? A

voxel is defined as a cube in three-dimensional space in which values such as dose

are tallied. What is the effective killing range for particular isotopes involved in

brachytherapy (defined here as the radius at which the survival fraction equals 1 E-9)?

How precise is this range; for example, what is the difference between the killing

range and the survival range (defined here as the radius at which the survival fraction

equals 1E-7)? How do the shapes of the isodose curves correspond to the isosurvival

curves? How do small errors in the placement of brachytherapy seeds affect the

overall shape of the survival and dose curves in the vicinity of the deviation?

1.7. Remainder of Thesis

Chapter 2 discusses the methodology that was used to solve the questions

proposed in this chapter. It discusses the software used to simulate radiation transport,

and the equations used to translate the energy depositions from the simulation into
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initial dose rate and cell survival fraction. Also introduced is a simple shielding model

that can be used to predict the shape and trends of the cell survival fraction curve.

Chapter 3 presents the results of parametric studies performed on the simple

shielding model, as well as comparing the shapes of dose and cell survival fraction

curves. Also considered in this section are the effects of sources within close

proximity of each other. Several isotopes are simulated using a Monte Carlo radiation

transport program to show the effects of a brachytherapy source in cancerous tissue.

Chapter 4 summarizes the results of chapter 3, and uses the results to answer

the research questions posed in this thesis. Also included in chapter 4 are

recommendations for future work.
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2. Methods

2.1. Monte Carlo

2.1.1. Monte Carlo Method

The core of this thesis is modeling radiation transport using the Monte Carlo

method. Monte Carlo radiation transport is uses random numbers to simulate the

behavior of particles in a real physical system. A sample Monte Carlo particle

transport algorithm is shown in Chapter 1 (Figure 1-2).

2.1.2. Monte Carlo Codes

Many Monte Carlo codes are in existence. The ones mentioned in the

literature review include PITS, EGS, ITS, and PENELOPE. The two that will be

discussed in this section are MCNP and PENELOPE.

MCNP (Monte Carlo N-Particle) was developed at Los Alamos to be a

general purpose Monte Carlo code (Briesmeister 2000) and is the most common

Monte Carlo code used in the nuclear industry. MCNP allows the user to simulate

radiation flowing through geometries specified by the user and has cross section
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databases for many different isotopes of interest. It simulates the transport of

neutrons, photons and electrons. In addition, MCNP supports detailed source shapes

and energy distributions, as well as several different tally types (surface flux, volume

flux, heating tallies, etc.). MCNP is a well-developed general use Monte Carlo code.

PENELOPE 2001 (PENetration and Energy Loss of Positrons and Electrons)

(Salvat 2001). It was created by Francesc Salvat, Jose M. Fernandez-Varea, Eduardo

Acosta, and Josep Sempau. It is comprised of several sets of subroutines that

calculate the distance traveled by particles in a given medium, the energy change due

to a collision, the generation of secondary particles, and the change in direction of the

particle after suffering a collision. The PENELOPE routines support transport of

photons, electrons, and positrons. PENELOPE supports fewer materials than MCNP,

but PENELOPE has the advantage of being able to transport beta particles down to

energies of 100 eV as opposed to MCNP's cutoff of 1 keV.

PENELOPE is a physics engine, and the user can provide his/her own code to

create a complete transport simulation. This allows the user to generate a Monte Carlo

simulation unique to his/her own problem of interest, but requires the user to write

many lines of code. PENELOPE was the Monte Carlo code employed to perform the

calculations for this thesis.
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2.1.3. Source Definitions

The source sampling routines written for this thesis model a wide variety of

energy distributions, source positions, angular distributions, particle types, and spatial

distribution. Multiple general sources can be specified. This allows the code to

faithfully reproduce emission spectra for complicated decay schemes involving

electrons, positrons, and photons.

2.1.4. Tally Definitions

The tally routines used in this project calculate energy imparted, average

lineal energy, and absorbed dose, as well as probability distribution spectra for each.

Currently only three tally volumes are available to the user: spheres, spherical shells,

and voxels. The previously mentioned tallies are calculated only in the entire region

of interest for voxel meshes. Tallies inside the individual voxel cells include:

absorbed dose per track, energy deposited per track, relative error in energy

deposited, initial dose rate, and cell survival fraction.

2.1.5. Material Regions

The current version of the user code supports only an infinite medium of

water. Future plans include implementing user code to allow for transport in voxel

representations of biological phantoms with a variety of overlay geometries.
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2.1.6. Physics

Charged particle transport via Monte Carlo is a challenging physics problem.

Charged particles are affected by Coulomb forces surrounding the electron clouds and

nuclei in matter and are subjected to continual interactions even without direct

collisions. This causes the electrons to undergo thousands of more interactions per

track length than uncharged particles.

PENELOPE differs from MCNP in the way it simulates electron transport.

MCNP treats electron interactions using multiple scattering theory (Briesmeister

2000), in which groups of interactions are treated as individual interactions. Multiple

scattering theory is valid only if the track steps are long enough to encompass many

interactions, but short enough to keep energy loss per step low. The calculation is

more accurate if the angular deflection per step is small. MCNP implements multiple

scattering theory in two parts: energy loss and step length are determined at the step

level, and then the step is broken down into substeps and the angular deflections and

secondary particle generation from interactions are calculated (Briesmeister 2000).

PENELOPE uses a mixed scheme for particle transport (Salvat 2001). Energy

loss and angular deflection cutoffs are specified for the material type. PENELOPE

uses these cutoffs as a differentiation between hard and soft interactions. Hard
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interactions are interactions that involve a large energy change (above the cutoff) or

large direction change. Soft interactions are interactions that happen below the

cutoffs. Soft interactions are treated in a manner similar to MCNP's electron

transport. Multiple scattering theory is applied to calculate the step length, energy and

direction of the particle, and the generation of secondary particles. For soft

interactions, PENELOPE uses a random hinge calculation, as opposed to the

step/substep method employed by MCNP. For hard events, PENELOPE performs a

detailed simulation of the individual interactions. This process yields more accurate

spatial distributions of scattering, and tracks the particles near interfaces more

accurately, but is also more computationally expensive than multiple scattering

theory. PENELOPE allows the user to adjust the tradeoffs between accuracy and

speed by changing the cutoff values.

PENELOPE also has the ability to track positrons and electrons down to

energies of 100 eV (as opposed to 1 keV for MCNP), making PENELOPE

advantageous to use in microdosimetry applications or for transport of low energy

beta sources.

2.2. Linear Quadratic Formula

The linear quadratic equation for cell survival fraction is (Sachs 1997):



s eD2), (2-1)

where S is the survival fraction of a cell within the volume of a given voxel cell

(unitless), D is the total dose delivered to a given voxel cell (Gy), G is the dose

protraction factor that accounts for damage repair and depends on the temporal

pattern of dose delivery (unitless), and a (Gji') and /3 (Gj/2) are fitting parameters

based upon the type of cell, and type of radiation. In this equation the 'G' factor is a

modifying parameter of the squared dose term, and accounts for the time difference

between particles emitted by the radionuclide hitting a given cell multiple times.

The linear quadratic equation is dependent upon three tissue specific

parameters: the linear lesion coefficient (a), the quadratic lesion coefficient (fi), and

the tissue repair half-time (r). The values calculated by Wang (Wang 2003) were used

throughout this thesis a= 0.15 ± 0.04 Gji', a//3= 3.1 ± 0.5 Gy, and 0 v 90

minutes with a best estimate of 16 minutes. The linear lesion coefficient represents

the number of lethal lesions imparted to the DNA per unit of dose. The quadratic

lesion coefficient represents the interactions of these potentially lethal lesions and has

units of inverse dose squared. The half-time for damage repair characterizes the rate

at which cells remove potentially lethal double strand breaks. The rate of DNA

damage repair (A) is related to the repair half-time by the following equation:
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2
ln(2)

(2-2)

An important quantity used in the linear quadratic equation is the dose

protraction factor (G). The dose protraction factor accounts for the temporal

distribution of dose. It is a result of the repair processes that repair damage to the

DNA. This 'G' factor is defined as (Sachs 1997):

G 1f (tt fe2(tt')b(tt!
(2-3)D2)

where G is the time dependent parameter for the cell survival equation (unitless), D is

the total dose (Gy), D(t) is the instantaneous dose rate (Gy/hr), 2 is the biological

time constant (hr'), and t is time (hr). For an exponential decay over infinite time and

no repopulation, this reduces to:

ln(2)

k
t1/

G___ /2

k +2 ln(2) ln(2)'
t1/
/2

(2-4)

where k is the radionuclide decay time constant (hr'), tJ/2 is the radionuclide half-life

(hr), 2 is the biological repair time constant (hY'), and v is the tissue repair half-time
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(hr). As the radionuclide half-life becomes very long, tJ/2 becomes large and G

approaches 0. If the radionuclide half-life becomes very short, tJ/2 becomes small and

G approaches 1. For a pulse of radiation (square wave), G reduces to:

2 (e-1+2t), (2-5)
(2t)2

where 2 is the biological repair time constant (hr') and t is the width of the pulse

(hr). As the pulse width (t) becomes long, dose is delivered slowly and G approaches

0. If the pulse width becomes very short, dose is delivered very quickly and G

approaches 1.

2.3. Assumptions

To study the shapes of dose and cell survival curves, several important

assumptions were made. One assumption is that the property of superposition holds

for the system being studied. The use of superposition allows the dose curves

calculated from a single source to be used to construct the dose and survival curves

for multiple sources. Also assumed is that repopulation effects are negligible. Cells

will regrow at a certain rate, and the net killing rate will be the difference between the

total killing rate and the regrowth rate. Because repopulation effects are ignored, the

cell killing probability will be less than estimated, and the amount of radiation dose
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required to create the desired effect will be underestimated. Another assumption is

that cellular tissue can be accurately modeled as water. This assumption is based upon

the reasoning that cellular tissues are composed mostly of water. More complex

treatment of tissue (spatially varying cross-sections and densities) may be

incorporated in future studies.

2.4. Calculations

To answer the research questions posed in this thesis, we must create a piece

of software that can calculate the cell survival fraction field for typical brachytherapy

sources and seeding patterns. First the tally region is discretized using a cubic mesh.

Energy deposits are tallied in the individual voxel cells and are normalized per track.

Absorbed dose is calculated from

E
(2-6)

m

Here DT is the dose per track in a given voxel cell (Gy), s is the average

energy deposited in the given voxel cell per track (J), and m is the mass of the voxel

cell (kg). This dose is multiplied by the total activity of the sources to find the initial

dose rate:
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D0=4ND7, (2-7)

where D0 is the initial dose rate in a given voxel cell (Gy/hr), A0 is the initial activity

of a source (Bq/hr), N5 is the number of sources (sum of all the source weights), and

DT is the dose per track in a given voxel cell (Gy/Bq). Because brachytherapy uses

permanent radioisotope implants, it is assumed that the instantaneous dose rate decays

exponentially with time:

13 = (2-8)

where D is the instantaneous dose rate in a given voxel cell (Gy/hr), D0 is the initial

dose rate in a given voxel cell (Gy/hr), k is the decay constant for the particular

isotope being used (hr'), and t is the elapsed time (hr). The total dose delivered in the

voxel is:

D= fL(tit= fñoedt=-P-, (2-9)

where D is the total dose delivered to the given voxel cell (Gy), D(t) is the

instantaneous dose rate to the given voxel cell (Gy/hr), D0 is the initial dose rate to

the voxel cell (Gy/hr), k is the decay constant for the isotope of the radionuclide being

used (hr'), and t is the time elapsed since implantation (hr). In this thesis
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repopulation is ignored. If repopulation were to be considered the integral would be

from 0 to t, where t would be the effective treatment time. The effective treatment

time is defined as the time at which the cellular repopulation rate equals the cellular

destruction rate. Substituting this into the cell survival fraction equation (Eq. 2-1); the

following equation is obtained:

k(k2) )S=e (2-10)

where S is the tissue cell survival fraction in the voxel cell (unitless), D0 is the initial

dose rate (Gy/hr), k is the radionuclide decay constant (hr'), 2 is the biological decay

constant (hK'), and a (Gjf') and fi (Gj/2) are fitting parameters. S is calculated for

each voxel cell and is visualized to show the effective 'kill' radii.

2.5. Effective Kill Range

When a radioisotope point source is emitting radiation in a uniform medium,

the following equation approximates the dose rate as a function of radial distance

from the source,

XeD=
R2

(2-11)
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Here i3 (Gy/hr) is the dose rate at the distance R (cm) in the media, X(Gy*cm2/hr) is

a constant dependent upon the source strength, and u (cm') is the linear attenuation

coefficient which is dependent upon particle energy and the media surrounding the

source.

When dose rate is evaluated in this manner it can be used to investigate (see

Equation 2-10) the general trends of cell survival fraction as a function of distance

from the source. Varying parameters in the simplified model allows one to study their

effect on dose and cell survival curves. This can also be used to perform a simplistic

study of the damage region. The damage region is defined as the difference between

the survival radius (cell survival fraction 1 0), and the kill radius (cell survival

fraction 10).

2.6. Superposition

After running several test simulations it was found that the time required to

simulate one point source was prohibitive, (several days to a week) to generate a

solution with good statistics. Because brachytherapy requires the use of hundreds of

sources, another method was devised to solve the multiple-source problem within a

reasonable amount of time. It is assumed that the radiation field in a region near two

different radioactive sources is merely the sum of the individual radiation fields. The
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dose fields will be superimposed and the survival field recalculated. The applicability

of superposition will be tested later in this thesis.

2.7. Supporting Programs

Several different programs were written to analyze the data calculated by the

main code. Data calculated for a single source is replicated in an array of structured

sources using superposition. The dose is calculated by interpolating the dose atvoxel

tally centers in the overlapping regions of the voxel mesh. Another code takes the

output of the main program, combines the voxels at equivalent radii from the source

and averages them together for easy visualization.
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3.1. Introduction

30

In the following subsections, the results of the studies performed on dose and

cell survival fraction of specific radioactive point sources ('°3Pd, '37Cs, 90Sr, and 1251)

are presented. This chapter begins by developing approximate single source dose and

cell survival fraction distributions to perform parametric studies. Then the effects of a

second source are investigated. The second source is placed a known distance away

and superimposed upon the calculation from the first source. The effect of the second

source upon the cell survival fraction as the sources are moved closer together is

observed. Finally the effects of modifying the parameters defining the source are

studied to determine their impact upon the cell kill radius (radius from the source at

which the cell survival fraction is 5%).

In the next section, the dose and cell survival distribution of two isotopes

commonly used in brachytherapy ('°3Pd and 125J) and two other isotopes ('37Cs and

90Sr) are analyzed. These sources are studied using data generated from the

PENELOPE Monte Carlo code. Individual point sources are simulated in an infinite

medium of water, and the shape of the dose and cell survival fraction curves are

examined for each isotope. Also observed is the effect of separation distance of two

identical sources on dose and cell survival fraction.



31

Data generated for the dose and cell survival fraction distributions are used as

input data for three dimensional visualization. First an individual point source of each

isotope is plotted (cell survival fraction) to compare the relative killing power of each

isotope. Then for visualization purposes, an array of sources is generated to form a

theoretical brachytherapy seed loading in cancerous tissue.

Also investigated is the applicability of the superposition assumption

simulating a 3H point source's dose curves superimposed upon each other (and cell

survival fraction recalculated from the new dose curve) compared to a direct

simulation of multiple 3H sources.

3.2. Preliminary Studies

This section describes a simple point source shielding model, which is used to

approximate the detailed transport solution generated by the PENELOPE code. The

purpose of this model is to perform parametric studies of effects of different

parameters (source strength, shielding material, isotope dependence, and biological

properties) upon changes in dose and cell survival fraction. Of particular interest is

the kill radius (the radius at which the survival fraction equals 1 E-9), survival radius

(the radius at which the survival fraction equals 1 E-7), and the damage region (the

difference between the survival and kill radii).
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3.2.1. Dose and Survival Radius Comparison

To investigate the expected shape of the dose curves, both Equation 2-10, and

2-1 1 were used with the values listed in Table 3-1 to calculate the radial dose and cell

survival fraction curves for a particular point source. The particular values chosen

were selected because they are representative of the conditions of the simulations

shown later in this chapter.

Name Variable Initial Value Units
Intensity X 1 Gy*cm2/hr

Attenuation 1 cm1

Linear Lesion Coefficient a 0.15 Gy1

Quadratic Lesion Coefficient 0.048 Gy2

Isotope Decay Constant k 0.0017 hr1

Rate of DNA damage repair 2.60 h(1

Table 3-1. Initial Values for the Simple Point Source.

The dose rate is the amount of energy imparted per unit mass of the absorbing

material. This is important because more energy imparted to a cell decreases its

chance of survival. The radial dose rate curve is often modeled as the product of an

exponential decay (due to attenuation), and a 1/R2 function (due to geometric

attenuation).
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Figure 3-1. Radial Dose Rate of a Single Point Source.

Near the source, the 1 /R2 term is dominant (very large) compared to the

exponential term (close to one). Further away from the source the curve approaches

that of an exponential decay as shown in Figure 3-1.

The next graph to be examined is the radial cell survival fraction. It is

expected that the shape of this curve will be very close to 0% survival near the source

where the dose is high and significant damage is done to the cells. As the distance

from the source increases, the cell survival fraction should increase to 100%, as the

cells are protected by sufficient shielding.
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Figure 3-2. Radial Surviving Fraction of a Single Point Source.

Figure 3-2 shows the cell survival fraction for this sample problem, and it is

seen that it is effectively zero at small distances from the source. Further away from

the source the cell survival fraction increases rapidly approaching 100% survival. The

region of the curve where the survival fraction is between 1 E-9, and 100% is

interesting, because in this region cells are exposed to the effects of radiation, but are

not being completely killed. In this region there is potential for radiation induced

mutations and/or surviving tumor cells.

3.2.2. Two Source Studies

In this section, the simple shielding model and superposition are used to

model the effects of survival fraction upon the distance between two identical
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sources. The data used for this calculation are shown in Table 3-2. These values are

the same as those used in the computational simulations presented later in this thesis.

Name Variabje Initial Value Units
Intensity X 1 Gy*cm2/hr

Attenuation 1 cm1

Linear Lesion Coefficient a 0.15 Gy1

Quadratic Lesion Coefficient 0.048 Gy2

Isotope Decay Constant k 0.0017 hr1

Rate of DNA damage repair 2.60 hr1

Table 3-2. Initial Values for Two Source Studies.

In the limit as the two sources are placed large distances apart, the dose and

cell survival curves will not overlap, i.e. the sources do not see each other. As the

sources are placed closer, the dose curves from each source will overlap. This is

particularly significant in the region where there is a sharp rise in the survival

fraction. When the sources have a very small spacing, the cell survival fraction

continues to drop until effectively every cell is killed.
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Figure 3-3. Two Sources Studies 6 cm Separation Distance.

rce #2

6

36

At 6 cm separation (see Figure 3-3), the individual sources do not see each

other. At this range the two sources kill in their local zones and do not interact at all.
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Figure 3-4. Two Source Studies 4 cm Separation Distance.
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Figure 3-4 shows that at 4 cm separation, there is significant overlap at the tail

end of the two dose curves, but the survival fraction still looks strongly like that of

two independent sources.
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Figure 3-5. Two Source Studies 2.9 cm Separation Distance.

At 2.9 cm (see Figure 3-5), there is enough of an overlap between the two

sources to effectively destroy all cells between the two sources. The cell survival

fraction curve remains below 1E-9. If the spacing between the two sources was

further decreased, the height of the cell survival curve would decrease further.

3.2.3. Parametric Studies of Damage Region

In the following case studies, the kill radius is defined as the 1 O cell survival

radius, the survival radius is defined as the 1 O cell survival radius, and the damage
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region is defined as the difference between the survival and kill radii. The initial data

used for each of these calculations is as shown below in Table 3-3. This data is based

upon values similar to those used in the computational simulation later in this chapter.

Name Variable Initial Value Units
Intensity X 1 Gy*cm2/hr

Attenuation I cm1
Linear Lesion Coefficient a 0.15 Gy1

Quadratic Lesion Coefficient p 0.048 Gy2
Isotope Decay Constant k 0.0017 hr1

Rate of DNA damage repair 2.60 hr1

Table 3-3. Initial Values for Sensitivity Studies.

The effect of source intensity on the kill and survival radii is presented in

Figure 3-6. The intensity of radiation depends on the quantity and half-life of the

radionuclide present.
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Figure 3-6. Intensity Dependence.
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In Figure 3-6 it can be seen that as the intensity of the source increases, the

kill radius increases. As the intensity increases, more and more particles are emitted

increasing the number of particles (and energy) deposited in cells further away from

the source.
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Figure 3-7. Intensity, Ratios of the Linear and Quadratic Terms.

Figure 3-7 shows that at a given radius, an increase in intensity makes the

quadratic term more important (linear/quadratic decreases), as would be expected

from the D2 term from the linear quadratic equation.

Figure 3-8 illustrates the effect of the attenuation factor on the survival and

kill radii. The attenuation factor is a sensitive function of the material through which

the radiation is traveling and the energy of the particle. The density of the material,

and the interaction cross-sections () are the important material properties for

attenuation.
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Physically, it is expected that an increase in attenuation will cause a decrease

in kill radius. This model demonstrates that expected behavior.
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Figure 3-9. Attenuation, Ratios of the Linear and Quadratic Terms.
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Figure 3-9 shows that at a given radius, as attenuation increases the quadratic

tenn of the linear quadratic equation becomes less important. This is physically

explained because more of the dose is being attenuated and as there is less dose, the

D2 term becomes less important.

The linear lesion coefficient (a) is a biological parameter used to predict the

number of fatal lesions produced by one-track action (one particle). It is a function of

the type of cell being irradiated and the particle LET (linear energy transfer).

Linear Lesion Coeficient Dependence
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Figure 3-10. Linear Lesion Coefficient Dependence.
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A larger linear lesion coefficient physically means that more of the lesions

that are a result of one-track action are fatal. More fatal lesions implies that fewer
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particles will be required to kill a cell, causing an increase in the kill radius. Figure 3-

10 demonstrates this behavior.
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Figure 3-11. a, Ratios of the Linear and Quadratic Terms.
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Figure 3-1 1 shows that at a given radius, as the linear lesion coefficient is

increased the quadratic term becomes less important. This is because the linear term

is directly proportional to the linear lesion coefficient.

The quadratic lesion coefficient (f3) is also a biological parameter that is based

upon lesions caused by particle tracks, but it accounts for two-track (two particle)

interactions. Just like the linear lesion coefficient, its magnitude is dependent upon

the cell type being irradiated and particle LET.
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The quadratic lesion coefficient physically describes the formation of lesions

occurring due to interactions between lesions in the DNA. When multiple lesions

occur within a short amount of time, the combined effects of several lesions that may

be non-lethal by themselves become lethal when occurring together. The more rapidly

the radiation is emitted, the more lesions are created which increases the potential of

interactions between the lesions. A larger value of 3 would seem to indicate a greater

effect of interactions between lesions and cause an increase in the kill radius as seen

in Figure 3-12. However, with the data used in this model it was found that 3 has a

small effect upon the kill radius.
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Figure 3-13. J3, Ratios of the Linear and Quadratic Terms.

Figure 3-13 shows the effect of increasing the quadratic lesion coefficient on

the linear/quadratic ratio. At a given radius, as the quadratic lesion coefficient is

increased the quadratic term becomes more important, as would be expected.

Figure 3-14 shows the effect of radionuclide decay constant on kill and

survival radius. The isotope decay constant is a functionof the specific source nuclide

and is equal to ln(2)/t112, where t112 is the isotope's half-life.
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Figure 3-14. Isotopic Half-Life Dependence.

An isotope with a short half-life will decay rapidly and a small quantity would

be required to create a source of a given decay rate. This small source quantity will

generate a relatively small dose, which decreases the cell killing probability, and the

kill radius will decrease. In summary, for a given initial decay rate the isotope decay

constant increases, the kill radius will decrease. This behavior is shown in Figure 3-

14.
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Figure 3-15. Isotope Half-Life, Ratios of the Linear and Quadratic Terms.

Figure 3-15 shows that changing the isotope half-life has no effect on the

relative values of the linear and quadratic terms. This is because the sources are

normalized to the same initial dose rate and because of this the relative ratio is equal

to a(k+X)/3D. The isotope decay constant is almost always much smaller than the

rate of DNA damage repair, therefore k becomes unimportant in changing the ratio.

Figure 3-16 shows the effect of the DNA repair half-time on the kill and

survival radii. The rate of DNA damage repair is the rate at which the cell repairs the

effects of radiation. The rate of DNA damage repair is related to the DNA repair half-

time by k=ln(2)h. The larger the value of the rate of DNA damage repair the more

rapidly lesions are repaired.
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DNA repair half-time effects are relevant when there is a time delay between

radiation doses. For example: when a cell is damaged by two independent particles

and multiple non-lethal lesions are created. If these non-lethal lesions are repaired

before a large number occur the cell will survive. It was observed previously that the

magnitude of the quadratic lesion coefficient did not change the kill or survival radii.

For this test problem, the kill and survival radii are relatively insensitive to the tissue

decay constant. In general an increase in the tissue decay constant will cause a

reduction in the likelihood of multiple particle interactions within the target cell and

this can be seen in Figure 3-16. Mathematically this can be explained from Equation

2-10. The quadratic term is proportional to 1/k*(k+?), and as X (rate of DNA damage

repair) increases the denominator increases and the value of the quadratic term
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decreases. Therefore if 2 increases the survival fraction will increase and the kill

radius will decrease.
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Figure 3-17. DNA repair half-time, Ratios of the Linear and Quadratic Terms.

In Figure 3-17 at a given radius, as the DNA repair half-time is increased the

quadratic term becomes more important. This is related to the discussion above about

a longer repair time allowing more non-lethal lesions to form, possibly becoming

lethal lesions.

3.3. Brachytherapy Radioisotope Source Calculations

The sources that were studied are 103Pd, '37Cs, 90Sr, and 125j These sources

have differing emission spectra and some emit gamma particles, whereas others emit
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beta particles. The common factor between all of them is that they are all commonly

used in brachytherapy. From the simple shielding studies previously shown, there is a

certain expected shape for the dose and survival curves, although they will all be

slightly different due to differing emission particle type and energy. Presented in this

section are the results for one and two source studies comparing the shapes of the

dose and survival curves against each other.

The decay schemes for the isotopes studied are as follows (Martin 2000 and

Parrington 1996):

'°3Pd decays by electron capture (t112 of 16.99 days) to an isomeric state of

1O3 (t112 of 56.12 minutes), with the emission of a 357 keV gamma plus the related

x-rays. bo3Rh* is assumed to be in equilibrium with '°3Pd, and the 1O3J emits a

gamma of 39.8 keV plus the related x-rays. The ground state of 103pJ is stable.

125k (ti,2 of 59.4 days) decays by electron capture, with an emission of a

gamma (35.5 keV) and the related x-rays to the ground state of '25Te, which is stable.

'37Cs has a half-life of 30 years. It decays by beta emission, with a maximum

emission energy of 1.18 MeV. The most probable (94%) decay takes '37Cs into the

isomeric state of '37Ba. The impact of I37Ba* was NOT taken into account during the

simulations run for this thesis. The ground state of '37Ba is stable.
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90Sr (t112 of 28.7 years) decays by electron emission (maximum electron

energy of 546 KeV) to 90Y (t112 of 64 hours), and is assumed to be in equilibrium with

90Y. 90Y decays by electron emission to 90Zr (maximum electron energy of 2.28

MeV). One possible branching scenario includes the emission of a gamma, but the

probability of emission is on the order of 10h1. This gamma was NOT taken into

account, it was considered insignificant. The ground state of 90Zr is stable.

3.3.1. Individual Source Comparison

This section compares the radial shapes of the dose and cell survival fraction

curves for a single point source of each isotope. Individual sources are simulated by

means of a Monte Carlo program as a point source in an infinite medium of water.

Table 3-4 contains the initial parameters used in each simulation.

Isotope Particle
Type

Initial
Activity (Ci)

k (hr') 2 (hr-i) ci. (Gy') 1 (Gy2) Particles
Run

'°3Pd P 1E-4 l.70E-3 1.5 0.15 0.048 8.34M

'37Cs 6 1E-4 2.63E-6 1.5 0.15 0.048 15.8M

90Sr 6 1E-4 2.75E-6 1.5 0.15 0.048 5.42M
125j P 1E-4 4.86E-4 1.5 0.15 0.048 6.11M

Table 3-4. Values Used for the Simulation of Brachytherapy Sources.

To compare the four isotopes studied in this thesis the initial dose rate

associated with 1 jiCi of each source is plotted in Figure 3-18. Of the four isotopes
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103Pd and 125j are gamma (photon) emitters, and 137Cs and 90Sr are beta (electron)

emitters. An interesting point to note is that 90Sr has a significantly longer half-life

(28.8 years) than its daughter product 90Y (2.67 days ground state), and therefore

90Y is assumed to be in equilibrium with 90Sr. 90Y is also a beta emitter and was taken

into account when generating the 90Sr spectrum. '°3Pd's decay scheme includes

electron capture, which changes '°3Pd into an excited state of 1O3jj The half-life of

'°3Pd (17 days) is significantly larger than that of the excited state of '°3RJ (56

minutes); therefore, again equilibrium is assumed and 1O3 is taken into account in

the generation of the source spectra of '°3Pd (both gamma emitters).
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Figure 3-18. Dose Rate Point Sources.

From Figure 3-18 one can see the relative dose that each source imparts to its

surrounding region. The two beta emitters studied impart more dose to the
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surrounding material than the two gamma emitters. 90Sr imparts the most dose,

followed by '37Cs, then comes '°3Pd, and finally 125j which imparts the least dose of

the four isotopes studied. The interesting thing about '°3Pd and 125j is the fact that

they impart almost the same dose to the surrounding tissue.

Survival Fraction
(0.1 millicurie point source in H20)

0 0.25 0.5 0.75

1II
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Figure 3-19. Cell Survival fraction Point Sources.

1.25 1.5

The effect of the lose upon cell survival also needs to be compared to have an

effective interpretation of the effects of these sources on tissue for brachytherapy

planning considerations. One interesting example of dose not being equivalent to cell

killing can be seen by comparing Figure 3-18 and Figure 3-19. '°3Pd imparts more

dose to the surrounding tissue, but when it comes to cell survival fraction 1251 is

actually better at destroying cells. While this sounds strange, it can easily be

explained from the consideration of half-lives. '°3Pd has a half-life of 17 days

whereas 125j has a half-life of 59.4 days. The longer half-life of 125j means that while
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its initial dose rate may be lower than that of '°3Pd, '°3Pd will 'burn out' more

quickly. Eventually 125j will be imparting a greater dose rate than '°3Pd. In short '°3Pd

does more damage initially, but 125j does more damage in the long run.

Another major feature seen in Figure 3-19 is that as the killing range increases

(radius of 1 O cell survival fraction) the trend is that the slope of the survival curve

between the killing range and the survival range (1 I cell survival fraction) becomes

much more gradual.

3.3.2. Two Source Studies

Just like in the simple shielding case, superposition was used to study the

effect of two identical point sources moving toward each other for each isotope

simulated.
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(0.1 mCi point source in H20)
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Figure 3-20. Two Source Studies '°3Pd.

When two '°3Pd 0.1 mCi sources are placed 0.43 3 cm apart in an infinite

medium of water the resultant distribution of cell survival fraction is that of Figure 3-

20. It is interesting that at this separation the survival fraction peaks at about 1 02, but

the curve still mostly retains the shape of two independent point sources. The curve

rises with the familiar shape then forms a plateau before decreasing again under the

influence of the second source.
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Figure 3-21. Two Source Studies 125j

In Figure 3-21, the cell survival fraction peaks at about 1 0 cell survival

fraction for two 0.1 mCi point sources of 125j placed 0.433 cm apart. The 125j survival

fraction is about 3 orders of magnitude less than that of '°3Pd at the same source

separation and the impact of greater damage region overlap can be seen on the shape

of the curve in Figure 3-20. The survival curve of 125j at a 0.433 cm source separation

forms a much more arch-shaped curve than the '°3Pd does.
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Two 137Cs Sources 1.73 cm Separation
(0.1 mCi point source in H20)
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Figure 3-22. Two Source Studies '37Cs.

Figure 3-22 is a good illustration of the difference from the survival curves of

gamma emitters. Two 0.1 mCi 137Cs point sources at 1.73 cm spacing generate a

survival curve peak at 57%. The curve has a plateau shaped peak instead of a more

gentle arching curve consistent with a gamma emitter (for example 1251 in Figure 3-

21). Another prominent feature of the two source '37Cs survival curve is that the

separation between sources is about 4 times greater than the separation between the

two previously mentioned isotopes in this section. This is a good illustration of the

effect of the larger range of '37Cs.
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Two 90Sr Sources 2.6 cm Separation
(0.1 mCi point source in H20)
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Figure 3-23. Two Source Studies 90Sr.

The last isotope to be considered here is a 0.1 mCi 905r source. 90Sr is also a

beta emitter and also exhibits the much sharper curves in the damage region than

would result from a gamma emitter. At the source separation of 2.6 cm shown in

Figure 3-23, the two 90Sr sources are too far away from each other to contribute a

significant amount of dose to each other's damage region. This combined with the

sharpness of the graph in the damage region creates an interesting plateau shape. This

means that 90Sr is a potentially 'precision' killing isotope.

3.4. Three Dimensional Source Arrays

Running individual point sources can take an immense amount of computer

time (5000 minutes for a short run, 20000 minutes for a long run on a 750 Mhz
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Spark), especially since electron interactions and secondary particles are sampled in

detail, especially for analog Monte Carlo (no variance reduction). Because of this a

single source was calculated, and its results were then post processed with an external

program to superimpose the dose fields from multiple sources and recalculate the

survival curves. This section studies the effect that deviations of seed placement (one

seed displaced) have upon dose and survival curves in a three dimensional matrix.
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Figure 3-24. 10Pd 0.1 mCi Sources 0.4 cm Pitch.
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Figure 3-24 is a three dimensional visualization of cell survival probabilities

for '°3Pd. At a pitch (center-to-center spacing) of 0.4 cm it shows little overlap

between neighboring sources. At distances greater than 0.3 cm the 0.1 mCi sources do

not have a significant effect on cell survival.
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The pitch used for the 125j sources is the same as that for '°3Pd, 0.4 cm. Both

isotopes have similar dose and cell survival curves. '°3Pd has a slightly greater initial
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dose rate, but 125j has a greater effect on cell killing. This can be seen in Figure 3-25.

The same scales were used in both figures.
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Figure 3-26. '37Cs 8-0.1 mCi Sources 1.0 cm Pitch.

Figure 3-26 shows an array of 8 '37Cs sources with a pitch of 1.0 cm. When

Figure 3-26 is compared to 3-24 and 3-25 it can be seen that the range of '37Cs is

much greater than that of 103Pd or 125J Also of interest is the fact that the edges of the

cell killing range are much sharper for '37Cs (electron emitter) than for the photon

emitting isotopes shown ('°3Pd and 125J) This can be attributed to the 'drag' on
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electrons caused by Coulomb forces causing them to stop in shorter distances than

uncharged particles such as photons.
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Figure 3-27. 90Sr 8 0.1 mCi Sources 2 cm Pitch.

The last isotope to be considered in this section is 90Sr. Figure 3-27 shows the

905r sources placed with a 2 cm pitch, much larger than any of the other sources

studied in this thesis. This extra range is attributed to the decay of the daughter of

90Sr, 90Y. 90Y has a maximum electron emission energy of 2.28 MeV (Martin 2000),

which is huge compared to that of 137Cs (maximum electron energy of 1.18 MeV

(Martin 2000. 90Sr also shows the sharp edges on the killing range.
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3.5. Superposition

Superposition of the dose was used as an assumption for the previous multiple

source problems. The reason that it was used is because the simulation time for one

point source was immense (5000 to 20000 minutes). The simulations were run with

the PENELOPE code and then post processed with a secondary code to superimpose

dose rates from different sources upon each other. Then the cell survival fraction was

recalculated. To test the validity of the superposition assumption, a calculation was

performed (see Table 3-5) with two 3H point sources. The result from single source

calculations was compared to the two source calculation.

Isotope Particle
Type

Initial
Activity (Ci)

k (hr') X (hr-i) a (Gy1) f3 (Gy2)

3H e lObo ____6.42E-611.5 0.1 0.01
Table 3-5. Values Used for Superposition Test Problem.
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Figure 3-28. Superposition Sample Problem.

Figure 3-28 shows the data generated by a simulation of two point sources of

3H (the X's) with coordinates of -0.0002,0,0 cm and 0.0002,0,0 cm, and the data

from a single point source (the dots) reprocessed and superimposed upon the other

source with a spread of 0.0004 cm. As can be seen from Figure 3-28, there are no

significant differences between the two different methods. Therefore superposition is

a reasonable assumption.

3.6. Summary

This chapter describes the results of a simple point source model used to

predict the approximate shape of the dose and cell survival curves that the simulated

sources would show. The effect of a second source influencing the cell survival curve
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was considered. Parametric studies were performed to examine the effects of changes

of various parameters that influence the shape of the cell survival curve. Several point

sources ('°3Pd, 137Cs, 90Sr, and 1251) were run using the PENELOPE code to model the

dose and cell survival curves. Superposition was used to simulate a second identical

point source near the first one and the impact of the proximity of the second source on

the cell survival curves was shown. Superposition was again used to superimpose

multiple point sources in three-dimensional space and 3D maps of cell survival

fraction are shown for each isotope. This chapter ends with a sample problem using a

3H source to double check if superposition is a reasonable assumption to use for the

problems presented in this thesis.
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4. Conclusions and Recommendations for Future Work

4.1. Conclusions

The questions proposed in this thesis are:

What resolution is needed (how small does a voxel need to be) to allow the

change in dose between neighboring voxels to be small (less than 10%),

What is the killing range of the different isotopes studied,

How do the shapes of the dose and cell survival fraction curves compare, and

How do small deviations in placement of sources affect the cell survival fraction

curve?

Resolution studies were started, but were discontinued for the following

reasons: experimentation with the PENELOPE code showed that as the voxel size

was decreased, the dose to the voxel in which the source was positioned would

increase without bound (see Equation 2-1). This in an artifact of a size reduction of

the voxel in which the point source is located in, and is not physical. The

brachytherapy seeds have a finite volume that tissue does not occupy; therefore, the

question that should have been asked is "What resolution is required such that, in the

tissue being irradiated, dose changes between neighboring voxels is kept small?"

Another issue concerning voxel size is that as the length of a side of a voxel is halved,
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the volume of the voxel decreases by an eighth. If the volume decreases by a factor of

eight, eight times the number of voxels are required to map the same region. Eight

times the number of simulated tracks also need to be run to achieve approximately the

same statistics. This means that if the length of a side of a voxel is halved, the

simulation will need to run eight times as long.

The sources studied in this thesis were all simulated with the same initial

activity (0.1 mCi). Their relative kill (survival fraction of 1 0) and survival (survival

fraction of 1 0-v) ranges are summarized in Table 4-1. It was found that the gamma

emitting sources (103Pd and 1251) had much shorter ranges than the beta emitting

sources ('37Cs and 90Sr). This can be attributed more to emission energy and half-life

than to particle type. Although, when the damage region is divided by survival radius

it is found that the beta emitting isotopes have a much smaller damage region relative

to their survival radius. It would be interesting to see more isotopes of each type

compared and to assess the variation across a larger sample of isotopes.

Isotope Kill Radius
(cm)

Survival
Radius (cm)

Damage Region
Thickness (cm)

Damage Region /

Survival Radius
luipd 0087 0.094 0.007 0.074

0.115 0.129 0.014 0.109

0.456 0.461 0.005 0.011

°Sr 1.023 1.034 0.011 0.011

Table 4-1. Kill and Survival Radius.



The shapes of the dose and cell survival fraction curves have been shown in

detail in Chapter 3 (Results). The dose curve drops off as an exponential decay with

increasing distance from the source. The cell survival fraction curve starts at zero

chance of survival near the source. Upon reaching a distance sufficiently far away

from the source, the cell survival fraction curve begins to increase rapidly reaching a

value of 100% cell survival.

Through studies involving two sources in close proximity to each other it was

found that small deviations in placement can have very large effects on cell killing.

This occurs because the survival curves are extremely steep. When sources have a

spacing larger than the 95% survival radius, they behave as if they are independent.

When their spacing is less than that of the kill radius then everything is destroyed

between the two sources, but everything in that region would be destroyed by a single

source. Again this scenario is uninteresting. The interesting situation occurs when the

two sources approximately have their individual 1 O survival radii overlapping. In

this case cells within the damage region of both sources are more effectively killed

than if it were merely within the range ofjust one source.

Many trends important to an understanding of brachytherapy were

investigated during the course of this work. The simple shielding problem was

effective in studying trends achieved by manipulating certain variables:
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As intensity is increased, the kill radius increases,

As the shielding attenuation factor is increased, the kill radius decreases,

As the linear lesion coefficient increases, the kill radius increases,

As the quadratic lesion coefficient increases, the kill radius increases slightly, and

the damage region thickness decreases slightly,

As the isotopic decay constant increases (t112 decreases) , the kill radius decreases,

and

As the rate of DNA damage repair increases (tissue repair half-time decreases),

the kill radius decreases slightly.

The PENELOPE brachytherapy calculations also presented some lessons that

are important to take into account when planning a brachytherapy treatment. The

decay constant of the radioisotope source has a pronounced effect on the cell survival

radius (see Figures 3-12 and 3-13). Figure 3-12 shows that '°3Pd deposits more dose

in the surrounding tissue initially, but because of its large decay constant (small t112) it

decays rapidly and 'burns out'. As a result, it actually has less of an effect on cell

killing than 125J (see in Figure 3-13).

The type of particle emitted also significantly effects the shape of cell survival

curves. Beta emitting radioisotopes have curves with a sharper distinction between

the kill radius and the survival radius. This effect can be explained by the fact that

photons must undergo collisions to deposit their energy, whereas electrons
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continuously interact with the surrounding materials through Coulomb interactions.

These Coulomb interactions act as a drag bringing low energy electrons to a stop in a

shorter distance than for similar low energy photons and depositing the energy in a

more confined region in the material.

4.2. Recommendations for Future Work

There are several issues that need to be addressed to take the next few steps in

this work. Improvements in the PENELOPE code that could be implemented for

better results are: use of a more complicated cell survival model, and support for

modeling of different material regions and geometries.

One of the shortcomings of this research is that the '37Cs source definition

excluded several x-rays. The impact of these x-rays on the cell survival curve is

unknown, and should be investigated. Studies should also be performed to compare

the accuracy of the output data for various choices of the energy cutoffs. Increasing

the cutoffs decreases computational time at the cost of accuracy. If a good 'rule of

thumb' can be developed, simulation times can be decreased while maintaining

confidence in the accuracy of the results.

The post processing code that needs the most work is the code that performs

the 3D mapping of the individual sources. Data from the single source simulation is
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mapped to the locations where all the sources in the specified array lie, then it adds

the doses in the overlapping regions. With a large number of sources, this process is

very slow when plotting in 3D because of the immense number of overlapping

vertices/cells. If the duplicated points were eliminated at the end of the post

processing code, 3D visualization could be accelerated.

The primary improvement needed in the PENELOPE code is implementation

of material regions and geometries. Adding support for different material regions and

geometries would allow a much more faithful representation of the brachytherapy

seeds, and the surrounding tissue. Another potentially useful addition to the

PENELOPE code would be to use a more accurate/complicated cell survival

correlation, preferably one that includes repopulation. If repopulation is included, the

effect of decay constants on cell survival distributions may be significantly different

than that calculated in this study.
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A. Derivation of Dose Protraction Factor for Radiation Pulse

The equation for the dose protraction factor is as follows:

o I

G = J15(t) Je(t_t')13(t)dtPdt, (A-i)
D2

where D is the total dose (Gy), D(t) is the dose rate (Gy/hr) at time t (hr), and 2 is

the DNA repair constant (hr').. The dose rate for a radiation pulse from t=O to tt1 is

defined as follows:

ñ(t)= D0, (A-2)

where D0 (Gy/hr) is a constant, and the total dose D=DO*tf. Inserting Equation A-2

into A-i and changing the limits of the integrals to values at which the pulse function

is non-zero,

G
2 JD0 Jet')Dodt1dt. (A-3)

(Dot o

Simplifying Equation A-3,
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G = Je $e'dt'dt. (A-4)

1 0 0

Integrating and applying the limits of the inner integral,

Simplifying Equation A-5,

G=--Je dt. (A-5)
(e'i)

2

G=---J(1e)it. (A-6)

Integrating the second integral and applying the limits,

G=Itf+e _i. (A-7)
2 2)

The final result for the dose protraction factor for a pulse of duration tf is,

G= (t2+e _i), (A-8)
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B. Derivation of Dose Protraction Factor for Exponential Decay

The equation for the dose protraction factor is as follows:

G = 113(t) Jett')b(t')dt'dt, (B-i)

where D is the total dose (Gy), D(t) is the dose rate (Gy/hr) at time t (hr), and 2 is

the DNA repair constant (hr'). The dose rate for an exponential decay begiiming at

t=O is defined as follows:

D(t)= Doe_kt, (B-2)

where D0 is the initial dose rate (Gy/hr) and k is the isotope decay constant (hr').

Substituting Equation B-2 into B-i and changing the integral limits for the time at

which the source is non-zero (t 0) then,

G
(D0/k)2

SDoe
Je2(tt)Doetdtdt. (B-3)

Simplifying,



G = 2k2 $et Je(2_t'dtPdt.

0 0

Solving the inner integral and applying the limits,

Simplifying,

1
G = 2k2 Je+2)t (e 1)dt.2k0

G 2k2
1(e_2kt e2' )dt.

2--k
0

Solving the remaining integral and applying the limits,

2k2
G=

2k 2k 2+k

79

(B-4)

(B-5)

(B-6)

(B-7)

The final result for the dose protraction factor for an exponentially decaying source

beginning at t=O and allowed to decay to infinity is,

G= k
(B-8)2+k




