A SUGGBSELT PLAE POR THE MANUPAQTUER OF 2LTWOOD IT SERU

by
JORGE RABME sucoar

A masys
subuitted to the
OR2acm Smars cowner

in partial fulfillment of
the requirements for the
degree of
MASIER OF SOIm
Deamerer 1945

APPROVED:

Redacted for privacy

Profecsor of Wood Produete In Onarge of Major

Red̄acted for privacy

Head of Department of Wood Product:

Rēdacted for privacy

Chairman of Sohool Graduate Committee

AOKMOWLRDCMEMT

The author wishos to express grateful appreciation to Professors J. B. Grantham and P. B. Proctor for their helpful aritiaism of the thesis and valuable suggestions for its improvement. For helpful information on the equipment, I am grateful to the United States Machinexy Company, The., 90 Broad Streot, Mew York.

HR2 40 R

Peru possessea a great potential timber resource in its Anazon Valley, valley covering more than half of the cowntry, and aupporting an abundant growth of valuable woods. Notwithatanding the inoreasing importance, throughout the world, of immmerable plywood products for use on the land, on the sea, and in the air, Pern has not yet begun the manufacture of plywood.

This thesis, whioh in intended to be a partial basis for the future development of a plywood industry in Porz, is not an economio treatise, but a review of Ameriaan Plywood Manufaeturing Methods, to determine those that might be applicable to the production of plywood in Peru.

TABLE OR COXTEXPS

Page
ingrovucr xow 2
THE MAVOACTURDNO RROCESS 6
VEAEER PRODUONTOM 5
Plain veneer for backs and cores 6
Preparation of loge for outting 5
notary outting 7 7
Clipping 8
Sorting 8
Drying 9
Fsae venear 10
Figure in wood 11
preparation of logs for outting 24
Sliaing 15
Drying 16
Dimensioning 16
Jointing 16
Rage giving 27
3torage 18
clung 19
Mixing 19
Spreading 20
Assembly 28 28
pRDSSIMG 24
Moiature content of veneer 24
Preasure 24
Temperature and time relationships 25
type of press 26
Reconditioning after pressing 27
FIWAL BREMS IN MANOACHURE 89
Dimensioning 29
Sanding 29
Storage 30
SORE PROBLLMS ERCOUTERSD IT THE MANUFAOTURE OP RITNOOD 81
The warping of plywood 51

TABLR OF COMTENAS (00KT.)

Page
Plyvead and venear waste 34
The utilisation of waete 86
ALBLIOGRATEY 57
APM 2 DIX 89
theory of gining 39
curney and Luxie chayt 42 42
sesting Ior Adhemve Strongth, Moietwre conteat. and Moisture Absorption 47
Estimation of the Speeine cravity of Plywood 49
A PROPOSED PLAKL FOR PMRV 58
Plant equipment 58
Machine leyout 56

ITTRODUCTIOM

Wood, a produot of nature, is a non-homogeneous material. Its strength parallel to the direation of the grain may be 10 to 20 times greater than 1 ts strength aoross the grain. Wood is also a hygroscopio material which ohangen almensions with a gain or loss of moisture. However, the dimension parallel to the grain is affeeted very little by ohanges in moisture content.

These facts auggested the possibility of modifying the strength properties of wood and of reduoing its dimansional changes by alternating the direation of grain in a laminated construetion, whioh is technioally known as plywood.

P7ywood is the product resulting from three or more layers of veneer* joined with give and usually laid with the grain of adjoining plies at right angles. Almost always an ode number of plies are used to sesure balanoed construotion. The outside plies are alled raoes, or face and back. The oenter ply is oalled the core, and intervening plies, laid at right angles to the others, are called arossbands. A technioal distinotion is uswally made between plywood, as such, and laninated wood. The term laminated wood is most frequentiy applied when the

[^0]plies are too thick to be clagaified as vaneer and the grain of all plies is parallel.

Plywood possesses lour main advantages over natural wood. First, plywood that is properly designed and mankfactured has very slight tendency to expand or oontraat and thus satisfacterily retains its Aimensions. Second, as a result of the approximate equalisation of strength properties along the length and width of the panel, plywood might be desoribed as being equally strong in all airections. Third, it has great resistance to splitting by nails, serevs, or other types of rastenings. Fastoninge may be made very olose to the edgee without damage. Fourth, it is available in almost malimited sizes.

The story of vencer beging in the roviptures of Thebes, dated as early as the time of Thothmes III (a. $1500 \mathrm{~B}, 0$.). Down through the oenturies, Babylonia and Assyria continued to advance the art of veneering. Influenced by the gegptians, they too onriohed plain, eturdy furniture with thin sheets of rare woods, preaious metals, and jewels. Histery records that veneer wae firat used by the early Romans on ex extensive soale for door frames and panels. It was the Romans who antedated the usage of plywood panelling as seen today in homes, shope, and office buildinge. Iet it has taken modern ingenaity plus engineering and teohniagl skill to develop a produet
capable of meeting the large seale but exeoting requirements of todey.

In developing the plywood industry of Peru, it is intended to utilize native species. A few of the many species most auitable for veneer are listed below.

The woods suitable for face reneer are Swietonia Macrophylla King (Oaoba-Mahogany), Oedrela odorata L. (Cedro Coloraco), and Inglans Heotrepics Diels (Fogel-Peruvian Wainut). (20).

Swictonia Masrophyila King is the most common of the ppeaies available for face veneer and for thie resson it will be given major consideration in this stualy.

The light species auitable for core stock are Oohrong Boliviana Rowlee (Palo de Balsa), Bombax Mumerba Mart. (MuinaCaspi), and Guasma Orinita Mart. (Bolaina). (20)

A moderately heavy woed nuitable for core stook is Alogen Jelskit Mes. (Moona el Agua). (20)

Due to the lack of avallable data on physieal proporties of most of the woode mentioned, meaifie data are not oomplete and further study of the native woods will be required.

The available markets for the finished artiele inciude ornamontation, furaiture and oabinet manufacture. store and office fixtures, paokaging, and poesibly at a

Iuture ate in meh mpeelalited tielas as arplane, antomotive, ana marine oongtruction.

THE MANGACTURDU RROCRSS

vamarir PRODUOTION

The following desoription of the produation of veneer is based on a one-lathe plywood factory with a veneer slieing wit (See Appendix). For purposes of convenience, the desoription ig aivided on the basis of the product produced rather than on the basis of the natural flow of the prooess.

Plain venear for baoks and cores.
In the proposed plant the plain rencer for beoks and cores will be rotary out. Rotary veneer is used principally for non-decorative purpeses and for back and core stook.

Preparation of loge for outting.
The firgt step in the veneer making process is to bring the wood fiber into the best oondition for clean, smooth cutting. This is accomplished by soaking the logs in hot water. Steaming, which is used for geesies that do not rupture casily under sudden inereases in temperature, will probably not be desirable for the speoies maer consideration, although further study may indiaate the need for steaming of certain speoies.

The soaking ia performed in vats of conerete covered With loose cover-boards. The size of the vats for the proposea plant (See Appendix) will be approximately 18 feet wide, 36 feet long, and 5 feet deep. Live steam will be discharged at several points below the water level under thermostatio control.

The logs will be placed in the vats when the water is no more than moderately warm. The temperature will be raised gradually to the maximum, whish will vary with the sise, speaies of 10 g , and the character of the vencer to be out. Acourate control is necessary: if the loge are not heated through they will out "rough"; if soaked too long the loge will shred in outting. The thieker the veneer to be out, the higher the temperature required to reduce the hazard of fracturing. $(10 / 115)^{\text {< }}$ The exect tomperatures required for the Peravian species to be out will be detormined experimentally.

On leaving the soaking vate the loge will be out inte lengths by a log band cut-off baw, and the bark removed while hot. The loge will be bariced manually in this plant with axes and apuds, and the more apparent defeats out out. Then the logs will be brought to the rotary lathe by means of an lectric hoist. The elapsed tise from the vat to the lathe should be as short as possible.

Rotaxy outting.

Plain or potary out veneer is produeed in massive Lathes (See Fig. IIT), (10) consisting primaxily of a rigia Irame with sturay itxed housinge at oither ond. the housinge are equipped with beaxings for the main opinale. The log. Iastened between the dogging and tail spinales of the machine, revolves on the spindlee toward a kifo rwning the whole length of the log. The laite, together with a pressmue bar, is mowntea on a movable assembly. This mochonism is mown in Fis. IIIA, where A is the kife bed easting: B, the premsure bar bea casting; C, the knife: D, the pressure bar; 專, the opurs for trixaing the edges of Feneaxs as eut; and F. the log. The log wevolves against the kaife and the presame bar holds the wood fimmy at the instant of cutting. The knife oaviage is moved inte the log by automatic feed sarews revolving at a gpeed that controle the thickness of the veneer. A gearbox seed meohenism controls the movement of the aseombly earrying the knite and prossure bar. (15)

The pitoh of the knite, as aetermined by the angle whian the bevel of the luife makes with a perpenaicular Ine through its outting oge, shoula be varied for loge of different aismeters. It follows that the pitoh of the Inife shovid be adjusted as the amoter of the log deareases.

As the reneer comes from the lathe it will be womd on to a reel and taken to the elipper.
olipping.

The rotary ont vencer will be trimmed into dimensions to suit the desired panel sise and defeets in the veneer will be out out. In outting out defeats, it is essential that the cut be made as eloae to the defect as practiaable so that the amomit of veneer discarded is kept at a minimum.

Motor actuated veneer alippers will be used in the proposed plant (See Appendix). Iaoh will consist of four essontial parts: 1. An iron frame with vertiaal kives; 2. A shear plate: 3. A entting table; 4. A heavy movable inife. To make a out the operator depresses a floor -witoh. This starts a back-geared motor whioh transmits its power through large eccentries to both ends of the knife bex. After each stroke a ans-type linit switah stops the motor, and a spring loaded brake holds the knife at the top position.

From the loaded reel the vencer ia propelled through the alipper at any deaired apeed, the operator oarerully watehing the veneer as it passes betore him. As the sheetg of veneer some from the clipper thoy fall on a belt conveyor table. This table should be loag enough to permit aceurate sorting.

Sorting*
At this point the sap* and heart veneer will be separated, with each alasa being sortea by aizes, Bach pile will be stacked on a truck and conveyed to the dryer. Drying.

The moisture sontent of the veneer showld be reduced to about 5% as soon as possible since there is a strong tendeney for mold and fuggus growth to develop on wet veneer.

The aryer speaified (See Appendix) will be used for plain as well as for face veneer. It is an automatio roller type dryer in which the veneer is slightly preased between the rollers by the weight of the upper roll. The dryer is 8 seations long and 3 lines high. (Fig. IV shows a Elmilar automatio roller type aryer 10 seations long and 4 Iines high.) Rach of the bottom rollers is dxiven by a chain and eprooket, and above each lies an idiar roller. Laid acrose the aryer at regular intervals is the steam piping. Between the pipes and the roilers lie a series of air nozzles which diffuse the air under the veneer as it

[^1]passes. The veneer soves in one direction. Oonditions within the dryer range from a 10 temperature and a high humidity at the feed ond to a high tomperature and low humidity at the disoharge ond. The tomporature used is above the atmospheric boiling point so that as water is evaporated from the veneer, it is converted into superheated atean which, mixed with air, makes an execliont drying medium. This is kept in constant eireviation by the fans, and the veneer is subjected to adaitional hoat from the coils and the rolls. The temperature is controlled at both ends by an air-operated thermostat and diaphragm notor valve. The epeed of the dxyer is regulated through a variable speed transmission and is varied to adjust for the thiakness of the veneer. kind (sap or heart), and the casired witimete moisture content.

As the veneer leaves the dryer, off-bearers seleet it according to slze, grade and thiskness.

Ya0e veneer.

Face veneers are those whioh foxm the outer surfaces of plywood. The beanty of face veneer depends very largely on the revelation of the figare in wood. Obtaining the best figure from a log will demand workmen who ean visualise in advance beautitul and artistio veneer
faee while looking at a flitah* in its original irregular shape.

Figure in wood. (See Fig. I)
Figure in wood is the pattern produeed by the (1) annual growth rings, (2) weod rays, (8) pigment ilgure (irregulax infiltrations of coloring matter), (4) irregularities of growth, and (5) the method of autting. In many instances figure may result from a combination of two or more of these basie factors.

Amnal growth rings. Growth coours in what is known as the cambium, whioh is a thin layer of growth tisenc between the bark and the wood. Hech year, by growth in the eambium, a tree adds a layer of wood on the outside of that previoumy Lomed, inoreasing the diametor of the trunk. If growth is interrupted enoh year, by oold weather or dry seasons, the oharacter of the oells at the ond of each year's growth and the begiming of the next differs eufficiently to define sharply the amual layere or growth rings. Thus, the various speelea of trees produee a wide variety of cell structure, lise and arrangement in eaoh annual growth ring which, in turn, produces variable figures or pattems when out inte veneer.

[^2]In parts of the tropios, where tree growth is continnous throughout the year, no well-defined annual growth layers are formed.

Wood rays. Rays are rows of oells extending radially within a tree. When rays are composed of very large cells, or are many cells wide, the produce what is called a flake figure.

Pigment figure. Uneven distribution of color or pigment is the prinoipal cause of figure in some woods, and also frequently acoentuates the figure resulting from other causes.

Irregularities of growth. Any aistortion of the normal course of the fiber growth will produce figure of peoullar shanes. Irregular grain is a factor of outstanding importance in the production of figure in wood. Some of the most important of these irregularities are considered below.

Stump (or butt). At the base of some trees of certain speaies, the wood becomes distorted from lack of growing space and, perhaps, from the swaying of the tree. (See Fig. I).

Burls. These are huge tumors or warts that may appear anywhere on a tree as a result of some pathologioal or mechanical disturbance of the growth area. (See Fig. I).

Crotoh. A crotoh is a section of a tree just below
the point where it forke. The twisting of the eibers between the two 1 imbs as they inorease in girth madeen one of the most striking tigures to be foun in wood. (Bee Fig. I).

Interlocked grain. Intorlocked grain is produed When the Arection of Liber aligment altemates at intervala, reanting in what is known as ribbon ox stripe Ifgure when quarter out.

3ethod of outting. The proper methot of catting is osgential in order to make the most of the natural Ifgure in wood. Three methede axe used: (1) Siseing, (2) Sawing, (8) Rotary ovtting.

Slieing. Slioed veneors may bo ther flat out or quaxter out. Flat out venesrs are produced by cutting tangent to the mings or at right angle to the rayg. (See Fig. ITA). quarter cut Feneere are obtained by outting a flitch at right anglea to the annval Minge or parailel to the rays. (See Fig. IID).

Sawing. Sawn vencers are produced by outting Ilitches or logs with a band or cireviar segrent sam. Sawing is usually rostricted to woods that oannot be silaed or motary out satisfactorily. Its use is avoided In other species becavee of the high per oent of wate In the sav kert.

Rotary eutting. As previously explained, the log is mounted on a lathe and turned against a pressure bar and a knife. (See Fig. IIC). The revelation of unusual grain figures may be obtained by "Hall-round" and "Back" eutting, which are variations of rotery outting. The same lathe is used, except that the \log is placed on a deviee known as "stay-log". "Hali-rounc" outting is illustrated in Fig. ID.

Figure in Mahogany. The beauty of Mahogany veneers in both figure and color is of outstanding merit. The oharaeteristic interlooking of the libers of the woed gives a mibbon or stripe figure to quarter-slioed matexial. Crotehes produce a very attractive ifgure, the aistorted growth yielaing musual effeots. Plain out Mahogany usually has a ligure of soft outline and low contrast. The color of the heartwood varies from very pale to a very darix redaish brown, which grows richer and darker with age.

Preparation of logs for outting.
The beauty of Mahogany may be doveloped best by slieing. In this method the full length loge are stripped of their bark and opence with a saw to detemine the charaeter of the Iigure. This permite edecision as to whether the most desirable venber will come from reetangular pienea that will give plain out veneers or from radial segments
of the log. If it in found that plain out veneers are advieable, the log is sawn to the shape shown in Pig. IXA. If a radial out in advisable the segmenta are mawn as show in Fig. ITB. These segmonts are called filtches. The flitehes are pleed in large vats for oonditioning. The comments on the proparation of loge for rotary outting (See page 5) apply qually to slicer nitehes. Kahogany onta best after soaking 14 hours, and sometimes longer, at tomperatures tron 125 to 27501 . (15) When the nitohes are auftiolently soft und pliable, they are ready for the outting operation.
slieing.
The operation will be come on a vertical sliser as indieated in the proposed plant layout (8ee Appendix). A vertieal slieer consists of a strurdy bed to whioh the nittoh is fixed by degs; the knifo is carried on a rigid frame. A standard type is ahown in orose aection in Fis. v. (10) The log bed with the nitch alamped to 1t, moves up and down on anging slides. The outting stroke has a vertieal motion of about seet and a lateral anging notion of about 1 妾 feet. The outting oacura on the down stroke. On the return stroke a can deviee rooks the knife back to alear the flitoh. At the top of the stroke a ratehet and pawl type foed advanees the laife for the next out.

Bach sheet of veneer out on the alicer is tumed over as it is piled so that the last surface out is always on the top of the pile. In this way the veneer is in perfeot sequence, exactiy as out. This sequence will be maintained through all the operations in order to make possible the proper matehing of the stook.

Drying.

The arying of face veneer will aiffer from the drying of core stook only in one reapect--the extreme eare which 1s exercised to keep the sheets of veneer in the same order as that in which they same from the alicer.

Dimensioning.

Prior to jointing the sheets of veneer will be aut to length in paokages one inoh thiok, and any sapwood on the -dges trimmed. These rough dimensioned face veneers are then ready for jointing and edge giving. The deseription of these two operations applies to both plain and face veneer.

Jointing.

When the shoets of veneer are not of suffieient wiath to make the required panels, the edges are out atraight and true preparatory to edge glaing. This autting will be
done on a venoer jointer of a travelling outter head type. The vencers are pressed perfectiy flat and solid on a stationary steel table by a heavy steel olamp bar and aze pushed against aliibrated gange bars whioh can be adjusted for the desired width of trim. The roughing and finiahing cutter heade are mounted on a carriage which moves on rigid ateel ways. As the carriage moves pat the atethonary paokage of veneer, the firat outter-head makea the roughing out while the finiahing outter-head, revolvIng in the opposite airection, planes the veneor edges, (12) (Soe Fig. VI).

Bege gluing.
The give will be applied to the odges by an automatie giue mpreading deviee, whien ia mounted on the outter-head carriage of the jointer, behind the outter-hesas. It will aprond the veneer adges with hide giue, leaving them ready Lor bonding. This bonding oparation whovid be done as soon as pessible to obviate the risk of any ohange in moisture content.

The sheets of veneer are quickly and lizmily bonded -dge to edge mater heat and presenre by a rapeless Veneer Eage 0luer. (See Fig. VII). The venoer, which has already had give applied, is carried through the maehine by ariven rolls and the give on the edges is moistened automatioally

With a colution of formaldehyde to shorten the setting time of the give. As the veneer sheets pass through the machine they are firmly pressed together maer aontrolled oleetrie heat which sets the give almost instantiy. (12) If it is determined that cost faetore are satisfaetory, synthetie resin giues may be aubstituted for the hide give at a later cate.

Some of the advantages of a Tapeless Mage Gluing machine are: (2) It oliminates the oost of tape, (8) It eliminates the need for tape removal, (8) Sinoe no sanding is required for tape removal, thinner face veneera can be used without danger of sanding through.

Storage.

Following edge gluing the veneers are placed in the etorage room, ready to be assembled into plyweod. The purpose of this storage is twofold: (1) $\$ 0$
facilitate plywood asaembly by having a reserve of veneer on hand, and (2) To maintain or bring all veneers to the most auitable condition for giuing whioh, in this oage. is about a 5% moisture content. This ean be acaomplishod by reeping the veneers in a storage or conaitioning room where a temperature of $70^{\circ} \mathrm{F}$. and a relative humidity of 23\% are maintained aonstantly.

©IUTE**

The following aisoussion is eonifined to the synthetie adhesives uaed in plywood, since they are resommonded for use in the manufacturing prooess (See Appendix).

There are many reasons for the use of bynthetio adhesives in the manutaoture of plywood. Among them, the following aan be oited; water resistance, mold resistance, thin spreads, and good strength qualitios.

The oharactexistics of the most common adhesives are shown in Table 1.

Tour steps could be oonsidered in the process of gining:

Mixing Spreading Assembly Pressing (Discussed in the ohapter which follows)

Mixing.

The purpose of mixing is to put the giue or adhesive into a condition for easy application.

The sustomary bolvent is watex, partiy beaause of its Low cost, but also becanse of its speaial propertios and effeots on the colloidal materials from which give is made.

[^3]The main dificienity oncountered in mixing in the tendency of giue to foam. Foam is mado up of finely dividec bubbles of air which become ontrapped in the viseous glue 1iquid. The difficulty of eliminating foam often leads to the necessity of discarding the give.

The glue mixer chosen for the proposed plant will be provided with double sets of padales turning in opposite directions. These padies are equipped with sorapers that olosely hug the bottom and sides of the mixer to prevent anf acoumulation of maixed material.

After mixing, the giue is transferred to a storage tank. Since the working life of resin ahoelver is limited (See Table 1), 14 showld be considered as a factor of extreme importance in the storage of the mixed giue. In all case the glue should be gixed axa ussa in meocisnoe With the inetruetions furctmed by the glue manufaeturer.

Spreading.

In three-piy ometruction, the give in applied to both slaes of the core but not to the face or back. In the proposed plant layout (See Apponaix), give will be applied to the core by passing the core through two give aarrying rolls, each roil being provided with a
doator roll to regulate the amount of giue applied. These doctor rolls are of metal and chromium plate. The glue rolls are covered with corrugated rubber to perait very thin spreads. the lower tank of the sprader is used as a reservoir for a rotary prap, which will supply resin to the rolls.

The amount of give spread should be from 80 to 40 pownds of liquid mixture per 2000 square leet of glue line. Sinee both sides of the oore stook are oosted, the total amome of glue spread will be from 60 to 80 pounds of ilquid mixture per 2000 square feet of three-ply plyweod.

Test for amount of glue spread. The following method will be used to dotermine the amount of glue epread; one square foot of core stock will be weighed. rwn through the spreader for an application of adhesive (both sides). and reweighed. Then the following formula will be applied:

$$
s=\frac{(W-W \cdot) 2000}{453.6}
$$

Where:
S - Spread in pounds of Iiquid mixture per 1000 square foet.

W-Weight of sample in grams before spreading.
W'- Weight of aampie in grams after spreading.

Assembly.

The time whioh elapses between the spreading of the glue and the applioation of full pressure is called the "assembly time".

During this gtage very important changes take place in the glue. Perhaps the chief change is a $108 s$ of water from the glue fllm to the wood, whioh raises' the viscosity of the glue. This ohange in viscosity is very important from the standpoint of the final quality of the glue joint. sinoe the making of a strong glue joint depends primarily upon having the proper correlation of gluing pressure and glue consistenay at the moment the pressure is applied. Two types of weak joints may be produced as a result of not having a proper combination of glue consistengy and preasure.

1. The starved joint, whioh is due to insufficient spread, the applioation of too muoh pressure in dense woods or rapid absorption of glue into the cell cavities of less dense woods.
2. The aried joint, whioh may occur with any glue that has lost so much water that it will not adhere to wood, even under a very heavy pressure.

Panel assembly. For three-ply plywood the veneer used for face and back are conveyod Irom the storage room to the glue spreader and placed on the disoharge
side of the machine. A load of core stoek is brought from the same storage room and placed at the loading side of the spreader. A load of aixteen-gange zine sauls are placed near the disoharge aide of the machine. An empty platrorm truck is positioned at the aisoharge side of the spreader.

Two panels will be laid up between each cavi. The assembly for three-ply plyweod is: cavl, face toneer, give-coated core, face vencer: face vencer, cive-bomed core, face veneer, oanl. This prooess is repeated until as many assemblies have been made as will fill the openings of the presa. As soon as one batoh is realy, it is trucked to the press.

PRESSITG

The principal variables of this proaess, depending on the material to be bended and the bype of adhesive used, are the moisture content of the vencers, the pressure, and the temperature-time relationship.

Moisture oontent of veneer.

Moisture in the veneer retards the penetration of heat into veneer assemblies. Higher moisture contonts require longer bonding oysies and tend to set up intermal stresses that might aause warping and twisting in the Iinal plywood panel. Wet spets may also canse blistering. Fig. X is a chart which nowe the effeet of differences in moisture content of vencers on pressing time and temperatares where the penetration depth is $8 / 8$ of an inch. Similar ourves ean be prepared for eny dopth of ponetration.

Preasure.

The purpose of preseure is to create olese oontact between the plies and to effeat the proper degree of penetration of the glue. Good adhesion ocours only if the wood arfices are brought into olose contact. If pleses of renear are absolutely uniform in thiekess and if the press platens are perfoetly flat, very little preasure is
necessary to obtain a good goint. However, variations in thickness and imperfections in press manufacture are wnavoiasble. For these reasons, substantial pressures are neossary to obtain the desired results. The allowable deviations in thiolness are mach larger than might be expeoted since the wood beoomes somewhat plastio when it is heated. Pressures varying from 100 to 175 phi. are aonsidered satisiactory for the apeaies to be used in the proposed plant.

Temperature and time relationships.

The synthetio resin gives gain strength by a set whion is the result of a polymerimation or oondensation reaction. This set or polymerination is acoelarated hy heat and heated press plates are required to set the give in a ressonable length of time. Heat is essential to evaporate the water of condensation reaniting from polymerisation of the resin give, as well as the water with whioh the give was mixed. An adaitional advantage of hot presaing is that preasure is applied for a relatively brief time. (normally 5 to 30 minutes as sompared with 4 to 6 hours in oold pressing), and this permits the nee of higher presaures. If long continued these high pressures would result in exeessive flattening of the wood oells and a consequant consification of the material.

Most of the resin glues used require a relatively high temperature to aet and shovid be hold at that temperature for a definite period of time to complete the euring of the gine. In the manufaature of plywood the problem is that of determining how long a panel mast be left in the press in order that the give line farthest from the press plates Will be heated to the proper temperature. The problem was solved by Fourier with his basie equation. (8) ourney and Lurle showed that it is pessible to construet a ohart whioh oovers the general oase. (4) The earney and turie chart is disenesed in deteli in the Appendix.

Type of press.

The press for the proposed plant (See Appenaix) will consist of 12 asylights*, requiring 23 oteam heatea platens, thes producing 24 panels to each oharge?. It will be quipped with indieating ganges showing hydravilo pressure in the pistons. The pressure le produeed by two pumps: a low pressure pump for olosing the prese quialdy. and an intensifier for builaing up the high pressure required after the press closes. The pump presarure is

[^4]determined by the formula: (20)

The proper maximum time allowance in elosing the press is one minute. If this intervel ia appreaiably longer, there is anger of precuring the give before the pressure beacmes effective.

The steam main serving the press will be properiy arained of eondensate just ahead (boiler aide) of the pressure-reateing valve by a thermostatic air tray. (b) The preasure-reducing valve on the boller side of the press is used to regulate the gteam pressure ontering the press platens and thas sontrol the platen temperature. The proper regulation of stean airowiation through the platens is one of the moet important elements in hot prese operation since any water standing in the platens tonds to make cool spots and may result in irregular bona2ng. The trap beyond the preas, to remove the eondensate, will be of the Buoket Steam Frap type. (5) and ahovid be properiy by-passed so that the prest oan be heated raplaly every morning.

Reconditioning after preasing.

The plywood panel aries very little while in the hot press, but gives off its moiature ohieny during its
initial cooling. immediately after removal from the het press. Hence, there is a tendenoy for the hot-pressed panel to be musually dxy, a condition that makes the wood brash and brittle and oncourages warping. (20)

In order to restore the normal moisture content of the panels and to hold them flat during this reconaitioning prooess, they are oustomarily piled, immediately after removal from the hot prese, on a solid base. With all edges in vertical alignment. They are then weighted dowa with head blooks and short "I" beams. The panels should be allowed to remain piled until they have reached room temperature and the desired moisture oontent. Although it is fairly common practiee to mpray or aip the panels In water as they are removed from the press in order to restore the molature content of the panels; these methods are more expensive and will not be ased in the proponed plant.

FINAL STEPS II MAMOFAOTURE

Dimensioning.

When the plywood has been properly reconditioned, it will be trimmed to the required site and squared up on double out-off aawe.

Any aming in plywood is partiy aroasoutting and partly ripping, due to the alternating direotions of grain. This requires a combination oiroviar saw blade, with groupings of fine teeth for the outting aarose the grain, and larger teeth and ceoper throats for the outting parallel to the direation of the grain. (10)

The plywood dimension saws will be arranged in tandom (See Appendix). The panels (two at a time), will be out to length, while being held flat by rollers, on one set of parallel saws and to width on a second set. Then the panel will be ready for sanding.

Sanding.

From the dimensioning saws the panels will pass through a triple drum sender for a amooth even finish.

The sander drums are positioned above the table, and are given a latoral and reoiproeating movement in adaition to the rotary aetion. The first drum carries the rougheat paper: the second, a finer one: and the last, a finishing grade. Each drum is oovered with folt whioh aota as a
oushion between the roller and abrasive papar. The thickness of the panel ia controlled with great acouracy by aareful adjustment of the sanding armege (21)

The panels will be fed squarely to the arme, one panel following the other as olosely as posaible to redaee the risk of rounding the leading edge. The baok side of the panel is sanded firet in order to give a better foundation for the acaurate sanding of the face.

Belt sander.
A belt ander may be added to the oquipment at a later date, to be used for touching up low spota whiah have escaped the triple drum sander.

A belt sander consista of a belt of abrasive paper, an oseillating table, and a manusily operated pad with Which the belt of abrasive paper is pressed againat the plywood panel. The pad is kept moving to and fro on the ruming belt at the same time that the panel is moved foxward and baokward by the movement of the table. (21)

Storage.

The finished plywood panels will be stored under conaitions that will maintain the cesired moisture oontent. They will be stacked in solid piles, the panels in perfeot allgament, with a solid cover over the top of each pile to proteot the panels against rapid changes in moiature content, warping, dust acoumplation, and discolaration due to light.

SOMR PROBLIMS EMOOUNTERED IN THE MANUFACHURE OF PLYWOOD

The warping of plywood.

Although dimensional stability is one of the adventeges plywood possesses in comparison with plain lumber, stability of plywood in use is not attained miess the principles of belanced construotion are xigidiy followed. Balanced construction is obtained in the following manner: (1) By using an odd number of plies, (2) By assuring that the grain direction of complimentary plies (on opposite aides of the oore) is parallel, (3) That aomplimentary plies are of the same species and thiakness, or, if of different species, that the woods used have similar mechanical and physical properties*, (4) That complimentary plies are the same distance from the core, and (5) That all plies be at approximately the same moisture content at the time of gluing.

Violation of the above prinetples usually resulte in warping. Warping oan be olassified as either oupping or twisting. Oupping may be aefined as that type of warping in which the four corners of the panel san be made to rest on a flat surfiace but the eenter portion is raised from the nat surface. (1) A panel is twisted, if, when laid on

[^5]a flat surface, one corner is out of the plane of the other three. These two types of warping in plywood result from somewhat aifferent causes although both may occur together. As a general rule, twisting is a matter of grain direotion. Tests have shown that with thin paisls, deviations as amall as 5 degrees between the grain of any two corresponding plies may introduce oonsiderable twisting. (3) On the other hand, cupping oan be oonsidered as resulting When the forces that restrain the oore are of mequal magnitude on the two lides. (1)

The following outline sumarizes the different factore that may contribute to warping: (1)

Twiating:
2. Grain airection.
2. Bnd drying.
3. Method of fastening*.

Gupping:
A. Defeeta in construction:

1. Thicker aressbends on one side that on the
2. Other. Oraserend 4 arossbands on one side and etraight grained on the other.
3. Doty oroseband on one side and sound on the other.

[^6]4. Compreasion wood in one crossband and normal wood in the other.
5. Species of widely different shrinkage characteristice.
6. Widely varying moisture content at the time of gluing.

B. Improper handling:

1. Drying more rapialy from one side than the other.
2. Highly resiatant finish on one side with a finish of lower resistance on the other.
3. Mothod of fastening*.

Coneral:

1. Moisture content at the time of glaing.
2. Denaity of mpeoies.
3. Ratio of core thiakness to total panel thiokness.

Of the general aanses of warping, ohanges in molature content are the most important. A change in the moisture content of plywood will introduee or reliave intemal stresses. The magnituce of the stresses will dopene on Whether or not the construction of the panel is balanoed and on the difforence between the moiature content at that particular time and at the time the glue was set. The greater the moisture changes, the greater will be the stresses developed, and the greater will be the tendency to warp. Therefore. it is important that the moieture content of the veneer at the time of gluing be as nearly

[^7]as possible equal to the average moisture content the stook is expeated to resch in servise.

Teate oarried out by the Forest Produote Laboratory, Madison, Wisconsin, have shown that the warping of plywood panels, when subjected to varying moisture conditione, is least for panels made of low density spealea, and generally increases with increasing density of the speaies need. A high percentage of core to total plywood thickness helps to maintain a fl at, unwarped surface. The oore chould comprise $1 / 2$ to $7 / 10$ of the total thickness of the panel. Plywood and rencer wasto.

The wasto in the manafacture of veneer and plywood exeeeds, sometimes, that of the lumber mill. From testa conduated on Yellow Bireh, the waste from converting the \log into veneer amornted to 54.2%, exolusive of bark. Plywood manufacturers report a waste of about 50% in oonverting hardwood venoers to plywood.

The seriousness of waste is olearly manifested, and conomieal operation requires carefrel considerstion of this factor.

The general points to consider in a study of veneer and plywood waste are indicated below!

1. Waste in veneer manufeoture:

Removal of defeats. Losaes from defects cannot be completely oliminated but they ean be materially reduced
by instruating workmen in the importance of avoiaing wnecessary waste.

Exoess length in vencer bolts. Veneer bolts are always out longer than the required veneer sheet. This leaves a small allowanoe to take care of stain, end heake, and laok of squareness at the onds of the bolts. Care should be exeroised in the woods to reduce losses from this cause.

Rownding weste. This is the waste produced by the preliminary outa of the lathe in "rowaling up" the log. It is not until the log is symmetrian that veneer if produced in a continuous sheet, free from voids. dareful ohuoking of the log in the lathe will reauee these losses.

Olipping waste. In addition to normal olipping 10sses incurred in trimaing to sice and removing dofeots, there are irregular pieaes prodnoed during the romaing operation whioh aan be anivaged by proper clipping.

Core. The average rotary lathe leaves a core $8^{\prime \prime}$ in diameter. By comparison, the slioing process leaves only a $1^{\prime \prime}$ board on the machine. However, the bliaing process results in a significant loss at the out mp mill in the form of sawdust, slabs, ote.

Miscollameous, Losses from damage during handing and drying. Extreme care is required to avoid severe losses in the handing of dry face veneers.
R. Waste in plywood manufacture. The lossea that chould be considered are due to:

Breakage of any veneers Jointing Trimaing Sanding, and Rough handling

The utilisation of waste.

Waste is inevitable in a venear plant. The ougtomary use of this waste is for fuel, and if no less expensive Inel is available, this is on economien practioe. Where inexpensive fuel is available, there are several poseibilities for the Etilization of veneer weste. The following is a suggested method which would not only make ecomomical use of the waste material but which would alao inerease the value of the primary produet of the plant.

The eteps in this proess are:

1. The production of wood fiber.
2. The refining of the resulting fiber.
3. Forming the fibors into preforms.
4. Molaing the preformed fiber under heat and pressure (Hardboard).
5. Impregation of the hardboard with resin of low moleoular woight.
6. Set of the resin under heat and pressure.

It is logiaal to assume that the buix of this fiber could be used at the proposed plant to expand the diveraity of plywood produots by manufacturing fiber-faced panels using low quality rotary-aut veneer for core stonk.

BIBLIOORAPIY

1. Brouse, Don. Some Causes of Waxping in Plywood and Vencered products. Madison, Wizconain; Foxest Prodnots Laberatory, Mimeo. R1252, Oot. 1942.
2. Davis, Baward 1 . Veneer Wastes Rqual to Those of Lumber Mill. Timber Topies, p. 2, Mareh-April, 1945.
3. Forest Produots Laboratory. Madison, Wisconsin; Mimeo. R543., April. 1943.
4. Opmey, H. P., and Iarie, U. Oharts for Betimating Temperature Distribntions in Heating or Cooling Solid Shapes. Industrial and Fngineering Ohemistry. Vol. 25, p. 1170, Tovember, 1923.
B. Koohler, A., and Thelen, R. The Kiln Drying of Lumber. Hew Tork; HeGraw Hill Book Cow, 1926.
5. Jewis, Warren K. Industrial Chemistry of colloidal and Amorphous Materials. Hew Tork; the Maomillan Co. . 1942.
6. Mealean, J. D. The Rate of Temperature Ohange in Wood Panels Hoatod Between Hot Plates. Madison, Wisoonsin; Forest Eroduots Laboratory, Mimeo. R1299, August. 1942.
7. MoAdams, Williams H. Heat Transaisaion. Hew York; HeGraw Hill Book Oo., Inc., 1988, Firet edition.

8. Pexry, Thomas D. Modern Y1ywood. New York: Pitman Publishing Corporation, 1948.
9. Pavi. Benson H. A Repid Kethod of Determining the Spealfic Gravity of Vencer. Madison, Wisconsin: Forest Products Leboratory, Mimeo. 1897. May, 1948.
10. Plyoor Catalog, The Veneer Jointer, Veneer Gluer. Chiage, Dilinols; The Plyeor Co.. Bulletin 408-A.

11. Resinous Producte Ohemical Oo. * the Resin Adhesives for Plywood. Philadelphia, Pa., 1944, 8th altion.
12. Roberts, John I., and Roberts, John R. Fondaientale of Knife Cutting Veneers. Ameriaan Soeiety Meahanieal Inginears, Iransactions, WDI 55-4, Dp. 87-38.
13. U. S. Government Printing Office. Axivy and Havy Leronautiaal Spealications plywood and veneer. Aireraft Flat Panel, AN-IIE-P-511b, October 28, 1942.
14. Yoneer Assoaiation, The Home Furnishing Arts. Chieago, Illinois; Spring-Summer, 1935.
15. Veneer Assouiation, The BAweationsl serien \#l. Ohieago, ILlinoig.
16. Wasley, William J. The Wetting of Wood in Various Liquids and its Relation to Adhenion, wood Products Hagastne, Vol. 50, 整6, D. ER, June, 1945.
17. WL11 ams, Llewelyn. Woods of Northeastern Pora. Ohicago, Ni.; Botanical Serieg, Fiela huseun of Wataral History, Vol. XY, Deqember 81, 1936.
18. Woos, Andrew Diok, and Linn, Thomas Gray. Plywood, Their Development, Manufacture, and Applioetion. Hew York; Ohemieal Publishing do., Inc., 1943.

APPTEDIX

Theory of gluing.
It is generally conseded that both meohanioal adhosion and mpecific adhesion play a part in the bonding of wood, elthough there is a lack of agrement as to the relative importence of each.

Mohanical adhesion. when two wood suxfaoos are brought together noder pressure, with a Iilm of wet give between them, the giue will flow into the minute openinge in the two surfeas. The bond whioh is obtained is attributed to the interlooking of the give and wood, whioh regulta from the solidifieation of the muerous projeotions of giue within the openings of the wood.

Specifio adhesion. Smooth materiels, 1.e., glass, sheet of plastios or polished metals an be made to adhere With certain types of glues. It is oonceivable that the surface of a piece of dense herawood can be made approximately as smooth as glase with ainimum of cavitios for the accommedetions of the prongs of the adhesive. It is a well known fact that suoh smooth surfaces an be satisfactorily glued together. This indiaates that there is another form of athesion whion ta termed speaific adhesion.

Two clocely related factors play a part in speaific adhesion. 1. The polarity of the wood and the giue. 2. The hydrogen-bonding ability between the resing and the
cellulose or the cisorbed layer of water moleonles alrealy present on the oellulome. (19)

Polarity. Polar moleoules eontain powerful fields of foree and, therefore, tend to orient themeelves in an oleetric Ifeld. ${ }^{(6)}$ In some highly polar sompounds there are permanently loealized electria fieles at different points upon the surface. Thus, the moleovle acts as a charged body having a positive charge at one point and a negative at anothor, opposite in sign but equal in oharge. (6) The moleoule is eleatrieally aimilar to a short bar magnet and is called a dipole. Like a magnet, it will dovelop a moment, which can be meamared by the moleoule's tendency to turn in an electrie fiela. A polar molecule, then, is one that has a permanent dipole moment. ${ }^{(6)}$ Hquide and sollda are grouped into polar and non-polar oategories. Strong fointa cannot be made with polar adherents to nompolar adhesives nor with non-polar adherents to polar adheaivea, (10)

Hydrogen-bonding ability. The concept of hyarogen bond formation, in the dimplest terms, is that hydrogen ean aot as a link between two etrongly eleotronegative atoms, such as 0 and H. Generally trong hydrogen bonds are 0-HO, H-HO, O-HW. (19). Most of the aynthetio resins glues used, and the proteins and staroh glues as well, are amply supplied wit groups whioh aan form hydrogen bonds to eelluloe or water.

Colloidel properties of giues. It is impossible to Aiscuse the theory of gluing without mentioning the colloids, since givea are typical colloids, and exhibit oolloidal reactions at each stage of their use. The word colloid, as used by the chomist, cenotes a state of matter whioh is aistinguished ohiefly by the size of the mitimate particle of the dispersed material.

One of the properties which is peculiar to the oolloidal atate is its propensity to ohange in viseosity. Colloidal ilquits may ohange in both ways, that is, a thiok 11 quid may get thimer or a thin $11 q u i d$ may get thicker until it reaches a solid state (gel). The point to be noted in colloidal 11 quids is that they may change when there is no easily observed reason for their ohange. It is found experimentally that, as partiole sise deareases. the stability of the system tends to increase vory greatly. (6)

Both, the sol and gel atates are requiaites of a glue. Colloidal liquids are capable of high viecosities, and have the proper coneiatency to be opread by mechanioal means. They also remain in the position spread, do not dry up too quiolcy and readily pase over to the gel state. The gel state of a collold may be vary Migh in liquid and yet have very considerable strength. It is suoh properties as these wioh enable a glue gel to have considerable strength long before it has ohanged into
a ary uolia.
As stated by Charles B. Morris in his book, "Teohnique of Plywoed, " ${ }^{(9)}$ "wood itself is a colloid, both the cellalose and the lignin as well as possible other aomponents of the wood axe oollolds. Partionlariy when the wood is wet by the give does it begin to exhibit its collolad properties." Since wood is colloidal in nature, it has the property of permitting the passage of eertain substances and of preventing the passage of others. This is determined by the sise of the soleoules. Colloidal partieles are in general of suoh a sise that they will not pass through the cell walls of wood. On the other hand, mall moleoules such as those of water, oanstie sode, ohemion salts and the like, are small onough to pass through the colloidel film of the oell walls of wood. If it were not for the faet that glue contains a large amount of aolloian, there would be nothing left to form the glue joint, since any substanoes of lower molecular sise then colloids would almost completely migrate into the wood, (9)

Qurney and Iurie ohart. (See Fig. IX) ${ }^{\text {(4) }}$
As previously desoribed, an important problem in the manufeeture of plywood by the hot press method is that of determining how long a panel mest remain in the presse in order that the giue line furthest from the press plates will be heated to the proper temperature and held there
for the required time. The problem may be solved by the use of the Curney and Lurie chart.

The ourve was obtained by converting some of the more coman formulas for heat tranamisaion into expreasions containing pure ratios or non-dimenelonal Feriables only, thereby enormoualy reaving the necessary basic a日lanations.

The abselssag 0 to 3 are in mits obtained by maltiplying time, 0 , by thermal diefusivity*, h^{2}, of the material, and then aiviaing this product by the aquare of one half the thicimess of the panel. R^{2}. The expression genorally omployed in aenoting this relation is: $\mathcal{T}=\theta n^{2} / \mathrm{A}^{2}$.

The ordinates 1 to 0.002 refer to the ratios of maccomplished temperature ohange to the total. IImiting, or maximum possible temperature change that the thermal environment oan lapress upon any part of the body: 1.0. the tem-perature-difference ratio at the start is conceived to be unity and to approach or eventually become sero. At any time. θ. in question, the temperature is conceived to differ from the final temperature by e temperature ratio, Δ, whioh

[^8]approaches zero as a limit. The expression employed in Conoting this tomperatare-differenoe ratio is: $\quad z=\frac{\frac{\pi}{4}-t_{2}}{\frac{1}{2}}$. where, t_{1}, is the terperature of the panel before pressing. t, if the temperature within the panel at alstance, r, from the conter and at a time θ, after the panel is inserted in the press, and, fis the temperature of the press.

The ordinates are functions of two variables other than tive. The firg of these, p, is the ratio of the distance from the center to the point in question, x, to the Aistance from the surfaoe to the center. This ratio, p. 1s, therefore, zero at the oenter and unity at the aurface. with intermediate values. The expression of this poaition ratio is: $p=r / \mathrm{R}$.

The other function, m, is the ratio of the thermal conduetivity, k, of the material to the proauct of the thermal surface conduotivity, s, and the semi-thicloness, R. of the panel. This is expressed symbolionliy by: K/RR. In the case of plywood panels where the surface of the wood is immediately raised to the temperature of the plates, the thermal surface conduotivity oould be oonsidered infinite, then m 0 . If the surface is perfectiy insulated $(\mathrm{s}=0)$, then $\mathrm{m}=\infty$ (4)

The ohart is expressed in Arithlog ordinates, that is, the absaissas progress according to equal arithmetio incrementa, while the oxdinates progress in a logarithmic order.

Use of the ohart. As mentioned before, two panels per opening of the press will be used in the proposed plant. For the parpose of illustration, a $8 / 8^{\prime \prime}$ panel is used, thus having a total thickness per opening of two times $3 / 6^{\prime \prime}$, which is equal to $3 / 4^{\prime \prime}$. The core of each panel will be considered as $1 / 4^{\prime \prime}$ thick and both mahogany faces as 1/16" thick.

This is a case where the panels contain two species of wood. The caloulations would become too complicated if an attempt were made to take into account differences in diffusivity of the different species. Suffiaientiy close rosults aan be obtained by using the diffusivity of the wood comprising the greater portion of the panel, or, the wood of higher density which heats more slowly. (The diffuaivity decreases as the specifio gravity increases.) Due to the lack of data for the wood oomprising the greater portion of the panel, the oaloulations will be made by using the data availabla for mahogany.

The data available for mahogany are:
Thermal conductivity $(K)=0.09 \mathrm{BrU} /(\mathrm{hr})(\mathrm{sq.if})$
Density $(D)=34$ Ibs. per cu.ft. (at $60^{\circ} \mathrm{F}$)
Specific heat $(\mathrm{Sp})=0.50 \mathrm{BFO} /(\mathrm{Ib})\left({ }^{\circ} \mathrm{F}\right)$
Thermal alffueivity $(h)=$

$$
\sqrt{k / D S p}--h^{2}=0.0053 \mathrm{sq.} \mathrm{Pt} . / \mathrm{hr}
$$

Assuming a temperature of $80^{\circ} \mathrm{F}$. for the veneers before they are placed in the press, a press plate temperature of 300° F. , and a phenol formaldehyde resin whion sets in 3 minutes at 290°.; ${ }^{(14)}$ the problem consists of deterraining the time the panel should be left in the press in order that the innermost giue line ($5 / 16^{\prime \prime}$ from the surface) may reach the proper temperature.

The temperature-difference ratio will be:

$$
Y=\frac{300-290}{300-80}=0.045
$$

The position-ratio: $p=r / R=1 / 268 / 8=0.167$
The thermal-resistance ratio: $m=0$
With this data, starting at the upper left hand margin of the ohart at a temperature afference ratio of 0.045 and moving horizontally to the right to the curve representing the position ratio of 0.167 , and then downard where it is found that the value of dimensionless time expression is around 1.37. Then:

If the glue requires 8 minutes to set at this temperature, the panel should be left in the press about 18 minutes.

Results obtained by this chart agree very olosely with values obtained by the use of MacLean ${ }^{(7)}$ ourves.

Testing for Adhesive Strength, Moisture Content, and Moisture Absorption.

Testing for adhesive strength.
plywood shear test. This test is made on dry plywood, and on plywood soaked in water at room temperature for various intervals of time.

The test pieces, $8 \frac{1}{3^{\prime \prime}}$ long by $1^{\prime \prime}$ wide by $3 / 16^{\prime \prime}$ thiok. (seleated to give a representative sample), are arose slotted, leaving a eenter seation, to resist the puil of the testing meohine. (See Fig. VIII). The ends of the spectmen are gripped in jaws of the type shown in rig. VIIIA, and given a hear test in any standard maohine havIng a rate of load applieation of 600 to 1000 pounda per minute. The samplas are tested until separation ooeurs, and the maximum load is fecorded. The dry test is usually conducted with the plywood samples at a moisture oontent of between 8-12\%.
plywood consisting of more than three plies should be atrippea of all except any thre seleeted plies, and then prepared as shown in Fig. VIII. In plywood with taee plies thicker than 0.047 inohes, the shear area should be one square inoh, as shown in Fig. VIII, mpeoimen A. Speeimens of plywood with face plies 0.047 inohes or lese in thickness should be of the form shown in Fig. VIII, speaimen B, in whioh the shear ares should be reduced without ohanging the width of the epeaimen to $1 / 2$ inoh. (16)

The wet teat for aircraft plywood requires complete immersion of the sample in boiling water for 3 hours. They should then be removed from the boiling water, plaoed In cold water, until at approximately room temperature and, while still water soaked, tested to failure by the method above mentioned.

Moisture oontent test.
Proper moisture content is an important consideration In all plywood operations, so that the plywood panel will remain flat when it is in equilibrium with the atmospherie conditions encountered in use.

To determine the moisture content, small samples are out from different points in order to be truiy representative. The samples shovid be free of slivers or loose partioles that might arop off in handing. Baoh sample should be weighed in its original condition, then placed in the oven until a minimm weight is reaohod, which is, for practical purposes, bone dry; the sample is weighed again promptiy on xemoval from the oven and the now weight is recorded as the Bone-Dry weight. The pereentage of moisture content will then be given by the following formula: (10)

Rer cent moisture oontent $*$ Origingl welght - Bone Dry weight Bone Dry weight

Moisture absorption.

Moisture absorption capacity is an important factor in plywood used in boats or in evaluating high density plywood for suoh uses as alrplane propellers, where olight inareases in weight might destroy a orepully established balance. (10) This test is the reverse of the above, and $1 s$ usually computed on the original welght, as the Bone Dry weight is often difficult to determine. The formula then becomes:

Per aent of moisture absorption $=$

$$
\frac{\text { Welght aitsz sogking - ortginal weight }}{\text { Original welght }}
$$

Setimation of the Speoifie Gravity of Plywood.

This is a very important factor in plywood nsed in boats and airplane construction.

In order to produee a plywood of given speaific gravity, certain factors mat be considered. They are: presalng conditions, number of plies in a given thiokness of plywood, the welght of the bonding medium applied per mit axea, eto. These factors result in the final produat having a greater speailio gravity than the venaer naed. Therefore, two steps are required to obtain the mpeaite gravity of a plywood panel.

1. To obtain the arerage speaific gravity of the reneef plies weighted nooording to thiokness. This is done by nuthpiying tho thickess by the epeoifio gravity for
each veneer, and dividing the gum of the produats by the sum of the thicknesses.

A method for determining the apecifle gravity of veneers has been developed by the Forest products Laboratory, Madison, Wisconsin. A sample of veneer is cut with an oxdinary paper trimmer to 100 square centimeters (10 by 10 centimeters) or 50 square centimeters (7.07 by 7.07 centimeters) depenaing upon its thiokness. The thickness of the venear is measured by mierometer to 0.001 of an inoh. The vencer is then attached to a sensitive spring of the type used in a Jolly balanoe and a chart is read direotly in speciflo gravity for the given thiokness of veneer omployed. (See Fig. XI). (12)
2. To obtain the increase in speoific gravity. It may be oomputed from the following formula developed by the Forest Produets Leboratory, Madison, Wisconsin:

$$
0_{1}=\frac{G_{a v}(T y-2 p)+0.002(\mu-1)}{T p}-0.01
$$

Where:
Gav. - Average speaific gravity of plies weighted as to thicknesa (from step 2).
Tv - Sum of thicknesses of oven dary veneer plies.
Tp - Thioleness of oven dry plywood.
I - Irumber of plies.
0.002 - Constant for phenolio resin glue (0.085 grams pex sq. in.).
0.01 - Constant to correct for difference in shrinkage of plywood and veneer.

The value obtained from the formala is added to the Value obtained from step 1 , to give the specifia gravity of the plywood.

A simpler method, whioh eliminates most of the mathematioal caleulations, has also been developed by the Forest Produats Laboratory, Hadison, Wisconsin, (18) it conmists of a chart to determine the specific gravity of large sizea thin panels, partianiarly when panels of uniform enrfaee area are involved. (See Fig. XII).

The data necessary for the ohart are the weight of the plywood panel in pounds and ounces, its average thiokness in inohes to the thousanath of an inoh, and the surfase ares in square inohes. With these date, the chart is usec as follows:

1. On the vertieal scale to the left of the ohart, locate the line representing the welght and follow it horizontally to its intersection with a vertical ine representing the thickesa.
2. Follow this position along the obligue lines to ite intersection with the vertioal line representing the axea of the plywood.
3. From this point follow horisontally to the right hand margin and read the specific grayity.

There are two apeaifio gravity sceles. The tirst scale is to be used when the plywood has been weighed and measured in the oven dry conditions. It has been found
that panels that havo been pressed in a hot pross at approximatoly 300°. are practically oven dry about 30 meconds after removal from the prese if a normal preasing sehedule haf been used and if the plywood is 0.200 inch in thiakness or less. (13) The second scale is to be used when the plywood has been weighed and neasured at 10% moisture oontent.

A PROPOSBD RLATP FOR RERU

Plant equipment.

The proposed plant for Peru is designed to produce 1,000 anbio leet of finished plywood panels per day, which would be equivalent to 32,000 surface square feet of threepiy panels. 5/8" thiek. This is based on the veneer dryer operating 24 hours a day, and the remainder of the maohinery operating 8 hours a day.

The equipment will be suitable for handing loge having an average diameter of 30 inches: maximum diameter of 48 inches for rotary outting; a maximum length of 108 inohes for rotary outting; and a meximum length of 12 foet for slieing.

The cost of this equipment packed for export, f.0.3. factory with freight allowed to How York, is \#135,750.00. This estimate, made by the United States Machinery Oo., Ine., 90 Broad Street, Vew York, is based upon a one-lathe plywood faotory with a veneer slielug unit. includine the electrie motors for equipping the raetory. It is maderstood that eleetrie power will be delivered to the fatory and that its oharaoteristios will be 220 volts, 60 oysle. s phese ourrent. A boiler of guffiaient sise to furnish steam for the roller veneer dryer and the prese is inoluded.

To this estimate shoula be adea the cost of soaking vata, log yard equipment and conveyors for transporting the waste. A rough estimate suggestea by the United states Machinery Co.. Ine., is 66,000 for the soaking vats and $10 g$ yard equipment, and \$2,500 for the eonveyors taking the waste from the lathe to the hog, and from the hog to the bollor house.

These estimates do not inolude: (1) The mill for euting the log into initohes for the alieer since this will conduoted as a separate operation: (2) The blower system for the elimination of sawdust from the machines*

Machinery.

One Log Band Ont-alf Saw, complete with drive motor for eutting logs to proper lengths for the lathe and alicer.

A complete set of iftings for a f-ton eapaoity stiff legeed derriok.

One 3 -ton capacity Kleetrie Hoiat, complate with eleetrio trolley and monorail.

One Motorized Lathe for rotary outting. Maohine to be fumished complete with Lour-apeed $50 \mathrm{~h}+\mathrm{p}$. main axive motor, V-belt drive, and also necessary controls.

Three Hotor Actuated Voneer clippers having a mife length of $100^{\prime \prime}$. These elippers will be used for alipping the rotary out veneer ooming frem the lathe*

One Autonatio Roller Veneer Dryor. Hachine to be 8 seotions long, 3 lines high, and equipped with 14'6" rolls
spaced on $5 \frac{1}{4}^{11}$ centers. When cupplied with stean at a pressure of 175 2bs, per square inch, this machine will dry 64,000 square leat of $1 / 8^{n}$ thick rotary out veneer. plus 82,000 square teet of 1/16" Mahogany down to By moisture eontent every 24 hours.

One fravelling Head Fencer Jointer with automatia glue sproaling attaohment.

One Motorized Tapeless Veneer Splieing Maohine.
One 12* Yemeer Sliaing Machine. The machine is anitable for handling flitohea to to $12^{*} 6^{\prime \prime}$ long by $28^{\prime \prime}$ square. Machine to be furniahed complete with main drive notor, knife darriage motor tegether with neoessary arivea and controls.

Ons Motorized Veneer Clipper having a knife length of 165". This machine will be used for dimensioning faee veneer prior to jointing.

One Motoriged Veneer Knife Oxinder. Maohine to be suitable for handing knives as used with the machines 1isted above.

Two Motorised Cold Glue Mixars. Machine to be guitable for preparing all types of synthotio resin glues, osein and similar adhesives whioh do not require the use of heat during their preparation.

One Resilient Roll Give Spreader. A motorimed machine complete with variable speed drive and a oiroulating pump aystem complete with pump, relief valve, bypass aistributing
pipes and separate motor and switoh for the same.
One Steel Frame Plywood Presa. Machine to be equipped With platens measuring $100^{\prime \prime}$ long by $50^{\prime \prime}$ wide and having 12 openinge. Equipment to be farnished with press includes two pump, two motor hyiraulia puaping nystem, and all noeessary temperatare and pressure indiating ingtruments.

One Panel Sizing Unit. A unit to oonsist of two machines having the asme general speaifications except that the first machine will be used to size panels to any width up to $48^{\prime \prime}$, and the second one for sising the panels to any length up to 96°.

One Three Drum Sander having a bed wiath of 55°. Bach anding drum is drivon by a separate built-in motor, and the teed bea is also ariven by a separate motor through a variable speed control.

One Veneer Waste Hog, complete with main motor direot eonneoted by a hexible coupling. This hog ia suitable for grinding veneer waste and small cores into ohips of suitable size for use as boiler fuel.

One HRT (Horizontal Return Tubular) boiler built for an operating pressure of 200 Lbs . per aq. in. and apable of producing approximately 5,000 1bs, of steam per hour.

Maehine layout. (See Pig. XIII).

Fig. III- Perspective view of standard lathe, with left end removed to show

Fig. IV-Roller Veneer Dryer

Extended Surface High. Pressure Heaters

Manholes

Drive Motor

Variable-speed Transmission

 (See page 14)Tachometer Reading Direct in Minutes of
Drying Time
(See page 13

Steam Pipes

Double Rolls (See page 13

Air-Tight
Lapped Joint

Hinged Supply Manifold (See page 14)

Drainators -
Continuous Flow Steam Traps

Base Plate and
Expansion Rollers

Chain Drive
Mechanism

Fig. V - Cross-section diagram of a standard veneer slicer.

Fig. VImTraveling Head Veneer Jointer, Cutter Head Side

Fig. VII-Tapeless Veneer Splicer

FIG. VIII-PLYWOOD GLUE
FIG. VIIIA -TESTING GRIPS
SHEAR-TEST SPECIMENS
(1)

Fig. XI- Determining specific gravity of veneer.

TABLE I. (CONT.)-CHARACTERISTICS OF SOME PLYWOOD ADHESIVES

FAVORABLE M.C. OP VENEERS	$\begin{aligned} & \text { DRY BOND } \\ & \text { STRE.UGR } \end{aligned}$	"ET BONE STRENGH	$\begin{gathered} \text { MATER } \\ \text { RESISTANCE } \end{gathered}$	HOLD RESISTAMCE		HEAT and FIRE RESISCALICE	EXTERIOR		PRLICLIPAL USES
Faces 2 to 3% Cores 5\% or Less	Meãum	Ledium	Hedium	Poor to Good	Low to digh	Poor	Fair to 300d	Mediua	Refrigerator, Truck and Car Panels.
Item	Medium	Poor to Medium	Low	Generally Poor	Marked	Poor	Poor	Medium	Furniture, Interior Panels.
Item	High	dione	Poor	Poor	Not Usual	Poor	None	High	Furniture. Piano Cases.
Item	Medium	Hone	Poor	Poor	Marced	Poor	None	Iow ${ }_{\text {I }}$ (Cheapest)	Furniture Panels, Games, Packages.
Item	$\begin{gathered} \text { Medium } \\ \text { to } \\ \text { High } \end{gathered}$	Poor to Medium	Low to Hedium	Poor	Marzed	Poor	Poor	Low	Building 3oards, Concrete Forms.
2 to 14 \%	High	$\begin{gathered} \text { Heaium } \\ \text { to } \\ \text { High } \end{gathered}$	High in Cold *ater. Poor in Hot Nater	Medium. When HighIy Extended is Subject to Attack	Hone	Moderate	Good to Excellent	Resin Alone High With pillers Low	Concrete Forms, Box Cars, Housing, Radio Cabinets.
$\begin{aligned} & \text { Liquid Resin } \\ & \text { 1ot } 5 \text { \% } \\ & \text { pim } 8 \text { to } 12 \text {. } \end{aligned}$	High	High	$\begin{aligned} & \operatorname{High} \\ & 100 \%) \\ & (35) \end{aligned}$	High (4) (Not affected)	$\begin{aligned} & \text { Some with } \\ & \text { Liquids, } \\ & \text { ithonim } \end{aligned}$	High	axceilent	Medium	Bxterior Panels, Holded Panels, Housing.
2 to 16%	High	High	High 100% (75	\#igh (4) (\%ot affected)	${ }^{--}$	High	isxcellent	High	Where Hot Press Cannot Be Used But where Glue Joints Resistant To Most Deteriorating Agents Are Desired.
6 to 15%	High	High	High $100 \%)$ (35)	High (4) (.10t affected)	None	High	Excellent	High	Well lade Melamine Resin Glue Joints, Resemble Those Hade aith Phenols.

[^0]: *Veneer. Thin layer of wood (usually loss than $1 / 6$ " in thickness).

[^1]: *Sapwood: the outer (younger) portion of a woody stem (or a log), uevally distinguishable from the core (Heartwrod) by its lighter color.
 *Heartwood: the dead imner core of a woody atem (or a log), generaliy distimguishable from the outer portion (sapwood) by its darker oolor.

[^2]: * A Inteh is a portion of a log sawed on wo or nore cides and intended for sliced or sawed Fenear. The term is also applied to the resulting sheets of rencer laid together in the seguence of outting.

[^3]: *A general reviow of the theory of gluing is inoluded in the Appendix.
 Fimilar principles oovid be applied to othor adhesiven.

[^4]: *Daylight is the vertieal, clear opening between each pair fof platems.
 FTwo pano2s per opening.

[^5]: *It is possible to use apecies of aifferent densities providing the thickness is adjusted to conform with density.(1)

[^6]: *Twisting has been observed when plywood panels were tastened rigidly to supporting members whose shrinkage chartecteristios differed from those of the plywood panel: The term oross-grain has been nsed with two difierent meanings. In this sentence the texm implies that the grain dips abruptiy through the sheet of vencer from one aurface to the other while in outlining the eauses of twisting the torm implies that the grain was paraliel to the gurface of the shoet, but not parallel to the edges.

[^7]: *Twisting has been observed when plywood panels were fastened rigidy to anpporting members whose shrinicage oharacteristios differed from those of the plywood penel.

[^8]: *Diffusitity is a msasure of the change in temperature that would be produced in a unit volume of the substanoe by the amount of heat that illowa in unit time through unit area of a layer of unit thiokness and having unit difference of temperature between faces.

