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[1] Multivariate statistical treatments of large data sets in sedimentary geochemical and other fields are
rapidly becoming more popular as analytical and computational capabilities expand. Because
geochemical data sets present a unique set of conditions (e.g., the closed array), application of generic
off-the-shelf applications is not straightforward and can yield misleading results. We present here
annotated MATLAB scripts (and specific guidelines for their use) for Q-mode factor analysis, a
constrained least squares multiple linear regression technique, and a total inversion protocol, that are
based on the well-known approaches taken by Dymond (1981), Leinen and Pisias (1984), Kyte et al.
(1993), and their predecessors. Although these techniques have been used by investigators for the past
decades, their application has been neither consistent nor transparent, as their code has remained in-house
or in formats not commonly used by many of today’s researchers (e.g., FORTRAN). In addition to
providing the annotated scripts and instructions for use, we discuss general principles to be considered
when performing multivariate statistical treatments of large geochemical data sets, provide a brief
contextual history of each approach, explain their similarities and differences, and include a sample data
set for the user to test their own manipulation of the scripts.
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1. Introduction

[2] Concentrations and fluxes of chemical species
in and to marine sediment historically have been
shown to provide important constraints on a vari-
ety of geologic, tectonic, and paleoceanographic
processes [e.g., Goldberg and Arrhenius, 1958;

Chester, 2000; Burdige, 2006; Schulz and Zabel,
2006; and many others]. In particular, the distribu-
tions of major, trace, and rare earth elements in
sediment, sedimentary rocks, settling particles,
and atmospheric dust can be used to discern spatial
and temporal patterns at many different scales and
environments, including hydrothermal regions of
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mid-ocean ridges [e.g., Dymond, 1981; Dekov et
al., 2010], pelagic records of biological export
production [e.g., Pedersen, 1983; Paytan et al.,
1996; Murray et al., 2000], dust and volcanic ash
[e.g., Rea, 1994; Scudder et al., 2009; Muhs,
2013]; and continental margins [Taylor and
McLennan, 1985; Sholkovitz, 1988]. Overall, it is
important to understand the concentration in and
fluxes to deep-sea sediment in order to define key
aspects of geochemical cycling and to evaluate
changes in such cycles through time.

[3] The introduction to sedimentary chemistry of
so-called ‘‘rapid’’ analytical techniques for the
analysis of major, trace, and rare earth elements
gained momentum in the late 1960s [e.g., Potts,
1987] and has continued to the present day. Early
applications of instrumental neutron activation
analysis (INAA), and X-ray fluorescence (XRF),
followed by flame- and graphite furnace atomic
absorption (AA), led to the modern and wide-
spread use of inductively coupled plasma emission
spectrometry and mass spectrometry (ICP-ES and
ICP-MS) techniques. Whereas publications 40
years ago commonly focused on a few chemical
elements, it is not unusual for research contribu-
tions in the new millennium to include data on 30
or more elements, including full suites of rare
earth elements, and often complemented by an
array of radiogenic- or stable isotopes.

[4] The arrival of the digital age to all fields of
geochemistry has stimulated the development of
databases such as PetDB, NavDat, SedDB, and
others, which can be accessed through central
portals (e.g., www.earthchem.org) that have fun-
damentally changed the means by which both
high- and low-T geochemistry is practiced. These
databases are very powerful and allow easy compi-
lation and comparison of data between heretofore
disparate locations, ages, data sets, and publica-
tions, and further lead to the generation of new
data visualization techniques [e.g., Yamagishi
et al., 2011].

[5] The paired increase in analytical capabilities
and the development of large databases has led to
a corresponding rise in the need to implement a
consistent set of statistical treatments to best uti-
lize these large and high quality data sets. The
breadth of these growing databases highlights the
need for a consistent means by which their exten-
sive data holdings can be accurately and consis-
tently analyzed statistically. Commercially
available software packages often offer multivari-

ate modules of, for example, factor analysis and
multiple linear regression, but these generic
approaches commonly are not optimized for geo-
chemical use (e.g., to deal with the closed array,
and that all end members must have positive con-
centrations). Moreover, the codes to these treat-
ments are often not readily available, either for
proprietary reasons or otherwise, and thus the dis-
ciplined user has no way of moving beyond the
‘‘black box’’ application approach, causing a cer-
tain amount of information to be lost.

2. Factor Analysis, Multiple Linear
Regression, and Total Inversion

[6] To this end, we here provide three annotated
MATLAB scripts that address Q-mode Factor
Analysis, Constrained Least Squares multiple lin-
ear regression, and Total Inversion modeling.
These statistical treatments are optimized for use
in sedimentary geochemistry but can also be used
by other geochemical communities. As detailed
below, these approaches have been used success-
fully for the past 20–30 years [e.g., Leinen and
Pisias, 1984; Leinen, 1987; Knoop and Owen,
1991; McMurtry et al., 1991; Zhou and Kyte,
1992; Kyte et al., 1993], including a relatively
recent series of papers used by members of our
research group for sediments in a variety of loca-
tions, including the equatorial Pacific Ocean, Car-
iaco Basin, Arctic Ocean, and the northwest
Pacific Ocean [Ziegler and Murray, 2007; Ziegler
et al., 2007, 2008; Martinez et al., 2009, 2010;
Scudder et al., 2009]. While other multivariate
techniques are also useful for other approaches
[e.g., mineralogy, Andrews and Eberl, 2012; gen-
eral similarity analysis, Borchardt, 1974; principal
components analysis, Vermeesch, 2013], for spe-
cific identification of geochemical sources and
their respective contributions these Q-mode factor
analysis, constrained least squares multiple linear
regression, and total inversion techniques have
proven robust over the years.

[7] As noted by Leinen and Pisias [1984], there
are three steps to evaluating the role of deep sea
sedimentation in geochemical cycles within a
given sample array: (1) determination of the num-
ber of different components that are responsible
for the data set being studied, (2) identification of
the composition of these different sources, and (3)
the quantification of the abundances of each of
these components in each sample of the data set
being studied. These steps collectively are referred
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to as ‘‘partitioning’’ [Leinen and Pisias, 1984].
These statistical methods thus look at the structure
of multivariate data sets, and attempt to answer
important questions such as, ‘‘How are different
variables correlated?’’ and, ‘‘How are samples
from different locations and times related?’’ By
making these determinations of correlations and
relationships, we can then learn about the geologi-
cal and oceanographic processes that produce the
data set.

[8] We have several goals with this paper. First,
we hope to provide some uniformity to the statisti-
cal treatment of large sedimentary geochemical
data sets, which will allow for improved interstudy
comparison. Second, we aim to provide increased
transparency to the application of multivariate sta-
tistics, as users will have access to the fundamental
codes and equations governing the statistical appli-
cation. Third, we hope that this contribution per-
haps stimulates further improvements in these and
other statistical applications, and ideally these fur-
ther improvements would also continue to be
transparent and readily available. Fourth, we hope
that we are able to provide a ready statistical plat-
form to assist other geochemical users in working
with their increasingly large and high quality data
sets.

3. Application of MATLAB Scripts

3.1. Overview

[9] We here provide three MATLAB scripts that
can be used to partition a multivariate geochemical
data set. These methods have been applied to other
multivariate data sets as well, including microfos-
sil data sets of species relative abundances where
the number of species may range from 10 to 100
[e.g., Imbrie and Kipp, 1971; Pisias and Mix,
1997]. We provide a general overview of each of
the three statistical procedures, including (a) Q-
Mode Factor Analysis, (b) Constrained Least
Squares multiple linear regression, and (c) Total
Inversion. In the suite of Appendices, we provide
the main MATLAB script for each, as well as any
other scripts necessary to run the main script, and
the mathematical underpinnings are amply
described in publications listed in the references.
The main MATLAB script for each also gives spe-
cific user instructions, including screen shots
showing which (and how) key data files must be
provided, as well as how to interpret the output.

[10] Due to the unique nature of individual data
sets (e.g., the number of samples and elements an-

alyzed), we recognize the need to impose con-
straints on the treatment of multivariate statistics
[e.g., Reimann et al., 2002]. We recommend per-
forming a simple study of concentrations, elemen-
tal ratios, normative calculations, r2 matrices, x-y
diagrams, and other well-established approaches
when incorporating multivariate techniques into
an interpretive strategy. Doing so will allow com-
parison with lithologic descriptions and mineral-
ogy, define the boundaries for mass balance and,
in general, familiarize the user with the fundamen-
tal underpinnings of each data set. Furthermore,
multiple runs of each statistical treatment with
slight variations of the input terms are essential to
assess the sensitivity of the statistical methods.
Reimann et al. [2002] provide a superb discussion
of these and other issues relevant to the application
of multivariate statistical techniques to geochemi-
cal data sets. In the proper context, multivariate
techniques such as those we discuss here can pro-
vide additional powerful information for
geochemistry.

3.2. Q-Mode Factor Analysis

[11] The first script performs what is known as Q-
mode factor analysis [e.g., Imbrie and van Andel,
1964; Klovan and Imbrie, 1971; Imbrie and Kipp,
1971; Miesch, 1976; Leinen and Pisias, 1984].
Factor analysis and Principal Component Analysis
(PCA) and are two related methods for identifying
relationships between variables in large sets of
data. Although both are used in geosciences, one
important difference between the two methods is
that factor analysis is based on the correlation
structure of the variables while PCA accounts for
the maximum variance of all the variables. Thus,
PCA will by definition force all variables into the
result while factor analysis generates unique
groups (or ‘‘factors’’), each of which behaves dif-
ferently from the other factors. Therefore, factor
analysis does not require all variables to be found
in the most common factors [Reimann et al.,
2002; Ortiz, 2011], which is a more useful charac-
teristic for geochemical applications.

[12] There are two main types of factor analysis,
R-mode and Q-mode. Q-mode is more appropriate
for geochemical (and many other) applications
and thus is used here. R-mode factor analysis is
variable based, that is, the objective is to simplify
a matrix of variables by forming a smaller number
of composite variables that are linear combina-
tions of the original variables. R-mode therefore
explains the maximum amount of variance in a
data set, which is useful for measuring one
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variable at multiple temporal points. Q-mode, on
the other hand, is sample based, that is, the objec-
tive is to simplify a large matrix of variables meas-
ured on many samples. This method is particularly
useful for cases when there are many variables
measured at multiple spatial or temporal points
[Miesch, 1976]. Q-mode factor analysis is pre-
ferred for applications in geochemical paleocea-
nography or other geochemical studies [e.g.,
Reimann et al., 2002] because of the underlying
hypothesis of these types of geochemical studies,
namely, that the geochemical data set represents a
mixture of different and distinct chemical sources.
One of its challenges is that factor score matrices
can contain negative values, which is unrealistic
when dealing with chemical compositions. A
‘‘varimax’’ rotation can eliminate the problem of
the negative values by rotating the principal com-
ponent axis so that the variability of the data set is
orthogonal, but at its maximum. By performing
this rotation, the end-member axes are rotated to
be closer to real sample compositions [e.g., Leinen
and Pisias, 1984]. Overall, Q-mode factor analy-
sis, combined with the ‘‘varimax’’ rotations,
results in a description of the data set as being
samples composed of positive contributions of a
number of geometrically orthogonal factors that
provide a close approximation of the hypothesized
mixtures.

[13] The script provided here includes extensions
of the Q-mode factor analysis of Klovan and
Miesch [1976] and Klovan [1981]. Q-mode factor
analysis is used to first simplify the multivariate
data sets by describing it with a smaller set of
components (sometimes called end-members) that,
when identified and mapped, can be used to look
at processes that ultimately produce the observed
data. Although Q-mode factor analysis is usually
overdetermined because the number of samples is
much greater than the number of variables or fac-
tors, it helps address the first step in partitioning
by providing an estimate of the number of differ-
ent components that are contained in the observed
data set.

[14] With the extensions to the original Q-mode
factor analysis of Klovan and Miesch [1976] and
Klovan [1981], this technique further provides
estimates for the second and third steps of parti-
tioning, namely, estimation of the composition of
the end-members and of the abundance of each
end-member in each sample. However, because of
the constraint in Q-mode factor analysis that the
end-members are algebraically orthogonal (their
vector dot products are zero), the compositions of

Q-mode end-members commonly contain negative
compositions, as described above. Obviously, this
is not acceptable for geochemistry. A number of
studies have provided strategies to adjust Q-mode
end-members to address the problem posed by the
orthogonality constraint [e.g., Full et al., 1981;
Leinen and Pisias, 1984], and the MATLAB script
provided here also includes this in its calculations.

3.3. Constrained Least Squares (CLS)
Multiple Linear Regression

[15] The second script partitions samples in terms
of a specified set of end-member components.
Unlike the Q-mode factor analysis, this script
requires the user to specify the number of compo-
nents contained in each sample and the exact com-
position of each of these end-members. In
practice, the information gained from the Q-mode
factor analysis (e.g., determination of the number
of end-members that can be used to describe the
data set, and the approximate composition of these
end members), can be used as a starting point for
the constrained least squares (CLS) statistical
treatments.

[16] This MATLAB script is based on the
approach used by Dymond [1981], who solved the
partitioning problem using linear programming
techniques [e.g., Hadley, 1962] to estimate the
abundance of five end-members in surface sedi-
ment from the Nazca Plate in the Southeast Pa-
cific. Because all equations were linear, the model
fit was based on minimizing the sum of the abso-
lute values of the model residuals. The MATLAB
script presented here utilizes a constrained least
squares (CLS) linear model whereby the contribu-
tion from each end-member is constrained to be
greater than or equal to zero while minimizing the
sum of squares of the residuals. Much of this CLS
theory can be found in Rencher [2002]. Where the
Q-mode factor analysis generates estimates of end
member compositions, this script requires that the
end members be specified. Such specification can
be determined by the user from data gathered from
the literature, and/or from the results of the Q-
mode factor analysis.

[17] Given the composition of the end members,
constrained least squares techniques are used to
calculate the abundance of each end member in
each sample. In general, the number of elements
analyzed in each sample is greater than the number
of end members and thus the set of linear equa-
tions is underdetermined. Because we wish to
solve these equations with the constraint that the
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contributions of each end member in each sample
is greater than or equal to zero, the equations are
solved using a constrained least squares approach.
Traditional linear regression techniques, such as
many commonly available in commercially avail-
able software packages, focus on minimizing the
sum of squares of the residuals, and thus are less
advisable because the positivity constraint on the
contribution is not satisfied.

3.4. Total Inversion

[18] This final script is based on the FORTRAN
code of Zhou and Kyte [1992] and Kyte et al.
[1993] and partitions using the ‘‘total nonlinear
inversion techniques’’ outlined by Tarantola and
Vallette [1982]. Unlike the previous CLS scripts,
which assumes that the composition of end-
members is fixed precisely, the total inversion script
partitions the data set while allowing the composi-
tion of each end-member to vary slightly to maxi-
mize the partitioning fit of any one sample. Such
variation in end member concentrations is more
geochemically realistic from several perspectives.
First, the actual end member may differ slightly
from published values (e.g., from a nearby vol-
cano), and, second, there may be slight variation(s)
in composition with time. From the complete parti-
tioning run, the program calculates the same set of
fit statistics as CLS as well as the mean and stand-
ard deviation of the end-member compositions.

4. Description and Use of the Scripts

[19] In the supporting information1, we provide
four Appendices, each organized around a central
theme, and each consisting of all the files a user
will need to perform the statistical analyses. Ap-
pendix 1 consists of three files necessary to per-
form the Q-mode Factor Analysis, Constrained
Least Squares, and Total Inversion statistical
methods on the well-known surface chemistry data
of Dymond [1981]. Three hundred and twenty-
seven surface sediment samples from the Nazca
Plate of the southeast Pacific Ocean were analyzed
for eight elements (Al, Si, Mn, Fe, Cu, Ni, Zn, and
Ba). Data are reported in ppm on a carbonate-free
basis [Dymond, 1981] and are in Appendix 1a.
These sediment samples can be described as a
combination of five sediment end-members: ter-
rigenous, biogenic, hydrothermal, authogenic, and

a dissolution residue. The compositions of these
end-members are found in Appendix 1b, and the
variances in the Dymond [1981] data are in Ap-
pendix 1c.

[20] Appendices 2, 3, and 4 are organized around
the three multivariate statistical treatments. Within
each type of analysis (e.g., Q-mode Factor Analy-
sis, in Appendix 2), there is a key file called ‘‘Ap-
pendix A2a—Users Guide.’’ This file is essentially
a manual complete with instructions for use of the
MATLAB code, screen shots of important steps,
and tips for ease of use of the code and data. Paral-
lel files are in Appendices 3 and 4, respectively,
for CLS and TI. Additionally, Appendices 2–4
contain separate files for the individual MATLAB
scripts needed to perform each statistical treat-
ment. In Appendices 2, 3, and 4, we also provide
example output for Factor Analysis, CLS, and TI
using the Nazca Plate data set.

[21] All files are formatted for easy copy-and-
paste input into MATLAB. The scripts were tested
on MATLAB version 7.10.0.499 (R2010a) at Bos-
ton University from October 2012 to May 2013.
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