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A standard tool in general relativity is the 3+1 or ADM point of view, namely

slicing spacetime into spacelike hypersurfaces of constant time and then describing

physics in terms of time-dependent quantities on a typical such hypersurface. Much

less well-known is the 1+3 point of view, in which one foliates spacetime with

timelike curves, then describes physics in terms of the surfaces "locally orthogonal"

to the given foliation. This is precisely the description of physics as seen by a

single observer. However, in many instances there do not exist such orthogonal

hypersurfaces. One may instead attempt to describe physics on the manifold of

orbits defined by the timelike curves, but one must then develop a parametric

theory to handle the time dependent objects defined on the manifold of orbits.

I will present two equivalent descriptions of parametric manifolds. The first

is based on a generalized Gauss-Codazzi formalism which involves projection to a

lower-dimensional "surface". The second is an intrinsic description which involves

redefining the action of vector fields on functions. In either description one is lead

to generalized notions of connections, Lie bracket, and exterior differentiation.

Unique to a parametric theory of geometry is the deficiency. Although inde-

pendent of the torsion, the deficiency behaves like toi'on in ttie parametric direc-

tion. We will show how the deficiency emerges as a result of the above generaliza-

tions.
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The 3+1 formalism arises naturally in considering initial-value formulations

both for fields on a fixed background spacetime and for the spacetime itself. The

applicability of parametric manifolds to such problems will be discussed.
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Parametric Manifolds

1. Introduction

1.1 Statement of the Problem

The fundamental premise underlying general relativity is the unification of

space and time into spacetime, a four-dimensional manifold with local Lorentzian

geometry.'

While the unification of space and time is one of the great achievements of

this century, occasionally it is quite useful to split spacetime back into space and

time! Certainly such a splitting would depend upon the notion of "time". For

example, given a family of observers, one may have surfaces of "constant time"

which are used to synchronize the observers' clocks. Alternatively, each observer

has an independent notion of time as measured along their world lines (proper time).

In such a situation, what the observer sees at any given "time" is determined by the

subspace perpendicular to its world line; the local rest space of the observer. Even

in such simple cases as flat spacetime with constantly rotating observers, these two

notions of time disagree. In an attempt to emphasize the fundamental nature of

what observers see we turn to parametric manifolds.

A parametric manifold can be thought of as a manifold in which all of the

geometric objects (e.g., tensors) are allowed to depend on an extra parameter such

as time. A parametric structure is then given by specifying a one-parameter family

of one-form fields. This parametric structure affects the action of (parametric)

1 The theory of parametric manifolds is not dependent on the four-dimensional

Lorentzian structure of spacetimes. Parametric manifolds of arbitrary dimension

and signature may be defined.
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vector fields on (parametric) functions, the notion of covariant differentiation, as

well as other derivative operators. While this extra structure leads to generalized

notions of connections and curvature, it also brings into existence a new operator

known as the deficiency. As will be shown later in this dissertation, the deficiency

measures the failure of the parametric theory to agree with a more traditional theory

of tensor analysis on manifolds. While initially quite bothersome, the deficiency of a

parametric structure may be easily defined and handled in an elegant way, much like

torsion. In fact, the deficiency and torsion behave so similarly that the deficiency

can easily be confused with torsion. They are, however, separate objects.

This dissertation will give a complete and comprehensive description of all of

the objects and tools necessary for a rigorous study of parametric manifolds. This

goal will be accomplished by examining parametric manifolds from two primary

points of view. First, parametric manifolds will be discussed in terms of projected

higher-dimensional quantities. This approach will be called the extrinsic approach.

Second, parametric manifolds will be described entirely in terms of geometric quan-

tities that are intrinsic to the manifold, including the given parametric structure.

This approach will be called the intrinsic approach.

The extrinsic approach is closely connected with the historical development

of parametric theories. While many of the tools and ideas associated with paramet-

ric manifolds have been around since the early days of general relativity, in 1993

Zoltan Perjes began a more abstract approach and succeeded in identifying the

fundamental feature of a parametric structure (a one-parameter family of one-form

fields). Historically, as we shall see, the parametric theories began to emerge as

a consequence of decomposing (both four-dimensional and five-dimensional) space-

times with respect to a preferred congruence of curves. This so called 1+3 (or 1+4)

decomposition of spacetime has been overshadowed in the recent literature by the

dual formalism of a 3+1 splitting of spacetime, also known as the ADM formalism.

In either case, one is dealing with projected theories of geometry. In the ADM

setting, one is primarily decomposing the higher-dimensional spacetime quantities
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in terms of lower-dimensional quantities which are thought of as geometric objects

on embedded hypersurfaces. The study of embedded hypersurfaces is a classical

topic in differential geometry known as the Gauss-Codazzi formalism, and there

are standard ways of relating the geometry of a higher-dimensional manifold to the

geometry of an embedded surface (of any dimension). Thus, the projected theory

induced by a 3+1 decomposition of spacetime is the geometry induced by the well

known Gauss-Codazzi formalism.

However, the 1+3 decomposition is quite different. As the 1+3 decomposition

is based upon a given congruence of curves, there are no guarantees that these curves

will be orthogonal to a family of hypersurfaces. That is, the three dimensional quan-

tities defined by the 1+3 decomposition have no natural place to live! Without the

existence of these orthogonal hypersurfaces, the standard Gauss-Codazzi formalism

does not apply. This dissertation will generalize the standard Gauss-Codazzi for-

malism to the case where such surfaces do not exist. This generalization will lead

to projected objects (as does the standard Gauss-Codazzi approach) which will be

interpreted as living on the manifold of orbits, E, which will in turn be identified

with a parametric manifold. Specifically, such a generalization will lead to a natural

(affine) connection on E, a generalized notion of extrinsic curvature, as well as a

unique curvature operator on E which is related to the Riemann curvature tensor

of the original manifold by the standard Gauss equation. The induced notion of

extrinsic curvature is no longer a symmetric tensor. However, its failure to be sym-

metric is directly related to the deficiency of the parametric structure defined on

E. Given a projected theory of geometry based on the generalized Gauss-Codazzi

theory, one may give a complete description of parametric manifolds in terms of the

original higher dimensional manifold.

While the extrinsic approach to parametric manifolds allows one to develop a

parametric theory based upon a given congruence, the intrinsic approach describes

the notion of a parametric manifold without any reference to a higher-dimensional

space. Thus, although one may use the insight gained from studying the extrinsic
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projected quantities, working intrinsically does not allow one the use of projection

operators. In order to overcome the absence of projection operators, one is led, in

particular, to consider a generalized notion of connection. This generalized connec-

tion has its roots in the parametric action of vector fields on functions which (in

a coordinate basis) is not partial differentiation. The notions of Lie bracket and

torsion must also be carefully defined in this setting.

One interesting development evolving from an intrinsic description of para-

metric manifolds involves the concept of a generalized exterior derivative operator

d,k. It differs from a standard exterior derivative operator in the sense that d! 0!

However, the non-vanishing behavior of d2* is completely characterized by the afore-

mentioned deficiency of the parametric structure.

Having a complete mathematical description of parametric manifolds allows

one an alternate viewpoint on initial-value problems in general relativity. By study-

ing the decomposition of the spacetime Laplacian, I will demonstrate how paramet-

ric manifolds may be used to develop a procedure to quantize the scalar field in

arbitrary background spacetimes. Also, I will address the initial-value problem of

general relativity itself. As the standard initial-value formulation of general relativ-

ity relies on the Gauss-Codazzi equations, the generalized Gauss-Codazzi equations

can be used with less restrictive sets of initial-date.



1.2 History of the Problem

In 1921 A. Einstein presented a paper by T. Kaluza [14] in which Kaluza in-

troduced a five-dimensional theory of spacetime, based on Einstein's general theory

of relativity, as an attempt to unify gravity and electromagnetism. In his paper,

Kaluza assumed that the five-metric was independent of the fifth dimension. Cen-

tral to Kaluza's analysis was his 1+4 decomposition of this stationary spacetime. In

an attempt to add some physical interpretation to Kaluza's fifth dimension, Einstein

and Bergmann generalized Kaluza's framework [8]. Their generalization contained

two ideas central to the theory of parametric manifolds.

First, Einstein and Bergmann recognized only certain classes of five-dimen-

sional coordinate transformations as having any relevance to the four-dimensional

"physical world". As a result, Einstein and Bergmann were led to consider a four-

dimensional metric (the natural metric associated with a 1+4 decomposition of

spacetime) which was allowed to depend (with some restrictions) on the fifth dimen-

sion. In the context of this dissertation, Einstein and Bergmann were considering

a one-parameter family of metrics, i.e., parametric metrics!

Second, Einstein and Bergmann presented derivative operators which were

covariant with respect to the restricted class of coordinate transformations, rather

than the entire class of five-dimensional coordinate transformations. These analytic

tools are precisely the analytical operators one needs to define a coherent parametric

theory of spacetime. Einstein and Bergmann constructed an additional covariant

derivative operator (partial derivative with respect to the "parameter"), a new no-

tion of partial differentiation (parametric differentiation), a generalized covariant

derivative operator, as well as a generalized notion of curvature (later called the

Zel'manov curvature). In the language of parametric manifolds, these objects are

the most natural geometric operators which are invariant with respect to a reparam-

eterization of the manifold. Later, Bergmann presented one of the most complete

descriptions of a parametric theory of spacetime to be found [3].

5
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Around 1955 the Russian mathematician A. Zel'manov rediscovered many

of the analytical tools developed by Einstein and Bergmann. In [31], Zel'manov

discusses physical spacetime quantities which transform covariantly with respect to

certain coordinate transformations. While he is led to consider the same family

of coordinate transformations that Einstein and Bergmann were, Zel'manov was

not working in an extra (fifth) dimension. Instead, Zel'manov was interested in

discussing coordinate transformations which related coordinate systems which were

at rest with respect to the same frame of reference. Zel'manov also made use of a

derivative operator very similar to the one introduced by Einstein and Bergmann.

In 1958 the Italian mathematician C. Cattaneo, while studying equations of

motions of free test particles in general relativity, made use of a transverse dif-

ferential operator [5]. This differential operator is the same reparameterization

invariant differential operator used by Einstein, Bergmann, and Zel'manov. Catta-

neo explicitly recognized this operator as a projected partial differential operator,

thus setting the stage for a projected theory of geometry leading to the notions

surrounding parametric manifolds.

In 1993, Z. Perjes presented what he called a "parametric manifold picture of

spacetime". While Perjes makes use of all the previous analytical quantities intro-

duced by Einstein and Bergmann, he was the first to give an abstract definition of

a parametric manifold. Central to such an abstract notion, Perjes successfully de-

scribes the additional structure necessary for an elegant description of parametric

manifolds. In [26], Perjes provided a brief introduction to the subject of para-

metric manifolds before presenting a complete description of a parametric theory

of spinors. Together with Gy. Fodor, Perjes applied this parametric theory to a

canonical analysis of relativistic gravitation [9].

At this point, I believe a complete description of parametric manifolds is still

missing. In this dissertation I will build upon Perjes' work in several ways. First,

the generalized Gauss-Codazzi formalism will not only reproduce many of Perjes'
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analytical tools, but it will also help lead to the notion of a parametric Lie bracket.

Such a definition is crucial both in providing a complete interpretation of the defi-

ciency, as well as in understanding the similarities and differences between deficiency

and torsion. Second, this dissertation will provide the necessary definitions for a

complete intrinsic description of parametric manifolds. As we will see, an underly-

ing theme to such a description involves re-defining the action of a vector field on a

function. Changing the action of a vector field on a function yields generalized no-

tions of "partial" derivative, covariant derivative, Lie bracket, exterior derivative,

and curvature. Thus, one may think of the theory of parametric manifolds as a

special case of a generalized differential geometry in which one simply changes the

natural action of a vector field on a function. Again, as a result of this non-standard

action, one is forced to introduce the notion of deficiency.

Although the literature abounds with descriptions of 1+3 and 1+4 splitting

of spacetime, I have tried to concentrate the above chronology so as to include those

authors who actually began to introduce some sort of reparameterization invariant

objects and operators. In [13], Jantzen and Carini offer a more complete listing of

references central to the 1+3 decomposition of spacetime.



1.3 Dissertation Summary

Chapter 2 sets the stage for the formal constructions by summarizing previous

work. It begins with an introduction to the 3+1 and 1+3 (slicing and threading

respectively) splittings of spacetime. In each case, the decomposition and con-

struction of the spacetime metric is discussed. After the summary of the different

spacetime splittings, we examine Perjes' recent work on parametric manifolds. Al-

though Perjes was not considering an extra spacetime dimension, as was mentioned

above, many of Perjes' definitions are identical to those first introduced by Einstein

and Bergmann in 1938. However, Perjes interprets these objects as being repa-

rameterization invariant rather than transforming under some higher-dimensional

coordinate transformation. Furthermore, Perjes identifies the parametric structure

as being carried by a one-parameter family of one-form fields. Such an observation

lays the groundwork for a thorough description of parametric manifolds. In the light

of spacetime splittings, one can better understand many of Perjes' definitions and

observations. Central to the 1+3 decomposition of spacetime is the threading metric

and the threading shift one-form. In this context, one sees that Perjes' parametric

metric agrees with the threading metric, and Perjes' candidate for the structure

one-form agrees with the threading shift one-form. Thus, we see how a threading

decomposition of spacetime naturally leads one to consider a parametric manifold

picture of spacetime. In addition, one may start to view Perjes' parametric oper-

ators (a, and V*) as projected spacetime operators. The discussion of spacetime

splittings and parametric manifolds concludes with a brief example illustrating the

various viewpoints.

Chapter 3 offers a more thorough description and exhaustive discussion of

parametric manifolds. Precise definitions of curvature, torsion, and deficiency are

given. Two separate approaches are presented. First, the extrinsic approach focuses

on the relationship between parametric manifolds and projected spacetime quanti-

ties. As was mentioned earlier, attempting to expand upon this relationship requires

a generalization of the standard Gauss-Codazzi formalism to the case were there are

8
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no orthogonal hypersurfaces. The generalized Gauss-Codazzi approach then allows

one to define a metric and an affine connection on the manifold of orbits which agree

with Perjes' parametric metric and connection. In addition, one has the notion of

deficiency, which measures the fact that the projected spacetime bracket operator is

not closed (since we have generalized the Gauss-Codazzi approach to the case with-

out orthogonal hypersurfaces). While this generalized approach reproduces Perjes'

parametric metric and parametric connection, it leads to a curvature operator which

differs from Perjes'. This new curvature operator is the unique curvature operator

satisfying a generalized version of Gauss' equation. As Perjes' curvature operator

was the same curvature operator found in the previously cited literature, the cur-

vature operator induced from the generalized Gauss-Codazzi approach also differs

from the curvature operators of Zel'manov, Einstein, and Bergmann The relation-

ship between the two curvature operators will be given explicitly and discussed.

Following the complete extrinsic description of parametric manifolds is the

intrinsic description. Using all of the information gathered from examining space-

time splittings, projections, and the generalized Gauss-Codazzi formalism, we define

parametric manifolds in terms of an abstract manifold together with some additional

structure which transforms correctly under a reparameterization. Central to all of

the parametric definitions is the action of parametric vector fields on parametric

functions. Defining an action which differs from the standard action of vector fields

on functions leads to an entirely different type of geometry; a parametric geome-

try! As was mentioned above, we will consider generalized notions of Lie bracket,

covariant differentiation, torsion, curvature, and exterior differentiation. Such gen-

eralizations give rise to a new operator: the deficiency. In essence, the deficiency

measures the deviation from a standard geometric theory.

Chapter 4 begins with a more formal treatment of foliations. Although the

discussions of slicing and threading revolved around the notions of foliations, a de-

tailed discussion of foliations was omitted so as not to overshadow the introductory

nature of Chapter 2. Indeed, the majority of this dissertation concerns itself with
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understanding the relationships between different types of foliations rather then

concentrating on the existence of such foliations. Of particular interest is the case

where the leaves of the foliation corresponds to the fibres of a fibre bundle. While

examining conditions which allow a foliated Riemannian manifold to be a fibre

bundle over the manifold of orbits, Reinhart introduced the notion of a bundle-like

metric. In the case of threading, it turns out that in order for the spacetime metric

to be bundle-like, the threading metric must be independent of the time coordinate

t. Thus, the notion of bundle-like is slightly less restrictive then requiring the coor-

dinate vector field It- to be Killing. Since we have already identified the threading

metric with the parametric metric, we see how allowing for a parametric metric

generalizes Reinhart's bundle-like condition.

In this chapter, I also discuss how a metric on the total space of a fibre bundle

induces metrics on the typical fibre and the base space. Interpreting spacetime as a

fibre bundle and choosing the fibre and base space correctly, one may easily repro-

duce the slicing and threading decompositions of spacetime. By letting the fibres

represent the leaves of the slicing or threading foliation, one is naturally handed the

slicing and threading decompositions respectively. Thus, the fibre bundle picture

provides a single mathematical framework in which to discuss both decompositions

simultaneously. Since the parametric manifold viewpoint naturally comes from the

threading viewpoint, the fibre bundle which reproduces the threading decomposi-

tion may also be used to describe the parametric viewpoint. In such a setting,

parametric functions are realized as functions on the total space, so that the action

of parametric vector fields on parametric functions is achieved by considering their

horizontal lifts. In this way, the parametric derivative operator 0,, is naturally re-

covered. This action may also be recovered by interpreting it as an action of a jet

field on a function. Under such an interpretation, the parametric exterior derivative

operator d. is seen to correspond to the notion of a total derivative in a jet bundle.

Chapter 5 concludes with some preliminary results concerning the quantiza-

tion of the Klein-Gordon equation for arbitrary background spacetimes. By ex-
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amining the decomposition of the spacetime Laplacian, one begins to see the use-

fulness of a parametric theory of spacetime. I will also show how the generalized

Gauss-Codazzi formalism may be used to study the initial-value problem of general

relativity itself.

With such strong positive results, I hypothesize the applicability of parametric

manifolds to other initial-value problems.



2. Slicing, Threading, and Parametric Manifolds

2.1 Introduction

The phrase parametric manifold refers to a smooth manifold, E, possessing

additional structure which remains invariant under a notion of reparameterization.

This additional structure leads one to consider one-parameter families of tensor

fields on E together with a parametric theory of tensor analysis. Although there

are occasional references to some of these ideas in the literature, the most recent

work on this subject is to be found in the current work of Zoltgn Perjes, [26]. In [26],

Perjes is concerned with the dynamics of spacetime as viewed in general relativity.

Thus, this chapter concerns itself mainly with four-dimensional Lorentzian mani-

folds. However, there is certainly no need to restrict the definition of parametric

manifolds to such situations.

Perjes' approach to parametric manifolds is closely related to a formalism

which involves decomposing spacetimes which admit a preferred congruence of

(non-lightlike) curves. Such an approach leads to a mathematical framework which

concerns itself with a splitting of spacetime into two portions; one discusses the

geometry of spacetime in a direction tangent to the (one-dimensional) congruence,

while the other describes the (three-dimensional) geometry orthogonal to the curves.

Although this (1+3)-decomposition of spacetime, called the threading viewpoint in

[13], has its roots in classical texts ([16] and [20]), it is not as widely used as the

so-called (3+1)-decomposition.

The (3+1)-decomposition, or ADM formalism, also refers to a mathemati-

cal framework for describing the four-geometry of spacetime in terms of a three-

geometry and a one-geometry. However, the fundamental idea behind the (3+1)-

decomposition is the existence of a foliation of the spacetime by spacelike hypersur-

faces. Hence the (3+1)-decomposition refers to the splitting of spacetime in terms

12
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of the geometry of the hypersurfaces and the geometry of the spacetime orthogonal

to the surfaces. In [13] such an approach is referred to as the slicing viewpoint.

As one might imagine, the slicing and threading viewpoints involve many of

the same mathematical considerations. In [13], Robert Jantzen and Paolo Carini

provide an elegant description and a much needed comparison of these two sim-

ilar viewpoints. In Chapter 4, I show how to obtain both slicing and threading

decompositions as special cases of a more general construction involving foliations.

The primary goal of this chapter is to introduce the notion of a paramet-

ric structure. While the slicing viewpoint is more widely used, it is the threading

viewpoint which provides a natural parametric structure. Thus, in this chapter I

will briefly introduce the two approaches to spacetime splittings, exhibit the cen-

tral notions surrounding a parametric theory of spacetime, and describe how such

a parametric theory inherits many of its ideas from the threading viewpoint. This

unified summary of previous work by others will set the stage for a more detailed

discussion in Chapter 3. The chapter concludes with an example involving rotating

coordinates in three-dimensional Minkowski space. The example discusses the dif-

ference between the slicing and threading viewpoints and offers the reader a brief

glimpse into some of the geometrical difficulties involved in developing a precise

parametric theory of spacetime.



2.2 Slicing

2.2.1 Introduction

A (3 + 1)-decomposition of a four-dimensional spacetime has proved to be a

successful framework for formulating the dynamics of geometry (c.f., [19]). There

exist two standard approaches to such a splitting, both of which yield the stan-

dard definitions of lapse and shift; one being a construction process and the other

a decomposition process. For the construction, one begins with three-dimensional

surfaces and attempts to "fill in" between these surfaces to construct a spacetime

which admits the original three-dimensional surfaces as a foliation of spacelike hy-

persurfaces. The spacetime metric is thus constructed out of the three-metric of the

hypersurfaces as well as additional bits of information. Alternatively, one could start

with a spacetime which admits a one-parameter family of spacelike hypersurfaces

and then decompose all of the original four dimensional geometrical information

(e.g., tensor fields) into two pieces; one tangent to the surfaces and one normal to the

surfaces. As we shall see, both approaches yield an equivalent (3+1)-interpretation

of spacetime.

2.2.2 Notation

Throughout the next two sections we will be working with complete space-

times foliated by spacelike hypersurfaces. Furthermore, let us assume that the

hypersurfaces are all diffeomorphic to each other. Thus, one may simplify the nota-

tion by working in extremely nice coordinate neighborhoods. Begin by introducing

a global time function t which can be regarded as the parameter which labels the

hypersurfaces. Furthermore, we will work in a neighborhood small enough so that

the intersection of each hypersurface with the neighborhood admits coordinates

{xi} = {x1, x2, x3} on the hypersurface Et. Thus, p E Et can be given the coordi-

nates (xi, t). To simplify the notation, I will use Greek letters as indices which take

14
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where p1 E Et is chosen so that d(pi, go) is the orthogonal distance between the two

hypersurfaces. See figure 1.

on all four spacetime dimensions with x° t. Thus, fel = ft, x21 and we can

write the spacetime metric g in terms of its components given by ds2 = g dxa dx1 .

Throughout this dissertation, repeated indices are to be summed over.

2.2.3 The Construction

Suppose one had a spacetime foliated by a one-parameter family of spacelike

hypersurfaces, Et. One would like to realize the four-geometry of this spacetime as

arising from the three-geometries of these surfaces. Thus, one can "construct" the

spacetime metric out of the spatial metrics of the surfaces. Of course, additional

information must also be provided. Following the description in [19], let us assume

that the three-geometry of two infinitesimally close surfaces is known. Label these

surfaces by Et and Etd-At Each of these surfaces has an associated spatial metric,

kt and At the risk of de-emphasizing the dependence on the coordinate t, I

will use the same notation to refer to both spatial metrics and write k. dxz dx3 for

the three-metrics on both surfaces.

We now describe the four-geometry that fills in between these slices. Given a

point pc, = (xi, t) E Et and a nearby point qo = (xi + Axi ,t At) E Et+At, we are

interested in calculating the coordinate distance between pc) and go, d(po, go). By

taking advantage of the existence of a metric in the slice Et, it seems most natural

to use the Pythagorean Theorem of Lorentzian geometry and write

d(po, q0)2 = d(Po , 131)2 d(Pi, 4'0)2 (2.1)
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Figure 1: Calculating Distances

It is now apparent that in order to fully construct a spacetime metric much

information must still be specified. As we have no a priori knowledge of what it

means to move orthogonally to the surfaces, the location of p1 is not fully deter-

mined. As At approaches zero, the point qo should approach pl. However, there

is no reason to assume that the coordinates of p1 are (xi + Axi, t). Rather, the

point p1 could be "shifted" in any of the three spatial directions. Thus, we assign

the coordinates p1= (xi + NiAt,t). The three functions Ni depend on the

coordinates of Et as well as the parameter t. As the functions Ni describe how the

nearby surfaces are shifted with respect to one another, they are commonly referred

to as the components of the shift vector. The given metric k may now be used to

measure d(p0,P1)

The quantity d(p1,q0) is still not determined. In order to fix this distance, one

must know the relationship between the proper time ("distance") from Et to Et-FAt

and the arbitrary parameter t. Again, this distance may depend on the coordinates

in Et as well as t. Define the lapse function N by

d(p1,q0) = N(xi ,t) At.

One may now describe the four-geometry in terms of the lapse function and

shift vector. Adding these newly defined quantities to the earlier figure yields the

following picture:

16
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Thus each hypersurface has a fully spatial metric, kii; a tangent vector field, Nz

; and a function N. As we have seen, these three spatial quantities may be used to

construct the four-dimensional spacetime metric g.

In matrix notation, one can write the components of the spacetime metric

tensor in terms of N, Ni, and k.. as follows:zi

((N2 N,,Nm) N
N. k

Z.3.
)

2

with inverse
N-2 N-2 NJ

(g c"3) = Ni kij N-2 Ni Nj )

where k2 is the inverse of kii defined by

It+ At

IN At

P

ku(Axi + NiAt)(Axi + Nit)

Figure 2: Slicing Lapse Function and Shift Vector

Using equation (2.1) and letting At * 0 we see that the four-geometry of the

spacetime can be represented by the line element

ds2 = kii(dxi Ni dt)(dxj Nj dt) N2 dt
(2.2)

= (NN i N2)dt2 + 2N idt dxi kiidxi dxj

where I have used the three-metric k. to define N. = k. . As mentioned ear-
23 2

her, the functions Ni are thought of as the component functions of a vector field

"tangent" to each hypersurface. The shift vector field is defined by

Ni
a

k = ij
zl

17



Figure 3: Decomposition of Si

The shift vector field Ni 4, was defined to account for the fact that there

was no a priori knowledge of directions orthogonal to the surfaces E. However, in

terms of the shift vector and lapse function we may now easily describe a future

pointing unit spacetime vector field normal to each surface. Call this normal vector

field n. Using ( , ) to represent the four-metric we just constructed, we observe that

(Ndt, Ndt) = 1. Therefore, n is given by the metric-dual of the one-form N dt.

Explicitly,

15 1n = - -NNz Dxi.

Written in this manner, it is now apparant how the functions Ni describe the

"shifting" of neighboring surfaces. The case of vanishing shift corresponds to the

scenario where coordinate time is flowing orthogonally to the hypersurfaces (i.e.,

the directions of n and a agree).

18

Our parameter t now takes the role of a spacetime coordinate whose coordinate

vector field a may be interpreted as representing the "flow of time" in the newly

constructed spacetime. Since the coordinates xi are constant along integral curves

of ST, one may think of the lapse and shift as the means of identifying points on

different hypersurfaces. See figure 3.

(2.3)



2.2.4 The Decomposition

As stated earlier, the above construction is simply an orthogonal splitting

of spacetime geared towards an initial value formulation of spacetime. To see the

obvious, begin as above with a spacetime which admits a foliation of spacelike

hypersurfaces. If we let ric/ be the components of the future pointing unit vector field

n normal to the hypersurfaces Et, the naturally induced metric on each hypersurface

may be obtained from the projection tensor

ko = go + nnfi (2.4)

where no = gon13 (c.f., [30]) Now, for vector fields X = (9`:a and Y = Y13

tangent to Et,

ka,3Xar3 a Xcir3
air3

= giiXiYi

Therefore, the functions kii = gii may be thought of as the components of a three-

dimensional metric on each hypersurface. One must not lose sight of the fact that

the functions kii depend on the spacetime coordinate t (as do the go). We will

refer to the functions k. as the components of the slicing metric.

The slicing metric on Et is the naturally induced metric in the following sense:

for each imbedding tt : Etc M, k = it*(g), where it* refers to the natural map

on the co-tangent spaces T*M and T*Ei. Thus, k is both the projection of g to E

via (2.4) and the pullback of g to E. Using t denote the natural map between

the tangent spaces, we may work out the relationship explicitly. For tangent vector

fields X and Y on Et we can write X = Xi Y = Yi AT, and

kiiXiYi tt*(g)iiXiYj

g (tt*(Y))13

=

One may decompose the coordinate vector field -578 into vector fields normal and

tangent to each surface Et. Thus one has

a = Nn+ Ni a
. (2.5)

ax,

19
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Equation (2.5) defines the slicing lapse function N and the slicing shift vector

field Ni 2-- and can be seen to agree with the earlier definitions by comparingaz,

equation (2.5) with (2.3). In this scenario, the shift vector measures the tilting of

yia away from the direction normal to the hypersurfaces.

Since Ni is tangent to each hypersurface, we will use the slicing metric to

define Ni = kijNi.



2.3 Threading

2.3.1 Introduction

In a (3 + 1)-decomposition (or slicing) of spacetime, one has a foliation of

spacetime by spacelike hypersurfaces labeled by a global time function t. This time

function together with the earlier definitions of the lapse function and shift vector

gives one a way of identifying points on different hypersurfaces. In effect, one has, in

addition to a foliation of spacetime by hypersurfaces, a congruence of curves given

by the integral curves of the coordinate vector field 1. While the spacelike nature

of the hypersurfaces are an integral part of the standard (3 + *decomposition,

there are no similar causality conditions on the congruence of curves. Although

we usually think of the parameter t as a local time coordinate, no formal causality

restriction is necessary. When one adopts the dual ansatz of a foliation of spacetime

by timelike curves together with a foliation of hypersurfaces (with no causality

conditions imposed upon them), one is led to consider a (1 3)-decomposition (or

threading) of spacetime (see [13]).

In such a setting, the timelike congruence may be interpreted as the world-

lines of a family of observers, while the hypersurfaces play the fundamental role of

synchronizing the clocks of the different observers.

As with the last section, I will introduce the threading point of view from two

different perspectives. First, I will address the issue of constructing a spacetime from

a given family of curves. Second, I will illustrate the threading point of view by

considering a certain decomposition of spacetime. One should notice the similarities

between the slicing and threading points of view.

21



2.3.2 The Construction

In the previous section we saw how one would construct a spacetime metric

from a one-parameter family of three-dimensional Riemannian manifolds. The re-

sulting four-metric was easily described in terms of the given metrics on the surfaces,

the slicing lapse function, and the slicing shift vector field. Suppose one is given

a family of timelike one-manifolds (curves) in place of the three-manifolds. How

would one go about constructing a spacetime which realized the original family of

curves as a congruence of timelike curves? We will proceed as we did in the case of

slicing.

In the earlier (3+1)-construction we had a parameter which labeled each hy-

persurface. Let us assume we have parameters x, 1, 2, 3 which label each curve

L2.. On each curve suppose we have a coordinate t as well as a metric 1, which can

thus be expressed as

1 dt2

We will interpret these curves as being world-lines of observers, and hence requite

that they be timelike. Consider the same measuring problem as before, that is,

letting po = (xi, t) E Lx, and go = (xi + Axi, t At) E Lx,+Ax, we are interested

in measuring the coordinate distance between po and go. Since we are assuming we

can measure distances in each curve Lxs again use the Pythagorean Theorem to

write

d(po, q0)2 = cl(Po qi)2 + d(qi, q0)2

22

Here d(qi, q0) is meant to refer to the orthogonal distance between two nearby

curves. See figure 4



Figure 4: Calculating Distances

Since we do not have any notion of traveling "orthogonally" to the curves L,

the t-coordinate of q1 is not determined. The position of q1 along L1 is affected

by each of the Axi. Assign coordinates to q1 by q1 = (x2 ,t At MiAxi). Again,

the Mi record the amount of "shifting" of q1 with respect to nearby curves. That

is, the Mi may be thought of recording how Lxi+Axi has been shifted with respect

to L1. in the construction process. Therefore, we havex

d(p0,q1) = M(At MiAxz).

The three functions Mi and the function M depend on the parameters xi as well

as the coordinate t.

We now need to specify the relationship between the parameters xi and the

proper coordinate distance between neighboring curves. We thus introduce a "spa-

tial metric" of the form hijAxi Axi which gives the distance between L . andx,

Lxi-FAx,- for various choices of Axi. While we assume that hi j = hji, the func-

tions ht.j may otherwise be chosen arbitrarily. We continue our construction of

the four-metric by assuming that this distance is precisely d(q1,q0) (i.e., measured

orthogonally). We have:

23



M(At - Midri)

Po
Lxi

hijA.,14x1

Lxi+ dxi

Figure 5: Threading Lapse Function and Shift One-Form

Thus, the Pythagorean Theorem implies that the spacetime metric may be

written as
ds2 _m2(dt Midxi)2 hijdxi dxj

(2.6)_it12 dt2 2m2mi dxi dt (hii M2 MiMddxi dxj

The component M of the original metric along each curve is referred to as the thread-

ing lapse function. As we see in the above representation of the metric (equation

(2.6)), the functions Mi are most naturally associated with the one-form Midxi.

The three functions Mi are referred to as the components of the threading shift

one-form Midxi. Finally, the functions h.. may be thought of as the componentsz3

of a metric, the threading metric.

In the case of slicing, one thought of the slicing shift vector as a three di-

mensional spatial vector field on the surfaces Et and, hence, raised and lowered its

indices with the slicing metric. In the present case of threading, one may again

adopt the convention that the threading shift one-form be treated as a three dimen-

sional tensor. Under such a convention, the threading metric h3 may be used to
z

raise and lower its indices.

The threading shift one-form was defined in order to introduce some notion

of traveling "orthogonally" to the curves L. The unit one-form which annihilatesx.

the space of vectors orthogonal to the threading vector field may be written

m = M(dt Midxi).

24
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One should compare this equation with the analogous equation for slicing (equation

(2.3)).

2.3.3 The Decomposition

The threading lapse function and shift one-form field may also be described

as arising from a simple orthogonal decomposition of spacetime. Analogous to the

(3+1)-decomposition, the so-called (1+3)-decomposition attempts to decompose

spacetime quantities into pieces orthogonal to the given congruence of curves, and

pieces tangent to the congruence. As above, I will work in coordinates (t, xi) where

t acts as a parameter along the integral curves of (the threading curves) and xi

are coordinates on each hypersurface Ei = ft to}. As in [13], I will refer to
0

as the threading vector field.

The normalization of the threading vector field is used to define the threading

lapse function M:

(a
a m2

where ( , ) refers to the spacetime metric g. If one views the threading curves as the

world-lines of a family of observers, the threading lapse function measures the rate

of change of the observed proper time with respect to the coordinate time function

t.

In the slicing point of view one had to describe the discrepancy between

and the direction normal to the hypersurfaces. Analogously, in the present scenario

one wishes to measure the amount of tilting of the local rest spaces of the observers

with respect to each coordinate direction 4r, keeping in mind that the local rest

spaces of the observers need not constitute a hypersurface! Following the flavor

of equation (2.5), we decompose the coordinate one-form dt into a piece which

annihilates the local rest spaces and a piece which is in the co-tangent space of each



with inverse

(gafl)

_m2

(go) =

(

M 2 mz

M2 M.

hij M2 MiM j

_(m-2 mulmm)

M'
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surface. Letting m represent the metric dual of the unit vector field tangent to the

threading curves, we have m(1) = M, so that we obtain
1di = --m Midxz (2.7)

The functions Mi are the components of the threading shift 1-form.

Using the above definitions of M and M, the (1 + 3)-decomposition of the

components of the four-metric takes the following form:

(2.8)

where I have defined Mi = hii Mj.

The 3 x 3 matrix hii is defined by equation (2.8) and has inverse hii . The

functions hi:7 are the components of the threading metric.

Although one may take equation (2.8) as the definition of historically it

has a more familiar definition. For instance, in [16] and [20] one is given a physical

interpretation of the threading metric. In general relativity, to calculate the spatial

distance between an observer and an infinitesmly close event, one may direct a

light signal from the observer to the event and back and calculate the "time" of

propagation. One finds the spatial distance dl to be given by

d12 = -yodxa dx°

where
goagoo

7a19 ga13 g00
Note that -yoo =7cto 0 and that hij (i, j = 1, 2, 3) as defined earlier, Oa

(in our adapted coordinate system). 2

2 In [8], Einstein and Bergmann used a similar argument during their attempts

to generalize Kaluza's theory of electricity. Einstein and Bergmann, however, were
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One can see that the threading metric simply measures what Cattaneo [5]

refers to as the space norm of any 4-vector. That is, h.. measures the norm of the

component perpendicular to the threading curves. Specifically, for any 4-vector V'
write Va= + where

VII' is parallel to the threading curves and Via is

perpendicular. Letting ma be the unit vector tangent to a - t-a one has

ma= gom13
1

gOa
1,/g00

Thus,
goViaV2 = (go + mc,m)3)VW13

goago,3 )vavo= (go
g00

=(g.. + M2 MiM3)ViV3

= hz3V2171.

At this point one notices a crucial difference between the slicing and thread-

ing pictures of spacetime. When slicing spacetime with spacelike hypersurfaces one

defines the slicing metric which naturally lives on these hypersurfaces. While the

threading metric arises in an analogous way, there exists no corresponding space (hy-

persurface) on which it naturally exists (since the local rest spaces of the observers

may not be surface forming). One therefore constructs an abstract three-manifold

with the threading metric as its Riemannian metric. By identifying each threading

curve with the point (to, xi) at which it pierces the slice ft to one constructs the

manifold of orbits, E, with respect to the threading. Eventhough one may have that

E is diffeomorphic to the surfaces Et, E is not given the same geometry (metric)

as any of the Et. One gives E the threading metric in an attempt to recapture

some of the spacetime geometry associated with the local rest spaces. Thus, one

may think of E as a smooth model for the collection of local rest spaces. E comes

equipped with the coordinates xi and the threading metric as a function of not only

working in a five-dimensional space, so that in their formalism the four-dimensional

spacetime metric took the role of the threading metric in the above discussion.
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the points of E, but also an additional parameter (the parameter along the original

threading curves). Thus E has a one-parameter family of Riemannian metrics! This

is the beginning of the parametric manifold picture of spacetime.



2.4 Parametric Manifolds

2.4.1 A Brief Introduction to Parametric Manifolds

Zoltan Perjes has written a series of papers using a parametric theory of

spacetime. In [26], Perjes introduces the phrase "parametric manifold" to describe

a certain type of reparameterization-invariant geometric structure. Perjes then de-

scribes a decomposition of spacetime based upon a preferred vector field whose

integral curves provide a foliation of the spacetime. While the slicing approach

has become the standard framework for studying the dynamics of spacetime, not

all spacetimes admit such spacelike foliations. The fact that a threading decom-

position of spacetime does not depend on the existence of a foliation by spacelike

hypersurfaces, gives the theory of parametric manifolds an advantage over the stan-

dard ADM, or slicing, formalism. While spacetimes such as GOdel's universe (as

described in [10]) are not causally stable, Perjes argues that at the quantum level

such acausal contributions must be taken into account. Thus, the theory of paramet-

ric manifolds offers one the ability to improve upon the ADM formalism. Moreover,

Perjes uses parametric spinor techniques to show that the ADM formalism emerges

as a limiting case of the parametric theory.

This section will provide a brief introduction to parametric manifolds by sum-

marizing some of the work done by Perjes in [26]. I will present some of the defini-

tions central to Perjes' parametric manifold picture of spacetime. Although I will

offer some of my own comments, most of the language and notation which follows

is due to Perjes. In the following section I will describe the similarities between

spacetime threadings and Perjes' parametric viewpoint of spacetime. The examina-

tion of the relationships between the threading and parametric viewpoints will help

provide motivation for many of the definitions in [26].
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According to [26], a parametric manifold is represented by a differentiable

manifold E together with a smooth one-parameter family of one-form fields on E.



thus defining,

d0 = . dxi*2
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Call this family of one-forms w(t). The family w(t) is furthermore required to behave

properly under a reparameterization. That is, given a smooth function F : E ---÷ R

and the reparameterization

= t F(x) for x E E, (2.9)

we require

co1(e) = 4.40 dF. (2.10)

The pair (E, w(t)) constitutes a parametric manifold.

Continuing with the definitions in [26], define a parametric (p, q)-tensor field

to be a one-parameter family of (p, q)-tensor fields on E which are invariant under a

reparameterization (equation (2.9)). Denote the set of parametric (p, q)-tensors by

. Note that the original family w(t) does not constitute a parametric one-form

field.

Tensor analysis on parametric manifolds begins with the introduction of the

parametric differential, 40, of a parametric function. For a parametric (0, 0)-tensor

(i.e., a one parameter family of functions) 0(t), define

dq = d0 wat0
(2.11)

= dO w0

where we have introduce a dot to denote differentiation with respect to the param-

eter t. Expanding d*0 in a coordinate basis gives rise to the parametric derivative

operator a*i. Write

(2.12)

I have used the last two lines of (2.12) to introduce some notation that will be used

throughout this dissertation.



Claim 2.1 cl*cb is a parametric (0, *tensor.

Proof: It is clear that d,d(t, : 'To°. In fact, for a parametric

vector field X E T01

d.0 (X) = (dO wc.0(X)

= d(X) w(X)

which represents a one-parameter family of functions on M. In terms

of a coordinate basis, we can write

d0 (X) = O., dxz (X)

= (0,i

To conclude that 410 is a parametric tensor, we need to show that it is

invariant under reparameterizations. Under a change of the form (2.9),

we have: w' = w dF and at, = D. The exterior differential operator d

on E does not change, but since q is a parametric function, dO is affected

by a reparameterization. That is, the object dO is understood to mean

dOt where Ot : E --+ IR is q restricted to a single value of t. Therefore,

and

01
t=a

define

Let 01 represent q after a reparameterization. That is,

(kb =t'=b
°It=bF(x)

=-- 0(1) F(x),x).
Therefore,

dçb dot

= ao(t, x) dx
ax

d01 &kit,

ao aF
at ax ax

+ a° (ti - F(x), x) dx

= dcb c.k dF

and, hence, d0 =

31
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Covariant differentiation of parametric tensors is accomplished by means of a

parametric connection (derivative operator), V. As introduced in [26], the action

of V* depends on the given one-form field w and can be characterized by many of

the familiar properties

V* Tqp+1;

V* is linear and commutes with contraction;

V* satisfies the Leibnitz rule;

V* is torsion-free;

and one slight variation

for (0,0) tensors 0, 7,0 = d.O.

Aside from the action of V* on functions, V* is just an ordinary derivative

operator. However, because of the fifth condition, V* has been called a generalized

connection in [26].

As with ordinary derivative operators, if the manifold possesses a metric, h,

there exists a unique operator satisfying properties 1-5 in addition to

= O.

For the rest of the discussion, we will assume E is a Riemannian manifold with

parametric metric h. That is, h is a parametric (0, 2)-tensor such that for each t,

h(t) is a Riemannian metric on M. Working in a coordinate neighborhood with

coordinates x, one may expand h in terms of its components

h = h. dxidxjzi

where one must remember that the component functions h.. are functions of thezi

coordinates xi as well as the parameter t. Since h is assumed to be a parametric

tensor, h is invariant under reparameterization.



where

-yz ik = hnik*i - h3k*n7).

The action of V* on parametric tensors of rank (p, q) is analogous.

(2.13)

Notice the similarities (and differences!) between such a parametric action

and, say, the classical Levi-Civita connection. On a basic level, the partial derivative

operator ai has been replaced by the parametric derivative operator a. In the

special case where the functions Xi and hi. do not depend on t, the two actions

agree. In the case where the threading curves are integral curves of a Killing vector

field, the threading metric components hi.) will be independent of t. Thus, we

have that hz.j*k h making the parametric Christoffel symbols agree with the

standard Christoffel symbols.

There are several differences between a generalized connection and an ordinary

connection. As mentioned earlier, the action of V* on functions is perhaps the

most obvious difference. However, this parametric action has several subtle but

interesting repercussions.

First, one must decide the correct action of parametric vector fields on para-

metric functions. Although for any given value of the parameter t, a parametric

vector field is simply a tangent vector field of E and a parametric function is just a

function from E to R, the ordinary action does not seem appropriate in the paramet-

ric setting. As the parametric derivative operator a is the fundamental derivative

operator (in a given basis), it seems most natural to introduce the action

x(0),,= xi30

= xz (0,, co)
*,
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Let V* be the unique parametric derivative operator associated with (E, w, h).

Expanding V* in terms of the parametric derivative a, Perjes gives the action of V*

on a parametric vector field:

= Xk -yk J,X3
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where X is a parametric vector field and is a parametric function. Although it

is not clear that Perjes adopts such a convention in [26], it greatly simplifies the

notation as well as the analysis (as I will show later). Adopting this convention also

allows one the standard approach of viewing vector fields as directional derivatives

on scalar fields (although in this case the "direction" is not parallel to the manifold

E). That is, we may write

=

From now on, the action of a parametric vector field on a function is assumed to be

the above "parametric" action and I will dispense with the cumbersome notation

of X(0)*.

Second, one needs to understand what it means for a generalized connection to

be torsion-free. Perhaps the greatest difference between generalized connections and

classical connections lies buried in property 4. While it is not uncommon (at least in

general relativity) to require a derivative operator to be torsion-free, the property of

vanishing torsion is a bit different in the parametric case. As Perjes mentions, even

though V* is required to be torsion-free, it does admit a non-vanishing deficiency'.

This is realized by the fact that

V:Kk7,:i)0 (wk wk*.).

Thus one must take note that condition 4 does not take the usual form (c.f. [30])

of

7v*k0 = (2.14)

In Chapter 3 I will give precise definitions of torsion and deficiency for parametric

connections.

While the commutator of V* on functions leads to the notion of deficiency,

in [26] Perjes shows how the commutator of V* on higher order tensors leads to a

3 Perjes credits Lottermoser [18] with a similar term Defekt.



definition of curvature. The Zel'manov curvature' Zzjkl is defined by

a
[7:k7Itj VC7Ack (wk wk) at] v. = ZrijkXr

and possess many of the familiar symmetries of the Riemann tensor.

We have:
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(2.15)

4 Perjes traces this definition back to the Russian mathematician Zel'manov

[31].

pi
jkl Zi j[kl] and Zi[jkl] = 0

One can show that the components of Zk may be expressed in terms of the

symbols 7iik and a* by

Z774ik j *k 7mnj7nki "Yrnnk7nji (2.16)

A more in-depth discussion of curvature, torsion, and deficiency appears in

the next chapter.

2.4.2 Parametric Manifolds and Spacetime Threadings

The above section offered a brief introduction to the definitions and tools

that Perjes associates with the theory of parametric manifolds. As some of the

notation may have suggested, the above introduction may be further enhanced

given our previous discussion of the slicing and threading pictures of spacetime.

The language and viewpoint associated with the threading decomposition lends the

necessary insight to fully appreciate the above definitions. We may use a threading

decomposition of spacetime to provide excellent motivation for the definitions Perjes

introduced in [26].

As Perjes mentions in [26], the parametric manifold structure of spacetime

is induced by a non-null vector field. Hence, in the case of a spacetime which
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admits a threading decomposition, the threading vector field may be used to infuse

the spacetime with a parametric structure. Thus, the ideas associated with the

threading viewpoint should be closely related to the central ideas of parametric

manifolds.

Consider a spacetime consisting of the manifold M together with the space-

time metric denoted by go. Further assume that the spacetime admits a threading

decomposition. As in (2.8), one can write the spacetime metric in terms of the

threading versions of the lapse, shift, and metric. As before, the spacetime coordi-

nates are given by xa = (t, xi) where -g-t- is the threading vector field and the xi are

coordinates on each hypersurface Et = ft t0}. By choosing one of the slices, one
0

is able to use the xi as coordinates on the manifold of orbits by identifying each

threading curve with the point (to, xi) at which it pierces the slice Et . Let E be
0

the manifold of orbits with coordinates xi. For each value of t, we also have a Rie-

mannian metric on E; the threading metric h... E will be the parametric manifold.zj

As each point of E represents an equivalence class of points of the spacetime M,

one may wish to think of general parametric manifolds as collections of equivalence

classes.

An attempt to develop a geometric theory on E will lead to many of the

definitions we saw above. For instance, any tensors defined on E (parametric or

otherwise) must transform correctly under a legitimate change of coordinates (keep-

ing the parameter unchanged). Furthermore, our theory should not depend on the

parameterization. That is, the original coordinates on E were defined with the

choice of a specific value of t. Such a choice should not alter the theory. Consider

the following definitions 5 :

5 These definitions are borrowed from [8]. The similarities between a parametric

theory and Kaluza-Klein theory will be made explicit in Chapter 4.
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Definition 2.2. A regular coordinate transformation is a coordinate transforma-

tion of the form
yi =

t' = t.
(2.17)

Definition 2.3. A reparameterization is a coordinate transformation of the form

yi = xi
(2.18)

= t F(x2).

For any spacetime one-form W = W de, if we consider the components of

W after a coordinate transformation of the form (2.18), we have

=

-07 +
The threading decomposition naturally led to the threading shift one-form Midxz.

Consider the spacetime one-form field Co = dt Midxt. Thus the threading shift

one-form is just the pullback (up to a sign) of cD to a slice Et . Under a reparame-
0

terization we have
OF

= -
Oxi

The spacetime one-form field c7., may be associated with a one parameter family of

one-forms on E by identifying 6-) with

w(t) = Mi(t)dxi

Furthermore, a reparameterization of would result in CL,' being identified with

(e) = dxz.

Thus, a reparameterization of the spacetime one-form cD, equation (2.18), gives us

a way of describing the result of w(t) after a reparameterization of the parametric

manifold (equation (2.9)). Therefore w(t) satisfies equation (2.10) and can be used

to give E a parametric structure.

In classical differential geometry, one can define a tensor field (locally) by

defining it in a given coordinate basis, and then require that the components of
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the tensor transform correctly under an accepted change of coordinates. A similar

approach will be used to get a working definition of parametric tensors. However,

not only must we concern ourselves with coordinate transformations, but also with

the notion of reparameterization.

Any coordinate transformation on E can be identified with a regular coordi-

nate transformation of spacetime (equation (2.17)). Under such a transformation

spacetime tensors transform according the their variance as usual. Since reparame-

terization of E corresponds to the freedom of choosing a slice Et in order to give E

coordinates, only those spacetime tensor fields which remain "tangent" to the local

rest spaces at different values of t will be identified with parametric tensors. More

precisely,

Definition 2.4 A spacetime vector field V will be called a parametric vector field

provided that it is orthogonal to 1.

Definition 2.5 A spacetime one-form field W will be called a parametric one-form

field provided that W(1) 0.

Tensor products of parametric vector fields and parametric one-form fields

will result in spacetime tensor fields which may be identified with parametric tensor

fields (thus guaranteeing reparameterization invariance). That is, we will call a

spacetime tensor field T a parametric tensor provided T contracted with a (on any

index) is zero.



a

a

E 0

T(X, Y, , Z, o-, , (.;)) 0

where cD is the metric dual of and these above expressions are identically zero

for all vector fields X,Y,Z and one-form fields a, T.

Proposition 2.7. The threading metric is a parametric tensor.

Proof: If the threading is induced by a foliation of timelike curves,

then equation (2.8) relates the threading metric and the spacetime met-

ric. The threading metric can be naturally associated with the spacetime

tensor

ho = gao+ M2A,A0

where Ao = 1 and Ai = M, the components of the threading shift

form as above. Note that hoo = hoz = 0, and that restricting the Greek

indices to Latin indices yields the threading metric as introduced before.

In our coordinate system, h will be a parametric tensor if and only if its

"spatial" components remained unchanged after a reparameterization.

Under a reparameterization (2.18) one uses the fact that h0 0, thus

yielding
ax- ax.

= hmr, ayi ayi

= hnir,8":611j

.=h..
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Definition 2.6 A spacetime tensor field T will be called a parametric tensor field

provided



Therefore the components of the threading metric remain unchanged

after a reparameterization. Thus, the threading metric is a parametric

tensor.

For comparison,

Proposition 2.8. The slicing metric is not a parametric tensor.

Proof: First of all, since the slicing metric is just the spacetime

metric with restricted index values, I really mean to say that the space-

time metric is not a parametric tensor. The problem lies in how the

"spatial" part of the spacetime metric changes under a reparameteri-

zation. Consider a transformation of the form (2.18). The resulting

change can be computed:

axa axo
go138y2 ayj

aF aF aF aF
goo oxi axj g0j axi gi0 axj +g

Thus, in general g:i gii after a reparameterization. In this sense, the

slicing metric is not a parametric tensor. 4.

Theorem 2.9. To any spacetime rank-one tensor, there corresponds a parametric

rank-one tensor (and a scalar) via projection.

Proof: Using the above information we simply project any space-

time vector (or covector) onto a slice Et. To accomplish this we will use

the threading metric to define a projection operator P2 h. That is

Pal3 + M2 24.,A3

where A' = 1 guaranteeing that 132 projects out the com-

ponent on spacetime vector fields.
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Example 2.10.

For any spacetime vector field V'

vs 1 (
P2va +

(_a
M2 t) 000,

= VP +M21 (13) (M2V° + M2MiVi)at

which implies that

Pa°V" = MiVi

For one-form fields one finds

p013T4713=0 Pt/3147o = Wt+ MtWo

Applying Pc,13 to each slot of the spacetime metric tensor yields the tensor It

which we have already shown possesses the characteristics of a parametric tensor:

.131Pvi3goo= (8: + M2AcAtt)(6,13 + M2A.13A,)gofi

2m2 Att.& M

+ m2 A0A,

= h my.

As we mentioned earlier, the natural derivative operator on parametric man-

ifolds is the parametric derivative (2.12). In this case this derivative operator takes

the familiar form of a projected ordinary partial derivative. We have:

P2 (air = 0313 + M2A#M,

= (az)I3 (2.19)

=(az)13 wi(--aat)13

Since, + M ° spans the local rest space of the observers, we are takingazt at
derivatives in directions orthogonal to . One should also note that is more then

and Paz V° = Vi.
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Thus, as one attempts to define a natural covariant derivative operator, one

finds that the first naive choice of

VV i = Vi. + 1h(hnm,i+
2 hinz.,n)Vin
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just an ad-hoc projected derivative operator. This parametric derivative operator

justifies its name by its invariance under reparameterization.

Theorem 2.11 The action of O on parametric functions is invariant under a

reparameterization.

Proof: This is a restatement of the earlier observation that cl0

was a parametric (0,1)-tensor. Consider a parametric function f and

a reparameterization of the form (2.18). First of all we have that the

components of the tensor A transform according to

= A0 (-811,) +A,

aF
= Ai ax2

which gives us
Of af aF af
ayi axi axi atafaf- (Ai

ax2

Thus, since aat 7

af Of Of Of
.

z at, ay" at
Of af
OXZ iOt

Ob

The above theorem illustrates the underlying principal which allows one to

pass from a classical differential geometric setting to a parametric structure. Replac-

ing by O leads to a theory which, while remaining true to regular coordinate

transformations, also remains invariant under reparameterization.
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is not invariant under a reparameterization. However, replacing the ordinary partial

derivative operator by the parametric derivative operator results in

hmi..)Vm
(2.20)

In=-yim2

which is invariant under reparameterization.

As was mentioned earlier, under any reparameterization, = at. Therefore

differentiation with respect to the parameter is a covariant operation and may be

denoted Vo.

2.4.3 Concluding Remarks

This section was meant to provide some motivation for the parametric def-

initions introduced earlier. When the threading decomposition of spacetime was

first introduced, I emphasized the fact that such a decomposition was simply an

orthogonal splitting of spacetime with respect to the threading curves. As we never

assumed the existence of hypersurfaces orthogonal to the threading curves, all de-

compositions were only pointwise.

However, by working on the manifold of orbits, equipping it with the threading

metric, and introducing the parametric derivative operators 9, and V we succeed

in modeling much of the behavior of the spaces orthogonal to the threading curves.

Moreover, the manifold of orbits provides us with a smooth structure allowing the

existence and analysis of tensor fields. Thus, when analyzing a manifold (space-

time) from the threading point of view, it seems most natural (if not necessary!) to

incorporate the parametric structure into one's approach.

The stage is now set for a more formal treatment of parametric manifolds. In

the next chapter, I will give two different formal approaches to parametric manifolds

(an extrinsic and an intrinsic approach). Through a more detailed discussion, one

sees how the concept of deficiency emerges as an attempt to generalize many of the

basic concepts of differential geometry on manifolds.



2.5 Rotating Coordinates

2.5.1 Setting Up

Rotating cylindrical coordinates provide a nice example of all of the different

frameworks discussed. This three-dimensional example is especially illustrative in

the sense that the threading vector field is not orthogonal to a family of hypersur-

faces, so that the slicing and threading viewpoints are not equivalent. Although

in this simple example the parametric metric is independent of the parameter and

the Zel'manov curvature tensor reduces to the Riemann curvature tensor, a definite

parametric structure is still present.

We begin by considering the stationary (non-static), axisymmetric spacetime

given by flat Minkowski three-space in cylindrical coordinates (r, (9, z). The space-

time metric is of the form:

ds2 = dr2 r2 d02 dz2

Now, perform the following change of coordinates:

t = z p=r 7.1) = +

where S2 is some constant. One has the following relationships:

a a a
"ao dt dz

which yield:
ds2 = dp2 p2(d0 dt)2 dt2

= dp2 p2 d02 2p252db dt (p2S22 1)dt2

The vector field k is timelike if and only if p2 <

dp = dr

= dz d0
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TY.

Therefore, W is not involutive. By the vector-field formulation of Frobe-

nius' theorem (c.f. [30]) W is not surface forming.

2.5.2 Slicing with Rotating Coordinates

In order to set up the slicing formalism, one needs a (future pointing) unit

vector field normal to the hypersurfaces Et. Since dt(ap) = 0 = dt(a,p), this is

accomplished by calculating the metric dual of the one-form field dt:

a a
(dt)*

at ao
Since this vector field has norm 1, we conclude that n = C2,*. The lapse

function and the components of the slicing shift vector field may now be obtained

by writing
a

and comparing with equation (2.5). Thus

NV' = 52
and N =

NP = 0
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These coordinates may be used to define a family of hypersurfaces Et ft =

constant} = {z = constant}. Each Et is spanned by the coordinate vector fields

= ap and 59 =

As mentioned earlier:

Proposition 2.1 The orthogonal subspace to is not surface- forming.

Proof: We will show that the orthogonal subspace, W, is not
2

involutive. We have that span W. But,:p + p2112C2 1 :t
(9

[a
p2Q 51 a

,v p2f22 1 at
p2

p2Q2

)
at



46

This information may be interpreted in two different ways depending on one's

viewpoint of slicing. In the construction scenario, the vector field D.2, represents the

"flow of time" and is used to identify points of different hypersurfaces. Thus, given

a collection of the surfaces Et, one may imagine constructing a three-dimensional

spacetime by not simply stacking one surface atop the other, but by rotating (NO =

Q) and stacking (NP = 0). In terms of a (2 + *decomposition viewpoint, we are

simply measuring the discrepancy between and the direction normal to each

surface. The fact that NP = 0 just indicates that gt is orthogonal to op, while the

lapse function N = 1 since the coordinate z is proper time.

The slicing metric is simply the spacetime metric pulled back to the hyper-

surfaces Et (see equation (2.4)). Thus kii = gij for i,j E fp,01. Explicitly, one

has

kpp = 1 and kOb = p2

as the only non-zero components of the slicing metric.

Finally, one may now calculate the components of the metric dual of the shift

v kectorfield. That is, define N. = ..Nj , yieldingzj

= gtt

as guaranteed by equation (2.2).

2.5.3 Threading with Rotating Coordinates

Np = kpiNi = 0

N = k = p2Q.
V, OP

Note that
(N2 NniNni) = 1+ (p2Q)(Q)

= + p2Q2 and
2N 2p2Q

=gto

We will use as our given threading vector field. The threading lapse func-

tion is defined such that M2 is the square of the norm of the threading vector



field. Thus,
p2c22 1.

The threading shift one-form field measures the discrepency between the hy-

persurfaces Et and the space orthogonal to Since 1 is orthogonal to ST, Mr = 0.

Now, Mo is defined so that 4 + is orthogonal to It-. This implies that

p2ci
M= p2Q2

According to equation (2.8), the threading metric is defined by hij = gij

M2Mi Mi yielding the components

2

h = and hpp = 1.
OP 1 p2S-22

The importantce of the causality conditions may be noticed at this stage. The

threading metric is a Riemannian metric if and only if the threading vector field

(-1) is timelike whereas the slicing metric is Riemannian if and only if the slices Et

are spacelike.

With the above definitions for the threading lapse and shift, the original space-

time metric can be written as

ds2 = M2 dt2 M2M0 dbdt M2Mp dp dt (h M2M0/1/b)d02.

2.5.4 Parametric Manifolds with Rotating Coordinates

Recall that the theory of parametric manifolds is based upon the threading

decomposition of the original spacetime. Therefore, we will define M and M, for

i E {0,p} as above. Notice now that our parametric coordinate derivative operators

are

a*P 0/) +
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and



(hi 3. =)

with inverse

(1 0

0 -P2p292 1

1 p2Q2
P2
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p2Q

11.1
= a1/, +

P
2Q2 at

Therefore, the parametric viewpoint is different from either the slicing or threading

viewpoints.

Recall that the components of our (parametric) metric are of the form

Since the metric h.j does not depend on the parameter t, all parametric deriva-

tives of the metric components reduce to ordinary partial derivative with respect

to the coordinates p and 0. Thus, the parametric Christoffel symbols are just the

ordinary Christoffel symbols and the parametric (Zel'manov) curvature tensor re-

duces to the ordinary Riemann curvature tensor. In terms of our earlier notation

these facts can be stated as

jk = jk and Zijkl Rijkl E {10,0}.

(hi3) =
(01



3. Parametric Manifolds

3.1 Introduction

The ultimate goal of this chapter is to rigorously define a complete set of

tools and operators which make up the essence of a parametric structure. As we

saw in the last chapter, many of Perjes' definitions can be motivated by the study

of spacetimes which admitted a preferred congruence of non-null curves. Such a

foliation led to a preferred decomposition of the spacetime which, in turn, led to

the notions of parametric tensor fields and parametric derivatives on the manifold of

orbits E. In the special case where the threading curves are orthogonal to the slicing

surfaces, the slicing and threading viewpoints agree. Specifically, the geometry of E

(given by the threading metric) agrees with the geometry of the immersed surfaces

E.

There already exist standard techniques for relating the geometry of a man-

ifold to the geometry of immersed submanifolds, namely the Gauss-Codazzi equa-

tions. What makes the threading-induced parametric structure unique is the ab-

sence, in general, of an immersed surface orthogonal to the threading curves. How-

ever, even in such a case many of the ideas developed for studying the geometry

of immersions are still valid. In fact, I will take these ideas as fundamental in

developing a coherent parametric theory.

The Gauss-Codazzi equations are mainly concerned with the relationships

between the curvature tensor of an n-dimensional manifold and the induced cur-

vature tensor of an immersed (n k)-dimensional submanifold. While developing

the Gauss-Codazzi relations, one also shows that many of the properties of the

n-dimensional connection are inherited by the (n k)-dimensional connection. In

the general case of threading without orthogonal hypersurfaces, the notions of "in-

duced metric" , "induced connection", and "induced curvature" are perhaps a bit

49
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elusive. Indeed, the process of defining a threading-induced curvature tensor on E

is by no means obvious. A complete understanding of the theory of connections,

including the concepts of curvature and torsion, is vital to defining a decent notion

of curvature on E.

This chapter begins with the definitions of the necessary terminology for the

study of connections on manifolds, followed by a discussion of the curvature and

torsion tensors. After reviewing the standard Gauss-Codazzi formalism for the

case of an (n 1)-dimensional immersed submanifold, I then examine the case of

a spacetime threading without surfaces orthogonal to the threading curves. By

introducing a generalized Gauss-Codazzi formalism I will be able to define terms

such as "induced metric" and "induced connection". These terms will then be used

to define a metric-compatible connection on E. Furthermore, I will treat Gauss'

equation as fundamental and use this equation to help define a notion of curvature.

As we shall see, this is certainly not the only approach available.

While the generalized Gauss-Codazzi formalism yields notions of a metric and

connection for the manifold of orbits E via projection operators, the mathematical

essence of a parametric manifold is more fully realized by treating E as an abstract

manifold with additional structure. From this point of view, all tensor fields on

E are functions of an additional parameter t and the derivative operator then

becomes a covariant operation (since t is no longer a coordinate). Furthermore,

the action of parametric vector fields on parametric functions will depend on an

additional one-parameter family of one-forms, w. As we generalize the notions of

connection, Lie bracket, and exterior differentiation to define operators intrinsic to

E, ch.) will play a vital role.

In this intrinsic approach, it turns out that the deficiency can no longer be

defined by measuring the failure of a distribution to be surface forming. Rather,

we will show how the deficiency is related to the failure of the generalized exterior

derivative operator to satisfy Poincare's lemma (d2 = 0). In the presence of defi-

ciency, particular care is taken in defining a Lie bracket, torsion, and parametric
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connection. As we shall see, all of these definitions are equivalent to those presented

in the extrinsic approach.



In general relativity one is usually only concerned with connections which are

torsion-free.

52

3.2 Some Definitions

Let us begin by defining the standard notion of a connection on a manifold M,

together with some relevant properties of connections. For the following definitions,

let M be a smooth manifold with (Lorentzian or Riemannian) metric g denoted by

( , ). Also, let X(M) denote the set of all smooth vector fields on M and -3(M)

the ring of all smooth real-valued functions defined on M.

Definition 3.1 An (afEne) connection V on M is a mapping V : X(M) x X(M)

X(M), usually denoted by V(X, Y) = VxY, which satisfies the following axioms:

Linearity over a(M): Vfx+gyZ = fV xZ gV yZ

Linearity: Vx(Y Z) = VxY + V xZ

Product rule: V x(fY) = fV xY X(f) Y for all X, Y, Z c X(A/1) and f,g E

The existence of a connection on M gives one a way of differentiating vector

fields along curves. Although traditionally one defines the concept of metric com-

patibility in terms of parallel vector fields along curves in M, it can be restated

(c.f., [6]) as

Definition 3.2 An affine connection V is compatible with the metric of M pro-

vided

X((Y,Z)) = (VxY,Z)+ (Y,VxZ) (3.1)

for X, Y, Z e X(M).

The fact that (3.1) holds is just a statement that covariant differentiation of the

metric obeys the familiar Leibnitz rule of derivations.



Definition 3.3 A connection V is said to be torsion-free when

xY V YX [X, Y]

for all X, y E X(M).

The action of [X, Y] on functions f E 30/0 is defined by the action of the

commutator

[X, Y] f = XY f Y X f. (3.2)

Although it is not a priori clear that [X, Y] is a vector field, it can be shown (c.f.,

[4]) that there exists a unique vector field [X, Y] satisfying (3.2). A torsion free

connection is sometimes referred to as a symmetric connection.

A fundamental result in the theory of connections is

Theorem 3.4 There exists a unique connection on M which is compatible with

the metric g and torsion-free.

Definition 3.5 This unique connection is called the Levi-Civita connection and

may be defined by the equation:

(X, Z) (X (Y,Z) Y (Z, X) Z (X, Y)

([X, ,Y) ([Y, Z]. ,X) ([X, Y]. ,Z)).
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3.3 Curvature and Torsion

As we shall see later, the notions of curvature and torsion play an interesting

role in the development of a parametric theory. We saw earlier (equation (2.14))

that Perjes' idea of (parametric) torsion appeared to disagree with our standard

interpretation. Therefore, a review of torsion is warranted. Also, a clear under-

standing of the relationships between curvature and torsion will be useful when

defining parametric curvature.

Let us begin with the necessary definitions. Using the definitions in [15]

rewritten in terms of an affine connection, we have

Definition 3.1 Define the torsion T and curvature R of V by

T(X, Y) = VxY VyX [X, Y] (3.3)

and

R(X,Y)Z = VxVyZ Vy'VxZ V[x,y]Z (3.4)

for X, Y, Z E X(M).

The case where T(X, Y) 0 agrees with the earlier notion of torsion-free.

Consider the components of T and R in some patch with coordinates {a}.

Defining the symbols F Vap 1731,0a, we have

TO /pay) = V' apay - Va_yai3 0

(1787 Ila-r)3)aa
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While it is trivially true that mixed partial derivatives commute, the torsion

tensor may be thought of measuring the failure of mixed covariant derivatives to

commute. As we see from above

(78081, Vay Do) (f) =



For curvature,

R(8,, as)a., = (Vac,V8 V0 Vaa )3, o

R'L a
'Ya#

As is often done, Ru6)3ce may be expressed in terms of the connection symbols

ra,37,

Rubs, =17146co +1--griL6c, ruiLarA5,.

It is worth noting that in the definition of R, (3.4), as well as in the formula

for the components RItyco, (3.5), there is no explicit mention of the torsion. The

case is different when using, as Perjes does, the abstract index notation. Since it

will become useful in later sections to compare equations written in these different

notations, I will briefly outline the definition of curvture in the "index-notation".

For a much better description of this notation see [30].

In the index-notation, the vector field VxY is represented by XaV aYb. If one

is working in a coordinate basis (with coordinates {e}) we have Xa is the vector

field X'0 and the vector field Yb is yi33 Furthermore, in this notation vazb

would represent the (1 *tensor (one index up, one index down)

vazb aazb cbccizc

where aa is an ordinary derivative operator. That is, given any coordinate system,

the operator aa is defined to be partial differentiation with respect to the coordi-

nates.

In the absence of torsion, one can define the action of the Riemann curvature

tensor by

RdcbaZd (VaVb VbVa)ZC. (3.6)

In terms of the Christoffel symbols rbui

V aV bZd = 5a (abZd rc dbzc)

re ba (aezd rcebze)

recta (abze cc ebz
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yielding

(v av b v by a)zd =(17c rcba)v czd + (abrc aarc db)zc

(rdbre ca rdare cb)ze

=Tc abv czd + Re dbaze.

Rewriting equation (3.7) yields the curvature tensor in the presence of torsion:

RedbaZe= (VaVb bV,OZd TcabVeZd. (3.8)

Thus, there is quite a difference between the treatment of torsion in the two

notational schemes. While the first definition of curvature (equation (3.4)) proved

to be valid with or without torsion, if one adopts the index notation to describe a

theory involving torsion, one must also re-define the curvature tensor to take this

into account.

While the index notation is usually used to describe torsion-free theories (e.g.,

general relativity), the presence of "deficiency" in a parametric theory of space-

time has analogous consequences. For example, compare Perjes' definition of the

Zel'manov curvature (equation (2.15)) with equation (3.8). The definition of Zijki

appears to involve torsion. Nevertheless, Perjes claims that the connection V, is

torsion free! It can be argued that the extra term in equation (2.15) is actually due

to the deficiency of the connection V. However, since there does not exist a well

established theory involving connections with deficiency, it is reasonable to question

the appropriateness of the definition of Zzjki. As I have hinted at earlier, deter-

mining the "correct" definition for a parametric curvature tensor is not an obvious

procedure.

Later in this chapter I will address the specific issue of defining a parametric

curvature tensor. For now, I would like to finish the discussion of torsion by stating

the symmetries of the curvature tensor when torsion is present.

Consider a manifold M with an affine connection V. The curvature and

torsion of V are given by equations (3.3) and (3.4). There exist some obvious and

some not so obvious symmetries of T and R (c .f., [29])
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Theorem 3.2 R and T satisfy the following symmetries:

i. T(X,Y) = T(Y, X)

R(X,Y)Z = R(Y, X)Z

(R(X , Y)Z T/V) = (R(X,Y)W, Z) if V is compatible with <, >

iv. The first Bianchi identity:

R(X,Y)Z R(Y, Z)X R(Z, X)Y

=VXT(17, Z) VyT(Z, X) + V zT(X , Y) (3.9)

T (X , [Y, Z]) T (Y, [Z, X]) + T (Z , [X, Y])

Proof: Symmetries i. and ii. are immediate. To show iv. just

write out the cyclic sum, use the definition of T, and keep in mind the

Jacobi identity for bracket. Explicitly we have,

R(X,Y)Z+R(Y, Z)X R(Z , X)Y

=Vx(VyZ VzY) + Vy(VzX V xZ)

Vz(VxY VEX) V[x,y1Z V[yA X

V Y[x,4

=Vx (T(Y, Z) [Y, Z]) + Vy (T(Z, X) + [X, Z])

Vz (T(X,Y) + [X, Y]) V[xxlZ V[17,4X

V Y[x,4

=VxT(Y, Z) V yT(Z , X) -1- V zT(X , Y)

T(X, [Y, Z]) T(Y,[Z, X]) + T(Z , [X, Y])

+ [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]]

where the last three terms add to zero. To prove iii. we need to assume

that V is compatible with the metric ( , ), thus writing

(V VyZ,W) =X (VyZ,W) (VyZ,VxW)

=X (VyZ,VV) Y (Z,VxW)+ (Z, VyVxVV)

and

57



we have

(v[X11] z, w) = [X, 17] W) - (Z, Vix,y1W)
,

(R(X,Y)Z,W) = yV xW, Z) x:C7 yW, [x,y]W, Z)

+ X (V yZ,W) Y (Z, VxW) Y (VxZ,

+ X (Z, VyW) [X, Y] (Z, W)

= (R(X, Y)W, Z) XY (Z, W) X (Z,VyW)

Y (Z, VxW) YX (Z, W) (Z,V xW)

+ X (Z, VyW) [X, Y] (Z, W)

= (R(X,Y)W, Z) .

Oh
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3.4 The Standard GaussCodazzi Formalism

3.4.1 Introduction

In Chapter 2, a projection operator, P2, was introduced as a way of realiz-

ing the correspondence between spacetime tensors and parametric tensors. It was

also shown that the parametric derivative operator ô was related to the partial

derivative operator Oi by

P2(air -= (49,)

Thus, the study of projected spacetime quantities is closely tied to the motivating

definitions surrounding parametric manifolds.

In this section I will summarize the standard relationships between space-

time and projected quantities. In particular, I will examine the spacetime metric,

Levi-Civita derivative operator, and its curvature and establish the Gauss-Codazzi

relations (c.f., [6]) .

3.4.2 The Gauss-Codazzi Relations

The Gauss-Codazzi equations relate the geometry of a manifold to the ge-

ometry of an embedded submanifold. Specifically, the higher-dimensional manifold

induces a metric on the embedded surface, and thus gives rise to a unique deriva-

tive operator (on the surface) and finally a curvature tensor. The Gauss-Codazzi

equations relate these induced quantities to the higher-dimensional quantities.

To continue with the original motivating example, let us consider a spacetime

which admits a foliation by spacelike hypersurfaces. As we saw in Chapter 2 (equa-

tion (2.4)), the spacetime metric g induces a Riemannian metric on the spacelike

slice E by the projection
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SUM
Tp.A4 = Tp E e (2pE).1

(TM) e (Tp ,A4)T

where (TpE)1 is the orthogonal complement of TpE in TM (with respect to the

spacetime metric g). For any v E TM, let VT and v1 be the obvious projections

so that
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where is the one-form dual (with respect to g) to the future pointing unit vector

field n.

Now, for any point p E E, the tangent space TM may be written as a direct

where I have used 1 to denote the projection to the tangent space of E (to agree

with the notation of the next section).

Given vector fields X and Y on E, one may define a Riemannian connection

on E by

D xY = (VxY)1. (3.10)

Equation (3.10) not only defines an affine connection on E, but, as is shown in [6],

D is the unique Levi-Civita connection associated with the induced metric k. Being

a Riemannian connection, one may define its curvature in the usual manner.

3R(X,Y)Z = D xDyZ DyD xZ D[x,y]Z (3.11)

where X, Y, Z are all vectors tangent to E. Since E is a hypersurface, [X, Y] denotes

a vector field tangent to E and, hence, D[X,Y]Z is defined. Using ( , ) to denote the

spacetime metric, one can show, [6], that the curvature 4R of .A4 and the curvature

3R of the Cauchy surface E are related by Gauss' equation ([6] page 135)

(4R(X,Y)Z,W) = (3R(X,Y)Z,W)

(B(Y,W),B(X, Z)) (B(X,W),B(Y, Z))

where all the vectors X, Y, Z,W are assumed to be tangent to E and B(X, Y) is

the tensor defined by
B(X, Y) =---- VxY D xY

(VXY)T

(3.12)



Theorem 3.1 Taking V, D, and B defined above, if V is torsion-free then

i. D is torsion-free and

B is symmetric.

Proof: We already claimed (i) above. However, this can easily be

shown.
TD(X Y) = DxY DX [X, Y]

(Vx17)± (VyX)± [X, Y]

= (VxY VyX)± [X, Y]

= [X, Y] [X, Y]

=0
since E is a hypersurface. The symmetry of B follows from the torsion-

free properties of both connections. We have

B(X,Y) B(Y, X) VxY VyX (DxY DyX)
[X, Y] [X, Y]

0.

In the absence of torsion, we see that B is symmetric if and only if the Lie

bracket of the spacetime restricted to vector fields on E is the 3-dimensional Lie

bracket on E. While this seems like a trivial statement given the existence of the

immersed surface E, the relationship between the two bracket operators becomes

important in the next section.

B is closely related to the extrinsic curvature K of E. The tensor K is defined

by

K(X,Y) = (VxY,n)

where ( , ) is the metric of the spacetime and n is the unit vector field normal to

E. If one assumes that V is torsion-free, then K is a symmetric tensor since [X, Y]
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is tangent to E. The relationship between K and B is given by

K(X,Y) = (VxY,n)

= (B(X, Y) DxY,71)

= (B(X,Y),n) (D xY,n)

= (B(X,Y),n)
so that the symmetry of K also follows directly from the symmetry of B. B can

be thought of as measuring the difference between the geometries of .A4 and E. In

fact, B is identically zero if (and only if) every geodesic of E is also a geodesic of

M. Equation (3.12) is usually called the Gauss equation (one of the GaussCodazzi

relations). Notice that B(X,Y) is orthogonal to E.

It is worth mentioning that the tensor B fails to be symmetric if V possesses

torsion. If we let ; and TD represent the torsion tensors associated with the

respective connections V and D, then the above calculation shows that

B(X,Y) B(Y, X) = Tv(X, Y) TD(X,Y).

Therefore, the failure of B to be symmetric is to be expected in the most general

setting.



3.5 A Generalized Gauss-Codazzi Formalism

3.5.1 Connections, Torsion, and Deficiency

The above formalism lends itself nicely to the slicing viewpoint. Both the

slicing and Gauss-Codazzi formalisms focus on decomposing the spacetime into a

piece tangent to E and a piece orthogonal to E. While the slicing viewpoint, as

presented in Chapter 2, concentrated on splitting the metric, Gauss' equation in-

volves the orthogonal splitting of the Riemann curvature tensor. Given a spacetime

which admits a foliation of (spacelike) Cauchy surfaces, one may perform the above

decompositions on any of the hypersurfaces. As mentioned earlier, one can view

these decompositions as a place to begin an initial-value formulation of spacetime,

where the Gauss-Codazzi relations provide initial-value constraints.

The situation more closely connected to the parametric manifold picture of

spacetime, however, does not focus on the hypersurfaces but, rather, on a preferred

non-null vector field. As we saw in Chapter 2, the fundamental ideas governing a

parametric picture of spacetime are related to projections orthogonal to the given

vector field. The parametric (and threading) metric was the induced metric on the

orthogonal subspace of the tangent space; parametric vectors (and tensors) were

identified with vectors orthogonal to the vector field; and the parametric derivative

operator was interpreted as a projected derivative operator. However, in the para-

metric viewpoint it is not assumed there exist (even locally) surfaces orthogonal to

the threading vector field.6 Hence one must be careful when attempting to follow

the above formalism leading to equation (3.12).

Given a non-null vector field A (not necessarily unit), at each point p in M
one still has the decomposition

TM = (TM)- ED (TPM)T.
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For v E TM, write

v = VT

with v1 orthogonal to A(p) and v T parallel to A(p). As before, the spacetime

metric induces a metric h on (TM)' defined by

24. Al'
h g (3.13)

(Al', Al')

where Al' is the one-form which is dual (with respect to the metric g) to the vector

field A.

Given vector fields X and Y (everywhere) orthogonal to A one may define the

operator

DxY = (VxY)1.

Proposition 3.1 D satisfies the properties of an affine connection. Specifically:

Dfx+gyZ = fDxZ +gDyZ

Dx(Y + Z) = DxY + DxZ

Dx(fY) = fDxY + X(f)Y

for all vector fields X, Y, Z E (TM)1.

Proof: This is just a consequence of the linearity of projections.

First,

DfX+gYz = fX-FgY

(lc7 xZ + gVyZ)±

fDxZ +gDyZ.
Second,

Dx(Y + Z)= xY +V xZYL

= DxY +DxZ.
Finally,

Dx(fY)=-- x

= (J`V xY + X(f)Y)"

= fDxY X(f)Y.

)±
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Therefore, D is an affine connection.

In the case where (TM)-'- corresponded to the tangent space of some hyper-

surface, it was stated that D was the Levi-Civita connection of the surface (with

respect to the induced metric). Although (in the present scenario) D is not, in

general, the Levi-Civita connection on any submanifold, we may still investigate

the familiar properties associated with the Levi-Civita connection. Using (( , )) to

represent the metric h, we have

Proposition 3.2 If V is compatible with g, then D is compatible with the metric

h. That is,

X ((Y, Z)) = ((D xY, Z)) ((17, D xZ))

for X, Y,Z E (TM)'.

Proof: For X, Y E (TA)', we have ((X, Y)) = (X, Y). Since

D xY VxY (VxY)T and ((VxY)T, Z) =0, we have (D xY, Z)

(VxY, Z) . The fact that D is compatible with h is now a consequence

of the fact the V is compatible with g. 4

In the last section we showed that D being torsion-free was an immediate

consequence of V being torsion-free. In the present situation, progress is hindered

by the fact that while DxY DX represents a vector field orthogonal to A,

[X, Y] may not. In fact, [X, Y] E (TM)' for all X and Y in (T M)- , if and only if

(TM)--L is surface-forming (Frobenius's Theorem). Thus, if one wishes to consider

the general threading scenario, it is quite fruitless to compare DxY DX with

[X, Y]. One may, however, decompose [X, Y] as

[X, Y] = [X, Y] + [X, Y]'.

We may now measure the fact that (TM)' is not surface forming by the existence

1-
J.of [X, and use [X, Y] to measure the torsion of D.

65



Definition 3.5 The deficiency, 'D, of the connection D is defined by

D(X,Y) = [X,Y}T.

Theorem 3.6 The following statements are equivalent:

(TM)' is surface forming.

The generalized torsion associated with D, -LTD, is the (standard) torsion TD

as defined by (3.3).

D(X,Y) _= 0 for all X, Y E (TM)'.

Proof: This theorem is basically the vector field version of Frobe-

nius's theorem rewritten to emphasize the new definitions. By definition,

D(X, Y) 0 if and only if [X, Y] 0. Thus D(X, Y) 0 if and only if

[X, Y] E (TM)', yielding (iii.)-#.(i) via Frobenius's theorem. To show

we again have [X, Y] 0 so [X, Y] [X, Y], making the

two notions of torsion coincide. Since -LTD(X, Y) TD (X Y) = [X, Y]

we also easily have

01
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Definition 3.3 The (generalized) torsion, -LTD, associated with the connection D

is defined by

-1-TD(X, Y) = DxY DX [X, Y]-L .

Lemma 3.4 The generalized torsion is precisely the projection of the torsion as-

sociated with V.

Proof: We have,

-LTD (X, Y) = DxY DX [X, 17] ±

= (yxY VyX [X, Y]

= T(X, Y)±.



Theorem 3.7 If V is torsion-free, then -LTD(X, Y) 0 for all X, Y E (TM)'..

Proof:

-LTD(X, Y) = D xY DX

= (V xY vyx -

= (T (X, Y))-1-

=0.

Therefore D still inherits its (generalized) torsion only from V.

Later in this chapter we will show that, in a coordinate basis, the connection

symbols, -Lriik, associated with D obey the symmetry -LPIk = ki if and only if

V is torsion-free. Thus, the above definition of -LTD is quite reasonable.

For X, Y E (TM)', define as before

B(X,Y) = VxY DRY.

B(X, Y) is again a vector field orthogonal to the vector fields X and Y and, hence,

a vector field tangent to the threading. There is no guarantee, however, that B is

symmetric. This is a consequence of the deficiency of D. In general, one has

B(X,Y) B(Y, X) = [X, Y] [X, 171± Tv(X,Y) TD ( X , Y
(3.14)

= D(X, Y) Tv(X, Y)--1-TD(X,Y).

When V is torsion-free, B may still fail to be symmetric.

Theorem 3.8 If V is torsion-free, then B(X,Y) B(Y, X) if and only if
D(X,Y) = 0.

Proof: Tv(X,Y) = 0 implies that -LTD(X,Y) = 0 and, hence,

equation (3.14) reduces to

B(X,Y) B(Y, X) = D(X,Y).
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We have that the deficiency of the connection D measure the failure of (TM)-'- to

be surface-forming and, equivalently, the failure of the extrinsic curvature B to be

symmetric in a torsion-free setting.

3.5.2 Curvature

Being an affine connection, D must have an associated "curvature" tensor.

However, the existence of the [X, 11 T component prevents one from proceeding as

in equation (3.11). It appears as if this problem may be overcome simply by using

the quantity [X, Y}1 to represent the commutator of two vector fields orthogonal

to the original vector field A.

Armed with such a notion of "bracket", the next step would be to define a

curvature operator.

Definition 3.9 Define the operator S by

S(X,Y)Z DxDyZ DyDxZ (3.15)

Unfortunately, such a definition immediately leads to problems.

Proposition 3.10 S(X,Y)Z is not function linear. That is

S(X,fY)(gZ) fg S(X,Y)Z.



Proof:

S(X, fY)(gZ) = (Dx(fDy) fDyDx Df{x,y1, DX(f)y) (gZ)

=fS(X,Y)(gZ)+ (X(f)Dy X(f)Dy)(gZ)

=f S(X,Y)(gZ)

=f (Dx(Y(g)Z gDyZ) Dy (X(g)Z gDxZ)

[X,YJ-L(g)Z gDfx,yi,Z)

=f ([X,11(g)Z [X,Y]-L(g)Z gS(S,Y)Z)

=fgS(X,Y)Z + [X, Y]T(g)Z

where, in general, [X, YiT is not everywhere zero. *

Therefore, in order to define a function linear curvature operator (tensor!),

we must keep track of the [X, Y] T component (we can not just project it away and

forget about it). That is, the D[x yp-
Z term in equation (3.15) is not complete. We

,

do not want to project the vector field [X, Y] too soon! We will, therefore, consider

replacing the last term of (3.15) by the term (V[x,y1Z)±. This term is equivalent

to the D[X,I1Z term in equation (3.11). However, since [X, Y] is not necessarily

orthogonal to A we can not write (V[XY] Z)1 in terms of the connection D.
,

Definition 3.11 The (generalized) curvature operator associated with D is defined

by

= DxDyZ DyDxZ (V[x,y]Z)±.

Proposition 3.12 -LR is function linear. That is, -LR is tensorial.
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Proof:

-L17(X, fY)(g Z) =

(Dx(fDy) fDyDx (Vf[x,yi Vx(DY)-1-) (g Z)

=f-L-R(X,Y)(gZ)+ (X(f)Dy x py)±) (gZ)

=f-LR(X,Y)(gZ) + (f)Dy X(f)Dy)(gZ)

=fiR(X,Y)(gZ)

=f (D (Y(g)Z gDyZ) Dy (X(g)Z gD xZ)

(iX,11(g)Z gV [x,y1Z)±)

=f (g-I-R(X,Y)Z [X,11(g)Z ([X,11(g)Z)-L)

=g fiR(X,Y)Z

where the linearity of the projection map was used throughout.

Theorem 3.13 If V is metric compatible, then -L11 satisfies Gauss' Equation. That

is,

(-LR(X,Y)Z,W) = (4R(X,Y)Z,W)
(3.16)

(B(Y,W),B(X, Z)) (B(X,W),B(Y, Z))

where X, Y, Z and W are orthogonal to A.

Proof: First, a few computational observations. Since B(X, Y)

VxY D xY is orthogonal to A,

(VxY,Z) = (D xY, (3.17)

for vector fields X, Y, Z orthogonal to A. While we have shown that D

is compatible with the metric (( , )), it is also true that since the four-

metric ( , ) agrees with the induced metric (( , on (TM)', one may

write

X (Y, Z) = (1) xY, Z) (17, Dx Z) .
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The above proof of Gauss' equation only used the properties of metric com-

patibility (for both pairs of connections and metrics). In particular, the symmetry

(torsion) of either connection was not a concern. Thus, we have further shown that

Gauss' equation is valid in the presence of torsion.

Given ( , ), 4R, and B, one may use Gauss' equation to define a curvature

operator 'R. In this context, we may view IR as the unique curvature tensor

associated with D which satisfies Gauss' equation.

That is, D is "compatible" with the metric ( , ) when restricted to the

subspace (TA4)1. Using the definition of 4R and B, we expand the right

hand side of equation (3.16)

RH S = (VxVyZ VyVxZ Vpc,yi Z ,W)

(VyW DyW,VxZ D xZ)

+ (V xW D xW,VyZ Dy Z)

=X (V yZ,W) (VyZ,V xW) Y (VxZ, VV)

(VxZ,VYW) (V[x,11Z, W) (VYW,VxZ)

(VyW,DxZ) (DyW,V xZ) (DyW, D xZ)

+ (V xW,V yZ) (V xW,DyZ) (D xW,V yZ)

(D xW,DyZ)

=X (V yZ,W) Y (VxZ, (V[x,y]Z, W)

(DyW,D xZ) (D xW, Dy Z)

=X (DyZ,W) (DyZ,DxW)

Y (D xZ ,W) (DyW, D xZ) ((V [x,y1Z)
w)

= (DxDyZ DyDx Z [x,y]Z)±

= (iR(X,Y)Z,W)

where the second step involved the symmetry of the metric as well as

equation (3.17). 4
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A word of caution is necessary at this point. If torsion is present in either (or

both) of the connections, the tensor B(X, Y) is no longer symmetric. This affects

the symmetries of the tensors IR and 'R. In particular, as we shall see, IR may

not enjoy the familiar cyclic symmetry

-I-R(X,Y)Z Z)X -LR(Z, X)Y =0

even if 4R does! However, the other symmetries are immediate. More precisely,

Theorem 3.14 Let V be a torsion-free Riemannian connection associated with

the metric ( , ), with curvature tensor R. Using D, (( , )), B, and D as defined

above, if R is an induced curvature operator associated with the connection D and

R and R satisfy Gauss' equation, then R has the following symmetries:

(R(X,Y)Z , = (R(Y, X )Z ,

ii.x, Y)Z , = Kii(X , Y)W, 2')

iii. First Bianchi identity:

(R(X,Y)Z -I-R(Y, Z)X .TAZ , X )Y,

= (B(X , W), D(Y, Z)) + (B(Y,W),D(Z , X))

(B(Z , W),D(X , Y )) (3.18)

=- (V xD(Y, Z), W) (V yD(Z , X), W)

(V zD(X,Y),W)

where D(X, Y) = B(X, Y) B(Y, X) measures the failure of B to be symmetric.

D may be thought of as the "deficiency" of the connection D.

Proof: The symmetries in (i) and (ii) can be read off directly from

equation (3.12), keeping in mind that R satisfies all of the symmetries

of the usual Riemann curvature tensor (in the absence of torsion). To

prove (iii), just cyclicly permute X, Y, and Z in the terms on the right



hand side of equation (3.12) and add, obtaining

(ft(X, Y)Z +R(Y, Z)X R(Z, X)Y,

= 0 (B(Y,W), B(X, Z)) (B(Z,W), B(Y, X))

(B(X,W), B(Z, Y)) (B(X,W), B(Y, Z))

(B(Y,W), B(Z , X)) + (B(Z,W), B(X, Y))

= (B(X,W),D(Y, Z)) (B(Y,W),D(Z, X))

(B(Z,W),D(X,Y)) .

which is the first line in (iii). However, this cyclic sum involving B and

D may be rewritten in terms of V and D. Thus written, claim (iii)

resembles the standard cyclic symmetry of R (see equation (3.9)). Keep

in mind, however, that neither V nor D possess torsion in the theorem.

However, deficiency is present. We have

(B(X,W),D(Y, Z)) = (V EW D EW,D(Y, Z))

= (V EW,D(Y, Z))

= X (W,D(Y, Z)) (W,V ED(Y, Z))

= (V ED(Y, Z), w)
since D(Y, Z) is orthogonal to W. Thus the second equation in (iii) is

true.

One further comment on the similarities between equations (3.9) and (3.18) is

worth making. In equation (3.9) there are three extra terms of the form T (X, [Y, Z])

(and cyclic permutations). One might expect analogous terms in equation (3.18)

involving D(X , [Y, 41) and cyclic permutations. However, since D(X, Y) represents

a vector field orthogonal to the threading curves,

(D (X, [Y, Z]i) , =0.

Thus, because of the way I have expressed the first Bianchi identity (in terms of

an inner product) equation (3.18) differs slightly from (3.9). We have that the new

concept of deficiency resembles the notion of torsion.
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3.5.3 Coordinate Expressions

Let us now work in a coordinate patch and investigate the components of

the above operators. We will use the adapted coordinate system inherited from

the threading decomposition of spacetime. That is, spacetime coordinates xc' =

(x° , xi) = (t, xi), = 1, 2, 3} where the given vector field A can be written A' =

1±, &Mc' so that A° = .1±, and Ai = 0. The coordinates xi are constant along

specific integral curves of and can thus be thought of as coordinates on the

(local) surfaces ft constant}.

We have the threading lapse function and shift form as before related by

di = Midxi

where m is the metric dual of the unit vector tangent to the threading curves. Thus,

A0 = 1 and Ai = Mi.

In these coordinates the spacetime metric g has the form (see equation (2.8))
( _m-2

(gap)
M2 m-z

M2 M.

hii M2MiMi
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The functions h.. = g.. M2M.M. correspond to the components of thez3 23 z j
threading metric. That is, the metric on (TM)' induced by g (equation (3.13)).

These functions can also be thought of as the nonzero components of the four-

dimensional object

ha/3 g M2 A,A,3

which is associated with the projection operator

P = h0)3 = M2A,A)63

where 82 is the Kronecker delta symbol. Being a projection operator guarantees

that PaS X = X13 for X E (TA4)-1-. It is easy to show that a spacetime vector field

X = = X° + Xi 4r is orthogonal to A if and only if X° =



Therefore, this new operator D*a agrees with all other previous uses of O.

Let us work out the action of the connection D in these coordinates. Given

X and Y in (TM)1, we defined

D xY = (VxY)±
a

= P,yaxfiv oy-Y
Oxa

a
pya.p,36xfivorY axa

\ axfip,aP,' Y+ Pon axa
\xfi (Rya (Y-Y,fl + M2 AsA6Y a-Y,6) + .13,36IFY t,6YILJa

\
xfi P7aPdsPuiLYur

a
'6.) axa

= xfi (17%)(3 M2A.),A'Y'Y.0 irausyv)

= X° (Ya + ('r m2AaAvo) Yu)

where I have defined the symbol 'F

Ira Pal' 6P IT7
11

It can be show that the symbol 'F like a projected rank-three tensor.

That is,

a
axa
a

Ox a

_L1-0 _L-r a a _L-r _L-r0= 000 ' 00 03 /30
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To simplify notation I will introduce the "starry" derivative notation in all

coordinate directions. Therefore, at the risk of abusing notation, define

= a, +

Notice that since Ao = 1 and Ai = Mi, we have

a*0 =

and



and

Since DxY is orthogonal to A, DxY is completely determined by its components

(DxY)i. That is

. .

(DxY)a = d-(DxY) axi.

We have shown that

(DxY)i = xi (Yi*j+-Lrkil7k)

where I have used the facts that Yi*0 0 for all Y and Ai = 0 for i = 1, 2,3. The

above formula for (DxY)i corresponds exactly to the parametric covariant deriva-

tive operator introduced by Perjes. Note that the projected 3-index symbol Thik

has the same coordinate representation as the connection symbol used by Perjes,

-)fik (see equation (2.13)). Thus, we have our first covariant confirmation that

Perjes' parametric structure can be induced by a projective geometry of spacetime.

Continuing our coordinate description, let us calculate the components of the

Furthermore, after a long but straightforward calculation, one may show that the

terms -Lriik may be written in a familiar form involving the parametric derivative

operator and the components of the induced metric 1123 :

+hmi.k hmk.) 113k*m
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(3.19)

three-dimensional curvature tensor IR defined earlier. Since a*

basis for (TM)1, we define the components of -1-1? by

IR(a*i,a*.da*k = -1-R1 a*,

a
(ai+ 1)at

= Mi-e7 is a



Calculating the "spatial" components of Da.Daa*k, we find:

thus yielding

[a,a*jj *ka ((mi*i

(Da Da a*k \ 1 ( a (D 3.0)1

a i (Da k) 1.71i (Da

a (61k*, + -1-r1 nsmk

+ ir1(8k + -1-rnm36I)

3k *i I nz kj
Also,

=(M.
*Z mi*i) at
a

DP at
where I have introduced the notation Dii =

\ a
a =-1)..(1l.1 r° + r° )v[aa] *k 3t k 00mk ko at

a
32 Woomk + riko)

+

k)n

z*3) (riko + mkr100)) a*1.

As we see, the components of are not quite as nice as in the case where the a*i

span a hypersurface. The non-zero contribution of [Ow 049] continues to complicate

matters. Writing everything out gives us

ki*i + ifInz'Irnkj 1171 n

+2 (Mj*i Mi*j) (Floomk + rIk0)

-1- kj*i -Vnjj-rnkikt*3

*j) (M2Mm*k M2Mk*m at hkm)

where the four-dimensional symbols F were replaced by the equivalent expressions

involving the threading metric, lapse function, and shift one-form.

Using equation (2.15) in these coordinates, one has

Zikii =11kj* kz*j n nj k -LP 1 n j -1-17 nik
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(3.20)

(3.21)

j*i Z. *j. Therefore,



For the components of IR, we must calculate (A
L8*i,a*J

(Er
Lo*i,47:j

free, the definition of L' yields

78

At this point one notices a deviation from the definitions introduced by Perjes. The

Zel'manov curvature does not contain the contribution from ra a*j].

3.5.4 Zel'manov Curvature

Apparently, if one wants to relate the three-dimensional parametric tensor

Zijki to a four-dimensional spacetime tensor, one must re-examine the story leading

up to the definition of

It seemed most natural to define 1-R with the (V[X,Y] )1 term, as this definition

closely resembles the definition of the standard curvature tensor. However, consider

the definition

±R(X,Y)Z = D xDyZ DyD xZ (E[x,y]Z)-L (3.22)

where E is Lie differentiation.

The difference between the two curvature operators is

-1R(X,Y)Z -Lli(X,Y)Z = (Vs Y])-1- (3.23)

In light of our earlier comments, we know that J-i?- does not satisfy Gauss' equation.

However, there do exist the following similarities between -1-1? and IR.

-L-R(X,Y)f = -LR(X,Y)f for X, Y E (T M)- ,

and in the case where (TM)-1- is surface forming one has that Az, a*ji 0 which implies

= -LR(a*i, 0*J)

so the coordinate representation of the two tensors agree in this special case.

k
. If V is torsion-

(3.24)



Thus, the nonzero term [O,,a.i] does not contribute to the components of IR.

To summarize, we have already shown

Theorem 3.15 IR satisfies Gauss' equation, (3.16).

Although does not satisfy Gauss' equation (IR lacks the correct symme-

tries), we do have

Theorem 3.16 IR is the Zelmanov curvature.

Proof: Using equations (3.20) and (3.24), we have

jkl k 1 *i 1 ki*j n i n Ill nki

= Zlz.j k

Since these expressions are invariant under regular coordinate transfor-

mation and reparameterizations of E, we have that IR = Z. 4

3.5.5 Conclusion

The generalized Gauss-Codazzi approach was successful in defining a para-

metric structure on E. The projected connection D gave us a covariant derivative

operator which was also invariant under reparameterizations. Moreover, D was

found to be torsion-free if V was torsion-free. Most importantly, the deficiency D

was explicitly defined in such a way as to make its relationship to the torsion tensor

clear.

While the generalized Gauss-Codazzi formalism succeeded in providing a cur-

vature operator which satisfied Gauss' equation, the curvature operator did not

agree with the Zel'manov curvature. The difference between IR and Z involved

both the deficiency and the lapse function M. The appearance of M is due to
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the fact that we began with a parameter t whose relationship to proper time was

arbitrary. The extra pieces involving the deficiency are a result of using covariant

differentiation instead of Lie differentiation.



3.6 The Parametric Structure

3.6.1 Introduction

In the case of a spacetime threading, we were able to recapture much of the

geometry of the local rest spaces, even though these spaces did not constitute a

surface embedded in the spacetime. As we moved our focus to the manifold of

orbits, the threading framework forced some additional structure on E. Since the

original spacetime may not have been stationary or static, we decided to allow the

tensors on E to depend on an extra parameter. The parameter on E is not an

extra coordinate. As we saw earlier, while parametric tensors on E must (of course)

transform properly under a change of coordinates, the components of a parametric

tensor remain invariant under a reparameterization. The threading framework also

provided us with a natural metric on E.

By expanding on the basic threading ideas, we may continue decomposing such

objects as the connection or curvature tensor. In the analogous case of slicing, such

a procedure would lead quite naturally to the Gauss-Codazzi equations. While we

had to generalize a few notions (such as bracket, torsion, and curvature), a similar

decomposition may be carried over in the threading scenario. Furthermore, when

these objects are thought of as living on the manifold of orbits, they satisfy the

necessary reparameterization invariance. The generalized Gauss-Codazzi formalism

simply interpreted these new parametric objects as projected spacetime quantities.

However, in an attempt to define an abstract parametric theory, introducing an

extra dimension (to later project out) is unsatisfying. Fortunately, this approach

is not necessary. The essence of a parametric theory is provided by additional

structure in the guise of a one-parameter family of one-forms.

As shown below, the projected spacetime quantities obtained from the gener-

alized Gauss-Codazzi techniques may be described in terms of quantities intrinsic

to E together with the threading shift one-form, Mi dxz
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3.6.2 Parametric Functions and Vector Fields

Given any smooth manifold E, a parametric structure on E is defined by a

given one-parameter family of one-forms on E, w(t), satisfying the reparameteriza-

tion property.

Definition 3.1 A reparameterization of the parametric structure on E is an as-
signment

s = t F(p)

for p E E and s,t E R.

Definition 3.2 w(t) satisfies the reparameterization property if under a reparam-

eterization

w(s) = w(t) dF. (3.26)

One may whish to think of w as the spacetime threading shift one-form.

We saw earlier that if one interpreted a reparameterization in terms of a (higher-

dimensional) spacetime coordinate transformation (equation (2.18)), then the

threading shift one-form satisfied a property identical to the reparameterization

property. Under this interpretation, w keeps track of the tilting of -00-i with respect

to the surfaces of constant time (thought to be diffeomorphic to E). As the thread-

ing shift form became the fundamental object used earlier to develop a projected

spacetime geometry, co similarly carries all of the parametric structure on E. That is,

w carries all of the information necessary to recapture the geometry of the subspace

orthogonal to

Definition 3.3 A parametric function on E is a mapping f : E xR---4 R. Let the

collection of such mappings be denoted by 4(E).

Given a parametric function f E 4(E), for a fixed tERf can be considered

as a function from E to R. Denote this function by ft. Thus ft E a(E) and can be

acted on by tangent vectors of E.
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Proposition 3.4 The action of gt on parametric functions is a covariant operation.

Proof: Under a coordinate transformation of E, the operator

remains unaffected. This is because the parameter t is not a coordinate

and, hence, any coordinate transformation of E must be independent of

t. Therefore -'26f does not depend on the choice of coordinates for
i(P,to)

afp E E. Furthermore, under a reparameterization = t --F F(p), =
af
at

4

Although tangent vector fields do not act uniquely on parametric functions,

one-parameter families of tangent vector fields do. These one-parameter families

of vector fields, called parametric vector fields, will act on parametric functions in

a way reminiscent of the "starry" action of projected spacetime vector fields on

spacetime functions.

Definition 3.5 A parametric vector field is a smooth mapping X :ExR-4 TE
such that for each p E E, X(p,t) E TpE for all t E R.

Let X. (E) represent the collection of smooth parametric vector fields defined

on E.

For a fixed t, let Xt : E TE denote the obvious tangent vector field.

Using the fact that the spacetime derivative operator 0,, was shown to be invariant

under reparameterizations, we define the action of a parametric vector field on a

parametric function as follows:

X f (p, t) = Xt ft(p) w(t) t) --aaft (p).

Suppressing the point p, we can write the action as

X f = Xtft w(X)f. (3.27)

Theorem 3.6 X f is invariant under reparameterizations and coordinate transfor-

mations.



Proof: Consider coordinates fxzl and a parameter t. We have that

af ofX f = Xi (t M2at).
Under a reparameterization s = t+F(p), the components of w transform

according to equation (3.26). Denote the parametric structure w under

this new parameterization by (.2). Thus,

6s.) -= .11/1..z dxt

= (Mi xFi) dxz

w dF.

Although aaft , we must be careful computing ax, . Using the no-

tation introduced above, let h : E R and f3 : E > R. Clearly
af.

axt ax' It'

Therefore,

Since 18(p) = f(p, s) f(p,t F(p)),

afs Of Ox i af as
Ox i °xi axi + as Oxi

Of af at OF
Ox i Ot Os Oxi
Of OF.
Ox 2 axz

aft + M
at )

= xi(aft (A+ aa.F' Of
Oxz )

((Of
i ) + axi

OF
as
Of

Ox at
)al, OF a f

(afs
14.., a f

axi Iv Ai Os

which is the expression for X f with respect to the parameter s, show-

ing that X f is invariant under a reparameterization. If we consider

a coordinate transformation of E, Xt and -811,, will transform as usual

guaranteeing that X(f) is independent of the choice of coordinates.

Since w and Aat are unaffected, X f remains invariant under a coordinate

transformation of E. 4

X f = Xi
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= Xi

= Xi



and

X(fg)(p,t) = Xt(fg)(p) + w(t)(X t)( f g)

= fX(g)(p,t) gX(f)(p,t).

Parametric vector fields have a very nice representation in terms of a local

coordinate system, {xj}. Since a parametric vector field is just a family of tangent

vector fields, we may write
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Theorem 3.7 Parametric vector .fields are derivations on the ring "(E x R). That
is,

i. X(rf sg) = rX(f) 8X(g) and

X(fg) = LX(g) +gX(f) for all r,s E R and f,g E 3(E x R).

Proof: This follows directly from the derivational properties of Xt

and Written out we have

X (r f sg)(p,t)

= Xt(r f sg)(p) w(t)(Xt)-:i(rf sg)(p)

= rXt(f)(p) sXt(g)(p) w(t)(Xt)(71 sg)(p)

r (Xt(f)(P) wr(Xdf(P))

= rX(f) sX(g),

as usual, where we let the functions Xi depend on the parameter. That is, the Xi

are parametric functions on E. In terms of this representation we may write out

the action of parametric vector fields on parametric functions

X(f) X(f) w(t)(Xdf

= Xi f

= Xi f
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The use of * in the above equation agrees with the earlier uses. That is, the action

of parametric vector fields on parametric functions mimics the action of spacetime

vector fields which are orthogonal to

We can similarly define parametric tensors of higher rank.

Definition 3.8 A parametric (p, q)-tensor, T E TqP(E), on E is a one parameter

family of (p, q)-tensors on E. That is,

T : TEx...xTExT*Ex...xT*ExRR

such that T( , . . . t) E TqP (E).

As with parametric vector fields, parametric tensors can easily be expressed

in a coordinate basis

Tii .

0 0
x.iP ... dxiq

Dxii

where the Tiv-iP. . are parametric functions. We can also talk about one-
31.-4

parameter families of metrics on E, that is a parametric metric.

We saw earlier that in a threaded spacetime the Lie bracket of two vector fields

orthogonal to the threading need not be a vector field orthogonal to the curves. This

"deficiency" is carried over to the parametric theory. This can be seen explicitly by

calculating the action of the commutator (XY Y X) on a parametric function.

X (Y(f)) = Xi (Y3 f*j)

= Xi (Y.1*if*i Yif*
SO

(XY Y X) (f) = (XiYj *i Yi *z) f*3 + .210Y3 (f. - 3) (3.28)

where, in general, f32 f*ii 0.

In the earlier language of projections, the first term on the right hand side

of equation (3.28) was called [X, Y]L (f) and can be identified with a parametric



ii. wedge-product rule: d(0 A 7-) = d0 A 7 (-1)1'0 A dT where 6 is a p-form,
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vector field, while the second term refers to the earlier object [X, 11T (f), which is

not a parametric vector field.

We would like to define a notion of "bracket" of parametric vector fields.

The non-commutivity of the mixed parametric derivative makes this non-trivial.

Without the use of a projection operator, it is hard to describe the quantity we

earlier called [X, 17] ± (at least in a coordinate-free way). However, there is an

intrinsic calculation that yields the [X, 171T term, or the deficiency. In order to define

the deficiency intrinsically we will turn our attention to exterior differentiation of

parametric forms.

3.6.3 Parametric Exterior Differentiation

In Chapter 2, it was pointed out that Perjes introduced a notion of exterior

differentiation of parametric functions; namely

df = df wie

where d is the usual exterior differentiation on differential forms. Parametric func-

tions may be considered as parametric differential 0-forms. Parametric differential

p-forms are just one-parameter families of differential p-forms defined on E. Thus,

in a coordinate basis, a parametric differential p-form may be written as

0 = 0 dxil A ... A dxiP

where the O. are functions of xz and t and I have adopted the notation in [4]

where (i1 ip) gives us sums running through increasing sets of indices.

There are four axioms needed to completely determine the exterior derivative

d (see [4]), namely

i. df(X) = X(f) for functions f and vector fields X,



d(df) = 0, and

iv. d is linear: d(09 r) = dB + dr.

We already have that d:, f(X) = X(f) for parametric vector fields X and parametric

functions f. Properties (ii) and (iv) also carry over easily. However, it is not clear

that we wish d(d* f) = 0. For the parametric case, consider replacing axiom (iii)

by

d*(df) = 0 for parameter independent functions f.

Consider an exterior derivative operator, d*, on parametric differential forms

satisfying (i), (ii), (iii'), and (iv) for parametric forms, vector fields, and functions.

We have the following familiar coordinate expressions:

since the coordinate functions do not depend on the parameter, we have, by

(ii) and (iii)

d,,(dxii ...dxjP) .(dxii) A dxj2 dx23 dxiP

dxii A (d2.xz2) A dx23 ...dxiP

(-1)P-1 dxii dxjp-i A (dxiP)

=0,

d,k(fdxii dxiP) =c1f A dxiP fd,:(dxii dxjP)

=df A dxii dxiP, and

using (iv), d* on any parametric p-form has the coordinate expression

d(0) = ) A dxii dxiP .
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is generally non-zero. In fact, this term reproduces the [OW a*j

measures the deficiency.
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What about d*(df) on arbitrary parametric functions? According to this set

of axioms we have
ce,f d*(f*idxj)

f ..dxj A dxj*zi

f*iZ.dxj A dxi

Therefore 24f = (f*ii f*ii)dxj A dxi, and we have seen earlier that this term

Extrinsically, we related the deficiency to the fact that (T.A4)-L was not sur-

face forming. Intrinsically we can define the deficiency as the failure of d be

identically zero. In either interpretation, it merits its name.

Definition 3.9 The deficiency, 2), is a derivative operator defined by

D(X,Y)f =24f(X,Y),

for X, Y E X. (E) and f E (Y).

In terms of a coordinate basis we have

D(X,Y)f 24f(Xiai, Yiai)

X2Y1(f f)
X'17j(wi.i wi*j)i

XiYiDJ2f

which is the same quantity that we defined extrinsically by [X, YiT (f).

3.6.4 A Bracket Operator

We can now easily define the bracket of two parametric vector fields intrin-

sically. We want our intrinsic definition to agree with the projected spacetime

T
f term, which
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quantity [X, Y]L. For two parametric vector fields X and Y, define

[X, Yi, f = X (Y(f)) - Y (X(f)) D(X,Y)f.

We have already worked out these terms in a coordinate basis. Putting old facts

together we have

[X, Y] f (XiYi.i Y2X3 .i) f.i

XiYi(f.ji f.ii) XiYi(f.ii f
= (XiYi Yi Xi .i) f.j

which reproduces the correct vector field. If {xi} are coordinates on E, then

[ai, ai] = o as one would like.

Given a parametric vector field X, we can define an R-linear mapping

X(E) X* (E) by = [X, Y]. . Since

4x(iY)e = [X, fY]* e

= X f (Y (e)) fY (X (f)) D(X, fY)e

= X(f)Y(e) fXY(e) fY (X (e)) f24e(X, Y)

=(X(f) Y f 4,x Y) e

for all e, f E ap(E) and X, Y E X*(E), 1,,x may be extended uniquely to a parametric

tensor derivation on E, the parametric Lie derivative. (See theorem 15 in Chapter

2 of [22].)

3.6.5 Parametric Connections

I will now introduce the notion of a connection on a parametric manifold.

Although the following definition looks identical to the definition of a standard

affine connection on a manifold, this is an illusion created by the choice of notation.

Specifically, I have been using Xf to denote the action of a parametric vector field

on a parametric function. The underlying operator for such an action is not partial

differentiation, but parametric differentiation via the operator 3. In this sense,
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one can view a parametric connection as a generalized connection on a manifold. 7

That is, we generalize the notion of a vector field acting on a function.

Definition 3.10 An (affine) parametric connection, V, on E is a mapping
X.(E) x (E) (E) denoted by V.(X, Y) = 7Y, which satisfies the following

properties:

1. Linearity over 4(E) : V.(fx+gy)Z = gV.yZ

Linearity:V.x(Y Z) = V..xY 71,x Z

iii. Derivation: V.x(fY) X(f)Y f\7Y for all X, Y, Z E (E), f,g E

and X(f) refers to the parametric action of X off.

As before, given X E X (E) one can consider the R-linear mapping V*x

(E) -÷ X* (E). Condition (iii) above and [22] guarantee that V be extended

uniquely to a parametric tensor derivation on E. Thus, we may treat V*.x_ as a

covariant derivative operator on any parametric tensor.

We next wish to show that given a parametric metric h on E, then there exists

a unique parametric connection on E which is compatible with h and torsion-free.

Hence, we need to define these last two properties.

Let h be a parametric metric on E, denoted by ( , ). Metric compatibility is

defined in the usual way.

Definition 3.11 A parametric connection is said to be compatible with the para-

metric metric h provided

X (Y,Z) (xY,Z)d- KY, V*xZ).

7 In [24], Otsuki describes generalized connections which do not always reduce

to partial differentiation on functions.



Definition 3.12 The parametric torsion, T*, of V* is defined by

T*(X,Y) = V*xY V.yX [X, IT]. .

If T*(X,Y) = 0 for all X, Y E (E), then V* is said to be torsion free.

Theorem 3.13 There exists a unique torsion-free parametric connection compat-

ible with h.

Proof: The proof is exactly the same as the proof for the existence

and uniqueness of the Levi-Civita connection. The following proof is

taken from [6]. Suppose that such a V* exists. Then we have

x (Y, z) (V*xY, Z) + (Y,V*x Z) ,

Y X) (v*yz,x) + (z,v*yx),

-z (x, = (v.zx,y) - (x,v*zy) .

Adding the above equations yields

X (Y, Z) Y (Z, X) Z (X, Y)

([Z, X]. , Y) ([Y, Z]* ,X)

([X, , Z) + 2 (Z,V*yX).

Therefore, V*yX is uniquely determined by

(z X) =-21(X (Y, +,r(z, X) - z (x, Y)
(3.29)

([Z, XL ,Y) ([Y, Z]* ,X) ([X,Y]* , Z)).

One may also use this equation to define V*, thus proving existence.

We can use equation (3.29) to write out the unique parametric connection V*

in a coordinate basis. If we let hij = (0i, 5j), we can define the connection symbols

by V.a.a., -ykijak. Equation (3.29) now gives us

1
-yi iihik = (h hki* hij*k)

Or
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Therefore the connection symbols associated with V* agree with the connection

symbols associated with the earlier projected covariant derivative D.

3.6.6 Curvature

While introducing a generalized Gauss-Codazzi formalism, the definition of

curvature presented the greatest problem. In such a general setting, it was pointed

out that the most "natural", and naive, definition of a curvature operator (see the

definition of S in equation (3.15)) failed to be a tensor! The exact same problems

are reproduced in the definition of the parametric objects, V*,xY and [X, Y. That

is, the operator

S(X,Y)Z =7,x7.17Z V*074,x Z - V*[,

is not function-linear. This is due to the fact that [X, Y]* f XY(f) YX(f).
Rather, it is the case that

[X, Y]* f = XY(f)YX(f)-1)(X, Y)f.

Two alternate definitions of curvature were proposed earlier that overcame this

problem. While working in a spacetime setting with projection operators, it seemed

that the easiest way to make the operator S a tensor was to add the necessary terms

"by hand". Thus, we traded the term
(V[XX]± Z)-L for (V[X Z + V[X ,11T

ZYL =

(vtx,yi Z)±, leading to the definition of Not only did this approach seem the

"easiest" way to make S function-linear, it also had the favorable consequence of

satisfying a generalized Gauss equation (equation (3.16)).

We also introduced, without much motivation, a second candidate for a cur-

vature operator; namely IR. In defining -LR the troublesome term (V Z)±
[X

was replaced by (L'1x,y1Z)±. With such a definition, -LIR also possessed several ad-

vantageous properties. First, the components of IR could be written in terms of
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the connection symbols -yijk in a way analogous to the components of the classical

Riemann tensor (see equation (3.25)). Second, it was pointed out that the com-

ponents of IR agree with the Zel'manov curvature tensor. Again, IR and are

both generalizations of the projected curvature tensor 311 in the sense that all three

tensors agree when the subspace orthogonal to forms a hypersurface.

One must now decide how to proceed to define a parametric curvature tensor

on our abstract parametric manifold E. One approach would be to try to define

the tensors -L-R and -LR in terms of V*, [ , ]*, and D. It is not obvious that the
J_terms (V[XX])1 and (Eix,,,,Z) can be defined in such a manner. Another more

straight-forward approach would be analogous to the definition of IR. That is,

since we know why S is not function linear (the presence of deficiency) we can

easily correct the problem. First, one must extend the action of D(X,Y) to tensors

of rank (p-q) by differentiating the components of an arbitrary tensor with respect

to the parameter t. Since the action of at on p-forms is covariant, the result is a

(p-q) tensor. Now, define

Z(X, Y)W = V*xV*yW y V*xW 7,[x,.11*W D(X, Y)W.

Such a definition makes use of the various derivative operators present in a paramet-

ric theory. Not only does the parametric manifold E have the natural parametric

derivative operator V*, but the covariant operation of differentiation with respect to

the parameter is also present. The deficiency operator is built out of this parametric

derivative.

Given coordinates, x', the components of Z may be computed

Z(UZ,j)( k 71:ao . k a.V*aiak 0-0

= (Yijk*i 7lik*j 71TnEnik mn-Yr7k)

= Zi

Thus, the components of Z are exactly the components of the Zel'manov curvature.

So far I have begged the question of how one could reproduce -LR intrinsically.

In terms of a coordinate basis, we saw before (equation (3.21)) that the difference



between ift and Z is

Zikij j*i z*j) him (M2 Mfft*k - M2Mk*m ath km)

(M2Dmk Othkm)

which involves the deficiency 1) and the threading lapse function M. As we men-

tioned in the last section, the appearance of M is due to the fact that we began with

a parameter t whose relationship to proper time was arbitrary. While we have an

intrinsic definition for the deficiency, we can not recover the lapse function without

explicitly introducing it.

Abandoning IR for Z results in a curvature operator that can be defined

entirely in terms of E and the parametric structure co. However, we know in advance

that Z will not possess all of the symmetries of the Riemann curvature tensor.

Earlier it was shown that 1R was the unique curvature satisfying Gauss' equation

and, hence, enjoying all of the inherited symmetries of the Riemann tensor (where

the first Bianchi identity for IR resembled the identity in the presence of torsion).

As we saw in Chapter 2, the symmetries of Z may be written

i. Z(X,Y)W = Z(Y,X)W and

Z(X,Y)W Z(Y,W)X Z(W,X)Y 0.

3.6.7 Conclusion

The above intrinsic approach to parametric manifolds is more mathematically

satisfying than the earlier extrinsic approach. It proved to be quite interesting to

develop a generalized Gauss-Codazzi formalism and, perhaps, such a projective

approach is closer to the historical roots of parametric manifolds. However, the

exciting field of differential geometry is elegant precisely because of its ability to

describe geometric objects intrinsically. The ability to work on manifolds instead of

surfaces and define "tangent" vectors without making use of a higher dimensional

space makes the field of differential geometry very appealing. In such a way, the
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intrinsic approach to parametric manifolds is also very appealing. I have shown

how to recapture the projective flavor of the Gauss-Codazzi formalism without

introducing any projection operators. After defining the correct action of parametric

vector fields on parametric functions, equation (3.27), and recapturing this action

in the guise of an exterior derivative operator, the correct generalizations of Lie

bracket, torsion, and affine connection naturally followed. Furthermore, in such

an intrinsic setting the Zel'manov curvature tensor (used by Einstein, Bergmann,

Zel'manov, and Perjes) is the most natural generalization of the Riemann curvature

tensor.

With such a firm foundation, the theory of parametric manifolds may now

be easily explored. It should now be straightforward, for example, to develop the

analytical theory stemming from the parametric exterior derivative or, perhaps,

to continue nd expand the field of parametric manifolds by studying the behavior

of (parametric) geodesics and answering question about completeness and other

fundamental geometrical properties.



4. Fibre Bundles and Foliations

4.1 Introduction

Using the language of fibre bundles and foliations, this chapter will discuss

some of the central concepts presented in the previous two chapters. This disserta-

tion began with the slicing and threading decompositions of spacetime which were

induced by the existence of two different, but very well behaved, foliations. The

slicing viewpoint assumed a foliation by spacelike hypersurfaces, while the threading

viewpoint depended on a foliation by timelike curves.

We will begin this chapter with precise definitions of foliations in order to

place the slicing and threading viewpoints in the proper mathematical context.

Furthermore, when the leaves of these foliations coincide with the fibres of a fibre

bundle, we will see how both the slicing and threading decompositions of spacetime

can be described by the same mathematical structure. By studying how Rieman-

nian metrics on fibre bundles are related to metrics on the base space and typical

fibre, we will recover both the slicing and threading decompositions. Both Reinhart

and Hermann placed certain conditions (discussed below) on metrics in order to

guarantee when a given foliation can be thought of as a fibre bundle.

In the setting of general relativity these conditions are very similar to those

Einstein and Bergmann imposed on the spacetime metric in an attempt to gener-

alize Kaluza's ideas. Hence, we will include a review of the work of Einstein and

Bergmann leading up to a parametric theory of spacetime.

This chapter will conclude by exploring the definitions of 0, and d. in the

context of fibre bundles. We will see that if M=ExR is thought of as a fibre

bundle over E, then the horizontal subspaces defined by are "almost"

a connection in a principal bundle, and that d. is the induced covariant exterior

derivative on E. We will also see how the operator d. can also be thought of as a
total derivative in the context of jet bundles.
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4.2 Fibre Bundles and Foliations

4.2.1 Quotient Manifolds Defined by Foliations

There exist many sources, and many definitions, for foliations of manifolds.

Both [25] and [17] offer nice introductions to the geometric and topological proper-

ties of foliations and quotient manifolds defined by foliations. Generally speaking,

foliations are a generalized differentiable structure on a manifold. That is, one may

think of a differentiable structure on a manifold as a zero-dimensional foliation.

There are two standard approaches to the study of foliations. One of these

defines foliations in terms of a decomposition of the manifold (the study of submer-

sions), while the other defines foliations in terms of a decomposition of the tangent

space of the manifold (the study of distributions). Both approaches are appealing,

but for the sake of simplicity, I will only discuss the former. Other definitions may

be found in [25] and [17].

For the following, let M be a smooth n-dimensional manifold. I will be

concerned only with smooth foliations and assume all differentiable structures are

of class C".

Definition 4.1 A p-dimensional foliation is a decomposition of M into distinct

subsets {La}, for a E A some index set, such that each point of .A4 has a neighbor-

hood U and a coordinate system (x, y) : U > RP X Rq n p) such that for all

La, the components Un La are described by equations of the form

=

Y2 = C2

yq Cq

where cl, , cq are constants. Denote the foliation by .F = {La}.
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Definition 4.6 ,F is a regular foliation if every leaf of ,F is regular.
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Definition 4.2 Such a coordinate system is said to be distinguished by the foliation

F.

Definition 4.3 The subsets La are called the leaves of the foliation F.

Example 4.4. Slicing and Threading.

Earlier we were concerned with spacetimes which were foliated

by, for example, spacelike hypersurfaces or timelike curves. The slicing

viewpoint concerns itself with the foliation by hypersurfaces. Thus, the

leaves in this case would correspond to the surfaces Et. The adapted

coordinate system used throughout this paper made use of the fact that

there existed a coordinate system in such that the surfaces (leaves)

Et were given by {t constant}.

Similarly, for threading we assumed the spacetime .A4 could be

decomposed into leaves which were timelike curves. Again,we made

use of the fact that these curves would be defined (locally) by {xi

constant}.

In the above example (and hence throughout this entire paper), the foliations

were especially well-behaved. For instance, we intuitively assumed that each time-

like curve intersected some fixed hypersurface at most one time. We did not concern

ourselves with the pathological case of a curve passing through a neighborhood of

.A4 infinitely often. Nor were we interested in the case where a surface Et intersected

the same family of threading curves more than once.

Definition 4.5 A leaf is said to be regular if it intersects a distinguished coordinate

neighborhood in at most one p-dimensional slice.
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This regularity condition has been assumed in previous sections of this paper.

Regularity assures that the manifold topology of the leaf is the same as the topology

induced by the manifold M. Stated another way, the manifold of leaves, M/,T, is

a manifold (with the quotient topology) only if F is a regular foliation. Stated

formally,

Theorem 4.7 If ,F is a regular foliation of M, then

MI,F is a (not necessarily Hausdorff) manifold with the quotient topology

and

7r : M .A/1/.F is differentiable and surjective.

For a proof see [25].

4.2.2 Fibre Bundles

Fibre bundles come with many different structures; principal (fibre) bundles,

vector bundles, and (topological) bundles. The fibre bundle with the least amount

of structure is the topological fibre bundle.

Definition 4.8 A (topological) fibre bundle is a collection (E, 7r, F, B) satisfying

E, F, and B are topological spaces typically referred to as the total space (or

bundle), typical fibre, and base space respectively,

7t : E B is a continuous surjective map, and

(local triviality): for any point b E B there exists an open coordinate neigh-

borhood U c B containing b and a homeomorphism : 7-1(U) U x F satisfying

o 0-1( , f) = x for x E U and f E F. That is, 0 preserves fibres.
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Property (iii) may be interpreted as meaning that the total space E is locally

a product space. If E = B x F, one would call E a trivial bundle. The local triviality

of any bundle E guarantees that the set 7r- (b), b E B, is homeomorphic to the

typical fibre F. The collection of sets {7-1 (b)} are generally referred to as the fibres

of E. While fibre bundles are fundamental to the study of differential geometry (see

[151), this dissertation concerns itself with fibre bundles for two reasons.

First, a complete description of both the slicing and threading decompositions

of spacetime can be achieved by the use of a single mathematical structure, namely

a fibre bundle. In fact, the study of the slicing, threading, and parametric pictures

of spacetime is very interesting even in the most trivial setting where M = E x R.

Given that the spacetime M is a global product, it is clearly a fibre bundle. The

slicing and threading viewpoints simply correspond to different choices of fibre and

base space. We will examine this relationship later.

Second, it seems most natural to discuss the parametric connection, N7,,, in

the same terms one would discuss a standard connection of a manifold. Since con-

nections on manifolds fundamentally arise from studying connections on principal

bundles, one must certainly be interested in tracing the origins of V. back to such

a setting. I will address this issue towards the end of the chapter.

There is also a direct relationship between foliated manifolds and fibre bundles.

I already mentioned that while the slicing and threading viewpoints depend upon

foliations of the spacetime, these two viewpoints can also be easily discussed in

terms of fibre bundles. In general, one may use the fibres 7r-1 (b) of a fibre bundle

to define a foliation of the total space E. Although I have been considering only the

nicest foliated spacetimes in this dissertation, it is still an interesting problem to

study when a foliated manifold may be considered to be a fibre bundle. Since the

major motivation for this paper came from studying manifolds with metrics (e.g.

spacetimes), let us turn our attention to studying foliated manifolds with metrics

and their relationships to fibre bundles.



4.3 Bundle-Like Metrics

4.3.1 Introduction and Definitions

The study of foliated manifolds which possess bundle-like metrics has allowed

one to give certain conditions which guarantee that such a space is a fibre bundle

([27] and [11]) as well as offer insight into how the differential-geometric structure of

a foliation affects the global properties of the foliation ([12]). As Reinhart explains

in [27], the motivating example for the concept of a bundle-like metric comes from

trying to construct a Riemannian metric on the total space of a fibre bundle out of

Riemannian metrics on the base space and the typical fibre.

Consider a smooth fibre bundle 7 : M B with typical fibre F. Now the

fibres 7-1(b) above each point b E B are the leaves of a foliation of M. Let V C B

be such that r1(V) V x F. We will first define a metric on V x U where U

is a coordinate neighborhood of F. If h. dxiclx.1 and k044)3 are metrics on Vz3

and F respectively, on V X U we take the metric to be h .dxj dxj
k(113 dyi . By23

using a partition of unity, this metric can be extended to a metric on M. This is

an example of a bundle-like metric. While the functions hij depend only on the

position in B and the k depend only on the fibre coordinate, this will not be

the case in a typical example of a foliated manifold with bundle-like metric. In the

general case the fibre-dependent functions k will also be allowed to depend on

the corresponding base point in B.

Proceeding as in [27], let us define what is meant by bundle-like in the most

general setting. Let M be an n-dimensional manifold together with a r-dimensional

foliation F. F is defined by a smooth mapping p Fp C Tp.A4 to subspaces of

dimension r satisfying the complete integrability conditions. Complete integrability

guarantees that through each point p E M there passes a submanifold N such that

TqN C Fq for all qE N. N is called an integrable submanifold of M. Maximally con-

nected integrable submanifolds are referred to as leaves of the foliation F. In a neigh-

borhood of each point of M we can define local coordinates (x1 , . . . , y1, , yr)
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such that the leaves of F are defined (locally) by xi ci where the ei are constants.

The following index conventions will be adopted: i, j = 1,..., s and a, = 1, , r.

The form dx1 A... A dxs corresponds to the subspace of forms which are zero on

all vectors belonging to the foliation (i.e. those vectors in Fr). When working with

foliations it is usually assumed that such a coordinate neighborhood is flat (i.e. it

is the product of cubical neighborhoods of Euclidean s and r space).

Now, choose 1-forms wl , , wr and vectors v1, .. , v, such that (dx2 , uP) form

a basis for the cotangent space and (t)2, 8 ) is the dual basis. If M possesses aay<,

metric, one usually chooses the co so that they are zero on the orthogonal space to

the tangent space of a leaf through a given point.

Definition 4.1. A metric on M is said to be bundle-like if it has the following

form in such a flat coordinate system:

ds2 gij(x)dxidxj g 0(x , y)wa

Definition 4.2. A differential form a is said to be base-like if

o- = . (x)dxii A ... A dxis

These coordinate dependent definitions are indeed well defined as Reinhart

shows in [27]. In the above case where the foliation corresponds to the fibres of a

fibre bundle ir : M B, the base like forms are just those forms on M induced

from forms on B (via 7). That is, dxi on M actually corresponds to 7*(dxi) in

any local trivialisation. Reinhart also mentions that the collection of the co' defines

a sort of connection in this fibre space." That is, one lets the w' define a notion

of horizontal in the fibre space. As was mentioned earlier, if there is a metric on

M, this notion of horizontal is chosen to be the direction orthogonal to the leaves

(fibres) of the foliation.

While these definitions have no intrinsic geometric meaning, Reinhart ad-

dresses this deficiency and offers some geometric interpretation of bundle-like met-

rics in [27].



4.3.2 Foliations With Bundle-Like Metrics

In the Riemannian case, there are some known results about foliations with

bundle-like metrics and the resulting quotient spaces. The following theorem ap-

peared as Corollary 3 in [27]:

Theorem 4.3. Let M be a foliated manifold complete in a bundle-like metric. If

the foliation is regular, then M is a fibre space over a complete (Hausdorff) manifold

B.

Here B is the manifold of leaves whose space is defined by identifying each

leaf to a point. B is given the quotient topology with respect to this identification,

so that a set in B is open if and only if its inverse image under 7r is open in M.

Regularity of the foliation insures that B is indeed a (Hausdorff) manifold.

Theorem 4.4. Let M be a foliated manifold complete in a Riemannian metric

that is bundle-like with respect to the foliation. If all of the leaves are closed and

the holonomy group of each leaf with respect to the foliation is trivial, then B can

be made into a smooth manifold so that 7r is a smooth map of maximal rank

This theorem originally appeared as Theorem 4.4 in [12].The fact that M is

complete and each leaf is closed implies that there is a well-defined distance function

between leaves. Thus, one has a metric on the space of leaves B. It turns out that

if the holonomy group of each leaf is trivial, then if one leaf is closed it must also

be regular and hence all leaves are closed and regular guaranteeing that B is a

manifold.
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4.3.3 Two Examples (Slicing and Threading)

Let us state what is meant by a bundle-like metric with respect to the two

familiar foliations which yield the slicing and threading decompositions of spacetime.



Example 4.5. Slicing

Consider a spacetime ,A4 together with a foliation by

spacelike hypersurfaces (in terms of the above terminology,

the hypersurfaces are the leaves of the foliation). Here p =- 3

and q = 1. We'll adopt the earlier notation so that local

coordinates are given by (t, xi) and the hypersurfaces (leaves)

are defined locally by fta-- constant) = Et. This notation

agrees with the earlier discussion of slicing spacetime, but

disagrees with the above section. We will choose one-forms

wi (i = 1, 2, 3) such that the wi are zero on vectors orthogonal

to each hypersurface Et, thus yielding (dt, wi) as a basis for

the cotangent space. Let

Ni dt

We had earlier ((2.3)) that the unit normal to each slice Et

had the form
1 0 1

N OtN Oxi

thus, the Wi as defined have the desired action. The dual

basis is given by (v, Z) where

a
v = aaxi .

In the slicing notation, the spacetime metric takes the fol-

lowing form:

ds2 = (N2 N" Nin)dt2 + 2N idtdxi dx3

= N2 dt2 kij(Ni dt dxi)(1\7) dt dx3)

= N2 dt2 k iwiwi

Therefore, for the spacetime metric to be bundle-like, one

must require that the slicing lapse function N2 be a func-

tion of t only, while the slicing metric kii is allowed to be a

function of both t and the x.
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Requiring the slicing lapse function to be independent

of the spatial coordinates xi is quite restrictive. However,

this condition arises as a result of trying to define a metric

on the base space R. Clearly, any metric on R should depend

only on the coordinate t. Such a situation would arise in

spatially homogeneous model in which az is Killing.

Example 4.6. Threading

In the threading scenario we concentrate on the foli-

ation of spacetime with timelike curves. The leaves of the

foliation correspond to the integral curves of et- . We will

again work in local coordinates (xi, t) where the leaves are

defined by {xi constants} . We now choose a one-form C,--)

such that Ci.) is zero on vectors orthogonal to 1. That is, if

we consider each leaf as the world line of an observer, CL) is

zero on all vectors in the local rest space of that observer.

Let

= dt Midx

Comparing with equation (2.7), one sees that cD, being a

multiple of the metric dual of ST, is indeed zero on the local

rest space of each observer. Dual to the basis (dxi ,cD) is

(vi, 1) where
a a"at axz

Using the threading notation, the spacetime metric is
ds2 _m2 dt2 -2zm Midtdx' (h M2 IVIiMi)dxj dxj

= h . .dxi dxj M2 (dt Midxz)2
22

= h. .dxj dx g oow2
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For the metric to be considered bundle-like, the threading

metric h2.7.. must be independent of t, while the threading

lapse function goo M2 is allowed to depend on both t

and the xi.

The conditions for a bundle-like metric seem more rea-

sonable in the threading interpretation. In fact, since we

only require the three-dimensional metric components,

to be independent of t, the property of bundle-like is less

restrictive then requiring to be a Killing vector field. The

condition of bundle-like allows the relationship between an

observers clock and proper time (the threading lapse func-

tions) to be time dependent, whereas the condition of

being Killing would not allow for such a possibility.
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4.4 Theodor Kaluza and the Seed of Parametric Manifolds

4.4.1 Introduction

Anyone familiar with the Kaluza-Klein theories of spacetime will notice a

similarity between the threading (1 + 3) formalism and the standard Kaluza-Klein

(1+4) framework. While it appears that Gunnar Nordstrom made the first attempt

to unify gravity with Maxwell's theory of electromagnetism via the introduction

of a higher-dimensional theory, Nordstrom's theory of gravity differed from Ein-

stein's general theory of relativity (see [1]). Kaluza first attempted such a higher-

dimensional unification of Einstein's theory of gravity with Maxwell's theory of

electromagnetism in [14]. Kaluza attempted to describe ordinary four-dimensional

Einstein gravity and Maxwell electromagnetism by working in a five-dimensional

space. Gravity and electromagnetism were then obtained by imposing a "cylindri-

cal" condition on the fifth dimension. As Kaluza is basically beginning with a (1+4)

decomposition of a five-dimensional space, many of his calculation are reminiscent

of the threading viewpoint. In place of the threading metric, Kaluza has the ordi-

nary Einstein metric of spacetime, and taking the place of the threading shift is the

electromagnetic vector potential.

Later, Einstein and Bergmann generalized Kaluza's theory. In [8] Einstein and

Bergmann reformulated Kaluza's ideas and then proceeded to replace the "cylin-

drical" condition imposed by Kaluza by a "periodic" assumption, thus ascribing

physical reality to Kaluza's fifth dimension. In their resulting ansatz lies the begin-

ning of a true parametric picture of spacetime (although still nestled in the comforts

of a five-dimensional space).

The collection [1] is a valuable source of many of the early papers on the

Kaluza-Klein theories of unification. As many of the original papers are hard to

find, I will reference this collection in most instances.
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4.4.2 Threading and Kaluza's Theory

Einstein presented Theodor Kaluza's paper On the Unity Problem of Physics,

[14], on December 8, 1921. Conjecturing that the components of the electromagnetic

tensor Vab .1(Aa,b Ab,a) could somehow be truncated versions of a Christoffel

symbol rabc, Kaluza turned to the freedom of a fifth dimension to carry out his

theory. By considering physical spacetime as a subspace of a five-dimensional world,

Kaluza had to introduce his "cylindrical condition" to account for the fact that we

are only aware of the four-dimensional spacetime around us.

In [8], Einstein and Bergmann state Kaluza's ansatz as follows:

One has a five-dimensional metric

ds2 = godx'dz3 (a, 13 = 0, . . . , 4).

Cylindrical condition: There exists a Killing vector field A. That is, setting

Aa = goAP, one has

VaA)3 V0A, = 0.

V, is the derivative operator associated with the five-metric go.

The integral curves of the vector field A are assumed to be geodesics. Call

these integral curves A-curves

It follows from the cylindrical condition (Killing's equation) that the norm of

A' is constant along the A-curves. However, it can also be shown that the norm of

A' is constant throughout the entire space. As one should guess, the antisymmet-

rical derivatives of A',
Acv

A/3,a are supposed to make up the electromagnetic
'

field.

Reminicent of threading, one introduces an adapted coordinate system. Con-

sider an arbitrary four-dimensional surface which meets each A-curve exactly once.

On this surface one introduces coordinates xz (i = 1. 4) and assumes that the
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fifth coordinate x° is identically zero. Picking an orientation, one can now define

the coordinate x° as the distance from the surface along one of the A-curves. Then,

since
fo x 0x0=

Vgoodx°,

in these coordinates goo = 1 on each A-curve and hence in the entire space. By

choice of the coordinate x°, Ai = 0. If the constant norm of A is considered to be 1,

then one has A° 1. One should note that the coordinate vector field 00 is tangent

to the A-curves. Therefore
0 = A# + A

0,; Tha

= Aco

= (ga-YA7) (g#711:7),a A7(gcry,i3 gg-r,a gai3,-Y)

= A7g0,7+ gA.7

= ga,8,o

and we see that the cylindrical condition can be restated as the condition that

the components of the metric do not depend on the extra parameter x°. Since

A, = ga#A, 8,

Ai = g20 and ;10 = goo = 1.

It should be noted that since the components of the metric are independent of x°,

so are the components A,.

At this point one could argue that we have expressed our five-dimensional

space in terms of the components of a four-dimensional metric tensor, gip and the

components of a four-vector Ai. However, this description is not invariant under

reasonable change of coordinates. As Einstein and Bergmann mention, there are

two families of coordinate transformations which preserve the nature of the adapted

coordinate system. The coordinates on the original four-dimensional surface were

chosen arbitrarily and hence the following coordinate changes should be allowed:

=

X-0 = X0
(4.2)



111

In keeping with their terminology, we will refer to such a transformation as a four-

transformation. Furthermore, since the original four-surface was chosen arbitrar-

ily (and hence the origin of the extra parameter x°), one can pick another four-

dimensional surface (with the same coordinates xi and the same A-curves), in effect

re-parameterizing the five-dimensional space. Such a transformation will be called

a cut transformation and has the following form:

xi = xi
(4.3)

xo f(xi).

Under a four-transformation it can be shown that the Ai and gij do indeed transform

like four-dimensional tensors. However, under a cut transformation (reparameteri-

zation) the components transform according to

of
A. = A." ax,

af af af af
= gii goi axi axi axi

Even though the components Ai do not transform correctly, the antisymmetrical

derivatives of Ai are invariant under such a transformation.' Thus one considers

the quantities A A2 rather then simply the A. In an attempt to overcome
the non-covariance of the g Einstein and Bergmann are lead to consider the five

dimensional tensor

hao gao 24Ao.

In our adapted coordinate system the only nonzero components are h. . Fur-

thermore, the hii transform like the components of a tensor under both four-
transformations and cut transformations. As we saw in the case of threading, the

arise from calculating the distance of two infinitesimally close A-curves. There-

fore, we have in this coordinate system the standard Kaluza ansatz in which the

five-dimensional metric takes the form

( 1 Ai
gag = Ai AjAi )

8 As the authors mention in [8], this corresponds to the fact that the electro-

magnetic potentials are defined only up to additive terms which are gradients of an

arbitrary function.
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w e the com-23 2

ponents of a co-vector field meant to be interpreted as the electromagnetic potential.

4.4.3 Einstein and Bergmann's Generalization

As a result of Kaluza's "cylindrical condition", the components of the higher-

dimensional metric are assumed to be independent of the extra parameter x°. In

light of the above discussion, it is clear that this is analogous to the case of a (1 + 3)-

decomposition of spacetime in which the threading curves represent an isometry of

spacetime (i.e. is a Killing vector). In an attempt to give Kaluza's fifth dimension

some physical meaning, Einstein and Bergmann generalized Kaluza's original theory

by replacing the "cylindrical condition" with a "periodic condition". As we shall

see, the net result is the fact that the components of the resulting four-dimensional

metric tensor h. are, in general, functions of the parameter x0. Thus, the seeds

of a parametric structure of spacetime are planted. The following paragraphs will

outline Einstein's and Bergmann's generalization.

Again working in a five-dimensional space, Einstein and Bergmann made the

following assumptions:

One has a five-dimensional metric

ds2 = godxadr3 (a, 3 = 0, , 4).

Periodic postulate: The five-dimensional space will be considered to be closed

with respect to one dimension. However, this fact will be represented by an

open space that is periodic with respect to this dimension ("unroll" the cylin-

der). Therefore, as one moves about in this dimension one will repeatedly

encounter points p,ps,p",... that represent a single point in the five dimen-

sional space.
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3'. There also exists a family of closed geodesics such that each point in space lies

on exactly one geodesic. In terms of the open space, each equivalence class of

points {p,p',p",...} lie on the same geodesic. These geodesics will again be

called A-curves.

The adapted coordinate system is introduced as before. On a four-dimensional

surface which meets each A-curve exactly once, choose coordinates xi. Picking a

positive direction, one can define a fifth coordinate by the metric distance from the

surface (considered to the the set x° 0) measured along an A-curve. Letting b

represent the length between two consecutive periodic points,

b = IP ds,'

one has the x° coordinate of a point p

1xI ds
P

13 := T.)

Po

where pc, is on the initial surface.

As before the vector field A is given by

A° -= 1 A' = 0

and thus

Ai -= goi.

One also introduces the tensor with components

hais, gai3, AA0

of which only the hij are non zero. Thus, the hii are interpreted as a four-

dimensional metric tensor (the actual spacetime metric).

It turns out that, as with Kaluza's original theory, the components Ai are

independent of the parameter x°. However, the difference in this generalization lies

in the fact the the metric tensor is allowed to be a function of x°. Thus, we see

that Einstein and Bergmann are requiring precisely that go, be bundle-like.
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Einstein and Bergmann continued by defining all of the covariant operations

necessary to be able to analyze four-dimensional (spacetime) tensors in this five-

dimensional framework. In other words, they are treating spacetime as a parametric

manifold! For Einstein and Bergmann, the components of a four-tensor are allowed

to depend on all five coordinates x", but must transform like an ordinary four-

dimensional tensor under a four-transformation ((4.2)) and remain invariant under

a cut transformation ((4.3)). The fundamentals of their tensor analysis can be

summarized by

Since aato a under either of the transformations, differentiation witha xo

respect to the parameter x° is a covariant operation.

The action of the operator
a 0

A.
axi z 0x°

leave the components of a tensor invariant under a cut transformation. Thus,

for a covariant derivative operator one replaces ordinary partial derivatives,

ex-T, by (4.4), yielding (for example)

--= ( A )B
3 axi z 0x° 3 3

B AzBj,0

Bj., -yrn3,Bm

where
1

-yzk =
-2him(hmj*k hmk*j - hk*m)

These are the main analysis rules for parametric tensors.

Einstein and Bergmann also used the -yzik's to define a notion of curvature

which agrees with Zel'manov's later definition.

(4.4)



4.5 Decomposition of Metrics on Fibre Bundles

4.5.1 Introduction

The slicing and threading frameworks can be described as part of a single

mathematical structure; a fibre bundle. The slicing and threading metrics, shifts,

and lapse functions naturally arise when one examines the decomposition of a bundle

metric in terms of metrics on the base space and the fibre space. By choosing the

base space and fibre space correctly, one recovers either the threading or slicing

framework.

As the presentations of the slicing and threading viewpoints in chapter one

mainly focused on the decomposition of the spacetime metric, that will be my main

concern in this section as well. The motivation behind Reinhart's notion of bundle-

like metric came from an attempt to construct a metric on the total space of a

fibre space out of metrics on the base space and typical fibre. Such a construction

was very reminiscent of the construction process of slicing and threading. In this

section, I would like to address the converse. That is, given a metric on the total

space, what conditions are necessary in order to construct metrics on the base

space as well as the typical fibre. Since I am interested in this problem in order to

better describe the slicing and threading decompositions, I am really only interested

in local decompositions of the metric. Thus, I will be working in a single local

trivialisation of the bundle.

Let M be a fibre bundle with base space B, fibre F, and continuous, surjective

projection ir : M > B. For the purposes of slicing and threading one should take

M to be a spacetime and the collection of fibres {7r-1(x) : x E B} to represent

the appropriate foliation (spacelike hypersurfaces for slicing or timelike curves for

threading). Furthermore, we have B = .A4 /F under the equivalence induced by the

fibres (i.e. for p,q E M, p q .<=> 7r(p) = ir(q)). We may call B the manifold of
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leaves. Using the terminology of the preceding chapters, we may call B the manifold

of orbits also.

For the following I will work within a single local trivialisation with adapted

coordinates. Let U C B be a coordinate neighborhood with coordinates xi such

that r1(U) U x F. Furthermore, within a coordinate neighborhood of 7-1(U)

we may use coordinates (xi,e) where yc' are coordinates on F.

For any p E T- '(U), there exists a natural subspace Vp c Tp.A4 called the

vertical subspace. Vp is defined by

Vp = {X E Tp.M : 7r(X) = 0}.

Complementing the notion of vertical, define a subspace Hp C Tp.A4 so that Tp.A4 =

vp Hp and call Hp the horizontal subspace. Certainly there are many smooth

choices for H. If M has a metric, Hp may be chosen quite naturally to be the

orthogonal complement to Vp.

Now, given a metric g on M is there a natural choice for metrics h and k on

B and F respectively? Not unless additional structure on .A4 is given or we allow

for the additional freedom of a parametric metric. Let us mention a few of these

possibilities in greater detail.

4.5.2 Metric on the Base Space

For X, Y E TB there exist unique horizontal lifts of X and Y at each point

p E 7r-1(x). Call these lifted vectors ±p and ii"p. It would seem natural to define

h(X, Y) in terms of these lifts. In order for h to be well-defined there are various

options depending on the additional structure one is willing to assume.

1. If g were constant along each fibre, then g(Xp,irp), g(Xq,kg) for all p,q E
71-1(x). One could then define

h(X,Y) =g(5,)
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for any p E 7r-1(x). Actually, we can loosen this restriction somewhat. We

only need that g restricted to the horizontal subspace Hp is constant along

each fibre. This is essentially Reinhart's condition that g be bundle-like with

respect to the given foliation.

If there were some preferred global section a : B M (e.g. F is a vector

space) one could define

h(X,Y) = g(-k,(x),1'7,(x))

a may refer to some initial hypersurface in an initial value formulation.

One could allow the metric on B to carry an extra parameter, namely ya, and

define

h(X,Y)I = g(±(xi,y.),3(xi,ya))

and, hence, begin to consider B as a parametric manifold.

If h has been defined in one of the above situations, the component functions

hii can be defined and computed. Suppose the horizontal direction is defined by

the basis

H. = r9 .
ax, aya

We define the horizontal lift of to be-8-4c = Hi.

One may now define the components of h by

a a
h2.3. = h(

axi' oxi)

g`oxi' axi
a a a

= g( ax +117ayo ' axi+l'?
= gii 2I17gic,

We are assuming h(Z, -S-) is well defined, but the functions hii may be functions

of ya as well as xi (as in 3.).



4.5.3 Metric on the Fibre

There are similar obstructions to defining a metric k on F. Vectors Z,W E

TyF can be naturally identified with vertical vectors (tangent to the fibres) of M.

We have many natural embeddings of F into M. The problem is which fibre?

As with h, we need some additional structure which allows us a definition in the

following sense:

k(Z,W)= g(2, TV)

where 2 and 1)17 represent some mapping of Z and W into vertical vectors of M.

That is, we define k to be a pullback of g. Since k depends on which imbedding of

F we use, we can think of k as being parameterized by the coordinates (xi) of B.

W That is, one cancfl (x9 (x)
use the local trivialisations to pull back the metric g to a parametric metric on F.

4.5.4 The Decomposition

We can now write the original metric g of M in terms of h and k. We have:

(gab)

kcefl gaj

gip h&j 2r7g r7rk )
where

ga, = g

= g

= g

air,

/ô a
aya )

a a a \
11).3i ayfi' aya )

° F#gP aya)
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Since M has a metric, we may choose our notion of horizontal so that Hi is

orthogonal to -47. In which case we have g(H.i, ayac,) = 0 and gai = =
Fq ka0



In this special case g takes the following form:

(gab) =

Example 4.1. Threading.

Take F = r with coordinate y° = t and B = E to be a

three-dimensional manifold with coordinate xi (i = 1,2,3) as

before. In terms of the above decompositions, the spacetime

metric is of the following form

(gab) =
k00

k
ct/3

)
.

+ rciTijgco

.k00

rzkoo hzi + Fir, koo )
aSince koo represents the squared norm of , according toat

previous notation k00 = M2. This decomposition is then

precisely the same as the threading decomposition with r, =
Mt and where hZ.i is the threading metric on the manifold

of orbits E. Thus, the notion of horizontal is given by H. =,

b+mil which corresponds to the orthogonal subspace to
a

Example 4.2. Slicing

By switching the roles of F and B in the above ex-

ample, one has the original slicing story. Let F = E with
coordinates y' = Xi (i = 1, 2, 3) and B = R with a single

coordinate x° = t. One has:
k..

23
rik

23

(gab)
hoo + riPkij)

As before, kti is the slicing metric, ri = Ni, and hoo =
N2. Here the horizontal subspace is given by H0 = at

Ni a. which is orthogonal to the hypersurfaces Et.ax
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Now, in the slicing and threading pictures of spacetime, one always has both

sets of foliations (foliations by hypersurfaces as well as by curves), thus the slicing

and threading pictures of spacetime can be described nicely as part of a single

mathematical structure; a fibre bundle. By choosing which foliation corresponds to

the fibres, one is handed either the threading or slicing framework.



4.6 Parametric Manifolds and Fibre Bundles

Consider the fibre bundle picture that leads to the threading decomposition

so that F = R and B = E. For simplicity, assume M = E x R, so we have a trivial

bundle 7r : E x R > E. We just saw how the spacetime metric naturally decomposes

into the threading metric on E. More precisely, if there were no special conditions

imposed on the spacetime, it decomposes into a one-parameter family of threading

metrics.

We also used the spacetime metric to designate a preferred notion of hori-

zontal in Tp (E x = ;M. We had Hi = + M. wherewhere Midx was the

threading shift one-form. This notion of horizontal depends upon the t coordi-

nate of M, as, in general, the functions Mi depend on t. Thus, without imposing

additional restrictions on the spacetime M there is no natural relationship be-

tween the horizontal spaces Hi(p,t) and Hi(p,t s). That is, the choice of Hz

does not constitute a connection in the usual sense of a connection on a vector

bundle (since F = R, 7r : M E is a vector bundle). Stated more precisely,

if cgs : 7r-1(b) ---> 7r-1(b), s E R induces some action on the vector space R (say

5(b, t) = (b, s +0), the induced map on TM given by a not take horizontal

vectors into horizontal vectors. As Reinhart mentions in [27], these choices for Hi

nevertheless define a "sort of connection". We still have a smooth decomposition of

TM = Vp ED Hp, and we can still talk about horizontal lifts. However, we will not

require the horizontal subspaces to transform in any particular way as one travels

up and down a specific fibre.

For X X- TxE, we can define its horizontal lift at (x,t) E 7r-1(x) to
be

Now, a parametric function f:>2 >< r is just a function f : M --> R, and thus
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there exists a natural action of X E ;E on f given by the horizontal lift of X.



Therefore we have

a a
5((f)=Xi

(
axi

) f
= Xi f

Again, we see the parametric derivative operator U the most natural derivative

operator on parametric functions.

If E is thought of as a parametric manifold, a reparameterization of E given

by s = t F(x) is just a coordinate transformation on the fibre 7r-1(x). We have

studied the effect of such a coordinate transformation on the horizontal bases Hi

earlier. We had
a 5F5 a

oxi O +xiat z at
a ( aF a

= axi axi at
a a

+AI!
ax

where MI are the components of the threading shift one-form after a coordinate

transformation of the fibres. Therefore, when defining a parametric structure on E

we require that the one-parameter family of one-form field obey the reparameteri-

zation property (equation (3.26)).

Not only does this fibre bundle setting easily reproduce many of the results

we obtained through projection techniques, it also offers a nice description of the

parametric exterior derivative operator, d,K. When studying the curvature in a

principal bundle (since F = R is a Lie group, 7r : M E is also a principal bundle)

one uses the exterior derivative on M and the notion of horizontal to define an

exterior covariant derivative operator. For any k-form 0 on M and letting d denote

the usual exterior derivative on M, define D by

DO ,Xk+i) = d0 ,H(Xk+i)) .
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For a 0-form (or parametric function) f we have

D f(X) = df (H(X))

( a )= df X' Mi + xz axi

f of
MiX' -5T +X2 ax,

= X' f

df(X),
where the last line emphasizes that Df agrees with the earlier notion of parametric

exterior derivative. Using the generalized axioms for a parametric exterior deriva-

tive, we can extend Df = d. f to a parametric exterior derivative operator on

E. Thus the exterior covariant derivative operator in the bundle gives rise to a

parametric exterior derivative operator on the parametric manifold E. It should

be emphasized again that the subspaces Hi do not constitute a connection in a

principal bundle since they are not preserved under the group operation (addition).

The next, and final, step would be to write as a connection in a principal

bundle. That is, use D to define a covariant derivative on the parametric manifold

E. There are, however, barriers for such an interpretation of V*. Difficulties arise

because the choices of Hi do not constitute a true connection on the principal bundle

: E x R > E. This is due to the fact that any group action a on a fibre will not

necessarily induce a map c Tp(E x R) Ta0(E x R) which preserves the choice

of Hi (at lease without introducing restriction on M).

As the notion of horizontal corresponds to the subspace of vectors orthogonal

to k, one may wish to consider the notion of Fermi-Walker transport. Fermi-

Walker transport arises when one considers an orthonormal tetrad for an arbitrarily

accelerated observer (see [19]13170). If m represents an observer, a vector field X is

said to have been Fermi-Walker transported along m if

mc"c7 ,,X13 + mc,Xa 261.13 A,Xam13 =0 (4.5)

where A.13 = rnaVm0 is the acceleration of the observer. It is true that Fermi-

Walker transport preserves norms (and hence angles) of arbitrary vectors. That is,
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vectors which are perpendicular to the observer will remain perpendicular to the
observer after Fermi-Walker transport. Thus, horizontal vector fields which have

been Fermi-Walker transported along integral curves of & remain horizontal. There

is, however, no group action of R which induces Fermi-Walker transport on TM.
As with all other parametric object, the best one can achieve is by interpreting V.

as a one-parameter family of (standard) connections.

It should be emphasized that in the theories of Kaluza as well as Einstein and

Bergmann additional structure (Killing and bundle-like respectively) was imposed

on the spacetime. This additional structure provided the much needed symmetry

in the vertical direction. Furthermore, in more general settings such as Yang-Mills

theories, the group (fibre) symmetry is still present. Thus, we have that V. is a

notion of connection in a more general setting. Perjes mentions how the parametric

derivative 0* may be interpreted as a generalization of an invariant derivative in

gauge theories. Thus, one may anticipate the usefulness of such derivative operators

in a generalized Yang-Mills setting.



4.7 Parametric Manifolds and Jet Bundles

4.7.1 Introduction to Jet Bundles

Jet bundles may be thought of as generalized tangent spaces to manifolds. As

Saunders mentions in [28], a first-order jet generalizes the notion of a tangent vector

by considering equivalence classes of higher-dimensional manifolds passing though

a point (rather then curves). The relationship between jet bundles and parametric

manifolds begins with considering the trivial bundle associated with the threading

viewpoint:

It turns out that jet fields associated with the first jet bundle J;,. correspond to one-

parameter families of one-form fields on E. Also, for each jet field there corresponds

a notion of a total derivative. If one chooses the preferred jet field associated

with the threading (i.e. parametric) decomposition of E x R M, then we can

interpret the corresponding derivative as a parametric exterior derivative d*. This

interpretation of d* agrees with our earlier definition.

Let (E, r, F, B) be any fibre bundle. We will refer to this bundle by the

projection map 7r. For p E B let 0, E p (7) be sections of the bundle 7r. The

definitions contained in this section can be found in [28].

Definition 4.1 We say that 0 is one-equivalent to at p if

i.0(.19) = 0(13) and

ii.O*1 = 04,1
P

125



Claim 4.4 71,0 : J71, E and 7ri : J71- B are fibre bundles.
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Definition 4.2 The equivalence class [0] is called the first-jet of 0 at p and is

written jp10.

Consider the set

4.= {j11,0: p E B, E rp (r)}

with maps 7ri : J, > B and 71,0 : E defined by

7r1(j)=p

r1,o(40) = 0(P).

Claim 4.3 J is manifold.

Proof: I will define a set of coordinates for 4. For a complete proof

see [28]. Consider a locally trivial neighborhood U in E so that we can

use adapted coordinates (xi, 0) in U. That is, the coordinate functions

xi are pulled back from B via 7r. We define an induced coordinate system

(U1 , u') on J7,1 by

= {jp10: 0(p) E U}

u1 = (xi, ua,

with
x2(40) = x2(P)

°(j.71,0) = u(p))
u7(40) = lp

Thus, one uses derivatives of to define coordinates on J71,.. Using these

coordinates, one can show that J, is indeed a manifold. *

Furthermore, it is shown in [28] that



4 1,0 E

7ri

Although I will not take the space for a complete description of jet bundles, it

is worth noting that one of the most important features of the bundle (J7,1,71,0, E)

is its affine structure. This gives sections of the bundle many of the features of

a vector field on a manifold. While a vector field has a "flow" parameterized by

a one-dimensional manifold, the "flow" of a jet field is parameterized by the base

space B. Furthermore, in some cases (soon to be shown) the jet field may act as a

derivation. We will see how the action of a jet field corresponds to the action of a

parametric vector field on parametric functions.

The map 7r* may be used to pull back forms on B to forms on E. These forms

are called horizontal forms. More precisely,

Definition 4.5 A horizontal one-form on E is a section of 7r* (T*B) E. Denote

the collection of such forms by
Aor.

Definition 4.6 Given a jet j pi E 41, the action of the jet on functions on E is

the mapping jpi : C°°(E) Tc*b(p) defined by

7r* (c1(46*(f))1p)

In coordinates this action takes the form

/9f .1 of
.4(Mf] = Yx1,5() u`'(4°)auc, 10(p)) I phi (p)
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Definition 4.7 A section r : E > J,. of the bundle 7103 will be called a jet .field.

The action of r on functions is the mapping C(E) > Aor given by

(FPlop) = r (0(p)) [f]. (4.6)



In terms of the coordinates introduced above, we have

af
d=. x

Oxz au°
where IT is the coordinate representation of r given by IT -,-- /4? a F.

Claim 4.8 Starting with the trivial bundle (E xR,7r, E) associated with the thread-

ing viewpoint there exists a canonical dilfeomorphism between the first jet manifold

J. T*E x R.

Proof: The diffeomorphism is given in [28]. Locally (for some

neighborhood W C E), we have that for any section 0 E F (7) we use

the standard projection 72 : E x R --* R to define = 72 0 in some

neighborhood W C B. Now, 0 E C°°(W) and the diffeomorphism is

given by

(dcb 0(P))

Saunders proves that this map is indeed a diffeomorphism.

4.7.2 Example

Let us suppose that on is given a spacetime (M, g) with a timelike congruence

given by the vector field . One may now work on the three-dimensional manifold

of orbits, E, and consider a (1 + 3) decomposition of M.

Consider a decomposition of g in terms of the threading lapse function, M,

the threading shift one-form Midxi, and the threading metric hij. Recall that

while the functions M, M, and h.. are functions of (t, xi), they do define three-
21

dimensional tensors on E which carry an extra parameter. Furthermore, assume

that the coordinates (t, xi) on M respect the timelike congruence. That is, an
integral curve of I is given (locally) by the set {xi constant}. Therefore the xi

can be used as coordinates on E.
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Consider the bundle r : M E x R E, where r(p) is the unique integral

curve of -17 which passes through p E M. Now construct the first jet bundle,

E x R. Let F:ExR Jiir be a jet field. Since Jiir T*E x R, 11 can

be thought of as a map

r:E xR T* x R (4.7).

We will call such a map (section) a parametric one-form field and denote the col-

lection of such maps by PTi(E).

In particular, the smooth functions Mi yield a preferred jet field r given by

r(xz,t). (x2,t,mi(xz,t)).

Furthermore, under the diffeomorphism J, E x R, the point (xi ,t, M i(x ,t)) is

identified with the one form Midxi . Now, Midxi is a one-parameter family of one

forms on E.

Given any jet field r, there exists an action on C"(E x R). We will call

E C"(Ex ) a parametric function.

For each jp10 E 41, define a map jp1.0 : C"(E x R) --+ T:1)(p)(E x ) by

= 7*(d(0*.nip).

In coordinates,

of .1 )Lf dxii714-./.
O[f] oxi 10(p) 1- 1VI"P CP at 10(p) I(p)

We will write .4,0[f] = dxii .
:7;-, 0 I 0(P)

Now, the action of jet field r is given by equation (4.6)and from the definition

of jp1O[f], one readily sees that jp1O[f] is a horizontal one-form on E x R.

Therefore, we have for each jet field F a notion of a parametric exterior deriva-

tive, d: C"(E x R) 'P1'1 given by

df10(p) = r(0(1)))ifi (4.8)



130

We explicitly note that the parametric structure depends on a choice of a pre-

ferred jet field. However, we have a preferred choice of jet field given by our

(1+3) decomposition of spacetime. Namely, we have a jet field 11 taking (xi ,t)

(xi ,t, Mil ) E 41.
1(xi ,t)

Thus, our preferred notion of parametric exterior derivative takes the following

form:
df

df I(p) dxi Ir(O(P))dxz 10(P)
f ani= (-7 I + Vi(r(O(P)))nf )dXi7 I0(p) at 0(P) I OW

( f a f
oxi 10(p) + 10(p) at 1 o(p))dxi 10(p)

a*f= dxi
oxz I q5(p) I cb(p)

= f *idxi

Here we see that the above "starry" notation is the same as before! We have indeed

reproduced the earlier parametric exterior derivative!

This notation agrees with the anticipated action of a parametric vector field

on a parametric function.

We thus define a parametric vector field of E to be a section X:E xR

TE x JR. Now, let f be a parametric function (i.e. f E C°°(E x R)). If X (xi ,t)

(Xi 4-, t), then let X be the horizontal lift of X at time t and define

X(f) = ±(f)

Since X = Xi(Z + M) E T(E x R), he have

X (f) = Xi f*i.



5. Avenues of Future Research

5.1 Introduction

In this chapter I will discuss some possible applications of parametric mani-

folds to general relativity. As the theory of parametric manifolds gives one a way of

analyzing time-dependent fields on fixed manifolds, it is particularly useful in the

study of initial-value problems.

First, I will address the issue of the quantized scalar field. In particular, I will

show how the decomposition of the spacetime Laplacian is simplest in terms of a

parametric theory.

Second, I will address the initial-value problem of general relativity itself.

As the standard initial-value formula-ton of general relativity relies on the Gauss-

Codazzi equations, the generalized Gauss-Codazzi equations can be used with less

restrictive sets of initial-data.

5.2 Quantization of the Scalar Field in Curved Spacetime

5.2.1 The Problem

For spacetimes which admit an everywhere timelike, hypersurface-orthogonal

Killing vector field, there exists a standard procedure for the quantization of the

Klein-Gordon equation. Such spacetimes are called static and, if we take the integral

curves of the Killing vector field to be our threading curves, then the slicing and

threading viewpoints agree. Moreover, since the threading vector field is Killing,

all "time" derivatives of the metric are zero. Hence many aspects of the parametric

viewpoint will agree with the usual threading (or slicing) decomposition. That is,
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"starry" derivatives of the metric are ordinary partial derivatives and the parametric

Christoffel symbols agree with the standard Christoffel symbols associated with the

threading metric.

In the case of spacetimes which are stationary but non-static, the slicing and

threading viewpoints are different (stationary but non-static implies non-zero shift).

In such a situation one has (at least) two options. One could follow the procedure of

Ashtekar and Magnon [2] and regard the timelike Killing vector field as fundamental,

or one could follow the procedure of Dray, Kulkarni, and Manogue [7] and regard

the surfaces of constant Killing time as fundamental. As in shown in [7], these two

procedures differ. Consider this problem from the slicing, threading, and parametric

points of view.

The massless Klein-Gordon equation is

00=0
where Uq= gafiVVock for a scalar field cb. At the heart of any quantization

procedure is an initial-value formulation of this equation, i.e., a decomposition of

spacetime into "space" and "time". As shown below, in a static spacetime the de-

compositions are identical. However, when one considers a stationary but non-static

spacetime, one has a simpler decomposition in the parametric setting. Further work

on applying the parametric viewpoint to the quantization of the scalar field in a sta-

tionary but non-static spacetime, as well as on an arbitrary spacetime background,

is in progress.

5.2.2 Hypersurface-Orthogonal Decompositions

For the sake of generality, let us assume that (36-t-. is not necessarily Killing. In

terms of the spacetime metric go, one may write

= gal3V,V 0
1 (Ogle/30,a)

VM
(5.1)



Cio Ak0 + 1kN niaVo(na77)

DO AS + mi3V(mc"c7,0)

= A*0+ "o*3m*, m'sVo(m'Va0)
11/1

naVaO
N,V1k1

ii mav
M\/hl

nic,v
MVIhi a

133

I will introduce the notation Ak, Ah, and A* for the three-dimensional Laplace

operators in the slicing, threading, and parametric viewpoints respectively. As in

(5.1), one may show tha these operators may be written

A k° 1/111C1(N/kIkzj C 'i)

ihI
It(4' (Vihih"0,z),3

A*0 = 1 (Ohihu0 .)
*)

where h2.j and kii are the threading and slicing metrics respectively. As usual,

Greek indices run over all four spacetime coordinates, Latin indices run over the

three "spatial" coordinates, and the threading vector field is assumed to be k.

Also, let ma be the unit vector tangent to the threading curves and na be the unit

vector normal to the slicing surfaces. Continuing with the earlier notation, let M

and N be the lapse functions and Mi and Ni the components of the shift one-form

and vector fields respectively. If Mi 0 _=.= Ni, then direct computation shows that

(5.2)

where V is the spacetime Levi-Civita connection, and a dot denotes differentiation

with respect to t. These equations are valid regardless of the Killing condition on

the vector field 1. In the case of a static spacetime, the last term in each of the

above expressions will vanish.

One should note that the above equation (5.2) are all identical, since in the

hypersurface-orthogonal case we have M N, ma na, h.. k.3., and a . a
2

thus making all three decompositions coincide.



5.2.3 Non-Hypersurface-Orthogonal Decompositions

When the threading curves are no longer orthogonal to the slicing hypersur-

faces, shift is present. The presence of shift implies that the lapse functions M and

N are different, hij k. 971' na, and 82. In such a case we have

=AS+ --11\710"N,i0.,j nbVb(naVa.0.)
a

1

NnaVa0DiNi

00 =AS mbVb(maVa0)+

MmaVc,¢15iMi

CIO + hijO.i(M.i + MA) mbVb(maVa¢.)

mavao
M-V1h1

where D and n are the Levi-Civita connections associated with the slicing and

threading metrics respectively. Again, a dot denotes differentiation with respect to

t, so if a is assumed to be a Killing vector, some of the above terms are identically

zero. Note that only the parametric decomposition contains no divergence term,

which should simplify the quantization procedure.

ATNAk1 n a

mavao
'3 '1 M
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5.3 Initial-Value Formulation in General Relativity

The standard initial-value formulation of general relativity begins with a set of

initial data consisting of a three-dimensional Riemannian manifold E (with metric

k) together with a symmetric rank-two tensor field K on E. It is possible (c.f. [30])

to use the Gauss-Codazzi equations to obtain the initial-value constraints

Dz.Ki3. DKi = 0 and

1
(3R + (lizz)2 KijKij) = 0

where D is the Levi-Civita connection associated with k and 3R is the Ricci scalar.

If k and K satisfy the initial value constraints, it can be shown that there exists a

globally hyperbolic spacetime satisfying Einstein's equation which admits a Cauchy

surface diffeomorphic to E. That is, there exists a spacetime with an embedded

spacelike surface diffeomorphic to E possessing the property that the past and

future of this Cauchy surface is the entire spacetime M. Furthermore, the induced

metric on E is k and the induced extrinsic curvature of the Cauchy surface is K (see

[30]). Recall that if n is the unit vector normal to E and if X and Y are tangent

vector fields on E, the extrinsic curvature K is defined by

K(X,Y) = (VxY,n)

where ( , ) is the metric of the spacetime. If one assumes that V is torsion-free,

then K is a symmetric tensor.

In the generalized Gauss-Codazzi formalism, the generalized extrinsic cur-

vature operator was no longer symmetric. However, the anti-symmetric part of

K was measured by the deficiency, a well-defined quantity on a parametric man-

ifold. Furthermore, we saw that the non-symmetric nature of K did not affect

a re-formulation of Gauss' equation, the first of the initial-value constraints. The

theory of parametric manifolds should allow one to first treat the generalized Gauss-

Codazzi equations as initial-value constraints and second, to formulate a theorem

similar to the standard case.
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Such an approach to an initial-value formulation requires one to use the cur-

vature operator IR, rather than the Zel'manov curvature Z, as only IR satisfied

Gauss' equation.
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