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A standard tool in general relativity is the 3+1 or ADM point of view, namely
slicing spacetime into spacelike hypersurfaces of constant time and then describing
physics in terms of time-dependent quantities on a typical such hypersurface. Much
less well-known is the 143 point of view, in which one foliates spacetime with
timelike curves, then describes physics in terms of the surfaces “locally orthogonal”
to the given foliation. This is precisely the description of physics as seen by a
single observer. However, in fnany instances there do not exist such orthogonal
hypersurfaces. One may instead attempt to describe physics on the manifold of
orbits defined by the timelike curves, but one must then develop a parametric

theory to handle the time dependent objects defined on the manifold of orbits.

I will present two equivalent descriptions of parametric manifolds. The first
is based on a generalized Gauss-Codazzi formalism which involves projection to a
lower-dimensional “surface”. The second is an intrinsic description which involves
redefining the action of vector fields on functions. In either description one is lead

to generalized notions of connections, Lie bracket, and exterior differentiation.

Unique to a parametric theory of geometry is the deficiency. Although inde-

pendent of the torsion, the deficiency behaves like torsion in thie parametric direc-

tion. We will show how the deficiency emerges as a r=sult of the above generaliza-

tions.



The 341 formalism arises naturally in considering initial-value formulations
both for fields on a fixed background spacetime and for the spacetime itself. The

applicability of parametric manifolds to such problems will be discussed.
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Parametric Manifolds

1. Introduction

1.1 Statement of the Problem

The fundamental premise underlying general relativity is the unification of
space and time into spacetime, a four-dimensional manifold with local Lorentzian

geometry. '

While the unification of space and time is one of the great achievements of
~ this century, occasionally it is quite useful to split spacetime back into space and
time! Certainly such a splitting would depend upon the notion of “time”. For
example, given a family of observers, one may have surfaces of “constant time”
which are used to synchronize the observers’ clocks. Alternatively, each observer
has an independent notion of time as measured along their world lines (proper time).
In such a situation, what the observer sees at any given “time” is determined by the
subspace perpendicular to its world line; the local rest space of the observer. Even
in such simple cases as flat spacetime with constantly rotating observers, these two
notions of time disagree. In an attempt to emphasize the fundamental nature of

what observers see we turn to parametric manifolds.

A parametric manifold can be thought of as a manifold in which all of the
geometric objects (e.g., tensors) are allowed to depend on an extra parameter such
as time. A parametric structure is then given by specifying a one-parameter family

of one-form fields. This parametric structure affects the action of (parametric)

! The theory of parametric manifolds is not dependent on the four-dimensional
Lorentzian structure of spacetimes. Parametric manifolds of arbitrary dimension

and signature may be defined.



vector fields on (parametric) functions, the notion of covariant differentiation, as
well as other derivative operators. While this extra structure leads to generalized
notions of connections and curvature, it also brings into existence a new operator
known as the deficiency. As will be shown later in this dissertation, the deficiency
measures the failure of the parametric theory to agree with a more traditional theory
of tensor analysis on manifolds. While initially quite bothersome, the deficiency of a
parametric structure may be easily defined and handled in an elegant way, much like
torsion. In fact, the deficiency and torsion behave so similarly that the deficiency

~ can easily be confused with torsion. They are, however, separate objects.

This dissertation will give a complete and comprehensive description of all of
the objects and tools necessary for a rigorous study of parametric manifolds. This
goal will be accomplished by examining parametric manifolds from two primary
points of view. First, parametric manifolds will be discussed in terms of projected
higher-dimensional quantities. This approach will be called the eztrinsic approach.
Second, parametric manifolds will be described entirely in terms of geometric quan-
tities that are intrinsic to the manifold, including the given parametric structure.

This approach will be called the intrinsic approach.

The extrinsic approach is closely connected with the historical development
of parametric theories. While many of the tools and ideas associated with paramet-
ric manifolds have been around since the early days of general relativity, in 1993
Zoltan Perjés began a more abstract approach and succeeded in identifying the
fundamental feature of a parametric structure (a one-parameter family of one-form
fields). Historically, as we shall see, the parametric theories began to emerge as
a consequence of decomposing (both four-dimensional and five-dimensional) space-
times with respect to a preferred congruence of curves. This so called 1+3 (or 1+4)
decomposition of spacetime has been overshadowed in the recent literature by the
dual formalism of a 3+1 splitting of spacetime, also known as the ADM formalism.
In either case, one is dealing with projected theories of geometry. In the ADM

setting, one is primarily decomposing the higher-dimensional spacetime quantities



in terms of lower-dimensional quantities which are thought of as geometric objects
on embedded hypersurfaces. The study of embedded hypersurfaces is a classical
topic in differential geometry known as the Gauss-Codazzi formalism, and there
are standard ways of relating the geometry of a higher-dimensional manifold to the
geometry of an embedded surface (of any dimension). Thus, the projected theory
induced by a 341 decomposition of spacetime is the geometry induced by the well

known Gauss-Codazzi formalism.

However, the 143 decomposition is quite different. As the 143 decomposition
is based upon a given congruence of curves, there are no guarantees that these curves
will be orthogonal to a family of hypersurfaces. That is, the three dimensional quan-
tities defined by the 143 decomposition have no natural place to live! Without the
existence of these orthogonal hypersurfaces, the standard Gauss-Codazzi formalism
does not apply. This dissertation will generalize the standard Gauss-Codazzi for-
malism to the case where such surfaces do not exist. This generalization will lead
to projected objects (as does the standard Gauss-Codazzi approach) which will be
interpreted as living on the manifold of orbits, ¥, which will in turn be identified
with a parametric manifold. Specifically, such a generalization will lead to a natural
(affine) connection on ¥, a generalized notion of extrinsic curvature, as well as a
unique curvature operator on ¥ which is related to the Riemann curvature tensor
of the original manifold by the standard Gauss equation. The induced notion of
extrinsic curvature is no longer a symmetric tensor. However, its failure to be sym-
metric is directly related to the deficiency of the parametric structure defined on
Y. Given a projected theory of geometry based on the generalized Gauss-Codazzi
theory, one may give a complete description of parametric manifolds in terms of the

original higher dimensional manifold.

While the extrinsic approach to parametric manifolds allows one to develop a
parametric theory based upon a given congruence, the intrinsic approach describes
the notion of a parametric manifold without any reference to a higher-dimensional

space. Thus, although one may use the insight gained from studying the extrinsic
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projected quantities, working intrinsically does not allow one the use of projection
operators. In order to overcome the absence of projection operators, one is led, in
particular, to consider a generalized notion of connection. This generalized connec-
tion has its roots in the parametric action of vector fields on functions which m(in
a coordinate basis) is not partial differentiation. The notions of Lie bracket and

torsion must also be carefully defined in this setting.

One interesting development evolving from an intrinsic description of para-
metric manifolds involves the concept of a generalized exterior derivative operator
d,. It differs from a standard exterior derivative operator in the sense that d2 = 0!
However, the non-vanishing behavior of d2 is completely characterized by the afore-

mentioned deficiency of the parametric structure.

Having a complete mathematical description of parametric manifolds allows
one an alternate viewpoint on initial-value problems in general relativity. By study-
ing the decomposition of the spacetime Laplacian, I will demonstrate how paramet-
ric manifolds may be used to develop a procedure to quantize the scalar field in
arbitrary background spacetimes. Also, I will address the initial-value problem of
general relativity itself. As the standard initial-value formulation of general relativ-
ity relies on the Gauss-Codazzi equations, the generalized Gauss-Codazzi equations

can be used with less restrictive sets of initial-date.



1.2 History of the Problem

In 1921 A. Einstein presented a paper by T. Kaluza [14] in which Kaluza in-
troduced a five-dimensional theory of spacetime, based on Einstein’s general theory
of relativity, as an attempt to unify gravity and electromagnetism. In his paper,
Kaluza assumed that the five-metric was independent of the fifth dimension. Cen-
tral to Kaluza’s analysis was his 1+4 decomposition of this stationary spacetime. In
an attempt to add some physical interpretation to Kaluza’s fifth dimension, Einstein
and Bergmann generalized Kaluza’s framework [8]. Their generalization contained

two 1deas central to the theory of parametric manifolds.

First, Einstein and Bergmann recognized only certain classes of five-dimen-
sional coordinate transformations as having any relevance to the four-dimensional
“physical world”. As a result, Einstein and Bergmann were led to consider a four-
dimensional metric (the natural metric associated with a 144 decomposition of
spacetime) which was allowed to depend (with some restrictions) on the fifth dimen-
sion. In the context of this dissertation, Einstein and Bergmann were considering

a one-parameter family of metrics, i.e., parametric metrics!

Second, Einstein and Bergmann presented derivative operators which were
covariant with respect to the restricted class of coordinate transformations, rather
than the entire class of five-dimensional coordinate transformations. These analytic
tools are precisely the analytical operators one needs to define a coherent parametric
theory of spacetime. Einstein and Bergmann constructed an additional covariant
derivative operator (partial derivative with respect to the “parameter”), a new no-
tion of partial differentiation (parametric differentiation), a generalized covariant
derivative operator, as well as a generalized notion of curvature (later called the
Zel’'manov curvature). In the language of parametric manifolds, these objects are
the most natural geometric operators which are invariant with respect to a reparam-
eterization of the manifold. Later, Bergmann presented one of the most complete

descriptions of a parametric theory of spacetime to be found [3].



Around 1955 the Russian mathematician A. Zel’'manov rediscovered many
of the analytical tools developed by Einstein and Bergmann. In [31], Zel’'manov
discusses physical spacetime quantities which transform covariantly with respect to
certain coordinate transformations. While he is led to consider the same family
of coordinate transformations that Einstein and Bergmann were, Zel’manov was
not working in an extra (fifth) dimension. Instead, Zel’'manov was interested in
discussing coordinate transformations which related coordinate systems which were
at rest with respect to the same frame of reference. Zel’manov also made use of a

derivative operator very similar to the one introduced by Einstein and Bergmann.

In 1958 the Italian mathematician C. Cattaneo, while studying equations of
motions of free test particles in general relativity, made use of a transverse dif-
ferential operator [5]. This differential operator is the same reparameterization
invariant differential operator used by Einstein, Bergmann, and Ze’manov. Catta-
neo explicitly recognized this operator as a projected partial differential operator,
thus setting the stage for a projected theory of geometry leading to the notions

surrounding parametric manifolds.

In 1993, Z. Perjés presented what he called a “parametric manifold picture of
spacetime”. While Perjés makes use of all the previous analytical quantities intro-
duced by Einstein and Bergmann, he was the first to give an abstract definition of
a parametric manifold. Central to such an abstract notion, Perjés successfully de-
scribes the additional structure necessary for an elegant description of parametric
manifolds. In [26], Perjés provided a brief introduction to theAsubject of para-
metric manifolds before presenting a complete description of a parametric theory
of spinors. Together with Gy. Fodor, Perjés applied this parametric theory to a

canonical analysis of relativistic gravitation [9].

At this point, I believe a complete description of parametric manifolds is still
missing. In this dissertation I will build upon Perjés’ work in several ways. First,

the generalized Gauss-Codazzi formalism will not only reproduce many of Perjés’



analytical tools, but it will also help lead to the notion of a parametric Lie bracket.
Such a definition is crucial both in providing a complete interpretation of the defi-
ciency, as well as in understanding the similarities and differences between deficiency
and torsion. Second, this dissertation will provide the necessary definitions for a
complete intrinsic description of parametric manifolds. As we will see, an underly-
ing theme to such a description involves re-defining the action of a vector field on a
function. Changing the action of a vector field on a function yields generalized no-
tions of “partial” derivative, covariant derivative, Lie bracket, exterior derivative,
and curvature. Thus, one may think of the theory of parametric manifolds as a
special case of a generalized differential geometry in which one simply changes the
natural action of a vector field on a function. Again, as a result of this non-standard

action, one is forced to introduce the notion of deficiency.

Although the literature abounds with descriptions of 1+3 and 1+4 splitting
of spacetime, I have tried to concentrate the above chronology so as to include those
authors who actually began to introduce some sort of reparameterization invariant
objects and operators. In [13], Jantzen and Carini offer a more complete listing of

references central to the 143 decomposition of spacetime.



1.3 Dissertation Summary

Chapter 2 sets the stage for the formal constructions by summarizing previous
work. It begins with an introduction to the 3+1 and 143 (slicing and threading
respectively) splittings of spacetime. In each case, the decomposition and con-
struction of the spacetime metric is discussed. After the summary of the different
spacetime splittings, we examine Perjés’ recent work on parametric manifolds. Al-
though Perjés was not considering an extra spacetime dimension, as was mentioned
above, many of Perjés’ definitions are identical to those first introduced by Einstein
and Bergmann in 1938. However, Perjés interprets these objects as being repa-
rameterization invariant rather than transforming under some higher-dimensional
coordinate transformation. Furthermore, Perjés identifies the parametric structure
as being carried by a one-parameter family of one-form fields. Such an observation
lays the groundwork for a thorough description of parametric manifolds. In the light
of spacetime splittings, one can better understand many of Perjés’ definitions and
observations. Central to the 143 decomposition of spacetime is the threading metric
and the threading shift one-form. In this context, one sees that Perjés’ parametric
metric agrees with the threading metric, and Perjés’ candidate for the structure
one-form agrees with the threading shift one-form. Thus, we see how a threading
decomposition of spacetime naturally leads one to consider a parametric manifold
picture of spacetime. In addition, one may start to view Perjés’ parametric oper-
ators (0, and V) as projected spacetime operators. The discussion of spacetime
splittings and parametric manifolds concludes with a brief example illustrating the

various viewpoints.

Chapter 3 offers a more thorough description and exhaustive discussion of
parametric manifolds. Precise definitions of curvature, torsion, and deficiency are
given. Two separate approaches are presented. First, the extrinsic approach focuses
on the relationship between parametric manifolds and projected spacetime quanti-
ties. As was mentioned earlier, attempting to expand upon this relationship requires

a generalization of the standard Gauss-Codazzi formalism to the case were there are



no orthogonal hypersurfaces. The generalized Gauss-Codazzi approach then allows
one to define a metric and an affine connection on the manifold of orbits which agree
with Perjés’ parametric metric and connection. In addition, one has the notion of
deficiency, which measures the fact that the projected spacetime bracket operator is
not closed (since we have generalized the Gauss-Codazzi approach to the case with-
out orthogonal hypersurfaces). While this generalized approach reproduces Perjés’
parametric metric and parametric connection, it leads to a curvature operator which
differs from Perjés’. This new curvature operator is the unique curvature operator
satisfying a generalized version of Gauss’ equation. As Perjés’ curvature operator
was the same curvature operator found in the previously cited literature, the cur-
vature operator induced from the generalized Gauss-Codazzi approach also differs
from the curvature operators of Zel’manov, Einstein, and Bergmann. The relation-

ship between the two curvature operators will be given explicitly and discussed.

Following the complete extrinsic description of parametric manifolds is the
intrinsic description. Using all of the information gathered from examining space-
time splittings, projections, and the generalized Gauss-Codazzi formalism, we define
parametric manifolds in terms of an abstract manifold together with some additional
structure which transforms correctly under a reparameterization. Central to all of
the parametric definitions is the action of parametric vector fields on parametric
functions. Defining an action which differs from the standard action of vector fields
on funétions leads to an entirely different type of geometry; a parametric geome-
try! As was mentioned above, we will consider generalized notions of Lie bracket,
covariant differentiation, torsion, curvature, and exterior differentiation. Such gen-
eralizations give rise to a new operator: the deficiency. In essence, the deficiency

measures the deviation from a standard geometric theory.

Chapter 4 begins with a more formal treatment of foliations. Although the
discussions of slicing and threading revolved around the notions of foliations, a de-
tailed discussion of foliations was omitted so as not to overshadow the introductory

nature of Chapter 2. Indeed, the majority of this dissertation concerns itself with
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understanding the relationships between different types of foliations rather then
concentrating on the existence of such foliations. Of particular interest is the case
where the leaves of the foliation corresponds to the fibres of a fibre bundle. While
examining conditions which allow a foliated Riemannian manifold to be a fibre
bundle over the manifold of orbits, Reinhart introduced the notion of a bundle-like
metric. In the case of threading, it turns out that in order for the spacetime metric
to be bundle-like, the threading metric must be independent of the time coordinate
t. Thus, the notion of bundle-like is slightly less restrictive then requiring the coor-
dinate vector field % to be Killing. Since we have already identified the threading
metric with the parametric metric, we see how allowing for a parametric metric

generalizes Reinhart’s bundle-like condition.

In this chapter, I also discuss how a metric on the total space of a fibre bundle
induces metrics on the typical fibre and the base space. Interpreting spacetime as a
fibre bundle and choosing the fibre and base space correctly, one may easily repro-
duce the slicing and threading decompositions of spacetime. By letting the fibres
represent the leaves of the slicing or threading foliation, one is naturally handed the
slicing and threading decompositions respectively. Thus, the fibre bundle picture
provides a single mathematical framework in which to discuss both decompositions
simultaneously. Since the parametric manifold viewpoint naturally comes from the
threading viewpoint, the fibre bundle which reproduces the threading decomposi-
tion may also be used to describe the parametric viewpoint. In such a setting,
parametric functions are realized as functions on the total space, so that the action
of parametric vector fields on parametric functions is achieved by considering their
horizontal lifts. In this way, the parametric derivative operator 9, is naturally re-
covered. This action may also be recovered by interpreting it as an action of a jet
field on a function. Under such an interpretation, the parametric exterior derivative

operator d, is seen to correspond to the notion of a total derivative in a jet bundle.

Chapter 5 concludes with some preliminary results concerning the quantiza-

tion of the Klein-Gordon equation for arbitrary background spacetimes. By ex-
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amining the decomposition of the spacetime Laplacian, one begins to see the use-
fulness of a parametric theory of spacetime. I will also show how the generalized
Gauss-Codazzi formalism may be used to study the initial-value problem of general

relativity itself.

With such strong positive results, I hypothesize the applicability of parametric

manifolds to other initial-value problems.
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2. Slicing, Threading, and Parametric Manifolds

2.1 Introduction

The phrase parametric manifold refers to a smooth manifold, ¥, possessing
additional structure which remains invariant under a notion of reparameterization.
This additional structure leads one to consider one-parameter families of tensor
fields on X together with a parametric theory of tensor analysis. Although there
are occaslonal references to some of these ideas in the literature, the most recent
work on this subject is to be found in the current work of Zoltan Perjés, [26]. In [26],
Perjés is concerned with the dynamics of spacetime as viewed in general relativity.
Thus, this chapter concerns itself mainly with four-dimensional Lorentzian mani-
folds. However, there is certainly no need to restrict the definition of parametric

manifolds to such situations.

Perjés’ approach to parametric manifolds is closely related to a formalism
which involves decomposing spacetimes which admit a preferred congruence of
(bnon—lightlike) curves. Such an approach leads to a mathematical framework which
concerns 1itself with a splitting of spacetime into two portions; one discusses the
geometry of spacetime in a direction tangent to the (one-dimensional) congruence,
while the other describes the (three-dimensional) geometry orthogonal to the curves.
Although this (1+3)-decomposition of spacetime, called the threading viewpoint in
[13], has its roots in classical texts ([16] and [20]), it is not as widely used as the

so-called (3+1)-decomposition.

The (3+1)-decomposition, or ADM formalism, also refers to a mathemati-
cal framework for describing the four-geometry of spacetime in terms of a three-
geometry and a one-geometry. However, the fundamental idea behind the (3+1)-
decomposition is the existence of a foliation of the spacetime by spacelike hypersur-

faces. Hence the (3+1)-decomposition refers to the splitting of spacetime in terms
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of the geometry of the hypersurfaces and the geometry of the spacetime orthogonal

to the surfaces. In [13] such an approach is referred to as the slicing viewpoint.

As one might imagine, the slicing and threading viewpoints involve many of
the same mathematical considerations. In [13], Robert Jantzen and Paolo Carini
provide an elegant description and a much needed comparison of these two sim-
ilar viewpoints. In Chapter 4, I show how to obtain both slicing and threading

decompositions as special cases of a more general construction involving foliations.

The primary goal of this chapter is to introduce the notion of a paramet-
ric structure. While the slicing viewpoint is more widely used, it is the threading
viewpoint which provides a natural parametric structure. Thus, in this chapter I
will briefly introduce the two approaches to spacetime splittings, exhibit the cen-
tral notions surrounding a parametric theory of spacetime, and describe how such
a parametric theory inherits many of its ideas from the threading viewpoint. This
unified summary of previous work by others will set the stage for a more detailed
discussion in Chapter 3. The chapter concludes with an example involving rotating
coordinates in three-dimensional Minkowski space. The example discusses the dif-
ference between the slicing and threading viewpoints and offers the reader a brief
glimpse into some of the geometrical difficulties involved in developing a precise

parametric theory of spacetime.
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2.2 Slicing

2.2.1 Introduction

A (3 + 1)-decomposition of a four-dimensional spacetime has proved to be a
successful framework for formulating the dynamics of geometry (c.f., [19]). There
exist two standard approaches to such a splitting, both of which yield the stan-
dard definitions of lapse and shift; one being a construction process and the other
a decomposition process. For the construction, one begins with three-dimensional
surfaces and attempts to “fill in” between these surfaces to construct a spacetime
which admits the original three-dimensional surfaces as a foliation of spacelike hy-
persurfaces. The spacetime metric is thus constructed out of the three-metric of the
hypersurfaces as well as additional bits of information. Alternatively, one could start
with a spacetime which admits a one-parameter family of spacelike hypersurfaces
and then decompose all of the original four dimensional geometrical information
(e.g., tensor fields) into two pieces; one tangent to the surfaces and one normal to the
surfaces. As we shall see, both approaches yield an equivalent (3+1)-interpretation

of spacetime.

2.2.2 Notation

Throughout the next two sections we will be working with complete space-
times foliated by spacelike hypersurfaces. Furthermore, let us assume that the
hypersurfaces are all diffeomorphic to each other. Thus, one may simplify the nota-
tion by working in extremely nice coordinate neighborhoods. Begin by introducing
a global time function ¢ which can be regarded as the parameter which labels the
hypersurfaces. Furthermore, we will work in a neighborhood small enough so that
the intersection of each hypersurface with the neighborhood admits coordinates
{z'} = {z!, 22, 2®} on the hypersurface 3. Thus, p € ¥, can be given the coordi-

nates (mi, t). To simplify the notation, I will use Greek letters as indices which take
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on all four spacetime dimensions with z° = ¢. Thus, {z®} = {¢,2'} and we can
write the spacetime metric ¢ in terms of its components given by ds? = 95 dz® dz?.

Throughout this dissertation, repeated indices are to be summed over.

2.2.3 The Construction

Suppose one had a spacetime foliated by a one-parameter family of spacelike
hypersurfaces, ¥,. One would like to realize the four-geometry of this spacetime as
arising from the three-geometries of these surfaces. Thus, one can “construct” the
spacefime metric out of the spatial metrics of the surfaces. Of course, additional
information must also be provided. Following the description in [19], let us assume
that the three-geometry of two infinitesimally close surfaces is known. Label these
surfaces by ¥, and Z, 4+a¢ Each of these surfaces has an associated spatial metric,
k, and k, TAE At the risk of de-emphasizing the dependence on the coordinate ¢, I
will use the same notation to refer to both spatial metrics and write kij dz'dz? for

the three-metrics on both surfaces.

We now describe the four-geometry that fills in between these slices. Given a

point p, = (¢',t) € £, and a nearby point g, = (' + Azt t+ At) € E i ap We are
interested in calculating the coordinate distance between p; and ¢,, d(p,,q,)- By
taking advantage of the existence of a metric in the slice ¥,, it seems most natural

to use the Pythagorean Theorem of Lorentzian geometry and write

d(py>4y)° = d(py:p,)* — d(py, ¢p)* (2.1)

where p, € X, is chosen so that d(p,, ¢,) is the orthogonal distance between the two

hypersurfaces. See figure 1.
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Figure 1: Calculating Distances

It is now apparent that in order to fully construct a spacetime metric much
information must still be specified. As we have no a prior: knowledge of what it
means to move orthogonally to the surfaces, the location of p, 1s not fully deter-
mined. As At approaches zero, the point g, should approach p,. However, there
i1s no reason to assume that the coordinates of p, are (mi + Ami,t). Rather, the
point p; could be “shifted” in any of the three spatial directions. Thus, we assign
the coordinates p, = (z' + Az' + N'At,t). The three functions N* depend on the
coordinates of 3, as well as the parameter ¢. As the functions N* describe how the
nearby surfaces are shifted with respect to one another, they are commonly referred
to as the components of the shift vector. The given metric kij may now be used to

measure d(p,,p, ).

The quantity d(p, , ¢, ) is still not determined. In order to fix this distance, one
must know the relationship between the proper time (“distance”) from %  to X, LA
and the arbitrary parameter ¢{. Again, this distance may depend on the coordinates

in X, as well as t. Define the lapse function N by

d(plaQO) = N(:I}i,t) At.

One may now describe the four-geometry in terms of the lapse function and
shift vector. Adding these newly defined quantities to the earlier figure yields the

following picture:
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Figure 2: Slicing Lapse Function and Shift Vector

Using equation (2.1) and letting At — 0 we see that the four-geometry of the
spacetime can be represented by the line element
ds® =k, (da’ + N'dt)(da’ + N’dt) — N*dt )
= (N,N* = N?)dt? + 2N, dt de* + k,;da’ do’
where I have used the three-metric k;; to define N, = kl.jN J. As mentioned ear-

lier, the functions N* are thought of as the component functions of a vector field

“tangent” to each hypersurface. The shift vector field is defined by

0
Ozt

. . . 9
Thus each hypersurface has a fully spatial metric, kij, a tangent vector field, N* 57~

?

; and a function N. As we have seen, these three spatial quantities may be used to

construct the four-dimensional spacetime metric g.

In matrix notation, one can write the components of the spacetime metric

tensor in terms of N, N* and kij as follows:

0= (T )

7 i
with inverse

(4°%) = -N—2 NN
)=\ NNt pi - NN
where k% is the inverse of kij defined by

k kY =67,
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Our parameter ¢ now takes the role of a spacetime coordinate whose coordinate
vector field % may be interpreted as representing the “fow of time” in the newly
constructed spacetime. Since the coordinates ' are constant along integral curves
of %, one may think of the lapse and shift as the means of identifying points on

different hypersurfaces. See figure 3.

(t+ A )

Zt+At
Iy Nn

= y
(t, xi) Nt %’xf t

Figure 3: Decomposition of %

The shift vector field N i%; was defined to account for the fact that there
was no ¢ priori knowledge of directions orthogonal to the surfaces ¥,. However, in
terms of the shift vector and lapse function we may now easily describe a future
pointing unit spacetime vector field normal to each surface. Call this normal vector
field n. Using (, ) to represent the four-metric we just constructed, we observe that
(Ndt, Ndt) = —1. Therefore, n is given by the metric-dual of the one-form N dt.

Explicitly,

n=—-——-—N_—_. (2.3)

Written in this manner, it is now apparant how the functions N* describe the
“shifting” of neighboring surfaces. The case of vanishing shift corresponds to the
scenario where coordinate time is flowing orthogonally to the hypersurfaces (i.e.,

the directions of n and (% agree).
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2.2.4 The Decomposition

As stated earlier, the above construction is simply an orthogonal splitting
of spacetime geared towards an initial value formulation of spacetime. To see the
obvious, begin as above with a spacetime which admits a foliation of spacelike
hypersurfaces. If we let n® be the components of the future pointing unit vector field
n normal to the hypersurfaces X,, the naturally induced metric on each hypersurface

may be obtained from the projection tensor
ko= 9ug T Malty (2.4)

where n, = gaﬂn[’7 (c.f., [30]) Now, for vector fields X = X“ﬁ; and Y = Yﬂé%

tangent to ¥,
kg XY =g XY?
=g, XY
Therefore, the functions kij = g,; may be thought of as the components of a three-
dimensional metric on each hypersurface. One must not lose sight of the fact that
the functions kij depend on the spacetime coordinate ¢ (as do the g, ﬂ)' We will

refer to the functions kij as the components of the slicing metric.

‘The slicing metric on ¥, is the naturally induced metric in the following sense:
for each imbedding ¢, : X, — M, k = ¢,*(g), where ¢,* refers to the natural map
on the co-tangent spaces T*M and T*X,. Thus, k is both the projection of ¢ to &
via (2.4) and the pullback of g to X. Using :,, to denote the natural map between
the tangent spaces, we may work out the relationship explicitly. For tangent vector
fields X and Y on X, we can write X = Xig%, Y = Yia%;, and

kXY = 10(9),, XY
= o (10,(X0))% (1, (1)
=g, XY,
One may decompose the coordinate vector field % into vector fields normal and

tangent to each surface ¥,. Thus one has

2=Nn+Ni 0

ot ozt (25)
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Equation (2.5) defines the slicing lapse function N and the slicing shift vector
field N i(—,j%; and can be seen to agree with the earlier definitions by comparing
equation (2.5) with (2.3). In this scenario, the shift vector measures the tilting of

% away from the direction normal to the hypersurfaces.

Since N i% is tangent to each hypersurface, we will use the slicing metric to

define Nz. = kiij'
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2.3 Threading

2.3.1 Introduction

In a (3+ 1)—decompo$ition (or slicing) of spacetime, one has a foliation of
spacetime by spacelike hypersurfaces laioeled by a global time function ¢. This time
function together with the earlier definitions of the lapse function and shift vector
gives one a way of identifying points on different hypersurfaces. In effect, one has, in
addition to a foliation of spacetime by hypersurfaces, a congruence of curves given
by the integral curves of the coordinate vector field ;%. While the spacelike nature
of the hypersurfaces are an integral part of the standard (3 + 1)-decomposition,
there are no similar causality conditions on the congruence of curves. Although
we usually think of the parameter ¢ as a local time coordinate, no formal causality
restriction is necessary. When one adopts the dual ansatz of a foliation of spacetime
by timelike curves together with a foliation of hypersurfaces (with no causality
conditions imposed upon them), one is led to consider a (1 + 3)-decomposition (or

threading) of spacetime (see [13]).

In such a setting, the timelike congruence may be interpreted as the world-
lines of a family of observers, while the hypersurfaces play the fundamental role of

synchronizing the clocks of the different observers.

As with the last section, I will introduce the threading point of view from two
different perspectives. First, I will address the issue of constructing a spacetime from
a given family of curves. Second, I will illustrate the threading point of view by
considering a certain decomposition of spacetime. One should notice the similarities

between the slicing and threading points of view.
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2.3.2 The Construction

In the previous section we saw how one would construct a spacetime metric
from a one-parameter family of three-dimensional Riemannian manifolds. The re-
sulting four-metric was easily described in terms of the given metrics on the surfaces,
the slicing lapse function, and the slicing shift vector field. Suppose one is given
a family of timelike one-manifolds (curves) in place of the three-manifolds. How
would one go about constructing a spacetime which realized the original family of
curves as a congruence of timelike curves? We will proceed as we did in the case of

slicing,.

In the earlier (341)-construction we had a parameter which labeled each hy-
persurface. Let us assume we have parameters z*,7 = 1,2, 3 which label each curve
L ;. On each curve suppose we have a coordinate ¢ as well as a metric /, which can

thus be expressed as

= —M?d+2.

We will interpret these curves as being world-lines of observers, and hence requite
that they be timelike. Consider the same measuring problem as before, that is,

letting p, = (z,t) € L,;andgy=(a'+Azt,t+At) €L we are interested

i+ Azt
in measuring the coordinate distance between p, and g,. Since we are assuming we

can measure distances in each curve L _;, again use the Pythagorean Theorem to

write

d(pOa q0)2 = _d(poa Q1 )2 + d(ql ) q0)2'

Here d(q,,q,) is meant to refer to the orthogonal distance between two nearby

curves. See figure 4
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Figure 4: Calculating Distances

Since we do not have any notion of traveling “orthogonally” to the curves L,
the t-coordinate of ¢, is not determined. The position of ¢, along L _; is affected
by each of the Az®. Assign coordinates to g, by ¢, = (z*,t + At — M;Az?). Again,
the M; record the amount of “shifting” of ¢, with respect to nearby curves. That

is, the M, may be thought of recording how L has been shifted with respect

ri+Agt

to L ; in the construction process. Therefore, we have
d(py,q,) = M(At — M,Az?).

The three functions M, and the function M depend on the parameters z* as well

‘as the coordinate t.

We now need to specify the relationship between the parameters z* and the
proper coordinate distance between neighboring curves. We thus introduce a “spa-
tial metric” of the form hijAaciAacj which gives the distance between L ; and
L, ; for various choices of Az'. While we assume that k.. = k.., the func-

' +Acz ¥ Jv’
tions hij may otherwise be chosen arbitrarily. We continue our construction of
the four-metric by assuming that this distance is precisely d(q,,4q,) (i.e., measured

orthogonally). We have:
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Figure 5: Threading Lapse Function and Shift One-Form

Thus, the Pythagorean Theorem implies that the spacetime metric may be

written as
ds* = —M?*(dt — M, dz*)* + h,; dz* da” ’e
= —M? dt2+2M2Mi dacidt—}—(hij —M2MiMj)dacidacj. (26)
The component M of the original metric along each curve is referred to as the thread-
ing lapse function. As we see in the above representation of the metric (equation
(2.6)), the functions M, are most naturally associated with the one-form M. dz*.
The three functions M, are referred to as the components of the threading shift

one-form M, dz'. Finally, the functions hij may be thought of as the components

of a metric, the threading metric.

In the case of slicing, one thought of the slicing shift vector as a three di-
mensional spatial vector field on the surfaces 3] . and, hence, raised and lowered its
indices with the slicing metric. In the present case of threading, one may again
adopt the convention that the threading shift one-form be treated as a three dimen-
sional tensor. Under such arconvention, the threading metric hij may be used to

raise and lower its indices.

The threading shift one-form was defined in order to introduce some notion
of traveling “orthogonally” to the curves L ;. The unit one-form which annihilates

the space of vectors orthogonal to the threading vector field may be written

m = —M(dt — M,dz?).



25

One should compare this equation with the analogous equation for slicing (equation

(2.3)).

2.3.3 The Decomposition

The threading lapse function and shift one-form field may also be described
as arising from a simple orthogonal decomposition of spacetime. Analogous to the
(34+1)-decomposition, the so-called (143)-decomposition attempts to decompose
spacetime quantities into pieces orthogonal to the given congruence of curves, and
pieces tangent to the congruence. As above, I will work in coordinates (¢, z!) where
t acts as a parameter along the integral curves of 3% (the threading curves) and z*
are coordinates on each hypersurface 5y, = {t =t,}. Asin [13], I will refer to &

as the threading vector field.

The normalization of the threading vector field is used to define the threading

o o )
<%§>"M’

where ( , ) refers to the spacetime metric g. If one views the threading curves as the

lapse function M:

world-lines of a family of observers, the threading lapse function measures the rate

of change of the observed proper time with respect to the coordinate time function

t.
In the slicing point of view one had to describe the discrepancy between %
and the direction normal to the hypersurfaces. Analogously, in the present scenario

one wishes to measure the amount of tilting of the local rest spaces of the observers

with respect to each coordinate direction % keeping in mind that the local rest

]
spaces of the observers need not constitute a hypersurface! Following the favor
of equation (2.5), we decompose the coordinate one-form dt into a piece which

annihilates the local rest spaces and a piece which is in the co-tangent space of each
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surface. Letting m represent the metric dual of the unit vector field tangent to the

threading curves, we have m(a%) = —M, so that we obtain
1 .
dt = —3m + M.dz’. (2.7)

The functions M, are the components of the threading shift 1-form.

Using the above definitions of M and M;, the (1 + 3)-decomposition of the

components of the four-metric takes the following form:
—M? M?*M i

(gaﬂ) - (28)
M2Mi hij — M2Mz'Mj

with inverse

—(M™% = M, M™) M?

(9*F) = . y
M? Bt

where I have defined M* = A% Mj.

The 3 x 3 matrix hij is defined by equation (2.8) and has inverse k. The

functions hij are the components of the threading metric.

Although one may take equation (2.8) as the definition of hl.j, historically it
has a more familiar definition. For instance, in [16] and [20] one is given a physical
interpretation of the threading metric. In general relativity, to calculate the spatial
distance between an observer and an infinitesmly close event, one may direct a
light signal from the observer to the event and back and calculate the “time” of

propagation. One finds the spatial distance dI to be given by
i’ =, ;dedz’

where

_ 900908

Yo = Yap o .

Note that v,, = 7,, = 7,0 = 0 and that Yij = by (1,7 = 1,2,3) as defined earlier

(in our adapted coordinate system). 2

2 In [8], Einstein and Bergmann used a similar argument during their attempts

to generalize Kaluza’s theory of electricity. Einstein and Bergmann, however, were
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One can see that the threading metric simply measures what Cattaneo [5]
refers to as the space norm of any 4-vector. That is, hij measures the norm of the
component perpendicular to the threading curves. Specifically, for any 4-vector V@

write V¢ = V”a + V| where V”cy is parallel to the threading curves and V| * is

perpendicular. Letting m® be the unit vector tangent to ;% one has
Mo =4, ﬂm[’7
1

- /_goo 9oa

Thus,
gaﬂvl“vlﬂ = (9,5 + mamﬂ)VaVﬂ
9009
= (g5 — ——L)yoys
900

— 2 P )
= (g;; + M>MM,)V'V
= hijViVj.

At this point one notices a crucial difference between the slicing and thread-
ing pictures of spacetime. When slicing spacetime with spacelike hypersurfaces one
defines the slicing metric which naturally lives on these hypersurfaces. While the
threading metric arises in an analogous way, there exists no corresponding space (hy-
persurface) on which it naturally exists (since the local rest spaces of the observers
may not be surface forming). One therefore constructs an abstract three-manifold
with the threading metric as its Riemannian metric. By identifying each threading
curve with the point (¢, 2") at which it pierces the slice {t = t,} one constructs the
manifold of orbits, ¥, with respect to the threading. Eventhough one may have that
% is diffeomorphic to the surfaces ,, ¥ is not given the same geometry (metric)
as any of the X,. One gives ¥ the threading metric in an attempt to recapture
some of the spacetime geometry associated with the local rest spaces. Thus, one
may think of ¥ as a smooth model for the collection of local rest spaces. ¥ comes

equipped with the coordinates z' and the threading metric as a function of not only

working in a five-dimensional space, so that in their formalism the four-dimensional

spacetime metric took the role of the threading metric in the above discussion.
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the points of X, but also an additional parameter (the parameter along the original
threading curves). Thus ¥ has a one-parameter family of Riemannian metrics! This

is the beginning of the parametric manifold picture of spacetime.
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2.4 Parametric Manifolds

2.4.1 A Brief Introduction to Parametric Manifolds

Zoltan Perjés has written a series of papers using a parametric theory of
spacetime. In [26], Perjés introduces the phrase “parametric manifold” to describe
a certain type of reparameterization-invariant geometric structure. Perjés then de-
scribes a decomposition of spacetime based upon a preferred vector field whose
integral curves provide a foliation of the spacetime. While the slicing approach
has become the standard framework for studying the dynamics of spacetime, not
all spacetimes admit such spacelike foliations. The fact that a threading decom-
position of spacetime does not depend on the existence of a foliation by spacelike
hypersurfaces, gives the theory of parametric manifolds an advantage over the stan-
dard ADM, or slicing, formalism. While spacetimes such as Godel’s universe (as
described in [10]) are not causally stable, Perjés argues that at the quantum level
such acausal contributions must be taken into account. Thus, the theory of paramet-
ric manifolds offers one the ability to improve upon the ADM formalism. Moreover,
Perjés uses parametric spinor techniques to show that the ADM formalism emerges

as a limiting case of the parametric theory.

This section will provide a brief introduction to parametric manifolds by sum-
marizing some of the work done by Perjés in [26]. I will present some of the defini-
tions central to Perjés’ parametric manifold picture of spacetime. Although I will
offer some of my own comments, most of the language and notation which follows
is due to Perjés. In the following section I will describe the similarities between
spacetime threadings and Perjés’ parametric viewpoint of spacetime. The examina-
tion of the relationships between the threading and parametric viewpoints will help

provide motivation for many of the definitions in [26].

According to [26], a parametric manifold is represented by a differentiable

manifold ¥ together with a smooth one-parameter family of one-form fields on X.
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| Call this family of one-forms w(t). The family w(t) is furthermore required to behave
properly under a reparameterization. That is, given a smooth function F : ¥ — R

and the reparameterization
t' =t+ F(z) for r € X, (2.9)

we require

W'(t') = w(t) — dF. (2.10)
The pair (2, w(t)) constitutes a parametric manifold.

Continuing with the definitions in [26], define a parametric (p,q)-tensor field
to be a one-parameter family of (p, ¢)-tensor fields on ¥ which are invariant under a
reparameterization (equation (2.9)). Denote the set of parametric (p, ¢)-tensors by

T2. Note that the original family w(¢) does not constitute a parametric one-form

field.

Tensor analysis on parametric manifolds begins with the introduction of the
parametric differential, d, ¢, of a parametric function. For a parametric (0, 0)-tensor
(i.e., a one parameter family of functions) ¢(¢), define

dy¢ =do —wd,¢
= d¢ —ws

where we have introduce a dot to denote differentiation with respect to the param-

(2.11)

eter t. Expanding d,¢ in a coordinate basis gives rise to the parametric derivative

operator 0,,. Write

deop = ¢,, dz'
thus defining,
v 0 .
g, -wd (212)
= 8*z¢

I have used the last two lines of (2.12) to introduce some notation that will be used

throughout this dissertation.




\

Claim 2.1 d,¢ is a parametric (0, 1)-tensor.

and

Proof: 1t is clear that d,¢ : 7! — 7. In fact, for a parametric
vector field X € T
d,¢ (X) = (d¢ — wé)(X)
= dg(X) — pw(X)
which represents a one-parameter family of functions on M. In terms

of a coordinate basis, we can write

d.¢(X) = ¢, dz'(X)
= (¢,i - Wié)Xi'

To conclude that d,¢ is a parametric tensor, we need to show that it is
invariant under reparameterizations. Under a change of the form (2.9),
we have: w' = w — dF and 0,, = 0,. The exterior differential operator d
on ¥ does not change, but since ¢ is a parametric function, d¢ is affected
by a reparameterization. That is, the object d¢ is understood to mean
d¢, where ¢, : ¥ — R is ¢ restricted to a single value of ¢. Therefore,

b, = qSIt . Let ¢' represent ¢ after a reparameterization. That is,
=a

define

¢€) - ¢lt’=b
= ¢lt=b—F(:c)
= ¢(b - F(x)ax)

Therefore,

d¢ = do,
= g—f(t,x)dac

d¢' = dg),
¢ OF 3¢\ .,
= (-E—% + 8_x> (t' — F(z),z)dz
=d¢ — ¢dF

and, hence, d,¢ = d,¢'. &

31
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Covariant differentiation of parametric tensors is accomplished by means of a
parametric connection (derivative operator), V,. As introduced in [26], the action
of V, depends on the given one-form field w and can be characterized by many of

the familiar properties
L V: TP — 7:11-)1-1;
2. 'V, 1s linear and commutes with contraction;
3. V, satisfies the Leibnitz rule;
4. V, is torsion-free;
and one slight variation
5. for (0,0) tensors ¢, V,¢ = d,¢.

Aside from the action of V, on functions, V, is just an ordinary derivative
operator. However, because of the fifth condition, V, has been called a generalized

connection in [26].

As with ordinary derivative operators, if the manifold possesses a metric, h,

there exists a unique operator satisfying properties 1-5 in addition to
V.h = 0.

For the rest of the discussion, we will assume ¥ is a Riemannian manifold with
parametric metric A. That is, kA is a parametric (0,2)-tensor such that for each t,
h(t) is a Riemannian metric on M. Working in a coordinate neighborhood with

coordinates z*, one may expand A in terms of its components
h=h. dz'dz’
i

where one must remember that the component functions hij are functions of the
coordinates ' as well as the parameter ¢. Since A is assumed to be a parametric

tensor, h is invariant under reparameterization.
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Let V, be the unique parametric derivative operator associated with (X, w, k).

33

Expanding V, in terms of the parametric derivative 9, Perjés gives the action of V,

on a parametric vector field:

k _ k k )
VX5 = X" 4+ 975X
where

The action of V, on parametric tensors of rank (p, ¢) is analogous.

h (2.13)

mkxj ]k*m)

Notice the similarities (and differences!) between such a parametric action
and, say, the classical Levi-Civita connection. On a basic level, the partial derivative
operator O, has been replaced by the parametric derivative operator 8 .. In the
special case where the functions X' and hl.j do not depend on {, the two actions
agree. In the case where the threading curves are integral curves of a Killing vector
field, the threading metric components hij will be independent of ¢. Thus, we
have that hij*k = hij, , making the parametric Christoffel symbols agree with the
standard Christoffel symbols.

There are several differences between a generalized connection and an ordinary
connection. As mentioned earlier, the action of V, on functions is perhaps the
most obvious difference. However, this parametric action has several subtle but

interesting repercussions.

First, one must decide the correct action of parametric vector fields on para-
metric functions. Although for any given value of the parameter ¢, a parametric
vector field is simply a tangent vector field of ¥ and a parametric function is just a
function from ¥ to R, the ordinary action does not seem appropriate in the paramet-
ric setting. As the parametric derivative operator J,, is the fundamental derivative
operator (in a given basis), it seems most natural to introduce the action

X(¢)* = Xia*ifﬁ
=X (¢,i - ""z¢>
= Xi@bw‘
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where X 1s a parametric vector field and ¢ is a parametric function. Although it
is not clear that Perjés adopts such a convention in [26], it greatly simplifies the
notation as well as the analysis (as I will show later). Adopting this convention also
allows one the standard approach of viewing vector fields as directional derivatives
on scalar fields (although in this case the “direction” is not parallel to the manifold

¥). That is, we may write

X(¢)* = le*zﬁb

From now on, the action of a parametric vector field on a function is assumed to be

the above “parametric” action and I will dispense with the cumbersome notation

of X(¢),.

Second, one needs to understand what it means for a generalized connection to
be torsion-free. Perhaps the greatest difference between generalized connections and
classical connections lies buried in property 4. While it is not uncommon (at least in
general relativity) to require a derivative operator to be torsion-free, the property of
vanishing torsion is a bit different in the parametric case. As Perjés mentions, even
though V, is required to be torsion-free, it does admit a non-vanishing deficiency3.

This 1s realized by the fact that

(v*iv*k =V V)¢ = (wi*k - wk*i)q;'

of
| | V.. V.6 =V,V..o (2.14)

*1 %k

Thus, one must take note that condition 4 does not take the usual form (c.f. [30])

In Chapter 3 I will give precise definitions of torsion and deficiency for parametric

connections.

While the commutator of V, on functions leads to the notion of deficiency,

in {26] Perjés shows how the commutator of V, on higher order tensors leads to a

3 Perjés credits Lottermoser [18] with a similar term Defekt.
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definition of curvature. The Zel'manov curvature* Z ijk, is defined by
9 r
VaeVej = ViV + (wj*k - ""k*j) ot X; =2 Xy (2.15)

and possess many of the familiar symmetries of the Riemann tensor.

. We have:
Zijkl = Zl][kl] and Zl[]kl] = 0

One can show that the components of Z "jk may be expressed in terms of the

symbols ’yijk and 0, by
27k = Vikwj — Viguk TV 057 ki Yk i (2.16)

A more in-depth discussion of curvature, torsion, and deficiency appears in

the next chapter.

2.4.2 Parametric Manifolds and Spacetime Threadings

The above section offered a brief introduction to the definitions and tools
that Perjés associates with the theory of parametric manifolds. As some of the
notation may have suggested, the above introduction may be further enhanced
given our previous discussion of the slicing and threading pictures of spacetime.
The language and viewpoint associated with the threading decomposition lends the
necessary insight to fully appreciate the above definitions. We may use a threading

decomposition of spacetime to provide excellent motivation for the definitions Perjés

introduced in [26].

As Perjés mentions in [26], the parametric manifold structure of spacetime

1s induced by a non-null vector field. Hence, in the case of a spacetime which

4 Perjés traces this definition back to the Russian mathematician Zel’'manov

[31].
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admits a threading decomposition, the threading vector field may be used to infuse
the spacetime with a parametric structure. Thus, the ideas associated with the
threading viewpoint should be closely related to the central ideas of parametric

manifolds.

Consider a spacetime consisting of the manifold M together with the space-
time metric denoted by g_ 5 Further assume that the spacetime admits a threading
decomposition. As in (2.8), one can write the spacetime metric in terms of the

threading versions of the lapse, shift, and metric. As before, the spacetime coordi-

9
ot

nates are given by 2% = (¢,2') where -Z is the threading vector field and the z* are
coordinates on each hypersurface Eto = {t = t,}. By choosing one of the slices, one
is able to use the z' as coordinates on the manifold of orbits by identifying each
threading curve with the point (¢,,2") at which it pierces the slice Eto. Let ¥ be
the manifold of orbits with coordinates z*. For each value of ¢, we also have a Rie-
mannian metric on ¥; the threading metric hij' Y will be the parametric manifold.
As each point of ¥ represents an equivalence class of points of the spacetime M,

one may wish to think of general parametric manifolds as collections of equivalence

classes.

An attempt to develop a geometric theory on ¥ will lead to many of the
definitions we saw above. For instance, any tensors defined on ¥ (parametric or
otherwise) must transform correctly under a legitimate change of coordinates (keep-
ing the parameter unchanged). Furthermore, our theory should not depend on the
parameterization. That is, the original coordinates on ¥ were defined with the
choice of a specific value of . Such a choice should not alter the theory. Consider

the following definitions 5:

5 These definitions are borrowed from [8]. The similarities between a parametric

theory and Kaluza-Klein theory will be made explicit in Chapter 4.
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Definition 2.2. A regular coordinate transformation is a coordinate transforma-

tion of the form ) .
¥y =y'(z’)
(2.17)
t'=1t.

Definition 2.3. A reparameterization is a coordinate transformation of the form

yi= o
| (2.18)
t' =t+ F(z").

For any spacetime one-form W = W, dz?, if we consider the components of

W after a coordinate transformation of the form (2.18), we have
Wy =W,
OF
‘ 09zt T

The threading decomposition naturally led to the threading shift one-form Midaci.
Consider the spacetime one-form field @ = d¢t — M;dz. Thus the threading shift
one-form is just the pullback (up to a sign) of @ to a slice Eto. Under a reparame-
terization we have

, oF

i:w'

H 8%’ :

The spacetime one-form field & may be associated with a one parameter family of

one-forms on ¥ by identifying @ with
w(t) = —M,(t)da’.

Furthermore, a reparameterization of @ would result in @' being identified with

8F N
w(t)_(Ml. 5acl.)dac.

Thus, a reparameterization of the spacetime one-form @, equation (2.18), gives us
a way of describing the result of w(t) after a reparameterization of the parametric
manifold (equation (2.9)). Therefore w(t) satisfies equation (2.10) and can be used

to give ¥ a parametric structure.

In classical differential geometry, one can define a tensor field (locally) by

defining it in a given coordinate basis, and then require that the components of
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the tensor transform correctly under an accepted change of coordinates. A similar
approach will be used to get a working definition of parametric tensors. However,
not only must we concern ourselves with coordinate transformations, but also with

the notion of reparameterization.

Any coordinate transformation on ¥ can be identified with a regular coordi-
nate transformation of spacetime (equation (2.17)). Under such a transformation
spacetime tensors transform according the their variance as usual. Since reparame-
terization of ¥ corresponds to the freedom of choosing a slice I, in order to give &
coordinates, only those spacetime tensor fields which remain “tangent” to the local
rest spaces at different values of ¢ will be identified with parametric tensors. More

precisely,

Definition 2.4 A spacetime vector field V will be called a parametric vector field

provided that it is orthogonal to ’c%'

Definition 2.5 A spacetime one-form field W will be called a parametric one-form

field provided that W(%) =0.

Tensor products of parametric vector fields and parametric one-form fields
will result in spacetime tensor fields which may be identified with parametric tensor
fields (thué guaranteeing reparameterization invariance). That is, we will call a
spacetime tensor field T a parametric tensor provided T contracted with % (on any

index) is zero.



Definition 2.6 A spacetime tensor field T will be called a parametric tensor field

provided

T(g—t,X,Y,...,Z,a,...,T)EO
0

T(X,K...,E,k...,z,d,...,T)EO

T(X,Y,...,g,a,...,r

=0

ot )
TX)Y,...,Z,w,0,...,7)=0

T(X,)Y,...,Z,0,...,0,...,7) =0
TX)Y,...,Z,o,7,...,0)=0
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where @ is the metric dual of % and these above expressions are identically zero

for all vector fields X,Y,Z and one-form fields o, 7.

Proposition 2.7. The threading metric is a parametric tensor.

Proof: If the threading is induced by a foliation of timelike curves,
then equation (2.8) relates the threading metric and the spacetime met-
ric. The threading metric can be naturally associated with the spacetime
tensor

h :gaﬂ+M2AaAﬂ

af

where A = —1 and A, = M,, the components of the threading shift
form as above. Note that hyy = k), = 0, and that restricting the Greek
indices to Latin indices yields the threading metric as introduced before.
In our coordinate system, h will be a parametric tensor if and only if its
“spatial” components remained unchanged after a reparameterization.
Under a reparameterization (2.18) one uses the fact that h,, = 0, thus

yielding
Oz™ Oz
= hmn07 6"

= hy;-
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Therefore the components of the threading metric remain unchanged
after a reparameterization. Thus, the threading metric is a parametric

tensor. &

For comparison,
Proposition 2.8. The slicing metric is not a parametric tensor.

Proof: First of all, since the slicing metric is just the spacetime
metric with restricted index values, I really mean to say that the space-
time metric is not a parametric tensor. The problem lies in how the
“spatial” part of the spacetime metric changes under a reparameteri-
zation. Consider a transformation of the form (2.18). The resulting

change can be computed:

- 0z® 9z
%5 = Yos 7 o7
OF OF OF oF

T 900557 5g  90iGat o ggr 1Y

]
Thus, in general ¢! .. after a reparameterization. In this sense, the
g 9i; # 9;; p

slicing metric is not a parametric tensor. #.

| Theorem 2.9. To any spacetime rank-one tensor, there corresponds a parametric

rank-one tensor (and a scalar) via projection.

| Proof: Using the above information we simply project any space-
time vector (or covector) onto a slice ,. To accomplish this we will use

the threading metric to define a projection operator P, = h f. That is
PP =6F 4 M*A, AP

where A% = #(%)“, guaranteeing that P,f projects out the 2 com-

ponent on spacetime vector fields.
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Example 2.10.

A. For any spacetime vector field V¢

1 /8\° /0
Byo _ 8 N B -~ a
PAVE =V 4 <6t) <at)a‘”

1 [0\ l.
=Vﬂ+‘7\—/f2"<a> (_M2V0+M2Miv)a

which implies that

PV*=MJV' and P,/Ve=V"

«

B. For one-form fields one finds

PPW,=0 P W =W, + MW,

Applying PP to each slot of the spacetime metric tensor yields the tensor A v
which we have already shown possesses the characteristics of a parametric tensor:
2 2
PPfg.s=(8,"+ M A“A,)(6,° + M*APA,)g,, 5

= gu +2M* A A, + MPA“ALA A,
=gu + M 24 wAy
= hy,.

As we mentioned earlier, the natural derivative operator on parametric man-

ifolds is the parametric derivative (2.12). In this case this derivative operator takes

the familiar form of a projected ordinary partial derivative. We have:

Paﬂ (8z')a = (61')[3 + M2AﬂMz‘
a\?
=(9)" + M, <5;> (2.19)

= (8,)° —w, <%>ﬂ.

Since 5% + Mi% spans the local rest space of the observers, we are taking

derivatives in directions orthogonal to %. One should also note that 9,; is more then
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just an ad-hoc projected derivative operator. This parametric derivative operator

justifies its name by its invariance under reparameterization.

Theorem 2.11 The action of 0,; on parametric functions is invariant under a

reparameterization.

Proof: This is a restatement of the earlier observation that d,¢
was a parametric (0,1)-tensor. Consider a parametric function f and
a reparameterization of the form (2.18). First of all we have that the

components of the tensor A% transform according to

OF
,—-' J—
Al ._AO( W) + A,

OF
= A+ Ox?

which gives us

of _ 0f OFof
oyt Gac’ o

0
— (4; _Ai)a_{

aac’

i 8 _ 8
Thus, since 5; = 7%,

of . yof _9f  ,0f
oy T Aige T 5 TG
aof of

= o0 T4

o

The above theorem illustrates the underlying principal which allows one to
pass from a classical differential geometric setting to a parametric structure. Replac-
Ing 5+ by 0,; leads to a theory which, while remaining true to regular coordinate

transformatlons, also remains invariant under reparameterization.

Thus, as one attempts to define a natural covariant derivative operator, one

finds that the first naive choice of

+h o —h_ Y™

nm,i ni,m mi,n

vVIi=Vi+ %hj"(h
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1s not invariant under a reparameterization. However, replacing the ordinary partial
derivative operator by the parametric derivative operator results in

vVIi=Vi 4 %hj"(h 4k —h VT

nm*t nikm mikn (220)
= Vj*i + 7Jmivm

which is invariant under reparameterization.

As was mentioned earlier, under any reparameterization, 9,, = d,. Therefore

differentiation with respect to the parameter is a covariant operation and may be

denoted VO.

2.4.3 Concluding Remarks‘

This section was meant to provide some motivation for the parametric def-
initions introduced earlier. When the threading decomposition of spacetime was
first introduced, I emphasized the fact that such a decomposition was simply an
orthogonal splitting of spacetime with respect to the threading curves. As we never
assumed the existence of hypersurfaces orthogonal to the threading curves, all de-

compositions were only pointwise.

However, by working on the manifold of orbits, equipping it with the threading
metric, and introducing the parametric derivative operators 0, and V, we succeed
in modeling much of the behavior of the spaces orthogonal to the threading curves.
Moreover, the manifold of orbits provides us with a smooth structure allowing the
existence and analysis of tensor fields. Thus, when analyzing a manifold (space-
time) from the threading point of view, it seems most natural (if not necessary!) to

incorporate the parametric structure into one’s approach.

The stage is now set for a more formal treatment of parametric manifolds. In
the next chapter, I will give two different formal approaches to parametric manifolds
(an extrinsic and an intrinsic approach). Through a more detailed discussion, one
sees how the concept of deficiency emerges as an attempt to generalize many of the

basic concepts of differential geometry on manifolds.
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2.5 Rotating Coordinates

2.5.1 Setting Up

Rotating cylindrical coordinates provide a nice example of all of the different
frameworks discussed. This three-dimensional example is especially illustrative in
the sense that the threading vector field is not orthogonal to a family of hypersur-
faces, so that the slicing and threading viewpoints are not equivalent. Although
in this simple example the parametric metric is independent of the parameter and
the Ze’'manov curvature tensor reduces to the Riemann curvature tensor, a definite

parametric structure is still present.

We begin by considering the stationary (non-static), axisymmetric spacetime
given by flat Minkowski three-space in cylindrical coordinates (r,, z). The space-

time metric is of the form:
ds? = dr? + 12 d? — dz®.
Now, perform the following change of coordinates:
t==z2 p=r =0+ Qz

where {2 is some constant. One has the following relationships:

9_90 o9

ot~ 9z 0 dt =dz

o 8

%=5 dp =dr

9 _9 dp = Qdz + db
oY~ 96

which yield:
ds® = dp® + p*(dyp — Qdt)? — dt*

= dp® + p?dyp? — 2p°Qdy dt + (p*Q? — 1)dt?

The vector field % is timelike if and only if p? < .
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These coordinates may be used to define a family of hypersurfaces &, = {t =
constant} = {z = constant}. Each X, is spanned by the coordinate vector fields

Or = 0, and §, = 6¢.
As mentioned earlier:

Proposition 2.1 The orthogonal subspace to 6% is not surface- forming.

Proof: ~We will show that the orthogonal subspace, W, is not

involutive. We have that {5%, —é%)- + ;%;5&_—1%} span W. But,

o 0. g 9|_( fe ) o
op’ vy p2Q2—10t] \p2Q2 -1 L0t
¢ w.

Therefore, W is not involutive. By the vector-field formulation of Frobe-

nius’ theorem (c¢.f. [30]) W is not surface forming. #

2.5.2 Slicing with Rotating Coordinates

In order to set up the slicing formalism, one needs a (future pointing) unit
vector field normal to the hypersurfaces ¥,. Since dt(9,) = 0 = dt(0 ¢)’ this is
accomplished by calculating the metric dual of the one-form field dt:

0 0
) = —— —Q—.
(dt) ot oY
Since this vector field has norm -1, we conclude that n = —g; — Q%. The lapse

function and the components of the slicing shift vector field may now be obtained

by writing
0 0
—6—5 = -—Nn — QE,‘Z
and comparing with equation (2.5). Thus
NY =-Q

and N =-1.
NP =0
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This information may be interpréted in two different ways depending on one’s
viewpoint of slicing. In the construction scenario, the vector field % represents the
“How of time” and is used to identify points of different hypersurfaces. Thus, given
a collection of the surfaces ¥,, one may imagine constructing a three-dimensional
spacetime by not simply stacking one surface atop the other, but by rotating (N¥ =
—{2) and stacking (N? = 0). In terms of a (2 + 1)-decomposition viewpoint, we are

% and the direction normal to each

simply measuring the discrepancy between
surface. The fact that N = 0 just indicates that % is orthogonal to 8,, while the

lapse function N = —1 since the coordinate z is proper time.

The slicing metric is simply the spacetime metric pulled back to the hyper-
surfaces ¥, (see equation (2.4)). Thus ki =g, fori,j € {p,¥}. Explicitly, one
has

k

pp =1 and k¢¢:p2

as the only non-zero components of the slicing metric.

Finally, one may now calculate the components of the metric dual of the shift

vector field. That is, define N, = kijN I yielding
N, =k, N 1T=0

— Y )2
N¢_k¢¢N = —p“ Q.

Note that
—(N? = Ny N™) = =1+ (p*Q)(-9Q)
2N, = —2pQ
= -1+ p?0? and
=94

as guaranteed by equation (2.2).

2.5.3 Threading with Rotating Coordinates

We will use -g—t as our given threading vector field. The threading lapse func-

tion is defined such that —M? is the square of the norm of the threading vector
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field. Thus,
~-M? = p*Q% - 1.

The threading shift one-form field measures the discrepency between the hy-
persurfaces ¥, and the space orthogonal to %. Since % 1s orthogonal to 53;, M, =0.
Now, M¢ is defined so that —5% + Md)% is orthogonal to %. This implies that

2
Y
M¢_p292_1.

According to equation (2.8), the threading metric is defined by hl.j =9, +
2 . .
M MI.M]. yielding the components
p?
h’/"/):l__——m and hpp—‘:l.
The importantce of the causality conditions may be noticed at this stage. The
threading metric is a Riemannian metric if and only if the threading vector field

(%) is timelike whereas the slicing metric is Riemannian if and only if the slices X,

are spacelike.

With the above definitions for the threading lapse and shift, the original space-

time metric can be written as

ds® = —M? dt* + M* M, dip dt + M* M, dpdt + (h, — M> M, M, )dy?*.

2.5.4 Parametric Manifolds with Rotating Coordinates

Recall that the theory of parametric manifolds is based upon the threading
decomposition of the original spacetime. Therefore, we will define M and M; for
i € {¢, p} as above. Notice now that our parametric coordinate derivative operators

are
8*/) = 8/) + Mpat = 8/)

and
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p*Q

p2Q2? — 18

i

Oy =0y +

Therefore, the parametric viewpoint is different from either the slicing or threading

viewpoints.

Recall that the components of our (parametric) metric are of the form

1 0
(k) = N
PP —1
with inverse
1 0
(th) — 1 pZQZ
0 2
p

Since the metric hij does not ‘depend on the parameter ¢, all parametric deriva-
tives of the metric components reduce to ordinary partial derivative with respect
to the coordinates p and 3. Thus, the parametric Christoffel symbols are just the
ordinary Christoffel symbols and the parametric (Zel’manov) curvature tensor re-
duces to the ordinary Riemann curvature tensor. In terms of our earlier notation

these facts can be stated as

7ijk = Fijk and Zijkl = Rijkl i,j € {p,¥}.
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3. Parametric Manifolds

3.1 Introduction

The ultimate goal of this chapter is to rigorously define a complete set of
tools and operators which make up the essence of a parametric structure. As we
saw in the last chapter, many of Perjés’ definitions can be motivated by the study
of spacetimes which admitted a preferred congruence of non-null curves. Such a
foliation led to a preferred decomposition of the spacetime which, in turn, led to
the notions of parametric tensor fields and parametric derivatives on the manifold of
orbits 3. In the special case where the threading curves are orthogonal to the slicing
surfaces, the slicing and threading viewpoints agree. Specifically, the geometry of X

(given by the threading metric) agrees with the geometry of the immersed surfaces

z

t

There already exist standard techniques for relating the geometry of a man-
ifold to the geometry of immersed submanifolds, namely the Gauss-Codazzi equa-
tions. What makes the threading-induced parametric structure unique is the ab-
sence, in general, of an immersed surface orthogonal to the threading curves. How-
ever, even in such a case many of the ideas developed for studying the geometry
of immersions are still valid. In fact, I will take these ideas as fundamental in

developing a coherent parametric theory.

The Gauss-Codazzi equations are mainly concerned with the relationships
between the curvature tensor of an n-dimensional manifold and the induced cur-
vature tensor of an immersed (n — k)-dimensional submanifold. While developing
the Gauss-Codazzi relations, one also shows that many of the properties of the
n-dimensional connection are inherited by the (n — k)-dimensional connection. In
the general case of threading without orthogonal hypersurfaces, the notions of “in-

duced metric” , “induced connection”, and “induced curvature” are perhaps a bit
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elusive. Indeed, the process of defining a threading-induced curvature tensor on &
is by no means obvious. A complete understanding of the theory of connections,
including the concepts of curvature and torsion, is vital to defining a decent notion

of curvature on X.

This chapter begins with the definitions of the necessary terminology for the
study of connections on manifolds, followed by a discussion of the curvature and
torsion tensors. After reviewing the standard Gauss-Codazzi formalism for the
case of an (n — 1)-dimensional immersed submanifold, I then examine the case of
a spacetime threading without surfaces orthogonal to the threading curves. By
introducing a generalized Gauss-Codazzi formalism I will be able to define terms
such as “induced metric” and “induced connection”. These terms will then be used
to define a metric-compatible connection on ¥. Furthermore, I will treat Gauss’
equation as fundamental and use this equation to help define a notion of curvature.

As we shall see, this is certainly not the only approach available.

While the generalized Gauss-Codazzi formalism yields notions of a metric and
connection for the manifold of orbits ¥ via projection operators, the mathematical
essence of a parametric manifold is more fully realized by treating ¥ as an abstract
manifold with additional structure. From this point of view, all tensor fields on
2 are functions of an additional parameter ¢ and the derivative operator 5‘9; then
becomes a covariant operation (since ¢ is no longer a coordinate). Furthermore,
the action of parametric vector fields on parametric functions will depend on an
Additional one-parameter family of one-forms, w. As we generalize the notions of
connection, Lie bracket, and exterior differentiation to define operators intrinsic to

¥, w will play a vital role.

In this intrinsic approach, it turns out that the deficiency can no longer be
defined by measuring the failure of a distribution to be surface forming. Rather,
we will show how the deficiency is related to the failure of the generalized exterior
derivative operator to satisfy Poincaré’s lemma (d*> = 0). In the presence of defi-

ciency, particular care is taken in defining a Lie bracket, torsion, and parametric
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connection. As we shall see, all of these definitions are equivalent to those presented

in the extrinsic approach.
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3.2 Some Definitions

Let us begin by defining the standard notion of a connection on a manifold M,
together with some relevant properties of connections. For the following definitions,

let M be a smooth manifold with (Lorentzian or Riemannian) metric ¢ denoted by
(, ). Also, let X(M) denote the set of all smooth vector fields on M and F(M)

the ring of all smooth real-valued functions defined on M.

Definition 3.1 An (affine) connection V on M is a mapping V : X(M) x X(M) —
X(M), usually denoted by V(X,Y) = VY, which satisfies the following axioms:

i. Linearity over §(M): V Z=fV,Z+gV,Z

FX+gY
1. Linearity: V(Y +2) =V, Y +V,Z

ii. Product rule: V, (fY) = fV, Y+ X(f)Y forall X,Y,Z € X(M) and f,g €
F(M).

The existence of a connection on M gives one a way of differentiating vector
fields along curves. Although traditionally one defines the concept of metric com-

patibility in terms of parallel vector fields along curves in M, it can be restated

(c.f., [6]) as

Definition 3.2 An affine connection V is compatible with the metric of M pro-

vided
X((Y,2)) =(V,Y,2)+{Y,V,Z) (3.1)

for X,Y,Z € X(M).

The fact that (3.1) holds is just a statement that covariant differentiation of the

metric obeys the familiar Leibnitz rule of derivations.

In general relativity one is usually only concerned with connections which are

torsion-free.
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Definition 3.3 A connection V is said to be torsion-free when
VY -V, X = (X,Y]

for all X,Y € X(M).

The action of [X,Y] on functions f € F(M) is defined by the action of the

commutator

[X,Y]f=XYf-YXFf (3.2)

Although it is not a priors clear that [X,Y] is a vector field, it can be shown (c.f.,
[4]) that there exists a unique vector field [X,Y] satisfying (3.2). A torsion free

connection is sometimes referred to as a symmetric connection.

A fundamental result in the theory of connections is

Theorem 3.4 There exists a unique connection on M which is compatible with

the metric g and torsion-free.

Definition 3.5 This unique connection is called the Levi-Civita connection and

may be defined by the equation:

(X,Vy2) =%(X Y,Z)+Y(Z,X) - Z(X,Y)
(X, 2],,Y) - (I, 2], , X) - ([X,Y],, 2)).



o4

3.3 Curvature and Torsion

As we shall see later, the notions of curvature and torsion play an interesting
role in the development of a parametric theory. We saw earlier (equation (2.14))
that Perjés’ idea of (parametric) torsion appeared to disagree with our standard
interpretation. Therefore, a review of torsion is warranted. Also, a clear under-
standing of the relationships between curvature and torsion will be useful when

defining parametric curvature.

Let us begin with the necessary definitions. Using the definitions in [15]

rewritten in terms of an affine connection, we have

Definition 3.1 Define the torsion T and curvature R of V by
I(X,)Y)=V,Y -V, X - [X,Y] (3.3)

and
R(X,Y)Z = VVyZ2 -V V7~ V[X Y]Z (3.4)

for X,Y,Z € X(M).

The case where T(X,Y) = 0 agrees with the earlier notion of torsion-free.

Consider the components of 7' and R in some patch with coordinates {z®}.
Defining the symbols I%. by V 5, Oy = F“ﬂvaa we have
T(aﬂ,av) = V6ﬁ67 - Vavaﬁ -0
= (I%y = I'%5)0

= Taﬂ,yaa .

While it is trivially true that mixed partial derivatives commute, the torsion
tensor may be thought of measuring the failure of mixed covariant derivatives to

commute. As we see from above

(V5,05 = V5,8,) () = T%,f
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For curvature,

R(0a,05)0y = (V, Vy =V ¥, )0, =0 )
=R D '

W CT

As is often done, R”; po May be expressed in terms of the connection symbols

I‘a
By
Ryaﬂa = Fu&a,ﬂ o Fu&ﬂ,a + Fyuﬂwsa o I"’WI‘”M.
It is worth noting that in the definition of R, (3.4), as well as in the formula
for the components R (3.5), there is no explicit mention of the torsion. The

v’
case is different when using, as Perjés does, the abstract index notation. Since it

will become useful in later sections to compare equations written in these different
notations, I will briefly outline the definition of curvture in the “index-notation”.

For a much better description of this notation see [30].

In the index-notation, the vector field V Y is represented by X¢ V.Y?. If one
1s working in a coordinate basis (with coordinates {®}) we have X¢ is the vector
field X*9, and the vector field Y is Y# aﬂ. Furthermore, in this notation V,Z°*

would represent the (1 — 1)-tensor (one index up, one index down)
V 2*=09,2b+ T z°

where §, is an ordinary derivative operator. That is, given any coordinate system,
the operator J, is defined to be partial differentiation with respect to the coordi-

nates.

In the absence of torsion, one can define the action of the Riemann curvature
tensor by
R}, Z,=(V,V,~V,V,)Z,. (3.6)
In terms of the Christoffel symbols I
ViVyZ,=08,(0,Z,—T°2,)
— % (0.2, - T°, 2.)
—T%, (0,2, —T°,,Z.)
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yielding
(vavb - vbva)Zd :(Fcab - 1—‘Cba)vczd + (abrcda - aal—‘cdb)ZC

+ (Tl =TT 2, (3.7)
=T, VoZ, + R o Ze.

Rewriting equation (3.7) yields the curvature tensor in the presence of torsion:

RypaZe =(VaVy=V\V)Z, - TV 2, (3.8)

Thus, there is quite a difference between the treatment of torsion in the two
notational schemes. While the first definition of curvature (equation (3.4)) proved
to be valid with or without torsion, if one adopts the index notation to describe a
theory involving torsion, one must also re-define the curvature tensor to take this

into account.

While the index notation is usually used to describe torsion-free theories (e.g.,
general relativity), the presence of “deficiency” in a parametric theory of space-
time has analogous consequences. For example, compare Perjés’ definition of the
Zel'manov curvature (equation (2.15)) with equation (3.8). The definition of Z L
appears to involve torsion. Nevertheless, Perjés claims that the connection V, is
torsion free! It can be argued that the extra term in equation (2.15) is actually due
to the deficiency of the connection V,. However, since there does not exist a well
established theory involving connections with deficiency, it is reasonable to question
the appropriateness of the definition of Z ijkl' As I have hinted at earlier, deter-
mining the “correct” definition for a parametric curvature tensor is not an obvious

procedure.

Later in this chapter I will address the specific issue of defining a parametric
curvature tensor. For now, I would like to finish the discussion of torsion by stating

the symmetries of the curvature tensor when torsion is present.

Consider a manifold M with an affine connection V. The curvature and
torsion of V are given by equations (3.3) and (3.4). There exist some obvious and

some not so obvious symmetries of T and R (c.f., [29])
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Theorem 3.2 R and T satisfy the following symmetries:
i, T(X,Y) = —T(Y, X)
ii. R(X,Y)Z = —R(Y,X)Z
i, (R(X,Y)2,W) = (R(X, Y)W, Z) if V is compatible with < , >.
iv. The first Bianchi identity:
R(X,Y)Z + R(Y,2)X + R(Z,X)Y
—V ., T(Y,Z)+ YV, T(Z,X) + V,T(X,Y) (3.9)
+T(X,[Y,Z2)+T(Y,[Z,X]))+T(Z,[X,Y])

Proof: Symmetries ¢. and 4. are immediate. To show iv. just
write out the cyclic sum, use the definition of T, and keep in mind the

Jacobi identity for bracket. Explicitly we have,
R(X,Y)Z+R(Y,Z)X + R(Z,X)Y

=V (VyZ -V, YY)+ V(V,X -V, Z)

+V (VY =V X) =V 12—V X

-V Y

[X,2]
=V (T(Y,2)+[Y,2]) + Vy (T(Z, X) + [X, Z])
+V,(TXY) + X, Y]) = Vi yZ = Vi o X

-V Y

[X,Z]
=V, 1(Y,Z)+V,T(Z,X) + vV,T(X,Y)
+T(X,[Y,2))+ T(Y,[Z, X]) + T(Z,[X,Y])
+ XY, 2+ [, (2, X)) + (2, [X, Y]]
where the last three terms add to zero. To prove #ii. we need to assume

that V is compatible with the metric ( , ), thus writing
(ViVyZ,W) =X (V,2,W) —(VyZ,V, W)
=X (VyZ,W)-Y{(Z,V, W)+ (Z,V,V W)

and
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(Vix 2 W) =X, YI(Z,W) = (2,V ;W)

(R(X,Y)Z,W) =(Vy VW, Z) = (Y Vo W, 2) + (V) W, Z)
+X(VyZ,W)-Y(ZV W)-Y(V, Z W)
+X(Z,V W) - [X,Y|(Z,W)

=—(RX,YW,Z)+ XY (Z,W) - X (Z,V W)
~Y(Z, VW) -YX(Z,W)+Y (Z,V W)
+X(2,VyW) - [X,Y](Z,W)

== (R(X, Y)W, 2Z).
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3.4 The Standard Gauss—Codazzi Formalism

3.4.1 Introduction

In Chapter 2, a projection operator, P,?, was introduced as a way of realiz-
ing the correspondence between spacetime tensors and parametric tensors. It was
also shown that the parametric derivative operator 9,, was related to the partial

derivative operator 0, by

P2(8,)" = (9,,)".

Thus, the study of projected spacetime quantities is closely tied to the motivating

definitions surrounding parametric manifolds.

In this section I will summarize the standard relationships between space-
time and projected quantities. In particular, I will examine the spacetime metric,
Levi-Civita derivative operator, and its curvature and establish the Gauss-Codazzi

relations (c.f., [6]) .

3.4.2 The Gauss-Codazzi Relations

The Gauss-Codazzi equations relate the geometry of a manifold to the ge-
ometry of an embedded submanifold. Specifically, the higher-dimensional manifold
induces a metric on the embedded surface, and thus gives rise to a unique deriva-
tive operator (on the surface) and finally a curvature tensor. The Gauss-Codazzi

equations relate these induced quantities to the higher-dimensional quantities.

To continue with the original motivating example, let us consider a spacetime
which admits a foliation by spacelike hypersurfaces. As we saw in Chapter 2 (equa-
tion (2.4)), the spacetime metric g induces a Riemannian metric on the spacelike
slice ¥ by the projection

k=g+ n® ® n?
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where n’ is the one-form dual (with respect to g) to the future pointing unit vector

field n.

Now, for any point p € ¥, the tangent space T, M may be written as a direct

sum

T,M=T,L6(T,2)*

= (TPM)J_ ® (TPM)T
where (T,Z)* is the orthogonal complement of T, in T, M (with respect to the

‘spacetime metric g). For any v € T,M, let v and v* be the obvious projections

so that
v=ovlt 40T

where | have used L to denote the projection to the tangent space of £ (to agree

with the notation of the next section).

Given vector fields X and Y on ¥, one may define a Riemannian connection

on ¥ by

DY =(V, Y)" (3.10)

Equation (3.10) not only defines an affine connection on ¥, but, as is shown in [6],
D is the unique Levi-Civita connection associated with the induced metric k. Being

a Riemannian connection, one may define its curvature in the usual manner:

"R(X,Y)Z =DyDyZ~DyDyZ~D 7 (3.11)

where XY, Z are all vectors tangent to . Since ¥ is a hypersurface, [X, Y] denotes

a vector field tangent to ¥ and, hence, D Z is defined. Using { , ) to denote the

[X,Y]
spacetime metric, one can show, [6], that the curvature *R of M and the curvature

°R of the Cauchy surface ¥ are related by Gauss’ equation ([6] page 135)

(*R(X,Y)Z,W) = *R(X,Y)Z, W) 12)
3.

where all the vectors X,Y,Z, W are assumed to be tangent to & and B(X,Y) is
the tensor defined by
B(X,)Y)=V,Y-D,Y

= (VXY)T'



1. D is torsion-free and

1. B is symmetric.

Proof: We already claimed () above. However, this can easily be

shown.
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Theorem 3.1 Taking V, D, and B defined above, if V is torsion-free then

I,(X,Y)=D,Y - D, X — [X,Y]
= (V,Y)" = (V,X)' - [X,Y]
= (VY -V, %) - (x,Y]
= [X,Y]" - [X,Y]
=0
since ¥ is a hypersurface. The symmetry éf B follows from the torsion-

free properties of both connections. We have
B(X,)Y)-B(Y,X)=V,Y -V, X - (DY - D,X)
=[X,Y] - [X,Y]
= 0.
)

In the absence of t‘orsion, we see that B is symmetric if and only if the Lie
bracket of the spacetime restricted to vector fields on ¥ is the 3-dimensional Lie
bracket on ¥. While this seems like a trivial statement given the existence of the
immersed surface X, the relationship between the two bracket operators becomes

important in the next section.

B is closely related to the extrinsic curvature K of . The tensor K is defined
by
K(X,Y)= <—~VXY, n>

where ( , ) is the metric of the spacetime and n is the unit vector field normal to

Y. If one assumes that V is torsion-free, then K is a symmetric tensor since (X,Y]
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is tangent to ¥. The relationship between K and B is given by
K(X,Y)=(-V,Y,n)

= (-B(X,Y) - D,Y,n)

= (-B(X,Y),n) — (D, Y,n)

= (=B(X,Y),n)
so that the symmetry of K also follows directly from the symmetry of B. B can
be thought of as measuring the difference between the geometries of M and . In
fact, B is identically zero if (and only if) every geodesic of ¥ is also a geodesic of
M. Equation (3.12) is usually called the Gauss equation (one of the Gauss—Codazzi
relations). Notice that B(X,Y) is orthogonal to X.

It is worth mentioning that the tensor B fails to be symmetric if V possesses
torsion. If we let T, and T}, represent the torsion tensors associated with the

respective connections V and D, then the above calculation shows that
B(X,Y)-B(Y,X) =T,(X,Y) - T,(X,Y).

Therefore, the failure of B to be symmetric is to be expected in the most general

setting.
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3.5 A Generalized Gauss-Codazzi Formalism

3.5.1 Connections, Torsion, and Deficiency

The above formalism lends itself nicely to the slicing viewpoint. Both the
slicing and Gauss-Codazzi formalisms focus on decomposing the spacetime into a
plece tangent to ¥ and a piece orthogonal to Y. While the slicing viewpoint, as
presented in Chapter 2, concentrated on splitting the metric, Gauss’ equation in-
volves the orthogonal splitting of the Riemann curvature tensor. Given a spacetime
which admits a foliation of (spacelike) Cauchy surfaces, one may perform the above
decompositions on any of the hypersurfaces. As mentioned earlier, one can view
these decompositions as a place to begin an initial-value formulation of spacetime,

where the Gauss-Codazzi relations provide initial-value constraints.

The situation more closely connected to the parametric manifold picture of
spacetime, however, does not focus on the hypersurfaces but, rather, on a preferred
non-null vector field. As we saw in Chapter 2, the fundamental ideas governing a
parametric picture of spacetime are related to projections orthogonal to the given
vector field. The parametric (and threading) metric was the induced metric on the
orthogonal subspace of the tangent space; parametric vectors (and tensors) were
identified with vectors orthogonal to the vector field; and the parametric derivative
operator was interpreted as a projected derivative operator. However, in the para-
metric viewpoint it is not assumed there exist (even locally) surfaces orthogonal to
the threading vector field.® Hence one must be careful when attempting to follow

the above formalism leading to equation (3.12).

Given a non-null vector field A (not necessarily unit), at each point p in M

one still has the decomposition

ToM = (T,M)* ® (T,M)".

® Barrett O’Neill [23] has studied analogues of the Gauss-Codazzi equations in

the case of submersions.
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For v € T, M, write

v:vL+vT

with v* orthogonal to A(p) and v parallel to A(p). As before, the spacetime
metric induces a metric k on (T,M)* defined by

A g A
where A is the one-form which is dual (with respect to the metric g) to the vector

field A.

Given vector fields X and Y (everywhere) orthogonal to 4 one may define the

operator
1
DY =(V,Y)".
Proposition 3.1 D satisfies the properties of an affine connection. Specifically:

1.DyyyoyZ = fDyZ + gDy Z
2.D (Y +2Z)=D,Y +D,Z2
3. D (fY) = fDY + X(f)Y

for all vector fields X,Y,Z € (TM)*.

Proof: This is just a consequence of the linearity of projections.

First,
L
DixygyZ = (va+gY)
= (fVxZ + QVYZ)L
= fDZ +g¢D, 2.
Second,
Dy(Y +2)= (VY +V,.2)"
=D,Y +D,Z
Finally,

Dy (fY) = (VyfY)"
= (VY +X(NHY)"
= fD,Y + X(f)Y.
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Therefore, D is an affine connection. &

In the case where (T M)+ corresponded to the tangent space of some hyper-
surface, it was stated that D was the Levi-Civita connection of the surface (with
respect to the induced metric). Although (in the present scenario) D is not, in
general, the Levi-Civita connection on any submanifold, we may still investigate
the familiar properties associated with the Levi-Civita connection. Using ((, )) to

represent the metric h, we have

Proposition 3.2 IV is compatible with g, then D is compatible with the metric
h. That is,
X(Y,2) = {D,Y,Z2) +{(Y,D, 2))

for X,Y,Z € (TM)*+.

Proof: For X,Y € (TM)1, we have (X,Y)) = (X,Y). Since
DY =V,Y —(V,Y)T and ((V,Y)7,Z) =0, we have (DY, Z) =
<V <Y, Z > . The fact that D is compatible with A is now a consequence
of the fact the V is compatible with g. #

In the last section we showed that D being torsion-free was an immediate
consequence of V being torsion-free. In the present situation, progress is hindered
by the fact that while DY — Dy, X represents a vector field orthogonal to A,
[X,Y] may not. In fact, [X,Y] € (TM)* for all X and Y in (T M)+, if and only if
(TM)* is surface-forming (Frobenius’s Theorem). Thus, if one wishes to consider
the general thréading scenario, it is quite fruitless to compare D, Y — D, X with

[X,Y]. One may, however, decompose [X,Y] as
X, Y] = [X,Y]7 +[X, V)%

We may now measure the fact that (TM)+ is not surface forming by the existence

of [X,Y]" and use [X,Y]" to measure the torsion of D.
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Definition 3.3 The (generalized) torsion, T,
is defined by

, associated with the connection D

lTD(X,Y) =D,Y -D,X - [X,Y]".

Lemma 3.4 The generalized torsion is precisely the projection of the torsion as-

sociated with V.

Proof: We have,
T,(X,Y)=D,Y - D, X - [X,Y]"
= (VyY - VyX - [X, Y])L
=T(X,Y)*t.

Definition 3.5 The deficiency, D, of the connection D is defined by

D(X,Y)=[X,Y]".

Theorem 3.6 The following statements are equivalent:
i. (TM)*1 is surface forming.

1. The generalized torsion associated with D, 1T}, is the (standard) torsion T,
as defined by (3.3).

o iii. D(X,Y) =0 for all X,Y € (TM)L.

Proof: This theorem is basically the vector field version of Frobe-

‘ nius’s theorem rewritten to emphasize the new definitions. By definition,
D(X,Y) = 01if and only if [X, Y]T =0. Thus D(X,Y) = 0 if and only if

! [X,Y] € (TM)L, yielding (i41.)<>(3) via Frobenius’s theorem. To show
(418)=>(i4), we again have [X,Y]' =0 so [X,Y]* = [X,Y], making the

two notions of torsion coincide. Since 17, (X,Y) -1, (X,Y) = [X, YT,

we also easily have (i3)=-(7). o
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Theorem 3.7 IfV is torsion-free, then *T,,(X,Y) =0 for all X,Y ¢ (TM)*.

Proof:
T(X,Y)=D,Y - D, X —[X,Y]*
= (VY -V, X - [X,Y])"
= (T(X,Y))"
=0.

Therefore D still inherits its (generalized) torsion only from V.

Later in this chapter we will show that, in a coordinate basis, the connection
symbols, LI‘ijk, assoclated with D obey the symmetry L1""].16 = LFikj if and only if

V is torsion-free. Thus, the above definition of lTD 1s quite reasonable.

For X,Y € (TM)*, define as before
B(X,Y)=V,Y - D.Y.

B(X,Y) is again a vector field orthogonal to the vector fields X and Y and, hence,
a vector field tangent to the threading. There is no guarantee, however, that B is
symmetric. This is a consequence of the deficiency of D. In general, one has
B(X,Y)-B(Y,X) = [X,Y] - [X, Y]L +T,(X,Y) —LTD(X,Y) (
3.14)
=D(X,Y)+ T,(X,Y) - T,(X,Y).

When V is torsion-free, B may still fail to be symmetric.

Theorem 3.8 If V is torsion-free, then B(X,Y) = B(Y,X) if and only if
D(X,Y) = 0.

Proof: T,(X,Y) = 0 implies that 17,(X,Y) = 0 and, hence,
equation (3.14) reduces to

B(X,Y) - B(Y,X)=D(X,Y).
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We have that the deficiency of the connection D measure the failure of (T M)+ to
be surface-forming and, equivalently, the failure of the extrinsic curvature B to be

symmetric in a torsion-free setting,.

3.5.2 Curvature

Being an affine connection, D must have an associated “curvature” tensor.
However, the existence of the [X,Y]T component prevents one from proceeding as
in equation (3.11). It appears as if this problem may be overcome simply by using
the quantity [X, Y]t to represent the commutator of two vector fields orthogonal

to the original vector field A.

Armed with such a notion of “bracket”, the next step would be to define a

curvature operator.

Definition 3.9 Define the operator S by

S(X,Y)Z =DyDyZ ~DyDyZ - Dy, Z. (3.15)

Unfortunately, such a definition immediately leads to problems.

Proposition 3.10 S(X,Y)Z is not function linear. That is

S(X,fY)92) # fg S(X,Y)Z.
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Proof:

S(X,fY)(92) = (Dx(fDy) = fDyDy Dy o, =Dy ) (47)
=fS(X,Y)(92) + (X(f)Dy — X(f)Dy ) (s2)
=S(X,¥)(92)
=f(Dy (Y(9)Z + 9Dy Z) - Dy, (X(g)Z + gD Z)

—[X,Y1%(9)Z - gDy 1. Z)
=f (IX,Y)(9)Z - [X,Y]*(9)Z + ¢S(5,Y)Z)
=f9S(X,Y)Z +[X,Y]"(9)Z

where, in general, [X,Y]T is not everywhere zero. #

Therefore, in order to define a function linear curvature operator (tensor!),
we must keep track of the [X,Y]T component (we can not just project it away and

forget about it). That is, the D Z term in equation (3.15) is not complete. We

(X, Y]+

do not want to project the vector field [X, Y] too soon! We will, therefore, consider

replacing the last term of (3.15) by the term (V Z)1. This term is equivalent

[(X,Y]

to the D[X Y]Z term in equation (3.11). However, since [X,Y] is not necessarily

orthogonal to A we can not write (V Z)' in terms of the connection D.

[X,Y]
Definition 3.11 The (generalized) curvature operator associated with D is defined
by

"R(X,Y)Z=D,DyZ-D,DyZ —(V, 2t

Proposition 3.12 R is function linear. That is, *R is tensorial.
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Proof:
R(X, fY)(92) =

(DX( fDy) = fDy Dy — (V4 + Yy f)Y)l) (92)
=FR(X,Y)(92) + (X(f)Dy = (Vi y)*) (92)
=F'R(X,Y)(92) + (X(f)Dy = X(f)Dy )(92)
=f*R(X,Y)(92)
:f(DX (Y(9)Z + gD, Z) — Dy, (X(9)Z + gD, Z)

~ (IX.Y)9)Z + 99 5 ,2) L)
=f (¢*R(X,Y)Z + [X,Y])(9)Z — ([X,Y)(9)2)*)
=gf'R(X,Y)Z

where the linearity of the projection map was used throughout. #

Theorem 3.13 IfV is metric compatible, then 1R satisfies Gauss’ Equation. That
1s,

(*R(X,Y)Z,W) = (*R(X,Y)Z,W)

(3.16)
where X,Y,Z and W are orthogonal to A.
Proof: First, a few computational observations. Since B(X,Y) =
VY — DY is orthogonal to A,
(VyY,Z)=(D,Y,Z7) (3.17)

for vector fields X,Y, Z orthogonal to A. While we have shown that D
is compatible with the metric (( , )), it is also true that since the four-
metric (, ) agrees with the induced metric (( , )) on (TM)*, one may

write

X(Y,Z)=(D,Y,Z)+(Y,D, 7).
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That is, D is “compatible” with the metric ( , ) when restricted to the
subspace (TM)1. Using the definition of “R and B, we expand the right
hand side of equation (3.16)

RHS = (VyVyZ = Vy Vi Z ~Viy 12 W)

[X.Y]

~(VyW =Dy W,V Z—D,Z)

(VyW -D W,V Z - D, Z)

(VyZ,W) —(V,Z,V W)=Y (V. Z,W)

ViZ VW) = (Vix 2. W) = (Vy W,V Z)

VyW,DZ)+(DyW,VZ)~(D,W,D,Z)
)~

ViW,Vy,Z) = (V W,Dy,Z) — (DyW,V,Z)

n
=X
+
+
+
+(D,W,D, Z)

=X (VyZ,W) =Y (V3 Z,W) = (V3 1 7, W)
+(DyW,DyZ) - (DxW, Dy Z)

=X (DyZ,W)— (D, Z,D, W)

L
~Y (D Z,W)+ (D, W,D, 2) — <<V[X,Y]Z) ,W>

L
= <DXDYZ =Dy Dy Z — (Vi ,2) ,W>

=("R(X,Y)Z,W)
where the second step involved the symmetry of the metric as well as

equation (3.17). )

The above proof of Gauss’ equation only used the properties of metric com-
patibility (for both pairs of connections and metrics). In particular, the symmetry
(torsion) of either connection was not a concern. Thus, we have further shown that

Gauss’ equation is valid in the presence of torsion.

Given ( , ), ‘R, and B, one may use Gauss’ equation to define a curvature
operator R. In this context, we may view 1R as the unique curvature tensor

assoclated with D which satisfies Gauss’ equation.
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A word of caution is necessary at this point. If torsion is present in either (or

both) of the connections, the tensor B(X,Y) is no longer symmetric. This affects
the symmetries of the tensors R and “R. In particular, as we shall see, “R may

not enjoy the familiar cyclic symmetry
R(X,Y)Z + *R(Y,2)X + *R(Z,X)Y =0

even if “R does! However, the other symmetries are immediate. More precisely,

Theorem 3.14 Let V be a torsion-free Riemannian connection associated with
the metric { , ), with curvature tensor R. Using D,((, )), B, and D as defined
above, if R is an induced curvature operator associated with the connection D and

R and R satisfy Gauss’ equation, then R has the following symmetries:
i <R(X,Y)Z, W) =- <R(Y,X)Z, w)
i. <R(X,Y)Z, W> = <R(X,Y)W,Z>

iii. First Bianchi identity:
(R(X,Y)Z+R(Y,2)X + R(Z,X)Y,W)
= (B(X,W),D(Y,2)) + (B(Y,W),D(Z, X))
+(B(Z,W),D(X,Y)) (3.18)
—(VD(Y,2),W) —(V,D(Z,X), W)
—(V,D(X,Y),W)

where D(X,Y) = B(X,Y) — B(Y, X) measures the failure of B to be symmetric.
D may be thought of as the “deficiency” of the connection D.

Proof: The symmetries in (i) and (ii) can be read off directly from
equation (3.12), keeping in mind that R satisfies all of the symmetries
of the usual Riemann curvature tensor (in the absence of torsion). To

prove (iii), just cyclicly permute X,Y, and Z in the terms on the right
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hand side of equation (3.12) and add, obtaining
(R(X,Y)Z+R(Y,2)X + R(Z,X)Y,W)
=0—-(B(Y,W),B(X,Z)) — (B(Z,W),B(Y, X))
—(B(X,W),B(Z,Y)) + (B(X,W),B(Y, 2))

+(B(Y,W),B(Z,X)) + (B(Z,W), B(X,Y))
=(B(X,W),D(Y,Z)) + (B(Y,W),D(Z,X))
+(B(Z,W),D(X,Y)).

which is the first line in (#s). However, this cyclic sum involving B and

D may be rewritten in terms of V and D. Thus written, claim (%)

resembles the standard cyclic symmetry of R (see equation (3.9)). Keep

in mind, however, that neither V nor D possess torsion in the theorem.

However, deficiency is present. We have
(B(X,W),D(Y,Z)) = (VW — D, W,D(Y, Z))
= (V,W,D(Y, Z))
=X (W,D(Y,2)) — (W,V DY, Z))
- <VXD(Y7 Z), W>
since D(Y, Z) is orthogonal to W. Thus the second equation in (4) is
true. ‘ [

One further comment on the similarities between equations (3.9) and (3.18) is

worth making. In equation (3.9) there are three extra terms of the form T' (X, [Y, Z])
(and cyclic permutations). One might expect analogous terms in equation (3.18)
involving D(X, [Y, Z]") and cyclic permutations. However, since D(X,Y ) represents

a vector field orthogonal to the threading curves,

<D (X, Y, Z]L) ,W> = 0.

Thus, because of the way I have expressed the first Bianchi identity (in terms of
an inner product) equation (3.18) differs slightly from (3.9). We have that the new

concept of deficiency resembles the notion of torsion.
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3.5.3 Coordinate Expressions

Let us now work in a coordinate patch and investigate the components of
the above operators. We will use the adapted coordinate system inherited from
the threading decomposition of spacetime. That is, spacetime coordinates z® =
(2% 2") = (¢,2%), {i =1,2,3} where the given vector field A can be written A% =
el (g;)a so that A° = +z and A" = 0. The coordinates z' are constant along
specific integral curves of ;% and can thus be thought of as coordinates on the

(local) surfaces {t = constant}.

We have the threading lapse function and shift form as before related by

1 .

where m is the metric dual of the unit vector tangent to the threading curves. Thus,

AO =1 and Ai = Mi.

In these coordinates the spacetime metric g has the form (see equation (2.8))

—M? MQMJ.

(9up) =
M?M, hi;— MQMI.MJ.

The functions hij =g, + M 2Ml.Mj correspond to the components of the
threading metric. That is, the metric on (TM)1 induced by ¢ (equation (3.13)).
These functions can also be thought of as the nonzero components of the four-
dimensional object

h

_ a2
ap = Yap MAaAﬂ

which is associated with the projection operator
PP=hlP =6F—M*A AP

where § 7 is the Kronecker delta symbol. Being a projection operator guarantees
that P, X = X# for X € (TM)*. It is easy to show that a spacetime vector field
X = X“afa = XO% +Xi£; is orthogonal to A if and only if X° = M, X*.
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To simplify notation I will introduce the “starry” derivative notation in all

coordinate directions. Therefore, at the risk of abusing notation, define
Oa = 0o + Au0,.
Notice that since A; = —1 and A, = M,, we have

s,

*0

=
and
0,, =0, +M.0,.

Therefore, this new operator 9,, agrees with all other previous uses of 9, .

Let us work out the action of the connection D in these coordinates. Given

X and Y in (TM)1, we defined
DY =(V4Y)*t

=PXPV, Y7 aia

= PP XPV Y7 aia

= XPP Py (Y”)a + I‘VMY“> 6;

= X* (P, (Y7, + M24,4°Y7 ) + PP, ") 6%
= X? (P,°Y",, + 2P P, Y T, 61

= XP (Y5 + M24,4°77 4+ T%,,7") —6%

0
— Y8 o o 2 qo vy _Y
=X (Y *ﬂ—i-( s~ M"A Ay*ﬂ>Y ) s
where I have defined the symbol T'¢, g by
e ap b
I =P, Py PV”IWM.

It can be show that the symbol Ll"ay g behaves like a projected rank-three tensor.

That is,

A1 NE L
1—‘000 = 08 = Faﬂo = Foﬂo =0
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and

J_Foaﬂ — Az J_Flaﬂ

Furthermore, after a long but straightforward calculation, one may show that the
terms T jx may be written in a familiar form involving the parametric derivative

operator and the components of the induced metric hij :

i = —h’m(hm*k +h . —h (3.19)

mkx*j jk*m)'

Since D, Y is orthogonal to A, D Y is completely determined by its components
(DXY)i. That is

(DxY)5— 9 — = M,(D,Y) = 0 +(DXY)"%

We have shown that

(DXY)" =x7 (v, + i)

where I have used the facts that Y"*0 =0forall Y and A* =0 for : = 1,2,3. The
above formula for (D XY)i corresponds exactly to the parametric covariant deriva-
tive operator introduced by Perjés. Note that the projected 3-index symbol T ik
has the same coordinate representation as the connection symbol used by Perjés,
7~ijk (see equation (2.13)). Thus, we have our first covariant confirmation that

Perjés’ parametric structure can be induced by a projective geometry of spacetime.

Continuing our coordinate description, let us calculate the components of the
three-dimensional curvature tensor “R defined earlier. Since 0,, = 0, + M 5 1s a

basis for (T’M)+, we define the components of +R by

R(..

0,00, = a,,

kz]

0
J_R kz](a +

'at)'
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Calculating the “spatial” components of D 3,.,-D ., 0, we find:
l l
(Da D .6*k> = (Da . <Da 6*k>>

*1 *j *1 *J
l n
=0,; (Da .6*k> + lFlm‘ (Da .6*k>
* *j

kxj T

4t ( nooydpn 6m)

ZLFljk*i + J_Flnilrnk]
Also,
0
[6*1’6 ] (Mj = M) 5
0
=D.—
7t ot
where I have introduced the notation D;; = M,,, — M, ;. Therefore,
y 0
Y 0
v[a*i,a*j]a*k =Dji (Mk + T oM, +T kO) T
0
l l
+Dj; (TooMy + ko) 57

thus yielding

(v[aﬁ’a*j]a*& . (M = M,,;) (T + M,TH00) ) 0,

As we see, the components of 1R are not quite as nice as in the case where the 0,;

span a hypersurface. The non-zero contribution of [0 | continues to complicate

*’*

matters. Writing everything out gives us

J_leij =ipl, - J_Flki*j A0 A — AT AT,
+2 (M, = My, ) (TooM, +T4) 5o
=it J_Flki*j n J_FlniJ_Fnkj L A
t (M, — My, ) B (MPM,, — MPM,, + 0, Ry,

where the four-dimensional symbols I were replaced by the equivalent expressions

involving the threading metric, lapse function, and shift one-form.

Using equation (2.15) in these coordinates, one has

| 1nl Ll Inl lpm Lnl lpn
Zgi; = Thjg = Thigy + T i T — T T
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~ At this point one notices a deviation from the definitions introduced by Perjés. The

Zel’'manov curvature does not contain the contribution from [0, a*j].

3.5.4 ZeI’manov Curvature

Apparently, if one wants to relate the three-dimensional parametric tensor
A i toa four-dimensional spacetime tensor, one must re-examine the story leading

up to the definition of *R.

It seemed most natural to define *R with the (V )J‘ term, as this definition

[X,Y]

closely resembles the definition of the standard curvature tensor. However, consider

the definition
“R(X,Y)Z =D, Dy,Z— DD, Z — (£, ,,Z)* (3.22)
where £ is Lie differentiation.

The difference between the two curvature operators is
R(X,Y)Z - *R(X,Y)Z = ~(V[X,Y])* (3.23)

In light of our earlier comments, we know that +R does not satisfy Gauss’ equation.

However, there do exist the following similarities between +R and 1R.

1L 'R(X,Y)f = *R(X,Y)f for X,Y € (TM)L,
and in the case where (TM)? is surface forming one has that [0,;, a*j] = 0 which implies

1 _1p
2. *R(9,;,,;) = *R(3,,,9,,)

*1)

so the coordinate representation of the two tensors agree in this special case.

L
For the components of 1R, we must calculate (.E[a , ]8* k) . If V is torsion-
*7) g
free, the definition of £ yields

(f[aﬂ-,aq]"’*ky = |
0

0.00,].0.4] 824)

I
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Thus, the nonzero term [4, , 8*j] does not contribute to the components of 1R.

To summarize, we have already shown
Theorem 3.15 R satisfies Gauss’ equation, (3.16).

Although 1R does not satisfy Gauss’ equation (1R lacks the correct symme-

tries), we do have
Theorem 3.16 ‘R is the Zel’'manov curvature.

Proof: Using equations (3.20) and (3.24), we have

1pt  _ Api 1l 1pl Apn 1pl  Lpn
R =T, — T + T T — T, T

Kin
™ "~ (3.25)
l
Since these expressions are invariant under regular coordinate transfor-
mation and reparameterizations of ¥, we have that *R = Z. [ )

3.5.5 Conclusion

The generalized Gauss-Codazzi approach was successful in defining a para-
metric structure on ¥. The projected connection D gave us a covariant derivative
operator which was also invariant under reparameterizations. Moreover, D was
found to be torsion-free if V was torsion-free. Most importantly, the deficiency D
was explicitly defined in such a way as to make its relationship to the torsion tensor

clear.

While the generalized Gauss-Codazzi formalism succeeded in providing a cur-
vature operator which satisfied Gauss’ equation, the curvature operator did not
agree with the Zel’'manov curvature. The difference between 1R and Z involved

both the deficiency and the lapse function M. The appearance of M is due to
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the fact that we began with a parameter ¢ whose relationship to proper time was
arbitrary. The extra pieces involving the deficiency are a result of using covariant

differentiation instead of Lie differentiation.
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3.6 The Parametric Structure

3.6.1 Introduction

In the case of a spacetime threading, we were able to recapture much of the
geometry of the local rest spaces, even though these spaces did not constitute a
surface embedded in the spacetime. As we moved our focus to the manifold of
orbits, the threading framework forced some additional structure on £. Since the
original spacetime may not have been stationary or static, we decided to allow the
tensors on ¥ to depend on an extra parameter. The parameter on ¥ is not an
extra coordinate. As we saw earlier, while parametric tensors on & must (of course)
transform properly under a change of coordinates, the components of a parametric
tensor remain invariant under a reparameterization. The threading framework also

provided us with a natural metric on ¥.

By expanding on the basic threading ideas, we may continue decomposing such
objects as the connection or curvature tensor. In the analogous case of slicing, such
a procedure would lead quite naturally to the Gauss-Codazzi equations. While we
had to generalize a few notions (such as bracket, torsion, and curvature), a similar
decomposition may be carried over in the threading scenario. Furthermore, when
these objects are thought of as living on the manifold of orbits, they satisfy the
necessary reparameterization invariance. The generalized Gauss-Codazzi formalism
simply interpreted these new parametric objects as projected spacetime quantities.
However, in an attempt to define an abstract parametric theory, introducing an
extra dimension (to later project out) is unsatisfying. Fortunately, this approach
is not necessary. The essence of a parametric theory is provided by additional

structure in the guise of a one-parameter family of one-forms.

As shown below, the projected spacetime quantities obtained from the gener-
alized Gauss-Codazzi techniques may be described in terms of quantities intrinsic

to 3 together with the threading shift one-form, M, dz*.
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3.6.2 Parametric Functions and Vector Fields

Given any smooth manifold ¥, a parametric structure on ¥ is defined by a
given one-parameter family of one-forms on ¥, w(t), satisfying the reparameteriza-

tion property.

Definition 3.1 A reparameterization of the parametric structure on ¥ is an as-

signment

s=t+ F(p)

forp € ¥ and s,t € R.

Definition 3.2 w(t) satisfies the reparameterization property if under a reparam-
eterization

w(s) = w(t) — dF. (3.26)

One may whish to think of w as the spacetime threading shift one-form.
We saw earlier that if one interpreted a reparameterization in terms of a (higher-
dimensional) spacetime coordinate transformation (equation (2.18)), then the
threading shift one-form satisfied a property identical to the reparameterization
property. Under this interpretation, w keeps track of the tilting of ;% with respect
to the surfaces of constant time (thought to be diffeomorphic to £). As the thread-
ing shift form became the fundamental object used earlier to develop a projected
spacetime geometry, w similarly carries all of the parametric structure on £. That is,
w carries all of the information necessary to recapture the geometry of the subspace

[é)
orthogonal to £.

Definition 3.3 A parametric function on ¥ is a mapping f : ¥ x R — R. Let the
collection of such mappings be denoted by F,(%).

Given a parametric function f € §,(T), for a fixed ¢t € R f can be considered
as a function from ¥ to R. Denote this function by f,. Thus f, € F(Z) and can be

acted on by tangent vectors of ¥.
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Proposition 3.4 The action of % on parametric functions is a covariant operation.

Proof: Under a coordinate transformation of ¥, the operator ;%
remains unaffected. This is because the parameter ¢ is not a coordinate
and, hence, any coordinate transformation of ¥ must be independent of

t. Therefore %fl does not depend on the choice of coordinates for
(Pyt())

p € ¥. Furthermore, under a reparameterization s = t + F(p), %5 = %ti.
[ )

Although tangent vector fields do not act uniquely on parametric functions,
one-parameter families of tangent vector fields do. These one-parameter families
of vector fields, called parametric vector fields, will act on parametric functions in
a way reminiscent of the “starry” action of projected spacetime vector fields on

spacetime functions.

Definition 3.5 A parametric vector field is a smooth mapping X : & x R — TS
such that for each p € &, X(p,t) € T,S for all t € R.

Let X.(X) represent the collection of smooth parametric vector fields defined

on .

For a fixed ¢, let X, : © — T denote the obvious tangent vector field.
Using the fact that the spacetime derivative operator 9, was shown to be invariant
under reparameterizations, we define the action of a parametric vector field on a

parametric function as follows:

. of
Xf(p) = X,f(0) +(0) (X,) D p)
Suppressing the point p, we can write the action as

Xf=X,f+ ""(Xt)f- (3.27)

Theorem 3.6 X f is invariant under reparameterizations and coordinate transfor-

mations.



Proof: Consider coordinates {z'} and a parameter t. We have that

_ i[9 of
Xf=X <axi+MiE>'

Under a reparameterization s = ¢+ F(p), the components of w transform

according to equation (3.26). Denote the parametric structure w under
this new parameterization by &. Thus,
W= Ml dz’
<Ml — —g-f-) dz’
=w — dF.
Although 3 —L = 2L e must be careful computing 3 —L Using the no-

ot
tation introduced above, let f, : ¥ — R and f8 : ¥ — R. Clearly

55 = 3k | . Since fi(p) = £(p,3) = £(p,t + F(p)),

af, Of 67  Of Bs
Ozt Ozi 0zt ' Os Ot

_ 91, 0 0t0F
T 9zt Ot Os Oxt
_9f, F .
Ot + 8xif'
Therefore,
;. { Of, of
Xf=X Fe R M, 8t>
of, - OF \ Of
+<i &J~9

- (& ;
OF of ~  OF\ Of
( ax’ ~ Ogi E) + <M’ + aﬂ) 5;)

of, .~ Of
- (Bx’ +M’59_>

which is the expression for X f with respect to the parameter s, show-
ing that X f is invariant under a reparameterization. If we consider
a coordinate transformation of ¥, X, and d,- will transform as usual
guaranteeing that X,(f,) is independent of the choice of coordinates.
Since w and % are unaffected, X f remains invariant under a coordinate

transformation of ¥. h

84
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Theorem 3.7 Parametric vector fields are derivations on the ring §(Z x R). That

.. X(rf+sg)=rX(f)+sX(g) and

u. X(fg) = fX(g) + gX(f) for allr,s € R and f,g € F( x R).

Proof: This follows directly from the derivational properties of X .

and 582. Written out we have

X(rf + 59)(p.)
= X,(rf +59)(p) + w(O)(X,) o (rf + 30)(p)
= rX,(£)(p) + 5X,(0)(p) + (X + 39)(p)
= r (X)) + (X))
=rX(f)+sX(g),
and
X(Fg)(p,1) = X,(Fo)(p) +()(X,) oo (fo)
= fX(9)(p,t) + g X(f)(p,1).

h

Parametric vector fields have a very nice representation in terms of a local

coordinate system, {z'}. Since a parametric vector field is just a family of tangent

vector fields, we may write

0
Oox?

as usual, where we let the functions X* depend on the parameter. That is, the X!

X=X

= X0,

are parametric functions on ¥. In terms of this representation we may write out

the action of parametric vector fields on parametric functions

X(f) = Xt(ft) + w(t)(Xt)f
=X'f ;+w,f
= Xif*i'
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The use of * in the above equation agrees with the earlier uses. That is, the action

of parametric vector fields on parametric functions mimics the action of spacetime

vector fields which are orthogonal to %.

We can similarly define parametric tensors of higher rank.

Definition 3.8 A parametric (p, q)-tensor, T € TP(X), on ¥ is a one parameter
family of (p, q)-tensors on ¥. That is,

T TYE X .. xTEXT*Ex .. xT*T xR—-R

such that T( ,..., ,t) € T7(Z).

As with parametric vector fields, parametric tensors can easily be expressed

1n a coordinate basis

o P P . .
Tt —— . ——dxlr ... dale
Ji--dq Ozt Oz dz v
where the T%-%  are parametric functions. We can also talk about one-

J1--Jq
parameter families of metrics on X, that is a parametric metric.

We saw earlier that in a threaded spacetime the Lie bracket of two vector fields
orthogonal to the threading need not be a vector field orthogonal to the curves. This
“deficiency” is carried over to the parametric theory. This can be seen explicitly by

calculating the action of the commutator (XY — Y X) on a parametric function.

X (Y(f) =X (¥if,)) .,

=X <Yj*if*j + YJf*ji)

SO
XY =YX)(f)= (XY, =YX )+ XV (£ - ;) (3.28)
where, in general, fuji — [ uij # 0.

In the earlier language of projections, the first term on the right hand side

of equation (3.28) was called [X, Y]L (f) and can be identified with a parametric
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vector field, while the second term refers to the earlier object [X,Y]" (f), which is

not a parametric vector field.

We would like to define a notion of “bracket” of parametric vector fields.
The non-commutivity of the mixed parametric derivative makes this non-trivial.
Without the use of a projection operator, it is hard to describe the quantity we
earlier called [X,Y]*" (at least in a coordinate-free way). However, there is an
intrinsic calculation that yields the [X, Y]T term, or the deficiency. In order to define
the deficiency intrinsically we will turn our attention to exterior differentiation of

parametric forms.

3.6.3 Parametric Exterior Differentiation

In Chapter 2, it was pointed out that Perjés introduced a notion of exterior

differentiation of parametric functions; namely

df =df +wf

where d is the usual exterior differentiation on differential forms. Parametric func-
tions may be considered as parametric differential 0-forms. Parametric differential
p-forms are just one-parameter families of differential p-forms defined on ¥. Thus,

in a coordinate basis, a parametric differential p-form may be written as

=0 . dxr A... AdzP
(i)...3p)

where the 8, . are functions of z* and ¢ and I have adopted the notation in [4]
Loty

where (4, ...1,) gives us sums running through increasing sets of indices.

There are four axioms needed to completely determine the exterior derivative

d (see [4]), namely
i. df(X) = X(f) for functions f and vector fields X,

1. wedge-product rule: d(f A7) = df A 7+ (—1)P0 A dr where 6 is a p-form,
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wi. d(df) =0, and
w. d is linear: d(6 + 1) = df + dr.

We already have that d, f(X) = X(f) for parametric vector fields X and parametric
functions f. Properties (11) and (i) also carry over easily. However, it is not clear

that we wish d,(d, f) = 0. For the parametric case, consider replacing axiom (47)

by
', d,(d,f) =0 for parameter independent functions f.

Consider an exterior derivative operator, d,, on parametric differential forms
satisfying (3), (), (#1'), and (4v) for parametric forms, vector fields, and functions.

We have the following familiar coordinate expressions:

1. since the coordinate functions do not depend on the parameter, we have, by
(1) and (4i3) |
d(da's ... dz') =(d22™) A da'> da's . .. da's
— dz" A (d2z'2) Nda'e .. dat + ..
oo (m1)P Tzt L date-r A (d2a)
=0,

d(fdz™ ... da*) =d,f Nde'i ... dz" + fd,(de* ... dz'r)
=d,f Adz* ...dz', and

3. using (4v), d, on any parametric p-form has the coordinate expression

d.(6) = d, (9, ) Nda's...do'.
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What about d,(d, f) on arbitrary parametric functions? According to this set

of axioms we have _
= f,;;dz’ A dz’

Therefore 2d2f = (f wij = *jl.)dxj A dz*, and we have seen earlier that this term

T
is generally non-zero. In fact, this term reproduces the {6*1-,8”.] f term, which

measures the deficiency.

Extrinsically, we related the deficiency to the fact that (TM)L was not sur-
face forming. Intrinsically we can define the deficiency as the failure of d2 to be

identically zero. In either interpretation, it merits its name.

Definition 3.9 The deficiency, D, is a derivative operator defined by
D(Xa Y)f = 2dzf(Xa Y)a

for X|Y € X.(X) and f € §,(%).

In terms of a coordinate basis we have

D(X,Y)f = 2d%f(X'3,,Y79,)
= XY (f i = foij)
= Xin(wj*i - wi*j)f
= X'Y'D, f

which is the same quantity that we defined extrinsically by [X, Y]T ().

3.6.4 A Bracket Operator

We can now easily define the bracket of two parametric vector fields intrin-

sically. We want our intrinsic definition to agree with the projected spacetime
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quantity [X, Y]J'. For two parametric vector fields X and Y, define

X, Y], F=X(Y(f) -Y(X(f) - DX, Y)f.

We have already worked out these terms in a coordinate basis. Putting old facts
together we have

*
+ Xin(f*ji - f*z'j) o Xin(f*ji - f*z'j)
which reproduces the correct vector field. If {z'} are coordinates on ¥, then

[31-, 3j] = 0 as one would like.

Given a parametric vector field X, we can define an R-linear mapping £, _ :
X.(B) = X.(T) by £_Y = [X,Y], . Since
£, (fY)e=[X,fY], e
=Xf(Y (€)= fY(X(f)) - DX, fY)e
= X(f)Y(e) + fXY(e) = fY (X (e)) — f2d%e(X,Y)
=(X()Y+f4. Y)e
foralle, f € §,(£) and X,Y € X.(Z), £ may be extended uniquely to a parametric

tensor derivation on X, the parametric Lie derivative. (See theorem 15 in Chapter

2 of [22].)

3.6.5 Parametric Connections

I will now introduce the notion of a connection on a parametric manifold.
Although the following definition looks identical to the definition of a standard
affine connection on a manifold, this is an illusion created by the choice of notation.
Specifically, I have been using X f to denote the action of a parametric vector field
on a parametric function. The underlying operator for such an action is not partial

differentiation, but parametric differentiation via the operator 0,;- In this sense,
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one can view a parametric connection as a generalized connection on a manifold. 7

That is, we generalize the notion of a vector field acting on a function.

Definition 3.10 An (affine) parametric connection, V,, on T is a mapping V, :
X.(Z) x X+ (E) — X.(X) denoted by V,(X,Y) = V.Y, which satisfies the following

properties:

i Linearity over §,(%): V, Z=fV . Y+4V.,Z

(fX+gY)

u. Linearity:V (Y + Z) = VxY+V .2z

wi. Derivation: Vo (fY) = X(f)Y +fV., Y forall X,Y,Z € X.(%), f, g € p(2),
and X(f) refers to the parametric action of X of f.

As before, given X € X.(Z) one can consider the R-linear mapping A
X+ (Z) — X+(Z). Condition (i) above and [22] guarantee that V, , may be extended
uniquely to a parametric tensor derivation on ¥. Thus, we may treat V.x as a

covariant derivative operator on any parametric tensor.

We next wish to show that given a parametric metric & on T, then there exists
a unique parametric connection on ¥ which is compatible with » and torsion-free.

Hence, we need to define these last two properties.

Let h be a parametric metric on %, denoted by ( , ). Metric compatibility is

defined in the usual way.

Definition 3.11 A parametric connection is said to be compatible with the para-

metric metric h provided

X(Y,z)= <V;XY,Z> +{Y,V.,. Z).

" In [24], Otsuki describes generalized connections which do not always reduce

to partial differentiation on functions.



92

Definition 3.12 The parametric torsion, T, of V, is defined by
T(X,)Y)=V,Y -V X -[X)Y],.

IfT(X,Y)=0for all X,Y € X.(X), then V, is said to be torsion free.

Theorem 3.13 There exists a unique torsion-free parametric connection compat-

ible with h.

Proof: The proof is exactly the same as the proof for the existence
and uniqueness of the Levi-Civita connection. The following proof is
taken from [6]. Suppose that such a V exists. Then we have

X(Y,2) = (VY. 2) + (¥, 2),
Y(2,X) = (%, 2,%) + (2,5, X),
—Z({X,Y)=- <V*ZX’Y> - <X’V*ZY>'
Adding the above equations yields
X(Y,Z2)+Y (Z,X)-Z(X,Y)
=—([2,X],,Y) + (Y, Z],,X)
+([X,Y],,2)+2(Z,V,,X).
Therefore, V. ,, X is uniquely determined by

(z X) =%(X Y,Z)+¥(Z,X) - Z (X,Y) (3.29)
+ ([ZvX]* >Y> - <[Y> Z]* >X> - <[X>Y]* >Z>)'

One may also use this equation to define V,, thus proving existence. #

We can use equation (3.29) to write out the unique parametric connection V,
in a coordinate basis. If we let hij = < 0., 3j>, we can define the connection symbols

by V*ai 9,; = ’ykijak. Equation (3.29) now gives us

1
!
Vi = D) (hjk*i F Pying — hz‘j*k)

or



93

1
k _ —1k _
T = 2h " (hjm*i TP hij*m) .
Therefore the connection symbols associated with V, agree with the connection

symbols associated with the earlier projected covariant derivative D.

3.6.6 Curvature

While introducing a generalized Gauss-Codazzi formalism, the definition of
curvature presented the greatest problem. In such a general setting, it was pointed
out that the most “natural”, and naive, definition of a curvature operator (see the
definition of S in equation (3.15)) failed to be a tensor! The exact same problems
are reproduced in the definition of the parametric objects, V.xY and [X,Y],. That

1s, the operator

S(X,Y)Z = VixVavyZ =V VixZ - V*[X,Y]*Z

is not function-linear. This is due to the fact that [X,Y], f # XY (f) — YX(f).
Rather, it is the case that

(X, Y], f=XY(f) -YX(f) - D(X,Y)Sf.

Two alternate definitions of curvature were proposed earlier that overcame this
problem. While working in a spacetime setting with projection operators, it seemed
that the easiest way to make the operator S a tensor was to add the necessary terms
“by hand”. Thus, we traded the term (V[X,Y]lZ)L for (V[X,Y]*Z + V[X,Y]TZ)L =
(V[ X,Y]Z )1, leading to the definition of 1R. Not only did this approach seem the
“easiest” way to make S function-linear, it also had the favorable consequence of

satisfying a generalized Gauss equation (equation (3.16)).

We also introduced, without much motivation, a second candidate for a cur-

L
[X,Y]*Z)

was replaced by ('E[x,y]Z )L. With such a definition, +R also possessed several ad-

vature operator; namely “R. In defining 1R the troublesome term (V

vantageous properties. First, the components of 1R could be written in terms of
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the connection symbols ~* jx 10 a way analogous to the components of the classical
Riemann tensor (see equation (3.25)). Second, it was pointed out that the com-
ponents of 1R agree with the Zel’'manov curvature tensor. Again, 1R and 1R are
both generalizations of the projected curvature tensor ®R in the sense that all three

tensors agree when the subspace orthogonal to ;% forms a hypersurface.

One must now decide how to proceed to define a parametric curvature tensor
on our abstract parametric manifold ¥£. One approach would be to try to define
the tensors 1R and ‘R in terms of V, [, ]+, and D. It is not obvious that the

terms (V )t and (£, 12 )J' can be defined in such a manner. Another more

XY
straight—fi)rwird approach would be analogous to the definition of tR. That is,
sincé we know why S is not function linear (the presence of deficiency) we can
easily correct the problem. First, one must extend the action of D(X, Y') to tensors
of rank (p-¢) by differentiating the components of an arbitrary tensor with respect

to the parameter ¢. Since the action of 9, on p-forms is covariant, the result is a

(p-¢) tensor. Now, define

ZX, Y)W =V VW -V VW -V, . W-DX,Y)W.

(X,Y],
Such a definition makes use of the various derivative operators present in a paramet-
ric theory. Not only does the parametric manifold ¥ have the natural parametric
derivative operator V,, but the covariant operation of differentiation with respect to
the parameter is also present. The deficiency operator is built out of this parametric

derivative.

Given coordinates, z*, the components of Z may be computed
Z(0;,9;)0, = V*aiv*aj Oy — Vaj v*al.ak —0-0
= (4w = Pk + 7 i7" V") O
= Z',0,.

Thus, the components of Z are exactly the components of the Zel’manov curvature.

So far I have begged the question of how one could reproduce “R intrinsically.

In terms of a coordinate basis, we saw before (equation (3.21)) that the difference
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between 1R and Z is

l

%]

*i ) O (Msz*k - Msz*m + 8thkm)

= Djihlm (MZDmk + 3thkm) ,
which involves the deficiency D and the threading lapse function M. As we men-
tioned in the last section, the appearance of M is due to the fact that we began with
a parameter ¢ whose relationship to proper time was arbitrary. While we have an

intrinsic definition for the deficiency, we can not recover the lapse function without

explicitly introducing it.

Abandoning 1R for Z results in a curvature operator that can be defined
entirely in terms of ¥ and the parametric structure w. However, we know in advance
that Z will not possess all of the symmetries of the Riemann curvature tensor.
Earlier it was shown that 1R was the unique curvature satisfying Gauss’ equation
and, hence, enjoying all of the inherited symmetries of the Riemann tensor (where
the first Bianchi identity for “R resembled the identity in the presence of torsion).

As we saw in Chapter 2, the symmetries of Z may be written
. Z(X, Y)W =-Z(Y,X)W and

. Z(X,YYW + Z(Y,W)X + Z(W,X)Y = 0.

3.6.7 Conclusion

The above intrinsic approach to parametric manifolds is more mathematically
satisfying than the earlier extrinsic approach. It proved to be quite interesting to
develop a generalized Gauss-Codazzi formalism and, perhaps, such a projective
approach is closer to the historical roots of parametric manifolds. However, the
exciting ﬁeld of differential geometry is elegant precisely because of its ability to
describe geometric objects intrinsically. The ability to work on manifolds instead of
surfaces and define “tangent” vectors without making use of a higher dimensional

space makes the field of differential geometry very appealing. In such a way, the
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intrinsic approach to parametric manifolds is also very appealing. I have shown
how to recapture the projective flavor of the Gauss-Codazzi formalism without
introducing any projection operators. After defining the correct action of parametric
vector fields on parametric functions, equation (3.27), and recapturing this action
in the guise of an exterior derivative operator, the correct generalizations of Lie
bracket, torsion, and affine connection naturally followed. Furthermore, in such
an intrinsic setting the Zel'manov curvature tensor (used by Einstein, Bergmann,
Zel'manov, and Perjés) is the most natural generalization of the Riemann curvature

tensor.

With such a firm foundation, the theory of parametric manifolds may now
be easily explored. It should now be straightforward, for example, to develop the
analytical theory stemming from the parametric exterior derivative or, perhaps,
to continue nd expand the field of parametric manifolds by studying the behavior
of (parametric) geodesics and answering question about completeness and other

fundamental geometrical properties.
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4. Fibre Bundles and Foliations

4.1 Introduction

Using the language of fibre bundles and foliations, this chapter will discuss
some of the central concepts presented in the previous two chapters. This disserta-
tion began with the slicing and threading decompositions of spacetime which were
induced by the existence of two different, but very well behaved, foliations. The
slicing viewpoint assumed a foliation by spacelike hypersurfaces, while the threading

viewpoint depended on a foliation by timelike curves.

We will begin this chapter with precise definitions of foliations in order to
place the slicing and threading viewpoints in the proper mathematical context.
Furthermore, when the leaves of these foliations coincide with the fibres of a fibre
bundle, we will see how both the slicing and threading decompositions of spacetime
can be described by the same mathematical structure. By studying how Rieman-
nian metrics on fibre bundles are related to metrics on the base space and typical
fibre, we will recover both the slicing and threading decompositions. Both Reinhart
and Hermann placed certain conditions (discussed below) on metrics in order to

guarantee when a given foliation can be thought of as a fibre bundle.

In the setting of general relativity these conditions are very similar to those
Einstein and Bergmann imposed on the spacetime metric in an attempt to gener-
alize Kaluza’s ideas. Hence, we will include a review of the work of Einstein and

Bergmann leading up to a parametric theory of spacetime.

This chapter will conclude by exploring the definitions of 8, and d, in the
context of fibre bundles. We will see that if M = ¥ x R is thought of as a fibre
bundle over ¥, then the horizontal subspaces defined by 0,;, = 0.+ M, 36{ are “almost”
a connection in a principal bundle, and that d, is the induced covariant exterior
derivative on ¥. We will also see how the operator d, can also be thought of as a

total derivative in the context of jet bundles.
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4.2 Fibre Bundles and Foliations

4.2.1 Quotient Manifolds Defined by Foliations

There exist many sources, and many definitions, for foliations of manifolds.
Both [25] and [17] offer nice introductions to the geometric and topological proper-
ties of foliations and quotient manifolds defined by foliations. Generally speaking,
foliations are a generalized differentiable structure on a manifold. That is, one may

think of a differentiable structure on a manifold as a zero-dimensional foliation.

There are two standard approaches to the study of foliations. One of these
defines foliations in terms of a decomposition of the manifold (the study of submer-
sions), while the other defines foliations in terms of a decomposition of the tangent
space of the manifold (the study of distributions). Both approaches are appealing,
but for the sake of simplicity, I will only discuss the former. Other definitions may

be found in [25] and [17].

For the following, let M be a smooth n-dimensional manifold. I will be

concerned only with smooth foliations and assume all differentiable structures are

of class C*°.

Definition 4.1 A p-dimensional foliation is a decomposition of M into distinct
subsets {L,}, for a € A some index set, such that each point of M has a neighbor-
hood U and a coordinate system (z,y) : U — RP x R? (¢ = n — p) such that for all

L,, the components U N L, are described by equations of the form

h =49
Yy =€y
Yg = ¢4

where ¢, ..., ¢, are constants. Denote the foliation by F = {L,}.
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Definition 4.2 Such a coordinate system is said to be distinguished by the foliation
F.

Definition 4.3 The subsets £, are called the leaves of the foliation F.
Example 4.4. Slicing and Threading.

Earlier we were concerned with spacetimes which were foliated
by, for example, spacelike hypersurfaces or timelike curves. The slicing
viewpoint concerns itself with the foliation by hypersurfaces. Thus, the
leaves in this case would correspond to the surfaces & .+ The adapted
coordinate system used throughout this paper made use of the fact that
there existed a coordinate system in M such that the surfaces (leaves)

¥, were given by {¢ = constant}.

Similarly, for threading we assumed the spacetime M could be
decomposed into leaves which were timelike curves. Again,we made
use of the fact that these curves would be defined (locally) by {z! =

constant}.

In the above example (and hence throughout this entire paper), the foliations
were especially well-behaved. For instance, we intuitively assumed that each time-
like curve intersected some fixed hypersurface at most one time. We did not concern
ourselves with the pathological case of a curve passing through a neighborhood of
M infinitely often. Nor were we interested in the case where a surface 3 . intersected

the same family of threading curves more than once.

Definition 4.5 A leaf is said to be regular if it intersects a distinguished coordinate

neighborhood in at most one p-dimensional slice.

Definition 4.6 F is a regular foliation if every leaf of F is regular.
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This regularity condition has been assumed in previous sections of this paper.
Regularity assures that the manifold topology of the leaf is the same as the topology
induced by the manifold M. Stated another way, the manifold of leaves, M /F, is

a manifold (with the quotient topology) only if F is a regular foliation. Stated

formally,

Theorem 4.7 If F is a regular foliation of M, then

1. M/F is a (not necessarily Hausdorff) manifold with the quotient topology

and

. ™: M — M/F is differentiable and surjective.

For a proof see [25].

4.2.2 Fibre Bundles

Fibre bundles come with many different structures; principal (fibre) bundles,
vector bundles, and (topological) bundles. The fibre bundle with the least amount

of structure is the topological fibre bundle.

Definition 4.8 A (topological) fibre bundle is a collection (E, w, F, B) satisfying

. E,F, and B are topological spaces typically referred to as the total space (or
bundle), typical fibre, and base space respectively,

w. ™: FE — B is a continuous surjective map, and

w1. (local triviality): for any point b € B there exists an open coordinate neigh-
borhood U C B containing b and a homeomorphism ¢ : 7 1(U) — U x F satisfying
m0¢ Nz, f) =z forz €U and f € F. That is, ¢ preserves fibres.
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Property (i12) may be interpreted as meaning that the total space E is locally
a product space. If E = B x F', one would call E a trivial bundle. The local triviality
of any bundle E guarantees that the set 771(), b € B, is homeomorphic to the
typical fibre F'. The collection of sets {w~!(b)} are generally referred to as the fibres
of E. While fibre bundles are fundamental to the study of differential geometry (see

[15]), this dissertation concerns itself with fibre bundles for two reasons.

First, a complete description of both the slicing and threading decompositions
of spacetime can be achieved by the use of a single mathematical structure, namely
a fibre bundle. In fact, the study of the slicing, threading, and parametric pictures
of spacetime is very interesting even in the most trivial setting where M = £ x R.
Given that the spacetime M is a global product, it is clearly a fibre bundle. The
slicing and threading viewpoints simply correspond to different choices of fibre and

base space. We will examine this relationship later.

Second, it seems most natural to discuss the parametric connection, Vj, in
the same terms one would discuss a standard connection of a manifold. Since con-
nections on manifolds fundamentally arise from studying connections on principal
bundles, one must certainly be interested in tracing the origins of V, back to such

a setting. I will address this issue towards the end of the chapter.

There is also a direct relationship between foliated manifolds and fibre bundles.
I already mentioned that while the slicing and threading viewpoints depend upon
foliations of the spacetime, these two viewpoints can also be easily discussed in
terms of fibre bundles. In general, one may use the fibres 77!(b) of a fibre bundle
to define a foliation of the total space E. Although I have been considering only the
nicest foliated spacetimes in this dissertation, it is still an interesting problem to
study when a foliated manifold may be considered to be a fibre bundle. Since the
major motivation for this paper came from studying manifolds with metrics (e.g.
spacetimes), let us turn our attention to studying foliated manifolds with metrics

and their relationships to fibre bundles.



102

4.3 Bundle-Like Metrics .

4.3.1 Introduction and Definitions

The study of foliated manifolds which possess bundle-like metrics has allowed
one to give certain conditions which guarantee that such a space is a fibre bundle
([27] and [11]) as well as offer insight into how the differential-geometric structure of
a foliation affects the global properties of the foliation ([12]). As Reinhart explains
in [27], the motivating example for the concept of a bundle-like metric comes from
trying to construct a Riemannian metric on the total space of a fibre bundle out of

Riemannian metrics on the base space and the typical fibre.

Consider a smooth fibre bundle 7 : M — B with typical fibre F. Now the
fibres 77!(b) above each point b € B are the leaves of a foliation of M. Let V C B
be such that 771(V) & V x F. We will first define a metric on V x U where U
is a coordinate neighborhood of F. If hl.jdxidxj and /’caﬂdyo‘d’y[’7 are metrics on V
and F' respectively, on V x U we take the metric to be hijdxidxj + kaﬂdyo‘dyﬂ. By
using a partition of unity, this metric can be extended to a metric on M. This is
an example of a bundle-like metric. While the functions hl.j depend only on the
position in B and the k_ s depend only on the fibre coordinate, this will not be
the case in a typical example of a foliated manifold with bundle-like metric. In the
general case the fibre-dependent functions k, s will also be allowed to depend on

the corresponding base point in B.

Proceeding as in [27], let us define what is meant by bundle-like in the most
general setting. Let M be an n-dimensional manifold together with a r-dimensional
foliation F. F is defined by a smooth mapping p — F, € T,M to subspaces of
dimension r satisfying the complete integrability conditions. Complete integrability
guarantees that through each point p € M there passes a submanifold N such that
TyN C Fyforallg € N. N is called an integrable submanifold of M. Maximally con-
nected integrable submanifolds are referred to as leaves of the foliation F. In a neigh-

borhood of each point of M we can define local coordinates (z,...,z°% y!,... »y")
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such that the leaves of F' are defined (locally) by z* = ¢' where the ¢! are constants.
The following index conventions will be adopted: 7,57 =1,...,sand a, 3 =1,...,7.
The form dz' A ... A dz® corresponds to the subspace of forms which are zero on
all vectors belonging to the foliation (i.e. those vectors in F,). When working with
foliations it is usually assumed that such a coordinate neighborhood is flat (i.e. it

is the product of cubical neighborhoods of Euclidean s and r space).

!,...,w" and vectors v,, ..., v, such that (dz*,w®) form

Now, choose 1-forms w
a basis for the cotangent space and (v, }9_27) is the dual basis. If M possesses a
metric, one usually chooses the w® so that they are zero on the orthogonal space to

the tangent space of a leaf through a given point.

Definition 4.1. A metric on M is said to be bundle-like if it has the following

form in such a flat coordinate system:

ds? = gi].(x)dxidxj + gaﬁ(x,y)wawﬂ

Definition 4.2. A differential form o is said to be base-like if

oc=0, . (x)dxil A...ANdz'.
Leeis

These coordinate dependent definitions are indeed well defined as Reinhart
shows in [27]. In the above case where the foliation correspohds to the fibres of a
fibre bundle 7 : M — B, the base like forms are just those forms on M induced
from forms on B (via 7). That is, do' on M actually corresponds to 7*(dz’) in
any local trivialisation. Reinhart also mentions that the collection of the w® defines
“a sort of connection in this fibre space.” That is, one lets the w® define a notion
of horizontal in the fibre space. As was mentioned earlier, if there is a metric on
M, this notion of horizontal is chosen to be the direction orthogonal to the leaves

(fibres) of the foliation.

While these definitions have no intrinsic geometric meaning, Reinhart ad-
dresses this deficiency and offers some geometric interpretation of bundle-like met-

rics in [27].
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4.3.2 Foliations With Bundle-Like Metrics

In the Riemannian case, there are some known results about foliations with
bundle-like metrics and the resulting quotient spaces. The following theorem ap-

peared as Corollary 3 in [27]:

Theorem 4.3. Let M be a foliated manifold complete in a bundle-like metric. If

the foliation is regular, then M is a fibre space over a complete (Hausdorff) manifold
B.

Here B is the manifold of leaves whose space is defined by identifying each
leaf to a point. B is given the quotient topology with respect to this identification,
so that a set in B is open if and only if its inverse image under = is open in M.

Regularity of the foliation insures that B is indeed a (Hausdorff) manifold.

Theorem 4.4. Let M be a foliated manifold complete in a Riemannian metric
that is bundle-like with respect to the foliation. If all of the leaves are closed and
the holonomy group of each leaf with respect to the foliation is trivial, then B can

be made into a smooth manifold so that 7 is a smooth map of maximal rank.

This theorem originally appeared as Theorem 4.4 in [12].The fact that M is
complete and each leaf is closed implies that there is a well-defined distance function
between leaves. Thus, one has a metric on the space of leaves B. It turns out that
if the holonomy group of each leaf is trivial, then if one leaf is closed it must also
be regular and hence all leaves are closed and regular guaranteeing that B is a

manifold.

4.3.3 Two Examples (Slicing and Threading)

Let us state what is meant by a bundle-like metric with respect to the two

familiar foliations which yield the slicing and threading decompositions of spacetime.



Example 4.5. Slicing

Consider a spacetime M together with a foliation by
spacelike hypersurfaces (in terms of the above terminology,
the hypersurfaces are the leaves of the foliation). Here p = 3
and ¢ = 1. We’ll adopt the earlier notation so that local
coordinates are given by (¢, z') and the hypersurfaces (leaves)
are defined locally by {t = constant} = %,. This notation
agrees with the earlier discussion of slicing spacetime, but
disagrees with the above section. We will choose one-forms
w' (i = 1,2, 3) such that the w! are zero on vectors orthogonal
to each hypersurface ¥,, thus yielding (dt,w") as a basis for

the cotangent space. Let
w'= Nidt + dz'.

We had earlier ((2.3)) that the unit normal to each slice &,
had the form

thus, the w! as defined have the desired action. The dual
basis is given by (v, 3—2—;) where

0 - 0
=——N'—.

ot ox?

In the slicing notation, the spacetime metric takes the fol-

v

lowing form:
ds* = —(N? = N™N,,)dt* 4 2N, dtdz’ + k,;da’ dz’
= —N?dt* + k (N'dt + dz*)(N7 dt + da”)
= —N%dt? + kijwiwj
Therefore, for the spacetime metric to be bundle-like, one
must require that the slicing lapse function —N? be a func-

tion of ¢ only, while the slicing metric k”. is allowed to be a

function of both ¢ and the z°.
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Requiring the slicing lapse function to be independent
of the spatial coordinates z! is quite restrictive. However,
this condition arises as a result of trying to define a metric
on the base space R. Clearly, any metric on R should depend
only on the coordinate ¢. Such a situation would arise in

spatially homogeneous model in which 8, is Killing.
Example 4.6. Threading

In the threading scenario we concentrate on the foli-

ation of spacetime with timelike curves. The leaves of the

| foliation correspond to the integral curves of %. We will
again work in local coordinates (z*,¢) where the leaves are

! defined by {z* = constants}. We now choose a one-form @
|
|

such that @ is zero on vectors orthogonal to %. That is, if

we consider each leaf as the world line of an observer, & is

zero on all vectors in the local rest space of that observer.

Let
®=dt — Mdz'".

Comparing with equation (2.7), one sees that &, being a

a

multiple of the metric dual of £, is indeed zero on the local

rest space of each observer. Dual to the basis (dz’,@) is

(v;, ) where
d 0

Ui T M’a ozt

Using the threading notation, the spacetime metric is
ds® = —M*dt* + 2M* M dtde’ + (h,; — M” M, M,)dz" da’
* = h; de'de’ — M*(dt — M,dz*)?

— i j 2
= hl.jdx dz? + g,,w
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For the metric to be considered bundle-like, the threading
metric hij must be independent of ¢, while the threading
lapse function g,, = —M % is allowed to depend on both ¢
and the z*.

The conditions for a bundle-like metric seem more rea-
sonable in the threading interpretation. In fact, since we
only require the three-dimensional metric components, hij,
to be independent of £, the property of bundle-like is less
restrictive then requiring 6% to be a Killing vector field. The
condition of bundle-like allows the relationship between an
observers clock and proper time (the threading lapse func-
tions) to be time dependent, whereas the condition of %

being Killing would not allow for such a possibility.
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4.4‘Theodor Kaluza and the Seed of Parametric Manifolds

4.4.1 Introduction

Anyone familiar with the Kaluza-Klein theories of spacetime will notice a
similarity between the threading (1 + 3) formalism and the standard Kaluza-Klein
(144) framework. While it appears that Gunnar Noérdstrom made the first attempt
to unify gravity with Maxwell’s theory of electromagnetism via the introduction
of a higher-dimensional theory, Nordstrom’s theory of gravity differed from Ein-
stein’s general theory of relativity (see [1]). Kaluza first attempted such a higher-
dimensional unification of Einstein’s theory of gravity with Maxwell’s theory of
electromagnetism in {14]. Kaluza attempted to describe ordinary four-dimensional
Einstein gravity and Maxwell electromagnetism by working in a five-dimensional
space. Gravity and electromagnetism were then obtained by imposing a “cylindri-
cal” condition on the fifth dimension. As Kaluza is basically beginning with a (1+4)
decomposition of a five-dimensional space, many of his calculation are reminiscent
of the threading viewpoint. In place of the threading metric, Kaluza has the ordi-
nary Einstein metric of spacetime, and taking the place of the threading shift is the

electromagnetic vector potential.

Later, Finstein and Bergmann generalized Kaluza’s theory. In [8] Einstein and
Bergmann reformulated Kaluza’s ideas and then proceeded to replace the “cylin-
drical” condition imposed by Kaluza by a “periodic” assumption, thus ascribing
physical reality to Kaluza’s fifth dimension. In their resulting ansatz lies the begin-
ning of a true parametric picture of spacetime (although still nestled in the comforts

of a five-dimensional space).

The collection [1] is a valuable source of many of the early papers on the
Kaluza-Klein theories of unification. As many of the original papers are hard to

find, I will reference this collection in most instances.
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4.4.2 Threading and Kaluza’s Theory

Einstein presented Theodor Kaluza’s paper On the Unity Problem of Physics,
[14], on December 8, 1921. Conjecturing that the components of the electromagnetic
tensor 7 F , = %(Aa,b - Ab,a) could somehow be truncated versions of a Christoffel
symbol I'% | Kaluza turned to the freedom of a fifth dimension to carry out his
theory. By considering physical spacetime as a subspace of a five-dimensional world,
Kaluza had to introduce his “cylindrical condition” to account for the fact that we

are only aware of the four-dimensional spacetime around us.
In (8], Einstein and Bergmann state Kaluza’s ansatz as follows:

1. One has a five-dimensional metric

ds* = gaﬂdx“dxﬂ (a, 8=0,...,4).

2. Cylindrical condition: There exists a Killing vector field A*. That is, setting
A, = gaﬂAﬂ, one has
Vod; + VA, =0.

V4 is the derivative operator associated with the five-metric g_ 5

3. The integral curves of the vector field A® are assumed to be geodesics. Call

these integral curves A-curves

It follows from the cylindrical condition (Killing’s equation) that the norm of
A is constant along the A-curves. However, it can also be shown that the norm of
A% is constant throughout the entire space. As one should guess, the antisymmet-

rical derivatives of A%, A

field.

af A g0 BT€ supposed to make up the electromagnetic

Reminicent of threading, one introduces an adapted coordinate system. Con-
sider an arbitrary four-dimensional surface which meets each A-curve exactly once.

On this surface one introduces coordinates z* (i = 1,...,4) and assumes that the
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fifth coordinate z° is identically zero. Picking an orientation, one can now define
the coordinate z° as the distance from the surface along one of the A-curves. Then,

since .
t? = /(; V900 dz®,
in these coordinates g,, = 1 on each A-curve and hence in the entire space. By
choice of the coordinate 2°, A" = 0. If the constant norm of A4 is considered to be 1,
then one has A° = 1. One should note that the coordinate vector field 0, is tangent
to the A-curves. Therefore
| 0= Aa;ﬂ + Aﬂ;a
= Aa,ﬂ + Aﬂ,a — 2A7F7aﬂ

= (90vA") 5 + (950 A) 0 = A9y 5+ 90— Gaip )

- Avgaﬂ,v + g"VAv,ﬂ + gﬂ”/AV,a

=g, 80
and we see that the cylindrical condition can be restated as the condition that

the components of the metric do not depend on the extra parameter z°. Since

Ay = gaﬂAﬂ’

A =g, and Ay =gy =1

1

It should be noted that since the components of the metric are independent of z°,

so are the components A4,,.

| At this point one could argue that we have expressed our five-dimensional
space in terms of the components of a four-dimensional metric tensor, 9 and the
components of a four-vector A.. However, this description is not invariant under
reasonable change of coordinates. As Einstein and Bergmann mention, there are
two fdmilies of coordinate transformations which preserve the nature of the adapted
coordinate system. The coordinates on the original four-dimensional surface were

chosen arbitrarily and hence the following coordinate changes should be allowed:

ii — .’ii(xi)
(4.2)

70 =20
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In keeping with their terminology, we will refer to such a transformation as a four-
transformation. Furthermore, since the original four-surface was chosen arbitrar-
ily (and hence the origin of the extra parameter z°), one can pick another four-
dimensional surface (with the same coordinates z' and the same A-curves), in effect
re-parameterizing the five-dimensional space. Such a transformation will be called
a cut transformation and has the following form:

.’fl:xl

70 = 2% + f(z").

Under a four-transformation it can be shown that the A, and 9 do indeed transform

(4.3)

like four-dimensional tensors. However, under a cut transformation (reparameteri-

zation) the components transform according to

_ of
A =4 — —
t v Ozt
_— of of of of
95 = 945 7 S0i ey~ 90i T T Bl o
Even though the components A. do not transform correctly, the antisymmetrical

8 Thus one considers

derivatives of A, are invariant under such a transformation.
the quantities Ai,j — Aj,l. rather then simply the A.. In an attempt to overcome
the non-covariance of the 9 Einstein and Bergmann are lead to consider the five
dimensional tensor

h ~AaAﬂ.

ap = Jap
In our adapted coordinate system the only nonzero components are hij' Fur-
thermore, the hij transform like the components of a tensor under both four-
transformations and cut transformations. As we saw in the case of threading, the
h;; arise from calculating the distance of two infinitesimally close A-curves. There-
fore, we have in this coordinate system the standard Kaluza ansatz in which the

five-dimensional metric takes the form

(1 A,
Jap =\ 4; hy+AA,

® As the authors mention in [8], this corresponds to the fact that the electro-
magnetic potentials are defined only up to additive terms which are gradients of an

arbitrary function.
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~ where hz.j represents the four-dimensional metric of spacetime and A, are the com-

ponents of a co-vector field meant to be interpreted as the electromagnetic potential.

4.4.3 Einstein and Bergmann’s Generalization

As a result of Kaluza’s “cylindrical condition”, the components of the higher-
dimensional metric are assumed to be independent of the extra parameter z°. In
light of the above discussion, it is clear that this is analogous to the case of a (1+3)-
decomposition of spacetime in which the threading curves represent an isometry of
spacetime (i.e. gt— is a Killing vector). In an attempt to give Kaluza’s fifth dimension
some physical meaning, Einstein and Bergmann generalized Kaluza’s original theory
by replacing the “cylindrical condition” with a “periodic condition”. As we shall
see, the net result is the fact that the components of the resulting four-dimensional
metric tensor hz.j are, in general, functions of the parameter z°. Thus, the seeds

of a parametric structure of spacetime are planted. The following paragraphs will

outline Einstein’s and Bergmann’s generalization.

Again working in a five-dimensional space, Einstein and Bergmann made the

following assumptions:

1'. One has a five-dimensional metric

ds* = gaﬂdx“dxﬂ (a, 3 =0,...,4).

2'. Periodic postulate: The five-dimensional space will be considered to be closed
with respect to one dimension. However, this fact will be represented by an
open space that is periodic with respect to this dimension (“unroll” the cylin-
der). Therefore, as one moves about in this dimension one will repeatedly
encounter points p,p’,p”, ... that represent a single point in the five dimen-

sional space.
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3'. There also exists a family of closed geodesics such that each point in space lies

on exactly one geodesic. In terms of the open space, each equivalence class of

points {p,p’,p",...} lie on the same geodesic. These geodesics will again be

called A-curves.

surface which meets each A-curve exactly once, choose coordinates z*. Picking a

The adapted coordinate system is introduced as before. On a four-dimensional ‘

positive direction, one can define a fifth coordinate by the metric distance from the

surface (considered to the the set 2° = 0) measured along an A-curve. Letting b |

represent the length between two consecutive periodic points,

!

P
b:/ ds,
p

one has the z° coordinate of a point p

where p, is on the initial surface.

As before the vector field A® is given by
A'=1 A'=0
and thus
| A; = 9oy
One also introduces the tensor with components

h — AaAﬂ

af = Yap

of which only the hz.j are non zero. Thus, the hl.j are interpreted as a four-

dimensional metric tensor (the actual spacetime metric).

It turns out that, as with Kaluza’s original theory, the components A, are

independent of the parameter z°. However, the difference in this generalization lies

in the fact the the metric tensor s allowed to be a function of £°. Thus, we see

that Einstein and Bergmann are requiring precisely that Ias be bundle-like.
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Einstein and Bergmann continued by defining all of the covariant operations
necessary to be able to analyze four-dimensional (spacetime) tensors in this five-
dimensional framework. In other words, they are treating spacetime as a parametric
manifold! For Einstein and Bergmann, the components of a four-tensor are allowed
to depend on all five coordinates =, but must transform like an ordinary four-
dimensional tensor under a four-transformation ((4.2)) and remain invariant under
a cut transformation ((4.3)). The fundamentals of their tensor analysis can be

summarized by
1. Since -32—0 = 3—2—0— under either of the transformations, differentiation with

0

respect to the parameter z° is a covariant operation.

2. The action of the operator

0 0

oxi  Ti9z0

(4.4)

leave the components of a tensor invariant under a cut transformation. Thus,
for a covariant derivative operator one replaces ordinary partial derivatives,

52‘-', by (4.4), yielding (for example)

VaB; = (331' B Az'gi?)Bj = 75iBm
=B;; = 4By~ 7"%iBm
= Bj*i - ’YT?iBm
where
Yk = %him(hmj*k F R = Piam)-

These are the main analysis rules for parametric tensors.

Einstein and Bergmann also used the ~° ;&S to define a notion of curvature

which agrees with Zel’'manov’s later definition.
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4.5 Decomposition of Metrics on Fibre Bundles

4.5.1 Introduction

The slicing and threading frameworks can be described as part of a single
mathematical structure; a fibre bundle. The slicing and threading metrics, shifts,
and lapse functions naturally arise when one examines the decomposition of a bundle
metric in terms of metrics on the base space and the fibre space. By choosing the
base space and fibre space correctly, one recovers either the threading or slicing

framework.

As the presentations of the slicing and threading viewpoints in chapter one
mainly focused on the decomposition of the spacetime metric, that will be my main
concern in this section as well. The motivation behind Reinhart’s notion of bundle-
like metric came from an attempt to construct a metric on the total space of a
fibre space out of metrics on the base space and typical fibre. Such a construction
was very reminiscent of the construction process of slicing and threading. In this
section, I would like to address the converse. That is, given a metric on the total
space, what conditions are necessary in order to construct metrics on the base
space as well as the typical fibre. Since I am interested in this problem in order to
better describe the slicing and threading decompositions, I am really only interested
in local decompositions of the metric. Thus, I will be working in a single local

trivialisation of the bundle.

Let M be a fibre bundle with base space B, fibre F, and continuous, surjective
projection m : M — B. For the purposes of slicing and threading one should take
M to be a spacetime and the collection of fibres {r~!(z) : z € B} to represent
the appropriate foliation (spacelike hypersurfaces for slicing or timelike curves for
threading). Furthermore, Wé have B = M/F under the equivalence induced by the
fibres (i.e. for p,¢ € M, p ~ ¢ & 7(p) = 7(g)). We may call B the manifold of
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leaves. Using the terminology of the preceding chapters, we may call B the manifold

of orbits also.

For the following I will work within a single local trivialisation with adapted
coordinates. Let U C B be a coordinate neighborhood with coordinates z* such
that 77!(U) ~ U x F. Furthermore, within a coordinate neighborhood of =~(U)

we may use coordinates (z*,y*) where y* are coordinates on F.

For any p € n~}(U), there exists a natural subspace V, C T,M called the
vertical subspace. V, is defined by

Vi={XeT,M:7(X) =0}

Complementing the notion of vertical, define a subspace H » C T,M sothat T,M =
Vo, @ H, and call H, the horizontal subspace. Certainly there are many smooth
choices for H,. If M has a metric, H, may be chosen quite naturally to be the

orthogonal complement to V,.

Now, given a metric ¢ on M is there a natural choice for metrics » and & on
B and F respectively? Not unless additional structure on M is given or we allow
for the additional freedom of a parametric metric. Let us mention a few of these

possibilities in greater detail.

4.5.2 Metric on the Base Space

For X, Y € T, B there exist unique horizontal lifts of X and Y at each point
p € 7~ 1(z). Call these lifted vectors Xp and Yp. It would seem natural to define
h(X,Y) in terms of these lifts. In order for A to be well-defined there are various

options depending on the additional structure one is willing to assume.

1. If g were constant along each fibre, then g(X'p,f’p) = g(X'q,}A"q) for all p,q €
7~1(z). One could then define

MX,Y) = g(X,,Y,)
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for any p € n71(z). Actually, we can loosen this restriction somewhat. We
only need that ¢ restricted to the horizontal subspace H p» 1s constant along
each fibre. This is essentially Reinhart’s condition that ¢ be bundle-like with

respect to the given foliation.

2. If there were some preferred global section ¢ : B — M (e.g. F is a vector

space) one could define

RXY)=9(X, .7, 00)

o may refer to some initial hypersurface in an initial value formulation.

3. One could allow the metric on B to carry an extra parameter, namely y©, and

define

AX, Y)Iya - g(X(I‘,y‘*)’ Y(rv",y“))

and, hence, begin to consider B as a parametric manifold.

If h has been defined in one of the above situations, the component functions

h, ; can be defined and computed. Suppose the horizontal direction is defined by

the basis
0

izaxi

H

o« 0
[3 aya *
We define the horizontal lift of 3—2—; to be a—i—; =H..

One may now define the components of & by

a 0
hij = h(axi’éﬁ)

a b
=g('a—x"'{a5x7)

a a 0 a
— a 4
“g(axi +T; Ay’ dz +I; yﬂ)
=9;; + 21—‘?ng + F?F?gaﬂ

We are assuming h(ﬁz‘ﬁ %) is well defined, but the functions hij may be functions

of y* as well as z* (as in 3.).
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4.5.3 Metric on the Fibre

There are similar obstructions to defining a metric £ on F. Vectors Z, W ¢
T, F can be naturally identified with vertical vectors (tangent to the fibres) of M.
We have many natural embeddings of F into M. The problem is which fibre?
As with h, we need some additional structure which allows us a definition in the

following sense:

k(Z,W)=g(Z,W)

where Z and W represent some mapping of Z and W into vertical vectors of M.
That is, we define % to be a pullback of g. Since & depends on which imbedding of
F' we use, we can think of k¥ as being parameterized by the coordinates (z*) of B.

We therefore define the components of k¥ by & That is, one can

ﬂk i aﬂhz
use the local trivialisations to pull back the metric ¢ to a parametric metric on F.

4.5.4 The Decomposition

We can now write the original metric g of M in terms of A and k. We have:

kaﬂ gaj

(gab) =
9:8 hij - 2F?gaj - F?F?kaﬂ

9 9
Oz’ Oy«

0 o 0
_ 8 8
”g(ama+raaﬂ dye ) T3 9as

where

Since M has a metric, we may choose our notion of horizontal so that H. is

orthogonal to a;’a. In which case we have g(H , ay ) = 0 and 9o I‘ g

—T?
I‘chaﬂ

af =
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In this special case g takes the following form:

T8
kaﬂ Fj kaﬂ

(gab) =

_re o
ek, hy+T8T

g

Example 4.1. Threading.

Take F' = R with coordinate 4° =t and B = ¥ to be a
three-dimensional manifold with coordinate z* (i = 1,2, 3) as
before. In terms of the above decompositions, the spacetime
metric is of the following form

koo ~T .k

%00
(gab) =
"Fz’koo hz’j + I‘z'ijoo
Since k,, represents the squared norm of 5‘9;, according to
previous notation ky, = —M?2. This decomposition is then
precisely the same as the threading decomposition with L. =
M, and where h;; is the threading metric on the manifold

of orbits 3. Thus, the notion of horizontal is given by H .=

5%{ + Mi;% which corresponds to the orthogonal subspace to

9
ot

Example 4.2. Slicing

By switching the roles of F' and B in the above ex-
ample, one has the original slicing story. Let F' = ¥ with
coordinates y* = X* (i = 1,2,3) and B = R with a single
coordinate z° = ¢t. One has:

k.. ~Tk..
)

tJ
~Tik,; hey + Tk,

As before, kl.j is the slicing metric, I'¥ = —N?, and hy, =
—N2. Here the horizontal subspace is given by H; = % +
N "% which is orthogonal to the hypersurfaces %,.
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Now, in the slicing and threading pictures of spacetime, one always has both
sets of foliations (foliations by hypersurfaces as well as by curves), thus the slicing
and threading pictures of spacetime can be described nicely as part of a single
mathematical structure; a fibre bundle. By choosing which foliation corresponds to

the fibres, one is handed either the threading or slicing framework.
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4.6 Parametric Manifolds and Fibre Bundles

Consider the fibre bundle picture that leads to the threading decomposition
so that ' = R and B = X. For simplicity, assume M = ¥ x R, so we have a trivial
bundle 7 : ¥ xR — ¥. We just saw how the spacetime metric naturally decomposes
into the threading metric on ¥. More precisely, if there were no special conditions
imposed on the spacetime, it decomposes into a one-parameter family of threading

metrics.

We also used the spacetime metric to designate a preferred notion of hori-
zontal in T, (£ xR) = T,M. We had H; = ;2 + M,;£ where M,dz’ was the
threading shift one-form. This notion of horizontal depends upon the ¢ coordi-
nate of M, as, in general, the functions M, depend on ¢. Thus, without imposing -
additional restrictions on the spacetime M there is no natural relationship be-
tween the horizontal spaces H,(p,t) and H,(p,t + s). That is, the choice of H,
does not constitute a connection in the usual sense of a connection on a vector
bundle (since F = R, 7 : M — T is a vector bundle). Stated more precisely,
if a, : 771(b) — 771(b), s € R induces some action on the vector space R (say
(b, t) = (b,5+1)), the induced map on TM given by «,, may not take horizontal
vectors into horizontal vectors. As Reinhart mentions in [27], these choices for H.

nevertheless define a “sort of connection”. We still have a smooth decomposition of

T,M =YV, ® H,, and we can still talk about horizontal lifts. However, we will not

require the horizontal subspaces to transform in any particular way as one travels

up and down a specific fibre.

For X = X';% € T, X, we can define its horizontal lift at (z,t) € 771(2) to

ozt
/0 9
f=xi(2L il .
(aac’ + &s) |z

Now, a parametric function f : ¥ x R — R is just a function f : M — R, and thus

be

there exists a natural action of X € T,% on f given by the horizontal lift of X.
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Therefore we have

. : 0
X =x <£i —I—Mi—a—t> f

Again, we see the parametric derivative operator 0,, as the most natural derivative

operator on parametric functions.

If 3 is thought of as a parametric manifold, a reparameterization of X given
by s =t + F(z) is just a coordinate transformation on the fibre 7=!(z). We have
studied the effect of such a coordinate transformation on the horizontal bases H,

earlier. We had
0 OF 0 0

,'_ — — , —
Hi=gi " awa T Mip

0 OF\ 0
=5t (M5 3

where M| are the components of the threading shift one-form after a coordinate
transformation of the fibres. Therefore, when defining a parametric structure on ¥
we require that the one-parameter family of one-form field obey the reparameteri-

zation property (equation (3.26)).

Not only does this fibre bundle setting easily reproduce many of the results
we obtained through projection techniques, it also offers a nice description of the
parametric exterior derivative operator, d,. When studying the curvature in a
principal bundle (since F' = R is a Lie group, 7 : M — X is also a principal bundle)
one uses the exterior derivative on M and the notion of horizontal to define an
exterior covariant derivative operator. For any k-form # on M and letting d denote

the usual exterior derivative on M, define D by

DY (X, Xy, ) = d6 (H(X,),... H(X,,,)).
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For a 0-form (or parametric function) f we have
Df(X) = df (H(X))
0

i ; 0
= df <X Mz +X ﬁ>

— 1 71 6f
= MX ot +A Ozx!

=X'f *i

— 4, f(X),
where the last line emphasizes that D f agrees with the earlier notion of parametric
exterior derivative. Using the generalized axioms for a parametric exterior deriva-
tive, we can extend Df = d,f to a parametric exterior derivative operator on
Y. Thus the exterior covariant derivative operator in the bundle gives rise to a
parametric exterior derivative operator on the parametric manifold ¥. It should
be emphasized again that the subspaces H, do not constitute a connection in a

principal bundle since they are not preserved under the group operation (addition).

The next, and final, step would be to write V, as a connection in a principal
bundle. That is, use D to define a covariant derivative on the parametric manifold
Y. There are, however, barriers for such an interpretation of V,. Difficulties arise
because the choices of H, do not constitute a true connection on the principal bundle
7: % x R — 3. This is due to the fact that any group action « on a fibre will not
necessarily induce a map «, : T,(ExR) —» T (p)(E x R) which preserves the choice

of H; (at lease without introducing restriction on M).

As the notion of horizontal corresponds to the subspace of vectors orthogonal
to 3@;, one may wish to consider the notion of Fermi-Walker transport. Fermi-
Walker transport arises when one considers an orthonormal tetrad for an arbitrarily
accelerated observer (see [19]p170). If m represents an observer, a vector field X is

sald to have been Fermi- Walker transported along m if
MmOV o XP + ma X*AP — A X*mP =0 (4.5)

where A% = m2V,m” is the acceleration of the observer. It is true that Fermi-

Walker transport preserves norms (and hence angles) of arbitrary vectors. That is,
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vectors which are perpendicular to the observer will remain perpendicular to the
observer after Fermi-Walker transport. Thus, horizontal vector fields which have
been Fermi-Walker transported along integral curves of a% remain horizontal. There
1s, however, no group action of R which induces Fermi-Walker transport on T M.
As with all other parametric object, the best one can achieve is by interpreting V,

as a one-parameter family of (standard) connections.

It should be emphasized that in the theories of Kaluza as well as Einstein and
Bergmann additional structure (Killing and bundle-like respectively) was imposed
on the spacetime. This additional structure provided the much needed symmetry
in the vertical direction. Furthermore, in more general settings such as Yang-Mills
theories, the group (fibre) symmetry is still present. Thus, we have that V, is a
notion of connection in a more general setting. Perjés mentions how the parametric
derivative 0, may be interpreted as a generalization of an invariant derivative in
gauge theories. Thus, one may anticipate the usefulness of such derivative operators

in a generalized Yang-Mills setting.
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4.7 Parametric Manifolds and Jet Bundles

4.7.1 Introduction to Jet Bundles

Jet bundles may be thought of as generalized tangent spaces to manifolds. As
Saunders mentions in [28], a first-order jet generalizes the notion of a tangent vector
by considering equivalence classes of higher-dimensional manifolds passing though
a point (rather then curves). The relationship between jet bundles and parametric
manifolds begins with considering the trivial bundle associated with the threading
viewpoint:

Y xR

|

It turns out that jet fields associated with the first jet bundle J} correspond to one-
parameter families of one-form fields on ¥. Also, for each jet field there corresponds
a notion of a total derivative. If one chooses the preferred jet field associated
with the threading (i.e. parametric) decomposition of ¥ x R & M, then we can
interpret the corresponding derivative as a parametric exterior derivative d,. This

interpretation of d, agrees with our earlier definition.

Let (E,n,F,B) be any fibre bundle. We will refer to this bundle by the
projection map 7. For p € B let ¢, € I', (7) be sections of the bundle 7. The

definitions contained in this section can be found in [28].

Definition 4.1 We say that ¢ is one-equivalent to v at p if
1. ¢(p)=%(p)  and

. ¢*|p = Vx| -

p
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Definition 4.2 The equivalence class [4] is called the first-jet of ¢ at p and is

written ];)qﬁ

Consider the set

Jr={is¢:peB,geT,(n)}
with maps 7, : J1 — B and 7, ; : J1 — E defined by
T (jp¢) =p
1 0(ip8) = ¢(p).

Claim 4.3 J} is manifold.

Proof: 1 will define a set of coordinates for J}. For a complete proof
see [28]. Consider a locally trivial neighborhood U in E so that we can
use adapted coordinates (z*,u?) in U. That is, the coordinate functions

z* are pulled back from B via 7. We define an induced coordinate system
(U',u") on J1 by :
U' = {ip6: é(p) €U}
u = (xi, ua,u?)
with . .
z*(j¢) = 2'(p)
u(j16) = u((p)

: d9°
ui(ihé) = o

»
Thus, one uses derivatives of ¢ to define coordinates on J}. Using these

coordinates, one can show that J! is indeed a manifold. &

Furthermore, it is shown in [28] that

Claim 4.4 m, ,: Ji — E and mr, : J1 — B are fibre bundles.
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1,0

o L

Jl

1

Although I will not take the space for a complete description of jet bundles, it
~ is worth noting that one of the most important features of the bundle (JL, 10 E)
is its affine structure. This gives sections of the bundle many of the features of
a vector field on a manifold. While a vector field has a “flow” parameterized by
a one-dimensional manifold, the “flow” of a jet field is parameterized by the base
space B. Furthermore, in some cases (soon to be shown) the jet field may act as a
derivation. We will see how the action of a jet field corresponds to the action of a

parametric vector field on parametric functions.

The map 7* may be used to pull back forms on B to forms on E. These forms

are called horizontal forms. More precisely,

Definition 4.5 A horizontal one-form on E is a section of n* (I*B) — E. Denote

the collection of such forms by /\LW.

Definition 4.6 Given a jet le,qﬁ € J1, the action of the jet on functions on E is
the mapping ]Il)qﬁ :C>®(E) — 4(p) defined by

ﬁﬂﬂ=f(ﬂwﬁﬁu>

In coordinates this action takes the form

| of o Of ~
1 — a4l !
Jpdlfl = (&Ei s T (9) 3y |¢<p)>  phico

Definition 4.7 A section I : E — J} of the bundle 7,0 Will be called a jet field.
The action of I' on functions is the mapping C*°(E) — /\;7!' given by

Tf)), =TEE)I. (46)
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In terms of the coordinates introduced above, we have

I'f= <8f. + ¢ 8f>dx"

ozx? ' Que

where I'{" is the coordinate representation of I' given by I'* = u& o T..

Claim 4.8 Starting with the trivial bundle (£ xR, 7, ¥) associated with the thread-

ing viewpoint there exists a canonical diffeomorphism between the first jet manifold

J! and T*S x R.

Proof: The diffeomorphism is given in [28]. Locally (for some
neighborhood W C %), we have that for any section ¢ € T';, (7) we use
the standard projection 7, : ¥ x R — R to define b = T, 0 ¢ in some
neighborhood W C B. Now, ¢ € C®(W) and the diffeomorphism is
given by

o (45 60))

Saunders proves that this map is indeed a diffeomorphism. #

4.7.2 Example

Let us suppose that on is given a spacetime (M, ¢) with a timelike congruence
given by the vector field ?’?—t' One may now work on the three-dimensional manifold

of orbits, ¥, and consider a (1 + 3) decomposition of M.

Consider a decomposition of ¢ in terms of the threading lapse function, M,
the threading shift one-form Ml.dac", and the threading metric hl.j. Recall that
while the functions M, M, and hi]. are functions of (t,aci), they do define three-
dimensional tensors on ¥ which carry an extra parameter. Furthermore, assume
that the coordinates (¢,z’) on M respect the timelike congruence. That is, an
integral curve of % is given (locally) by the set {z* = constant}. Therefore the z°

can be used as coordinates on X.
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Consider the bundle 7 : M ~ £ x R — ¥, where n(p) is the unique integral
curve of % which passes through p € M. Now construct the first jet bundle,
Mo Jx = ZxR. Let T: T x R — J} be a jet field. Since J: ~ T*E x R, T can
be thought of as a map

F''¥xR-T"Y xR (4.7).

We will call such a map (section) a parametric one-form field and denote the col-

lection of such maps by PT(%).

In particular, the smooth functions M, yield a preferred jet field I given by
I'(a',t) = (z*,t, M,(a,1)).

Furthermore, under the diffeomorphism J! = T*¥ x R, the point (&%, 1, M (z',1)) is
identified with the one form Midmi. Now, Midmi is a one-parameter family of one

forms on X.

Given any jet field T, there exists an action on C°(Z x R). We will call
f € C(2 x R) a parametric function.

For each j;¢ € J1, define a map Jp¢: C®(Z xR) — Tg(p)(E x R) by

ipolf) = (d(@" 1) ).

In coordinates,

. of 14,97 '
L — . (o)== dz*
ipélf] (8m’ |¢(p) +M05,4) ot |¢(p)) * |¢(P)
We will write j;¢[f] = jdzir j1¢d$i|¢( y
P P

Now, the action of jet field I' is given by equation (4.6)and from the definition
of j;8[f], one readily sees that J»¢[f] is a horizontal one-form on T x R.

Therefore, we have for each jet field I' a notion of a parametric ezterior deriva-

twe, d : C°(X x R) — PI given by

¥, =T (48)
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We explicitly note that the parametric structure depends on a choice of a pre-
ferred jet field. However, we have a preferred choice of jet field given by our
(143) decomposition of spacetime. Namely, we have a jet field T taking (z¢,¢)
(xi,t,Mi|(zi’t)) € JL.

Thus, our preferred notion of parametric exterior derivative takes the following

form: df
= Rl

= (G|, TGO e
B2 | o | e
of ;

- (B_x”zzs(p) M 01 |¢<p>) ] s

_ad
- Ozt |¢<p) |¢<p)

= f;da’

Here we see that the above “starry” notation is the same as before! We have indeed

reproduced the earlier parametric exterior derivative!

This notation agrees with the anticipated action of a parametric vector field

on a parametric function.

We thus define a parametric vector field of ¥ to be a section X : ¥ xR —
TY x R. Now, let f be a parametric function (ie. f € C®(Z x R)). If X(z%,t) =
(X2, 57, 1), then let X be the horizontal lift of X at time ¢ and define

X(f) = X(f)
Since X = Xi(E + M, £) € T(Z x R), he have

X(f) =
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5. Avenues of Future Research

5.1 Introduction

In this chapter I will discuss some possible applications of parametric mani-
folds to general relativity. As the theory of parametric manifolds gives one a way of
analyzing time-dependent fields on fixed manifolds, it is particularly useful in the

study of initial-value problems.

First, I will address the issue of the quantized scalar field. In particular, I will
show how the decomposition of the spacetime Laplacian is simplest in terms of a

parametric theory.

Second, I will address the initial-value problem of general relativity itself.
As the standard initial-value formula-ton of general relativity relies on the Gauss-
Codazzi equations, the generalized Gauss-Codazzi equations can be used with less

restrictive sets of initial-data.

5.2 Quantization of the Scalar Field in Curved Spacetime

5.2.1 The Problem

For spacetimes which admit an everywhere timelike, hypersurface-orthogonal
Killing vector field, there exists a standard procedure for the quantization of the
Klein-Gordon equation. Such spacetimes are called static and, if we take the integral
curves of the Killing vector field to be our threading curves, then the slicing and
threading viewpoints agree. Moreover, since the threading vector field is Killing,
all “time” derivatives of the metric are zero. Hence many aspects of the parametric

viewpoint will agree with the usual threading (or slicing) decomposition. That is,
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“starry” derivatives of the metric are ordinary partial derivatives and the parametric
Christoffel symbols agree with the standard Christoffel symbols associated with the

threading metric.

In the case of spacetimes which are stationary but non-static, the slicing and
threading viewpoints are different (stationary but non-static implies non-zero shift).
In such a situation one has (at least) two options. One could follow the procedure of
Ashtekar and Magnon [2] and regard the timelike Killing vector field as fundamental,
or one could follow the procedure of Dray, Kulkarni, and Manogue [7] and regard
the surfaces of constant Killing time as fundamental. As in shown in [7], these two
procedures differ. Consider this problem from the slicing, threading, and parametric

points of view.

The massless Klein-Gordon equation is
Llg=0

where [1¢ = gaﬂvavﬂqb for a scalar field ¢. At the heart of any quantization
procedure is an initial-value formulation of this equation, i.e., a decomposition of
spacetime into “space” and “time”. As shown below, in a static spacetime the de-
compositions are identical. However, when one considers a stationary but non-static
_spacetime, one has a simpler decomposition in the parametric setting. Further work
on applying the parametric viewpoint to the quantization of the scalar field in a sta-
tionary but non-static spacetime, as well as on an arbitrary spacetime background,

is in progress.

5.2.2 Hypersurface-Orthogonal Decompositions

For the sake of generality, let us assume that a% 1s not necessarily Killing. In

terms of the spacetime metric 9,4 OD€ may write

D¢ = gaﬁvavﬂ ¢

= = (Vils™s.0)

(5.1)
B
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I will introduce the notation A w O, and A, for the three-dimensional Laplace
operators in the slicing, threading, and parametric viewpoints respectively. As in

(5.1), one may show tha these operators may be written
. 1 ..
A= —— (VIFTkg,
VIR ( ‘)
1 g
Aué = —= (VIFInIs,
o= 7 (VIR
1 g
A =—=(\IhhYd,,)
r (VIERIS,)

where hij and kl.j are the threading and slicing metrics respectively. As usual,

»J

»J

Greek indices run over all four spacetime coordinates, Latin indices run over the
three “spatial” coordinates, and the threading vector field is assumed to be ;%.
Also, let m® be the unit vector tangent to the threading curves and n® be the unit
vector normal to the slicing surfaces. Continuing with the earlier notation, let M

and N be the lapse functions and M, and N * the components of the shift one-form

and vector fields respectively. If M, =0= N *, then direct computation shows that

1 . ‘/u.q
_ Lt B o o
Dcﬁ_Aqu—l—NkJN,iqﬁ,j—n Vﬂ(n Vad) — 'k|n Vo

g = Ao+ “‘Al/_?hijM,iqS,j - mﬂvﬁ(mava¢) - M\/ﬁllhlmavaﬁb (5.2)

1 . i
Ll =A,é+ —Mh”qﬁ*jM*i — mﬂvﬂ(mava@ — Wmava¢
where V is the spacetime Levi-Civita connection, and a dot denotes differentiation
with respect to ¢t. These equations are valid regardless of the Killing condition on
the vector field ;%. In the case of a static spacetime, the last term in each of the

above expressions will vanish.

One should note that the above equation (5.2) are all identical, since in the
hypersurface-orthogonal case we have M = N, m® = n?, hij = kl.j, and 0,, = 4,

thus making all three decompositions coincide.
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5.2.3 Non-Hypersurface-Orthogonal Decompositions

When the threading curves are no longer orthogonal to the slicing hypersur-
faces, shift is present. The presence of shift implies that the lapse functions M and

N are different, hij # kij’ m® # n®, and 9,; # 0,. In such a case we have

y %
Lg =A, ¢+ %k”N,iqS,j —n’V,(n"V,¢) — NL,T_ILI n*V.¢

+ %navaquiNi

L¢ =A,¢ — m"V,(m*V,¢) + —Al/[—h"jqﬁ,jM,i — M\/_F/Tlfﬂ m*V,¢

+ Mm®V ,¢D, M
[ =A,¢ + —Al/?h"qu*j(M*i + MM,) = m'V,(m*V,¢)

_ \/|_—| mav
M\/l_h—l a¢

where D and D are the Levi-Civita connections associated with the slicing and

threading metrics respectively. Again, a dot denotes differentiation with respect to
t, so if % is assumed to be a Killing vector, some of the above terms are identically
zero. Note that only the parametric decomposition contains no divergence term,

which should simplify the quantization procedure.
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5.3 Initial-Value Formulation in General Relativity

The standard initial-value formulation of general relativity begins with a set of
initial data consisting of a three-dimensional Riemannian manifold ¥ (with metric
k) together with a symmetric rank-two tensor field K on X. It is possible (c.f. [30])
to use the Gauss-Codazzi equations to obtain the initial-value constraints

1. DK;-DK'),=0 and
7 J 7 ?
1
2

where D is the Levi-Civita connection associated with & and 2R is the Ricci scalar.

2. (R+ (k%) - K,;K7) =0

If £ and K satisfy the initial value constraints, it can be shown that there exists a
globally hyperbolic spacetime satisfying Einstein’s equation which admits a Cauchy
surface diffeomorphic to ¥. That is, there exists a spacetime with an embedded
spacelike surface diffeomorphic to ¥ possessing the property that the past and
future of this Cauchy surface is the entire spacetime M. Furthermore, the induced
metric on ¥ is k and the induced extrinsic curvature of the Cauchy surface is K (see
[30}). Recall that if n is the unit vector normal to ¥ and if X and Y are tangent

vector fields on ¥, the extrinsic curvature K is defined by
K(X,Y)= <—VXY,n>

where ( , ) is the metric of the spacetime. If one assumes that V is torsion-free,

then K is a symmetric tensor.

In the generalized Gauss-Codazzi formalism, the generalized extrinsic cur-
vature operator was no longer symmetric. However, the anti-symmetric part of
K was measured by the deficiency, a well-defined quantity on a parametric man-
ifold. Furthermore, we saw that the non-symmetric nature of K did not affect
a re-formulation of Gauss’ equation, the first of the initial-value constraints. The
theory of parametric manifolds should allow one to first treat the generalized Gauss-
Codazzi equations as initial-value constraints and second, to formulate a theorem

similar to the standard case.



136

Such an approach to an initial-value formulation requires one to use the cur-
vature operator 1R, rather than the Zel'manov curvature Z, as only R satisfied

Gauss’ equation.
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