
AN ABSTRACT OF THE THESIS OF

Luca Tallini for the degree of Master of Science in Computer Science presented

on June 2, 1994.

Title: Design of Some New Efficient Balanced Codes

Abstract approved:
Dr. Bella Bose

A balanced code with r check bits and k information bits is a binary code
of length k r and cardinality 2k such that each codeword is balanced; that is, it
has 1,1 l's and I] 0's. This thesis contains new methods to construct efficient
balanced codes based on the concept of tail-map. A tail-map is an injective function

from the set of the very unbalanced words to the set of the balanced words. To
design balanced codes, those information words with a low number of l's or 0's are

encoded using tail-maps, while those that have almost the same number of l's and
0's are encoded using the single maps defined by Knuth's complementation method.

Three different tail-map constructions are presented. Balanced codes with r check
bits and k information bits with k < 2r +1 2, k < 3.2r 8 and k < 5 2r 10r + c(r)
(c(r) E { -15, 10, 5, 0, +5}) are given, improving the constructions found in the
literature. The tail-maps used in the first two constructions can be computed using

a parallel scheme.

Redacted for Privacy

Design of Some New Efficient Balanced Codes

by

Luca Tallini

A THESIS

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Master of Science

Completed June 2, 1994

Commencement June 1995

APPROVED:

Professor of Computer Science in charge of major

Head of Department of Computer Science

Date Thesis is Presented: June 2, 1994

Typed by Luca Tallini for Luca Tallini.

Redacted for Privacy

Redacted for Privacy

Redacted for Privacy

Table of Contents

1 Introduction 1

1.1 General Introduction 1

1.2 Applications of balanced codes 2

1.3 Definitions 3

2 Previous work and Knuth's method 6

2.1 Previous work 6

2.2 Knuth's method 7

2.3 Map definitions and Code construction 9

3 The Proposed Schemes 13

3.1 Overview 13

3.2 Construction I 16

3.3 Construction II 23

3.4 Construction III 33

3.5 Comparisons 49

4 Future Research 55

Bibliography 56

List of Tables

3.1	 Definition of a particular u5,1 : 7L3 > 7Z2 . 37
swioo R1003.2	 Choice of K-F, and vti, defining single maps Yul, -- th,, 7

for w E [wi, tv2]	 45

3.3	 Values of m(r) and t(m(r)) for r E [3,13] 49

3.4	 Comparisons of various constructions 53

3.5	 Comparisons of the number of check bits required when k is a
power of 2. 54

Design of Some New Efficient Balanced Codes

Chapter 1

Introduction

1.1 General Introduction

When we manipulate information we need to encode it in order to match
certain physical constraints. For this purpose, we often code information when
we want to transmit it or store it. We want the coding and decoding process to
be computationally simple. We also want our codes to have some other desirable
properties like error detection, error correction (reliable communication), secretness

(cryptography), compression (data compression), and so on. For example, in trans­
mission on optical fibers, a transmitted 1 may be received as a 1 or a 0, whereas
a transmitted 0 is always received as a 0 (this is because a photon can be missed
during the interception but it can never be created from nothing). We would like to

detect if an error (a sent 1 received as a 0) has been committed. If we had encoded

the information in such a way that every transmitted word has an equal number of

0's and l's (i.e. is balanced) then any received word with more 0's than 1's would be

detected as erroneous and for example retransmitted. Notice that it doesn't matter
how many errors have been committed during transmission, we can still detect the
occurrence of errors. This is a simple application of what are called balanced codes.

We will mention more applications later.

In this thesis, we will give some methods for constructing balanced codes.

That is, given a set of words, find efficient methods for mapping these words to
the balanced words which will represent them. There are several features which
makes a method efficient. The encoding from the data words to codewords has to
be computationally easy. The decoding from the codewords to data words has to be

computationally easy. The length of the codewords shouldn't be much larger than
the length of the data words.

2

For example, given a binary word

X = X2 . Xn

we can encode this as the balanced binary word

XX = x1 x2 ... Xn X1 X2 Xn,

where 7 is the complement of the bit x. Clearly the encoding and decoding, for this

example, are very easy. But the length of the codeword is relatively high.
In this thesis We will give methods in which the encoding and decoding are

not much harder than those in the example, and in which the codewords are much
smaller than those in this example.

1.2 Applications of balanced codes

Balanced codes have many applications. In this section we will briefly men­

tion some of them.

Balanced codes can detect all unidirectional errors in a data word
[BER61, FRE62, SAI91]. In the case of unidirectional errors, both 1 > 0
and 0 4 1 errors can occur; however, in any particular transmitted word all
the errors are of the same type.

They can be used to maintain data integrity in write-once memory, such
as digital optical disks, where a 0 can be changed to 1 but a written 1 cannot
be changed to 0 [LEI84, KNU86].

They are useful for state assignments in fault-tolerant and fail-safe
sequential circuit design [TOH71].

A binary code of length n is a conservative code if every codeword has
transitions. A transition occurs when two adjacent bits are complementary.
These codes are useful for data synchronization in some communication
systems, especially in optical fibers [OFE90, ALB93, AL088]. A balanced
code C of length n can be transformed easily to a conservative code of length
n 1 via the function o : C ZIT" defined as follows:

o (bib2 bn) = c1 c2 enen+i

3

where

= 0,

Ci = bi-1 for i = 2, 3, ... , n + 1,

and where the inverse transformation is defined by

bi = ci ci+i for i = 1, 2, . . . , n.

Balanced codes are useful for fiber optics and magnetic and optical storage
media [TAK76, WID83, BEG86].

They are useful to achieve delay insensitive communication [VER88].

The cryptosystem proposed in [CI-1085] requires the data words to be balan­
ced.

They are useful to accomplish Noise reduction in VLSI chips [TAB90].

1.3 Definitions

In this section we will give the necessary symbols and definitions that we will

use in this thesis.

We believe it is a good idea to begin a thesis on coding theory making clear
what is ment with code and encoding.

Let A be a finite non-empty set, which we will call the alphabet. Let:

An tf { aia2 ... an : ai E A for all i = 1, . . . , n}, for all n = 1, 2,

An element of An is called word of length n over the alphabet A, whereas a code
CA over A is nothing but a subset of

A+ cjf An
n=1

The elements of CA are called codewords. A code is called a block code of length n

if CA C An, otherwise it is called a variable length code.

A code is called q-ary if it is over the q-ary alphabet

A= {0,1,...,q 1} = Zq.

In particular, when q = 2 the code is called binary.

4

Given a q-ary code C of length n, the real number (ISI indicates the cardi­
nality of a set S)

lOgqICI
T =

n
is called the information rate of C. Having fixed a certain "service" (for example:

error detection, error correction, synchronization, and so on) we want a code to
accomplish, one of the major aim of coding theory is to design such a code with an
information rate as close as possible to 1. The parameter

p = 1 T

is called redundancy of C.

Given a countable set S, an encoding of S is a couple (CA, x), where CA is a

code and x is a one-to-one mapping from S to CA called the encoding function.

Note that, if ISI, ICA I < oo then there exist

iSi!(ICAI
ISI

possible encodings of S. Usually the set S is chosen to be

S = {0,1,...,p 1}k

for some natural numbers k and p and is called the set of information words. In
this thesis S will be

S = {0,1}k.

Now we are ready to give the definition of balanced code.

Definition 1 A binary code C is a balanced code with r check bits and k
information bits (briefly a DC(k + r, k) or DC-free code) if and only if:

I. C is a block code of length n = k + r,

2. each word X EC is balanced, i.e. it has {Ill ni j) l's and 13-] (121) 0's.

3. ICI = 2k .

In this thesis the following notation is used:

k number of information bits,

r number of check bits,

n = k + r, code length,

IN set of natural numbers,

5

IR set of real numbers,

712 = {OM,
[a, b] = fi E1N : a < i < bl,
(a,b) = {iEIN:a < i <b},
w(X) = weight of X E 7L2 , i.e. number of l's in X
1(X) = length of X E Z1,
X complement of X E 7L2 ,

Sit = {X E 7L2 : w(X) = w},

(SI = number of elements in the set S,
aIN + b = VEIN: i=ah-l-b, hEIN},
DC(k + r, k) balanced code with r check bits and k information bits.

6

Chapter 2

Previous work and Knuth's method

2.1 Previous work

In this section we will explain what was the state-of-the-art about the topic
of balanced codes before our result.

Let us recall that a balanced code with r check bits and k information bits
is a binary code C of length k + r and cardinality 2k such that each codeword is
balanced; that is, it has [11-1-11 l's and 1.".1 0's. One of the open research problems

mentioned in [MAC77] is to find a code C and a one-to-one function

e : 0,11k > c

which, together with its inverse, is very easy to compute.

In [KNU86], Knuth showed that if a balanced code with r check bits and k

information bits exists, then r > 2 log2 k + 0.326. He has designed serial encoding

schemes and both parallel and serial decoding schemes. Using r check bits, the
parallel decoding scheme can code

k = 2? r 1

information bits. The serial decoding scheme can code

k = 2?

information bits. In both methods, for each given information word, some appro­
priate number of bits, starting from the first bit, are complemented; then a check
is assigned to this modified information word to make the entire word balanced. In

the sequential decoding scheme the check represents the weight (i.e. the number of

ones) of the original information word whereas in the parallel decoding scheme the

check directly indicates the number of information bits complemented.

7

Al-Bassam and Bose in [ALB90] improved the parallel decoding scheme by

presenting a construction with

k = 2? (r mod 2)

information bits. They showed this construction is optimal when Knuth's comple­
mentation method mentioned above is used.

The serial balanced coding scheme has been extended to

k = 2r+1 - r 2

information bits by Bose in [BOS91] and further extended to

k = 2,--1-1
10.8VT-1 2

information bits by Al-Bassam and Bose in [ALB94]. The latter result was also
shown to be optimal when Knuth's complementation method is used.

This thesis contains new balanced code construction methods which give an

improvement of 1 or 2 bits in the amount of redundancy in most practical cases. In

particular, Chapter 3 contains three different constructions for balanced code with
r check bits and

k < 2r-1-1

k < 3 2r 8,

k < 5 2r lOr + C(r)

(C(r) E { -15, -10, 5, 0, +5 }) information bits. Further we find a closed form for

the function kmax(r): the maximum integer such that there exists a balanced code
with r check bits and k information bits. We show that

22r
kmax(r) = 2 [r j r (1 ± 1),

2.2 Knuth's method

Since our balanced code construction schemes partially relies upon Knuth's

complementation method we will describe it here.

In 1986, Knuth proposed a very simple and efficient construction of balanced

codes [KNU86]. These codes have high information rate as well as simple and fast

encoding and decoding algorithms. In his construction, the encoding and decoding

8

require only a complementation of some appropriate number of bits in the infor­
mation word, starting from the beginning. If X E 7L2, X = x1x2...xk, is a binary
information word, the balanced codeword encoding of X, consists of X with the
first j bits complemented (j may be 0) and a check symbol of length r, as depicted
in the following diagram

Xi X2 Xk Xi X2 . X j X j+1 Xk yi Y2 Yr

information word balanced codeword

Serial and parallel decoding schemes were given in [KNU86]. In serial de­

coding, the check symbol specifies the original weight of the information word, so
the decoder complements one bit at a time until it recovers the original information

word. On the other hand, in parallel decoding the check symbol specifies the num­

ber of complemented bits, so the decoder simultaneously complements that many
bits to recover the original information word.

Since we are mainly interested with the serial decoding scheme, we will de­

scribe it in the present and following sections. In order to do this, some notation
is needed. Given X = x1x2...xk E 7L2, let X(i) be X with the first j bits comple­
mented, i.e.

X(j) def
x1 x2 X j j+1 Xk

Further, let
ca (X) tf w(X(i)) = w(xl xj+1 xk)

For example, if X = 1001 0000 then X(5) = 0110 1000 and c5 (X) = 3.

As a function of j, o-3 (X) satisfies the following properties:

o0(X) = w(X),

o-k(X) = k w(X), k =1(X)

cri(X) = cri_i(X)± 1 for j = 1, 2, . . . , k,

cri(X)E[cri(X) - lj - ii,6i(X) for any i, j E [0, k] .

Since as a function of j, cri(X) goes from cro(X) = w(X) to a-k(X) = k w(X), by
unit steps, it is possible to obtain a word of any weight between w(X) and kw(X)

by complementing the first j bits of X, for some j E [0, k]. Of course, there may be
several j's which give the same weight. In other words, given X and

a E [min{w(X), k w(X)},max{w(X), k w(X) }1

9

there exists a j such that cri(X) = a. In particular, there always exists a j such that
aj(X) = fk l (or L 2 J). In this sense, cri(X) represents a "random walk" from w(X)

to kw(X). For example, if X = 0101 0000 then w(X) = 2 and kw(X) = 8-2 = 6
and so we can obtain words of weight 2, 3, 4, 5 and 6 by complementing the first 0,
1, 6, 7 and 8 bits respectively.

2.3 Map definitions and Code construction

Knuth's method with serial decoding scheme relies essentially upon the pro­
perties of aj(X) mentioned in the previous section. A check symbol is an element
of Z;. The general strategy of the encoding scheme is to partition the set of in­
formation words into 2r sets, one for each check symbol, say {SY}yEzz;., and then
consider 2r one-to-one functions

< Y >: SY St,k, (2.1)

which map the words of SY to the words of weight

k r
w(Y). (2.2)

v

In order to encode the generic information word X, the encoder performs the fol­
lowing steps:

1) compute which set of the partition X belongs to, say X E SY,

2) compute C .< Y > (X),

3) append the check symbol Y to C, obtaining as encoding of X the word

CY = <Y> (X)Y.

Since v is chosen so that relation (2.2) is satisfied, we have

w(CY) = w(C) + w(Y) = v + w(Y) = ik +2 w(Y) w(Y) = ik +2

i.e. the codeword associated with X is balanced. Decoding is straightforward. If
CY is received, the decoder, reading the check symbol Y knows that the information

word lies in the set SY and has been encoded by means of the function < Y >. So
it computes X =< Y >-1 (C).

10

Now, how do we define the maps (2.1)? The idea is to use Knuth's comple­
mentation method; i.e. we can consider the functions

f : S --4 Sti;, S C (2.3)

which associates every information word X E S with X(j); j being the smallest
integer such that

w(X(i)) = cri(X) = v.

However, in order for the coding scheme to work, we need the functions (2.3) to
be well defined (i.e. total) and one-to-one. Note that such functions can be easily
computed by complementing one bit of X at a time, starting from the first, until
the weight becomes v.

The following theorems state necessary and sufficient conditions for correct
coding.

Theorem 1 ([KNU86]) Let a : Sa 4 S!,` be the function which maps every word
X E Sak to X(i); j being the smallest integer such that

w(X(j)) = cri(X) = v.

Then, a is well defined and injective if

min{a, k a} < v < max{a, k a} Is',11 5 IsN).

Theorem 2 ([ALB94]) Let (5 : Sa U S6 4 S,1,c (where b > a) be the function
which maps every word X E Sa U SP, to X(i); j being the smallest integer such that

w(X(i)) = ai(X) = v.

Then, 6. is well defined and injective if

b a > max{v, k v}.

The functions o- in Theorem 1 are called single maps, whereas the functions

.5 in Theorem 2 are called double maps.

For example Theorem 1 implies that the single map o : SP Skr is not
well defined and injective, but the single map a : SP -> SP is well defined and
injective. Instead Theorem 2 implies that the double map .5 : S32 U SP SP
is not well defined and injective, but the double map (5 : S12 U S14 SP is well
defined and injective.

11

From the above discussions it follows that to design a balanced code using

Knuth's method, one needs to solve a combinatorial problem, i.e. find the best
combination of check symbols Y E 7L2 and (well defined and injective) single or
double maps such that each Y "encodes" a particular map. That is, each Y picks
out either a single map or a double map and the appropriate domain and codomain

for the map. The relation
ik + rl

2 'I

where v is the weight of elements in the codomain, must hold for all maps and the

family of domains must define a partition of Z.
In the literature, single and double maps are represented by the following

notation

Y : : Sak --15

and

Y :: Sak U St --* Svk

respectively. Y is nothing but the check symbol which "encodes" them.

For example a balanced code with r = 3 check bits and k = 12 information
bits (so n = k + r = 15) can be designed as follows

111 :: sp ----+ Sp 000 :: Sj2 U SP -> 5.1132 010 :: SP U SH -4 SP

110 ::S2 -> t942 101 :: sp U SP -1 S42 001 :: S12 U SM -> SP

100 :: SP SP 011 :: SP U Sill -'S42

Note that all the above maps satisfy the conditions of Theorem 1 and Theorem
2, so they are all well defined and injective. Now, assume the information word
X = 0101 0000 0000 E Zi needs to be encoded. The encoder performs the following

steps

1) compute w(X) = 2. Since X E4512 U SM, then

2) complement X one bit at a time until weight 6 is obtained. The computed
word C is

C = 1010 1111 0000.

3) Append the check symbol Y = 011 to C, obtaining as encoding of X the word

CY = 1010 1111 0000 011ES5,

which is balanced.

12

On receiving CY = 1010 1111 0000 011, the decoder, reading the check sym­

bol Y = 011, knows that the original information word was encoded using the
double map labeled with 011. It looks up and finds that the unencoded word came
from SP or S. So it complements C one bit at a time until weight 2 or 10 is
reached. Since C = 1010 1111 0000, weight 2 is reached first (complementing the
first 8 bits), so it decodes C as X = 0101 0000 0000.

In [ALB94], Al-Bassam and Bose gave a method to obtain a best combination

of check symbols and single or double maps, proving that with r check bits, using
the complementation method, one cannot encode more than

k = 2r+1 10.8 Nir1 2

information bits.

13

Chapter 3

The Proposed Schemes

3.1 Overview

This chapter contains new balanced code construction methods which im­
prove the constructions found in the literature. Our constructions save 1 or 2 bits.
Further, in spite of an higher information rate, the codes presented here have the
same encoding and decoding complexities as those known so far. In particular,
we present three different constructions for balanced code with r check bits and k
information bits, where

k < 2r+1 2,

k < 3 . 2r 8,

k < 5 . 2' lOr + c(r), c(r) E {-15, 10, 5, 0, +5}.

The three constructions differ in redundancy as well as in circuit complexity and it is

up to the system designer to choose which code is suitable for a specific application.

In some cases the first two constructions have a parallel encoding scheme.

As in Section 2.3, the general encoding/decoding scheme of our methods is

to partition the set of information words into 2' sets, one for each check symbol,
say {SY }yaz;, and then consider T one-to-one functions

<Y >: SY > St,, (3.1)

which map the words of SY to the word of weight

1 k + ri
v = w(Y). (3.2)

2

In order to encode the generic information word X, the encoder performs the fol­
lowing steps:

1) compute which set of the partition X belongs to, say X E SY,

14

2) compute C =< Y > (X),

3) append the check symbol Y to C, obtaining as encoding of X the word

CY =<Y> (X)Y.

Since v is chosen so that relation (3.2) is satisfied, we have

w(CY) = w(C)-1- w(Y) = v + w(Y) =ik +2 1 w(Y) + w(Y) = ik +2

i.e. the codeword associated with X is balanced. Decoding is straightforward. If
CY is received, the decoder, reading the check symbol Y knows that the information

word lies in the set SY and has been encoded by means of the function < Y >. So
it computes X =<Y> -1 (C).

According to the scheme, a balanced code is completely specified by defining

for each of the 2' check symbols YE 7i2, a one-to-one function (3.1) for which (3.2)

holds and the family {SY}yEm; is a partition of 7L2; that is,

7Z U s Y and SY' n s Y2 # 0 -e,--->. Yi = Y2
YEZZ

In Section 2.3 the functions < Y >'s were single maps a and double maps 45,

here they are single maps and tail-maps, which we will name with T.

All three constructions are based on the concept of tail-map. A tail-map is

a one-to-one function from a set of words which are far from balanced to the set
of the balanced words (or constant weight words). Now, those words which are far
from balanced are encoded, using a small number p, independent on k, (say p < 4)
of check symbols, by means of tail-maps. Whereas, the nearly balanced words are

encoded, using the remaining 2' p check symbols, by means of single maps defined

by Knuth's method. Given t E IN, let

lit V {X E ZI2` : 0 < w(X) < t or k t < w(X) < k}

and

Bttf Zi lit = {X E Z/2` : t < w(X) < k t}.

lit is the set of far from balanced information words. Bt is the set of nearly balanced

information words. In every construction presented in this thesis the set Bt is always

partitioned as
Bt = Stk+i U Stk+2 U . . . U Sii:_t_ 1

15

and each word X E Sa C Bt encoded by means of a single map cra : Sm > St,. On
the other hand, depending on k and the construction, the set Zit is partitioned in
different ways, but it is never partitioned into more than 4 sets, say

Zit = T1 U T2 U U Tp p < 4.

Analogously as before each word X E C Lit is encoded by means of a tail-map
> St. Note that in order to minimize r (i.e. obtain less redundant codes)

we need to maximize t.

In this chapter we give three different methods to design tail-maps. For each

of these three methods we get the three announced balanced code constructions.
Now, let's focus on the tail map constructions. As we mentioned above a

tail-map is a one-to-one function T : T T being a subset of the far from
balanced information words Ut. In our case v = 111 or f 21. The general idea of
all the tail-map constructions presented here is the following: by means of a map
U : T Zt , we compress the information word X E T we need to balance, and
then we use the saved space k 1(U(X)) to balance U(X), the compressed version
of X.

In the construction presented in Section 3.2, we identify the information word

X = xix2x3x4 xk-ixk with the 2 long sequence of the two bits words q(= xix2,
bX = x3x4, = xk_ixk (assume k even). Considering each bf as the binary

encoding of a natural number, X can be identified with a sequence Bx of a natural

numbers between 0 and 3. We use, as compressing function U, the unary encoding
of the sequence Bx. Note that, since every codeword of the unary encoding has
exactly one 1 (we assume that the unary encoding of a natural number m is formed

by m 0's followed by a 1), U(X) has exactly z l's. Obviously we need the length
of U(X) to be less than or equal to k = 1(X). In this case, appending enough 0's
to U(X) we can get a balanced word (i.e. a word with 1-1 l's and length k). If the
weight of X is less than or equal to 14] then l(U(X)) < k and so we are able to
design a tail-map

T:S4cUSjicU...USk
111

In Section 3.3, we still use the unary encoding as above, but by counting the
number of occurrences of 01's and 10's in X we are able to design a more powerful

compressing function U(X). In this case we are able to prove that if the weight of
X is less than or equal to 1] then l(U(X)) < k and so we are able to design a
tail-map

T : C70 Sk U Sk S1k0 1 2C

16

When r > 3 this construction is better, in terms of redundancy, than the previous
one.

In Section 3.4, we compress the information word X using a variable length
uniquely decodable binary code. In this case, however, U(X) may not be balanced,

but we use the saved space to make U(X) balanced with Knuth's complementation

method. In this way we are able to design a tail-map

T : Sti;	 S:c 4 St t
2k

.
5

When r > 5 this construction is better, in terms of redundancy, than the previous
two.

Let kmax(r) be the maximum integer such that a balanced code with k(r)
and r information bits exists. In Section 3.5 we give a closed form for the function
kmax(r), proving that

kmax(r) = 2 [722] r (1 ± 1).

Further, we show some comparisons among our methods and the method proposed
in [ALB94].

3.2 Construction I

In this section we will present a method to design balanced codes with r
check bits and

k < 2r+1 2

information bits.

As we mentioned in Section 3.1, a balanced code construction method is com­

pletely specified by defining a partition of the set of information words, specifying
how to map the words in each set of the partition and assigning a check symbol to
every map defined in each such set. Depending upon the values of k, the balanced

codes presented in this section are specified as follows. Assume k E 41N + 2 first. If

is the set of check symbols 7L2, then

<Y1>: USku U Sic > = Sk
i=0 i=kt

S2< Y2 > : Stk+i

17

ok ok
<Y2r >: °k-t-1 °rv2 7

where

t= Ikl.
L4

The function < Yl > is a tail-map T and it will be described later, whereas the
functions < Y >, i = 2, ... , 2' are single maps o' (see Section 2.3). Note that if X
is an information word and X E Swk C Bt = aFftt+-11 SP, then the encoding of X is

<17,_t+i > (X)Y,t+i, whereas if X ETA = U:=0 (St U the encoding of X is
<171> (X) Y1. Further, in order for the code to be balanced, the relation

vi+w(yi)=
2

must hold for all i = 1, 2, ... , 2'. In particular, since v1 = 2, then w(Y1) f al
If k 41N + 2, the construction is exactly the same but, instead of using

only one check symbol to encode the words of Lit, we need to use two check symbols

associated with the two different tail-maps

<Y1 >: St` > Skk = Sk ,

2=0

k

< Y2 > : U Sig + Sk Sk
i=k-t

Now that we outlined the code design, we are ready to look at the tail-map
constructions. The idea is very simple. Let k E IN and

X = xlx2 23X4 Xk-2XklXk

be an information word. Consider the correspondence which associates X with the
sequence

2122, 2324, Xk- 1 X k if k is even,
Bx =

X122, X3X 4, Xk_2Xk_1 , X k if k is odd.

Note that such a correspondence is one-to-one. Each

X2i-1X2i if i E [1,

bX clef (3.3)
Xk ifi= 121 L2]

18

can be considered as the binary encoding of an integer number between 0 and 3. In

this way X can be identified by the sequence Bx o f f -1 integer numbers between 0
and 3. Now, we could define a tail-map

t
T: U t.921g > Sk = Skvi'Il li=0

where 7-(X) is nothing but the unary representation of the sequence Bx followed
by enough 0's to make the length equal to k = 1(X). Since the weight of every

codeword of the unary encoding is equal to one and Bx is of length ril then 7-(X)

has ilil l's and length k, i.e. r(X) is balanced. Note that if w(X) is small enough
then the length of the unary representation of Bx is small; namely less than or
equal to k.

In the following we will make the ideas mentioned above more concrete. Let

u(00) clef 1,

u(01) tej 01,
(3.4)

u (1 0) ct-f 001,

u(11) tf 0001

and

U(X) 'Lei u(bnu(g) . . . u(bf 11). (3.5)

Note that this encoding is the unary representation of the sequence Bx. Further,
when k is odd, bx is only one bit long. In this case, U is completely defined by

ill
letting

u(0) `11--f 1,

u (1) c-t-f 0 1 .

The following lemma it is useful for the construction.

Lemma 1 The function U : 7L2 > Z" defined by (3.5) is one-to-one and if
X E Zi then

1. w(U(X)) = it-1,

2. 1(U(X)) 5 2w(X) + R1,

3. 2w(X) 4- 1-fl < k <=#- w(X) < 1.1.1.

Proof: The function U : 74 > 7Z 1 is one-to-one because the code {011}i.o,1,2,3 is

uniquely decipherable.

If X E WI then

19

1.

Vb EZ w(u(b)) = 1 w(U (X)) = .

2. From the (3.4) it can be noticed that

Vb E 712 1(u(b)) < 2w(b) 1.

This implies that

11 141

r(u(x)) = E 1(u(bf)) < E[2won + 11 =

111

2 E w(bn = 2w(X)
k

1
2:=1

3.

2w(X) k y 2w(X) < k

w(X) < w(X) < Lik .

Let

t = t(k) def

From 2 and 3 of Lemma 1, it follows that

t k k m od 4 ik
X E U Sic 1(U(X)) 5. 2 Lik] + ic	 -I- =

4i=o

k 1 if k E (4IN + 2) U (4IN + 3),ik kmod4 _ki 1

2 2

k if k E 4IN U (41N -I- 1).

In the case when k E 4IN + 2, this last relation implies that if w(X) < [114-] then
l(U(X)) < k 1, i.e. we save one bit. In this case then, Lemma 1 and the fact that
k is even guarantee that we can define the tail-map

T :	 (6 St) U Jo SIC) -4 S rk,
i=0 i=kt 2

as follows
U(X)0(k-1)-1(u(x))0 if X E Uti=o Sic,

(3.6)
U(701(k-1)-1(u(7))1 if X EU k_t

20

Defining T as above, we use the rightmost bit of r(X) to store some information;
namely, if w(X) < t or w(X) > k t. In the first case the rightmost bit of r(X) is
set equal to 0 and in the second case it is set equal to 1. In other words, once the
encoder has established the weight of the information word X E Lit, if such weight

is less than or equal to t = [lb it converts X with U and appends 0's until the
length becomes k. In this way the rightmost bit of r(X) is always 0. If instead,
w(X) > k [] the encoder first complements X, obtaining a word of weight less

than or equal to P:-j , converts X with U and append 0's until the length becomes k
and finally complements everything again. Note that in this way the rightmost bit
of r(X) is always 1. Now, the decoder, reading the rightmost bit of r(X), knows
how to invert the encoding procedure described above and recover the information

word X. In fact, if the rightmost bit of r(X) is 0, the decoder extracts the first part

of r(X), from the first bit to the last 1, and applies U-1. If instead, the rightmost
bit is 1, it first complements r(X), then extracts the first part and applies U-1 as
above, and then complements everything again.

In the case when k cZ4IN + 2, in order to encode those information words in

Zit, we must define two tail-maps

t

71 Ssic Si(I'lli=0

k

T2 : U Stc + Sk
i=kt

where

ri(X) def upook-1(u(x))

T2(X)

Note that all the functions defined above can be computed using a parallel
scheme.

Example 1 If r = 2 and k = 6 E 4lN +2 then t = 111 =1 and k t = 5, therefore
the following tail-map

T : U U (s: U 4 S:
can be defined. Assume 10 is the check symbol which encodes T; i.e. T =<10>.

If
X = 00 00 10 E

is an information word, the encoder performs the following steps:

21

1) compute w(X) = 1. Since X E (S8 U Si!) then

2) compute U(X) = U(00 00 10) = 1 1 001,

3) append 0's until length is k: U(X)05- t(u(x)) 0 = 1 1 001 0,

4) append 10 as check symbol: < 10 > (X) 10 = r(X) 10 = 1 1 001 0 10 E S:.

To decode the received word

ick = 110010 10,

reading k = 10, the decoder knows that the information word X was encoded using

the function T =<10>. Since the rightmost bit of X is 0, it knows that X E (S8 U SI!)

and U was used for encoding. Therefore it computes

U- 1(11001) = X = 00 00 10.

Suppose now that

X =11 11 10EZ

is another information word. In this case the encoder performs the following steps:

1) compute w(X) = 5. Since X E (sg U SD then

2) complement X: X = 00 00 01 E 4ST,

3) compute U(X) = U(00 00 01) = 1 1 01,

4) append 0's until length is k: U(X)05-1(u(30) 0 = 1 1 01 00,

5) complement everything: U (X)05-1(u (In 0 = 0 0 10 11,

6) append 10 as check symbol: <10> (X) 10 = r(X) 10 = 0 0 10 11 10 E

To decode the received word

XY = 0 0 10 11 10,

reading it = 10, the decoder knows that the information word X was encoded using

the function T =< 10 >. Since the rightmost bit of X 1, it knows that X E
(sg U sg), X was complemented, U was used and then U(X) was complemented
during encoding. Therefore it computes

1) X = 11 in oo,

2) U- 1(1101) = 000001

22

3) X =X= 111110.

To see how the tail-maps just defined can be used to design efficient balanced

codes, let k, r E IN with k> 6 and

d(k) I{St` : i = t(k) 1, . . . , k t(k) 1}I = k 2t(k) 1. (3.7)

d(k) is the number of different single maps needed to encode those information
words that are close to balanced. From Lemma 1 it follows

k k k mod 4
d(k) = k 2t(k) 1 = k 2 [1 = k 2

4

k k mod 4 k -I- k mod 4 2
k 1

2 2

Since k > 6, a balanced code can be constructed iff the following relations hold

2r 1 if kE4IN + 2,k+kmod4 2
d(k) =

2 {
2r 2 otherwise.

2'+' 2 if k E 41N,
2r+1 3 if kE4IN + 1,k<
2r+1 2 if kE4IN+2,
2t+1 5 if kE4IN+ 3.

2r+1 4 if k E
2f+1 3 if k E 4IN + 1,k <
2r+1 2 if k E 4IN + 2,
2r+1_5 if k E 4IN + 3.

this implies that the greatest number of information bits that can be encoded using

r check bits is 2r+1 2.

Example 2 If r = 2 then k = 22+1 2 = 6, n = 8 and t(6) = Ill = 1, therefore a
DC(8, 6) code can be constructed as follows

<10 >: (4 u u (4 u 4) >

<11 >: 4 --+

<01 >: 4

< oo>:

where < 10 > is the tail-map defined in (3.6) and < 11 >, < 01 > and < 00 > are
single maps o which in this case are identity functions.

23

3.3 Construction II

In this section we will design balanced codes with r > 3 check bits and

k < 3 2' 8

information bits.
By modifying only a little bit the method presented in Section 3.2, we are

able to encode all the words whose weight is roughly less than 3 (instead of 4) or
greater than k 3, using at most 4 check symbols. By using the unary encoding
U (see (3.5)), it can be noticed that the maximum of l(U(X)) in S1Z is equal to
2w + 41 and is reached for X = (10)" Ok-2w; i.e.

max /(U(X)) = /(U(X))1x=00)wok-2w = 2w + .
x Es!, 2

This means that, while encoding the substring bf in unary, the worst case occurs
when bic = 10. Here we reduce the tight upper bound of 2w + R1 by encoding 10 as

001 and 01 as 01 if the number of occurrences of 10 in X is smaller than the number

of occurrences of 01. In the other case 10 is encoded as 01 and 01 as 001. In other
words, we encode the far from balanced information words by using two different

encodings: the unary encodings as in Section 3.2 and the encodings which is exactly

the same as the unary encoding but encodes 10 as 01 and 01 as 001. Further we
use one or the other depending on which one gives a shorter encoding. This is the
main strategy used in this section.

Given k E IN and X E 7L2i let bjc be as in (3.3). For i = 1, 2, let

ui(00) dg 1,

ui(11) V 0001,
ui(01) tf 01,
u2(01) tf 001,
u1(10) ctf 001,

u2(10) clef 01

and

Ui(X) def ui(bf ui(bx). (3.8)

U1 is the unary encoding, whereas U2 is the encoding which encodes 10 as 01 and
01 as 001. As in the previous section, when b fkl is only one bit long, Ui can be
completely defined by letting

ui(o) def
1,

u,(1) def ca.

24

For all b E 7L2 let

{i E [1, :bX = b}

cb(X) is nothing but the number of occurrences of b in the sequence

ur1
associated with X. For example col (00 01 10 01) = 2.

Depending upon the values of k, the balanced codes presented in this section

are specified as follows. Assume k E 6IN + 4 first. If Wi}i=1,2,...,2r is the set of check

symbols 7L2, then
t

2
1=0

k

Sifc = Sk<Y2 >: U Sic 7 ,
i=kt

V2

< Y3 > : S tk+ S , (3.9)

< Y2r >: SCC-t-1 r

where
kt= .
3

The functions < Y1 > and < Y2 > are tail-maps and they will be described later,
whereas the functions <Yi>, i = 3, ... , 2? are the single maps of Section 2.3. Recall

that, in order for the code to be balanced, the relation

vi w(Y) =
2

must hold for all i = 1, 2, ... , 2r. In particular, since v1 = v2 = z, then w(Y1) =
w(Y2)=

If k 61INT + 4, the construction is exactly the same but, instead of using only

two check symbol to encode the words of tit, we need to use four check symbols,
one for each of the four different tail-maps

< >: Usk : coi(X) > cio(X) Kk
vii=0

t

< Y2 >: U Stk : Coi(X) < Cio(X) j > Sk{ in = Sv2k , (3.10)
1=0

25

k

<Y3>: U Sik : Col(X) > cio(X) } slkIk II = skv3,
L2Ji =k -t

k
sk cvk4.< Y 4 >: U 45 C01(X) < C310(X)

Lt-Js=k-t

In this case
if k E 21N n (3IN + 2) = 611sT + 2,

t=
r,

otherwise.

Now that we outlined the code design, we are ready to look in detail at the
tail-map constructions. The constructions are based on the functions defined in the
following lemma

Lemma 2 The functions

Ul : P C EZ : coi(X) > cio(X)} 712

and

U2 : {X E : coi(X) < cio(X)} 74,

defined by (3.8) are one-to-one and if X E 712 then

1. for i = 1,2

w(Ui(X)) = 1121
 7

2.
l(U1(X)) if col(X) cio(X),

min {l(Ui(X)), l(U2(X))} =
/(U2(X)) if col(x) < cio(X)

12 1 13w2X)]

1.31tHeic < k3. {11+ -4=>

if k E n (AN + 2) = -I- 2,

W(X) 5_1151
otherwise.[I]

Proof: The functions Ui are one-to-one because the code {Oi1 }i=o,1,2,3 is uniquely

decipherable.

If X E 712 then

26

1.

for i = 1,2 Vb E w(ui(b)) = 1 w(Ui(X)) = .

2. If k E 2IN

)(Es! = minfi(Ui(x)),i(u2(x))} =
k

2

1(ui(bn) = EJA E cb(x) 1(ui(b)) =
'` J=1 bEE3

coo(X) + 2 max{c,01(X), cio(X)} + 3 minfcm(X), cio(X)} 4c11(X) =

E cb(X) + E w(b) cb(X) + min{coi(X), cio(X)} (X) =
baz3 bEE3

k
+ w(X) + (min{coi(X), cio(X)} cii(X))

w(X) (min{coi(X), cio(X)} cii(X)) =

k
+ w(X) + max [min { coo(X), cio(X)} cii(X)]

2 xest

Now, if X E S!, is such that the function

F(X) = min{coi(X), cio(X)} (X)

assumes its maximum value in Swk, then the following relation holds (See
Lemma 3)

min{ cm (X), cio(X)} = max{coi(X), cio(X)} w(X) mod 2.

This implies

1(U (X)) 5_ 2 + w(X)+

max [min{coi(X), cio(X)} cii(X)] =
xEst: min{coi,cio = max{coi }w mod 2

+ w(X)+
2

min{coi(X), cio(X)} max{coi(X), cio(X)} w(X) mod 2

-F cii(X)

2

k
+ w(X) + 4n(X) + cio(X) + 2cii(X) w(X) mod 2

2

w(X) w(X) mod 2

2

27

k 3w(X) w(X) mod 2 k pw(X)]
= +

2 2 2 2

If k E 2IN + 1, from the previous result

min{ /(Ui(X)), l(U2(X))} = miV(ui(bi)ui(b2) ui(brin _1)) + 1(ui(x0)]

k 1 I 3(w(X) xk)] + 1+ xk iki + I 3w(X) 3xki +2+ 2 2 I 2I_

rkl I 3w(X) Xk I iki I 3w(X) xk I

2- I 2 I 2 L 2 I<

1_21c1 [3w2(X)1

3.
1_1 13w2(X) 3w(x)

L 2 _I 51_ 2

3w(X) w(X) mod 2 k k mod 2

2 2

3w(X) w(X) mod 2 < k k mod 2,

and this relation holds if and only if

if k 21N n (3IN -I- 2) = 6IN + 2,
w(X) 5

otherwise.IJJ

Now we prove the lemma used in the proof of Lemma 2.

Lemma 3 Given k E 21N and X E 7L11, let

F(X)d-g min{coi(X), cio(X)}

If X ES! is such that

F (X) = max F (Z),
ZEST

then

max{coi(X), cio(X)} = min{ cm (X), cio(X)} w(X) mod 2.

28

Proof: Let X E Sit, be a string such that F(X) is maximum in Swk. Without loss of
generality, it is possible to assume

x = (1 o)b (oi)°(oo)d

where

w=2a+b-Fc (3.11)

and

i=a+b-Fc+d.

Suppose b> c (which implies c= min{ c, b}). If b> c+ 2 then the string

X' = (11)a+1(10)b-2(01)c(00)d+1

is such that

F(X')=c+a-1-1>a+c=F(X),

contradicting the assumption that X is a maximum for F in Su,k. This means that
only the following cases are left.

1. b = c. This implies w mod 2 = 0 (see (3.11)).

2. b = c + 1. This implies w mod 2 = 1 (see (3.11)).

In either case

b=c+wmod2.

With a similar argument the lemma follows if c > b (which implies b= min{ c, b}).

Lemma 2 is the basis for the tail-map design described below. Let

[fl
if kE6IN+ 2,

t = t(k)t-f
otherwise.

Li]

From 2 and 3 of Lemma 2, it follows

3w(X)
X E St` /(U(X)) 1-i I +

2i=0 5d+
k -1 if k E (6IN -I- 4) U (6111 + 5),

(3.12)

k otherwise.

29

In the case when k E 6IN -I- 4, this last relation implies that if w(X) < II] then
l(U(X)) < k 1, i.e. we save one bit. As in Section 3.2, we use this saved bit
to encode some information; namely which function between U1 and U2 we use to
encode X. In this case then, Lemma 1, (3.12) and the fact that k is even, guarantee

that we can define the tail-map

t
Tl : U 8:`

i=0

as follows
ui(x)0(k-1)-1(Ui(x))0 if i(A cm(X),

Ti (X) chf

U2(X)1(k-1)i(U2(X))1 if coi(X) < cio(X).
(3.13)

Once the encoder has established that w(X) is less than or equal to t = 111,
it computes coi(X) and cio(X). If coi(X) > cio(X), it converts X with U1 and
appends 0's until the length becomes k. In this way the rightmost bit of ri(X) is
always 0. If instead, coi(X) < cio(X), the encoder converts X using U2, appends O's

until the length becomes k and complements everything. In this way the rightmost

bit of ri(X) is always 1. Now, reading the rightmost bit of r(X), the decoder knows
if X was encoded using U1 or U2, and hence it is able to invert ri(X).

Now that we know how to encode the words whose weight is less than or

equal to [LI , it is easy to see how to encode the words whose weight is greater than

k L3] In fact this can be accomplished by means of the tail-map

T2 : U Sk > Sk
i=kt 7

defined as

Ui(X)0(k-1)-1(u1(1))0 if coi(X) ?_ cio(X),
72(x) def

Ti (X) = (3.14)
u2(7)1(k-1)-1(u2(30)1 if cm(X) < cio(X).1

Note that w(X) > k t implies w(X) < t.
In the case when k cZ6IN + 4, in order to encode those information words in

Lit, we must define four tail-maps

: {X E St` ci(X) ?_ cio(X)} SIEfl
i=o

T2 : {X E U Stk : coi(X) < cio(X)} ---÷ Sk
[11i=o

30

k

7 3 :	 {X E U 4 5 : ` : col (X) > cio(X)} --+
i=kt

Col (X) < Cio(X)}{X E U Sic
i=kt

where

Ti(x)
def

ui(x)oklwicx»,

T2(X) U2(X)0"(u2(x))

r3(X) def Ul(X)lk-l(vi(X)),

T4(X)	 U2(TC)1"(u2(Tc)).

Note that all the functions defined above can be computed using a parallel
scheme.

Example 3 If r = 3 and k = 16 E 61N + 4 then t = 5 and k t = 11,
therefore it is possible to define the following tail-maps

5

Tl : <98,
i=0

16
816 R16

72	 `-'8
i=11

Assume 011 and 110 are the check symbols which encode 1-1 and T2 respectively; i.e.

<011 >= Tl and <110>= T2.
Suppose

X = 00 10 01 10 01 01 00 00 E

is the information word that needs to be encoded. The encoder performs the following

steps

1) compute

w(X) = 5.

Since X E UL0 816, then

2) compute

coi(00 10 01 10 01 01 00 00) = 3

and

cio(00 10 01 10 01 01 00 00) = 2.

Since 3 = col > cio = 2, according to (3.13), the encoder does:

31

3) compute

U1(X) = U1(00 10 01 10 01 01 00 00) = 1 001 01 001 01 01 1 1,

4) append 0's until length is k:

U1(X)015-1(""0 = 1001010010101110,

5) append 011 as check symbol:

<011> (X) 011 = ri (X) 011 = 100101001 01 01 1 10 011.

To decode the received word

ick = 100101001 0101110 011,

reading Y = 011, the decoder knows that the information word X was encoded
using the function 7-1 =< 011 >. Since the rightmost bit of X is 0, it knows that
coi(X) > c10(X) and that U1 was used to encode X. Therefore it computes

uni o01 oi ooi oi 1) = 0010 0110 010100 00 = X.

If
X =10011111010110 ESg,

according to (3.14), the encoded word is

<110> (X) 110 = 7-2(X) 110 = ri(TC) 110 =

ri(01 10 00 00 10 10 01 00) 110 = 001 01 1 1 01 01 001 1 0 110.

To decode the received word

XY = 0010111010100110 110,

reading k = 110, the decoder knows that the information word X was encoded using

the function r2 =< 110 >, therefore it computes

x = Tnic) = TI-1(ic) = 10 01 11 11 01 01 10 11.

Using the maps defined in this section, balanced codes can be constructed
as follows. Let r E [3, d-oo], k E {7,9,10,11,13} U [15, -Foo] and d(k) be defined as

(3.7) of Section 3.2. From Lemma 2 it follows

k 2 1 if kE6IN + 2,
d(k) = k 2t(k) 1 =

k 2 L 31 1 otherwise,

32

k-2-1-1k -2	 if kE61N + 2,

k 2 kk mod3
3 1 otherwise,

3 if kE 6IN + 2,

k-f-2k mod3-3
3

otherwise.

Since k E {7, 9,10,11,13} U [15, +oo] it is possible to design a balanced code if, and

only if, the following relations hold (see (3.9) and (3.10))

k-3 5 if kE61N+ 2, 2r 2 if k E 61N + 4,
Cl(k) = 1 < < >

k+2k mod3-3
3 otherwise 2r 4 otherwise

11-5 < 2r 4 if kE61N+ 2,

ki-2k mod3-3 < ,-.1.
3 Z 2 if kE6IN + 4, <=>

k+2k mod3-3 < ,st­
3 Z 4 otherwise

k < 3 - 2r 7	 if kE61N + 2,

k + 2k mod 3 < 3 2r 3 if k E 61N + 4, <--->.

k + 2k mod 3 < 3 2r 9 otherwise

3.2r 7 if k E 611\T + 2,
3 . 2r	 5 if k E 61N + 4,
3 . 2r 9 if k E 61N,
3 2r 11 if kE6IN+ 1,
3 2? 9 if k E 61N + 3,
3 . 2r 13 if kE6IN + 5

3 .2r 8 if k E 6111 -I- 4,
3 . 2r 9 if k E 61N + 3,
3 - 2r 10 if kE 6IN + 2,

k	
3 . 2r 11 if kE61N+ 1,
3 - 2r 12 if k E 61N,
3 2r 13 if k E 6IN + 5,

this implies that the greatest number of information bits that can be encoded with
r check bits is 3 2r 8.

Example 4 If r = 3 then k = 3 23 8 = 16, n = 19 and t(16) = [1] = 5;
therefore, a DC(19,16) code can be constructed as follows

5

< 011 >: U <9,16 496,
t=0

33

<001>:

<111>: sr sr,
<101>: $16

< (no >: 56 --+

<000>: ,s1g,

16

< 110 >: U Ss" $16
1=11

In this case <011 > is the tail-map T1 defined in (3.13), < 110 > the tail-map r2

defined in (3.14) and <001 >, < 111 >, < 101 >, < 010 > and < 000 > are single
maps. Note that actually <111>, <101 >, <010>, <000> are identity functions.

3.4 Construction III

In this section we will design balanced codes with r > 3 check bits and

k < 5 . 2' lOr c(r), c(r) E { 15, 10, 5, 0, +5}.

information bits. How to determine c(r) exactly, will be clear in the following.

The methods presented in the previous sections are based essentially on the
compression property of the unary encoding U (see (3.5)) when applied to sequences

of small integers. In particular, applying U to each word X whose weight is "small",

results in a word U(X) whose length is smaller than k = 1(X). Then the saved space

is used to balance U(X). Construction III follows this general idea. A one-to-one
mapping

U : U Sk 4
i.o

it is used to compress X E Uti=0 Sic and save e E [1, ilog2 kl] bits. In a second step,

using these e saved bits, U(X) it is made balanced by means of the single maps

yK swk-e svk-e Yw EZZ, w E [0, kJ (3.15)

defined by Knuth's complementation method (see Section 2.3).

As regard the function U, instead of being defined via the variable length
uniquely decodable code {011}i=0,1,2,3, it is defined by means of the suitably chosen

variable length uniquely decodable code U of Table 3.1. In particular, we consider

34

the information word X as a sequence of t five bit binary words and we encode each

such word b E24, to a codeword of U. The encoding is made so that the length of
the codeword associated with b is a not decreasing function of the weight of b.

The balanced code design presented here is described as follows. Assume
k E 51N. If {Y }i=1,2 is the set of check symbols 712, then

t
stk cvk (or Sk)

Skk 111 'i=0

k

Sk k (or S)< Y2 > U Stic Stt 3-11i=kt
< Y3 >: Stk+ Syk3 (3.16)

k c
< Y2 r > "J -'v2r

where t is the biggest integer such that

5t +10 .11t < L5k ilog2 ik
10

For such t we have (see Lemma 5)

2k k
t Lse loge .

The functions < Y1 > and < Y2 > are tail-maps designed by using the variable
length code of Table 3.1, and they will be described later, whereas the functions
<Yi >, i = 3, ... , 2r are the single maps of Section 2.3. Recall that, in order for the
code to be balanced, the relation

ik ri
vi w(Yi) =

2

must hold for all i = 1, 2, ... , 2r.

To define the compressing function U mentioned above, we will develop a
general technique (which could have other applications besides the present one).
We will design a class of encodings to variable length uniquely decodable codes
which compress binary strings of low weight; i.e. if U is one of such encodings, for

every binary string X of weight less than a certain fraction of 1(X), it is guaranteed

that /(U(X)) < 1(X). To define such class of codes, let s E IN and a, b E IR such
that a + b = 2. Then using the binomial formula, we have

(s)a"bs"
28 = (a + = 3 = 1() aw

w 2 3w=o w w=o

35

E2
w=0 awbaw

but
23 2821082 awbsw =

awbsw
2sw loge a (sw) log2 b 2s loge t+w loge !,

therefore

b = 2 Y.' s 2-(81.13226-1-w log2 = 1.Va, b E IR : a
ww=o

Choosing a, bE IR. such that loge ! = dE IN

)0 (1s log2 4411 +d s)2c4p+d(8 w)
(3.17)

Ww=0 w=0

holds for all s, de

Relation (3.17), which is Kraft's inequality, implies that for each s,d E IN
there exists a binary prefix code Cs,d with (w) words of length {s log2 d w,

Vw E [0, s] (see [GAL68]). Let

s,d : Z; Cs,d

be any encoding to Cs,d such that

b2 E 7Z w(bi) 5 w(b2) <=> 1(u8,d(bi)) C 1(us,d(b2))

holds.

Now, given k = ms (m ERN) let

X = X1X2 . X8 X 8-FiX 3+2 X2s X (m-1)34-1X (m-1)3+2 X ms,

= x (i-1)3+2 xis, i = m

and U s,d : 7L2 be the one-to-one function defined as follows.

x\fiius,d(bx2Us,d(X) ch-f u) ... us,d(b!)

The following lemma relates the weight of X with the length of /(U.,d(X)) and will
be useful for the construction.

Lemma 4 If X E 7L2 then

1.
2+ 11

/(Us,d(X)) = is log2
d m d w(X),
2d

36

2. Ve E IN

2 + 1
1(U8,d(X)) = log2

d
m + dw(X) k e <

2d

Ls (1 log2)Jmm e
w(X) <

d

Proof:

1.
+ 1/(U.,,d(X)) E /(us,d(bn) as loge 2d 2d 1 d w(bn)2di =1 i =1

is 2 + 11d d
log2 m dE w(bf) = log2

2 + 11 m dw(X).
2d 2d

2. It is easy to prove once it is noticed that k = ms.

Now, since our aim is to design tail-maps whose domain is as big as possible

(that is to make t as big as possible), we need to choose the parameters s and d, in
such a way that the quantity

[s (1 log2 24+d1)] m e

d

of 2 of Lemma 4 is as big as possible. This lead us to choose as compressing function,

the function U = U5,1 defined by Table 3.1. This particular function is the basis
for our tail-map design. Further among all the possible choices of C5,1 of Table 3.1,

we choose one which guarantees U(X) to be not so far from being balanced. The
following lemma states some properties of this function U which are fundamental
for the tail-map design.

Lemma 5 If k = 5m, with m E IN, then

1. if X EZ4 then

/(U(X)) = 3m + w(X).

2. If X E SP then

w(U(X))E {15m 2w(X)1], 3m ,

i.e. U(X) is not so far from being balanced.

37

b

00000

10000

01000

00100

00010

00001

11000

10100

10010

10001

01100

01010

01001

00110

00101

00011

11100

11010

11001

10110

10101

10011

01110

01101

01011

00111

11110

11101

11011

10111

01111

11111

u(b)

111

1101

1100

1011

1010

0111

10011

10010

10001

01101

01100

01011

01010

01001

00111

00110

100001
100000
010001
001011
001010
001001
000111
000110
000101
000011

0100001
0010001
0001001
0000101
0000011

00000011

1(u(b))

3

4

5

6

7

8

w(u(b))

3

3

2

3

2

3

3

2

2

3

2

3

2

2

3

2

2

1

2

3

2

2

3

2

2

2

2

2

2

2

2

2

min w(u(b))

3

2

2

1

2

2

max w(u(b))

3

3

3

3

2

2

Table 3.1: Definition of a particular u5,1 : 7Z 3 > Z1.

38

3. If t E [0, 2m] then, the number of bits saved compressing the information words

X of weight less than or equal to t using the function

U: Zt
i=0

is

e(t)t--f k max /(U(X)) = 2m t.
xELLost

4. If t E [0, 2m] then, the number of bits needed to balance the set of binary words

of length k e(t):

{U(X)0(31n+t"u(x)) : X E U C
i=o

using single maps (3.15) is

c(t) 4-1 [log2 am2+ + 1)1 .

5. Following our strategy, we need to save enough space to balance, by means of
the complementation method, the compressed versions of every information

word X E U:=0 . This implies that e(t) must be greater than or equal to
c(t). Further, since we want t to be as big as possible, it is fundamental to
determine the biggest t E IN such that

e(t) = 2m t _?_ ilog2
m t

+ 1)1 = c(t). (3.18)

Let t(m) be the biggest t such that relation (3.18) is true, then the following
tight estimation of t(m) holds.

2m [loge ml 1 < t(m) 5_ 2m [log2 ml . (3.19)

Proof:

1. This follows from Lemma 4, letting s = 5 and d = 1.

2. VbE n let

Cb(X) def j2
 E [1, : 1). =

39

Looking at Table 3.1 it can be noticed that

Tit

X Es!: w(U(X)) = E w(u(bn) = E cb(X)w(u(b))
i =1 b M

c00000(X) clioio(X) + 2 E cb(x)=c00000(x)ciuno(x)+ 2m
bEN

2m + min [c00000(X) cliolo(X)]xEst

Now, if w E [0, m], a minimum is reached when (see Lemma 6)

X = (10000)" (00000)'"

On the other hand, if w E (m, 2m], a minimum is reached when

X = (11010)11(10000)w -31'i'1(00000)(---)mod2.

This implies

m w(X) if w(X) E [0, m]
w(U(X)) > 2m +

(w(X) m) mod 2 {w(Tm1 if w(X) E (m, 2m]

3m w(X) if w(X) E [0, m] w(X)1
>

[5mw(X) 1 2 I

1 if w(X) E (m, 2m]

On the other hand

w(U(X)) = E cb(X)w(u(b)) < 3 E cb(X) = 3m.

bEN b7z

3. Since
max l(U(X)) = 3m t

x EU:,_0 sk

and k = 5m, then

e(t) = k max 1(U(X)) = 5m (3m + t) = 2m t.
x ELL°

4. Let

= 15m ti
2

and

w2 = 3m.

40

From 2, the number of different weights of words in

t

w ctf { u(x)o(3m+t)/(u(x)) : x E U Sil

i.o

is w2 wi + 1. Since we encode W using single maps (3.15), then

c(t) = [log2(w2 wi + 1)1 = rlog2 arn2+ 1 + 1)1 .

5. From the definition of t(m), the following two relations must be satisfied

t(m) < 2m log2 (r + t(m) + 1)1 , (3.20)
2

t(m) -F 1 > 2m loge (Lni + (42m) + 1) + 1)1 . (3.21)

Since m < t(m) < 2m 1 the result

2m [log2 m1 1 < t(m) < 2m [loge ml

is true.

Now we prove the lemma used in the proof of Lemma 5.

Lemma 6 Given m E IN and X E 7L3m, let

F(X) 41 c00000(X) cnon(X).

A minimum for F in Sitm is reached when

X = (10000)" (00000)'"

and w E [0, m] or when

X = (111310)ML1(10000)-311(00000)(w-m) mod2.

and w E(m,2m1.

Proof: Let X E Sttm be a string such that F(X) is minimum in Sr. Without loss
of generality, it is possible to assume

X = (11111)a (11110)b(11010)c(11000)d(10000)e(00000)1

41

where

w=5a+4b-E3c+2d+le+ Of

and

m=a+b-Fc+d+c+f.
Since w < 2m, then

a>1 = e+f> 1.
Replacing each subsequence (11111)(00000) or (11111)(10000) with (11010)(11000)

or (11010)2 respectively, it is possible to assume a = 0.

Since w < 2m, then

b>1 = e+f> 1.
Replacing each subsequence (11110)(10000) or (11110)(00000) with (11010)(11000)

or (11000)2 respectively, it is possible to assume b= 0.

By replacing each subsequence (11000)2 with (11010)(10000) it is possible to

assume d= 0 or d= 1. However,

a = 0, b = 0, d = 1 and w <2m = e+ f >1.

Therefore, by replacing either the subsequence (11000)(10000) or (11000)(00000)

with (11010)(00000) or (10000)2 respectively, it is actually possible to assume d= 0.

From the above it is possible then to assume

x= (nolo)c(th000)e(00000)f

where
m=c+e+ f,

(3.22)
{

w = 3c + e.

The last relations imply

w m = 2c f f mod 2 = (w m) mod 2. (3.23)

Now, if c 0 and f > 2 then the string

X' = (11010)c-1(10000)e+3(00000)f-2

is such that

F(X')=(f 2) (c-1)= f c-1 < f c= F(X),
contradicting the assumption that X is a minimum for F in S. This means that
only the following cases are left.

42

1. c = 0. This implies w E [0, rn], e = w and f = m w (see (3.22)).

2. c	 0 and f = (w m) mod 2 = 0. This implies w E (m, 2m], c = "771 and
e = w 311-2F- (see (3.22) and (3.23)).

3. c # 0 and f = (w	 m) mod 2 = 1. This implies w E (m, 2m], c = w-m
2

1 and
e = w 3'---i-±---1 1 (see (3.22) and (3.23)).

Now we can give the tail-map constructions and the encoding/decoding pro­

cedures. Given k = 5m, m E IN, let t = t(m) be the number defined by 5 of Lemma
5, i.e. the biggest t E IN such that

e(t) = 2rn t > [log2 am ti -I- 1)1 = c(t).
2

5 of Lemma 5 implies that

Lk [log2 1 .t '-- 2m rlog2 ml =
5 5

Further, let
def	 5m2Wi = m w(U(X)) = 1

x:w(inx)<t

W2
def max w(U(X)) = 3m,

X:w(X)<t

k*
def

k e(t)

and

U* : Sp u sc u . . . U St ' stuk: U s : cv: +1 u . . . U 5,;;2

be the function defined as follows

def
u (x)o k i(u(x)).

Note that U*(X) is nothing but U(X) followed by enough 0's to make U*(X) of
length equal to k* = k e(t). Further, the weight of U*(X) is between w1 and w2.

Given YKi , YwKI+1 ... , YwK2 E Z, let

<ywK >: swk* sk*
Vw E [w1, w2]

be single maps (3.15) such that

ik*: el
Vw E [w1, w2].

43

Now it is possible to define the tail-map

t

Tl : U Sk -> (3.24)
1=0

as follows

<Y/,, > (U*(X)) if w(U*(X)) =

if w(U*(X)) = wl + 1,> (U*(X))/cii+iri(x)4g (3.25)

< ywx > (u * (x yw2 if w(U*(X)) = w2.

Note that, by complementing Ti(X) it is possible to define an equivalent tail-map

T1 U Stk -> Stu .1

i=0

Further, in order to encode those words whose weight is greater or equal than k t,

we can use the tail-map

k

T2 Sig Slifk-i (or Skk) (3.26)
-5 I

i=k-t

defined as
dsf Ti(X) (or ri(X)). (3.27)

Given an information word

X = bi b2 . . .

the algorithm to compute ri(X) can be described as follows. Assume w(X) < t
(otherwise X is encoded either by single maps or by means of r2). The encoder
performs the following steps:

1) compute (u is the function defined in Table 3.1)

C = U(X) = u(bn u(b2) . . . u(b!)E

5 and 3 of Lemma 5 imply that 1(C) < k* = k e(t).

2) Add 0's until 1(C) becomes k *; i.e. compute

C = C Ok*-1(c) = U*(X)

44

3) Compute w = w(C). 2 of Lemma 5 implies that w E [w1, wd

4) Balance C using Knuth's single maps; i.e. compute

ri(X) = <Yti > (C)IcK

Note that

1(71(X)) =1(<17,K > (C))-1-1(K,K) = k* e(t) = k.

Example 5 If r = 5 and m = 21 then

k = 5m = 105,

t(21) = 37,

k t(21) = 68,

e(37) = 5,

k* = 100,

wl = 34,

w2 = 63,

k*/2 = 50,

Rk*+0,21. Ik /21 = 53,

+ 0/21 = 55.

therefore it is possible to define the following tail-map

Tl : Sp05US r' u u sN5 > sr,

Assume 00101 is the check symbol which encodes 71 (i.e. <00101 >= TO and that

7-1 has been defined using the single maps Y.K Sr° 8,1,°° shown in Table 3.2.

If
X = (11010)5(11100)3(01000)4(10000)8(00000)1 E 7L25,

is the information word that needs to be encoded, the encoder does

1) compute w(X) = 36. Since X EIR.1.0 Sr5, then

2) compute

C = U(X) = (100000)5(100001)3(1100)4(1101)8(111)1,

3) add 0's until 1(C) becomes k* = 100; i.e. compute

C = U*(X) = (100000)5(100001)3(1100)4(1101)8(111)10,

45

Ici,c w v 17,/ w vw

00111 34 50 10101 43 50
11000 35 51 01010 57 51
01011 36 50 11001 44 50
01111 37 49 00110 56 51

10000 63 52 01110 45 50
10111 38 49 10001 55 51

01000 62 52 10110 46 50
11011 39 49 01001 54 51

00100 61 52 11010 47 50
11101 40 49 00000 53 53
00010 60 52 11111 48 48
10011 41 50 00001 52 52
01100 59 51 11110 49 49
01101 42 50 00011 51 51

10010 58 51 11100 50 50

Table 3.2: Choice of 17! and vw defining single maps 17/, :: Si li,°° --4 Sl°°, for
w e [w1, w2].

46

4) compute w = w(C) = 46. Since C E Sr, then

5) balance C using Knuth's single maps; i.e. compute

7-1(X) =< 10110 > (C) 10110 =

011111(100000)4(100001)3(1100)4(1101)8(111)10 10110.

6) append the check 00101 which encodes 7-1. The encoding of X is then E(X) =

011111(100000) 4(100001)3(1100)4(1101)8(111)10 10110 00101,

which is a balanced word.

Let

1-7K ff = 011111(100000)4(100001)3(1100)4(1101)8(111)10 10110 00101,

be the received word. Reading k = 00101, the decoder knows that the information

word X was encoded using the function r1 =< 00101 >. Reading kic = 10110
it knows that U*(X) was encoded using the single map < 10110 >; therefore, it
computes

1)

< iono >-1 (X) = (100000)5 (100001)3(1100)4(1101)8(111)10,

2)

u*-1(< 'olio >-1 (X)) = (11010)5(11100)3(01000)4(10000)8(00000)1 = X.

Before giving an example of the whole balanced code design, we will estimate

how powerful is the method presented in this section; namely we will estimate the

maximum number of information bits that it is possible to balance using r check
bits. We have the following

Theorem 3 Given r E [3, -1-oo] let k(r) be the greatest integer k E 5IN such that a

DC(k + r, k) code can be constructed using tail-maps (3.24) and (3.26). Then

5 - 2' 10 r 15 < k(r) < 5 . 2' 10 r + 5.

Proof: Let m = m(r) tf V, t = t(m) be the numbers defined by 5 of Lemma 5
and d(k) be defined as (3.7) of Section 3.2.

47

From the definition of k(r)

d(5 m) = 5 m 2t(m) 1 < 2' 2, (3.28)

and

d(5 (m + 1)) = 5 (m + 1) 2t(m + 1) 1 > 2'

From (3.21) and (3.19) it follows

+ 1) + [t(m + 1) + 11]
t(m 1) > 2(m 1)+ + [log2

([(m
2

2.

1)1

(3.29)

am + t(m + 1) + 2]2t(m + 1) < 4(m + 1) + 2 iloge
2

4(m + 1) +2 ilog2 (Lm +
2(m + 1) 12log2(m + 1)1 + 2]

1)1

1)1

Ilog2(m + 1)1 + 4] 1)1
4(m + 1) + 2 ilog2 (1.3m

2

])1
4(m + 1) + 2 [log2 ([3m

ilog2(2 m + 1)1 + 4

1) 1
4(m + 1) + 2 iloge ([3m 4- (6

ilog2(m + 1)1
2

Since, for m > 3, 6 ilog2(m + 1)1 < m, it follows

2t(m + 1) < 4(m + 1) + 2 rlog2m1 + 2.

Substituting this relation in (3.29)

5(m + 1) 4(m + 1) + 2 ilog2m1 + 2 > 2" 1 <

m + 1 + 2 rlog2m1 + 2 > 2r 1 4=>

M _?_ 2' 2 ilog2m1 3.

On the other hand, from (3.20) and (3.19)

t(m) < 2m iloge am +2
(m)]

+ 1

(3.30)

2t(m) > + 2 iloge am +2(m) + 1) >

4m + 2 ilog2 Gm + 2m flog2m1 1

2

48

3m nog2m1.1)1([3m + 1-4m + 2 l0
2

2j)14m + 2 ilog2

2t(m) > 4m + 2 [loge ml .

Substituting this relation in (3.28)

5m 4m + 2 [loge m] < 2' 1 ­

m < 2' 2 ilog2 ml 1. (3.31)

Relation (3.30), together with (3.31), gives

2' 2 ilog2m(r)1 3 < m(r) < 2r 2 [loge m(r)l 1. (3.32)

Given

Vr E [5, +oo] 2r-1 < m(r) < 2r

and (3.32), it follows

Vr E [5, d-oo] 2' 2r 3 < m(r) < 2' 2r + 1,

which means (for r = 3 or 4 the previous relations hold as well)

Vr E [3, -Foo] 5 2r lOr 15 < k(r) < 5 2r lOr + 5.

Example 6 For r = 5, looking at Table 3.3, the reader can see that m(5) = 21 and
t(21) = 37, which means k = 5m = 105. A DC(110,105) code can be constructed
as follows

37 105
s105 105<00101 >: U 5P5 535 < 1 1010 >: U 45,105 --52

i =0 i =68

R105 R05 R105 R105<01111 >: $25 <01110>: 4,52 <00110>: 4-.5351 -'48 "58
45105 R105 __+ R05 R105 55105,< ,s105 51 , <10110>: -'52 , <01010>:4-'49 4-'59 3
R105 ,c105 105 R 105_) 5105 R105____÷< 11011 >: 5405 <11111 >: < 10010 >:4-'51 , `-'50 `-'50 , -'60 4-'53 ,

<nun>: 45105 ,5105 <11110>: R105 ..____* s105 <01100>: 105 ____.> R15
51 , 4'51 51 , -'61 4-'53 ,

R105 R105 R15 R105 R105 _____ ______>< oom >: so <11100>:,52 <10100 >:4-'52 , `-'52 4-'62 4-'53 ,
R105 525, s105 R105< (non >: 454135 5105 <00011 >: <11000 >:52 `-'53 63 `-'53 ,

5105 RIM .R105 R105 R05<loon>: 45445 <00001 >:54 <00010 >:52 '54 4-'64 s'54 ,
5105 RIM .__ R105 R105 ____* R105<01101 >: se < 00000 >: < 00100 >:52 7 4-'55 4-'55 , `-'65 4-'54 ,
5105 R105 __). R05 R105 _____+ R105< 10101 >: 45465 <01001 >: _ < 01000 >:52 `-'56 '-'53 , `-'66 '-'54 ,
6105 R105 R105 s4.05 slM< 1 1001 >: SIY5 <10001 >: < 10000 >:52 , 4-'57 4-'53 , 54

In this case < 00101 >= ri is defined by (3.24), < 11010 >= r2 is defined
by (3.26) and < 11111 >, < 11110 >, < 11100 >, < 00011 >, < 00001 >,
< 00000> are identity functions. The remaining <Y > 's are proper single maps.

49

r t(m(r)) m(r)
3 4 3

4 10 7

5 37 21

6 91 49
7 214 111

8 465 237
9 972 491

10 1991 1001

11 4034 2023
12 8125 4069
13 16312 8163

Table 3.3: Values of m(r) and t(m(r)) for r E [3,13].

3.5 Comparisons

In this section, before showing the comparisons among our methods with the

method proposed in [ALB94], we give a closed form for the function kmar(r): the
maximum integer such that there exists a balanced code with r check bits and k(r)
information bits.

Given n E IN, the following relations hold [LON80]

VFrt < n! < VSrnnne-neth. (3.33)irnne-nei2n1+1

These relations could be used to define Stirling's famous approximation formula

n! .N57rnnne'.

The following theorem holds.

Theorem 4 Given r E IN, if k = k(r) is the greatest integer such that a

DC(k + r, k)

code exists, then

1.

n=k-PrE2IN, (3.34)

50

2.
22rn = 2 e -2n

3.
n 2'22r 22r

__e 22r4-1.94 1 < _ < e 2242 < (3.35)
ir 2 it 7r

22r22r _ _e 2241.94 < 1.27, (3.36)
ir -'1

5.

n = 2
2r

(1 ± 1).

7r

Proof:

1. From the definition of k, the inequalities

(k + 1) +

2k <2k +1 (3.37)

hold. If

n = k + rE2IN + 1

-1-7­
then 1(k+1)\

2k-El <2 [A±z1) =
I I2 2

contradicting the third relation of (3.37). It is possible then to write (3.37)
and (3.34) in the following way

+r 2k4-1.2 < < 1(k+1)-Fr 1 (3.38)
2 21 1

2. If n E 21N, then
(n) n!

\ 2
[(!21)

therefore, from (3.33), it follows

V27rnnne-ne 12n+1 (n) 12-7.rrtnne-ne.

2 s's 2

krrn (a)3- e_2e12() 2 / krirn (n) 2 e_ie12(0+11
k 2)

2 1 \ 2 (11 1

-Z--e12n-I-1 3n/ < (n) < \/-2'`ek 12n 6n4-1)
en rn

2

http:22r4-1.94

51

1 2 9n-1-1 n 18n-1
_2-e 3n(1211-1-1) < < 12n(6n+1) (3.39)rn n

2 ern

If n E 21N + 1, since
n 1 +n +1

RI]

and (3.39), it follows

2 9n-1-10 2 18n+17
2ne 3(n-1-1)(12n+13) < (rni 2ne 12(n+1)(6n" (3.40)< Vir(n + 1)71-(n + 1) I 2 I

A lower bound for k can be determined as follows. (3.40) and (3.38) imply

+1) + r 2 2k-f-r+i 3(n+M:+25)2k+1 > > >
i(k+21)+1) 7(k + r -I- 2)

<=>,l ` + y >16 + r+ y log2(k + r + 2)
_2

+ loge e 3(n+927(1:,-,-25)

1 1 2 9,H-19
log2(k + r + 2) > r + log2 + log2 e 3(n-1-2)(12n+25) <

2 2

log2(k + r + 2) > 2r + log2
2

+ log2 e 3(n-11V-23,425) -;>­

2 18n-1-38

k + r + 2 > 22re 3(n+2)(12n4-25) <

22r+1 18n+
k > e 3(n+2)(123n84-25) r 2. (3.41)

An upper bound for k can be determined as follows. (3.39) and (3.38) imply

12!%86217 1 <2k < < 2 2k+re
2

V r(k +

<16 + r
1

log2(k + r) + 1 loge 2 + log2 e 12!:"6(7-11 < >
2 2

18n-1
12n 6n-1-12 log2(k + r) < r + loge 2 + log2 e

2 ir
e

2 18n-1
log2(k + r) < 2r + log2 + log2 e 6n(6n4-1) <-->

2
8niken4- 1)k + r < < >

2
k < 2r-1e 6n(6n-1) r. (3.42)

52

(3.41) and (3.42) give

22r+1
22r+1 18n+38 18n-1

e 3(n-1.2)(12n-4-25) 2 < n < e 8n(6n-f-1) (3.43)

Since
e 2 i4-1 < e 3(n+12)(23n8+25)

and
18n-1 1 e 8n(6n-1-1) < C 2n

then
22r+1 22r+1

e 2 ,7474 2n (3.44)
1

2 < n < e
7r 7r

The statement follows by noticing that
22r+1 22r+1e 2n e 7,117 2 < 2.

3. (3.44) is equivalent to

1 n2 +1 2(n+1)kg2 e 1 02 1L 2 < n < L 2 .
ir

Now

log2 e log2 e log2 e
Vr E [3, -Foo] 0.98 < 1 = 1 < 1

2(n(3) + 1) 2(40 + 1) 2(n(r) 1)

and

log2 e

Vr E [1, -Poo] 1 < 1
2n(r)

therefore

22r+0.94 22r+0.98 22r+1

1< 2 < n < .r r r
The statement follows by substituting these relations in (3.44) and noticing
that (3.35) is true when r = 1 or 2.

4.
22r 22r

22r4-1.94 _ 11 =
7 7r

22r
[1 e 2241.94 1 <

22r
1

+ 1 < 1.27.22r+1.94 + 1 = 21.94

5. It follows from (3.34), (3.35) and (3.36), once it is noticed that there exist at
most two integers in an interval of length less than or equal to 1.27.

Some comparisons are shown in Tables 3.4 and 3.5.

http:22r+1.94
http:22r4-1.94
http:22r+0.98
http:22r+0.94

53

Con. in [ALB94], Con. I, Con. II, Con. III,

r k= k= k= k= km. =

2r+1- 10.8Afri 2 2r +1 -2 3 2r-8 5 2r-10r-Fc(r) 2 [2,-2,71 j r (1 ± 1)
1 1

2 4 6 6

3 12 14 16 15 37
4 28 30 40 35 158
5 60 62 88 105 645
6 124 126 184 245 2600
7 251 254 376 555 10421

8 507 510 760 1185 41712
9 1019 1022 1528 2455 166875
10 2043 2046 3064 5005 667532
11 4091 4094 6136 10115 2670165
12 8187 8190 12280 20345 10680694
13 16379 16382 24568 40815 42722815

Table 3.4: Comparisons of various constructions. r and k are the number of check
and information bits respectively. In the fifth column c(r) E { 15, 10, 5, 0, +5).

54

Con. in [ALB94], Con. I, Con. II, Con. III,
k = 2P r= r= r= r= rmin

4 2 2 2 2

8 3 3 3 3 3

16 4 4 3 4 3

32 5 5 4 4

64 6 6 5 5 4
128 7 7 6 6 4

256 8 8 7 7 5

512 9 9 8 7 5

1024 10 10 9 8 6

2048 11 11 10 9 6

4096 12 12 11 10 7

8192 13 13 12 11 7

16384 14 14 13 12 8

32768 15 15 14 13 8

Table 3.5: Comparisons of the number of check bits required when k is a power of
2. rmin is the minimum number of check bits required to have a DC(k + r, k) code.

55

Chapter 4

Future Research

The research can proceed in two directions. The first one is to improve the new
scheme presented in this thesis finding some other functions like Knuth's map and

tail-maps to further reduce the redundancy. In order to do this, the new maps
should 1) be very easy to compute, 2) be very "adherent", 3) have a domain as big
as possible, and 4) have as codomain a constant weight code Sii: with v close to ii.

Given a function f : D --4 C, we say that f is adherent if f is one-to-one and
the cardinality of the domain is almost equal to the cardinality of the codomain.
In more precise terms we can define a parameter which gives an indication of how

adherent is the function f, as follows

def 42 IDI < 1
I log2 I C I

For example, it is easy to prove that the adherence of the tail maps defined in
Section 3.4 is greater than or equal to 0.9710, which is very close to 1.

A second direction of future research is to find efficient design methods for

parallel encoding and decoding of balanced codes. All the methods known so far
have sequential encoding. However in some VLSI applications (Noise Reduction

in VLSI Systems) it is required to have parallel encoding and parallel decoding
schemes for balanced codes [TAB90, STO91]. To our knowledge no efficient method

is available in the literature for this problem.

56

Bibliography

[ALB94]	 S. Al-Bassam and B. Bose, Design of efficient balanced codes, IEEE Trans.
Comput., vol. 43, pp. 362-365, March 1994.

[ALB90]	 S. Al-Bassam and B. Bose, On balanced codes, IEEE Trans. Inform. The­
ory, vol. 36, pp. 406-408, March 1990.

[ALB93]	 S. Al-Bassam and B. Bose, Conservative and balanced codes, Proc. IEEE
1993 Int. Symp. Inform. Theory, page 9, Jan 1993.

[AL088]	 N. Alon, E. E. Bergmann, D. Coppersmith and A. M. Odlyzko, Balancing
sets of vectors. IEEE Trans. Inform. Theory, vol. 34, no. 1, pp. 128-130,
Jan. 1988.

[BEG86]	 E. E. Bergmann, A. M. Odlyzko and S. H. Sangani, Half weight block
codes for optical communications, AT&T Technical Journal, vol. 65, pp.
85-93, May 1986.

[BOS91]	 B. Bose, On unordered codes, IEEE Trans. Comput., vol 40, pp. 125-131,
Feb. 1991.

[BER61]	 J. M. Berger, A note on error detecting codes for asymmetric channels,
Inform. Contr., vol 4, pp. 68-73, March 1961.

[CH085] B. Z. Chor, Two Issues in Public Key Cryptography: RSA Bit Secu­
rity and a New Knapsack Type System, MIT Press, Cambridge, Mas­
sachusetts, 1985.

[FRE62]	 C. V. Freiman, Optimal error detecting codes for completely asymmetric
binary channels, Inform. Contr., vol 5, pp. 64-71, March 1962.

[GAL68]	 R. G. Gal lager Information Theory and Reliable Communication, New
York, Wiley 1968.

[KNU86] D. E. Knuth, Efficient balanced codes, IEEE Trans. Inform. Theory, vol.
IT-32, pp. 51-53, Jan. 1986.

[LEI84]	 E. L. Leiss, Data integrity in digital optical Disks, IEEE Trans. Comput.,
vol c-33, pp. 818-827, Sept. 1984.

[LON80]	 G. Longo, Teoria dell'Informazione, Serie di Informatica, Boringhieri,
1980.

57

[MAC77] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting
Codes, 21, page 530, North-Holland, 1977.

[OFE90] Y. Ofek, The conservative code for bit synchronization, IEEE Trans.
Comm., vol 38, pp. 1107-1113, July 1990.

[SAI91] Y. Saitoh and H. Imai, Multiple unidirectional byte error-correcting codes,
IEEE Trans. Inform. Theory, vol. 37, pp. 903-908, May 1991.

[SPE28] E. Sperner, Ein satz fiber untermenge einer endlichen menge, Math.
Zhais., vol. 27, pp. 544-548, 1928.

[STO91] H. S. Stone and J. Cocke, Computer architecture in the 1990s, Computer,
pp. 30-38, Sept. 1991.

[TAB90] J. Tabor, Noise reduction using low weight and constant weight coding
techniques, Technical Report AI-TR 1232, MIT Artificial Intelligence
Laboratory. June 1990.

[TAK76] Y. Takasaki, M. Tanaka, N. Maeda, K. Yamashita and K. Nagano, Optical
pulse formats for fiber optic digital communications, IEEE Trans. Comm.,
vol 24, pp. 404-413, April 1976.

[TAL93]	 L. Tallini, R. M. Capocelli and B. Bose, Design of some new balanced
codes, Proc. IEEE 1993 Int. Symp. Inform. Theory, page 7, Jan 1993.

[TOH71] Y. Tohma, R. Sakai and R. Ohyama, Realization of fail-safe sequential
machines by using k-out-of-n code, IEEE Trans. Comput., vol. c-20, pp.
1270-1275, Nov. 1971.

[VER88]	 T. Verhoeff, Delay-insensitive codes-an overview, Distributed Computing,
vol. 3, pp. 1-8, 1988.

[WID83]	 A. X. Widmer and P. A. Franaszek, A DC-balanced, partitioned-block,
8B/10B transmission code, IBM J. Res. Develop., vol 27, pp. 440-451,
Sept. 1983.

