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The ability to estimate andmonitor standing dead trees (snags) has beendifficult due to their irregular and sparse
distribution, often requiring intensive sampling methods to obtain statistically significant estimates. This study
presents a new method for estimating and monitoring snags using neighborhood attribute filtered airborne
discrete-return lidar data. The method first develops and then applies an automated filtering algorithm that
utilizes three dimensional neighborhood lidar point-based intensity and density statistics to remove lidar points
associatedwith live trees and retain lidar points associatedwith snags. A traditional airborne lidar individual-tree
detection procedure is then applied to the snag-filtered lidar point cloud, resulting in stem map of identified
snags with height estimates. The filtering algorithm was developed using training datasets comprised of four
different forest types in wide range of stand conditions, and then applied to independent data to determine suc-
cessful snagdetection rates. Detection rates ranged from43 to 100%, increasing as the size of snags increased. The
overall detection rate for snags with DBH≥ 25 cmwas 56% (±2.9%) with low commission error rates. Themethod
provides the ability to estimate snag density and stem map a large proportion of snags across the landscape. The
resulting information can be used to analyze the spatial distribution of snags, provide a better understanding of
wildlife snag use dynamics, assess achievement of stocking standard requirements, and bring more clarity to
snag stocking standards.

Published by Elsevier Inc.
1. Introduction

In recent years, recognition of the essential roles standing dead trees
(snags) play in forest ecosystems has increased. For wildlife, snags
provide critical nest, roost, and den habitat for a myriad of vertebrate
species while also providing excellent foraging resources (Bate, 1995;
Harmon, 2002; Laudenslayer, 2002; Mellen et al., 2006; Rose et al.,
2001). For these reasons snags have been classified as key habitat compo-
nents for many threatened and forest health indicator species (Harmon,
2002). Snags are also important for nutrient cycling, long-term carbon
storage, and many fungal and invertebrate life cycles are dependent on
snags (Boddy, Frankland, & van West, 2008; Harmon, 2002; Jonsson,
Kruys, & Ranius, 2005). Due to all these attributes, snags are often consid-
ered to be key indicators of biodiversity and forest health.

As the recognition of the importance of snags has become more
apparent, numerous certification programs and forestmanagement reg-
ulatory bodies have developed minimum snag stocking requirements to
1 530 226 5091.
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help ensure that biodiversity is maintained or restored (Pasher & King,
2009). These most often require a certain density or volume of snags to
be maintained over time in order to provide continuous habitat support
and ecosystem sustainability (Franklin, Berg, Thornburgh, & Tappeiner,
1997; Holloway, Caspersen, Vanderwel, & Naylor, 2007). The standards
and regulations are often based on results from snag sampling studies,
which estimate the size and quantity of snags from field sampling
methods. One limitation associatedwith thismethod is that the distribu-
tion of snags across forest stands is often highly variable, even within
stands that are similar in many other respects (Fan, Shifley, Thompson,
& Larsen, 2004). Most standard sampling designs are not efficient for
rare events, such as snags (Yoccoz, Nichols, & Boulinier, 2001). Thus,
the ability to estimate and monitor snags has proven to be inherently
difficult; requiring complex, intensive, and often expensive sampling
procedures to produce estimates of sufficient precision (Bate, Garton, &
Wisdom, 1999; Bull, Holthausen, & Marx, 1990; Ducey, Jordan, Gove, &
Valentine, 2002; Gray, 2003; Harmon & Sexton, 1996; Kenning, Ducey,
Brisette, & Gove, 2005; Krebs, 1989; Lämas & Stahl, 1998; Rose et al.,
2001). This has led to the exploration of utilizing remote sensing technol-
ogies to better estimate snag densities and distributions across the land-
scape (Bater, Coops, Gergel, LeMay, & Collins, 2009; Bütler & Schlaepfer,
2004; Croft, Heller, & Hamilton, 1982; Martinuzzi et al., 2009).
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Using remote sensing techniques to estimate the density and distribu-
tion of snags can provide a more practical, cost-effective, and reliable
method (Bater et al., 2009). However, there have been few studies testing
the capabilities of remote sensing to estimate snags. While some have
used Landsat (Frescino, Edwards, &Moisen, 2001),most have utilized air-
bornemultispectral imagery andhave focused on stand-level disturbance
events, such as insect outbreaks, disease or windfall (Guo, Kelly, Gong, &
Liu, 2007; Hamilton, Megown, Ellenwood, Lachowski, & Maus, 2010;
Kelly, Shaari, Guo, & Liu, 2004). Others have focused on the assessment
of individual snags in a variety of forest types and conditions (Bütler &
Schlaepfer, 2004; Croft et al., 1982; Haara & Nevalainen, 2002; Leckie,
Jays, Gougeon, Sturrock, & Paradine, 2004; Pasher & King, 2009). Bütler
and Schlaepfer (2004) achieved good results by developing a manual
four-step individual-snag detection method that coupled airborne CIR
photos (1:10,000) with a geographic information system (GIS). Their
method produced an overall detection rate of 67% for snags ≥25 cm di-
ameter at breast height (DBH), but also had many noted limitations;
1) most smaller snags were not detected, 2) high-levels of technolo-
gy were required, including special software, and 3) accuracies were
affected by factors such as aspect, surface slope, weather, and hour of
flight. Their manual method, likemost methods utilizing aerial imag-
ery, also suffers from time and cost issues and is prone to operator in-
terpretation bias and subjectivity errors (Bater et al., 2009). As a
result, there has been an increased interest in augmenting techniques
to estimate and detect snags using newer remote sensing technologies,
such as airborne light detection and ranging (lidar), that have
displayed potential in the identification of individual trees and the
ability to predict live- and dead-tree attributes (Kim et al., 2009;
Martinuzzi et al., 2009).

Airborne lidar is an active remote sensing technology employing an
aircraft mounted laser capable of simultaneously mapping terrain and
vegetation heights with sub-meter accuracy across large spatial extents
(Lefsky, Cohen, Harding, & Parker, 2002). It has proven to be a very
promising remote-sensing technology for increasing the accuracy and
efficiency of large-scale forest inventories for a myriad of important
forest inventory and wildlife habitat attributes (Maltamo, Malinen,
Packalén, Suvanto, & Kangas, 2006; Martinuzzi et al., 2009; Næsset,
2002). Lidar data produce three-dimensional characterizations of
objects in the form of point clouds that are defined by precise x, y and
z coordinates. They also help characterize the reflectance and surface
properties of intersected objects by providing intensity values, which
are a measure of return-signal strength for each point. These attributes
are useful for forest inventory and characterization because, in theory
every object in a forest can be detected if adequate lidar point densities
are collected within all vertical layers (e.g., understory & overstory)
(Pesonen, Maltamo, Eerikäinen, & Packalén, 2008).

The use of airborne lidar in the estimation of snag attributes has
received more attention recently. The methods for estimating snag
attributes using airborne lidar can be separated into two assessment
categories: plot-based and individual-tree (Reutebuch, Andersen, &
McGaughey, 2005). Plot-based assessments seek to estimate plot-level
attributes such as snag volume, biomass or abundance (Bater et al.,
2009; Kim et al., 2009; Martinuzzi et al., 2009; Pesonen et al., 2008),
while individual-tree based assessments seek to extract and measure
individual trees using some type of segmentation method (Kaartinen
& Hyyppä, 2008; Vauhkonen et al., 2011). Estimation of snag attributes
using plot-based assessment methods have achieved mixed results.
Pesonen et al. (2008) achieved relatively poor results predicting snag
volume using plot-based canopy derived lidar-metrics (RMSE 79%),
while Kim et al. (2009) achieved better results estimating snag biomass
using similar plot-based metrics that were stratified based on intensity
values. These studies both highlight the need for more research on the
subject.

Individual-tree based snag assessment using airborne lidar has
received less attention. All studies to date using individual-tree based
assessment methods have focused on extracting both live and dead
trees, with most attention on the former (Kaartinen & Hyyppä, 2008;
Maltamo, Eerikäinen, Pitkänen, Hyyppä, & Vehmas, 2004; Mehtätalo,
2006; Morsdorf et al., 2010; Reitberger, Schörr, Krzystek, & Stilla,
2009; Vauhkonen et al., 2011; Wang, Weinacker, Koch, & Sterenczak,
2008). To the authors' knowledge, there have been no studies to date
that have predominantly focused on identification of individual snags
using an airborne lidar individual-tree assessment method. This study
attempts to identify individual snags using airborne lidar data by applying
an individual-tree assessment method to neighborhood attribute filtered
lidar data focused on removing lidar points associatedwith live trees from
the overstory (snag-filtered lidar data).

Neighborhood attribute point cloud filtering is a new airborne lidar
analysis technique being introduced in this study. Its primary objective
is to create an automated routine that accurately assigns the proper
forest attribute to each lidar point. This information can then be used
to filter the points and obtain a point cloud containing only points asso-
ciated with the forest attribute(s) of interest, or to assign individual
forest attribute probabilities or weights to each lidar point. In theory,
this should provide an enhanced airborne lidar analysis framework for
both plot-based and individual forest attribute assessments since lidar
points not associated with the forest attribute(s) of interest are either
removed from the analysis or have less influence on prediction models.
Filtering is accomplished by using two inherent lidar point attributes:
location and intensity. Each lidar point's attributes as well as its neigh-
boring lidar points' attributes are used to create neighborhood statistics
that are then used in a conditional framework to identify the forest attri-
bute most likely to be associated with each lidar point. The location of
each lidar point can be used to determine if a point intersected a forest
attribute in the understory or overstory, and then neighborhood inten-
sity and point density statistics can be used to help determine the
unique forest attribute associatedwith each point. In this study, location
and three dimensional (3D) neighborhood statistics are used in an
attempt to identify individual lidar points associated with snags and
live trees. Intensity is the primary lidar attribute used for the neighbor-
hood point cloud filtering, therefore understanding the attribute's
nuances are fundamental to successfully filtering the data.

Intensity values are an often underexploited feature of lidar data,
due to variability and difficulty associated with acquisition settings
and calibration (Wing et al., 2012). Intensity is a unitless measure of a
laser pulse's discrete return energy stored as an integer value with a
defined range (e.g., 0–255). Intensity data are primarily a measure of
surface reflectance and are a function of the wavelength of the source
energy, path distance, and the composition and orientation of the surface
or object the laser pulse intersects (Boyd & Hill, 2007). Variability of the
intensity data across similar targets is dependent upon adjustable lidar
acquisition parameters. Laser beam divergence, type of source energy,
path lengths and variable gain control settings all affect the variability
of intensity. These acquisition parameters influence intensity at different
rates and magnitudes, with path lengths and the variable gain control
setting having the most influence. These attributes have limited the use
of intensity data, due to variability associatedwith intensity valueswithin
and from different acquisitions. Even with these limitations intensity has
already been used successfully in many forestry applications to differen-
tiate between tree species, estimate live and dead biomass, and predict
basal area (Donoghue, Watt, Cox, & Wilson, 2007; Holmgren & Persson,
2004; Hudak et al., 2006; Kim et al., 2009; Lim, Treitz, Baldwin,
Morrison, &Green, 2003;Wing et al., 2012). Kim et al. (2009) used inten-
sity value threshold stratification to estimate live and dead standing tree
biomass. They stratified plot point clouds based on intensity values and
found metrics created with the lower intensity plot point cloud better
estimated standing dead biomass. More recently, Wing et al. (2012) uti-
lized intensity information to help filter points in the understory
(e.g., vegetation, stumps, coarse woody debris, tree boles). These studies
point toward the potential of using intensity to help characterize many
forest attributes. With the advent of post-calibration or normalization
routines to reduce intensity variability and the standardization of
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acquisition techniques the usefulness of intensity information is likely to
increase (Wing et al., 2012).

In theory, lidar points associated with snags should have different
reflectance and surface properties (intensity values) compared to
live trees since they contain no photosynthetic material and often
lack foliage and fine branches. If true, it might be possible to exploit
this relationship to determine if an individual lidar point is associat-
ed with a live tree or snag. This study tests this theory by attempting
to create an automated snag-filtering algorithm that classifies each
overstory lidar point as a live tree or snag point. Lidar points classi-
fied as snag points are retained in the overstory, while live tree
points are removed. After the algorithm is applied, a traditional can-
opy surface model individual-tree segmentation procedure is
employed to identify individual snags, estimate their heights and
generate a snag stem map. In summary, the objectives of this study
are to 1) create a neighborhood attribute filtering algorithm that
removes points associated with live trees from the overstory,
2) apply an individual-snag detection method to the snag-filtered
point cloud, and 3) test the detection and error rates in various forest
types and structures to help determine applicability in different forest
conditions.
Fig. 1. Locations of Blacks Mountain Experimental Forest (BMEF) and the Sto
2. Materials and methods

2.1. Study area

The studywas conducted at two sites: BlacksMountain Experimental
Forest (BMEF) and the Storrie Fire restoration area (SF). Both are located
in northeastern California (Fig. 1). BMEF is managed by the USDA Forest
Service Pacific Southwest Research Station and is located approximately
35 km northeast of Lassen Volcanic National Park and ranges between
1700 and 2100 m elevation (Fig. 1). Classified as an interior ponderosa
pine forest type (Forest Cover Type 237) (Eyre, 1980), the 4358 ha forest
has awide range of stand conditions as a result of past research andman-
agement activities, as well as disturbance events (Ritchie, Skinner, &
Hamilton, 2007).

As part of a large-scale, long-term interdisciplinary experimental
design at BMEF initiated in 1991, two contrasting stand structures
were created: low structural diversity (LoD) andhigh structural diversity
(HiD) (Oliver, 2000). LoD stands were thinned to maintain a single
canopy layer of intermediate trees, with the goal of simplifying forest
tree structure. In contrast, the HiD units retained all canopy layers,
which resulted in stands that feature multiple age classes and varying
rrie Fire (SF) study areas with the layout of the strata and plot locations.

Image of Fig. 1
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crown structures (Oliver, 2000). Six research units each were randomly
assigned from both the LoD and HiD treatments ranging in size from
77 to 144 ha. Each unitwas then split in half with one randomly assigned
half receiving prescribed fire treatments (Fig. 1). Also included at BMEF,
are four research natural areas (RNA) each approximately 40 ha in size.
The RNAs were set aside to serve as unmanaged, qualitative controls
representative of the interior ponderosa pine forest type. They have
never received mechanical treatment, but fire exclusion has greatly
increased their understory tree densities. Two of the four RNAs also re-
ceived one application of prescribed fire in the late 1990's.

As part of the experimental design all 16 researchunits at BMEFhave
permanent grid markers located within them utilizing a 100 × 100 m
lattice pattern. The permanent grid markers serve as the center points
for the plot level research being conducted on the forest. Each grid
was located by conventional survey methods and placed within 15 cm
of their predetermined UTM coordinates using the High Precision
Geodetic Network along with survey grade GPS (Oliver, 2000).

The Storrie Fire restoration area, managed by the USDA Forest Service
Lassen and Plumas National Forests (NF), is located approximately 45 km
south of Lassen Volcanic National Park and ranges between 900 and
2100melevation (Fig. 1). The areawas subject to awildfire in late August
of 2000. The fire was characterized by high spatial complexity with
varying levels of fire severity on the predominantly forested landscape,
burning approximately 23,000 ha (Crotteau, Varner, & Ritchie, 2012).
This study only focused on the Lassen NF portion of the fire, which
encompassed 48% of the area (11,260 ha). It has three dominant
vegetation cover types: High Elevation Fir (HF), Low Fir (LF), and Sierra
Nevada Mixed Conifer (MC) (Forest Cover Types 207, 211, and 243 re-
spectively) (Eyre, 1980).

Variable fire severity created a mosaic of different forest conditions
within each of the three forest vegetation cover types. The area was
stratified into twelve total classes: four levels of fire-severity (high
(HS), medium (MS), low (LS), and unchanged (U)) across three levels
of forest type (HF, LF, and MC) (Fig. 1). Fire severity was determined
by using the Relative differenced Normalized Burn Ratio (RdNBR; see
Miller et al., 2008) to approximate the Composite Burn Index (CBI) pro-
duced from the two Landsat Thematic Mapper post-Storrie Fire images
yielding the four nominal categories. The high-severity stratum can be
generally characterized as having no surviving live-tree component
with numerous snags at similar decay stages, which were often broken
at the time of the study. Themedium-severity stratum has very few live
trees and numerous snags at various stages of decay. The low-severity
stratum has a higher proportion of live trees with some snags at various
stages of decay. The unchanged stratum generally has little or no fire-
induced mortality in the overstory. Any snags within the unchanged
stratum were unlikely to have been killed by the Storrie Fire.

For this study, the two study areas were grouped into three logical
strata for analysis. All plots at BMEF were combined to create one stra-
tum that represents the broad diversity of stand structures commonly
Table 1
Standing live tree (DBH≥ 9 cm) and snag (DBH≥ 11.5 cm; heights≥ 3m) stand attributes from
deviation).

Strata nt DBH (cm)

Range Mean SD

BMEF — live trees 3819 (9.0–135.1) 25.6 15.4
Storrie (ULS) — live trees 675 (9.1–160.3) 37.0 24.4
Storrie (MSHS) — live trees 92 (13.2–105.7) 50.0 22.4
BMEF — snags (overall) 261 (11.5–122.2) 30.8 21.8
BMEF — snags (training) 94 (11.5–94.2) 29.3 21.4
BMEF — snags (independent) 167 (11.5–122.2) 32.1 22.2
Storrie (ULS) — snags (overall) 169 (11.5–137.4) 44.4 27.5
Storrie (ULS) — snags (training) 51 (11.5–137.4) 56.6 33.7
Storrie (ULS) — snags (independent) 118 (11.9–128.0) 39.5 22.9
Storrie (MSHS) — snags (overall) 258 (11.7–110.0) 39.4 19.0
Storrie (MSHS) — snags (training) 91 (11.7–110.0) 40.4 21.2
Storrie (MSHS) — snags (independent) 167 (12.2–87.6) 38.9 17.7
found in the interior ponderosa pine forest type (Fig. 1). At SF, due to
lower plot densities, the twelve stratified classes were grouped into two
new strata by first combining all three forest types and then grouping
the four fire severity classes into two categories. The first stratum is
comprised of all U and LS plots (SF-ULS) and the second is comprised
of all MS and HS plots (SF-MSHS) (Fig. 1).

2.2. Field data

At BMEF, five of the LoD units, six of the HiD units and 2 randomly
selected RNAs were sampled in July 2009. Standing live (DBH ≥ 9 cm)
and dead tree (DBH ≥ 12 cm) stand attributes for BMEF at the time of
the study are summarized in Table 1. Using the BMEF permanent grid
system, plot locations were systematically located with a random start
within each unit on every other grid point in all intercardinal directions
(282m spacing). At each selected grid point, an 805m2 circular plotwas
established. All trees (live: DBH≥ 9 cm; dead: DBH≥ 12 cm)were stem
mapped from plot center and measured for height, DBH, crown width,
and height to live and dead crown. Trees were also assigned codes
for various tree conditions (i.e., broken, dead or forked top, sweep
or lean, mistletoe presence, epicormic branching, etc.). Trees having
DBH ≥ 50 cm were also assigned vigor condition class risk ratings
using the systems developed by Ferrell (1989) for non-pine species
(e.g. white & red fir and incense cedar) and Salman and Bongberg
(1942) for pine species. The classification systems resulted in indi-
vidual tree vigor risk ratings ranging from 1 to 3 for the non-pine spe-
cies and 1 to 4 for pine species, with higher risk ratings associated with
declining tree vigor. All snags were given a decay condition class rating
using the system developed by Thomas, Anderson, Maser, and Bull
(1979).

At SF, two plot clusters were randomly located within each of the
twelve original strata. Each plot cluster was comprised of three evenly
spaced (50 m) circular plots (16 m-radius, 805 m2). Plot clusters were
located by first selecting a location within each stratum for the initial
plot's establishment. Next, a randomly selected azimuth was used
to determine the location of the two adjacent plots. All standing
trees were measured in August 2009 using the same sampling protocol
utilized at BMEF. Access to the SF area is limited and due to time
constraints six strata only received one cluster. Plots were located and
permanently established using high-grade GPS in the field. Standing
live and dead tree attributes for SF at the time of the study are summa-
rized in Table 1.

2.3. Lidar data

Discrete return airborne lidar data were acquired by Watershed
Sciences Inc. (current name: Quantum Spatial Inc.) in late July 2009
using a Leica ALS50 Phase II laser system (near-infrared) mounted on
a fixed wing aircraft. The aircraft was flown at 900 m above ground
plot data for the three strata (nt=number of snags; np=number of plots; SD= standard

Height (m) np Trees ha−1

Range Mean SD Range Mean SD

(1.8–41.4) 12.4 6.3 154 (24.7–1469.7) 306.3 238.6
(3.1–55.2) 17.8 10.9 30 (37.1–667.0) 260.4 153.9
(4.0–44.2) 24.1 9.5 22 (0.0–94.7) 51.7 48.4
(3.0–42.7) 11.6 6.7 154 (0.0–197.6) 21.9 34.4
(3.0–42.7) 12.3 7.5 36 (0.0–197.6) 46.1 48.5
(3.0–35) 11.0 6.0 118 (0.0–123.5) 15.8 24.2
(3.0–49.7) 13.6 10.0 30 (0.0–308.8) 79.9 75.6
(3.0–49.7) 16.0 11.3 10 (37.1–172.9) 71.4 43.1
(3.1–47.6) 12.6 9.2 20 (0.0–308.8) 76.5 73.6
(3.1–42.7) 10.7 7.0 22 (24.7–333.5) 149.7 93.3
(3.0–34.7) 10.5 7.6 7 (61.75–284.1) 162.3 77.9
(3.1–42.7) 10.9 6.7 15 (24.7–333.5) 140.0 92.9



Fig. 2. Overall data analysis workflow with summarized explanations for the study.
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level following topography. Data were acquired using an opposing
flight line side-lap of ≥50% and a sensor scan angle ±14° from nadir.
On-ground laser beam diameter was approximately 25 cm (narrow
beam divergence setting), which resulted in a very low percentage
of multiple returns (BMEF: 9.2%; SF: 10.1%) and a very high percent-
age of single returns (BMEF: 81.4% & SF: 78.2%). At BMEF, an average
of 6.9 points m−2 was obtained for the entire study area, with a stan-
dard deviation of 5.6 points m−2. At SF, an average of 6.7 points m−2

was obtained for the entire study area, with a standard deviation of
5.9 points m−2.

The vendor post-processed lidar data using automated methods in
proprietary software (TerraScan) coupled with manual methods to
identify ground points for development of the digital terrain model
(DTM). Vertical DTM accuracy for both study locationswas approximate-
ly 15 cmat a 95% confidence level. The vendor used an automatic variable
gain setting during acquisition and did not calibrate the intensity values
post-acquisition.

2.4. Data analysis

Data analysis is presented in four sections: 1) lidar data pre-
processing, 2) snag-filtering algorithm, 3) individual-snag detection,
and 4) snag detection and error rates. The study's overall data analysis
workflow is summarized in Fig. 2 for reference.

2.4.1. Lidar data pre-processing
Inaccurate plot locations are one of largest sources of model error

found in many types of airborne lidar analysis (Anderson, Clarkin,
Winterberger, & Strunk, 2009; Hawbaker et al., 2009). To reduce plot
location errors, all plot locations were manually corrected using the
field-derived standing tree stem map and corresponding lidar data for
each 809m2 circular plot at both BMEF and SF. Due to BMEF's highly ac-
curate permanent grid system no plot locations needed correction;
while at SF most plots needed location correction. All plot locations
were found to be highly accurate after this process was completed
(±1 m). Next, the lidar point cloud elevation values were normalized
into height values using the lidar-derived DTM. Height normalized
point clouds corresponding to the 805 m2 circular plots with a 5 m
buffer were extracted for further analysis. The 5 m plot buffer was
added to each plot to eliminate edge effect issues associated with the
snag-filtering algorithm, the canopy surface model creation method,
and the individual-tree segmentation procedure. In the final step, the
overstory minimum height thresholds were determined from field
data for both study locations (BMEF: lidar height ≥ 1.5 m; SF: lidar
height ≥ 2 m). After these pre-processing steps were completed the
neighborhood snag-filtering algorithm was applied to the height nor-
malized plot point clouds.

2.4.2. Snag-filtering algorithm
The goal of the automated snag-filtering algorithm is to accurately

classify each overstory lidar point as live tree or snag using individual
point location attributes and neighborhood intensity and point density
statistics. To properly use the intensity information for this purpose,
the dynamics of intensity data quality and in relation to live trees and
snags must first be understood. As previously discussed, the quality of
intensity information is dependent upon acquisition and calibration
methods. Morsdorf et al. (2010) showed that the first and single returns
provided more accurate intensity information. Therefore, only the
first and single returns were used in this study. The lidar acquisition
method used for both study areas resulted in first and single return
intensity values ranging from 0 to 255 i (i will act as the intensity value
index).

Individual tree point clouds from 40 randomly selected snags and
100 randomly selected live treeswere extracted and analyzed for trends
from both study locations to aid with understanding the intensity
dynamics in relation to live trees and snags (Fig. 3). For the lidar datasets
used in this study the following intensity trends were identified:

For snags:

1) Snags were comprised of a high proportion (~85%) of lower valued
intensity points (0–60 i). These points are most likely associated
with solid woody material (i.e., branches or boles).

2) Some snags contained a relatively small percentage (~10%) of points
with very high intensity values (N160 i). These points are thought to
be associated with bare wood that has seasoned, thus creating a
light-colored, somewhat smooth reflective surface.

3) Some snags had a low percentage (~10%) of points with mid-range
intensity values (60–160 i). The reason for these is uncertain, but
they tended to be associated with snags that contained one or more
of the following; 1) witches broom (usually formed from mistletoe),
2) sparse dead needles or leaves, or 3) recently dead trees still
displaying fine branches. They might also be associated with lichen,
although this was not sampled.

Image of Fig. 2


Fig. 3. Individual live tree and snag intensity histograms summarizing the intensity
dynamics in relation to live trees and snags.
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For live trees:

1) Live tree intensity values were typically a mix of low (0–60 i) and
mid-range values (60–160 i). The low intensity values were likely
associated with the tree bole and woody branches as they were
most often located in the interior portion and outer crown edges of
individual tree point clouds. The mid-range intensity values were
most likely associated with foliage or fine branches.

2) A small percentage of points associatedwith live trees (~5%) displayed
high intensity values (N160 i). The reason for these is uncertain, but
Fig. 4. Depiction of the three 3D neighborhood variables utilized in the s
they tended to be associated with tree tops and possibly new leader
growth.

The identified live tree and snag intensity trends provided the foun-
dation for the creation of the lidar point filtering algorithm. The filtering
algorithm was developed using training datasets from all three strata
(i.e., BMEF, SF-ULS, and SF-MSHS) with the intention of capitalizing on
the aforementioned intensity characteristics. At BMEF, the training
dataset consisted of a stratified random sample of 36 plots (3 plots
from each HiD and LoD research unit with 2 of them containing at
least one snag; and 3 plots from the two RNA research units with two
of them containing at least one snag). At SF, the training dataset
consisted of one randomly selected plot from each of the plot clusters
(i.e., SF-ULS: 10 plots; SF-MSHS: 7 plots). The training datasets were
combined to develop the snag-filtering algorithm. The remaining
153 plots (BMEF: 118; SF: 35) served as an independent dataset to
test the methods performance.

There are four basic stages in the algorithm. In the first stage, plot-
level lidar variables are calculated which are used to train the sensitivity
of the algorithm. In the second stage, individual point neighborhood in-
tensity and point density statistics are calculated for three separate 3D
neighborhood variables (Fig. 4). These variables are then used in the
third stage, where they are tested in a conditional assessment framework
to determine whether an individual point is associatedwith a live tree or
snag. In the fourth and final stage, all overstory points located within a
1 m radius cylinder of the snag classified points are classified as snag
points. Then all points not receiving a snag classification are classified
as live tree points and are eliminated by replacing their height values
with a zero value to create the final snag-filtered point cloud.

2.4.2.1. Stage one— calculate plot-level lidar variables. Five plot-level lidar
variables were used to train and determine the sensitivity of the
algorithm's ability to identify individual snag points (Fig. 5). Each plot's
nag-filtering algorithm. Lidar points are colored by intensity values.

Image of Fig. 3
Image of Fig. 4


Fig. 5. Box distribution plots for the five variables used to determine the snag-filtering
algorithm's sensitivity level. Box plots are given for both the training and independent
datasets.
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entire first and single return point cloudwas used to calculate the plot's
point density,maximum intensity (MaxInt), and canopy cover (i.e., total
number of overstory points / total number of points); while only the
overstory first and single returns were used to calculate the plot's
mean canopy height (i.e., sum of overstory point heights / total number
of overstory points), and the branch and bole (BB) versus foliage
(F) intensity ratio (BBvFr).

BBvFr is a new overstory lidar variable that is used in two separate
instances within the algorithm to help normalize local intensity varia-
tions caused by acquisition settings (e.g., gain setting variability) and
local tree attributes (e.g., local tree health and vigor variability), and reg-
ulate the algorithm's sensitivity in the identification of snag points. It is
the simple ratio calculated using the following formula:

BBvFr ¼ Total Overstory Points with Intensity Values ≤50i or ≥170i
Total Overstory Points with Intensity ValuesN50 i andb170i

:

ð1Þ

The lower and upper intensity thresholds of 50 i and 170 iwere found
to be safe and consistent values for differentiating between BB and F in-
tensity valued points based on inspection of the 40 randomly selected
snag and 100 randomly selected live tree point clouds (Fig. 3).

2.4.2.2. Stage two — define BB and F intensity filtering thresholds. BBvFr
wasfirst used alongwith themaximum intensity value to automatically
adjust the BB and F lower and upper intensity threshold values (LIntt
and UIntt) for each plot point cloud being analyzed. Through a manual
process using the training datasets, the following linear equations and
conditions were established to define the lower and upper BB and F
intensity threshold values for each plot point cloud at both study loca-
tions:

LIntt ¼ 20 BBvFrð Þ þ 0:075 MaxIntð Þ þ 26:5 ð2Þ

UIntt ¼ 20 BBvFrð Þ þ 0:1875 MaxIntð Þ þ 100:25 ð3Þ

If LIntt b 50; LIntt ¼ 50i If LIntt N 70; LIntt ¼ 70i
If UIntt b 150; UIntt ¼ 150i If UIntt N 170; UIntt ¼ 170i
If Located in SF Area; LIntt ¼ LIntt þ 5i If SF; UIntt ¼ UIntt−5i:

Of the two variables BBvFr has more influence on the threshold
values, while maximum intensity provides minor adjustments. As
BBvFr decreases the LIntt increases andUIntt decreasesmaking the algo-
rithmmore sensitive to identifying snag points by allowingmore points
to be classified as BB and not F. Plots located in SF received a lower and
upper intensity threshold correction of ±5 i after all other conditions
were applied. This correction helped reduce local intensity differences
between the acquisitions (Fig. 5). The lower BB and F threshold values
ranged from 50 i to 70 i at BMEF and 55 i to 75 i at SF, while the upper
BB and F threshold values ranged from 150 i to 170 i at BMEF and 145 i
to 165 i at SF.

2.4.2.3. Stage three — calculate neighborhood variable statistics. Once the
BB and F intensity thresholds were calculated for each plot point
cloud, theywere used to calculate three neighborhood variable statistics
for each point in the overstory. These statistics were then used in the
conditional assessment stage to determine whether the individual
lidar points were associated with a live tree or snag.

In theory, if a lidar point is associated with a live tree or snag then its
neighboring points (i.e., points locatedwithin its local-area or neighbor-
hood) are most likely to be associated with the same live tree or snag.
Extending this theory, since snags are predominately comprised of BB
intensity valued points, a point associated with a snag should have a
higher concentration of BB intensity valued points located within its
neighborhood compared to a point associated with a live tree. By ana-
lyzing the neighborhood BB concentration traits for each point, trends
were identified and used to filter and classify each point as a live tree
or snag point. Three neighborhood variables for each point were identi-
fied to be a robust combination for classifying the points: a sphere, a
small cylinder and a large cylinder (Fig. 4).

All three neighborhood variables are created by forming a local-area
centered on each point (Fig. 4). The sphere, created by forming a 1.5 m
radius sphere around each point, provides information on a point's
immediate vicinity. This variable is useful for identifying unique local
attributes within tree crowns. The small cylinder, created by forming a
1 m radius cylinder around each point and projected only upward,

Image of Fig. 5


Fig. 6. Depiction of the three step process used to calculate the neighborhood average BBPR for each lidar point's three neighborhood variables (BBP= branch and bole intensity valued
lidar point; BBPR = branch and bole lidar point ratio).
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provides information about the vicinity located above and near each
point. This variable is useful for identifying snag crowns protruding
above live tree crowns. The large cylinder, createdby forming a 2m radius
cylinder around each point and projected upward and downward,
provides information about the general vicinity around each point. By
providingmore generalized 2D information, it is useful for determining
the likelihood of a snag being located in the localized area.

Neighborhood average BB point ratios (BBPR) were calculated for
each point's three neighborhood variables following the steps outlined
in Fig. 6. Only overstory points were used in the calculations. The result
was an average BBPR value ranging from 0 to 1 for each of the overstory
point's three neighborhood variables. The closer the neighborhood
average BBPR value is to 1, the higher the concentration of BB points
in the point's neighborhood and the more likely it is to be associated
with a snag. By using the neighborhood average BBPR value the local
area of influence for each point is extended outside the individual
point's neighborhood (Fig. 6 — step 2). This helps the algorithm gravi-
tate to and identify the individual points most likely to be associated
with a snag even within an individual snag's point cloud.
2.4.2.4. Stage four — identify individual snag points. Identification of indi-
vidual snag points was completed by assessing each overstory point
against a series of conditional assessments. The conditional assessments
were based on two statistics from each of the three neighborhood vari-
ables: point density and average BBPR. In order for an individual point
Table 2
The four groups of conditional assessments with their required neighborhood point density and
ment). Values are associated with an algorithm sensitivity level of 4.

Assessment group Sphere

Point density (N=) Average BBPR (N=) Poi

General PDR 0.99
PDR 0.95
PDR 0.90
PDR 0.85
PDR 0.80

Small snag 2 and (b=) PDR 0.95 2
2 and (b=) PDR 0.90 2
2 and (b=) PDR 0.85 2

Live crown edge PDR 0.80
PDR 0.85
PDR 0.90
PDR 0.95

High canopy cover (only CC N= 55%) PDR 0.95
… …

PDR 0.95
PDR 0.90
… …

PDR 0.90

PDR: Point density requirement based on plot-level point density (PLPD) defined classes.
(If PLPD b= 3, PDR = 3; if 3 b PLPD b= 6, PDR = 4; if 6 b PLPD b= 12, PDR = 5; if PLPD N 12
to be identified as a snag point it had to meet all the requirements
for at least one conditional assessment. Four groups of conditional
assessments were identified that accurately and robustly classified
the overstory points in the diversity of natural conditions found at
both study locations: 1) general, 2) small snag, 3) live crown edge,
and 4) high canopy cover (Table 2). Each group targets a unique
snag location scenario with some overlap between them. The ‘general’
group was the most robust group at identifying snag points in a broad
range of situations. The ‘small snag’ group was created to find snag
points associated with isolated snags that had lower point densities.
The ‘live crown edge’ group was focused on finding snag points associ-
ated with snags located directly adjacent to and intermixing with live
tree crowns. The ‘high canopy cover’ group was only used when the
plot-level canopy cover was ≥55% to identify snag points associated
with snags protruding above live canopy conditions.

Sensitivity of the conditional assessments is adjusted by shifting the
neighborhood average BBPR value requirements. The magnitude of the
shift (i.e., sensitivity level) is determined automatically using a decision
tree based on BBvFr, canopy cover, andmean canopy height (Fig. 7). The
objective of the decision tree is to adjust the sensitivity of the algorithm
to match the intensity and stand conditions present in the area being
assessed (i.e., windowed approach). The combination of these three
variables provided the ability to classify local intensity and stand condi-
tion variation into logical groups. Sensitivity levels range from 0 to 5; a
higher value is commensurate with more relaxed conditional assess-
ment requirements. Fig. 8 provides an example of how the sensitivity
average BBPR values (BBPR= branch and bole point ratio; PDR= point density require-

Small cylinder Large cylinder

nt density (N=) Average BBPR (N=) Point density (N=) Average BBPR (N=)

– 0.99 – 0.70
– 0.95 – 0.725
– 0.90 – 0.75
– 0.85 – 0.775
– 0.80 – 0.80

and (b=) PDR 0.95 2 and (b=) PDR 0.60
and (b=) PDR 0.90 2 and (b=) PDR 0.65
and (b=) PDR 0.85 2 and (b=) PDR 0.75

PDR 0.95 PDR*7 0.70
PDR 0.90 PDR ∗ 7 0.75
PDR 0.85 PDR ∗ 7 0.80
PDR 0.80 PDR ∗ 7 0.85
PDR 0.95 PDR ∗ 8 0.75
… … …

PDR 0.95 PDR ∗ 15 0.55
PDR 0.90 PDR ∗ 8 0.85
… … … …

PDR 0.90 PDR ∗ 15 0.65

, PDR = 8).
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Fig. 7. Snag-filtering algorithm sensitivity decision tree used to determine the algorithm's
conditional assessment values (MCH= mean canopy height).
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value was used to adjust the general group conditional assessment
requirements.

The neighborhood point density requirements used in the condi-
tional assessments are automatically classified into four groups based
on the plot-level point density (Table 2). They are used in two ways:
1) to insure there are enough neighborhood points within the sphere
neighborhood variable to make the average BBPR value significant,
and 2) to adjust the average large cylinder neighborhood BBPR value
requirements (i.e., the higher the large cylinder neighborhood point
density, the lower the requirement for large cylinder average BBPR).
The point density requirements were not utilized in all conditional
assessments.

2.4.2.5. Stage five — eliminate live tree points. After the individual snag
point identification process was completed, all overstory points located
within a 1 m radius cylinder of snag classified points were classified as
snag points. Overstory points not receiving a snag classification were
classified as live tree points and then eliminated from the overstory by
replacing their height values with a zero value. The final result is a
plot point cloud containing only snag classified points in the overstory
and live tree points on the ground (i.e., zero height). The final step
was to remove all understory points greater than 0.2 m in height. This
Fig. 8. Example of how the algorithm sensitivity value is used to adjust the ‘General’ con-
ditional assessment group value requirements. Overstory lidar points with a large cylinder
neighborhood average BBPR value above the appropriate line are classified as snag points
(BBPR = branch and bole point ratio).
retains all points on or near the ground surface in the final point cloud,
which is necessary to create an accurate canopy surface model in the
next step.

The final individual snag-filtered plot point clouds from the training
dataset were analyzed for accuracy and algorithm parameters were ad-
justed using a manual sequential process to develop the final algorithm
definitions and parameters. Once the training of the snag-filtering algo-
rithmwas completed using the training dataset, it was applied to the in-
dependent plots (n= 153) to generate the final snag-filtered plot point
clouds for analysis. These point cloudswere then exported for use in the
individual-tree segmentation procedure.

2.4.3. Individual-snag detection
Individual-snag detection was completed using a traditional airborne

lidar individual-tree segmentation procedure (Kaartinen & Hyyppä,
2008; Vauhkonen et al., 2011). A canopy surface model was first created
using the snag-filtered point cloud, and then individual-snags were
located using an automated local-maxima detection algorithm to
produce an individual-snag data file containing an ID, location
(i.e., x- and y-UTM coordinates), and height value for each detected
snag.

Canopy surface models can have various forms depending on how
the surface is interpolated and smoothed, which all affect the ability to
accurately identify individual trees. When the primary use for a canopy
surfacemodel is to detect individual-trees or snags, it is crucial the canopy
surface model accurately represents individual trees or snags by pro-
viding a single heightmaxima for each tree while following crown pro-
files. In this study, the canopy surface models were created using the
‘CanopyModel’ command line utility processing program in the Fusion
lidar software package (McGaughey, 2012). The following parameters
and filters were used to create a canopy surface model that adequately
characterized individual snags using the snag-filtered plot point clouds;
a surface grid cell size of 0.85 m2, application of both median and mean
smoothing filters (5 × 5 grid cell windows), and preservation of local
maxima using the ‘peaks’ switch within CanopyModel to force the sur-
face to adhere to the tops of trees.

Individual snags were located from the canopy surface model by
using the automated command line utility processing program
‘CanopyMaxima’ in the Fusion lidar software package (McGaughey,
2012). The program's default settings were used to locate individual-
snags and export a tree list for each plot containing the x- and y-UTM co-
ordinates and height values for each tree identified. The individual plot
tree list files were combined and imported into ArcGIS for comparison
and analysis. Trees locatedwithin the5mplot buffer areaswere removed,
resulting in the final lidar-derived plot-level snag stem map. The lidar-
derived plot stem map was then compared to the field-derived plot
stem map to determine snag detection and error rates.

2.4.4. Snag detection and error rates
Snag detection and error rates were generated by comparing the

lidar- and field-derived stem maps in ArcGIS using the independent
dataset. To determine if an individual snag was correctly detected, ac-
ceptable location distance errors had to be defined. Taking into account
the positional accuracy of plot locations and the field methods used to
locate individual trees, individual snag location errors were expected
to be within ±1.5 m. This error only refers to the position at the base
of the tree,without considering the potential deviations of a tree top rel-
ative to its base. Given the accuracy of the lidar acquisition (±15 cm)
and the fact that the taller a snag is themore likely it is to have a greater
deviation between its base and top locations, the thresholds for accept-
able location distance errors were set as 3 m for snags b9 m in total
height and 4.5 m for trees with total heights ≥9 m. If a lidar detected
snag location was within the acceptable distance of a field measured
snag, it was classified as detected. Only one field measured snag could
be associated with each lidar detected snag location. Lidar detected
snags not within the acceptable distance of any field measured snags
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were classified as commission errors (i.e., a live tree or a portion of a live
tree that was incorrectly classified as a snag). If a field measured snag
was not detected using the lidarmethod it was classified as an omission
error.

Snag detection rates are summarized for the three strata (i.e., BMEF,
SF-ULS, and SF-MSHS) using various DBH and height criteria to help
assess the method's accuracy and applicability in different forest types
and stand conditions. Snag detection rate trends for lidar point density
and canopy cover are presented to provide a better understanding of
how these variables interact with the method. Lidar-derived and field-
measured snag heights are compared using an ordinary least squares
(OLS) regression analysis to determine if themethod produced accurate
height estimates.

Commission and omission errors are summarized categorically to
provide insight on error causes and rates. Commission errors occurred
when the lidar snag detection method falsely identified a live tree or a
portion of a live tree as a snag. Individual commission errors were
inspected and classified into one of the following seven categories:
1) dead top, 2) dead branches, 3) highest tree vigor risk rating,
4) high tree vigor risk rating with abnormal growth, 5) extreme snow
bend, 6) multiple forks and crooks, and 7) stump sprouting black oak.
Omission errors occurred when snags were not detected using the
lidar snag detectionmethod. The reasons for these errorswere explored
and classified into the following six categories: 1) sharing space with
live trees, 2) low point density, 3) too many foliage valued intensity
points, 4) dead foliage still attached, 5) canopy surface model, and
6) stump sprouting black oak.

3. Results

3.1. Snag detection rates

Snag DBH distributions and detection rates for the three strata using
various DBH and height criteria scenarios are summarized in Fig. 9. The
Fig. 9. Snag diameter distribution and detection rate summaries for the three strata under variou
greater than or equal to the DBH listed (i.e., ≥25 DBH class = detection rate for all trees with
three strata produced similar snag detection rates that increased as
the size of the snags increased. The strata combined detection rate
for snags in smaller DBH classes (12–50 cm) was 42.5% (±2.7%)
using the ≥3 m minimum height criteria; and 61.3% (±4.7%) for
larger DBH classes (50–90+ cm). Detection rates were also calculated
for different ≥DBH scenarios (i.e., number of snags over a specified
DBH). The strata combined detection rate for snags with a minimum
height of 3 m and DBHs ≥ 25 cm was 56.0% (±2.9%), increasing to
75.0% (±12.5%) for DBHs≥ 90 cm. On average, detection rates increased
by 0.4% for every 1 cm DBH increase and 1.9% for every 1 m increase in
height. The overall detection rates for the variousDBH scenarios increased
by an average of 5.9% for every 3m increase in the height criteria,with the
largest average increases occurring between the ≥3 and 6 m height
criteria (6.3%).

For BMEF, the majority of snags were smaller with DBHs b 37 cm
(Fig. 9). The overall detection rate for these snags was 40.0% (±4.4%)
using the 3 m minimum height criteria; while the detection rate for
snags with DBH≥ 37 cmwas much higher at 56.1% (±7.8%). Detection
rates for the ≥DBH class scenarios followed a similar pattern for all
three height criteria, steadily increasing to the ≥50 cm DBH class and
then leveling off for the higher ≥DBH classes. The detection rates for
the various DBH scenarios increased by an average of 7.6% for every
3 m increase in the minimum height criteria.

For SF-ULS, the snag DBH distribution was similar to BMEF, with a
majority of snags having DBHs b 37 cm (59%). The detection rate for
snags with DBHs b 37 cm using the 3 m minimum height criteria was
37.7% (±5.8%), and 51% (±7.1%) for snags with DBHs ≥ 37 cm. Overall,
the detection rates were the lowest compared to the other two strata
and remained relatively stable for the various DBH scenarios (Fig. 9).
For the three minimum height criteria scenarios (i.e., 3, 6, and 9 m), the
detection rate increased at the lowest average rate (1.1%) as ≥DBH
class criteria increased. The detection rates for the various DBH scenarios
did however display the highest average increase for every 3 m increase
in the minimum height criteria at 10.6%.
s DBH and height scenarios.≥DBH class detection rates are defined as all snagswith DBHs
DBHs ≥ 25 cm).

Image of Fig. 9


Fig. 10. Lidar point density and canopy cover detection rate trends for two different ≥DBH class scenarios (DBH ≥ 25 cm and 50 cm). Black and gray bars represent the proportion of
detected and undetected snags respectively for the individual point density and canopy cover classes.
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For SF-MSHS, the snag DBH distribution was relatively uniform for
snags b62 cm DBH and decreased significantly for snags ≥62 cm DBH.
The overall detection rates were the highest for this stratum,with ama-
jority of the rates between 60 and 80%. Detection rates for the ≥DBH
class scenarios followed a similar pattern for all three height criteria,
slowly increasing to the ≥62 cm DBH class and then increasing to
100% for the higher ≥DBH classes. The 100% detection rates for snags
with DBHs ≥ 75 cm were based on low snag sample sizes (n ≤ 4) and
should be viewedwith caution. The stratumalso had the lowest average
rate of increase (2.5%) between the three minimum height criteria
scenarios.

3.2. Snag detection rate trends

Lidar point density and canopy cover both exhibited trends that
affected the method detection performance (Fig. 10). Detection rates
tended to increase as point densities increased and decrease as canopy
cover increased. Both trends remained stable as snag size increased.
The point density trend was not as significant as the canopy cover
trend, with an average trend slope of 0.026 for point density versus an
average trend slope of −0.043 for canopy cover.

3.3. Snag heights

Overall the lidar-derived heights displayed a good relationship with
the field-measured heights, explaining a large amount of the variation
associated with field-measured heights from the linear regression
model (R2 = 0.87). The lidar-derived snag heights exhibited a small
negative bias that became less prevalent as the height increased
(Fig. 11). The height bias was −0.89 m for snags with field-measured
heights≤25m, and−0.22m for snagswith heights N25m. The residual
Fig. 11. Lidar-derived snag heights versus field-measured snag heights.
standard error for the OLS model was ±3.14 m, with a median error
of −0.66 m.

3.4. Commission errors

Commission error rates varied for the three strata (Table 3). BMEF
had the lowest commission rate (0.96 ha−1), followed by SF-ULS
(3.20 ha−1) and SF-MSHS (6.42 ha−1). Commission errors were
most often associated with smaller trees, with 56% of them having
DBHs ≤ 25 cm and 81% of them having DBHs ≤ 50 cm. SF-MSHS had
12 commission errors that were associated with 6 stump sprouting
black oak trees. If these errors are removed from the commission
error assessment, the SF-MSHS stratum had the lowest commission
error rate (0.49 ha−1).

The causes of the commission errors varied, but were most often
associated with stump sprouting black oak trees that maintained dead
crowns (38%) and live trees containing a high percentage (≥90%) of
dead crown on at least one side of the tree crown (25%) (Table 4).
All commission errors associated with trees with DBHs ≥ 50 cm
(n = 6) were associated with having either a large dead top that
comprised≥25% of the tree crown, a tree vigor risk rating at the highest
level (i.e., death imminent), or a high tree vigor risk rating with an ab-
normal growth pattern (e.g., witches broom, severe crooks or sweeps).
Two commission errors were caused by smaller trees (DBH ≤ 25 cm)
exhibiting extreme snow bend (≥45°), and one error was caused
by a tree exhibiting abnormal growth patterns with multiple forks and
crooks.

3.5. Omission errors

The proportion of undetected snags for each of the six error causa-
tion categories is presented in Table 5. Over half of the omission errors
(56.3%) were caused by snags that shared space with at least one live
tree. These situations made it difficult to identify the individual snag
Table 3
Summary of commission error rates for the three strata byDBH class (BMEF=BlacksMtn.
Exp. Forest; SF-ULS = Storrie Fire unchanged and low fire severity; SF-MSHS = Storrie
Fire medium and high fire severity).

DBH class (cm) BMEF Storrie
Fire (ULS)

Storrie
Fire (MSHS)

Total
(DBH class)

Storrie Fire
(MSHS w/out
black oak)

12–25 34 2 12 18 –

25–37 2 3 – 5 –

37–50 2 – 1 3 1
50–62 1 – – 1 –

62–75 1 – – 1 –

75–88 2 1 – 3 –

N=88 – 1 – 1 –

Total (strata) 12 7 13 32 1
Commission error
rate (ha−1)

0.96 3.20 6.42 1.92 0.49
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Table 4
Summary of commission error causes by DBH class.

DBH
class
(cm)

Dead top
(N=25% of
canopy)

Dead branches (one side
(N=25%) of canopy dead)

Highest risk
rating treea

High risk rating treeb

(w/ abnormal growth characteristic)
Extreme snow
bend or lean

Multiple forks
and crooks

Stump sprouting black
oak (w/ dead canopy)

12–25 – 3 – 1 2 – 12
25–37 – 3 1 – – 1 –

37–50 – 2 1 – – – –

50–62 1 – – – – – –

62–75 – – – 1 – – –

75–88 1 – 1 1 – – –

N=88 – – 1 – – – –

Total (32) 2 8 4 3 2 1 12

Abnormal growth characteristics include witches broom, crooks and sweeps.
a The highest risk rating trees display signs of imminent death; such as sparse crowns with necrotic foliage, multiple dead branches and no new growth.
b High risk rating trees display unhealthy crowns and indications of low vigor, thinning crowns with dead branches and limited growth.
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points because the neighborhood average BBPR statistics associated
with the snag points received more influence from the neighboring
live tree points with intensity values in the foliage range. The next
highest omission error cause was associated with low point densities
(17.2%). Snags with low point densities were typically smaller and
were often not identified using the method because they did not meet
the required point density threshold conditions used in the snag-
filtering algorithm. Snags containing too many foliage valued intensity
points caused 11.4% of the omission errors. Snags with dead foliage
still attached caused 4.6% of the errors. Dead attached foliage returned
intensity values in the foliage intensity range, therefore this category
could also be grouped with the ‘higher percentage of foliage valued
intensity points’ category. The canopy surface model creation method
caused 8.6% of the omission errors by smoothing neighboring snag
canopy surfaces together into one canopy surface with one local-
maxima. Black oak trees with complex crowns caused the lowest per-
centage of omission errors (2.0%).

4. Discussion

4.1. Snag detection

The method presented in this study was able to accurately detect
and locate a large proportion of snags in all strata with low commission
error rates. Snag detection rates increased as the size of snags increased
(i.e., DBH and height). Most forest management snag stocking guide-
lines and standards are focused on larger snags, as they provide more
wildlife habitat potential. For the areas in this study, a common snag
size threshold used in stocking guidelines is DBH ≥ 37 cm. The method
presented in this paper provided an overall combined detection rate of
58.5% (±3.7%) for snags meeting this size threshold based on the inde-
pendent dataset.

The three strata provided an opportunity to explore the method's
performance in various forest types and stand conditions. The BMEF
and SF-ULS strata demonstrated how the method performs in more
natural forest stand conditions for these forest types. Both strata had
similar overall detection rates (BMEF: 43.7%; SF: 43.2%), but the detection
rates at BMEF increased at amuch higher rate as snagDBH increased. This
is most likely associated with the more dense and complex stand struc-
tures found in the SF forest types (i.e., MC, LF and HF) compared to the
BMEF forest type (i.e., interior ponderosa pine). There was a larger
sample size at BMEF in a broader range of natural stand conditions.
Thus, more weight should be given to the results at BMEF. In natural
Table 5
Proportion of undetected snags by causation categories.

Sharing space with
live tree(s)

Low lidar point
density

Too man
intensity

Proportion of undetected snags (%) 56.3 (2.5) 17.2 (1.9) 11.4 (
stand conditions for the forest types analyzed in this study, detec-
tion rates will likely be between 40 and 60% for smaller snags
(DBH b 37 cm, heights ≥ 3 m), and 55–80% for larger snags
(DBH ≥ 37 cm, heights ≥ 3 m).

As expected, most of the snags at SF were located in the SF-MSHS
stratum (60% with 27% less area sampled). This stratum had very low
canopy covers (0–25%) and live tree densities (0–20%), which resulted
in higher detection rates than would be expected in natural forest con-
ditions. The SF-MSHS stratum detection rates were consistently higher
than 65% for DBHs ≥ 37 cm snags, which demonstrates the ability of
the method to successfully detect individual snags post-wildfire
(~9 years) in medium and high fire severity areas. This suggests that
this method could provide utility for live versus dead tree assessments
following wildfire and other disturbance events.

4.2. Factors affecting snag detection

Snag detection rates using thismethodwere affected by a number of
uncontrollable and controllable factors. Uncontrollable factors were
associated with forest stand and individual snag characteristics, while
controllable factors were associated with the quality of the lidar data
and the individual-snag detection methods.

4.2.1. Uncontrollable factors
Uncontrollable factors associated with forest stand characteristics

included canopy cover and snag location with respect to live trees.
Canopy cover is an uncontrollable factor that significantly affected the
methods' ability to detect snags (Fig. 10). As canopy cover increases
the likelihood of snags intermixingwith live tree crowns also increases,
making snag points more difficult to identify with the snag-detection
algorithm.

Six uncontrollable individual snag characteristics were identified
that adversely affected individual snag detection. First, snags with
dead foliage attached often had a large proportion of their lidar points
classified as having foliage intensity values, which caused them to be
classified as live tree points during the snag-filtering algorithm. Over-
coming this problem will be difficult using discrete-return lidar data,
even with better intensity calibration. This also highlights a temporal
component associated with snag detection using this method; as time
since death passes, snag detection will increase as the amount of dead
foliage and fine branches decrease. In the example of a large-scale dis-
turbance, such as wildfire or insect outbreak, acquisition of lidar data
for snag detection using this or similar methods should be timed in
y foliage
points

Dead foliage
still attached

Canopy surface
model

Black oak complex
crown

Total
undetected (n)

1.6) 4.6 (1.1) 8.6 (1.4) 2.0 (0.7) 396
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consideration of needle- or leaf-cast. In this same context, in areas with
coniferous and deciduous trees intermixing, snag detection will likely
be improved if the lidar data acquisition is completed in leaf-on condi-
tions as it was in this study.

The second individual tree characteristic found to affect detection
rates was associated with black oak, a deciduous tree species found in-
frequently the MC forest type. All black oak snags sampled in this
study were located on four plots in the SF-MSHS stratum. The growth
characteristics associated with these trees produced a unique situation
which affected omission errors when they were a snag (i.e., no live
stump sprouting present) and commission errors when they exhibited
live foliage in the form of stump sprouting. In all cases, these trees were
associated with multiple stems generating from one unique base. Due
to the sampling protocol each unique stem with a DBH ≥ 11.5 cm was
treated as a separate snag. Making matters even more troublesome was
the fact that they do not follow a simple vertical growth pattern. They
typically grow with spread out dome-shaped crowns. This either caused
the canopy surface model associated with these trees to generate too
many or not enough local maxima, which in turn caused the commission
and omission errors respectively. If black oak trees were removed from
the analysis, the overall detection and error rates would improve.

The next three individual tree characteristics that affected the ability
to detect individual snags were associated with trees declining in vigor,
having abnormal growth patterns (e.g. crooks, sweeps, crotches), or
having dead tops. Many of the commission errors were caused by live
trees exhibiting one of these conditions. Even though these trees often
caused commission errors, they also highlight the ability of the method
to identify live trees displaying unique characteristics often related to
tree health or vigor. Trees with these characteristics often provide valu-
able wildlife habitat (Bull, Parks, & Torgersen, 1997), so theremay be an
opportunity to use lidar for identifying these habitat features as well.

The last individual tree characteristic found to affect detection
rates was associated with snow bent trees (i.e., trees with snow bend
angle ≥45°). These trees have boles that are more exposed to airborne
lidar scanning which resulted in a higher density of BB intensity valued
points within the neighborhood variables. On two occasions these trees
were classified as snags. There were a total of 12 snow bent trees
(bending≥ 45°) located on the sampled plots, so the error rate was rel-
atively low (16.7%).

4.2.2. Controllable factors
Controllable factors affecting the ability of the method to detect

snags can be partitioned into three categories: 1) lidar acquisition and
intensity calibration, 2) snag-filtering algorithm, and 3) individual-
snag detection methods. Adjustments to these can either improve or
deteriorate the snag detection rates.

Lidar acquisition parameters and intensity variability play a significant
role in the usefulness of lidar data. Both lidar acquisitions in this study
were collected by the same vendor, which reduced the variability be-
tween the lidar datasets. The vendor also used the automatic variable
gain setting during acquisition in both study areas. In forested environ-
ments, the automatic variable gain setting remains relatively stable due
to the homogenous nature of these environments (i.e., low variability in
the target population surface reflectance and composition). This aids
with the usefulness of the intensity information by reducing the variable
gain settings' influence on intensity variability. In environments where
target populations have more surface reflectance and composition vari-
ability (e.g., urban areas) the usefulness of the un-calibrated intensity in-
formation will likely be reduced. Post-acquisition intensity calibration
was not completed for the lidar data in this study. At the time of this
study, post-acquisition intensity calibration techniques are being devel-
oped and are becoming more available. Most calibration routines are
based on the assessment of the acquisition parameters against reference
settings that are then used to normalize intensity values. These normal-
ized intensity values should provide more useful information for lidar
filtering and analysis.
Sufficient lidar point densities are required for thefiltering algorithm
to successfully identify individual snag points. Based on the lidar point
density trends found in this study (Fig. 10), a point density of ≥4 first
and single return points m−2 should provide an adequate amount of
data to successfully detect a majority of large snags. Higher point densi-
ties should improve results. Identifying the optimal lidar point density
for snag detection will vary depending on the quality of the intensity
information, forest stand characteristics (e.g., forest type, tree density,
and crown structure), and snag-filtering algorithm parameters.

The snag-filtering algorithm displayed encouraging potential in its
ability to identify individual snag points. The average BBPR value for
each of the three neighborhood variables can be thought of as the prob-
ability of each point being associatedwith either BB or F. In this context,
the higher the sumof the three neighborhood average BBPR values is for
each point (maximumof 3), themore likely that point is associatedwith
a snag. Expanding on this application, the neighborhood average BBPR
values could have additional uses for assessing tree vigor or health indi-
ces, since trees with lower vigor typically have lower proportions of
foliage compared to trees with higher vigor. The neighborhood average
BBPR values might also be useful for species identification, especially
when differentiating between deciduous and coniferous species. It's
also important to note that the snag-filtering algorithm used in this
application was created and then tested on independent datasets that
came from the same lidar acquisitions. While modifications made to
the snag-filtering algorithm between the two lidar acquisition datasets
were relativelyminor, more testing of the filtering algorithmwith addi-
tional lidar datasets is necessary to understand the variation and sensi-
tivity associated with the method.

Neighborhood attribute point cloud filtering displayed promising
utility as a new lidar analysis technique for accurately classifying over-
story lidar points to either a live tree or snag. The primary objective of
neighborhood attribute point based filtering is to create an automated
method to identify and accurately assign the proper forest attribute to
each lidar point, or to assign individual forest attribute probabilities or
weights to each lidar point. This additional analysis step should provide
an enhanced lidar analysis framework for both plot-based and individual
forest attribute assessments since lidar points not associated with the
forest attribute(s) of interest can either be removed or given less influ-
ence. As an example in the context of a live-tree variable plot-based
lidar assessment (e.g., basal area and volume), the combined local-
variable BBPR values could be used to assign live tree vs. dead tree
weights to each overstory point. These weights could then be used to
create lidar point cloud explanatory variables that more accurately
represent the live-tree variable of interest (i.e., dead tree points are either
removed or provide less influence). There a vast array of filtering tech-
niques andmethods that can be explored for assigning lidar points to for-
est attributes of interest using the inherent information provided by
lidar. This was the first attempt at using neighborhood attribute point
cloud filtering to differentiate between live and dead tree lidar points,
thus it is likely there are ways to improve the filtering methods in this
study. Newairborne remote sensing systems that integratemultiple sen-
sors in various spectrums onto one platformwith lidar data (e.g., G-LiHT
(Cook et al., 2013)) would likely increase our ability to filter and classify
lidar data.

The individual-snag detection procedure was able to correctly
identify and locate a majority of snags in all strata. Having live tree
points removed from the point clouds used to create the canopy surface
modelmade it easier to identify individual snag canopies. Evenwith the
respectable results, the canopy surface model creation method still had
two downfalls. First, snags located directly adjacent to each other were
sometimes reduced to one snag canopy during canopy surface model
creation. This could be overcome by using a smaller grid cell size during
creation of the canopy surface model; however this would likely result
in higher commission error rates. Second, in areas where deciduous
trees intermix with coniferous species the canopy surface model will
likely have problems characterizing one or the other. A method that
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treats them separately might help, but this would be more difficult to
implement.

The individual-tree segmentation method provided relatively accu-
rate height estimates with a small negative bias. Negative biases have
been found in many lidar studies for tree heights, although they are typ-
ically larger than the one found in this study (Gatziolis, Fried, &Monleon,
2010; Stereńczak & Zasada, 2011). It is hypothesized that the snag-
filtering algorithm, particularly the last snag point identification step
where neighboring points located within a 1 m cylinder of the classified
snag points were also classified as snag points, caused the negative bias
to be smaller than expected by occasionally including neighboring tree
points that were located above the snag which resulted in the heights
being overestimated. These height overestimation errors offset a portion
of the negative bias; therefore if they were removed the negative bias
would be higher. The negative bias was likely a function of the physical
characteristics associated with snags (e.g., smaller target surface area at
the top for decayed snags). Higher point densities would likely help re-
duce the height bias, or a bias correction factor could be applied.

4.3. Applications

The application of the method to different airborne lidar datasets,
forest types and stand structures warrants further investigation to better
understand the variation and sensitivity of themethod. The snag-filtering
algorithm parameters will likely need to be tuned for each lidar dataset
and forest type (e.g., neighborhood sizes, BB and F intensity thresholds,
and point density and BBPR condition requirements), which can be
accomplished using a training dataset. Training datasets should be com-
prised of as many plots as possible, while maintaining a sufficient inde-
pendent dataset. This study randomly selected ~25% of the plots to use
as the training dataset. In the future as more datasets are analyzed, it
could become possible to standardize the filtering algorithm parameters
for various lidar acquisitions and forest type attributes.

Applications of the method could help overcome a number of the
problems associated with the ability to estimate and monitor snags.
The method provides the ability to estimate snag densities for various
size classes, while also providing the spatial distribution of individual
snags. Both the applications should help increase our understanding of
snag dynamics in forest ecosystems, and enhance our ability to develop
and assess snag stocking standards. Proper determination of individual
snag detection rates and snag density estimates currently requires accu-
rate field-derived stem map data. However, if average detection rates
along with commission and omission errors are known for various
Fig. 12. Depiction of the iterative area segmentation procedure used to apply the
snag-filtering algorithm to lidar datasets. The individual areas without their 5 m buffers
are aggregated back together after the filtering algorithm is applied.
forest types and lidar parameters, it could become possible to estimate
snag densities using only airborne lidar data in the future.

Application of the snag-filtering algorithm across entire lidar
datasets can be accomplished using a sequential procedure, where the
filtering algorithm is applied to individually segmented areas ranging
from 0.01 to 0.2 ha in size that are aggregated back together after the
filtering algorithm is applied (Fig. 12). Since the snag-filtering algorithm
requires multiple loops through the lidar points being analyzed, the size
of the grid cells, the point density, and the forest overstory characteristics
within each grid cell will determine the efficiency of the algorithm.
For this study the plot size was ~0.081 ha with a 5 m buffer, the snag-
filtering algorithm's run time averaged 2.24 s with a range from 0.68
to 11.06 s. Expanding the average value to a 100 ha area, the filtering
algorithmwould be completed in ~46min with similar lidar point den-
sities and forest overstory characteristics.

5. Conclusions

This study presented a new method for identifying and locating in-
dividual snags across forested landscapes using airborne lidar data.
The method introduced a new lidar analysis technique; neighborhood
attribute point-basedfiltering focused on accurately assigning the prop-
er forest attribute to each lidar point. The neighborhood attribute point-
based filtering technique in this study used the location along with the
intensity and density attributes associated with the individual points to
identify whether overstory lidar points were associated with live or
dead trees. The snag-filtered point clouds were then used to identify in-
dividual snags. This was the first attempt to filter lidar data with this
purpose, so it is expected that improvements to the filtering methods
are available. Even without improvement, the method presented was
able to identify a large proportion snags and a majority of the larger
snags in natural stand conditions with very low commission error
rates. Stands with high mortality (i.e., post-disturbance — medium
and high wildfire severity) produced even better results. The method
is automated and efficient once the filtering algorithm is trained and
provides the ability to obtain snag density estimates and an accurate
snag stem map for the majority of larger snags. Additional benefits are
produced by the snag-filtered lidar data that should provide and
enhanced lidar analysis framework formodeling live and dead tree var-
iables. Given the difficulties associated with the estimation of snags
across the landscape, the method presented could provide a more ro-
bust and accurate alternative where airborne lidar data are available.
The method warrants further investigation with additional lidar
datasets in various forest types and conditions to better understand
the sensitivity and variability associated with the method.
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